WorldWideScience

Sample records for monophosphate camp-dependent protein

  1. Different role of cAMP dependent protein kinase and CaMKII in H3 receptor regulation of histamine synthesis and release.

    Science.gov (United States)

    Moreno-Delgado, D; Gómez-Ramírez, J; Torrent-Moreno, A; González-Sepúlveda, M; Blanco, I; Ortiz, J

    2009-12-15

    Histamine H(3) autoreceptors induce a negative feedback on histamine synthesis and release. While it is known that cAMP/cAMP dependent protein kinase (PKA) and Ca(2+)/CaMKII transduction pathways mediate H(3) effects on histamine synthesis, the pathways regulating neuronal histamine release are poorly known. Given the potential use of H(3) ligands in cognitive diseases, we have developed a technique for the determination of H(3) effects on histamine synthesis and release in brain cortical miniprisms. Potassium-induced depolarization effects were impaired by blockade of calcium entry through N and P/Q channels, as well as of CaMKII, but release was not affected by activators or inhibitors of the cAMP/PKA pathway (1-methyl-3-isobutylxanthine (IBMX), N6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate sodium salt (db-cAMP) or myristoyl PKA inhibitor peptide 14-22 (PKI(14-22)). In contrast, forskolin stimulated histamine release, although independently of PKA. Stimulation of histamine H(3) receptors with the agonist imetit markedly reduced the depolarization increase of histamine release, apparently through P/Q calcium channel inhibition. The H(3) antagonist/inverse agonist thioperamide modestly stimulated histamine release. Thioperamide effect on release was not modified by the PKA inhibitor PKI(14-22), but it was blocked by the CaMKII inhibitor KN-62. These results indicate that H(3) autoreceptors regulate neuronal histamine release (1) independently of the cAMP/PKA cascade, and (2) through modulation of calcium entry and CaMKII activation during depolarization.

  2. Protective effects of inhibition of adenosine monophosphate activated protein kinase activity against cerebral ischemia-reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    补娟

    2013-01-01

    Objective To observe the effect of inhibition of adenosine monophosphate activated protein kinase (AMPK) on shape,function and inflammatory factor of microglia for mice after cerebral ischemia-reperfusion

  3. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    Science.gov (United States)

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  4. Icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels in the hippocampus of the senescence- accelerated mouse

    Institute of Scientific and Technical Information of China (English)

    Zhanwei Zhang; Ting Zhang; Keli Dong

    2012-01-01

    At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increased. Immunohistochemical staining and western blot assay detected signifi-cantly increased levels of cyclic adenosine monophosphate response element binding protein. These results suggest that icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels and improves learning and memory functions in hippo-campus of the senescence-accelerated mouse.

  5. Metabolic syndrome: adenosine monophosphate-activated protein kinase and malonyl coenzyme A.

    Science.gov (United States)

    Ruderman, Neil B; Saha, Asish K

    2006-02-01

    The metabolic syndrome can be defined as a state of metabolic dysregulation characterized by insulin resistance, central obesity, and a predisposition to type 2 diabetes, dyslipidemia, premature atherosclerosis, and other diseases. An increasing body of evidence has linked the metabolic syndrome to abnormalities in lipid metabolism that ultimately lead to cellular dysfunction. We review here the hypothesis that, in many instances, the cause of these lipid abnormalities could be a dysregulation of the adenosine monophosphate-activated protein kinase (AMPK)/malonyl coenzyme A (CoA) fuel-sensing and signaling mechanism. Such dysregulation could be reflected by isolated increases in malonyl CoA or by concurrent changes in malonyl CoA and AMPK, both of which would alter intracellular fatty acid partitioning. The possibility is also raised that pharmacological agents and other factors that activate AMPK and/or decrease malonyl CoA could be therapeutic targets.

  6. Post-translational Analysis of Arabidopsis thaliana Proteins in Response to Cyclic Guanosine Monophosphate Treatment

    KAUST Repository

    Parrott, Brian

    2011-12-12

    The introduction of mass spectrometry techniques to the field of biology has made possible the exploration of the proteome as a whole system as opposed to prior techniques, such as anti-body based assays or yeast two-hybrid studies, which were strictly limited to the study of a few proteins at a time. This practice has allowed for a systems biology approach of exploring the proteome, with the possibility of viewing entire pathways over increments of time. In this study, the effect of treating Arabidopsis thaliana suspension culture cells with 3’,5’-cyclic guanosine monophosphate (cGMP), which is a native second messenger, was examined. Samples were collected at four time points and proteins were extracted and enriched for both oxidation and phosphorylation before analysis via mass spectrometry. Preliminary results suggest a tendency towards an increased number of phosphorylated proteins as a result of cGMP treatment. The data also showed a sharp increase in methionine oxidation in response to the treatment, occurring within the first ten minutes. This finding suggests that cGMP may utilize methionine oxidation as a mechanism of signal transduction. As such, this study corroborates a growing body of evidence supporting the inclusion of methionine oxidation in intracellular signaling pathways.

  7. 5'-adenosine monophosphate-activated protein kinase and the metabolic syndrome.

    Science.gov (United States)

    Mor, Vijay; Unnikrishnan, M K

    2011-09-01

    Lifestyle changes such as physical inactivity combined with calorie-rich, low-fibre diets have triggered an explosive surge in metabolic syndrome, outlined as a cluster of heart attack risk factors such as insulin resistance, raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure. By acting as a master-switch of energy homeostasis and associated pathophysiological phenomena, 5'-adenosine monophosphate-activated protein kinase (AMPK) appears to orchestrate the adaptive physiology of energy deficit, suggesting that the sedentary modern human could be suffering from chronic suboptimal AMPK activation. Addressing individual targets with potent ligands with high specificity may be inappropriate (it has not yielded any molecule superior to the sixty year old metformin) because this strategy cannot address a cluster of interrelated pathologies. However, spices, dietary supplements and nutraceuticals attenuate the multiple symptoms of metabolic syndrome in a collective and perhaps more holistic fashion with fewer adverse events. Natural selection could have favoured races that developed a taste for spices and dietary supplements, most of which are not only antioxidants but also activators of AMPK. The review will outline the various biochemical mechanisms and pathophysiological consequences of AMPK activation involving the cluster of symptoms that embrace metabolic syndrome and beyond. Recent advances that integrate energy homeostasis with a number of overarching metabolic pathways and physiological phenomena, including inflammatory conditions, cell growth and development, malignancy, life span, and even extending into environmental millieu, as in obesity mediated by gut microflora and others will also be outlined.

  8. Effects of adenosine 5’monophosphate-activated protein kinase on europrotection induced by ischemic preconditioning

    Directory of Open Access Journals (Sweden)

    Yuan-ru-hua TIAN

    2015-06-01

    Full Text Available Objective To investigate the effects of adenosine 5'-monophosphate-activated protein kinase (AMPK and phosphated AMPK (pAMPK signals in ischemic preconditioning (IPC, and the effect of pharmacological intervention of AMPK on infarct size of the brain. Methods A brief (3min middle cerebral artery occlusion (MCAO was employed to induce IPC in male rat, and another 90-min MCAO was performed 4 or 72h later. The levels of AMPK and pAMPK were assessed after IPC. A pharmacological activator metformin, or inhibitor compound C of AMPK, was used to analyze the correlation of IPC to AMPK signaling in MCAO rats. Results The infarct size of total cerebral hemisphere and cortex was significantly decreased in MCAO animals by IPC for 72h (P0.05, n=6. The AMPK activator metformin can significantly reverse the protective effect of IPC (P<0.05, n=6. Conclusions The signals of AMPK and pAMPK play an important role in neuroprotective effect of IPC on cerebral ischemic injury. The neuroprotective effect of IPC may be associated with the down-regulation of pAMPK. DOI: 10.11855/j.issn.0577-7402.2015.05.07

  9. Xylazine Activates Adenosine Monophosphate-Activated Protein Kinase Pathway in the Central Nervous System of Rats

    Science.gov (United States)

    Shi, Xing-Xing; Yin, Bai-Shuang; Yang, Peng; Chen, Hao; Li, Xin; Su, Li-Xue; Fan, Hong-Gang; Wang, Hong-Bin

    2016-01-01

    Xylazine is a potent analgesic extensively used in veterinary and animal experimentation. Evidence exists that the analgesic effect can be inhibited using adenosine 5’-monophosphate activated protein kinase (AMPK) inhibitors. Considering this idea, the aim of this study was to investigate whether the AMPK signaling pathway is involved in the central analgesic mechanism of xylazine in the rat. Xylazine was administrated via the intraperitoneal route. Sprague-Dawley rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus and brainstem were collected for determination of liver kinase B1 (LKB1) and AMPKα mRNA expression using quantitative real-time polymerase chain reaction (qPCR), and phosphorylated LKB1 and AMPKα levels using western blot. The results of our study showed that compared with the control group, xylazine induced significant increases in AMPK activity in the cerebral cortex, hippocampus, thalamus and cerebellum after rats received xylazine (P < 0.01). Increased AMPK activities were accompanied with increased phosphorylation levels of LKB1 in corresponding regions of rats. The protein levels of phosphorylated LKB1 and AMPKα in these regions returned or tended to return to control group levels. However, in the brainstem, phosphorylated LKB1 and AMPKα protein levels were decreased by xylazine compared with the control (P < 0.05). In conclusion, our data indicates that xylazine alters the activities of LKB1 and AMPK in the central nervous system of rats, which suggests that xylazine affects the regulatory signaling pathway of the analgesic mechanism in the rat brain. PMID:27049320

  10. Hindbrain raphe stimulation boosts cyclic adenosine monophosphate and signaling proteins in the injured spinal cord.

    Science.gov (United States)

    Carballosa-Gonzalez, Melissa M; Vitores, Alberto; Hentall, Ian D

    2014-01-16

    Early recovery from incomplete spinal cord contusion is improved by prolonged stimulation of the hindbrain's serotonergic nucleus raphe magnus (NRM). Here we examine whether increases in cyclic adenosine monophosphate (cAMP), an intracellular signaling molecule with several known restorative actions on damaged neural tissue, could play a role. Subsequent changes in cAMP-dependent phosphorylation of protein kinase A (PKA) and PKA-dependent phosphorylation of the transcription factor "cAMP response element-binding protein" (CREB) are also analyzed. Rats with moderate weight-drop injury at segment T8 received 2h of NRM stimulation beginning three days after injury, followed immediately by separate extraction of cervical, thoracic and lumbar spinal cord for immunochemical assay. Controls lacked injury, stimulation or both. Injury reduced cAMP levels to under half of normal in all three spinal regions. NRM stimulation completely restored these levels, while producing no significant change in non-injured rats. Pretreatment with the 5-HT7 receptor antagonist pimozide (1 mg/kg, intraperitoneal) lowered cAMP in non-injured rats to injury amounts, which were unchanged by NRM stimulation. The phosphorylated fraction of PKA (pPKA) and CREB (pCREB) was reduced significantly in all three regions after SCI and restored by NRM stimulation, except for pCREB in lumbar segments. In conclusion, SCI produces spreading deficits in cAMP, pPKA and pCREB that are reversible by Gs protein-coupled 5-HT receptors responding to raphe-spinal activity, although these signaling molecules are not reactive to NRM stimulation in normal tissue. These findings can partly explain the benefits of NRM stimulation after SCI. © 2013 Published by Elsevier B.V.

  11. Cyclic adenosine 3'-5'-monophosphate (cAMP) exerts proliferative and anti-proliferative effects in pituitary cells of different types by activating both cAMP-dependent protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac).

    Science.gov (United States)

    Vitali, E; Peverelli, E; Giardino, E; Locatelli, M; Lasio, G B; Beck-Peccoz, P; Spada, A; Lania, A G; Mantovani, G

    2014-03-05

    In the pituitary the activation of cyclic adenosine 3'-5'-monophosphate (cAMP) dependent pathways generates proliferative signals in somatotrophs, whereas in pituitary cells of other lineages its effect remains uncertain. Moreover, the specific role of the two main cAMP effectors, protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), has not been defined. Aim of this study was to investigate the effect of cAMP on pituitary adenomatous cells proliferation and to identify PKA and Epac differential involvement. We found that cAMP increased DNA synthesis and cyclin D1 expression in somatotropinomas, whereas it reduced both parameters in prolactinomas and nonfunctioning adenomas, these effects being replicated in corresponding cell lines. Moreover, the divergent cAMP effects were mimicked by Epac and PKA analogs, which activated Rap1 and CREB, respectively. In conclusion, we demonstrated that cAMP exerted opposite effects on different pituitary cell types proliferation, these effects being mediated by both Epac and PKA.

  12. Hepatitis C virus core protein induces energy metabolism disorders of hepatocytes by down-regulation of silent mating type information regulation 2 homolog-1 and adenosine monophosphate-acti vated protein kinase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    于建武

    2013-01-01

    Objective To study the role of silent mating type information regulation2homotog-1(SIRT1)-adenosine monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway in hepatitis C virus core protein(HCV-core)induced energy metabolism disorders

  13. Cyclic Nucleotide-Dependent Protein Kinases, IV. Widespread Occurrence of Adenosine 3′,5′-monophosphate-dependent Protein Kinase in Various Tissues and Phyla of the Animal Kingdom

    National Research Council Canada - National Science Library

    J. F. Kuo; Paul Greengard

    1969-01-01

    Adenosine 3 ,5 -monophosphate-dependent protein kinase activity was found in about thirty sources including many mammalian tissues as well as species representative of eight different invertebrate phyla...

  14. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts.

    Science.gov (United States)

    Kunanusornchai, Wanlop; Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2016-12-01

    Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca(2+) influx via a mechanosensitive L-type Ca(2+) channel, which subsequently raises intracellular Ca(2+) and activates AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca(2+)-channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.

  15. Phenotype, virulence and immunogenicity of Edwardsiella ictaluri cyclic adenosine 3',5'-monophosphate receptor protein (Crp) mutants in catfish host.

    Science.gov (United States)

    Santander, Javier; Mitra, Arindam; Curtiss, Roy

    2011-12-01

    Edwardsiella ictaluri is an Enterobacteriaceae that causes lethal enteric septicemia in catfish. Being a mucosal facultative intracellular pathogen, this bacterium is an excellent candidate to develop immersion-oral live attenuated vaccines for the catfish aquaculture industry. Deletion of the cyclic 3',5'-adenosine monophosphate (cAMP) receptor protein (crp) gene in several Enterobacteriaceae has been utilized in live attenuated vaccines for mammals and birds. Here we characterize the crp gene and report the effect of a crp deletion in E. ictaluri. The E. ictaluri crp gene and encoded protein are similar to other Enterobacteriaceae family members, complementing Salmonella enterica Δcrp mutants in a cAMP-dependent fashion. The E. ictaluri Δcrp-10 in-frame deletion mutant demonstrated growth defects, loss of maltose utilization, and lack of flagella synthesis. We found that the E. ictaluri Δcrp-10 mutant was attenuated, colonized lymphoid tissues, and conferred immune protection against E. ictaluri infection to zebrafish (Danio rerio) and catfish (Ictalurus punctatus). Evaluation of the IgM titers indicated that bath immunization with the E. ictaluri Δcrp-10 mutant triggered systemic and skin immune responses in catfish. We propose that deletion of the crp gene in E. ictaluri is an effective strategy to develop immersion live attenuated antibiotic-sensitive vaccines for the catfish aquaculture industry.

  16. Methylene blue induces macroautophagy through 5′ adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation

    Science.gov (United States)

    Xie, Luokun; Li, Wenjun; Winters, Ali; Yuan, Fang; Jin, Kunlin; Yang, Shaohua

    2013-01-01

    Methylene blue has been shown to be neuroprotective in multiple experimental neurodegenerative disease models. However, the mechanisms underlying the neuroprotective effects have not been fully elucidated. Previous studies have shown that macroautophagy has multiple beneficial roles for maintaining normal cellular homeostasis and that induction of macroautophagy after myocardial ischemia is protective. In the present study we demonstrated that methylene blue could protect HT22 hippocampal cell death induced by serum deprivation, companied by induction of macroautophagy. We also found that methylene blue-mediated neuroprotection was abolished by macroautophagy inhibition. Interestingly, 5′ adenosine monophosphate-activated protein kinase (AMPK) signaling, but not inhibition of mammalian target of rapamycin signaling, was activated at 12 and 24 h after methylene blue treatment in a dose-dependent manner. Methylene blue-induced macroautophagy was blocked by AMPK inhibitor. Consistent with in vitro data, macroautophagy was induced in the cortex and hippocampus of mouse brains treated with methylene blue. Our findings suggest that methylene blue-induced neuroprotection is mediated, at least in part, by macroautophagy though activation of AMPK signaling. PMID:23653592

  17. Methylene blue induces macroautophagy through 5' adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation.

    Science.gov (United States)

    Xie, Luokun; Li, Wenjun; Winters, Ali; Yuan, Fang; Jin, Kunlin; Yang, Shaohua

    2013-01-01

    Methylene blue has been shown to be neuroprotective in multiple experimental neurodegenerative disease models. However, the mechanisms underlying the neuroprotective effects have not been fully elucidated. Previous studies have shown that macroautophagy has multiple beneficial roles for maintaining normal cellular homeostasis and that induction of macroautophagy after myocardial ischemia is protective. In the present study we demonstrated that methylene blue could protect HT22 hippocampal cell death induced by serum deprivation, companied by induction of macroautophagy. We also found that methylene blue-mediated neuroprotection was abolished by macroautophagy inhibition. Interestingly, 5' adenosine monophosphate-activated protein kinase (AMPK) signaling, but not inhibition of mammalian target of rapamycin signaling, was activated at 12 and 24 h after methylene blue treatment in a dose-dependent manner. Methylene blue-induced macroautophagy was blocked by AMPK inhibitor. Consistent with in vitro data, macroautophagy was induced in the cortex and hippocampus of mouse brains treated with methylene blue. Our findings suggest that methylene blue-induced neuroprotection is mediated, at least in part, by macroautophagy though activation of AMPK signaling.

  18. Amplified Peroxidase-Like Activity in Iron Oxide Nanoparticles Using Adenosine Monophosphate: Application to Urinary Protein Sensing.

    Science.gov (United States)

    Yang, Ya-Chun; Wang, Yen-Ting; Tseng, Wei-Lung

    2017-03-08

    Numerous compounds such as protein and double-stranded DNA have been shown to efficiently inhibit intrinsic peroxidase-mimic activity in Fe3O4 nanoparticles (NP) and other related nanomaterials. However, only a few studies have focused on finding new compounds for enhancing the catalytic activity of Fe3O4 NP-related nanomaterials. Herein, phosphate containing adenosine analogs are reported to enhance the oxidation reaction of hydrogen peroxide (H2O2) and amplex ultrared (AU) for improving the peroxidase-like activity in Fe3O4 NPs. This enhancement is suggested to be a result of the binding of adenosine analogs to Fe(2+)/Fe(3+) sites on the NP surface and from adenosine 5'-monophosphate (AMP) acting as the distal histidine residue of horseradish peroxidase for activating H2O2. Phosphate containing adenosine analogs revealed the following trend for the enhanced activity of Fe3O4 NPs: AMP > adenosine 5'-diphosphate > adenosine 5'-triphosphate. The peroxidase-like activity in the Fe3O4 NPs progressively increased with increasing AMP concentration and polyadenosine length. The Michaelis constant for AMP attached Fe3O4 NPs is 5.3-fold lower and the maximum velocity is 2.7-fold higher than those of the bare Fe3O4 NPs. Furthermore, on the basis of AMP promoted peroxidase mimicking activity in the Fe3O4 NPs and the adsorption of protein on the NP surface, a selective fluorescent turn-off system for the detection of urinary protein is developed.

  19. 5’-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications

    Institute of Scientific and Technical Information of China (English)

    Fan Yao; Ming Zhang; Li Chen

    2016-01-01

    Diabetes mellitus(DM),an endocrine disorder,will be one of the leading causes of death world-wide in about two decades.Cellular injuries and disorders of energy metabolism are two key factors in the pathogenesis of diabetes,which also become the important causes for the process of diabetic complications.AMPK is a key enzyme in maintaining metabolic homeostasis and has been implicated in the activation of autophagy in distinct tissues.An increasing number of researchers have confirmed that autophagy is a potential factor to affect or induce diabetes and its complications nowadays,which could remove cytotoxic proteins and dysfunctional organelles.This review will summarize the regulation of autophagy and AMPK in diabetes and its complications,and explore how AMPK stimulates autophagy in different diabetic syndromes.A deeper understanding of the regulation and activity of AMPK in autophagy would enhance its development as a promising therapeutic target for diabetes treatment.

  20. Beneficial effects of metformin on primary cardiomyocytes via activation of adenosine monophosphate-activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-fang; ZHANG Jin-ying; LI Ling; ZHAO Xiao-yan

    2011-01-01

    Background Metformin has become a cornerstone in the treatment of patients with type-2 diabetes. Accumulated evidence suggests that metformin supports direct cardiovascular effects. The present study aimed to investigate if metformin has beneficial effects on primary cardiomyocytes damaged by H2O2, and reveal the potential mechanism of action of metformin.Methods Cardiomyocytes were incubated in the presence of 100 umol/L. H2O2 for 12 hours. Cardiomyocytes were pretreated with metformin at different concentrations and time and with aminoimidazole carboxamide ribonucleotide (AICAR) (500 umol/L), an adenosine monophophate (AMP)-activated protein kinase (AMPK) agonist for 60 minutes before the addition of H2O2. Other cells were preincubated with compound C (an AMPK antagonist, 20 umol/L) for 4 hours. The viability and apoptosis of cells were analyzed. AMPK, endothelial nitric oxide synthase (eNOS), and transforming growth factor (TGF)-β1 were analyzed using immunblotting.Results Metformin had antagonistic effects on the influences of H2O2 on cell viability and attenuated oxidative stress-induced apoptosis. Metformin also increased phosphorylation of AMPK and eNOS, and reduced the expression of TGF-β1, basic fibroblast growth factor (bFGF), and tumor necrosis factor (TNF)-α.Conclusions Metformin has beneficial effects on cardiomyocytes, and this effect involves activation of the AMPK-eNOS pathway. Metformin may be potentially beneficial for the treatment of heart disease.

  1. Role of activation of 5'-adenosine monophosphate-activated protein kinase in gastric ulcer healing in diabetic rats.

    Science.gov (United States)

    Baraka, Azza M; Deif, Maha M

    2011-01-01

    The potential utility of 5'-adenosine monophosphate-activated protein kinase (AMPK)-activating agents, such as metformin, in inducing angiogenesis, could be a promising approach to promote healing of gastric ulcers complicated by diabetes mellitus. The aim of the present study was to assess the effect of a drug that activates AMPK, namely metformin, in gastric ulcer healing in streptozotocin-induced diabetic rats. Forty male Wistar albino rats were made diabetic by intraperitoneal (i.p.) streptozotocin injection and 10 rats were injected i.p. by a single dose of physiological saline. Six weeks following streptozotocin or saline injection, gastric ulcers were induced by serosal application of acetic acid. Three days after acetic acid application, rats were divided into group 1 (nondiabetic control), group 2 (streptozotocin-injected rats), groups 3-5 (streptozotocin-injected rats treated with metformin or metformin and an inhibitor of AMPK, namely compound C or pioglitazone) for 7 days following acetic acid application. Administration of metformin, but not pioglitazone, resulted in a significant decrease in the gastric ulcer area, a significant increase in epithelial regeneration assessed histologically, a significant increase in the number of microvessels in the ulcer margin, a significant increase in gastric vascular endothelial growth factor concentration and gastric von Willebrand factor as well as a significant increase in gastric phospho-AMPK. Compound C, an inhibitor of AMPK, blocked metformin-induced changes in assessed parameters suggesting that the effect of metformin was mediated mainly through activation of AMPK. Our results suggest the feasibility of a novel treatment strategy, namely drugs activating AMPK, for patients in whom impairment of ulcer healing constitutes a secondary complication of diabetes mellitus. Copyright © 2011 S. Karger AG, Basel.

  2. Sevoflurane effects on cyclic adenosine monophosphate response element binding protein, phosphorylated cyclic adenosine monophosphate response element binding protein, and Livin expression in the cortex and hippocampus of a vascular cognitive impairment rat model

    Institute of Scientific and Technical Information of China (English)

    Bin Wu; Ling Dan; Xianlin Zhu

    2009-01-01

    BACKGROUND: Neuronal necrosis and apoptosis play important roles in the pathophysiology of cerebral ischemia and resulting cognitive impairment. However, inhibition of neuronal necrosis and apoptosis has been shown to attenuate cognitive impairment following cerebral ischemia.OBJECTIVE: To investigate the effects of sevoflurane on cyclic adenosine monophosphate response element binding protein (CREB), phosphorylated CREB (pCREB), and Livin expression in the cortex and hippocampus of a rat model of vascular cognitive impairment.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed in the Chongqing Key Laboratory of Neurology between June 2007 and July 2008.MATERIALS: Sevoflurane was provided by Abbott Laboratory, UK; Morris water maze was provided by Chinese Academy of Medical Sciences, China; goat anti-rat CREB, goat anti-rat pCREB and goat anti-rat Livin antibodies were provided by Biosource International, USA.METHODS: A total of 42 female, Wistar rats were randomly assigned to the following groups: sham operation, vascular cognitive impairment, and sevoflurane treatment. The vascular cognitive impairment rat model was established by permanent bilateral occlusion of both common carotid arteries, and 1.0 MAC sevoflurane was immediately administered by inhalation for 2 hours.MAIN OUTCOME MEASURES: CREB, pCREB, and Livin expression was measured in the cortex and hippocampus by Western blot and reverse transcription-polymerase chain reaction. Behavior was evaluated with Morris water maze.RESULTS: CREB, pCREB, and Livin expression in the sevoflurane treatment group was significantly greater than the vascular cognitive impairment group (P<0.01). However, expression of CREB and pCREB was significantly less in the sevoflurane treatment and vascular cognitive impairment groups, compared with the sham operation group (P<0.01). Livin expression in the sevoflurane treatment and vascular cognitive impairment groups was significantly greater than the sham

  3. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-08-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  4. Muscle A-Kinase Anchoring Protein-α is an Injury-Specific Signaling Scaffold Required for Neurotrophic- and Cyclic Adenosine Monophosphate-Mediated Survival

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-12-01

    Full Text Available Neurotrophic factor and cAMP-dependent signaling promote the survival and neurite outgrowth of retinal ganglion cells (RGCs after injury. However, the mechanisms conferring neuroprotection and neuroregeneration downstream to these signals are unclear. We now reveal that the scaffold protein muscle A-kinase anchoring protein-α (mAKAPα is required for the survival and axon growth of cultured primary RGCs. Although genetic deletion of mAKAPα early in prenatal RGC development did not affect RGC survival into adulthood, nor promoted the death of RGCs in the uninjured adult retina, loss of mAKAPα in the adult increased RGC death after optic nerve crush. Importantly, mAKAPα was required for the neuroprotective effects of brain-derived neurotrophic factor and cyclic adenosine-monophosphate (cAMP after injury. These results identify mAKAPα as a scaffold for signaling in the stressed neuron that is required for RGC neuroprotection after optic nerve injury.

  5. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    Science.gov (United States)

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver.

  6. Cows are not mice: the role of cyclic AMP, phosphodiesterases, and adenosine monophosphate-activated protein kinase in the maintenance of meiotic arrest in bovine oocytes.

    Science.gov (United States)

    Bilodeau-Goeseels, Sylvie

    2011-01-01

    Meiotic maturation in mammalian oocytes is initiated during fetal development, and is then arrested at the dictyate stage - possibly for several years. Oocyte meiosis resumes in preovulatory follicles in response to the lutenizing hormone (LH) surge or spontaneously when competent oocytes are removed from follicles and cultured. The mechanisms involved in meiotic arrest and resumption in bovine oocytes are not fully understood, and several studies point to important differences between oocytes from rodent and livestock species. This paper reviews earlier and contemporary studies on the effects of cAMP-elevating agents and phosphodiesterase (PDE) enzyme inhibitors on the maintenance of meiotic arrest in bovine oocytes in vitro. Contrary to results obtained with mouse oocytes, bovine oocyte meiosis is inhibited by activators of the energy sensor adenosine monophosphate-activated protein kinase (AMPK, mammalian gene PRKA), which is activated by AMP, the degradation product of cAMP. It is not clear whether or not the effects were due to AMPK activation, and they may depend on culture conditions. Evidence suggests that other signaling pathways (for example, the cGMP/nitric oxide pathway) are involved in bovine oocyte meiotic arrest, but further studies are needed to understand the interactions between the signaling pathways that lead to maturation promoting factor (MPF) being inactive or active. An improved understanding of the mechanisms involved in the control of bovine oocyte meiosis will facilitate better control of the process in vitro, resulting in increased developmental competence and increased efficiency of in vitro embryo production procedures.

  7. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK...... activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from...... in extensor digitorum longus muscle from either alpha2 or gamma3 AMPK KO mice, indicating functional alpha2 and gamma3 subunits of AMPK are required for the reduction in mTOR signaling. AICAR alone was without effect on basal phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr...

  8. Growth inhibition of human gastric adenocarcinoma cells in vitro by STO-609 is independent of calcium/calmodulin-dependent protein kinase kinase-beta and adenosine monophosphate-activated protein kinase.

    Science.gov (United States)

    Ma, Zhiming; Wen, Dacheng; Wang, Xudong; Yang, Longfei; Liu, Tianzhou; Liu, Jingjing; Zhu, Jiaming; Fang, Xuedong

    2016-01-01

    Adenosine monophosphate (AMP)-activated protein kinase is a recently identified downstream target of calcium/calmodulin-dependent protein kinase kinase-beta, and is involved in the regulation of cell metabolism and cell proliferation. STO-609 is a selective antagonist of calcium/calmodulin-dependent protein kinase kinase-beta. In the present study, we found that STO-609 suppressed AMP-activated protein kinase activity, reduced expression of Akt and ERK, and increased cell apoptosis in SNU-1 and N87 cells but not normal gastric epithelial cells (CCL-241). Interestingly, we found such effects of STO-609 on gastric cancer cells were not affected after the knock-down of CaMKK-β and AMPK. In conclusion, STO-609 is an effective cytotoxic agent for gastric adenocarcinoma in vivo.

  9. Adenosine monophosphate-activated protein kinase activation enhances embryonic neural stem cell apoptosis in a mouse model of amyotrophic lateral sclerosis

    Institute of Scientific and Technical Information of China (English)

    Yanling Sui; Zichun Zhao; Rong Liu; Bin Cai; Dongsheng Fan

    2014-01-01

    Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis-mutase 1 mutant (SOD1G93A) and wild-type (SOD1WT) mouse models were exposed to H2O2. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by lfow cytometry. Moreover, we evaluated the expression of the adenos-ine monophosphate-activated protein kinase (AMPK)α-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1WT cells, SOD1G93A embryonic neural stem cells were more likely to undergo H2O2-induced apoptosis. Phosphorylation of AMPKαin SOD1G93A cells was higher than that in SOD1WT cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKα. p53 protein levels were also correlated with AMPKαphosphorylation levels. Compound C, an inhibitor of AMPKα, attenuated the effects of H2O2. These results suggest that embryonic neural stem cells from SOD1G93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKα pathway.

  10. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins

    Institute of Scientific and Technical Information of China (English)

    Yu Mei; Wen-Jing Jia; Yu-Jia Chu; Hong-Wei Xue

    2012-01-01

    Phosphatidylinositol monophosphate 5-kinase(PIP5K)catalyzes the synthesis of PI-4,5-bisphosphate(PtdIns(4,5)P2)by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring,and is involved in regulating multiple developmental processes and stress responses.We here report on the functional characterization of Arabidopsis PIP5K2,which is expressed during lateral root initiation and elongation,and whose expression is enhanced by exogenous auxin.The knockout mutant pip5k2 shows reduced lateral root formation,which could be recovered with exogenous auxin,and interestingly,delayed root gravity response that could not be recovered with exogenous auxin.Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2.In addition,analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P2 reduction,which hence results in suppressed cycling of PIN proteins(PIN2 and 3),and delayed redistribution of PIN2 and auxin under gravistimulation in pipSk2 roots.On the contrary,PtdIns(4,5)P2 significantly enhanced the vesicle trafficking and cycling of PIN proteins.These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response,and reveal a critical role of PIP5K2/Ptdlns(4,5)P2 in root development through regulation of PIN proteins,providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response,and new insights into the control of polar auxin transport.

  11. Growth hormone release from chicken anterior pituitary cells in primary culture: TRH and hpGRF synergy, protein synthesis, and cyclic adenosine 3'5'-monophosphate.

    Science.gov (United States)

    Perez, F M; Malamed, S; Scanes, C G

    1989-01-01

    Our earlier work showed that the effects of thyrotropin-releasing hormone (TRH) and human pancreatic growth hormone-releasing factor (hpGRF) on growth hormone (GH) release are synergistic (greater than additive) in a primary culture of chicken adenohypophyseal cells. The purpose of the present studies was to investigate the possible participation of protein synthesis and cyclic adenosine 3'5'-monophosphate (cAMP) in GH release. Following culture (48 hr), cells were incubated for 2 hr with test agents. Cycloheximide (an inhibitor of protein synthesis) had no effect on basal (absence of test agent) GH release or hpGRF-induced GH release. However, cycloheximide abolished the synergy between TRH and hpGRF. Although neither TRH nor hpGRF alone stimulated GH production (intracellular GH plus GH release) during a 2-hr incubation period, in combination these secretagogues increased total GH. These findings suggest that GH release from the chicken somatotroph under conditions of TRH and hpGRF synergy requires protein synthesis. In other studies, cells were exposed to agents inducing the formation of cAMP and either TRH or hpGRF. 8 Br-cAMP (10(-3) M), forskolin (10(-6) M), or isobutylmethylxanthine (IBMX; 10(-3) M) alone stimulated GH release to values between 30 and 50% over the basal value. The combined effects of each of these agents and TRH on GH release were synergistic. Similarly, IBMX and hpGRF exerted synergistic effects on GH release. In contrast, no synergy was shown between hpGRF and either 8 Br-cAMP or forskolin; their combined actions were less than additive.

  12. Assay of adenosine 3',5' cyclic monophosphate by stimulation of protein kinase: a method not involving radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Handa, A.K.; Bressan, R.A.

    1980-03-01

    In order to meet a need for a cAMP assay which is not subject to interference by compounds in plant extracts, and which is suitable for use on occasions separated by many /sup 32/P half-lives, an assay based on cAMP-dependent protein kinase has been developed which does not require the use of (..gamma..-/sup 32/P)ATP. Instead of measuring the cAMP-stimulated increase in the rate of transfer of (..gamma..-/sup 32/P) phosphate from (..gamma..-/sup 32/P)ATP to protein, the rate of loss of ATP from the reaction mixture is determined. The ATP remaining after the protein kinase reaction is assayed by ATP-dependent chemiluminescence of the firefly luciferin-luciferase system. Under conditions of the protein kinase reaction in which a readily measurable decrease in ATP concentration occurs, the logarithm of the concentration of ATP decreases in proportion to the cAMP concentration, i.e., the reaction can be described by the equation: (ATP) = (ATP)/sub 0/ e/sup -(cAMP)kt/. The assay based on this relationship can detect less than 1 pmol of cAMP. The levels of cAMP found with this assay after partial purification of the cAMP from rat tissue, algal cells, and the media in which the cells were grown agreed with measurements made by the cAMP binding-competition assay of Gilman, and the potein kinase stimulation assay based on transfer of (/sup 32/P) phosphate from (..gamma..-/sup 32/P)ATP to protein. All of the enzymes and chemicals required for the assay of cAMP by protein kinase catalyzed loss of ATP can be stored frozen for months, making the assay suitable for occasional use.

  13. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle

    DEFF Research Database (Denmark)

    Glund, Stephan; Treebak, Jonas Thue; Long, Yun Chau;

    2009-01-01

    IL-6 is released from skeletal muscle during exercise and has consequently been implicated to mediate beneficial effects on whole-body metabolism. Using 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), a pharmacological activator of 5'-AMP-activated protein kinase (AMPK), we tested...... the hypothesis that AMPK modulates IL-6 release from isolated muscle. Skeletal muscle from AMPKalpha2 kinase-dead transgenic, AMPKalpha1 knockout (KO) and AMPKgamma3 KO mice and respective wild-type littermates was incubated in vitro, in the absence or presence of 2 mmol/liter AICAR. Skeletal muscle from wild......-type mice was also incubated with the AMPK activator A-769662. Incubation of mouse glycolytic extensor digitorum longus and oxidative soleus muscle for 2 h was associated with profound IL-6 mRNA production and protein release, which was suppressed by AICAR (P

  14. Changes in adenosine 5'-monophosphate-activated protein kinase as a mechanism of visceral obesity in Cushing's syndrome.

    Science.gov (United States)

    Kola, Blerina; Christ-Crain, Mirjam; Lolli, Francesca; Arnaldi, Giorgio; Giacchetti, Gilberta; Boscaro, Marco; Grossman, Ashley B; Korbonits, Márta

    2008-12-01

    Features of the metabolic syndrome such as central obesity with insulin resistance and dyslipidemia are typical signs of Cushing's syndrome and common side effects of prolonged glucocorticoid treatment. AMP-activated protein kinase (AMPK), a key regulatory enzyme of lipid and carbohydrate metabolism as well as appetite, is involved in the development of the deleterious metabolic effects of excess glucocorticoids, but no data are available in humans. In the current study, we demonstrate the effect of high glucocorticoid levels on AMPK activity of human adipose tissue samples from patients with Cushing's syndrome. AMPK activity and mRNA expression of genes involved in lipid metabolism were assessed in visceral adipose tissue removed at abdominal surgery of 11 patients with Cushing's syndrome, nine sex-, age-, and weight-matched patients with adrenal incidentalomas, and in visceral adipose tissue from four patients with non-endocrine-related abdominal surgery. The patients with Cushing's syndrome exhibited a 70% lower AMPK activity in visceral adipose tissue as compared with both incidentalomas and control patients (P = 0.007 and P cortisol and with urinary free cortisol. Our data suggest that glucocorticoids inhibit AMPK activity in adipose tissue, suggesting a novel mechanism to explain the deposition of visceral adipose tissue and the consequent central obesity observed in patients with iatrogenic or endogenous Cushing's syndrome.

  15. Adenosine monophosphate-activated protein kinase from the mud crab, Scylla paramamosain: cDNA cloning and profiles under cold stress

    Indian Academy of Sciences (India)

    CHENCUI HUANG; KUN YU; HUIYANG HUANG; HAIHUI YE

    2016-12-01

    Adenosine monophosphate-activated protein kinase (AMPK), an important energy sensor, is crucial for organism survival under adverse conditions. In this study, the roles of this gene under cold stress in a warm-water mud crab, Scylla paramamosain was investigated. The full-length cDNA (SpAMPK) was 1884 bp and its open reading frame of 1566 bp was isolated and characterized. The expressions of SpAMPK detected by quantitative real-time PCR (qRT-PCR) in various tissues revealed that the highest expression was in the hepatopancreas. The profiles of SpAMPK gene in the hepatopancreas, chela muscleand gill were detected when the subadult crabs were exposed to the four temperature conditions of 10, 15, 20 and 25◦C. The results showed that the expression patterns of SpAMPK mRNA in the three tissues were significantly higher when crabs were exposed to 15◦C than the other three temperature treatments, while at 10◦C treatment, the SpAMPK mRNA was lowestamong the four temperature treatments. These findings suggested that the high expression of SpAMPK mRNA might initiate ATP-producing pathways to generate energy to cope with cold stress at 15◦C treatment, which was slightly below the range of optimum temperatures; while treatment at 10◦C, far lower than optima, the low expression of SpAMPK mRNA could reduce the energy expenditure and thus induce the crabs into cold anesthesia. The results of SpAMPK in this study might contribute to the understanding of the molecular mechanism of acclimation to cold hardiness in S. paramamosain.

  16. Adenosine Monophosphate-Activated Protein Kinase Abates Hyperglycaemia-Induced Neuronal Injury in Experimental Models of Diabetic Neuropathy: Effects on Mitochondrial Biogenesis, Autophagy and Neuroinflammation.

    Science.gov (United States)

    Yerra, Veera Ganesh; Kumar, Ashutosh

    2017-04-01

    Impaired adenosine monophosphate kinase (AMPK) signalling under hyperglycaemic conditions is known to cause mitochondrial dysfunction in diabetic sensory neurons. Facilitation of AMPK signalling is previously reported to ameliorate inflammation and induce autophagic response in various complications related to diabetes. The present study assesses the role of AMPK activation on mitochondrial biogenesis, autophagy and neuroinflammation in experimental diabetic neuropathy (DN) using an AMPK activator (A769662). A769662 (15 and 30 mg/kg, i.p) was administered to Sprague-Dawley rats (250-270 g) for 2 weeks after 6 weeks of streptozotocin (STZ) injection (55 mg/kg, i.p.). Behavioural parameters (mechanical/thermal hyperalgesia) and functional characteristics (motor/sensory nerve conduction velocities (MNCV and SNCV) and sciatic nerve blood flow (NBF)) were assessed. For in vitro studies, Neuro2a (N2A) cells were incubated with 25 mM glucose to simulate high glucose condition and then studied for mitochondrial dysfunction and protein expression changes. STZ administration resulted in significant hyperglycaemia (>250 mg/dl) in rats. A769662 treatment significantly improved mechanical/thermal hyperalgesia threshold and enhanced MNCV, SNCV and NBF in diabetic animals. A769662 exposure normalised the mitochondrial superoxide production, membrane depolarisation and markedly increased neurite outgrowth of N2A cells. Further, AMPK activation also abolished the NF-κB-mediated neuroinflammation. A769662 treatment increased Thr-172 phosphorylation of AMPK results in stimulated PGC-1α-directed mitochondrial biogenesis and autophagy induction. Our study supports that compromised AMPK signalling in hyperglycaemic conditions causes defective mitochondrial biogenesis ultimately leading to neuronal dysfunction and associated deficits in DN and activation of AMPK can be developed as an attractive therapeutic strategy for the management of DN.

  17. Globular adiponectin protects human umbilical vein endothelial cells against apoptosis through adiponectin receptor 1/adenosine monophosphate-activated protein kinase pathway

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-yu; ZHAO Min; YI Tong-ning; ZHANG Jin

    2011-01-01

    Background Endothelial dysfunction is a key event in the onset and progression of atherosclerosis in diabetic patients.Apoptosis may lead to endothelial dysfunction and contribute to vascular complications. However, no study has addressed apoptosis in human umbilical vein endothelial cells (HUVECs) induced by an intermittent high-glucose media and its association with adiponectin receptor 1 (adipoR1), adipoR2, or adenosine monophosphate (AMP)-activated protein kinase (AMPK).Methods HUVECs were cultured in continuous normal glucose (5.5 mmol/L), continuous high glucose (25 mmol/L),alternating normal and high glucose and mannitol. In the alternating normal and high-glucose media, HUVECs were treated under different conditions. First, cells were transfected with the adipoR1-specific small-interfering RNA (siRNA)and then stimulated with globular adiponectin (gAD). Second, cells were cultured in both gAD and the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Third, cells were cultured in the AMPK inhibitor adenine-9-β-D-arabino-furanoside (araA), gAD, and in AICAR.Results HUVEC apoptosis increased more significantly in an intermittent high-glucose medium than in a constant high-glucose medium. HUVEC apoptosis induced by an intermittent high-glucose medium was inhibited when the cells were pretreated with 3 μg/ml gAD, which rapidly activated AMPK and adipoR1 in HUVECs. However, adipoR2 was not activated.Conclusions We found that adipoR1, not adipoR2, is involved in mediating intermittent high-concentration glucoseevoked apoptosis in endothelial cells. gAD activated AMPK through adipoR1, leads to the partial inhibition of HUVEC apoptosis. A fluctuating glucose medium is more harmful than a constant high-glucose medium to endothelial cells.

  18. SIRT1/Adenosine Monophosphate-Activated Protein Kinase α Signaling Enhances Macrophage Polarization to an Anti-inflammatory Phenotype in Rheumatoid Arthritis.

    Science.gov (United States)

    Park, So Youn; Lee, Sung Won; Lee, Sang Yeob; Hong, Ki Whan; Bae, Sun Sik; Kim, Koanhoi; Kim, Chi Dae

    2017-01-01

    Macrophages are crucially involved in the pathogenesis of rheumatoid arthritis (RA). Macrophages of the M1 phenotype act as pro-inflammatory mediators in synovium, whereas those of the M2 phenotype suppress inflammation and promote tissue repair. SIRT1 is a class 3 histone deacetylase with anti-inflammatory characteristics. However, the role played by SIRT1 in macrophage polarization has not been defined in RA. We investigated whether SIRT1 exerts anti-inflammatory effects by modulating M1/M2 polarization in macrophages from RA patients. In this study, SIRT1 activation promoted the phosphorylation of an adenosine monophosphate-activated protein kinase (AMPK) α/acetyl-CoA carboxylase in macrophages exposed to interleukin (IL)-4, and that this resulted in the expressions of M2 genes, including MDC, FcεRII, MrC1, and IL-10, at high levels. Furthermore, these expressions were inhibited by sirtinol (an inhibitor of SIRT1) and compound C (an inhibitor of AMPK). Moreover, SIRT1 activation downregulated LPS/interferon γ-mediated NF-κB activity by inhibiting p65 acetylation and the expression of M1 genes, such as CCL2, iNOS, IL-12 p35, and IL-12 p40. Macrophages from SIRT1 transgenic (Tg)-mice exhibited enhanced polarization of M2 phenotype macrophages and reduced polarization of M1 phenotype macrophages. In line with these observations, SIRT1-Tg mice showed less histological signs of arthritis, that is, lower TNFα and IL-1β expressions and less severe arthritis in the knee joints, compared to wild-type mice. Taken together, the study shows activation of SIRT1/AMPKα signaling exerts anti-inflammatory activities by regulating M1/M2 polarization, and thereby reduces inflammatory responses in RA. Furthermore, it suggests that SIRT1 signaling be viewed as a therapeutic target in RA.

  19. A high isoflavone diet decreases 5' adenosine monophosphate-activated protein kinase activation and does not correct selenium-induced elevations in fasting blood glucose in mice.

    Science.gov (United States)

    Stallings, Michael T; Cardon, Brandon R; Hardman, Jeremy M; Bliss, Tyler A; Brunson, Scott E; Hart, Chris M; Swiss, Maria D; Hepworth, Squire D; Christensen, Merrill J; Hancock, Chad R

    2014-04-01

    Selenium (Se) has been implicated as a micronutrient that decreases adenosine monophosphate-activated protein kinase (AMPK) signaling and may increase diabetes risk by reducing insulin sensitivity. Soy isoflavones (IF) are estrogen-like compounds that have been shown to attenuate insulin resistance, hyperglycemia, adiposity, and increased AMPK activation. We hypothesized that a high IF (HIF) diet would prevent the poor metabolic profile associated with high Se intake. The purpose of this study was to examine changes in basal glucose metabolism and AMPK signaling in response to an HIF diet and/or supplemental Se in a mouse model. Male FVB mice were divided into groups receiving either a control diet with minimal IF (low IF) or an HIF diet. Each dietary group was further subdivided into groups receiving either water or Se at a dose of 3 mg Se/kg body weight daily, as Se-methylselenocysteine (SMSC). After 5 months, mice receiving SMSC had elevated fasting glucose (P < .05) and a tendency for glucose intolerance (P = .08). The increase in dietary IF did not result in improved fasting blood glucose. Interestingly, after 6 months, HIF-fed mice had decreased basal AMPK activation in liver and skeletal muscle tissue (P < .05). Basal glucose metabolism was changed by SMSC supplementation as evidenced by increased fasting blood glucose and glucose intolerance. High dietary IF levels did not protect against aberrant blood glucose. In FVB mice, decreased basal AMPK activation is not the mechanism through which Se exerts its effect. These results suggest that more research must be done to elucidate the role of Se and IF in glucose metabolism.

  20. Nitration of Tyrosine 247 Inhibits Protein Kinase G-1α Activity by Attenuating Cyclic Guanosine Monophosphate Binding*

    Science.gov (United States)

    Aggarwal, Saurabh; Gross, Christine M.; Rafikov, Ruslan; Kumar, Sanjiv; Fineman, Jeffrey R.; Ludewig, Britta; Jonigk, Danny; Black, Stephen M.

    2014-01-01

    The cGMP-dependent protein kinase G-1α (PKG-1α) is a downstream mediator of nitric oxide and natriuretic peptide signaling. Alterations in this pathway play a key role in the pathogenesis and progression of vascular diseases associated with increased vascular tone and thickness, such as pulmonary hypertension. Previous studies have shown that tyrosine nitration attenuates PKG-1α activity. However, little is known about the mechanisms involved in this event. Utilizing mass spectrometry, we found that PKG-1α is susceptible to nitration at tyrosine 247 and 425. Tyrosine to phenylalanine mutants, Y247F- and Y425F-PKG-1α, were both less susceptible to nitration than WT PKG-1α, but only Y247F-PKG-1α exhibited preserved activity, suggesting that the nitration of Tyr247 is critical in attenuating PKG-1α activity. The overexpression of WT- or Y247F-PKG-1α decreased the proliferation of pulmonary artery smooth muscle cells (SMC), increased the expression of SMC contractile markers, and decreased the expression of proliferative markers. Nitrosative stress induced a switch from a contractile to a synthetic phenotype in cells expressing WT- but not Y247F-PKG-1α. An antibody generated against 3-NT-Y247 identified increased levels of nitrated PKG-1α in humans with pulmonary hypertension. Finally, to gain a more mechanistic understanding of how nitration attenuates PKG activity, we developed a homology model of PKG-1α. This model predicted that the nitration of Tyr247 would decrease the affinity of PKG-1α for cGMP, which we confirmed using a [3H]cGMP binding assay. Our study shows that the nitration of Tyr247 and the attenuation of cGMP binding is an important mechanism regulating in PKG-1α activity and SMC proliferation/differentiation. PMID:24469460

  1. Nitration of tyrosine 247 inhibits protein kinase G-1α activity by attenuating cyclic guanosine monophosphate binding.

    Science.gov (United States)

    Aggarwal, Saurabh; Gross, Christine M; Rafikov, Ruslan; Kumar, Sanjiv; Fineman, Jeffrey R; Ludewig, Britta; Jonigk, Danny; Black, Stephen M

    2014-03-14

    The cGMP-dependent protein kinase G-1α (PKG-1α) is a downstream mediator of nitric oxide and natriuretic peptide signaling. Alterations in this pathway play a key role in the pathogenesis and progression of vascular diseases associated with increased vascular tone and thickness, such as pulmonary hypertension. Previous studies have shown that tyrosine nitration attenuates PKG-1α activity. However, little is known about the mechanisms involved in this event. Utilizing mass spectrometry, we found that PKG-1α is susceptible to nitration at tyrosine 247 and 425. Tyrosine to phenylalanine mutants, Y247F- and Y425F-PKG-1α, were both less susceptible to nitration than WT PKG-1α, but only Y247F-PKG-1α exhibited preserved activity, suggesting that the nitration of Tyr(247) is critical in attenuating PKG-1α activity. The overexpression of WT- or Y247F-PKG-1α decreased the proliferation of pulmonary artery smooth muscle cells (SMC), increased the expression of SMC contractile markers, and decreased the expression of proliferative markers. Nitrosative stress induced a switch from a contractile to a synthetic phenotype in cells expressing WT- but not Y247F-PKG-1α. An antibody generated against 3-NT-Y247 identified increased levels of nitrated PKG-1α in humans with pulmonary hypertension. Finally, to gain a more mechanistic understanding of how nitration attenuates PKG activity, we developed a homology model of PKG-1α. This model predicted that the nitration of Tyr(247) would decrease the affinity of PKG-1α for cGMP, which we confirmed using a [(3)H]cGMP binding assay. Our study shows that the nitration of Tyr(247) and the attenuation of cGMP binding is an important mechanism regulating in PKG-1α activity and SMC proliferation/differentiation.

  2. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway.

    Science.gov (United States)

    Mehta, Suresh L; Mendelev, Natalia; Kumari, Santosh; Andy Li, P

    2013-03-01

    Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and

  3. Complex structure and biochemical characterization of the Staphylococcus aureus cyclic diadenylate monophosphate (c-di-AMP)-binding protein PstA, the founding member of a new signal transduction protein family.

    Science.gov (United States)

    Campeotto, Ivan; Zhang, Yong; Mladenov, Miroslav G; Freemont, Paul S; Gründling, Angelika

    2015-01-30

    Signaling nucleotides are integral parts of signal transduction systems allowing bacteria to cope with and rapidly respond to changes in the environment. The Staphylococcus aureus PII-like signal transduction protein PstA was recently identified as a cyclic diadenylate monophosphate (c-di-AMP)-binding protein. Here, we present the crystal structures of the apo- and c-di-AMP-bound PstA protein, which is trimeric in solution as well as in the crystals. The structures combined with detailed bioinformatics analysis revealed that the protein belongs to a new family of proteins with a similar core fold but with distinct features to classical PII proteins, which usually function in nitrogen metabolism pathways in bacteria. The complex structure revealed three identical c-di-AMP-binding sites per trimer with each binding site at a monomer-monomer interface. Although distinctly different from other cyclic-di-nucleotide-binding sites, as the half-binding sites are not symmetrical, the complex structure also highlighted common features for c-di-AMP-binding sites. A comparison between the apo and complex structures revealed a series of conformational changes that result in the ordering of two anti-parallel β-strands that protrude from each monomer and allowed us to propose a mechanism on how the PstA protein functions as a signaling transduction protein.

  4. Ablation of adenosine monophosphate-activated protein kinaseα1 in vascular smooth muscle cells promotes diet-induced atherosclerotic calcification in vivo

    Institute of Scientific and Technical Information of China (English)

    CAI Zhe-jun; DING Ye; ZHANG Miao; LU Qiu-lun; WU Sheng-nan; ZHU Huai-ping; SONG Ping; ZOU Ming-hui

    2016-01-01

    AIM:Atherosclerotic calcification is highly linked with plaque instability and cardiovascular events .Adenosine monophosphate-activated protein kinase ( AMPK) has been involved in the pathogenesis of various cardiovascular disease .The contributions of AMPKαsubunits to the development of atherosclerotic calcification in vivo remained unknown .We hypothesized that AMPKαsubunits may play a role in the development of atherosclerotic calcification .METHODS: Atherosclerotic calcification was generated by 24-week fed of western diet in ApoE-/-background mice .Calcification was evaluated in aortic roots and innominate arteries of ApoE-/-mice or in mice with dual deficiencies of ApoE and AMPKαsubunits globally ( AMPKα1 and AMPKα2 ) , or vascular smooth muscle cell ( VSMC)-specific or macrophage-specific knockout of AMPKα1 with atherosclerotic calcification pone diet . The mechanism of AMPKα1 in regulating Runx2 was further explored in human aortic VSMC .RESULTS: Ablation of AMPKα1 but not AMPKα2 in ApoE-/-background promoted atherosclerotic calcification with increased Runt -related transcription factor ( Runx2 ) expression in VSMC compared with ApoE-/-mice.Conversely, chronic administration of metformin, which activated AMPK, markedly reduced ath-erosclerotic calcification and Runx2 expression in ApoE-/-mice but had less effects in ApoE-/-/AMPKα1 -/-mice.Furthermore, VSMC-but not macrophage-specific deficiency of AMPKα1 in ApoE-/-background promoted atherosclerotic calcification in vivo com-pared with the controls .AMPKα1 silencing in human aortic VSMC prevented Runx 2 from proteasome degradation to trigger osteoblastic differentiation of VSMC .Conversely , activation of AMPK led to Runx 2 instability by inducing its small ubiquitin-like modifier modifi-cation (SUMOylation).Protein inhibitor of activated STAT-1 (PIAS1), the SUMO E3-ligase of Runx2, was directly phosphorylated by AMPKα1 at serine 510, to enhance its SUMO E3-ligase activity.Ablation of PIAS1

  5. Selective modulation of protein kinase isozymes by the site-selective analog 8-chloroadenosine 3',5'-cyclic monophosphate provides a biological means for control of human colon cancer cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Ally, S.; Tortora, G.; Clair, T.; Grieco, D.; Merlo, G.; Katsaros, D.; Ogreid, D.; Doeskeland, S.O.; Jahnsen, T.; Cho-Chung, Yoonsang

    1988-09-01

    Differential expression of type I and type II cAMP-dependent protein kinase isozymes has been linked to growth regulation and differentiation. The authors examined the expression of protein kinase isozymes in the LS 174T human colon cancer cell line during 8-chloroadenosine 3',5'-cyclic monophosphate (8-Cl-cAMP)-induced growth inhibition. Two species of R/sup II/ (the regulatory subunit of protein kinase type II) with apparent M/sub r/ 52,000 (R/sup II//sub 52/) and M/sub r/ 56,000 (R/sup II//sub 56/) and a single species of R/sup I/ (the regulatory subunit of protein kinase type I) with M/sub r/ 48,000 were identified in the cancer cells. R/sup I/ and both forms of R/sup II/ were covalently labeled with 8-azidoadenosine 3',5'-cyclic (/sup 32/P)monophosphate, and two anti-R/sup II/ antibodies that exclusively recognize either R/sup II//sub 52/ or R/sup II//sub 56/ resolved two forms of the R/sup II/ receptors. 8-Cl-cAMP caused transcriptional activation of the R/sup II//sub 52/ receptor gene and inactivation of the R/sup I/ receptor gene. Thus, differential regulation of various forms of cAMP receptor proteins is involved in 8-Cl-cAMP-induced regulation of cancer cell growth, and nuclear translocation of R/sup II//sub 52/ receptor protein appears to be an early event in such differential regulation.

  6. Hindbrain A2 noradrenergic neuron adenosine 5'-monophosphate-activated protein kinase activation, upstream kinase/phosphorylase protein expression, and receptivity to hormone and fuel reporters of short-term food deprivation are regulated by estradiol.

    Science.gov (United States)

    Briski, Karen P; Alenazi, Fahaad S H; Shakya, Manita; Sylvester, Paul W

    2017-07-01

    Estradiol (E) mitigates acute and postacute adverse effects of 12 hr-food deprivation (FD) on energy balance. Hindbrain 5'-monophosphate-activated protein kinase (AMPK) regulates hyperphagic and hypothalamic metabolic neuropeptide and norepinephrine responses to FD in an E-dependent manner. Energy-state information from AMPK-expressing hindbrain A2 noradrenergic neurons shapes neural responses to metabolic imbalance. Here we investigate the hypothesis that FD causes divergent changes in A2 AMPK activity in E- vs. oil (O)-implanted ovariectomized female rats, alongside dissimilar adjustments in circulating metabolic fuel (glucose, free fatty acids [FFA]) and energy deficit-sensitive hormone (corticosterone, glucagon, leptin) levels. FD decreased blood glucose in oil (O)- but not E-implanted ovariectomized female rats and elevated and reduced glucagon levels in O and E, respectively. FD decreased circulating leptin in O and E, but increased corticosterone and FFA concentrations in E only. Western blot analysis of laser-microdissected A2 neurons showed that glucocorticoid receptor type II and very-long-chain acyl-CoA synthetase 3 protein profiles were amplified in FD/E vs. FD/O. A2 total AMPK protein was elevated without change in activity in FD/O, whereas FD/E exhibited increased AMPK activation along with decreased upstream phosphatase expression. The catecholamine biosynthetic enzyme dopamine-β-hydroxylase (DβH) was increased in FD/O but not FD/E A2 cells. The data show discordance between A2 AMPK activation and glycemic responses to FD; sensor activity was refractory to glucose decrements in FD/O but augmented in FD/E despite stabilized glucose and elevated FFA levels. E-dependent amplification of AMPK activity may reflect adaptive conversion to fatty acid oxidation and/or glucocorticoid stimulation. FD augmentation of A2 DβH protein profiles in FD/O but not FD/E animals suggests that FD may correspondingly regulate NE synthesis vs. metabolism/release in the

  7. Post-meal responses of elongation factor 2 (eEF2) and adenosine monophosphate-activated protein kinase (AMPK) to leucine and carbohydrate supplements for regulating protein synthesis duration and energy homeostasis in rat skeletal muscle.

    Science.gov (United States)

    Wilson, Gabriel J; Moulton, Christopher J; Garlick, Peter J; Anthony, Tracy G; Layman, Donald K

    2012-11-13

    Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS) to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu) and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2). This study evaluates the potential to extend the anabolic meal response with post-meal supplements of Leu or carbohydrates. Adult (~256 g) male Sprague-Dawley rats were food deprived for 12 h, then either euthanized before a standard meal (time 0) or at 90 or 180 min post-meal. At 135 min post-meal, rats received one of five oral supplements: 270 mg leucine (Leu270), 80:40:40 mg leucine, isoleucine, and valine (Leu80), 2.63 g carbohydrates (CHO2.6), 1 g carbohydrates (CHO1.0), or water (Sham control). Following the standard meal, MPS increased at 90 min then declined to pre-meal baseline at 180 min. Rats administered Leu270, Leu80, CHO2.6, or CHO1.0 maintained elevated rates of MPS at 180 min, while Sham controls declined from peak values. Leu80 and CHO1.0 treatments maintained MPS, but with values intermediate between Sham controls and Leu270 and CHO2.6 supplements. Consistent with MPS findings, the supplements maintained elongation activity and cellular energy status by preventing increases in AMP/ATP and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase ACC and eEF2. The impact of the supplements on MPS and cellular energy status was in proportion to the energy content within the individual treatments (i.e., Leu270 > Leu80; CHO2.6 > CHO1.0), but the Leu supplements produced a disproportionate anabolic stimulation of MPS, eEF2 and energy status with significantly lower energy content. In summary, the incongruity between MPS and translation initiation at 180 min reflects a block in translation elongation due to reduced

  8. Post-Meal Responses of Elongation Factor 2 (eEF2 and Adenosine Monophosphate-Activated Protein Kinase (AMPK to Leucine and Carbohydrate Supplements for Regulating Protein Synthesis Duration and Energy Homeostasis in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Donald K. Layman

    2012-11-01

    Full Text Available Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2. This study evaluates the potential to extend the anabolic meal response with post-meal supplements of Leu or carbohydrates. Adult (~256 g male Sprague-Dawley rats were food deprived for 12 h, then either euthanized before a standard meal (time 0 or at 90 or 180 min post-meal. At 135 min post-meal, rats received one of five oral supplements: 270 mg leucine (Leu270, 80:40:40 mg leucine, isoleucine, and valine (Leu80, 2.63 g carbohydrates (CHO2.6, 1 g carbohydrates (CHO1.0, or water (Sham control. Following the standard meal, MPS increased at 90 min then declined to pre-meal baseline at 180 min. Rats administered Leu270, Leu80, CHO2.6, or CHO1.0 maintained elevated rates of MPS at 180 min, while Sham controls declined from peak values. Leu80 and CHO1.0 treatments maintained MPS, but with values intermediate between Sham controls and Leu270 and CHO2.6 supplements. Consistent with MPS findings, the supplements maintained elongation activity and cellular energy status by preventing increases in AMP/ATP and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK, acetyl-CoA carboxylase ACC and eEF2. The impact of the supplements on MPS and cellular energy status was in proportion to the energy content within the individual treatments (i.e., Leu270 > Leu80; CHO2.6 > CHO1.0, but the Leu supplements produced a disproportionate anabolic stimulation of MPS, eEF2 and energy status with significantly lower energy content. In summary, the incongruity between MPS and translation initiation at 180 min reflects a block in translation elongation due to

  9. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  10. Adenosine monophosphate-activated protein kinase and myofibrillar protein degradation%腺苷酸活化蛋白激酶与骨骼肌蛋白质降解

    Institute of Scientific and Technical Information of China (English)

    马延超; 朱荣; 李俊平

    2012-01-01

    BACKGROUND: Adenosine monophosphate-activated protein kinase (AMPK) is an intracellular energy sensor in skeletal muscle, which can be activated by exercise. AMPK, widely existing in eucaryotic cells, is the serine/threonine protein kinase. OBJECTIVE: To review the structure and the function of AMPK, changes of AMPK activity and the influence of AMPK activity on skeletal muscle protein degeneration during exercise. METHODS: A computer-based online retrieval of China National Knowledge Infrastructure (CNKI), Vip database, http://highwire.stanford.edu and www.ncbi.nlm.nih.gov/pubmed was performed to search papers regarding AMPK and myofibrillar protein degradation. The structure and the function of AMPK, the change of AMPK activity in exercise, and the effect of AMPK activation on myofibrillar protein degradation were retrieved. RESULTS AND CONCLUSION: A total of 35 papers were retrieved. This study summarized the structure and the function of AMPK. In the resistance exercise and in the moderate and high intensity cycle exercise, AMPK activity may be increased, and in the low intensity cycle exercise, AMPK activity may not be increased. Activated AMPK may promote the protein degradation.%背景:机体运动时骨骼肌收缩,ATP被大量消耗,产生大量腺苷一磷酸,导致腺苷酸活化蛋白激酶的激活.目的:综述不同运动过程中腺苷酸活化蛋白激酶活性的变化,以及腺苷酸活化蛋白激酶对骨骼肌蛋白质降解的研究成果.方法:检索中国期刊网、维普期刊数据库、www.ncbi.nlm.nih.gov/pubmed和http://highwire.stanford.edu/网站与腺苷酸活化蛋白激酶、运动、蛋白质降解研究相关的文章.并对腺苷酸活化蛋白激酶的结构与作用,不同运动过程中腺苷酸活化蛋白激酶活性的变化,以及腺苷酸活化蛋白激酶升高对骨骼肌蛋白质降解的内容进行分析综述.结果与结论:共纳入相关文献35篇.本文综述了腺苷酸活化蛋白激酶的结构、作用

  11. Highly ordered crystals of channel-forming membrane proteins, of nucleoside-monophosphate kinases, of FAD-containing oxidoreductases and of sugar-processing enzymes and their mutants

    Science.gov (United States)

    Schulz, G. E.; Dreyer, M.; Klein, C.; Kreusch, A.; Mittl, P.; Mu¨ller, C. W.; Mu¨ller-Dieckmann, J.; Muller, Y. A.; Proba, K.; Schlauderer, G.; Spu¨rgin, P.; Stehle, T.; Weiss, M. S.

    1992-08-01

    Preparation and crystallization procedures as well as crystal properties are reported for 12 proteins plus numerous site-directed mutants. The proteins are: the integral membrane protein porin from Rhodobacter capsulatus which diffracts to at least 1.8A˚resolution, porin from Rhodopseudomonas blastica which diffracts to at least 2.0A˚resolution, adenylate kinase from yeast and mutants, adenylate kinase from Escherichia coli and mutants, bovine liver mitochondrial adenylate kinase, guanylate kinase from yeast, uridylate kinase from yeast, glutathione reductase from E. coli and mutants, NADH peroxidase from Streptococcus faecalis containing a sulfenic acid as redox-center, pyruvate oxidase from Lactobacillus plantarum containing FAD and TPP, cyclodextrin glycosyltransferase from Bacillus circulans and mutants, and a fuculose aldolase from E. coli.

  12. (5'-/sup 32/P)-8-azidoguanosine-3',5'-monophosphate. I. Synthesis and properties. II. Interaction with E. coli proteins

    Energy Technology Data Exchange (ETDEWEB)

    Owens, J.R.

    1983-01-01

    Under certain conditions of nutritional deprivation, microorganisms produce the magic spot nucleotides guanosine-3'-diphosphate-5'-triphosphate(pppGpp) and the tetraphosphate ppGpp. The latter is known to be a pleiotypic effector, i.e. it inhibits (and sometimes stimulates) many biological processes including transcription, translation, and metabolic pathways. It is unknown whether pppGpp, ppGp, pGpp, and pGp, other members of this family of guanosine-3',5'-phosphates, also have regulatory properties. To begin to investigate this question, a radioactive photoaffinity analog of pGp was prepared: (5'/sup 32/P)pN/sub 3/Gp. The interaction of this photoprobe with E. coli sonicates and a purified protein (RNA polymerase) was examined. At physiological salt concentrations two proteins (RNA polymerase) was examined. At physiological salt concentrations two proteins of 86,000 and 65,000 daltons (p86 and p65) were primarily photolabeled. Competition studies with guanosine and adenosine nucleotides indicated (5 /sup 32/P)pN/sub 3/Gp was labeling a ppGpp binding site on p86, and a pGp (or GMP) site on p65. ATP phosphorylation of p86 increased photoincorporation, while it decreased labeling of p65. The data also provide evidence of a different type of regulatory mechanism, i.e. phosphorylation modulates binding of an allosteric effector (ppGpp) to a protein(enzyme). Both ATP and GTP were found to phosphorylate the same proteins, although GTP was the preferred substrate in some cases.

  13. Expression of adenosine 5'-monophosphate-Activated protein kinase (AMPK) in ovine testis (Ovis aries): In vivo regulation by nutritional state.

    Science.gov (United States)

    Taibi, N; Dupont, J; Bouguermouh, Z; Froment, P; Ramé, C; Anane, A; Amirat, Z; Khammar, F

    2017-03-01

    In the present study, we identified AMPK and investigated its potential role in steroidogenesis in vivo in the ovine testis in response to variation in nutritional status (fed control vs. restricted). We performed immunoblotting to show that both active and non-active forms of AMPK exist in ovine testis and liver. In testis, we confirmed these results by immunohistochemistry. We found a correlation between ATP (Adenosine-Triphosphate) levels and the expression of AMPK in liver. Also, low and high caloric diets induce isoform-dependent AMPK expression, with an increase in α2, ß1ß2 and γ1 activity levels. Although the restricted group exhibited an increase in lipid balance, only the triglyceride and HC-VLDL (Cholesterol-Very low density lipoprotein) fractions showed significant differences between groups, suggesting an adaptive mechanism. Moreover, the relatively low rate of non-esterified fatty acid released into the circulation implies re-esterification to compensate for the physiological need. In the fed control group, AMPK activates the production of testosterone in Leydig cells; this is, in turn, associated with an increase in the expression of 3ß-HSD (3 beta hydroxy steroid deshydrogenase), p450scc (Cholesterol side-chain cleavage enzyme) and StAR (Steroidogenic acute regulatory protein) proteins induced by decreased MAPK ERK½ (Extracellular signal-regulated kinase -Mitogen-activated protein kinase) phosphorylation. In contrast, in the restricted group, testosterone secretion was reduced but intracellular cholesterol concentration was not. Furthermore, the combination of high levels of lipoproteins and emergence of the p38 MAP kinase pathway suggest the involvement of pro-inflammatory cytokines, as confirmed by transcriptional repression of the StAR protein. Taken together, these results suggest that AMPK expression is tissue dependent.

  14. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    Science.gov (United States)

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy.

  15. Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling.

    Science.gov (United States)

    So, Wing Yan; Leung, Po Sing

    2016-09-01

    Irisin is a newly identified myokine that promotes the browning of white adipose tissue, enhances glucose uptake in skeletal muscle and modulates hepatic metabolism. However, the signaling pathways involved in the effects on hepatic glucose and lipid metabolism have not been resolved. This study aimed to examine the role of irisin in the regulation of hepatic glucose/lipid metabolism and cell survival, and whether adenosine monophosphate-activated protein kinase (AMPK), a master metabolic regulator in the liver, is involved in irisin's actions. Human liver-derived HepG2 cells were cultured in normal glucose-normal insulin (NGNI) or high glucose-high insulin (HGHI/insulin-resistant) condition. Hepatic glucose and lipid metabolism was evaluated by glucose output and glycogen content or triglyceride accumulation assays, respectively. Our results showed that irisin stimulated phosphorylation of AMPK and acetyl-CoA-carboxylase (ACC) via liver kinase B1 (LKB1) rather than Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) in HepG2 cells. Irisin ameliorated hepatic insulin resistance induced by HGHI condition. Irisin reduced hepatic triglyceride content and glucose output, but increased glycogen content, with those effects reversed by dorsomorphin, an AMPK inhibitor. Furthermore, irisin also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and promoted cell survival in an AMPK-dependent manner. In conclusion, our data indicate that irisin ameliorates dysregulation of hepatic glucose/lipid metabolism and cell death in insulin-resistant states via AMPK activation. These findings reveal a novel irisin-mediated protective mechanism in hepatic metabolism which provides a scientific basis for irisin as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes mellitus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Metformin inhibits nuclear factor-κB activation and inflammatory cytokines expression induced by high glucose via adenosine monophosphate-activated protein kinase activation in rat glomerular mesangial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Gu Junfei; Ye Shandong; Wang Shan; Sun Wenjia; Hu Yuanyuan

    2014-01-01

    Background The renoprotective mechanisms of adenosine monophosphate (AMP)-activated protein kinase (AMPK) agonist-metformin have not been stated clearly.We hypothesized that metformin may ameliorate inflammation via AMPK interaction with critical inflammatory cytokines The aim of this study was to observe the effects of metformin on expression of nuclear factor-κB (NF-κB),monocyte chemoattractant protein-1 (MCP-1),intercellular adhesion molecule-1 (ICAM-1) and transforming growth factor-beta 1 (TGF-β1) induced by high glucose (HG) in cultured rat glomerular mesangial cells (MCs).Methods MCs were cultured in the medium with normal concentration glucose (group NG,5.6 mmol/L),high concentration glucose (group HG,25 mmol/L) and different concentrations of metformin (group M1,M2,M3).After 48-hour exposure,the supernatants and MCs were collected.The expression of NF-κB,MCP-1,ICAM-1,and TGF-β1 mRNA was analyzed by real time polymerase chain reaction.Westem blotting was used to detect the expression of AMPK,phospho-Thr-172 AMPK (p-AMPK),NF-κB p65,MCP-1,ICAM-1,and TGF-β1 protein.Results After stimulated by HG,the expression of NF-κB,MCP-1,ICAM-1,TGF-β1 mRNA and protein of MCs in group HG increased significantly compared with group NG (P <0.05).Both genes and protein expression of NF-κB,MCP-1,ICAM-1,TGF-β1 of MCs induced by high glucose were markedly reduced after metformin treatment in a dose-dependent manner (P <0.05).The expression of p-AMPK increased with the rising of metformin concentration,presenting the opposite trend,while the level of total-AMPK protein was unchanged with exposure to HG or metformin.Conlusion Metformin can suppress the expression of NF-κB,MCP-1,ICAM-1 and TGF-β1 of glomerular MCs induced by high glucose via AMPK activation,which may partlv contribute to its reno-protection.

  17. Structural Studies of Potassium Transport Protein KtrA Regulator of Conductance of K+ (RCK) C Domain in Complex with Cyclic Diadenosine Monophosphate (c-di-AMP).

    Science.gov (United States)

    Kim, Henna; Youn, Suk-Jun; Kim, Seong Ok; Ko, Junsang; Lee, Jie-Oh; Choi, Byong-Seok

    2015-06-26

    Although it was only recently identified as a second messenger, c-di-AMP was found to have fundamental importance in numerous bacterial functions such as ion transport. The potassium transporter protein, KtrA, was identified as a c-di-AMP receptor. However, the co-crystallization of c-di-AMP with the protein has not been studied. Here, we determined the crystal structure of the KtrA RCK_C domain in complex with c-di-AMP. The c-di-AMP nucleotide, which adopts a U-shaped conformation, is bound at the dimer interface of RCK_C close to helices α3 and α4. c-di-AMP interacts with KtrA RCK_C mainly by forming hydrogen bonds and hydrophobic interactions. c-di-AMP binding induces the contraction of the dimer, bringing the two monomers of KtrA RCK_C into close proximity. The KtrA RCK_C was able to interact with only c-di-AMP, but not with c-di-GMP, 3',3-cGAMP, ATP, and ADP. The structure of the KtrA RCK_C domain and c-di-AMP complex would expand our understanding about the mechanism of inactivation in Ktr transporters governed by c-di-AMP.

  18. Prognostic value of coexistence of abnormal expression of micro-RNA-200b and cyclic adenosine monophosphate-responsive element-binding protein 1 in human astrocytoma.

    Science.gov (United States)

    Zhang, Jun-qing; Yao, Qing-he; Kuang, Yong-qin; Ma, Yuan; Yang, Li-bin; Huang, Hai-dong; Cheng, Jing-ming; Yang, Tao; Liu, En-yu; Liang, Liang; Fan, Ke-xia; Zhao, Kai; Xia, Xun; Gu, Jian-wen

    2014-10-01

    Our aim was to investigate the expression of micro-RNA-200b (miR-200b) and cAMP-responsive element-binding protein 1 (CREB-1) in astrocytoma and its efficacy for predicting outcome. Both miR-200b and CREB-1 messenger RNA expression was measured in 122 astrocytomas and 30 nonneoplastic brain specimens by quantitative real-time polymerase chain reaction. Expression of miR-200b was significantly lower in astrocytoma than in nonneoplastic brain (P RNA expression was significantly elevated in the tumors (P < .001). Both miR-200b down-regulation and CREB-1 up-regulation were significantly associated with advanced pathologic grade (P = .002 and P = .006, respectively). Low miR-200b expression correlated negatively with Karnofsky performance score (P = .03), and high CREB-1 expression correlated positively with mean tumor diameter (P = .03). By Kaplan-Meier analysis, low miR-200b, high CREB-1, and coexistence of abnormal miR-200b and CREB-1 expression (low miR-200b/high CREB-1) were predictive of shorter progression-free survival and overall survival in both grade III and grade IV astrocytoma. By multivariate analysis, only low miR-200b/high CREB-1 expression was an independent prognostic factor for poor prognosis in astrocytoma of advanced grade. Both miR-200b and CREB-1 may play important cooperative roles in the progression of human astrocytoma. The efficacy of miR-200b and CREB-1 together as a predictor of prognosis in astrocytoma patients is shown for the first time. Copyright © 2014. Published by Elsevier Inc.

  19. Parathyroid hormone induces transcription of collagenase in rat osteoblastic cells by a mechanism using cyclic adenosine 3',5'-monophosphate and requiring protein synthesis

    Science.gov (United States)

    Scott, D. K.; Brakenhoff, K. D.; Clohisy, J. C.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    Collagenase is synthesized and secreted by rat osteoblastic cells in response to PTH. We have previously demonstrated that this effect involves a substantial increase in collagenase mRNA via transcription. Northern blots and nuclear run-on assays were performed to further investigate the induction of collagenase by PTH in the rat osteoblastic cell line UMR 106-01. Detectable amounts of collagenase mRNA were not apparent until 2 h of PTH treatment, showed the greatest abundance at 4 h, and declined to approximately 30% of maximum by 8 h. The changes in the rate of transcription of the collagenase gene in response to PTH paralleled and preceded the changes in the steady state mRNA levels. After an initial lag period of about 1 h, collagenase transcription rates increased from very low levels to a maximal response at 2 h, returning to about 50% of maximum by 10 h. The increased transcriptional rate of the collagenase gene was found to be dependent on the concentration of PTH, with a half-maximal response at approximately 7 x 10(-10) M rat PTH-(1-34) and a maximal effect with a dose of 10(-8) M. The PTH-mediated induction of collagenase transcriptional activity was completely abolished by cycloheximide, while transcription of the beta-actin gene was unaffected by the translation inhibitor. These data suggest that a protein factor(s) is required for PTH-mediated transcriptional induction of collagenase. Since PTH increases intracellular levels of several potential second messengers, agents that mimic these substances were employed to determine which signal transduction pathway is predominant in the PTH-mediated stimulation of collagenase transcription.(ABSTRACT TRUNCATED AT 250 WORDS).

  20. Adenosine monophosphate activated protein kinase (AMPK), a mediator of estradiol-induced apoptosis in long-term estrogen deprived breast cancer cells.

    Science.gov (United States)

    Chen, Haiyan; Wang, Ji-Ping; Santen, Richard J; Yue, Wei

    2015-06-01

    Estrogens stimulate growth of hormone-dependent breast cancer but paradoxically induce tumor regress under certain circumstances. We have shown that long-term estrogen deprivation (LTED) enhances the sensitivity of hormone dependent breast cancer cells to estradiol (E2) so that physiological concentrations of estradiol induce apoptosis in these cells. E2-induced apoptosis involve both intrinsic and extrinsic pathways but precise mechanisms remain unclear. We found that exposure of LTED MCF-7 cells to E2 activated AMP activated protein kinase (AMPK). In contrast, E2 inhibited AMPK activation in wild type MCF-7 cells where E2 prevents apoptosis. As a result of AMPK activation, the transcriptional activity of FoxO3, a downstream factor of AMPK, was up-regulated in E2 treatment of LTED. Increased activity of FoxO3 was demonstrated by up-regulation of three FoxO3 target genes, Bim, Fas ligand (FasL), and Gadd45α. Among them, Bim and FasL mediate intrinsic and extrinsic apoptosis respectively and Gadd45α causes cell cycle arrest at the G2/M phase. To further confirm the role of AMPK in apoptosis, we used AMPK activator AICAR in wild type MCF-7 cells and examined apoptosis, proliferation and expression of Bim, FasL, and Gadd45α. The effects of AICAR on these parameters recapitulated those observed in E2-treated LTED cells. Activation of AMPK by AICAR also increased expression of Bax in MCF-7 cells and its localization to mitochondria, which is a required process for apoptosis. These results reveal that AMPK is an important factor mediating E2-induced apoptosis in LTED cells, which is implicative of therapeutic potential for relapsing breast cancer after hormone therapy.

  1. Plasma concentrations of the cyclic nucleotides, adenosine 3',5'-monophosphate and guanosine 3'.5'-monophosphate, in healthy adults treated with theophylline

    DEFF Research Database (Denmark)

    Fenger, M; Eriksen, P B; Andersen, O;

    1982-01-01

    Plasma concentrations of cyclic adenosine monophosphate and cyclic guanosine monophosphate were measured in 10 health adults before, during and after periods of theophylline administration. Cyclic adenosine monophosphate concentrations did not change significantly, but cyclic guanosine monophosph...

  2. Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy.

    Science.gov (United States)

    Cameron, Kimberly O; Kung, Daniel W; Kalgutkar, Amit S; Kurumbail, Ravi G; Miller, Russell; Salatto, Christopher T; Ward, Jessica; Withka, Jane M; Bhattacharya, Samit K; Boehm, Markus; Borzilleri, Kris A; Brown, Janice A; Calabrese, Matthew; Caspers, Nicole L; Cokorinos, Emily; Conn, Edward L; Dowling, Matthew S; Edmonds, David J; Eng, Heather; Fernando, Dilinie P; Frisbie, Richard; Hepworth, David; Landro, James; Mao, Yuxia; Rajamohan, Francis; Reyes, Allan R; Rose, Colin R; Ryder, Tim; Shavnya, Andre; Smith, Aaron C; Tu, Meihua; Wolford, Angela C; Xiao, Jun

    2016-09-08

    Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.

  3. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    Science.gov (United States)

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  4. Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5'-monophosphate-activated protein kinase signaling pathways.

    Science.gov (United States)

    Yuan, Gang; Deng, Juanjuan; Wang, Tao; Zhao, Chunxia; Xu, Xizheng; Wang, Peihua; Voltz, James W; Edin, Matthew L; Xiao, Xiao; Chao, Lee; Chao, Julie; Zhang, Xin A; Zeldin, Darryl C; Wang, Dao Wen

    2007-05-01

    We previously reported that iv delivery of the human tissue kallikrein (HK) gene reduced blood pressure and plasma insulin levels in fructose-induced hypertensive rats with insulin resistance. In the current study, we evaluated the potential of a recombinant adeno-associated viral vector expressing the HK cDNA (rAAV-HK) as a sole, long-term therapy to correct insulin resistance and prevent renal damage in streptozotocin-induced type-2 diabetic rats. Administration of streptozotocin in conjunction with a high-fat diet induced systemic hypertension, diabetes, and renal damage in rats. Delivery of rAAV-HK resulted in a long-term reduction in blood pressure, and fasting plasma insulin was significantly lower in the rAAV-HK group than in the control group. The expression of phosphatidylinositol 3-kinase p110 catalytic subunit and the levels of phosphorylation at residue Thr-308 of Akt, insulin receptor B, and AMP-activated protein kinases were significantly decreased in organs from diabetic animals. These changes were significantly attenuated after rAAV-mediated HK gene therapy. Moreover, rAAV-HK significantly decreased urinary microalbumin excretion, improved creatinine clearance, and increased urinary osmolarity. HK gene therapy also attenuated diabetic renal damage as assessed by histology. Together, these findings demonstrate that rAAV-HK delivery can efficiently attenuate hypertension, insulin resistance, and diabetic nephropathy in streptozotocin-induced diabetic rats.

  5. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway.

    Directory of Open Access Journals (Sweden)

    Bhushan Vijay Nagpure

    Full Text Available Alzheimer's disease (AD is the leading cause of senile dementia in today's society. Its debilitating symptoms are manifested by disturbances in many important brain functions, which are influenced by adenosine. Hence, adenosinergic system is considered as a potential therapeutic target in AD treatment. In the present study, we found that sodium hydrosulfide (NaHS, an H2S donor, 100 µM attenuated HENECA (a selective A2A receptor agonist, 10-200 nM induced β-amyloid (1-42 (Aβ42 production in SH-SY5Y cells. NaHS also interfered with HENECA-stimulated production and post-translational modification of amyloid precursor protein (APP by inhibiting its maturation. Measurement of the C-terminal APP fragments generated from its enzymatic cleavage by β-site amyloid precursor protein cleaving enzyme 1 (BACE1 showed that NaHS did not have any significant effect on β-secretase activity. However, the direct measurements of HENECA-elevated γ-secretase activity and mRNA expressions of presenilins suggested that the suppression of Aβ42 production in NaHS pretreated cells was mediated by inhibiting γ-secretase. NaHS induced reductions were accompanied by similar decreases in intracellular cAMP levels and phosphorylation of cAMP responsive element binding protein (CREB. NaHS significantly reduced the elevated cAMP and Aβ42 production caused by forskolin (an adenylyl cyclase, AC agonist alone or forskolin in combination with IBMX (a phosphodiesterase inhibitor, but had no effect on those caused by IBMX alone. Moreover, pretreatment with NaHS significantly attenuated HENECA-elevated AC activity and mRNA expressions of various AC isoforms. These data suggest that NaHS may preferentially suppress AC activity when it was stimulated. In conclusion, H2S attenuated HENECA induced Aβ42 production in SH-SY5Y neuroblastoma cells through inhibiting γ-secretase via a cAMP dependent pathway.

  6. Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities.

    Science.gov (United States)

    Rapala-Kozik, Maria; Olczak, Mariusz; Ostrowska, Katarzyna; Starosta, Agata; Kozik, Andrzej

    2007-12-01

    A thiamine biosynthesis gene, thi3, from maize Zea mays has been identified through cloning and sequencing of cDNA and heterologous overexpression of the encoded protein, THI3, in Escherichia coli. The recombinant THI3 protein was purified to homogeneity and shown to possess two essentially different enzymatic activities of HMP(-P) [4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate)] kinase and TMP (thiamine monophosphate) synthase. Both activities were characterized in terms of basic kinetic constants, with interesting findings that TMP synthase is uncompetitively inhibited by excess of one of the substrates [HMP-PP (HMP diphosphate)] and ATP. A bioinformatic analysis of the THI3 sequence suggested that these activities were located in two distinct, N-terminal kinase and C-terminal synthase, domains. Models of the overall folds of THI3 domains and the arrangements of active centre residues were obtained with the SWISS-MODEL protein modelling server, on the basis of the known three-dimensional structures of Salmonella enterica serotype Typhimurium HMP(-P) kinase and Bacillus subtilis TMP synthase. The essential roles of Gln98 and Met134 residues for HMP kinase activity and of Ser444 for TMP synthase activity were experimentally confirmed by site-directed mutagenesis.

  7. A Cistanches Herba Fraction/β-Sitosterol Causes a Redox-Sensitive Induction of Mitochondrial Uncoupling and Activation of Adenosine Monophosphate-Dependent Protein Kinase/Peroxisome Proliferator-Activated Receptor γ Coactivator-1 in C2C12 Myotubes: A Possible Mechanism Underlying the Weight Reduction Effect

    Directory of Open Access Journals (Sweden)

    Hoi Shan Wong

    2015-01-01

    Full Text Available Previous studies have demonstrated that HCF1, a semipurified fraction of Cistanches Herba, causes weight reduction in normal diet- and high fat diet-fed mice. The weight reduction was associated with the induction of mitochondrial uncoupling and changes in metabolic enzyme activities in mouse skeletal muscle. To further investigate the biochemical mechanism underlying the HCF1-induced weight reduction, the effect of HCF1 and its active component, β-sitosterol (BSS, on C2C12 myotubes was examined. Incubation with HCF1/BSS caused a transient increase in mitochondrial membrane potential (MMP, possibly by fluidizing the mitochondrial inner membrane. The increase in MMP was paralleled to an increase in mitochondrial reactive oxygen species (ROS production. Mitochondrial ROS, in turn, triggered a redox-sensitive induction of mitochondrial uncoupling by uncoupling protein 3 (UCP3. Biochemical analysis indicated that HCF1 was capable of activating an adenosine monophosphate-dependent protein kinase/peroxisome proliferator-activated receptor γ coactivator-1 pathway and thereby increased the expression of cytochrome c oxidase and UCP3. Animal studies using mitochondrial recoupler also confirmed the role of mitochondrial uncoupling in the HCF1-induced weight reduction. In conclusion, a HCF1/BSS causes the redox-sensitive induction of mitochondrial uncoupling and activation of AMPK/PGC-1 in C2C12 myotubes, with resultant reductions in body weight and adiposity by increased energy consumption.

  8. Structure of Staphylococcus aureus cytidine monophosphate kinase in complex with cytidine 5'-monophosphate.

    Science.gov (United States)

    Dhaliwal, Balvinder; Ren, Jingshan; Lockyer, Michael; Charles, Ian; Hawkins, Alastair R; Stammers, David K

    2006-08-01

    The crystal structure of Staphylococcus aureus cytidine monophosphate kinase (CMK) in complex with cytidine 5'-monophosphate (CMP) has been determined at 2.3 angstroms resolution. The active site reveals novel features when compared with two orthologues of known structure. Compared with the Streptococcus pneumoniae CMK solution structure of the enzyme alone, S. aureus CMK adopts a more closed conformation, with the NMP-binding domain rotating by approximately 16 degrees towards the central pocket of the molecule, thereby assembling the active site. Comparing Escherichia coli and S. aureus CMK-CMP complex structures reveals differences within the active site, including a previously unreported indirect interaction of CMP with Asp33, the replacement of a serine residue involved in the binding of CDP by Ala12 in S. aureus CMK and an additional sulfate ion in the E. coli CMK active site. The detailed understanding of the stereochemistry of CMP binding to CMK will assist in the design of novel inhibitors of the enzyme. Inhibitors are required to treat the widespread hospital infection methicillin-resistant S. aureus (MRSA), currently a major public health concern.

  9. Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Parish Tanya

    2010-02-01

    Full Text Available Abstract Background Mycobacteria use inositol in phosphatidylinositol, for anchoring lipoarabinomannan (LAM, lipomannan (LM and phosphatidylinosotol mannosides (PIMs in the cell envelope, and for the production of mycothiol, which maintains the redox balance of the cell. Inositol is synthesized by conversion of glucose-6-phosphate to inositol-1-phosphate, followed by dephosphorylation by inositol monophosphate phosphatases (IMPases to form myo-inositol. To gain insight into how Mycobacterium tuberculosis synthesises inositol we carried out genetic analysis of the four IMPase homologues that are present in the Mycobacterium tuberculosis genome. Results Mutants lacking either impA (Rv1604 or suhB (Rv2701c were isolated in the absence of exogenous inositol, and no differences in levels of PIMs, LM, LAM or mycothiol were observed. Mutagenesis of cysQ (Rv2131c was initially unsuccessful, but was possible when a porin-like gene of Mycobacterium smegmatis was expressed, and also by gene switching in the merodiploid strain. In contrast, we could only obtain mutations in impC (Rv3137 when a second functional copy was provided in trans, even when exogenous inositol was provided. Experiments to obtain a mutant in the presence of a second copy of impC containing an active-site mutation, in the presence of porin-like gene of M. smegmatis, or in the absence of inositol 1-phosphate synthase activity, were also unsuccessful. We showed that all four genes are expressed, although at different levels, and levels of inositol phosphatase activity did not fall significantly in any of the mutants obtained. Conclusions We have shown that neither impA, suhB nor cysQ is solely responsible for inositol synthesis. In contrast, we show that impC is essential for mycobacterial growth under the conditions we used, and suggest it may be required in the early stages of mycothiol synthesis.

  10. [Identification of thiamine monophosphate hydrolyzing enzymes in chicken liver].

    Science.gov (United States)

    Kolos, I K; Makarchikov, A F

    2014-01-01

    In animals, thiamine monophosphate (TMP) is an intermediate on the path of thiamine diphosphate, the coenzyme form of vitamin B1, degradation. The enzymes involved in TMP metabolism in animal tissues are not identified hitherto. The aim of this work was to study TMP hydrolysis in chicken liver. Two phosphatases have been found to contribute to TMP hydrolysis in liver homogenate. The first one, possessing a maximal activity at pH 6.0, is soluble, whereas the second one represents a membrane-bound enzyme with a pH optimum of 9.0. Membrane-bound TMPase activity was enhanced 1.7-fold by 5 mM Mg2+ ions and strongly inhibited by levamisole in uncompetitive manner with K1 of 53 μM, indicating the involvement of alkaline phosphatase. An apparent Km of alkaline phosphatase for TMP was calculated from the Hanes plot to be 0.6 mM. The soluble TMPase has an apparent Km of 0.7 mM; this enzyme is Mg2+ independent and insensitive to levamisole. As estimated by gel filtration on a Toyopearl HW-55 column, the soluble enzyme has a molecular mass of 17.8 kDa, TMPase activity being eluted simultaneously with peaks of flavinmononucleotide and p-nitrophenyl phosphatase activity. Thus, TMP appears to be a physiological substrate for a low-molecular weight acid phosphatase, also known as low-molecular-weight protein phosphotyrosine phosphatase.

  11. Inhibition of thyrotropin-stimulated adenosine 3',5'-monophosphate formation in rat thyroid cells by an adenosine analog. Evidence that the inhibition is mediated by the putative inhibitory guanine nucleotide regulatory protein.

    Science.gov (United States)

    Berman, M I; Thomas, C G; Nayfeh, S N

    1986-01-01

    Addition of N6-(L-2-phenylisopropyl)-adenosine (PIA) to cultured FRTL-5 rat thyroid cells led to a concentration-dependent inhibition of TSH-stimulated cAMP formation. Half-maximal inhibition was attained with approximately 0.5 nM PIA. Forskolin and cholera toxin-stimulated cAMP production were also inhibited by PIA. 3-Isobutyl-methylxanthine inhibited the effect of PIA. These results are consistent with the presence of inhibitory adenosine receptors (Ri). Ri-sites were further demonstrated by the binding of 3H-cyclohexyl-adenosine to FRTL-5 plasma membranes. High (Kd = 0.50 +/- 0.07 nM) and low affinity (Kd = 5.95 +/- 2.33 nM) binding sites were observed. Pretreatment of FRTL-5 cells with pertussis, but not cholera, toxin effectively antagonized the inhibitory effects of PIA on cAMP production. ADP-ribosylation of FRTL-5 membranes with [32P]-NAD in the presence of cholera or pertussis toxin specifically labeled a 45,000 and 41,000 Mr species, respectively, which correspond to the alpha subunit of the stimulatory and inhibitory guanine nucleotide regulatory proteins. These results demonstrate that PIA inhibits TSH-stimulated cAMP production via Ri-sites on FRTL-5 thyroid cells. PIA appears to exert its inhibitory effects through the inhibitory guanine nucleotide regulatory protein.

  12. Effects of pyridoxine on a high-fat diet-induced reduction of cell proliferation and neuroblast differentiation depend on cyclic adenosine monophosphate response element binding protein in the mouse dentate gyrus.

    Science.gov (United States)

    Yoo, Dae Young; Kim, Woosuk; Yoo, Ki-Yeon; Nam, Sung Min; Chung, Jin Young; Yoon, Yeo Sung; Won, Moo-Ho; Hwang, In Koo

    2012-08-01

    In this study, we challenged pyridoxine to mice fed a high-fat diet (HFD) and investigated the effects of pyridoxine on HFD-induced phenotypes such as blood glucose, reduction of cell proliferation and neuroblast differentiation in the dentate gyrus using Ki67 and doublecortin (DCX), respectively. Mice were fed a commercially available low-fat diet (LFD) as control diet or HFD (60% fat) for 8 weeks. After 5 weeks of LFD or HFD treatment, 350 mg/kg pyridoxine was administered for 3 weeks. The administration of pyridoxine significantly decreased body weight in the HFD-treated group. In addition, there were no significant differences in hepatic histology and pancreatic insulin-immunoreactive (-ir) and glucagon-ir cells of the HFD-treated group after pyridoxine treatment. In the HFD-fed group, Ki67-positive nuclei and DCX-ir neuroblasts were significantly decreased in the dentate gyrus compared with those in the LFD-fed mice. However, the administration of pyridoxine significantly increased Ki67-positive nuclei and DCX-ir neuroblasts in the dentate gyrus in both LFD- and HFD-fed mice. In addition, the administration of pyridoxine significantly increased the protein levels of glutamic acid decarboxylase 67 (GAD67) and brain-derived neurotrophic factor (BDNF) and the immunoreactivity of phosphorylated cyclic AMP response element binding protein (pCREB) compared with the vehicle-treated LFD- and HFD-fed mice. In contrast, the administration of pyridoxine significantly decreased HFD-induced malondialdehyde (MDA) levels in the hippocampus. These results showed that pyridoxine supplement reduced the HFD-induced reduction of cell proliferation and neuroblast differentiation in the dentate gyrus via controlling the levels of GAD67, pCREB, BDNF, and MDA.

  13. Activation of extracellular signal-regulated kinases, NF-kappa B, and cyclic adenosine 5'-monophosphate response element-binding protein in lung neutrophils occurs by differing mechanisms after hemorrhage or endotoxemia.

    Science.gov (United States)

    Abraham, E; Arcaroli, J; Shenkar, R

    2001-01-01

    Acute lung injury is frequently associated with sepsis or blood loss and is characterized by a proinflammatory response and infiltration of activated neutrophils into the lungs. Hemorrhage or endotoxemia result in activation of cAMP response element-binding protein (CREB) and NF-kappa B in lung neutrophils as well as increased expression of proinflammatory cytokines, such as TNF-alpha and macrophage-inflammatory peptide-2, by these cells. Activation of the extracellular regulated kinase (ERK) pathway occurs in stress responses and is involved in CREB activation. In the present experiments, hemorrhage or endotoxemia produced increased activation of mitogen-activated protein kinase kinase (MEK)1/2 and ERK2 (p42), but not of ERK1 (p44), in lung neutrophils. ERK1, ERK2, and MEK1/2 were not activated in peripheral blood neutrophils after hemorrhage or endotoxemia. Inhibition of xanthine oxidase led to further increase in the activation of MEK1/2 and ERK2 in lung neutrophils after hemorrhage, but not after endotoxemia. Alpha-adrenergic blockade before hemorrhage resulted in increased activation in lung neutrophils of MEK1/2, ERK1, ERK2, and CREB, but decreased activation of NF-kappa B. In contrast, alpha-adrenergic blockade before endotoxemia was associated with decreased activation of MEK1/2, ERK2, and CREB, but increased activation of NF-kappa B. Beta-adrenergic blockade before hemorrhage did not alter MEK1/2 or ERK1 activation in lung neutrophils, but decreased activation of ERK2 and CREB, while increasing activation of NF-kappa B. Beta-adrenergic inhibition before endotoxemia did not affect activation of MEK1/2, ERK1, ERK2, CREB, or NF-kappa B. These data indicate that the pathways leading to lung neutrophil activation after hemorrhage are different from those induced by endotoxemia.

  14. Identification of thiamine monophosphate hydrolyzing enzymes in chicken liver

    Directory of Open Access Journals (Sweden)

    I. K. Kolas

    2014-12-01

    Full Text Available In animals, thiamine monophosphate (TMP is an intermediate on the path of thiamine diphosphate, the coenzyme form of vitamin B1, degradation. The enzymes involved in TMP metabolism in animal tissues are not identified hitherto. The aim of this work was to study TMP hydrolysis in chicken liver. Two phosphatases have been found to contribute to TMP hydrolysis in liver homogenate. The first one, possessing a maximal activity at pH 6.0, is soluble, whereas the second one represents a membrane-bound enzyme with a pH optimum of 9.0. Membrane-bound TMPase activity was enhanced 1.7-fold by 5 mM Mg2+ ions and strongly inhibited by levami­sole in uncompetitive manner with Ki of 53 μM, indicating the involvement of alkaline phosphatase. An apparent Km of alkaline phosphatase for TMP was calculated from the Hanes plot to be 0.6 mM. The soluble TMPase has an apparent­ Km of 0.7 mM; this enzyme is Mg2+ independent and insensitive to levamisole. As estimated by gel filtration on a Toyopearl HW-55 column, the soluble enzyme has a molecular mass of 17.8 kDa, TMPase activity being eluted simultaneously with peaks of flavinmononucleotide and p-nitrophenyl phosphatase activity. Thus, TMP appears to be a physiological substrate for a low-molecular weight acid phosphatase, also known as low-molecu­lar-weight protein phosphotyrosine phosphatase

  15. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.

    Science.gov (United States)

    Datta, S; Siwek, D F; Stack, E C

    2009-09-29

    Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of rapid eye movement (REM) sleep. In the present study performed on rats, phosphorylated cyclic AMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. The results demonstrated that during high rapid eye movement sleep (HR, approximately 27%), significantly higher numbers of cells expressed pCREB and c-Fos in the PPT, of which 95% of pCREB-expressing cells were ChAT-positive. With HR, the numbers of pCREB-positive cells were also significantly higher in the medial pontine reticular formation (mPRF), pontine reticular nucleus oral (PnO), and dorsal subcoeruleus nucleus (SubCD) but very few in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). Conversely, with low rapid eye movement sleep (LR, approximately 2%), the numbers of pCREB expressing cells were very few in the PPT, mPRF, PnO, and SubCD but significantly higher in the LC and DRN. The results of regression analyses revealed significant positive relationships between the total percentages of REM sleep and numbers of ChAT+/pCREB+ (Rsqr=0.98) cells in the PPT and pCREB+ cells in the mPRF (Rsqr=0.88), PnO (Rsqr=0.87), and SubCD (Rsqr=0.84); whereas significantly negative relationships were associated with the pCREB+ cells in the LC (Rsqr=0.70) and DRN (Rsqr=0.60). These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are

  16. [Isolation of inosine-5'-monophosphate from fish muscles].

    Science.gov (United States)

    Tugaĭ, V A; Akulin, V N; Epshteĭn, L M

    1987-01-01

    Conditions for transformation of tissue adenosine-5'-monophosphate (AMP) into inosine-5'-monophosphate (IMP) with the aid of endogenic AMP-aminohydrolase are developed resting on the studied properties of AMP-aminohydrolase (EC 3.5.4.6) from saltwater fish muscles (one of the enzymes participating in the nucleotide metabolism). Sorption of the nucleotide is performed on the activated charcoals A gamma-3 A gamma-5 which eluate IMP from acid solutions. It reduces the process of isolation, permits application of the acid wash solutions to remove salts; the alkaline ethyl alcohol-aid elution at the subsequent stages accelerates the process of nucleotide concentration by means of vacuum evaporation. The suggested approaches allow developing a simple method of IMP production from fish tissues which diminishes the cost of preparation.

  17. RECIPIENT PRETRANSPLANT INOSINE MONOPHOSPHATE DEHYDROGENASE ACTIVITY IN NONMYELOABLATIVE HCT

    Science.gov (United States)

    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.

    2014-01-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  18. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling

    KAUST Repository

    Gehring, Christoph A.

    2017-10-04

    The cyclic nucleotide monophosphates (cNMPs), and notably 3′,5′-cyclic guanosine monophosphate (cGMP) and 3′,5′-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.

  19. Urinary cyclic guanosine 3',5'-monophosphate and cyclic adenosine 3',5'-monophosphate changes in spontaneous and induced onset active labor.

    Science.gov (United States)

    Chen, Da-Chung; Yuan, Shyng-Shiou F; Su, Her-Young; Lo, Shin-Chieh; Ren, Shin-Sia; Wu, Gwo-Jang

    2005-11-01

    The aim of this prospective, randomized study was to investigate the changes in urinary cyclic guanosine 3',5'-monophosphate (cGMP) and cyclic adenosine 3',5'-monophosphate (cAMP) between the latent and the active phases of spontaneous and prostaglandin E(1) (PGE(1))-induced labor. Seventy singleton pregnant women at 36-41(+) weeks' gestation without signs of fetal distress were enrolled. The first group consisted of 35 pregnant women in whom labor was induced by PGE(1) applied intravaginally. The second group consisted of 35 women who had spontaneous active labor. Clinical data of the two groups were assessed as labor progressed. After the onset of active labor, urinary cGMP/creatinine (U cGMP/Cr) decreased in both groups with the percentage decline of 35.2 and 9.7, respectively, but this difference was only significant in the PGE(1)-induced group (P=0.033). After the onset of active labor, urinary cAMP/creatinine (U cAMP/Cr) decreased in both groups with the percentage decline of 36.5 and 15.6, respectively, but this difference was only significant in the PGE(1)-induced group (P=0.001). The duration of the latent phase was significantly shortened in the PGE(1)-induced group compared with the spontaneous labor group (Plabor. Our results suggest that U cGMP/Cr and U cAMP/Cr can serve as easily obtained secondary messenger markers of myometrial contractility and cervical ripening at the onset of active labor. The NO-cGMP system and the G-protein alpha-cAMP system in the human uterus may concomitantly contribute to uterine quiescence during pregnancy and show downregulation in U cGMP/Cr and U cAMP/Cr at the initiation of active labor.

  20. Nucleic acid molecules encoding isopentenyl monophosphate kinase, and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney B. (Pullman, WA); Lange, Bernd M. (Pullman, WA)

    2001-01-01

    A cDNA encoding isopentenyl monophosphate kinase (IPK) from peppermint (Mentha x piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of isopentenyl monophosphate kinase (SEQ ID NO:2), from peppermint (Mentha x piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for isopentenyl monophosphate kinase, or for a base sequence sufficiently complementary to at least a portion of isopentenyl monophosphate kinase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding isopentenyl monophosphate kinase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant isopentenyl monophosphate kinase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant isopentenyl monophosphate kinase may be used to obtain expression or enhanced expression of isopentenyl monophosphate kinase in plants in order to enhance the production of isopentenyl monophosphate kinase, or isoprenoids derived therefrom, or may be otherwise employed for the regulation or expression of isopentenyl monophosphate kinase, or the production of its products.

  1. Specific Interactions of Antitumor Metallocenes with Deoxydinucleoside Monophosphates

    Science.gov (United States)

    Eberle, Rahel P.; Hari, Yvonne; Schürch, Stefan

    2017-09-01

    Bent metallocenes Cp2MCl2 (M = Ti, V, Nb, Mo) are known to exhibit cytotoxic activity against a variety of cancer types. Though the mechanism of action is not fully understood yet, the accumulation of the metal ions in the nucleus points towards DNA as one of the primary targets. A set of eight deoxydinucleoside monophosphates was used to study the adduct yields with metallocenes and cisplatin. The binding affinities are reflected by the relative intensities of the adducts and were found to follow the order of Pt > V > Ti > Mo (no adducts were detected with Nb). High-resolution tandem mass spectrometry was applied to locate the binding patterns in the deoxydinucleoside monophosphates. Whereas cisplatin binds to the soft nitrogen atoms in the purine nucleobases, the metallocenes additionally interact with the hard phosphate oxygen, which is in good agreement with the hard and soft (Lewis) acids and bases (HSAB) concept. However, the binding specificities were found to be unique for each metallocene. The hard Lewis acids titanium and vanadium predominantly bind to the deprotonated phosphate oxygen, whereas molybdenum, an intermediate Lewis acid, preferentially interacts with the nucleobases. Nucleobases comprise alternative binding sites for titanium and vanadium, presumably oxygen atoms for the first and nitrogen atoms for the latter. In summary, the intrinsic binding behavior of the different metallodrugs is reflected by the gas-phase dissociation of the adducts. Consequently, MS/MS can provide insights into therapeutically relevant interactions between metallodrugs and their cellular targets. [Figure not available: see fulltext.

  2. Effects of plant extract neferine on cyclic adenosine monophosphate and cyclic guanosine monophosphate levels in rabbit corpus cavernosum in vitro

    Institute of Scientific and Technical Information of China (English)

    Jun Chen; Ji-Hong Liu; Tao Wang; Heng-Jun Xiao; Chun-Ping Yin; Jun Yang

    2008-01-01

    Aim: To further investigate the relaxation mechanism of neferine (Nef), a bis-benzylisoquinoline alkaloid extracted (isolated) from the green seed embryo of Nelumbo nucifera Gaertn in China, on rabbit corpus cavernosum tissue in vitro. Methods: The effects of Nef on the concentrations of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in isolated and incubated rabbit corpus cavernosum tissue were re-corded using125Ⅰ radioimmunoassay. Results: The basal concentration of cAMP in corpus cavernosum tissue was 5.67±0.97 pmol/mg. Nef increased the cAMP concentration in a dose-dependent manner (P 0.05). The accumulation of cAMP induced by prostaglandin E1(PGE1, a stimulator of cAMP production) was also augmented by Nef in a dose-dependent manner (P 0.05). Also,sodium nitroprusside (SNP, a stimulator of cGMP production)-induced cGMP production was not enhanced by Nef (P > 0.05). Conclusion: Nef, with its relaxation mechanism, can enhance the concentration of cAMP in rabbit corpus cavernosum tissue, probably by inhibiting phosphodiesterase activity.

  3. AMPKα2基因克隆及其野生型和突变型真核表达载体的构建%Cloning of activating adenosine monophosphate-activated protein kinase alpha 2 subunit gene and construction of its wild-type and mutant eukaryotic expression vectors

    Institute of Scientific and Technical Information of China (English)

    罗招凡; 李芳萍; 丁鹤林; 程桦

    2009-01-01

    背景:实验表明,通过激活单磷酸腺苷激活的蛋白激酶(AMP-Activated Protein Kinase, AMPK)α2可以增加胰岛素的敏感性和骨骼肌葡萄糖的摄取,其有望成为预防和治疗2型糖尿病的新的生理和药理作用靶点.目的:克隆人的AMPKα2基因,并构建其野生型和突变型真核表达载体.设计:单一样本观察.时间及地点:实验于2007-04/2008-01在中山大学附属第二医院临床分子生物实验室完成.材料:QuikChange Ⅱ Site-Directed Mutagenesis Kit为Stratagene公司产品.真核表达载体pcDNA3.1(+),大肠杆菌DH5α为实验室保存.人骨胳肌组织来源于中山大学附属第二医院手术截肢患者,获患者知情同意,新鲜取材后液氮冷冻.方法:采用反转录一聚合酶链反应技术从人骨骼肌扩增AMPKα2基因,并将其克隆到T载体,通过测序对其进行鉴定.采用Quickchange定点诱变试剂盒对AMPKα2基因进行体外定点诱变,并将其野生和突变的编码基因亚克隆到真核表达载体pcDNA3.1中,通过酶切和测序进行鉴定.主要观察指标:①目的基因的克隆.②定点诱变.③真核表达质粒的构建.结果:成功克隆了AMPKα2基因,大小约1 700 bp,与已发表的AMPKα2同源性为99%,GenBank录入号EF056019.成功将AMPKα2第45位Lysine(AAA)突变为Arginine(AGA),成功构建了野生型和突变型pcDNA-AMPK α2重组质粒.结论:实验成功克隆了AMPKα2基因,构建了其野生型和突变型真核表达载体.%BACKGROUND: The experimental results showed that insulin sensitivity and glucose uptake in skeletal muscle could be improved by activating adenosine monophosphate-activated protein kinase a2 (AMPKα2). AMPKa2 is expected to become a new physiological and pharmacological target for the prevention and treatment of type 2 diabetes mellitus. OBJECTIVE: To clone human AMPKa2 subunit gene and to construct its wild-type and mutant eukaryotic expression vectors. DESIGN: A single sample observation

  4. Adenosine Monophosphate-Based Detection of Bacterial Spores

    Science.gov (United States)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  5. Vascular relaxation and cyclic guanosine monophosphate in hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Y.; DiPiero, A.; Lockette, W.

    1986-03-01

    Isolated aortae from hypertensive rats have a decreased relaxation response to acetylcholine (Ach), A23187, and nitroprusside (SNP). Since cyclic guanosine monophosphate (cGMP) has been shown to increase in response to these vasodilators, the authors measured cGMP in response to these agents in isolated aortae from normotensive rats and DOCA, 1K1C, and coarctation induced hypertension. cGMP was measured by radioimmunoassay in vessels after exposure to phenylephrine followed by either Ach, A23187, or SNP. The aortae from the hypertensive rats had decreased basal levels of cGMP and attenuated increases in cGMP in response to Ach and A23187. Rises in cGMP in response to SNP were also attenuated in aortae from the hypertensive rats, even at concentrations which induced similar relaxation in normotensive and hypertensive blood vessels. The data suggest that changes in cGMP do not necessarily reflect changes in endothelium independent vascular relaxation in hypertension.

  6. 辛伐他汀抑制肝星状细胞活化及其对腺苷酸活化蛋白激酶活性的影响%Simvastatin inhibits activation of hepatic stellate cells and promotes activation of adenosine monophosphate activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    曹伟; 闫蕾; 王玮; 赵彩彦

    2012-01-01

    the underlying molecular mechanism ofthe cholesterol-blocking drug,simvastatin,in treating nonalcoholic fatty liver fibrosis.Method A rat model of nonalcoholic fatty liver fibrosis was established by feeding Wistar rats a fat-rich diet.After treatment with simvastatin (4 mg/kg/day),liver histological specimens were stained with hematoxylin-eosin and Masson's trichrome for microscopic analysis.Expression of adenosine monophosphate-activated protein kinase-alpha (AMPKα) was evaluated by reverse transcription-polymerase chain reaction (RT-PCR; for mRNA) and Western blotting (protein).The levels of serum total cholesterol (TC),triglycerides (TG),alanine aminotransferase (ALT),aspartate aminotransferase (AST),and tumor necrosis factor-alpha (TNFa) were measured by standard biochemical assays.The human hepatic stellate cell line,LX-2 (quiescent or activated),was treated with transforming growth factor-beta l (TGF-β1) alone,simvastatin alone,or TGF-β1 +simvastatin.RT-PCR and Western blotting were used to determine changes in AMPKα mRNA and protein expression,respectively.Results In the rat model of nonalcoholic fatty liver fibrosis,the extent of pathological changes in hepatic tissues correlated with severity of disease progression.The levels of serum TC,TG,ALT,AST and TNFα were increased significantly in model rats (vs.healthy controls; all,P< 0.01).AMPKα mRNA expression and activity was significantly decreased in model rats (vs.healthy controls; P< 0.01 and P< 0.05,respectively).Simvastatin,treatment significantly improved all of these parameters in model rats (vs.untreated model rats; all,P< 0.05).In vitro simvastatin treatment of human HSCs significantly increased AMPKα activity (quiescent LX-2:0.93 -0.10 vs.0.72±0.09,activated LX-2:0.72±0.10 vs.0.54±0.10,q=7.00,6.00; all,P<0.01),decreased a-smooth muscle actin expression (mRNA:0.30±0.02 vs.0.36±0.02,protein:0.30±0.03 vs.0.38±0.02,q=11.245,11.216; all,P<0.01),and decreased collagen I expression

  7. CMP kinase from Escherichia coli is structurally related to other nucleoside monophosphate kinases.

    Science.gov (United States)

    Bucurenci, N; Sakamoto, H; Briozzo, P; Palibroda, N; Serina, L; Sarfati, R S; Labesse, G; Briand, G; Danchin, A; Bărzu, O; Gilles, A M

    1996-02-02

    CMP kinase from Escherichia coli is a monomeric protein of 225 amino acid residues. The protein exhibits little overall sequence similarities with other known NMP kinases. However, residues involved in binding of substrates and/or in catalysis were found conserved, and sequence comparison suggested conservation of the global fold found in adenylate kinases or in several CMP/UMP kinases. The enzyme was purified to homogeneity, crystallized, and analyzed for its structural and catalytic properties. The crystals belong to the hexagonal space group P6(3), have unit cell parameters a = b = 82.3 A and c = 60.7 A, and diffract x-rays to a 1.9 A resolution. The bacterial enzyme exhibits a fluorescence emission spectrum with maximum at 328 nm upon excitation at 295 nm, which suggests that the single tryptophan residue (Trp30) is located in a hydrophobic environment. Substrate specificity studies showed that CMP kinase from E. coli is active with ATP, dATP, or GTP as donors and with CMP, dCMP, and arabinofuranosyl-CMP as acceptors. This is in contrast with CMP/UMP kinase from Dictyostelium discoideum, an enzyme active on CMP or UMP but much less active on the corresponding deoxynucleotides. Binding of CMP enhanced the affinity of E. coli CMP kinase for ATP or ADP, a particularity never described in this family of proteins that might explain inhibition of enzyme activity by excess of nucleoside monophosphate.

  8. Structural basis for the catalytic mechanism of a proficient enzyme: Orotidine 5'-Monophosphate Decarboxylase

    DEFF Research Database (Denmark)

    Harris, Pernille Hanne; Poulsen, Jens-Christian Navarro; Jensen, Kaj Frank

    2000-01-01

    Orotidine 5‘-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine 5‘-monophosphate, the last step in the de novo synthesis of uridine 5‘-monophosphate. ODCase is a very proficient enzyme [Radzicka, A., and Wolfenden, R. (1995) Science 267, 90-93], enhancing the reaction...... rate by a factor of 1017. This proficiency has been enigmatic, since it is achieved without metal ions or cofactors. Here we present a 2.5 Å resolution structure of ODCase complexed with the inhibitor 1-(5‘-phospho-ß-d-ribofuranosyl)barbituric acid. It shows a closely packed dimer composed of two a...

  9. Cyclic adenosine 3',5'-monophosphate and germination of sporangiospores from the fungus Mucor.

    Science.gov (United States)

    Orlowski, M

    1980-06-01

    Cyclic adenosine 3',5'-monophosphate (cAMP) metabolism was examined in germinating sporangiospores of Mucor genevensis and Mucor mucedo. Exogenous cAMP prevented normal hyphal development from sporangiospores. Internal pools of cAMP fluctuated profoundly during development. Spherical growth of the spores was characterized by large pools of cAMP whereas germ tube emergence and hyphal elongation were characterized by small pools of cAMP. These observations suggest a possible role for cAMP in sporangiospore germination. Adenylate cyclase activities fluctuated significantly during germination with maximum values attained during spherical growth. In contrast, cAMP phosphodiesterase activities remained constant throughout germination. Internal cAMP levels may therefore be regulated by adjustment of adenylate cyclase activities. The binding of cAMP by soluble cell proteins was measured. cAMP-binding activity changed greatly during germination. Dormant and spherically growing spores possessed the highest activities. Developing hyphae contained the lowest activities. Use of the photoaffinity label, 8-azido-[32P]cAMP, in conjunction with sodium dodecyl sulfate-polyacrylamide-gel electrophoresis allowed the identification of a small population of morphogenetic-stage-specific proteins which bind cAMP and may be of regulatory significance to development.

  10. Cyclic adenosine monophosphate signal pathway in targeted therapy of lymphoma

    Institute of Scientific and Technical Information of China (English)

    DOU Ai-xia; WANG Xin

    2010-01-01

    Objective To review the role of cyclic adenosine monophosphate (cAMP) signal pathway in the pathogenesis oflymphoma and explore a potential lymphoma therapy targeted on this signaling pathway.Data sources The data cited in this review were mainly obtained from the articles listed in Medline and PubMed,published from January 1995 to June 2009. The search terms were "cAMP" and "lymphoma".Study selection Articles regarding the role of the cAMP pathway in apoptosis of lymphoma and associated cells and itspotential role in targeted therapy of lymphoma.Results In the transformation of lymphocytic malignancies, several signal pathways are involved. Among of them, thecAMP pathway has attracted increasing attention because of its apoptosis-inducing role in several lymphoma cells. cAMPpathway impairment is found to influence the prognosis of lymphoma. Targeted therapy to the cAMP pathway seems tobe a new direction for lymphoma treatment, aiming at restoring the cAMP function.Conclusions cAMP signal pathway has different effects on various lymphoma cells. cAMP analogues andphosphodiesterase 4B (PDE4B) inhibitors have potential clinical significance. However, many challenges remain inunderstanding the various roles of such agents.

  11. ALLERGEN-INDUCED CHANGES IN ADENOSINE 5'-MONOPHOSPHATE BRONCHIAL RESPONSIVENESS - EFFECT OF NEDOCROMIL SODIUM

    NARCIS (Netherlands)

    AALBERS, R; KAUFMAN, HF; GROEN, H; KOETER, GH; DEMONCHY, JGR

    1992-01-01

    Bronchial hyperresponsiveness to adenosine 5'-monophosphate (AMP) was studied after allergen challenge in allergic asthmatic patients. Measurements were made with and without nedocromil sodium pretreatment. Nedocromil sodium inhibited both the early and late asthmatic reactions (P <.01). After aller

  12. ALLERGEN-INDUCED CHANGES IN ADENOSINE 5'-MONOPHOSPHATE BRONCHIAL RESPONSIVENESS - EFFECT OF NEDOCROMIL SODIUM

    NARCIS (Netherlands)

    AALBERS, R; KAUFMAN, HF; GROEN, H; KOETER, GH; DEMONCHY, JGR

    1992-01-01

    Bronchial hyperresponsiveness to adenosine 5'-monophosphate (AMP) was studied after allergen challenge in allergic asthmatic patients. Measurements were made with and without nedocromil sodium pretreatment. Nedocromil sodium inhibited both the early and late asthmatic reactions (P <.01). After

  13. Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling.

    Science.gov (United States)

    Sato, Masayuki J; Kuwayama, Hidekazu; van Egmond, Wouter N; Takayama, Airi L K; Takagi, Hiroaki; van Haastert, Peter J M; Yanagida, Toshio; Ueda, Masahiro

    2009-04-21

    Switching between attractive and repulsive migration in cell movement in response to extracellular guidance cues has been found in various cell types and is an important cellular function for translocation during cellular and developmental processes. Here we show that the preferential direction of migration during electrotaxis in Dictyostelium cells can be reversed by genetically modulating both guanylyl cyclases (GCases) and the cyclic guanosine monophosphate (cGMP)-binding protein C (GbpC) in combination with the inhibition of phosphatidylinositol-3-OH kinases (PI3Ks). The PI3K-dependent pathway is involved in cathode-directed migration under a direct-current electric field. The catalytic domains of soluble GCase (sGC) and GbpC also mediate cathode-directed signaling via cGMP, whereas the N-terminal domain of sGC mediates anode-directed signaling in conjunction with both the inhibition of PI3Ks and cGMP production. These observations provide an identification of the genes required for directional switching in electrotaxis and suggest that a parallel processing of electric signals, in which multiple-signaling pathways act to bias cell movement toward the cathode or anode, is used to determine the direction of migration.

  14. Arabidopsis TH2 Encodes the Orphan Enzyme Thiamin Monophosphate Phosphatase[OPEN

    Science.gov (United States)

    Niehaus, Thomas D.; Hasnain, Ghulam; Gidda, Satinder K.; Nguyen, Thuy N.D.; Anderson, Erin M.; Brown, Greg; Yakunin, Alexander F.; de Crécy-Lagard, Valérie; Gregory, Jesse F.

    2016-01-01

    To synthesize the cofactor thiamin diphosphate (ThDP), plants must first hydrolyze thiamin monophosphate (ThMP) to thiamin, but dedicated enzymes for this hydrolysis step were unknown and widely doubted to exist. The classical thiamin-requiring th2-1 mutation in Arabidopsis thaliana was shown to reduce ThDP levels by half and to increase ThMP levels 5-fold, implying that the THIAMIN REQUIRING2 (TH2) gene product could be a dedicated ThMP phosphatase. Genomic and transcriptomic data indicated that TH2 corresponds to At5g32470, encoding a HAD (haloacid dehalogenase) family phosphatase fused to a TenA (thiamin salvage) family protein. Like the th2-1 mutant, an insertional mutant of At5g32470 accumulated ThMP, and the thiamin requirement of the th2-1 mutant was complemented by wild-type At5g32470. Complementation tests in Escherichia coli and enzyme assays with recombinant proteins confirmed that At5g32470 and its maize (Zea mays) orthologs GRMZM2G148896 and GRMZM2G078283 are ThMP-selective phosphatases whose activity resides in the HAD domain and that the At5g32470 TenA domain has the expected thiamin salvage activity. In vitro and in vivo experiments showed that alternative translation start sites direct the At5g32470 protein to the cytosol and potentially also to mitochondria. Our findings establish that plants have a dedicated ThMP phosphatase and indicate that modest (50%) ThDP depletion can produce severe deficiency symptoms. PMID:27677881

  15. The role of renal adenosine 3',5'-monophosphate in the control of erythropoietin production.

    Science.gov (United States)

    Rodgers, G M; Fisher, J W; George, W J

    1975-01-01

    A regulatory role for adenosine 3',5'-monophosphate (cyclic AMP) in the production of the renal hormone rythropoietin following erythropoietic stimulation with cobaltous chloride hexahydrate is proposed. Studies in rates reveal a temporal relationship between renal cyclic AMP levels and plasma titers of erythropoietin. In addition, cobalt increases the activity of an erythropoietin-generating enzyme (renal erythropoietic factor) with maximal enzyme activity occurring after the rise in cyclic AMP levels but before the increase in erythropoietin titers. This increase in renal cyclic AMP is localized to the renal cortex. Cobalt stimulates renal cortical adenylate cyclase but has no effect on renal cyclic nucleotide phosphodiesterase. The addition of cyclic AMP (3 time 10-6 M) and a partially purified cyclic AMP-dependent protein kinase from rat kidney to an inactive preparation of renal erythropoietic factor increases the ability of renal erythropoietic factor to generate erythropoietin. Data from the polycythemic mouse assay, a bioassay used to quantitate erythropoietic activity of test substances, indicate that dibutyryl cyclic AMP is erythropoietically active with respect to its ability to increase radioactive-labelled iron (59Fe) incorporation into heme of newly formed red blood cells. Theophylline, which by itself is erythropoietically inactive, potentiated the erythropoietic effect of cobalt in polycythemic mice. These results suggest that cyclic AMP plays a significant role in the renal production of erythropoietin following cobalt administration. It is postulated that cobalt stimulates renal cortical adenyoate cyclase, thus increasing renal cyclic AMP levels. Cyclic AMP then activates a protein kinase which subsequently stimulates renal erythropoietic factor to generate erythropoietin. A similar cyclic AMP mechanism may be operative after erythropoietic stimulation by exposure to hypoxia or prostaglandin treatment.

  16. Squalenoyl nucleoside monophosphate nanoassemblies: new prodrug strategy for the delivery of nucleotide analogues.

    Science.gov (United States)

    Caron, Joachim; Reddy, L Harivardhan; Lepêtre-Mouelhi, Sinda; Wack, Séverine; Clayette, Pascal; Rogez-Kreuz, Christine; Yousfi, Rahima; Couvreur, Patrick; Desmaële, Didier

    2010-05-01

    4-(N)-1,1',2-trisnor-squalenoyldideoxycytidine monophosphate (SQddC-MP) and 4-(N)-1,1',2-trisnor-squalenoylgemcitabine monophosphate (SQdFdC-MP) were synthesized using phosphoramidite chemistry. These amphiphilic molecules self-assembled to about hundred nanometers size nanoassemblies in aqueous medium. Nanoassemblies of SQddC-MP displayed significant anti-HIV activity whereas SQdFdC-MP nanoassemblies displayed promising anticancer activity on leukemia cells. These results suggested that squalene conjugate of negatively charged nucleotide analogues efficiently penetrated within cells. Thus, we propose a new prodrug strategy for improved delivery of nucleoside analogues to ameliorate their biological efficacy.

  17. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH isoforms.

    Directory of Open Access Journals (Sweden)

    Elaine C Thomas

    Full Text Available We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH, a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii communication occurs between the Bateman and catalytic domains and (iii the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.

  18. Cyclic adenosine monophosphate-mediated protection against bile acid-induced apoptosis in cultured rat hepatocytes.

    Science.gov (United States)

    Webster, C R; Anwer, M S

    1998-05-01

    Cyclic adenosine monophosphate (cAMP) has been shown to modulate apoptosis. To evaluate the role of cAMP in bile acid-induced hepatocyte apoptosis, we studied the effect of agents that increase cAMP on the induction of apoptosis by glycochenodeoxycholate (GCDC) in cultured rat hepatocytes. GCDC induced apoptosis in 26.5%+/-1.1% of hepatocytes within 2 hours. Twenty-minute pretreatment of hepatocytes with 100 micromol/L 8-(4-chlorothiophenyl) cAMP (CP-cAMP) resulted in a reduction in the amount of apoptosis to 35.2%+/-3.8% of that seen in hepatocytes treated with GCDC alone. Other agents that increase intracellular cAMP, including dibutyryl cAMP (100 micromol/L), glucagon (200 nmol/L), and a combination of forskolin (20 micromol/L) and 3-isobutyl-1-methylxanthine (20 micromol/L), also inhibited GCDC-induced apoptosis to a similar extent. Pretreatment with the protein kinase A (PKA) inhibitor, KT5720, prevented the protective effect of CP-cAMP and inhibited CP-cAMP-induced activation of PKA activity. Inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin (50 nmol/L), or Ly 294002 (20 micromol/L) also prevented the cytoprotective effect of cAMP. PI3K assays confirmed that wortmannin (50 nmol/L) inhibited PI3K activity, while CP-cAMP had no effect on the activity of this lipid kinase. GCDC increased mitogen-activated protein kinase (MAPK) activity, but had no effect on stress-activated protein kinase (SAPK) activity in hepatocytes. cAMP decreased basal and GCDC-induced MAPK activity and increased SAPK activity. The MAPK kinase inhibitor, PD 98059, inhibited both GCDC-mediated MAPK activation and GCDC-induced apoptosis. 1) agents that increase intracellular cAMP protect against hepatocyte apoptosis induced by hydrophobic bile acids; 2) activation of MAPK by GCDC may be involved in bile acid-induced apoptosis; and 3) cAMP-mediated cytoprotection against bile acid-induced apoptosis appears to involve PKA, MAPK, and PI3K.

  19. Gold Core Mesoporous Organosilica Shell Degradable Nanoparticles for Two-Photon Imaging and Gemcitabine Monophosphate Delivery

    KAUST Repository

    Rhamani, Saher

    2017-09-12

    The synthesis of gold core degradable mesoporous organosilica shell nanoparticles is described. The nanopaticles were very efficient for two-photon luminescence imaging of cancer cells and for in vitro gemcitabine monophosphate delivery, allowing promising theranostic applications in the nanomedicine field.

  20. DISSIMILARITY IN METHACHOLINE AND ADENOSINE 5'-MONOPHOSPHATE RESPONSIVENESS 3-H AND 24-H AFTER ALLERGEN CHALLENGE

    NARCIS (Netherlands)

    AALBERS, R; KAUFFMAN, HF; KOETER, GH; POSTMA, DS; DEVRIES, K; DEMONCHY, JGR

    1991-01-01

    Bronchial hyperresponsiveness (BHR) to methacholine and adenosine 5'-monophosphate (AMP) was studied in 15 allergic asthmatic patients before and 3 and 24 h after allergen challenge with hose dust mite (HDM). Subjects attended the clinic on 3 consecutive days. On the first day a control solution was

  1. Triazole inhibitors of Cryptosporidium parvum inosine 5′-monophosphate dehydrogenase

    OpenAIRE

    Maurya, Sushil K.; Gollapalli, Deviprasad R.; Kirubakaran, Sivapriya; Zhang, Minjia; Johnson, Corey R.; Benjamin, Nicole N.; Hedstrom, Lizbeth; Gregory D Cuny

    2009-01-01

    Cryptosporidium parvum is an important human pathogen and potential bioterrorism agent. This protozoan parasite cannot salvage guanine or guanosine and therefore relies on inosine 5′-monophosphate dehydrogenase (IMPDH) for biosynthesis of guanine nucleotides and hence for survival. Since C. parvum IMPDH is highly divergent from the host counterpart, selective inhibitors could potentially be used to treat cryptosporidiosis with minimal effects on its mammalian host. A series of 1,2,3-triazole ...

  2. Recipient pretransplant inosine monophosphate dehydrogenase activity in nonmyeloablative hematopoietic cell transplantation.

    Science.gov (United States)

    Bemer, Meagan J; Risler, Linda J; Phillips, Brian R; Wang, Joanne; Storer, Barry E; Sandmaier, Brenda M; Duan, Haichuan; Raccor, Brianne S; Boeckh, Michael J; McCune, Jeannine S

    2014-10-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation but not with chronic GVHD, relapse, nonrelapse mortality, or overall mortality. We conclude that quantitation of the recipient's pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient's sensitivity to MMF. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients.

  3. Regulation of insulin-like growth factor I transcription by cyclic adenosine 3',5'-monophosphate (cAMP) in fetal rat bone cells through an element within exon 1: protein kinase A-dependent control without a consensus AMP response element

    Science.gov (United States)

    McCarthy, T. L.; Thomas, M. J.; Centrella, M.; Rotwein, P.

    1995-01-01

    Insulin-like growth factor I (IGF-I) is a locally synthesized anabolic growth factor for bone. IGF-I synthesis by primary fetal rat osteoblasts (Ob) is stimulated by agents that increase the intracellular cAMP concentration, including prostaglandin E2 (PGE2). Previous studies with Ob cultures demonstrated that PGE2 enhanced IGF-I transcription through selective use of IGF-I promoter 1, with little effect on IGF-I messenger RNA half-life. Transient transfection of Ob cultures with an array of promoter 1-luciferase reporter fusion constructs has now allowed localization of a potential cis-acting promoter element(s) responsible for cAMP-stimulated gene expression to the 5'-untranslated region (5'-UTR) of IGF-I exon 1, within a segment lacking a consensus cAMP response element. Our evidence derives from three principal observations: 1) a transfection construct containing only 122 nucleotides (nt) of promoter 1 and 328 nt of the 5'-UTR retained full PGE2-stimulated reporter expression; 2) maximal PGE2-driven reporter expression required the presence of nt 196 to 328 of exon 1 when tested within the context of IGF-I promoter 1; 3) cotransfection of IGF-I promoter-luciferase-reporter constructs with a plasmid encoding the alpha-isoform of the catalytic subunit of murine cAMP-dependent protein kinase (PKA) produced results comparable to those seen with PGE2 treatment, whereas cotransfection with a plasmid encoding a mutant regulatory subunit of PKA that cannot bind cAMP blocked PGE2-induced reporter expression. Deoxyribonuclease I footprinting of the 5'-UTR of exon 1 demonstrated protected sequences at HS3A, HS3B, and HS3D, three of six DNA-protein binding sites previously characterized with rat liver nuclear extracts. Of these three regions, only the HS3D binding site is located within the functionally identified hormonally responsive segment of IGF-I exon 1. These results directly implicate PKA in the control of IGF-I gene transcription by PGE2 and identify a segment of

  4. Regulation of insulin-like growth factor I transcription by cyclic adenosine 3',5'-monophosphate (cAMP) in fetal rat bone cells through an element within exon 1: protein kinase A-dependent control without a consensus AMP response element

    Science.gov (United States)

    McCarthy, T. L.; Thomas, M. J.; Centrella, M.; Rotwein, P.

    1995-01-01

    Insulin-like growth factor I (IGF-I) is a locally synthesized anabolic growth factor for bone. IGF-I synthesis by primary fetal rat osteoblasts (Ob) is stimulated by agents that increase the intracellular cAMP concentration, including prostaglandin E2 (PGE2). Previous studies with Ob cultures demonstrated that PGE2 enhanced IGF-I transcription through selective use of IGF-I promoter 1, with little effect on IGF-I messenger RNA half-life. Transient transfection of Ob cultures with an array of promoter 1-luciferase reporter fusion constructs has now allowed localization of a potential cis-acting promoter element(s) responsible for cAMP-stimulated gene expression to the 5'-untranslated region (5'-UTR) of IGF-I exon 1, within a segment lacking a consensus cAMP response element. Our evidence derives from three principal observations: 1) a transfection construct containing only 122 nucleotides (nt) of promoter 1 and 328 nt of the 5'-UTR retained full PGE2-stimulated reporter expression; 2) maximal PGE2-driven reporter expression required the presence of nt 196 to 328 of exon 1 when tested within the context of IGF-I promoter 1; 3) cotransfection of IGF-I promoter-luciferase-reporter constructs with a plasmid encoding the alpha-isoform of the catalytic subunit of murine cAMP-dependent protein kinase (PKA) produced results comparable to those seen with PGE2 treatment, whereas cotransfection with a plasmid encoding a mutant regulatory subunit of PKA that cannot bind cAMP blocked PGE2-induced reporter expression. Deoxyribonuclease I footprinting of the 5'-UTR of exon 1 demonstrated protected sequences at HS3A, HS3B, and HS3D, three of six DNA-protein binding sites previously characterized with rat liver nuclear extracts. Of these three regions, only the HS3D binding site is located within the functionally identified hormonally responsive segment of IGF-I exon 1. These results directly implicate PKA in the control of IGF-I gene transcription by PGE2 and identify a segment of

  5. Molecular characterization of adenosine 5'-monophosphate deaminase--the key enzyme responsible for the umami taste of nori (Porphyra yezoensis Ueda, Rhodophyta).

    Science.gov (United States)

    Minami, Seiko; Sato, Minoru; Shiraiwa, Yoshihiro; Iwamoto, Koji

    2011-12-01

    The enzyme adenosine 5'-monophosphate deaminase (AMPD, EC 3.5.4.6) catalyzes the conversion of adenosine 5'-monophosphate to inosine 5'-mononucleotide (IMP). IMP is generally known as the compound responsible for the umami taste of the edible red alga Porphyra yezoensis Ueda that is known in Japan as nori. Therefore, we suspect that AMPD plays a key role in providing a favorable nori taste. In this study, we undertake the molecular characterization of nori-derived AMPD. The nori AMPD protein has a molecular mass of 55 kDa as estimated from both gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The calculated molecular mass from the amino acid sequence deduced from cDNA is 57.1 kDa. The isoelectric point is 5.71. The coding region of AMPD consists of 1,566 bp encoding 522 amino acids and possesses a transmembrane domain and two N-glycosylation sites. The sequence identity of nori AMPD in human and yeast AMPDs was found to be less than 50% and 20% in DNA and amino acid sequences, respectively. Proline in the conserved motif of [SA]-[LIVM]-[NGS]-[STA]-D-D-P was found to be converted to glutamate. These results indicate that nori AMPD is a novel type of AMPD.

  6. Characterization of a dual-active enzyme, DcpA, involved in cyclic diguanosine monophosphate turnover in Mycobacterium smegmatis.

    Science.gov (United States)

    Sharma, Indra Mani; Prakash, Sunita; Dhanaraman, Thillaivillalan; Chatterji, Dipankar

    2014-10-01

    We have reported previously that the long-term survival of Mycobacterium smegmatis is facilitated by a dual-active enzyme MSDGC-1 (renamed DcpA), which controls the cellular turnover of cyclic diguanosine monophosphate (c-di-GMP). Most mycobacterial species possess at least a single copy of a DcpA orthologue that is highly conserved in terms of sequence similarity and domain architecture. Here, we show that DcpA exists in monomeric and dimeric forms. The dimerization of DcpA is due to non-covalent interactions between two protomers that are arranged in a parallel orientation. The dimer shows both synthesis and hydrolysis activities, whereas the monomer shows only hydrolysis activity. In addition, we have shown that DcpA is associated with the cytoplasmic membrane and exhibits heterogeneous cellular localization with a predominance at the cell poles. Finally, we have also shown that DcpA is involved in the change in cell length and colony morphology of M. smegmatis. Taken together, our study provides additional evidence about the role of the bifunctional protein involved in c-di-GMP signalling in M. smegmatis.

  7. Ratiometric bioluminescence indicators for monitoring cyclic adenosine 3',5'-monophosphate in live cells based on luciferase-fragment complementation.

    Science.gov (United States)

    Takeuchi, Masaki; Nagaoka, Yasutaka; Yamada, Toshimichi; Takakura, Hideo; Ozawa, Takeaki

    2010-11-15

    Bioluminescent indicators for cyclic 3',5'-monophosphate AMP (cAMP) are powerful tools for noninvasive detection with high sensitivity. However, the absolute photon counts are affected substantially by adenosine 5'-triphosphate (ATP) and d-luciferin concentrations, limiting temporal analysis in live cells. This report describes a genetically encoded bioluminescent indicator for detecting intracellular cAMP based on complementation of split fragments of two-color luciferase mutants originated from click beetles. A cAMP binding domain of protein kinase A was connected with an engineered carboxy-terminal fragment of luciferase, of which ends were connected with amino-terminal fragments of green luciferase and red luciferase. We demonstrated that the ratio of green to red bioluminescence intensities was less influenced by the changes of ATP and d-luciferin concentrations. We also showed an applicability of the bioluminescent indicator for time-course and quantitative assessments of intracellular cAMP in living cells and mice. The bioluminescent indicator will enable quantitative analysis and imaging of spatiotemporal dynamics of cAMP in opaque and autofluorescent living subjects.

  8. Isomerization mechanism of aspartate to isoaspartate implied by structures of Ustilago sphaerogena ribonuclease U2 complexed with adenosine 3'-monophosphate.

    Science.gov (United States)

    Noguchi, Shuji

    2010-07-01

    Aspartates in proteins are isomerized non-enzymatically to isoaspartate via succinimide in vitro and in vivo. In order to elucidate the mechanism of isoaspartate formation within the Asp45-Glu46 sequence of Ustilago sphaerogena ribonuclease U2 based on three-dimensional structure, crystal structures of ribonuclease U2 complexed with adenosine 3'-monophosphate have been solved at 0.96 and 0.99 A resolution. The crystal structures revealed that the C(gamma) atom of Asp45 is located just beside the main-chain N atom of Glu46 and that the conformation which is suitable for succinimide formation is stabilized by a hydrogen-bond network mediated by water molecules 190, 219 and 220. These water molecules are suggested to promote the formation of isoaspartate via succinimide: in the succinimide-formation reaction water 219 receives a proton from the N atom of Glu46 as a general base and waters 190 and 220 stabilize the tetrahedral intermediate, and in the succinimide-hydrolysis reaction water 219 provides a proton for the N atom of Glu46 as a general acid. The purine-base recognition scheme of ribonuclease U2 is also discussed.

  9. cyclic monophosphate

    African Journals Online (AJOL)

    Administrator

    2006-10-02

    Oct 2, 2006 ... Second messengers are small transient molecules that transmit and/or modulate environmental or hormonal signals ... cyclases (pGCs), and soluble cytosolic guanylyl cyclases ... Figure 2. Model of cGMP generation and cGMP dependent cellular effects. ..... dynamics of colonic epithelial proliferation.

  10. Gas-phase spectroscopy of protonated adenine, adenosine 5′-monophosphate and monohydrated ions

    DEFF Research Database (Denmark)

    Pedersen, S.O.; Støchkel, K.; Byskov, C.S.

    2013-01-01

    Microsolvation of chromophore ions commonly has large effects on their electronic structure and as a result on their optical absorption spectra. Here spectroscopy of protonated adenine (AdeH+) and its complex with one water molecule isolated in vacuo was done using a home-built mass spectrometer...... in combination with a tuneable pulsed laser system. Experiments also included the protonated adenosine 5′-monophosphate nucleotide (AMPH+). In the case of bare AdeH+ ions, one-photon absorption leads to four dominant fragment ions corresponding to ammonium and ions formed after loss of either NH3, HCN, or NH2CN...

  11. Plasmin is a potent and specific chemoattractant for human peripheral monocytes acting via a cyclic guanosine monophosphate-dependent pathway.

    Science.gov (United States)

    Syrovets, T; Tippler, B; Rieks, M; Simmet, T

    1997-06-15

    We have previously reported that the serine protease plasmin generated during contact activation of human plasma triggers biosynthesis of leukotrienes (LTs) in human peripheral monocytes (PMs), but not in polymorphonuclear neutrophils (PMNs). We now show that purified plasmin acts as a potent chemoattractant on human monocytes, but not on PMNs. Human plasmin or plasminogen activated with urokinase, but not active site-blocked plasmin or plasminogen, elicited monocyte migration across polycarbonate membranes. Similarly, stimulation of monocytes with plasmin, but not with active site-blocked plasmin or plasminogen, induced actin polymerization. As assessed by checkerboard analysis, the plasmin-mediated monocyte locomotion was a true chemotaxis. The plasmin-induced chemotactic response was inhibited by the lysine analog trans-4-(aminomethyl)cyclohexane-1-carboxylic acid (t-AMCA), which prevents binding of plasmin/ogen to the appropriate membrane binding sites. In addition, active site-blocked plasmin inhibited monocyte migration triggered by active plasmin. Further, plasmin-induced monocyte chemotaxis was inhibited by pertussis toxin (PTX) and 1-O-hexadecyl-2-O-methyl-rac-glycerol (HMG) and chelerythrine, two structurally unrelated inhibitors of protein kinase C (PKC). Plasmin, but not active site-blocked plasmin or plasminogen, triggered formation of cyclic guanosine monophosphate (cGMP) in monocytes. LY83583, an inhibitor of soluble guanylyl cyclase, inhibited both plasmin-induced cGMP formation and the chemotactic response. The latter effect could be antagonized by 8-bromo-cGMP. In addition, KT5823 and (Rp)-8-(p-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate [(Rp)-8-pCPT-cGMPs], two structurally unrelated inhibitors of cGMP-dependent protein kinase, inhibited plasmin-mediated monocyte chemotaxis. Thus, beyond being a stimulus for lipid mediator release, plasmin is a potent and specific chemoattractant for human monocytes acting via a c

  12. [Successful treatment of T-cell prolymphocytic leukemia (T-PLL) with fludarabine monophosphate].

    Science.gov (United States)

    Maeda, Akinori; Iwai, Kazuya; Ishibashi, Takafumi

    2009-08-01

    We report a 79-year-old woman with T-cell prolymphocytic leukemia (T-PLL) who was successfully treated with fludarabine monophosphate. She was admitted to our hospital because of dyspnea on effort. On admission, anemia and hepatosplenomegaly were apparent but lymphadenopathy was absent. Peripheral blood examination showed anemia and leukocytosis with 29.5% abnormal lymphocytes. The bone marrow was infiltrated with 84.1% abnormal lymphocytes. The nucleolus was visible in some of these abnormal cells. These cells were positive for CD2, CD3, CD4, CD5, CD7, CD38, CD52, and negative for CD8, CD10, CD19, CD20, CD25, CD56. Based on these findings, she was diagnosed as having T-PLL. Therapy with oral cyclophosphamide (50 mg/day) was started, but was discontinued because of agranulocytosis. Then, she received intravenous fludarabine monophosphate (30 mg/day) on days 1-5 every four to five weeks. The reticulocyte count increased gradually, and she became free from red cell transfusions. Unfortunately, she finally died from massive gastro intestinal hemorrhage, but T-PLL was well controlled at the time of death.

  13. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model.

    Science.gov (United States)

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-01-01

    During the cell communication process, endogenous and exogenous signaling affect normal as well as pathological developmental conditions. Exogenous influences such as extra-low-frequency electromagnetic field (EMF) have been shown to effect pain and inflammation by modulating G-protein receptors, down-regulating cyclooxygenase-2 activity, and affecting the calcium/calmodulin/nitric oxide pathway. Investigators have reported changes in opioid receptors and second messengers, such as cyclic adenosine monophosphate (cAMP), in opiate tolerance and dependence by showing how repeated exposure to morphine decreases adenylate cyclase activity causing cAMP to return to control levels in the tolerant state, and increase above control levels during withdrawal. Resonance responses to biological systems using exogenous EMF signals suggest that frequency response characteristics of the target can determine the EMF biological response. In our past research we found significant down regulation of inflammatory markers tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NFκB) using 5 Hz EMF frequency. In this study cAMP was stimulated in Chinese Hamster Ovary (CHO) cells transfected with human mu-opioid receptors, then exposed to 5 Hz EMF, and outcomes were compared with morphine treatment. Results showed a 23% greater inhibition of cAMP-treating cells with EMF than with morphine. In order to test our results for frequency specific effects, we ran identical experiments using 13 Hz EMF, which produced results similar to controls. This study suggests the use of EMF as a complementary or alternative treatment to morphine that could both reduce pain and enhance patient quality of life without the side-effects of opiates.

  14. Osmium (VI) complexes of the 3', 5'-dinucleoside monophosphates, ApU and UpA.

    Science.gov (United States)

    Daniel, F B; Behrman, E J

    1976-02-10

    The dinucleoside monophosphates, ApU and UpA, react with potassium osmate (VI) and 2,2'-bipyridyl to form the corresponding oxo-osmium (VI) bipyridyl sugar ester in which the osmate group is bonded to the terminal 2',3'-glycol. Osmium (VIII) tetroxide and 2,2'-bipyridyl react with the dinucleosides to form the corresponding oxo-osmium (VI) bipyridyl heterocyclic esters which result from addition of the tetroxide to the 5,6-double bond of the uracil residue. Although capable of transesterification reactions, these heterocyclic esters are exceptionally stable toward exchange reactions in solution. No apparent exchange was observed after 1 month. This reaction thus seems promising for single-site osmium labeling in polynucleotides.

  15. Influences of dibutyryl cyclic adenosine monophosphate and forskolin on human sperm motility in vitro

    Institute of Scientific and Technical Information of China (English)

    Ji-HongLIU; YangLI; Zheng-GuoCAO; Zhang-QunYE

    2003-01-01

    Aim: To study the influences of dibutyryl cyclic adenosine monophosphate (dbcAMP) and forskolin on human sperm motility in vitro. Methods: Semen samples, aseptically obtained by masturbation and prepared by swim-up technique from 20 fertile men, were incubated with different concenlrations of dbcAMP and forskolin at 37℃. Measurements were carried out after l0 min, 20 min, 30 min and 60 min incubation. Motility parameters were estimated by using an automatic analyzing system. Results: Treatment with dbcAMP or forskolin resulted in a significant increase in sperm motility and progressive motility. The larger the concenlrations of dbcAMP or forskolin,the greater the effect appeared. The straight linear velocity and curvilinear velocity were not affected by both agents.Conclusion: dbcAMP and forskolin increase the motility and progressive motility of human sperm in vitro. ( Asian J Androl 2003 Jun; 5: 113-115)

  16. Corticosteroid-Responsive Pulmonary Toxicity Associated with Fludarabine Monophosphate: A Case Report

    Directory of Open Access Journals (Sweden)

    Milda Rudzianskiene

    2012-12-01

    Full Text Available Fludarabine monophosphate is an effective drug for the treatment of lymphoid malignancies. Myelosuppression, opportunistic infections, and autoimmune hemolytic anemia are the most common side effects of fludarabine. Herein we report a 55-year-old female that presented with fever and dyspnea after completing her third cycle of FMD (fludarabine, mitoxantrone, and dexamethasone chemotherapy for stage IV non-Hodgkin follicular lymphoma. Chest X-ray revealed bilateral pneumofibrotic changes and chest CT showed bilateral diffuse interstitial changes with fibrotic alterations. No evidence of infectious agents was noted. The patient had a reduced carbon monoxide transfer factor (45%. Her symptoms and radiographic findings resolved following treatment with prednisolone. The literature contains several cases of fludarabine-associated interstitial pulmonary toxicity that responded to steroid therapy. Fludarabine-induced pulmonary toxicity is reversible with cessation of the drug and administration of glucocorticosteroids.

  17. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P. (TGRI); (Toronto)

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  18. Enhanced tumor necrosis factor suppression and cyclic adenosine monophosphate accumulation by combination of phosphodiesterase inhibitors and prostanoids

    NARCIS (Netherlands)

    Sinha, B; Semmler, J; Eisenhut, T; Eigler, A; Endres, S

    1995-01-01

    We investigated cooperative effects of phosphodiesterase (PDE) inhibitors and prostanoids on cyclic adenosine monophosphate (cAMP) accumulation and tumor necrosis factor (TNF)-alpha synthesis in human peripheral blood mononuclear cells (PBMC). PDE inhibitors alone induced only a small increase in cA

  19. Protective effect of oral terfenadine and not inhaled ipratropium on adenosine 5 '-monophosphate-induced bronchoconstriction in patients with COPD

    NARCIS (Netherlands)

    Rutgers, [No Value; Koeter, GH; Van der Mark, TW; Postma, DS

    1999-01-01

    Background Inhalation of adenosine 5'-monophosphate (AMP) causes bronchoconstriction in patients with asthma and in many patients with chronic obstructive pulmonary disease (COPD). In asthma, AMP-induced bronchoconstriction has been shown to be determined mainly by release of mast cell mediators, an

  20. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    Science.gov (United States)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  1. Gemcitabine-based therapy for pancreatic cancer using the squalenoyl nucleoside monophosphate nanoassemblies.

    Science.gov (United States)

    Maksimenko, Andrei; Caron, Joachim; Mougin, Julie; Desmaële, Didier; Couvreur, Patrick

    2015-03-30

    Gemcitabine is currently the most effective agent against advanced pancreatic cancer. However, the major therapeutic hurdles using gemcitabine include rapid inactivation by blood deaminases and fast development of cell chemoresistance, induced by down-regulation of deoxycytidine kinase or nucleoside transporters. To overcome the above drawbacks we designed recently a novel nanomedicine strategy based on squalenoyl prodrug of 5'-monophosphate gemcitabine (SQdFdC-MP). This amphiphilic conjugate self-organized in water into unilamellar vesicles with a mean diameter of 100 nm. In this study the antitumor efficacy of SQdFdC-MP nanoassemblies (NAs) on chemoresistant and chemosensitive pancreatic adenocarcinoma models have been investigated. Cell viability assays showed that SQdFdC-MP NAs displayed higher antiproliferative and cytotoxic effects, particularly in chemoresistant pancreatic tumor cells. In in vivo studies, SQdFdC-MP NAs decreased significantly the growth (∼70%) of human MiaPaCa2 xenografts, also preventing tumor cell invasion, whereas native dFdC did not display any anticancer activity when tumor growth inhibition was only 35% with SQdFdC NAs. These results correlated with a reduction of Ki-67 antigen and the induction of apoptosis mediated by caspase-3 activation in tumor cells. These findings demonstrated the feasibility of utilizing SQdFdC-MP NAs to make tumor cells more sensitive to gemcitabine and thus providing an efficient new therapeutic alternative for pancreatic adenocarcinoma.

  2. Turning an antiviral into an anticancer drug: nanoparticle delivery of acyclovir monophosphate.

    Science.gov (United States)

    Yao, Jing; Zhang, Yuan; Ramishetti, Srinivas; Wang, Yuhua; Huang, Leaf

    2013-09-28

    Anti-herpes simplex virus (HSV) drug acyclovir (ACV) is phosphorylated by the viral thymidine kinase (TK), but not the cellular TK. Phosphorylated ACV inhibits cellular DNA synthesis and kills the infected cells. We hypothesize that ACV monophosphate (ACVP), which is an activated metabolite of ACV, should be efficient in killing cells independent of HSV-TK. If so, ACVP should be a cytotoxic agent if properly delivered to the cancer cells. The Lipid/Calcium/Phosphate (LCP) nanoparticles (NPs) with a membrane/core structure were used to encapsulate ACVP to facilitate the targeted delivery of ACVP to the tumor. The LCP NPs showed entrapment efficiency of ~70%, the nano-scaled particle size and positive zeta potential. Moreover, ACVP-loaded LCP NPs (A-LCP NPs) exhibited concentration-dependent cytotoxicity against H460 cells and increased S-phase arrest. More importantly, a significant reduction of the tumor volume over 4 days following administration (pACV and ACVP) and blank LCP NPs showed little or no therapeutic effect. It was also found that the high efficacy of A-LCP NPs was associated with the ability to induce dramatic apoptosis of the tumor cells, as well as significantly inhibit tumor cell proliferation and cell cycle progression. In conclusion, with the help of LCP NPs, monophosphorylation modification of ACV can successfully modify an HSV-TK-dependent antiviral drug into an anti-tumor drug.

  3. Controlled supramolecular structure of guanosine monophosphate in the interlayer space of layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Gyeong-Hyeon Gwak

    2016-12-01

    Full Text Available Guanosine monophosphates (GMPs were intercalated into the interlayer space of layered double hydroxides (LDHs and the molecular arrangement of GMP was controlled in LDHs. The intercalation conditions such as GMP/LDH molar ratio and reaction temperature were systematically adjusted. When the GMP/LDH molar ratio was 1:2, which corresponds to the charge balance between positive LDH sheets and GMP anions, GMP molecules were well-intercalated to LDH. At high temperature (100 and 80 °C, a single GMP molecule existed separately in the LDH interlayer. On the other hand, at lower temperature (20, 40 and 60 °C, GMPs tended to form ribbon-type supramolecular assemblies. Differential scanning calorimetry showed that the ribbon-type GMP assembly had an intermolecular interaction energy of ≈101 kJ/mol, which corresponds to a double hydrogen bond between guanosine molecules. Once stabilized, the interlayer GMP orientations, single molecular and ribbon phase, were successfully converted to the other phase by adjusting the external environment by stoichiometry or temperature control.

  4. PHARMACOKINETIC AND PHARMACODYNAMIC ANALYSIS OF INOSINE MONOPHOSPHATE DEHYDROGENASE (IMPDH) ACTIVITY IN MMF-TREATED HCT RECIPIENTS

    Science.gov (United States)

    Li, Hong; Mager, Donald E.; Sandmaier, Brenda M.; Storer, Barry E.; Boeckh, Michael J.; Bemer, Meagan J.; Phillips, Brian R.; Risler, Linda J.; McCune, Jeannine S.

    2014-01-01

    A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplant (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNC) at five time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in the pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic/dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory Emax model with an IC50 = 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, non-relapse mortality, and overall mortality. In conclusion, a pharmacokinetic/dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker. PMID:24727337

  5. Triazole inhibitors of Cryptosporidium parvum inosine 5′-monophosphate dehydrogenase

    Science.gov (United States)

    Maurya, Sushil K.; Gollapalli, Deviprasad R.; Kirubakaran, Sivapriya; Zhang, Minjia; Johnson, Corey R.; Benjamin, Nicole N.; Hedstrom, Lizbeth; Cuny, Gregory D.

    2010-01-01

    Cryptosporidium parvum is an important human pathogen and potential bioterrorism agent. This protozoan parasite cannot salvage guanine or guanosine and therefore relies on inosine 5′-monophosphate dehydrogenase (IMPDH) for biosynthesis of guanine nucleotides and hence for survival. Since C. parvum IMPDH is highly divergent from the host counterpart, selective inhibitors could potentially be used to treat cryptosporidiosis with minimal effects on its mammalian host. A series of 1,2,3-triazole containing ether CpIMPDH inhibitors are described. A structure-activity relationship study revealed that a small alkyl group on the alpha-position of the ether was required with the (R)-enantiomer significantly more active than the (S)-enantiomer. Electron-withdrawing groups in the 3- and/or 4-positions of the pendent phenyl ring were best and conversion of the quinoline containing inhibitors to quinoline-N-oxides retained inhibitory activity both in the presence and absence of bovine serum albumin. The 1,2,3-triazole CpIMPDH inhibitors provide new tools for elucidating the role of IMPDH in C. parvum and may serve as potential therapeutics for treating cryptosporidiosis. PMID:19624136

  6. Recognition of nucleoside monophosphate substrates by Haemophilus influenzae class C acid phosphatase.

    Science.gov (United States)

    Singh, Harkewal; Schuermann, Jonathan P; Reilly, Thomas J; Calcutt, Michael J; Tanner, John J

    2010-12-10

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD(+) utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5',3'-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5'-AMP, 3'-AMP, and 2'-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5'-nucleotides and 3'-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5' substrates in an anti conformation and 3' substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  7. [Involvement of cyclic adenosine monophosphate in the control of motile behavior of Physarum polycephalum plasmodium].

    Science.gov (United States)

    Matveeva, N B; Teplov, V A; Nezvetskiĭ, A R; Orlova, T G; Beĭlina, S I

    2012-01-01

    Possible involvement of autocrine factors into the control of motile behavior via a receptor-mediated mechanism was investigated in Physarum polycephalum plasmodium, a multinuclear amoeboid cell with the auto-oscillatory mode of motility. Cyclic adenosine monophosphate (cAMP) and extracellular cAMP-specific phosphodiesterase, its involvement into the control of plasmodium motile behavior was proved by action of its strong inhibitor, were regarded as putative autocrine factors. It was shown that the plasmodium secreted cAMP. When it was introduced into agar support, 0,1-1 mM cAMP induced a delay of the plasmodium spreading and its transition to migration. When locally applied, cAMP at the same concentrations induced typical for attractant action the increase in oscillation frequency and the decrease of ectoplasm elasticity. The ability to exhibit positive chemotaxis in cAMP gradient and the dependence of its realization were shown to depend on the plasmodium state. Chemotaxis test specimens obtained from the migrating plasmodium, unlike those obtained from growing culture, generate alternative fronts which compete effectively with fronts oriented towards the attractant increment. The results obtained support our supposition stated earlier that advance of the Physarum polycephalum plasmodium leading edge is determined by local extracellular cAMP gradients arising from a time delay between secretion and hydrolysis of the nucleotide.

  8. Ion-exclusion chromatography determination of organic acid in uridine 5'-monophosphate fermentation broth.

    Science.gov (United States)

    Niu, Huanqing; Chen, Yong; Xie, Jingjing; Chen, Xiaochun; Bai, Jianxin; Wu, Jinglan; Liu, Dong; Ying, Hanjie

    2012-09-01

    Simultaneous determination of organic acids using ion-exclusion liquid chromatography and ultraviolet detection is described. The chromatographic conditions are optimized when an Aminex HPX-87H column (300 × 7.8 mm) is employed, with a solution of 3 mmol/L sulfuric acid as eluent, a flow rate of 0.4 mL/min and a column temperature of 60°C. Eight organic acids (including orotic acid, α-ketoglutaric acid, citric acid, pyruvic acid, malic acid, succinic acid, lactic acid and acetic acid) and one nucleotide are successfully quantified. The calibration curves for these analytes are linear, with correlation coefficients exceeding 0.999. The average recovery of organic acids is in the range of 97.6% ∼ 103.1%, and the relative standard deviation is in the range of 0.037% ∼ 0.38%. The method is subsequently applied to obtain organic acid profiles of uridine 5'-monophosphate culture broth fermented from orotic acid by Saccharomyces cerevisiae. These data demonstrate the quantitative accuracy for nucleotide fermentation mixtures, and suggest that the method may also be applicable to other biological samples.

  9. The clinical correlation of regulatory T cells and cyclic adenosine monophosphate in enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Shih-Min Wang

    Full Text Available Brainstem encephalitis (BE and pulmonary edema (PE are notable complications of enterovirus 71 (EV71 infection.This study investigated the immunoregulatory characterizations of EV71 neurological complications by disease severity and milrinone treatment.Patients <18 years with virologically confirmed EV71 infections were enrolled and divided into 2 groups: the hand, foot, and mouth disease (HFMD or BE group, and the autonomic nervous system (ANS dysregulation or PE group. Cytokine and cyclic adenosine monophosphate (cAMP levels, and the regulatory T cell (Tregs profiles of the patients were determined.Patients with ANS dysregulation or PE exhibited significantly low frequency of CD4(+CD25(+Foxp3+ and CD4(+Foxp3(+ T cells compared with patients with HFMD or BE. The expression frequency of CD4-CD8- was also significantly decreased in patients with ANS dysregulation or PE. Among patients with ANS dysregulation or PE, the expression frequency of CD4+Foxp3+ increased markedly after milrinone treatment, and was associated with reduction of plasma levels IL-6, IL-8 and IL-10. Plasma concentrations of cAMP were significantly decreased in patients with ANS dysregulation or PE compared with patients with HFMD or BE; however, cAMP levels increased after milrinone treatment.These findings suggested decreased different regulatory T populations and cAMP expression correlate with increased EV71 disease severity. Improved outcome after milrinone treatment may associate with increased regulatory T populations, cAMP expression and modulation of cytokines levels.

  10. Lymphocyte beta 2-adrenoceptors and adenosine 3':5'-cyclic monophosphate during and after normal pregnancy.

    Science.gov (United States)

    von Mandach, U.; Gubler, H. P.; Engel, G.; Huch, R.; Huch, A.

    1993-01-01

    1. The beta 2-sympathomimetics, used to inhibit preterm labour, bind predominantly to beta 2-adrenoceptors, activating adenylate cyclase to form adenosine 3':5'-cyclic monophosphate (cyclic AMP), a messenger substance which inhibits the enzyme cascade triggering smooth muscle contraction. beta 2-Adrenoceptor density and cyclic AMP formation can be used as markers of beta 2-adrenergic effect. 2. The present study addresses the influence of pregnancy on the beta-adrenoceptor system. beta 2-Adrenoceptor density and cyclic AMP concentrations (basal and evoked by isoprenaline) in circulating lymphocytes were determined at three points in gestation (16, 29 and 37 weeks) and 9 weeks post partum in 22 normal pregnancies. (-)-[125Iodo]-cyanopindolol was used as the ligand to identify a homogeneous population of beta 2-adrenoceptors on lymphocytes. B- and T-cell fractions were estimated from the same samples. 3. beta 2-Adrenoceptor density decreased significantly during gestation until week 37 (P < 0.01), then increased post partum (P < 0.005). Cyclic AMP concentrations (basal and evoked by isoprenaline) were significantly lower after 16 weeks of gestation than post partum (P < 0.05). 4. The results, which cannot be explained in terms of a shift in the lymphocyte (B- and T-cell) ratio, indicate that beta-adrenoceptor density and function are reduced in normal pregnancy and only return to normal post partum. These findings may be of significance in devising future tocolytic therapy with beta 2-adrenoceptor agonists. PMID:8383562

  11. Lymphocyte beta 2-adrenoceptors and adenosine 3':5'-cyclic monophosphate during and after normal pregnancy.

    Science.gov (United States)

    von Mandach, U; Gubler, H P; Engel, G; Huch, R; Huch, A

    1993-02-01

    1. The beta 2-sympathomimetics, used to inhibit preterm labour, bind predominantly to beta 2-adrenoceptors, activating adenylate cyclase to form adenosine 3':5'-cyclic monophosphate (cyclic AMP), a messenger substance which inhibits the enzyme cascade triggering smooth muscle contraction. beta 2-Adrenoceptor density and cyclic AMP formation can be used as markers of beta 2-adrenergic effect. 2. The present study addresses the influence of pregnancy on the beta-adrenoceptor system. beta 2-Adrenoceptor density and cyclic AMP concentrations (basal and evoked by isoprenaline) in circulating lymphocytes were determined at three points in gestation (16, 29 and 37 weeks) and 9 weeks post partum in 22 normal pregnancies. (-)-[125Iodo]-cyanopindolol was used as the ligand to identify a homogeneous population of beta 2-adrenoceptors on lymphocytes. B- and T-cell fractions were estimated from the same samples. 3. beta 2-Adrenoceptor density decreased significantly during gestation until week 37 (P < 0.01), then increased post partum (P < 0.005). Cyclic AMP concentrations (basal and evoked by isoprenaline) were significantly lower after 16 weeks of gestation than post partum (P < 0.05). 4. The results, which cannot be explained in terms of a shift in the lymphocyte (B- and T-cell) ratio, indicate that beta-adrenoceptor density and function are reduced in normal pregnancy and only return to normal post partum. These findings may be of significance in devising future tocolytic therapy with beta 2-adrenoceptor agonists.

  12. Kinetic mechanism and energetics of binding of phosphoryl group acceptors to Mycobacterium tuberculosis cytidine monophosphate kinase.

    Science.gov (United States)

    Jaskulski, Léia; Rosado, Leonardo A; Rostirolla, Diana C; Timmers, Luis F S M; de Souza, Osmar N; Santos, Diogenes S; Basso, Luiz A

    2013-08-01

    Cytidine monophosphate kinase from Mycobacterium tuberculosis (MtCMK) likely plays a role in supplying precursors for nucleic acid synthesis. MtCMK catalyzes the ATP-dependent phosphoryl group transfer preferentially to CMP and dCMP. Initial velocity studies and Isothermal titration calorimetry (ITC) measurements showed that MtCMK follows a random-order mechanism of substrate (CMP and ATP) binding, and an ordered mechanism for product release, in which ADP is released first followed by CDP. The thermodynamic signatures of CMP and CDP binding to MtCMK showed favorable enthalpy and unfavorable entropy, and ATP binding was characterized by favorable changes in enthalpy and entropy. The contribution of linked protonation events to the energetics of MtCMK:phosphoryl group acceptor binary complex formation suggested a net gain of protons. Values for the pKa of a likely chemical group involved in proton exchange and for the intrinsic binding enthalpy were calculated. The Asp187 side chain of MtCMK is suggested as the likely candidate for the protonation event. Data on thermodynamics of binary complex formation were collected to evaluate the contribution of 2'-OH group to intermolecular interactions. The data are discussed in light of functional and structural comparisons between CMP/dCMP kinases and UMP/CMP ones.

  13. Structure-Based Design, Synthesis, Evaluation And Crystal Structures of Transition State Analogue Inhibitors of Inosine Monophosphate Cyclohydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.; Chong, Y.; Hwang, I.; D' Onofrio, A.; Amore, K.; Beardsley, G.P.; Li, C.; Olson, A.J.; Boger, D.L.; Wilson, I.A.; /Skaggs Inst. Chem. Biol. /Scripps Res. Inst.

    2007-07-13

    The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.

  14. Predictive value of adenosine 5'-monophosphate challenge in preschool children for the diagnosis of asthma 5 years later.

    Science.gov (United States)

    Cohen, Shlomo; Avital, Avraham; Hevroni, Avigdor; Avenshtein, Alina; Hadi, Ronen; Springer, Chaim

    2012-07-01

    We evaluated the predictive values of preschool bronchial challenge with nebulized adenosine 5'-monophosphate (AMP) using the auscultation method for having asthma 5 years later. Preschool AMP challenge had a high negative (90%) and a moderate positive (67%) predictive value for asthma 5 years later. Positive predictive value increased with the age at which the challenge was performed. The degree of preschool response to AMP was associated with the severity of asthma at school age.

  15. Effect of Sodium-Potassium Pump Inhibitors and Membrane-Depolarizing Agents on Sodium Nitroprusside-Induced Relaxation and Cyclic Guanosine Monophosphate Accumulation in Rat Aorta

    National Research Council Canada - National Science Library

    Rapoport, Robert M; Schwartz, Karen; Murad, Ferid

    1985-01-01

    ... or tetraethylammonium, membrane-depolarizing agents, inhibited relaxation to nitroprusside. These conditions had little or no effect on the elevated cyclic guanosine monophosphate levels at a concentration of nitroprusside (0.1 μM...

  16. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  17. Association between plasma cyclic guanosine monophosphate levels and hemodynamic instability during liver transplantation.

    Science.gov (United States)

    Bezinover, Dmitri; Kadry, Zakiyah; Uemura, Tadahiro; Sharghi, Michael; Mastro, Andrea M; Sosnoski, Donna M; Dalal, Priti; Janicki, Piotr K

    2013-02-01

    The activation of cyclic guanosine monophosphate (cGMP) production in patients with end-stage liver disease (ESLD) has been associated with hemodynamic instability during orthotopic liver transplantation (OLT). The aim of this prospective, observational study was to investigate the involvement of cGMP in the mediation of profound hypotension during liver graft reperfusion. An additional objective was to determine whether preoperative cGMP levels are associated with intraoperative hemodynamic instability. Forty-four consecutive patients undergoing OLT were included in the study. Blood samples for cGMP analysis were obtained from (1) the radial artery before the surgical incision; (2) the radial artery, portal vein, and flush blood during the anhepatic phase; and (3) the radial artery 20 minutes after liver graft reperfusion. On the basis of a statistical analysis, the patients were divided into 2 groups: group 1 (preoperative cGMP level ≥ 0.05 μmol/L) and group 2 (preoperative cGMP level < 0.05 μmol/L). We demonstrated a significant correlation between the preoperative levels of cGMP and the amount of catecholamine required to maintain hemodynamic stability during reperfusion (r = 0.52, P < 0.001), the length of the hospital stay (r = 0.38, P = 0.01), and the length of the intensive care unit (ICU) stay (r = 0.44, P = 0.004). We also demonstrated a significantly higher intraoperative catecholamine requirement (P < 0.001) and a prolonged postoperative ICU stay (P = 0.02) in group 1 patients versus group 2 patients. In conclusion, this study demonstrates increased baseline cGMP production in patients with ESLD, which is significantly associated with severe hypotension during OLT. We suggest that preoperative levels of cGMP correlate with hemodynamic instability during liver graft reperfusion. Copyright © 2012 American Association for the Study of Liver Diseases.

  18. Characterization of inosine monophosphate dehydrogenase from Staphylococcus aureus ATCC12600 and its involvement in biofilm formation

    Directory of Open Access Journals (Sweden)

    S. Yeswanth

    2013-10-01

    Full Text Available Background: In Staphylococcus aureus purine metabolism plays a crucial role in the formation of biofilm which is a key pathogenic factor. The present study is aimed in the characterization of inosine monophosphate dehydrogenase (IMPDH from Staphylococcus aureus ATCC 12600. Methods: IMPDH gene was amplified using primers designed from IMPDH gene sequence of S. aureus reported in the database. Then polymerase chain reaction (PCR product was cloned in the Sma I site of M13mp18 and expressed in Escherichia coli JM109. The recombinant IMPDH (rIMPDH was overexpressed with 1 mM isopropyl beta-D-1- thiogalactopyranoside (IPTG; Michaelis constant (Km, maximum enzyme velocity (Vmax and catalytic constant (Kcat of expressed IMPDH were determined. Results: The enzyme kinetics of IMPDH grown under aerobic conditions showed a Km of 43.71±1.56 µM, Vmax of 0.247±0.84/µM/mg/min and Kcat of 2.74±0.015/min while in anaerobic conditions the kinetics showed Km of 42.81±3.154/ µM, Vmax of 0.378±0.036 µM/mg/min and Kcat of 4.78±0.021 /min, indicating elevated levels of IMPDH activity under anaerobic conditions. Three-folds increased activity in the presence of 1 mM adenosine triphosphate (ATP correlated with biofilm formation. The kinetics of pure rIMPDH were close to the native IMPDH of S. aureus ATCC12600 and the enzyme showed single band in sodium dodecyl sulphate polyacrylamide gel electrophoresis with a molecular weight of 53 KDa. Conclusions: Elevated activity of IMPDH was observed in S. aureus grown under anaerobic conditions and this was correlated with the biofilm formation indicating the linkage between purine metabolism and pathogenesis.

  19. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J. (Cornell); (UMC)

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  20. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle

    Science.gov (United States)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.

    1992-01-01

    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  1. Optimization of benzoxazole-based inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.

    Science.gov (United States)

    Gorla, Suresh Kumar; Kavitha, Mandapati; Zhang, Minjia; Chin, James En Wai; Liu, Xiaoping; Striepen, Boris; Makowska-Grzyska, Magdalena; Kim, Youngchang; Joachimiak, Andrzej; Hedstrom, Lizbeth; Cuny, Gregory D

    2013-05-23

    Cryptosporidium parvum is an enteric protozoan parasite that has emerged as a major cause of diarrhea, malnutrition, and gastroenteritis and poses a potential bioterrorism threat. C. parvum synthesizes guanine nucleotides from host adenosine in a streamlined pathway that relies on inosine 5'-monophosphate dehydrogenase (IMPDH). We have previously identified several parasite-selective C. parvum IMPDH (CpIMPDH) inhibitors by high-throughput screening. In this paper, we report the structure-activity relationship (SAR) for a series of benzoxazole derivatives with many compounds demonstrating CpIMPDH IC50 values in the nanomolar range and >500-fold selectivity over human IMPDH (hIMPDH). Unlike previously reported CpIMPDH inhibitors, these compounds are competitive inhibitors versus NAD(+). The SAR study reveals that pyridine and other small heteroaromatic substituents are required at the 2-position of the benzoxazole for potent inhibitory activity. In addition, several other SAR conclusions are highlighted with regard to the benzoxazole and the amide portion of the inhibitor, including preferred stereochemistry. An X-ray crystal structure of a representative E·IMP·inhibitor complex is also presented. Overall, the secondary amine derivative 15a demonstrated excellent CpIMPDH inhibitory activity (IC50 = 0.5 ± 0.1 nM) and moderate stability (t1/2 = 44 min) in mouse liver microsomes. Compound 73, the racemic version of 15a, also displayed superb antiparasitic activity in a Toxoplasma gondii strain that relies on CpIMPDH (EC50 = 20 ± 20 nM), and selectivity versus a wild-type T. gondii strain (200-fold). No toxicity was observed (LD50 > 50 μM) against a panel of four mammalian cells lines.

  2. Changes of nitric oxide synthase and cyclic guanosine monophosphate in form deprivation myopia in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    WU Jie; LIU Qiong; YANG Xiao; YANG Hui; WANG Xin-mei; ZENG Jun-wen

    2007-01-01

    Background The form deprivation(FD)reduces spatial contrasts and induces myopia. Nitric oxide and cyclic guanosine monophosphate(cGMP)are involved in visual signal transmission.This study investigated changes in nitric oxide synthase(NOS)activity and cGMP concentration in ocular tissues in acute and chronic form deprivation myopia.Methods Guinea pigs had one eye covered by translucent glass for 7,14 or 21 days.Untreated litter mates were used as controls.NOS activity and cGMP concentrations in the retinal,choroidal and scleral tissues of FD eyes and controleyes were analyzed by radioimmunoassay after various durations of FD.The expression of NOS subtypes was identified by immunohistochemistry.Results Myopia was successfully induced in FD eyes after 14 days.Compared with control groups,the retinal NOS activity and cGMP concentrations in the FD eyes significantly increased after 14 and 21 days while the retinal NOS activity in the FD eyes was transiently suppressed by 7 days of FD.The NOS activity and cGMP concentrations of choroid and sclera in the FD eyes were higher than in the control groups at 21 days.The three isoenzymes of nitric oxide synthase were detected in the ocular tissues of guinea pigs.Conclusions The NOS activity and cGMP concentrations were upregulated after chronic FD and the retinal NOS activity was transiently suppressed at acute FD.The function of elevated NOS activity may be mediated by cGMP.

  3. Perfluorooctyl Iodide Stimulates Steroidogenesis in H295R Cells via a Cyclic Adenosine Monophosphate Signaling Pathway.

    Science.gov (United States)

    Wang, Chang; Ruan, Ting; Liu, Jiyan; He, Bin; Zhou, Qunfang; Jiang, Guibin

    2015-05-18

    Perfluorinated iodine alkanes (PFIs) are used widely in the organic fluorine industry. Increased production of PFIs has caused environmental health concerns. To evaluate the potential endocrine-disrupting effect of PFIs, we investigated the effects of perfluorooctyl iodide (PFOI) on steroidogenesis in human adrenocortical carcinoma cells (H295R). Levels of aldosterone, cortisol, 17β-estradiol, and testosterone were measured in H295R culture medium upon treatment with perfluorooctanoic acid (PFOA) and PFIs. Expression of 10 steroidogenic genes (StAR, HMGR, CYP11A1, 3βHSD2, 17βHSD, CYP17, CYP21, CYP11B1, CYP11B2, and CYP19) was measured by real-time polymerase chain reaction. Levels of cyclic adenosine monophosphate (cAMP) and adenylate cyclase (AC) activity were measured to understand the underlying mechanism of steroidogenic perturbations. Levels of production of aldosterone, cortisol, and 17β-estradiol were elevated significantly, and the level of testosterone generation decreased upon treatment with 100 μM PFOI. Similar to the effect induced by forskolin (AC activator), expression of all 10 genes involved in the synthesis of steroid hormones was upregulated significantly upon exposure to 100 μM PFOI. PFOA had no effect on steroid hormone production or steroidogenic gene expression even though it is highly structurally similar with PFOI. Therefore, the terminal -CF2I group in PFOI could be a critical factor for mediation of steroidogenesis. PFOI increased AC activity and cAMP levels in H295R cells, which implied an underlying mechanism for the disturbance of steroidogenesis. These data suggest that PFOI may act as an AC activator, thereby stimulating steroidogenesis by activating a cAMP signaling pathway.

  4. Measuring the dynamics of cyclic adenosine monophosphate level in living cells induced by low-level laser irradiation using bioluminescence resonance energy transfer

    Science.gov (United States)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen; Zeng, Haishan

    2015-05-01

    Several studies demonstrated that the cyclic adenosine monophosphate (cAMP), an important second messenger, is involved in the mechanism of low-level laser irradiation (LLLI) treatment. However, most of these studies obtained the cAMP level in cell culture extracts or supernatant. In this study, the cAMP level in living cells was measured with bioluminescence resonance energy transfer (BRET). The effect of LLLI on cAMP level in living cells with adenosine receptors blocked was explored to identify the role of adenosine receptors in LLLI. The results showed that LLLI increased the cAMP level. Moreover, the rise of cAMP level was light dose dependent but wavelength independent for 658-, 785-, and 830-nm laser light. The results also exhibited that the adenosine receptors, a class of G protein-coupled receptor (GPCR), modulated the increase of cAMP level induced by LLLI. The cAMP level increased more significantly when the A3 adenosine receptors (A3R) were blocked by A3R antagonist compared with A1 adenosine receptor or A2a adenosine receptor blocked in HEK293T cells after LLLI, which was in good agreement with the adenosine receptors' expressions. All these results suggested that measuring the cAMP level with BRET could be a useful technique to study the role of GPCRs in living cells under LLLI.

  5. Modification of Tau by 8-Nitroguanosine 3',5'-Cyclic Monophosphate (8-Nitro-cGMP): EFFECTS OF NITRIC OXIDE-LINKED CHEMICAL MODIFICATION ON TAU AGGREGATION.

    Science.gov (United States)

    Yoshitake, Jun; Soeda, Yoshiyuki; Ida, Tomoaki; Sumioka, Akio; Yoshikawa, Misato; Matsushita, Kenji; Akaike, Takaaki; Takashima, Akihiko

    2016-10-21

    Neurofibrillar tangles caused by intracellular hyperphosphorylated tau inclusion and extracellular amyloid β peptide deposition are hallmarks of Alzheimer's disease. Tau contains one or two cysteine residues in three or four repeats of the microtubule binding region following alternative splicing of exon 10, and formation of intermolecular cysteine disulfide bonds accelerates tau aggregation. 8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) acts as a novel second messenger of nitric oxide (NO) by covalently binding cGMP to cysteine residues by electrophilic properties, a process termed protein S-guanylation. Here we studied S-guanylation of tau and its effects on tau aggregation. 8-Nitro-cGMP exposure induced S-guanylation of tau both in vitro and in tau-overexpressed HEK293T cells. S-guanylated tau inhibited heparin-induced tau aggregation in a thioflavin T assay. Atomic force microscopy observations indicated that S-guanylated tau could not form tau granules and fibrils. Further biochemical analyses showed that S-guanylated tau was inhibited at the step of tau oligomer formation. In P301L tau-expressing Neuro2A cells, 8-nitro-cGMP treatment significantly reduced the amount of sarcosyl-insoluble tau. NO-linked chemical modification on cysteine residues of tau could block tau aggregation, and therefore, increasing 8-nitro-cGMP levels in the brain could become a potential therapeutic strategy for Alzheimer's disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Association study of three single-nucleotide polymorphisms in the cyclic adenosine monophosphate response element binding 1 gene and major depressive disorder.

    Science.gov (United States)

    Wei, Yange; Bu, Shufang; Liu, Xican; Li, Hengfen

    2015-06-01

    Major depressive disorder is a common chronic emotional disorder, and cyclic adenosine monophosphate response element binding protein 1 (CREB1) is hypothesized to play a role in its pathogenesis. The aim of the present study was to investigate the associations between major depressive disorder and relevant single nucleotide polymorphisms (SNPs) in the CREB1 gene. A total of 1,038 subjects of Han Chinese descent were recruited, including 456 patients with major depressive disorder (case group) and 582 healthy volunteers (control group). The frequency distributions of the genotypes and alleles were estimated in the case and control groups, and analyzed for any correlation with major depressive disorder. Three relevant SNP sites in CREB1 were analyzed using quantitative polymerase chain reaction, and statistical analyses were performed to estimate their use as risk factors for major depressive disorder. The analyses revealed that rs2254137 and rs16839883 in CREB1 showed polymorphisms in the sample population, and the genotype and allele frequencies of rs16839883 differed significantly when comparing the patients and healthy controls (P0.05). Furthermore, no statistically significant differences were detected in rs2254137 genotype and allele distribution when comparing the male and female patients with their corresponding control groups (P>0.05). However, statistically significant differences were observed in the genotype and allele frequencies of rs16839883 when the male and female patients were compared with their respective controls (Pmajor depressive disorder, which suggests that this SNP site should be further studied as a potential biomarker for major depressive disorder.

  7. 5′-Adenosine Monophosphate-Induced Hypothermia Attenuates Brain Ischemia/Reperfusion Injury in a Rat Model by Inhibiting the Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Yi-Feng Miao

    2015-01-01

    Full Text Available Hypothermia treatment is a promising therapeutic strategy for brain injury. We previously demonstrated that 5′-adenosine monophosphate (5′-AMP, a ribonucleic acid nucleotide, produces reversible deep hypothermia in rats when the ambient temperature is appropriately controlled. Thus, we hypothesized that 5′-AMP-induced hypothermia (AIH may attenuate brain ischemia/reperfusion injury. Transient cerebral ischemia was induced by using the middle cerebral artery occlusion (MCAO model in rats. Rats that underwent AIH treatment exhibited a significant reduction in neutrophil elastase infiltration into neuronal cells and matrix metalloproteinase 9 (MMP-9, interleukin-1 receptor (IL-1R, tumor necrosis factor receptor (TNFR, and Toll-like receptor (TLR protein expression in the infarcted area compared to euthermic controls. AIH treatment also decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling- (TUNEL- positive neuronal cells. The overall infarct volume was significantly smaller in AIH-treated rats, and neurological function was improved. By contrast, rats with ischemic brain injury that were administered 5′-AMP without inducing hypothermia had ischemia/reperfusion injuries similar to those in euthermic controls. Thus, the neuroprotective effects of AIH were primarily related to hypothermia.

  8. The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets.

    Science.gov (United States)

    Masiello, P; Novelli, M; Bombara, M; Fierabracci, V; Vittorini, S; Prentki, M; Bergamini, E

    2002-01-01

    This study intended to test the hypothesis that intracellular lipolysis in the pancreatic beta cells is implicated in the regulation of insulin secretion stimulated by nutrient secretagogues or cyclic adenosine monophosphate (cAMP) agonists. Indeed, although lipid signaling molecules were repeatedly reported to influence beta-cell function, the contribution of intracellular triglycerides to the generation of these molecules has remained elusive. Thus, we have studied insulin secretion of isolated rat pancreatic islets in response to various secretagogues in the presence or absence of 3,5-dimethylpyrazole (DMP), a water-soluble and highly effective antilipolytic agent, as previously shown in vivo. In vitro exposure of islets to DMP resulted in an inhibition (by approximately 50%) of the insulin release stimulated not only by high glucose, but also by another nutrient secretagogue, 2-ketoisocaproate, as well as the cAMP agonists 3-isobutyl-1-methylxanthine and glucagon. The inhibitory effect of DMP, which was not due to alteration of islet glucose oxidation, could be reversed upon addition of sn-1,2-dioctanoylglycerol, a synthetic diglyceride, which activates protein kinase C. The results provide direct pharmacologic evidence supporting the concept that endogenous beta-cell lipolysis plays an important role in the generation of lipid signaling molecules involved in the control of insulin secretion in response to both fuel stimuli and cAMP agonists.

  9. Elevated nitric oxide and 3',5' cyclic guanosine monophosphate levels in patients with alcoholic cirrhosis

    Institute of Scientific and Technical Information of China (English)

    C(i)ntia Siqueira; Miguel Carneiro de Moura; Ana J(u)lia Pedro; Paula Rocha

    2008-01-01

    AIM: To evaluate whether serum levels of nitric oxide (NO') and plasma levels of cyclic guanosine monophosphate (Cgmp) and total glutathione (GSH) are altered in patients with alcoholic cirrhosis and to examine their correlation with the severity of liver disease.METHODS: Twenty-six patients with alcoholic liver cirrhosis were studied. Serum levels of NO· and plasma levels of cGMP and GSH were measured in 7 patients with compensated alcoholic cirrhosis (Child-Pugh A) and 19 patients with advanced cirrhosis (Child-Pugh B and C).The model for end-stage liver disease (MELD) score was evaluated. Sixteen healthy volunteers served as controls.Liver enzymes and creatinine levels were also tested.RESULTS: NO· and cGMP levels were higher in patients with Child-Pugh B and C cirrhosis than in Child-Pugh A cirrhosis or controls (NO·: 21.70 ± 8.07 vs 11.70 ± 2.74; 21.70 ± 8.07 vs 7.26 ± 2.47 μmol/L, respectively;P < 0.001) and (cGMP: 20.12 ± 6.62 vs 10.14 ± 2.78;20.12 ± 6.62 vs 4.95 ± 1.21 pmol/L, respectively; P <0.001). Total glutathione levels were lower in patients with Child-Pugh B and C cirrhosis than in patients with Child-Pugh A cirrhosis or controls (16.04 ± 6.06 vs 23.01 ± 4.38 or 16.04 ± 6.06 vs 66.57 ± 26.23 μmol/L,respectively; P < 0.001). There was a significant correlation between NO· and cGMP levels in all patients with alcoholic cirrhosis. A significant negative correlation between reduced glutathione/glutathione disulfide and the MELD score was found in all cirrhotic patients. CONCLUSION: Our results suggest a role for oxidative stress in alcoholic liver cirrhosis, which is more significant in decompensated patients with higher levels of NO· and cGMP and lower GSH levels than in compensated and control patients. Altered mediator levels in decompensated patients may influence the hemodynamic changes in and progression of liver disease.

  10. Hypothermia induced by adenosine 5'-monophosphate attenuates early stage injury in an acute gouty arthritis rat model.

    Science.gov (United States)

    Miao, Zhimin; Guo, Weiting; Lu, Shulai; Lv, Wenshan; Li, Changgui; Wang, Yangang; Zhao, Shihua; Yan, Shengli; Tao, Zhenyin; Wang, Yunlong

    2013-08-01

    To investigate whether the hypothermia induced by Adenosine 5'-Monophosphate (5'-AMP) could attenuate early stage injury in a rat acute gouty arthritis model. Ankle joint injection with monosodium urate monohydrate crystals (MSU crystals) in hypothermia rat model which was induced by 5'-AMP and then observe whether hypothermia induced by 5'-AMP could be effectively inhibit the inflammation on acute gouty arthritis in rats. AMP-induced hypothermia has protective effects on our acute gouty arthritis, which was demonstrated by the following criteria: (1) a significant reduction in the ankle swelling (p gouty arthritis model.

  11. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum.

    Science.gov (United States)

    Hou, Rui; Jiang, Cong; Zheng, Qian; Wang, Chenfang; Xu, Jin-Rong

    2015-12-01

    Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium graminearum, is harmful to humans and animals. Because different nitrogen sources are known to have opposite effects on DON production, in this study, we characterized the regulatory mechanisms of the AREA transcription factor in trichothecene biosynthesis. The ΔareA mutant showed significantly reduced vegetative growth and DON production in cultures inoculated with hyphae. Suppression of TRI gene expression and DON production by ammonium were diminished in the ΔareA mutant. The deletion of AREA also affected the stimulatory effects of arginine on DON biosynthesis. The AreA-green fluorescent protein (GFP) fusion complemented the ΔareA mutant, and its localization to the nucleus was enhanced under nitrogen starvation conditions. Site-directed mutagenesis showed that the conserved predicted protein kinase A (PKA) phosphorylation site S874 was important for AreA function, indicating that AreA may be a downstream target of the cyclic adenosine monophosphate (cAMP)-PKA pathway, which is known to regulate DON production. We also showed that AreA interacted with Tri10 in co-immunoprecipitation assays. The interaction of AreA with Tri10 is probably related to its role in the regulation of TRI gene expression. Interestingly, the ΔareA mutant showed significantly reduced PKA activity and expression of all three predicted ammonium permease (MEP) genes, in particular MEP1, under low ammonium conditions. Taken together, our results show that AREA is involved in the regulation of DON production by ammonium suppression and the cAMP-PKA pathway. The AreA transcription factor may interact with Tri10 and control the expression and up-regulation of MEP genes.

  12. Association of Phosphatidylinositol Kinase, Phosphatidylinositol Monophosphate Kinase, and Diacylglycerol Kinase with the Cytoskeleton and F-Actin Fractions of Carrot (Daucus carota L.) Cells Grown in Suspension Culture : Response to Cell Wall-Degrading Enzymes.

    Science.gov (United States)

    Tan, Z; Boss, W F

    1992-12-01

    Phosphatidylinositol kinase (PI), phosphatidylinositol monophosphate (PIP) kinase, and diacylglycerol (DAG) kinase activities were detected in the cytoskeletal fraction isolated from microsomes and plasma membranes of carrot (Daucus carota L.) cells grown in suspension culture. The lipid kinase activities were associated with the actin filament fraction (F-actin fraction) isolated from the cytoskeleton. The PI and PIP kinase activity in the F-actin fraction significantly increased after cells were treated with Driselase, a mixture of cell wall-degrading enzymes; however, the DAG kinase activity in the F-actin fraction was unaffected by the Driselase treatment. These data indicate that at least one form of PI, PIP, and DAG kinase preferentially associates with actin filaments and/or actin binding proteins and that cytoskeletal-associated PI and PIP kinase activities can change in response to external stimulation.

  13. Association of Phosphatidylinositol Kinase, Phosphatidylinositol Monophosphate Kinase, and Diacylglycerol Kinase with the Cytoskeleton and F-Actin Fractions of Carrot (Daucus carota L.) Cells Grown in Suspension Culture 1

    Science.gov (United States)

    Tan, Zheng; Boss, Wendy F.

    1992-01-01

    Phosphatidylinositol kinase (PI), phosphatidylinositol monophosphate (PIP) kinase, and diacylglycerol (DAG) kinase activities were detected in the cytoskeletal fraction isolated from microsomes and plasma membranes of carrot (Daucus carota L.) cells grown in suspension culture. The lipid kinase activities were associated with the actin filament fraction (F-actin fraction) isolated from the cytoskeleton. The PI and PIP kinase activity in the F-actin fraction significantly increased after cells were treated with Driselase, a mixture of cell wall-degrading enzymes; however, the DAG kinase activity in the F-actin fraction was unaffected by the Driselase treatment. These data indicate that at least one form of PI, PIP, and DAG kinase preferentially associates with actin filaments and/or actin binding proteins and that cytoskeletal-associated PI and PIP kinase activities can change in response to external stimulation. Images Figure 2 PMID:16653250

  14. A study of the hydration of deoxydinucleoside monophosphates containing thymine, uracil and its 5-halogen derivatives: Monte Carlo simulation.

    Science.gov (United States)

    Alderfer, J L; Danilov, V I; Poltev, V I; Slyusarchuk, O N

    1999-04-01

    An extensive Monte Carlo simulation of hydration of various conformations of the dinucleoside monophosphates (DNP), containing thymine, uracil and its 5-halogen derivatives has been performed. An anti-anti conformation is the most energetically stable one for each of the DNPs. In the majority of cases the energy preference is determined by water-water interaction. For other dimers conformational energy is the most important factor, or both the factors are of nearly equal importance. The introduction of the methyl group into the 5-position of uracil ring most noticeably influences the conformational energy and leads to the decrease of its stabilizing contribution to the total interaction energy. The introduction of halogen atoms increases the relative content of anti-syn and syn-anti conformations of DNPs as compared to the parent ones due to the formation of an energetically more favorable water structure around these conformations. A correlation is observed between the Monte Carlo results for the halogenated DNPs and their experimental photoproduct distribution. The data obtained demonstrates a sequence dependence in the photochemistry of the halogenated dinucleoside monophosphates.

  15. A novel procedure for purification of uridine 5'-monophosphate based on adsorption methodology using a hyper-cross-linked resin.

    Science.gov (United States)

    Wu, Jinglan; Zhu, Hui; Liu, Yanan; Zhou, Jingwei; Zhuang, Wei; Jiao, Pengfei; Ke, Xu; Ying, Hanjie

    2015-05-01

    The conventional ion exchange process used for recovery of uridine 5'-monophosphate (UMP) from the enzymatic hydrolysate of RNA is environmentally harmful and cost intensive. In this work, an innovative benign process, which comprises adsorption technology and use of a hyper-cross-linked resin as a stationary phase is proposed. The adsorption properties of this kind of resin in terms of adsorption equilibrium as well as kinetics were evaluated. The influences of the operating conditions, i.e., initial UMP concentration, feed flow rate, and bed height on the breakthrough curves of UMP in the fixed bed system were investigated. Subsequently, a chromatographic column model was established and validated for the prediction of the experimentally attained breakthrough curves of UMP and the main impurity component (phosphate ion) with a real enzymatic hydrolysate of RNA as a feed mixture. At the end of this paper, the crystallization of UMP was carried out. The purity of the final product (uridine 5'-monophosphate disodium, UMPNa2) of over 99.5 % was obtained.

  16. Adenosine 3':5'-cyclic monophosphate in higher plants: Isolation and characterization of adenosine 3':5'-cyclic monophosphate from Kalanchoe and Agave.

    Science.gov (United States)

    Ashton, A R; Polya, G M

    1977-07-01

    1.3':5'-Cyclic AMP was extensively purified from Kalanchoe daigremontiana and Agave americana by neutral alumina and anion- and cation-exchange column chromatography. Inclusion of 3':5'-cyclic [8-3H]AMP from the point of tissue extraction permitted calculation of yields. The purification procedure removed contaminating material that was shown to interfere with the 3':5'-cyclic AMP estimation and characterization procedures. 2. The partially purified 3':5'-cyclic AMP was quantified by means of a radiochemical saturation assay using an ox heart 3':5'-cyclic AMP-binding protein and by an assay involving activation of a mammalian protein kinase. 3. The plant 3':5'-cyclic AMP co-migrated with 3':5'-cyclic [8-3H]AMP on cellulose chromatography, poly(ethyleneimine)-cellulose chromatography and silica-gel t.l.c. developed with several solvent systems. 4. The plant 3':5'-cyclic AMP was degraded by ox heart 3':5'-cyclic nucleotide phosphodiesterase at the same rates as authentic 3':5'-cyclic AMP. 1-Methyl-3-isobutylxanthine (1 mM), a specific inhibitor of the 3':5'-cyclic nucleotide phosphodieterase, completely inhibited such degradation. 5. The concentrations of 3':5'-cyclic AMP satisfying the above criteria in Kalanchoe and Agave were 2-6 and 1 pmol/g fresh wt. respectively. Possible bacterial contribution to these analyses was estimated to be less than 0.002pmol/g fresh wt. Evidence for the occurrence of 3':5'-cyclic AMP in plants is discussed.

  17. Efficient heterologous expression and one-step purification of fully active c-terminal histidine-tagged uridine monophosphate kinase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Penpassakarn, Praweenuch; Chaiyen, Pimchai; Palittapongarnpim, Prasit

    2011-11-01

    Tuberculosis has long been recognized as one of the most significant public health problems. Finding novel antituberculous drugs is always a necessary approach for controlling the disease. Mycobacterium tuberculosis pyrH gene (Rv2883c) encodes for uridine monophosphate kinase (UMK), which is a key enzyme in the uridine nucleotide interconversion pathway. The enzyme is essential for M. tuberculosis to sustain growth and hence is a potential drug target. In this study, we have developed a rapid protocol for production and purification of M. tuberculosis UMK by cloning pyrH (Rv2883c) of M. tuberculosis H37Rv with the addition of 6-histidine residues to the C-terminus of the protein, and expressing in E. coli BL21-CodonPlus (DE3)-RIPL using an auto-induction medium. The enzyme was efficiently purified by a single-step TALON cobalt affinity chromatography with about 8 fold increase in specific activity, which was determined by a coupled assay with the pyruvate kinase and lactate dehydrogenase. The molecular mass of monomeric UMK was 28.2 kDa and that of the native enzyme was 217 kDa. The enzyme uses UMP as a substrate but not CMP and TMP and activity was enhanced by GTP. Measurements of enzyme kinetics revealed the kcat value of 7.6 +/- 0.4 U mg(-1) or 0.127 +/- 0.006 sec(-1).The protocol reported here can be used for expression of M. tuberculosis UMK in large quantity for formulating a high throughput target-based assay for screening anti-tuberculosis UMK compounds.

  18. Adenosine monophosphate forms ordered arrays in multilamellar lipid matrices: insights into assembly of nucleic acid for primitive life.

    Directory of Open Access Journals (Sweden)

    Laura Toppozini

    Full Text Available A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5'-adenosine monophosphate (AMP molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers.

  19. Brain-natriuretic peptide and cyclic guanosine monophosphate as biomarkers of myxomatous mitral valve disease in dogs

    DEFF Research Database (Denmark)

    Moesgaard, Sophia Gry; Falk, Bo Torkel; Teerlink, Tom

    2011-01-01

    Elevations in the plasma concentrations of natriuretic peptides correlate with increased severity of myxomatous mitral valve disease (MMVD) in dogs. This study correlates the severity of MMVD with the plasma concentrations of the biomarkers N-terminal fragment of the pro-brain-natriuretic peptide...... (NT-proBNP) and its second messenger, cyclic guanosine monophosphate (cGMP). Furthermore, the l-arginine:asymmetric dimethylarginine (ADMA) ratio was measured as an index of nitric oxide availability. The study included 75 dogs sub-divided into five groups based on severity of MMVD as assessed...... by clinical examination and echocardiography. Plasma NT-proBNP and cGMP concentrations increased with increasing valve dysfunction and were significantly elevated in dogs with heart failure. The cGMP:NT-proBNP ratio decreased significantly in dogs with heart failure, suggesting the development of natriuretic...

  20. Effects of Adenosine Monophosphate Used in Combination with L‐Arginine on Female Rabbit Corpus Cavernosum Tissue

    Directory of Open Access Journals (Sweden)

    Olivier Stücker, PhD

    2014-04-01

    Conclusions: Our results demonstrate that AMP induces a relaxing effect on the female rabbit corpora. They also show that L‐Arginine and AMP can potentiate each other and that a synergistic effect can be obtained by their combined use. Because only slight differences exist between both sexes in response to NO donors and/or nucleotide purines or in their use together, it is very likely that close biochemical mechanisms, although not to the same degree and not quite similar, are involved in the engorgement of the penis and the clitoris of New Zealand White rabbits. Stücker O, Pons C, Neuzillet Y, Laemmel E, and Lebret T. Original research‐sexual medicine: Effects of adenosine monophosphate used in combination with L‐Arginine on female rabbit corpus cavernosum tissue. Sex Med 2014;2:1–7.

  1. Crystallization and preliminary X-ray crystallographic analysis of adenosine 5′-monophosphate deaminase (AMPD) from Arabidopsis thaliana in complex with coformycin 5′-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byung Woo [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Bingman, Craig A. [Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Mahnke, Donna K.; Sabina, Richard L. [Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, WI 53226-4801 (United States); Phillips, George N. Jr, E-mail: phillips@biochem.wisc.edu [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States)

    2005-08-01

    Adenosine 5′-monophosphate deaminase from A. thaliana has been crystallized in complex with coformycin 5′-phosphate. Diffraction data have been collected to 3.34 Å resolution. Adenosine 5′-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5′-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5′-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6{sub 2}22, with unit-cell parameters a = b = 131.325, c = 208.254 Å, α = β = 90, γ = 120°. Diffraction data were collected to 3.34 Å resolution from a crystal in complex with coformycin 5′-phosphate and to 4.05 Å resolution from a crystal of a mercury derivative.

  2. Regulation and function of transaldolase isoenzymes involved in sugar and one-carbon metabolism in the ribulose monophosphate cycle methylotroph Arthrobacter P1

    NARCIS (Netherlands)

    Levering, P.R.; Dijkhuizen, Lubbert

    1986-01-01

    In the facultative methylotroph Arthrobacter P1 the enzyme transaldolase plays an important role in both the pentose phosphate pathway and in the ribulose monophosphate cycle of formaldehyde fixation. Among gluconate-negative mutants of Arthrobacter P1 strains occurred which also were unable to grow

  3. Magnetic and electronic transport properties of the monophosphate tungsten bronze (PO 2) 4(WO 3) 2 m, m = 2

    Science.gov (United States)

    Teweldemedhin, Z. S.; Ramanujachary, K. V.; Greenblatt, M.

    1991-11-01

    Large plate-like dark-brown crystals of monophosphate tungsten bronze (PO 2) 4(WO 3) 2 m, m = 2 or PWO 5 were prepared by reacting stoichiometric mixtures of P 2O 5, WO 3, and W at 1200°C. The temperature dependence of electrical resistivity along each of the three unique crystallographic axes of a single crystal shows semiconducting behavior down to 50 K with an activation energy of ˜0.084 eV. The room temperature resistivitity along the direction of corner sharing WO 6 octahedra is 5 × 10 -3 Ω · cm and about one to two orders of magnitude lower than along other unique directions, which implies quasi one-dimensional behavior. The magnetization study made on a batch of crystals in the temperature range of 2 to 300 K is indicative of antiferromagnetic ordering with a maximum at 15 K. An earlier theoretical study on the band electronic structure of (PO 2) 4(WO 3) 4 predicted both localized and delocalized electrons in narrow and dispersive bands, respectively. The observed magnetic moment of PWO 5 is consistent with the theoretical prediction, but the observed semiconductivity behavior is not. The difference in the observed electronic transport properties of PWO 5 from that of theoretically predicted behavior, as well as the anomalous magnetic and transport properties compared to the higher members of the series of the monophosphate tungsten bronzes {(PO 2) 4(WO 3) 2 m, m = 4, 6}, is discussed in terms of the unique structure of PWO 5.

  4. Post-Translational Regulation of the Glucose-6-Phosphatase Complex by Cyclic Adenosine Monophosphate Is a Crucial Determinant of Endogenous Glucose Production and Is Controlled by the Glucose-6-Phosphate Transporter.

    Science.gov (United States)

    Soty, Maud; Chilloux, Julien; Delalande, François; Zitoun, Carine; Bertile, Fabrice; Mithieux, Gilles; Gautier-Stein, Amandine

    2016-04-01

    The excessive endogenous glucose production (EGP) induced by glucagon participates in the development of type 2 diabetes. To further understand this hormonal control, we studied the short-term regulation by cyclic adenosine monophosphate (cAMP) of the glucose-6-phosphatase (G6Pase) enzyme, which catalyzes the last reaction of EGP. In gluconeogenic cell models, a 1-h treatment by the adenylate cyclase activator forskolin increased G6Pase activity and glucose production independently of any change in enzyme protein amount or G6P content. Using specific inhibitors or protein overexpression, we showed that the stimulation of G6Pase activity involved the protein kinase A (PKA). Results of site-directed mutagenesis, mass spectrometry analyses, and in vitro phosphorylation experiments suggested that the PKA stimulation of G6Pase activity did not depend on a direct phosphorylation of the enzyme. However, the temperature-dependent induction of both G6Pase activity and glucose release suggested a membrane-based mechanism. G6Pase is composed of a G6P transporter (G6PT) and a catalytic unit (G6PC). Surprisingly, we demonstrated that the increase in G6PT activity was required for the stimulation of G6Pase activity by forskolin. Our data demonstrate the existence of a post-translational mechanism that regulates G6Pase activity and reveal the key role of G6PT in the hormonal regulation of G6Pase activity and of EGP.

  5. Dietary effects of adenosine monophosphate to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major.

    Science.gov (United States)

    Hossain, Md Sakhawat; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; Sony, Nadia Mahjabin

    2016-09-01

    Our study explored the dietary effects of adenosine monophosphate (AMP) to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream. A semi-purified basal diet supplemented with 0% (Control), 0.1% (AMP-0.1), 0.2% (AMP-0.2), 0.4% (AMP-0.4) and 0.8% (AMP-0.8) purified AMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The results indicated that dietary AMP supplements tended to improve growth performances. One of the best ones was found in diet group AMP-0.2, followed by diet groups AMP-0.1, AMP-0.4 and AMP-0.8. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by AMP supplementation and the significantly highest dry matter digestibility was observed in diet group AMP-0.2. Fish fed diet groups AMP-0.2 and AMP-0.4 had significantly higher peroxidase and bactericidal activities than fish fed the control diet. Nitro-blue-tetrazolium (NBT) activity was found to be significantly (P AMP-0.4 and AMP-0.8. Total serum protein, lysozyme activity and agglutination antibody titer were also increased (P > 0.05) by dietary supplementation. In contrast, catalase activity decreased with AMP supplementation. Moreover, the fish fed AMP supplemented diets had better improvement (P AMP-0.2 and AMP-0.4 showed the least oxidative stress condition. Finally it is concluded that, dietary AMP supplementation enhanced the growth, digestibility, immune response and stress resistance of red sea bream. The regression analysis revealed that a dietary AMP supplementation between 0.2 and 0.4% supported weight gain and lysozyme activity as a marker of immune functions for red sea bream, which is also inline with the most of the growth and health performance parameters of fish under present experimental conditions.

  6. Adenosine 5′-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation

    Science.gov (United States)

    Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa

    2017-01-01

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5′-monophsphate (5′-AMP). We demonstrated that co-administration of APAP and 5′-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5′-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5′-AMP formulation could prevent APAP-induced hepatotoxicity. PMID:28031524

  7. Magnesium sulphate increases lymphocyte adenosine 3':5'-cyclic monophosphate in humans.

    Science.gov (United States)

    Von Mandach, U; Bürgi, M; Huch, R; Huch, A

    1993-01-01

    We determined the effect of i.v. magnesium sulphate, which is often combined with beta 2-adrenoceptor agonists for tocolytic therapy, on lymphocyte cyclic AMP production, extracellular magnesium and blood calcium concentrations. Sixteen healthy volunteers received i.v. magnesium sulphate 1 g h-1 over 8 h; seven volunteers also had infusion of NaCl 18 mg h-1 as control. Venous blood was taken pre- and post-infusion to determine basal lymphocyte cyclic AMP and the increase evoked by 0.1 mM isoprenaline, as well as serum and plasma concentrations of total and non-protein-bound magnesium and calcium. Following magnesium sulphate there was a significant rise in the isoprenaline-evoked increase in cyclic AMP (P < 0.05) and in the magnesium concentrations (P < 0.01) and a decrease in the free calcium concentration (P < 0.01). PMID:8385975

  8. Magnesium sulphate increases lymphocyte adenosine 3':5'-cyclic monophosphate in humans.

    Science.gov (United States)

    Von Mandach, U; Bürgi, M; Huch, R; Huch, A

    1993-03-01

    We determined the effect of i.v. magnesium sulphate, which is often combined with beta 2-adrenoceptor agonists for tocolytic therapy, on lymphocyte cyclic AMP production, extracellular magnesium and blood calcium concentrations. Sixteen healthy volunteers received i.v. magnesium sulphate 1 g h-1 over 8 h; seven volunteers also had infusion of NaCl 18 mg h-1 as control. Venous blood was taken pre- and post-infusion to determine basal lymphocyte cyclic AMP and the increase evoked by 0.1 mM isoprenaline, as well as serum and plasma concentrations of total and non-protein-bound magnesium and calcium. Following magnesium sulphate there was a significant rise in the isoprenaline-evoked increase in cyclic AMP (P < 0.05) and in the magnesium concentrations (P < 0.01) and a decrease in the free calcium concentration (P < 0.01).

  9. Evidence against mediation of adenosine-3',5'-cyclic monophosphate in the bud-inducing effect of cytokinins in moss protonemata

    Directory of Open Access Journals (Sweden)

    J. Scheneider

    2015-05-01

    Full Text Available Effects Oif adenosdne-3',5'-cyclic monophosphate (cAMP, N6,O2-dibuityryl adenosine-3',5'-cyclic monophosphate (DBcAMP, caffeine and theophylline on the bud-inducing activity of cytokinin in the protonema of two moss species, Ceratodon purpureus and Funaria hygrometrica were examined. The sub-stances have been found ineffective as gametophore bud inducers. Some synergism between cytokinin and cAMP or DBcAMP was observed with relation to the buds' growth, but this effect is nonspecific since it can be obtained with 5'-AMP or 5'-GMiP as well, The results seem to exclude the possibility of an involvement of cAMP as a second messenger in the mechanism of cytokinin action on morphogenetic processes in moss protonemata.

  10. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.; Evans, G.; Rotella, F. J.; Westbrook, E. M.; Beno, D.; Huberman, E.; Joachimiak, A.; Collart, F. R.

    1999-01-01

    IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the K{sub m} for NAD (1180 {mu}M) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 {angstrom} with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione {beta}-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.

  11. Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase

    Science.gov (United States)

    Frecer, Vladimir; Seneci, Pierfausto; Miertus, Stanislav

    2011-01-01

    Thymidine monophosphate kinase (TMPKmt) is an essential enzyme for nucleotide metabolism in Mycobacterium tuberculosis, and thus an attractive target for novel antituberculosis agents. In this work, we have explored the chemical space around the 2',3'-bicyclic thymidine nucleus by designing and in silico screening of a virtual focused library selected via structure based methods to identify more potent analogs endowed with favorable ADME-related properties. In all the library members we have exchanged the ribose ring of the template with a cyclopentane moiety that is less prone to enzymatic degradation. In addition, we have replaced the six-membered 2',3'-ring by a number of five-membered and six-membered heterocyclic rings containing alternative proton donor and acceptor groups, to exploit the interaction with the carboxylate groups of Asp9 and Asp163 as well as with several cationic residues present in the vicinity of the TMPKmt binding site. The three-dimensional structure of the TMPKmt complexed with 5-hydroxymethyl-dUMP, an analog of dTMP, was employed to develop a QSAR model, to parameterize a scoring function specific for the TMPKmt target and to select analogues which display the highest predicted binding to the target. As a result, we identified a small highly focused combinatorial subset of bicyclic thymidine analogues as virtual hits that are predicted to inhibit the mycobacterial TMPK in the submicromolar concentration range and to display favorable ADME-related properties.

  12. Highly selective colorimetric detection of Ni2+ using silver nanoparticles cofunctionalized with adenosine monophosphate and sodium dodecyl sulfonate

    Science.gov (United States)

    Feng, Jiayu; Jin, Weiwei; Huang, Pengcheng; Wu, Fangying

    2017-09-01

    We report a dual-ligand strategy based on silver nanoparticles (AgNPs) for highly selective detection of Ni2+ using colorimetric techniques. Adenosine monophosphate (AMP) and sodium dodecyl sulfonate (SDS) were both used as ligands to modify AgNPs. The presence of Ni2+ induces the aggregation of AgNPs through cooperative electrostatic interaction and metal-ligand interaction, resulting in a color change from bright yellow to orange. The cofunctionalized AgNPs showed obvious advantages over the ones functionalized only by AMP or SDS in terms of selectivity. Under the optimized conditions, this sensing platform for Ni2+ works in the concentration range of 4.0 to 60 μM and has a low detection limit of 0.60 μM. In addition, the colorimetric assay is very fast, and the whole analysis can be completed within a few minutes. Thus, it can be directly used in tap water and lake water samples. [Figure not available: see fulltext.

  13. The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis.

    Science.gov (United States)

    Singh, Vinayak; Donini, Stefano; Pacitto, Angela; Sala, Claudia; Hartkoorn, Ruben C; Dhar, Neeraj; Keri, Gyorgy; Ascher, David B; Mondésert, Guillaume; Vocat, Anthony; Lupien, Andréanne; Sommer, Raphael; Vermet, Hélène; Lagrange, Sophie; Buechler, Joe; Warner, Digby F; McKinney, John D; Pato, Janos; Cole, Stewart T; Blundell, Tom L; Rizzi, Menico; Mizrahi, Valerie

    2017-01-13

    VCC234718, a molecule with growth inhibitory activity against Mycobacterium tuberculosis (Mtb), was identified by phenotypic screening of a 15344-compound library. Sequencing of a VCC234718-resistant mutant identified a Y487C substitution in the inosine monophosphate dehydrogenase, GuaB2, which was subsequently validated to be the primary molecular target of VCC234718 in Mtb. VCC234718 inhibits Mtb GuaB2 with a Ki of 100 nM and is uncompetitive with respect to IMP and NAD(+). This compound binds at the NAD(+) site, after IMP has bound, and makes direct interactions with IMP; therefore, the inhibitor is by definition uncompetitive. VCC234718 forms strong pi interactions with the Y487 residue side chain from the adjacent protomer in the tetramer, explaining the resistance-conferring mutation. In addition to sensitizing Mtb to VCC234718, depletion of GuaB2 was bactericidal in Mtb in vitro and in macrophages. When supplied at a high concentration (≥125 μM), guanine alleviated the toxicity of VCC234718 treatment or GuaB2 depletion via purine salvage. However, transcriptional silencing of guaB2 prevented Mtb from establishing an infection in mice, confirming that Mtb has limited access to guanine in this animal model. Together, these data provide compelling validation of GuaB2 as a new tuberculosis drug target.

  14. The expression of cyclic adenosine monophosphate responsive element modulator in rat sertoli cells following seminal extract administration

    Directory of Open Access Journals (Sweden)

    Muslim Akmal

    2016-09-01

    Full Text Available Aim: This study aims to determine the effect of seminal vesicle extract on cyclic adenosine monophosphate responsive element modulator (CREM expression in rat Sertoli cells. Materials and Methods: This study examined the expression of CREM on 20 male rats (Rattus norvegicus at 4 months of age, weighing 250-300 g. The rats were divided into four groups: K0, KP1, KP2, and KP3. K0 group was injected with 0.2 ml normal saline; KP1 was injected with 25 mg cloprostenol (Prostavet C, Virbac S. A; KP2 and KP3 were injected with 0.2 and 0.4 ml seminal vesicle extract, respectively. The treatments were conducted 5 times within 12-day interval. At the end of the study, the rats were euthanized by cervical dislocation; then, the testicles were necropsied and processed for histology observation using immunohistochemistry staining. Results: CREM expression in rat Sertoli cells was not altered by the administration of either 0.2 or 0.4 ml seminal vesicle extract. Conclusion: The administration of seminal vesicle extract is unable to increase CREM expression in rat Sertoli cells.

  15. Pharmacokinetic and pharmacodynamic analysis of inosine monophosphate dehydrogenase activity in hematopoietic cell transplantation recipients treated with mycophenolate mofetil.

    Science.gov (United States)

    Li, Hong; Mager, Donald E; Sandmaier, Brenda M; Storer, Barry E; Boeckh, Michael J; Bemer, Meagan J; Phillips, Brian R; Risler, Linda J; McCune, Jeannine S

    2014-08-01

    A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplantation (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNCs) at 5 time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic-dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory maximum effect model with an IC50 of 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, nonrelapse mortality, and overall mortality. In conclusion, a pharmacokinetic-dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker.

  16. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study.

    Science.gov (United States)

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-28

    The propensity of four representative conformations of 2(')-deoxyadenosine-5(')-monophosphate (5(')-dAMPH) to bind an excess electron has been studied at the B3LYP6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5(')-dAMPH form adiabatically stable anions. The type of an anionic 5(')-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4(')-C5(') bond. The adiabatic electron affinity of the a_south-syn anion is 1.19 eV, while its vertical detachment energy is 1.89 eV. Our results are compared with the photoelectron spectrum (PES) of 5(')-dAMPH(-) measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  17. Simultaneous liquid chromatographic assessment of thiamine, thiamine monophosphate and thiamine diphosphate in human erythrocytes: a study on alcoholics.

    Science.gov (United States)

    Mancinelli, Rosanna; Ceccanti, Mauro; Guiducci, Maria Soccorsa; Sasso, Guido Francesco; Sebastiani, Gemma; Attilia, Maria Luisa; Allen, John Paul

    2003-06-15

    An isocratic HPLC procedure for the assessment of thiamine (T), thiamine monophosphate (TMP) and thiamine diphosphate (TDP) in human erythrocytes is described. Several aspects of the procedure make it suitable for both clinical and research purposes: limits of detection and quantification of 1 and 2.5 nmol/l, respectively, recovery of 102% on average (range 93-112%), intra- and inter-day precisions within 5 and 9%, respectively, total elution time 15 min. This analytical methodology was applied to a case-control study on erythrocyte samples from 103 healthy subjects and 36 alcohol-dependent patients at risk of thiamine deficiency. Mean control values obtained were: T=89.6+/-22.7 nmol/l, TMP=4.4+/-6.6 nmol/l and TDP=222.23+/-56.3 nmol/l. T and TDP mean values of alcoholics were significantly lower than those of control cases: T=69.4+/-35.9 nmol/l (Pthiamine was established in the study of alcohol related problems.

  18. Convenient syntheses of 3'-amino-2',3'-dideoxynucleosides, their 5'-monophosphates, and 3'-aminoterminal oligodeoxynucleotide primers.

    Science.gov (United States)

    Eisenhuth, Ralf; Richert, Clemens

    2009-01-02

    5'-Protected 3'-amino-2',3'-dideoxynucleosides containing any of the four canonical nucleobases (A/C/G/T) were prepared via azides in five to six steps, starting from deoxynucleosides. For pyrimidines, the synthetic route involved nucleophilic opening of anhydronucleosides. For purines, an in situ oxidation/reduction sequence, followed by a Mitsunobu reaction with diphenyl-2-pyridylphosphine and sodium azide, provided the 3'-azidonucleosides in high yield and purity. For solid-phase synthesis of aminoterminal oligonucleotides, aminonucleosides were linked to controlled pore glass through a novel hexafluoroglutaric acid linker. These supports gave 3'-aminoterminal primers in high yield and purity via conventional DNA chain assembly and one-step deprotection/release with aqueous ammonia. Primers thus prepared were successfully tested in enzyme-free chemical primer extension, an inexpensive methodology for genotyping and labeling. Protected 5'-monophosphates of 3'-amino-2',3'-dideoxynucleosides were also prepared, providing starting materials for the preparation of labeled or photolably protected monomers for chemical primer extension.

  19. Inosine 5'-Monophosphate Dehydrogenase (IMPDH) as a Potential Target for the Development of a New Generation of Antiprotozoan Agents.

    Science.gov (United States)

    Fotie, Jean

    2016-06-19

    Inosine-5'-monophosphate dehydrogenase (IMPDH) is a metabolic enzyme that catalyzes the critical step in guanine nucleotide biosynthesis, and thus is at the center of cell growth and proliferation. However, although this enzyme has been exploited as potential target for the development of immunosuppressive, anticancer, and antiviral agents, the functional importance of IMPDH as a promising antiprotozoan drug target is still in its infancy mainly because of the availability of alternative nucleotides metabolic pathways in many of these parasites. This situation suggests that the inhibition of IMPDH might have little to no effect on the survival of protozoan parasites. As a result, no IMPDH inhibitor is currently commercially available or has advanced to clinical trials as a potential antiprotozoan drug. Nevertheless, recent advances toward the development of selective inhibitors of the IMPDH enzyme from Crystosporidium parvum as potential drug candidates against cryptosporidiosis should revive further investigations of this drug target in other protozoa parasites. The current review examines the chemical structures and biological activities of reported protozoan's IMPDH inhibitors. SciFinder was used to broadly pinpoint reports published on the topic in the chemical literature, with no specific time frame. Opportunities and challenges towards the development of inhibitors of IMPDH enzymes from protozoa parasites as potential chemotherapies toward the respective diseases they cause are also discussed.

  20. Determination of the electron-detachment energies of 2'-deoxyguanosine 5'-monophosphate anion: influence of the conformation.

    Science.gov (United States)

    Rubio, Mercedes; Roca-Sanjuán, Daniel; Serrano-Andrés, Luis; Merchán, Manuela

    2009-02-26

    The vertical electron-detachment energies (VDEs) of the singly charged 2'-deoxyguanosine 5'-monophosphate anion (dGMP-) are determined by using the multiconfigurational second-order perturbation CASPT2 method at the MP2 ground-state equilibrium geometry of relevant conformers. The origin of the unique low-energy band in the gas phase photoelectron spectrum of dGMP-, with maximum at around 5.05 eV, is unambiguously assigned to electron detachment from the highest occupied molecular orbital of pi-character belonging to guanine fragment of a syn conformation. The presence of a short H-bond linking the 2-amino and phosphate groups, the guanine moiety acting as proton donor, is precisely responsible for the pronounced decrease of the computed VDE with respect to that obtained in other conformations. As a whole, the present research supports the nucleobase as the site with the lowest ionization potential in negatively charged (deprotonated) nucleotides at the most stable conformations as well as for B-DNA-like type arrangements, in agreement with experimental evidence.

  1. The expression of cyclic adenosine monophosphate responsive element modulator in rat sertoli cells following seminal extract administration

    Science.gov (United States)

    Akmal, Muslim; Siregar, Tongku Nizwan; Wahyuni, Sri; Hamny; Nasution, Mustafa Kamal; Indriati, Wiwik; Panjaitan, Budianto; Aliza, Dwinna

    2016-01-01

    Aim: This study aims to determine the effect of seminal vesicle extract on cyclic adenosine monophosphate responsive element modulator (CREM) expression in rat Sertoli cells. Materials and Methods: This study examined the expression of CREM on 20 male rats (Rattus norvegicus) at 4 months of age, weighing 250-300 g. The rats were divided into four groups: K0, KP1, KP2, and KP3. K0 group was injected with 0.2 ml normal saline; KP1 was injected with 25 mg cloprostenol (Prostavet C, Virbac S. A); KP2 and KP3 were injected with 0.2 and 0.4 ml seminal vesicle extract, respectively. The treatments were conducted 5 times within 12-day interval. At the end of the study, the rats were euthanized by cervical dislocation; then, the testicles were necropsied and processed for histology observation using immunohistochemistry staining. Results: CREM expression in rat Sertoli cells was not altered by the administration of either 0.2 or 0.4 ml seminal vesicle extract. Conclusion: The administration of seminal vesicle extract is unable to increase CREM expression in rat Sertoli cells. PMID:27733803

  2. Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate

    Institute of Scientific and Technical Information of China (English)

    Jyun-Yi Wu; Chia-Hsin Chen; Li-Yin Yeh; Ming-Long Yeh; Chun-Chan Ting; Yan-Hsiung Wang

    2013-01-01

    Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cells were irradiated (660 nm) daily with doses of 0, 1, 2 or 4 J?cm22. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J?cm22 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J?cm22 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration.

  3. Structure-based in-silico rational design of a selective peptide inhibitor for thymidine monophosphate kinase of mycobacterium tuberculosis.

    Science.gov (United States)

    Kumar, Manoj; Sharma, Sujata; Srinivasan, Alagiri; Singh, Tej P; Kaur, Punit

    2011-05-01

    Tuberculosis still remains one of the most deadly infectious diseases. The emergence of drug resistant strains has fuelled the quest for novel drugs and drug targets for its successful treatment. Thymidine monophosphate kinase (TMPK) lies at the point where the salvage and de novo synthetic pathways meet in nucleotide synthesis. TMPK in M.tb has emerged as an attractive drug target since blocking it will affect both the pathways involved in the thymidine triphosphate synthesis. Moreover, the unique differences at the active site of TMPK enzyme in M.tb and humans can be exploited for the development of ideal drug candidates. Based on a detailed evaluation of known inhibitors and available three-dimensional structures of TMPK, several peptidic inhibitors were designed. In silico docking and selectivity analysis of these inhibitors with TMPK from M.tb and human was carried out to examine their differential binding at the active site. The designed tripeptide, Trp-Pro-Asp, was found to be most selective for M.tb. The ADMET analysis of this peptide indicated that it is likely to be a drug candidate. The tripeptide so designed is a suitable lead molecule for the development of novel TMPK inhibitors as anti-tubercular drugs.

  4. Lower urinary tract symptoms/benign prostatic hypertrophy and vascular function: Role of the nitric oxide-phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate pathway.

    Science.gov (United States)

    Higashi, Yukihito

    2017-06-01

    It is well known that there is an association of lower urinary tract symptoms/benign prostatic hypertrophy with cardiovascular disease, suggesting that lower urinary tract symptoms/benign prostatic hypertrophy is a risk factor for cardiovascular events. Vascular function, including endothelial function and vascular smooth muscle function, is involved in the pathogenesis, maintenance and development of atherosclerosis, leading to cardiovascular events. Vascular dysfunction per se should also contribute to lower urinary tract symptoms/benign prostatic hypertrophy. Both lower urinary tract symptoms/benign prostatic hypertrophy and vascular dysfunction have cardiovascular risk factors, such as hypertension, dyslipidemia, diabetes mellitus, aging, obesity and smoking. Inactivation of the phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate-nitric oxide pathway causes lower urinary tract symptoms/benign prostatic hypertrophy through an enhancement of sympathetic nervous activity, endothelial dysfunction, increase in Rho-associated kinase activity and vasoconstriction, and decrease in blood flow of pelvic viscera. Both endogenous nitric oxide and exogenous nitric oxide act as vasodilators on vascular smooth muscle cells through an increase in the content of cyclic guanosine 3',5'-monophosphate, which is inactivated by phosphodiesterase type 5. In a clinical setting, phosphodiesterase type 5 inhibitors are widely used in patients with lower urinary tract symptoms/benign prostatic hypertrophy. Phosphodiesterase type 5 inhibitors might have beneficial effects on vascular function through not only inhibition of cyclic guanosine 3',5'-monophosphate degradation, but also increases in testosterone levels and nitric oxide bioavailability, increase in the number and improvement of the function of endothelial progenitor cells, and decrease in insulin resistance. In the present review, the relationships between lower urinary tract symptoms/benign prostatic hypertrophy, the

  5. Synthèse et fonctionnalisation de 2-thiohydantoïnes : interaction et inhibition des nucléosides monophosphate kinases

    OpenAIRE

    Gosling, Sandrine

    2011-01-01

    New therapeutical compounds determination requires the formation of a library of molecules and their screening on specific biological targets. The aim of this project was to design new inhibitors targeting nucléoside monophosphate kinases (NMPK) based on in situ dynamic combinatorial chemistry. These molecules were synthesized by ligation between analogues of phosphate acceptors and donors on which reactive functions were introduced. The topic of this PhD was to develop the ATP mimetics using...

  6. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5’-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris, semiaquatic (Lontra longicaudis annectens and terrestrial (Sus scrofa

    Directory of Open Access Journals (Sweden)

    Myrna eBarjau Perez-Milicua

    2015-07-01

    Full Text Available Aquatic and semiaquatic mammals have the capacity of breath hold (apnea diving. Northern elephant seals (Mirounga angustirostris have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens can hold their breath for about 30 sec. Such periods of apnea may result in reduced oxygen concentration (hypoxia and reduced blood supply (ischemia to tissues. Production of adenosine 5’-triphosphate (ATP requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa, are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal (n=11, semiaquatic (neotropical river otter (n=4 and terrestrial (domestic pig (n=11. Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT was determined by spectrophotometry, and activity of inosine 5’-monophosphate dehydrogenase (IMPDH and the concentration of hypoxanthine (HX, inosine 5’-monophosphate (IMP, adenosine 5’-monophosphate (AMP, adenosine 5’-diphosphate (ADP, ATP, guanosine 5’-diphosphate (GDP, guanosine 5’-triphosphate (GTP, and xanthosine 5’-monophosphate (XMP were determined by high-performance liquid chromatography (HPLC. The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise, aquatic and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  7. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    Science.gov (United States)

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  8. Human taste and umami receptor responses to chemosensorica generated by Maillard-type N²-alkyl- and N²-arylthiomethylation of guanosine 5'-monophosphates.

    Science.gov (United States)

    Suess, Barbara; Brockhoff, Anne; Degenhardt, Andreas; Billmayer, Sylvia; Meyerhof, Wolfgang; Hofmann, Thomas

    2014-11-26

    Structural modification of the exocyclic amino function of guanosine 5'-monophosphate (5'-GMP) by Maillard-type reactions with reducing carbohydrates was recently found to increase the umami-enhancing activity of the nucleotide upon S-N(2)-1-carboxyalkylation and S-N(2)-(1-alkylamino)carbonylalkylation, respectively. Since the presence of sulfur atoms in synthetic N(2)-alkylated nucleotides was reported to be beneficial for sensory activity, a versatile Maillard-type modification of 5'-GMP upon reaction with glycine's Strecker aldehyde formaldehyde and organic thiols was performed in the present study. A series of N(2)-(alkylthiomethyl)guanosine and N(2)-(arylthiomethyl)guanosine 5'-monophosphates was generated and the compounds were evaluated to what extent they enhance the umami response to monosodium L-glutamate in vivo by a paired-choice comparison test using trained human volunteers and in vitro by means of cell-based umami taste receptor assay. Associated with a high umami-enhancing activity (β-value 5.1), N(2)-(propylthiomethyl)guanosine 5'-monophosphate could be generated when 5'-GMP reacted with glucose, glycine, and the onion-derived odorant 1-propanethiol, thus opening a valuable avenue to produce high-potency umami-enhancing chemosensorica from food-derived natural products by kitchen-type chemistry.

  9. Study of orotidine 5'-monophosphate decarboxylase in complex with the top three OMP, BMP, and PMP ligands by molecular dynamics simulation.

    Science.gov (United States)

    Jamshidi, Shirin; Jalili, Seifollah; Rafii-Tabar, Hashem

    2015-01-01

    Catalytic mechanism of orotidine 5'-monophosphate decarboxylase (OMPDC), one of the nature most proficient enzymes which provides large rate enhancement, has not been fully understood yet. A series of 30 ns molecular dynamics (MD) simulations were run on X-ray structure of the OMPDC from Saccharomyces cerevisiae in its free form as well as in complex with different ligands, namely 1-(5'-phospho-D-ribofuranosyl) barbituric acid (BMP), orotidine 5'-monophosphate (OMP), and 6-phosphonouridine 5'-monophosphate (PMP). The importance of this biological system is justified both by its high rate enhancement and its potential use as a target in chemotherapy. This work focuses on comparing two physicochemical states of the enzyme (protonated and deprotonated Asp91) and three ligands (substrate OMP, inhibitor, and transition state analog BMP and substrate analog PMP). Detailed analysis of the active site geometry and its interactions is properly put in context by extensive comparison with relevant experimental works. Our overall results show that in terms of hydrogen bond occupancy, electrostatic interactions, dihedral angles, active site configuration, and movement of loops, notable differences among different complexes are observed. Comparison of the results obtained from these simulations provides some detailed structural data for the complexes, the enzyme, and the ligands, as well as useful insights into the inhibition mechanism of the OMPDC enzyme. Furthermore, these simulations are applied to clarify the ambiguous mechanism of the OMPDC enzyme, and imply that the substrate destabilization and transition state stabilization contribute to the mechanism of action of the most proficient enzyme, OMPDC.

  10. "cAMP sponge": a buffer for cyclic adenosine 3', 5'-monophosphate.

    Directory of Open Access Journals (Sweden)

    Konstantinos Lefkimmiatis

    Full Text Available BACKGROUND: While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP. METHODS/PRINCIPAL FINDINGS: Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIbeta of protein kinase A (PKA. Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named "cAMP sponge" was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets. CONCLUSIONS: This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events.

  11. Phosphorylation of the mRNA cap binding protein and eIF-4A by different protein kinases

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, C.H.

    1987-05-01

    These studies were done to determine the identity of a protein kinase that phosphorylates the mRNA cap binding protein (CBP). Two chromatographic steps (dye and ligand and ion exchange HPLC) produced a 500x purification of an enzyme activity in rabbit reticulocytes that phosphorylated CBP at serine residues. Isoelectric focusing analysis of kinase treated CBP demonstrated 5 isoelectric species of which the 2 most anodic species were phosphorylated (contained /sup 32/P). This kinase activity phosphorylated CBP when it was isolated or in the eIF-4F complex. Purified protein kinase C, cAMP or cGMP dependent protein kinase, casein kinase I or II, myosin light chain kinase or insulin receptor kinase did not significantly phosphorylate isolated CBP or CBP in the eIF-4F complex. However, cAMP and cGMP dependent protein kinases and casein kinase II phosphorylated eIF-4A but did not phosphorylate the 46 kDa component of eIF-4F. cAMP dependent protein kinase phosphorylated a approx. 220 kDa protein doublet in eIF-4F preparations. These studies indicate that CBP kinase activity probably represents a previously unidentified protein kinase. In addition, eIF-4A appears to be phosphorylated by several protein kinases whereas the 46 kDa component of the eIF-4F complex was not.

  12. Multiple Decay Mechanisms and 2D‐UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine‐Uracil Monophosphate

    Science.gov (United States)

    Li, Quansong; Giussani, Angelo; Segarra‐Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A.; Mukamel, Shaul; Roca‐Sanjuán, Daniel

    2016-01-01

    Abstract The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D‐UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine 1La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine 1Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter‐base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long‐lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the 1Lb, S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D‐UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm−1 in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D‐UV spectroscopy to disentangle the photophysics of multichromophoric systems. PMID:27113273

  13. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate.

    Science.gov (United States)

    Li, Quansong; Giussani, Angelo; Segarra-Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A; Mukamel, Shaul; Roca-Sanjuán, Daniel; Garavelli, Marco; Blancafort, Lluís

    2016-05-23

    The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems.

  14. Enhanced Molecular Recognition between Nucleobases and Guanine-5'-monophosphate-disodium (GMP) by Surfactant Aggregates in Aqueous Solution.

    Science.gov (United States)

    Liu, Zhang; Wang, Dong; Cao, Meiwen; Han, Yuchun; Xu, Hai; Wang, Yilin

    2015-07-15

    Only specific base pairs on DNA can bind with each other through hydrogen bonds, which is called the Watson-Crick (W/C) pairing rule. However, without the constraint of DNA chains, the nucleobases in bulk aqueous solution usually do not follow the W/C pairing rule anymore because of the strong competitive effect of water and the multi-interaction edges of nucleobases. The present work applied surfactant aggregates noncovalently functionalized by nucleotide to enhance the recognition between nucleobases without DNA chains in aqueous solution, and it revealed the effects of their self-assembling ability and morphologies on the recognition. The cationic ammonium monomeric, dimeric, and trimeric surfactants DTAB, 12-3-12, and 12-3-12-3-12 were chosen. The surfactants with guanine-5'-monophosphate-disodium (GMP) form micelles, vesicles, and fingerprint-like and plate-like aggregates bearing the hydrogen-bonding sites of GMP, respectively. The binding parameters of these aggregates with adenine (A), uracil (U), guanine (G), and cytosine(C) indicate that the surfactants can promote W/C recognitions in aqueous solution when they form vesicles (GMP/DTAB) or plate-like aggregates (GMP/12-3-12) with proper molecular packing compactness, which not only provide hydrophobic environments but also shield non-W/C recognition edges. However, the GMP/12-3-12 micelles with loose molecular packing, the GMP/12-3-12 fingerprint-like aggregates where the hydrogen bond sites of GMP are occupied by itself, and the GMP/12-3-12-3-12 vesicles with too strong self-assembling ability cannot promote W/C recognition. This work provides insight into how to design self-assemblies with the performance of enhanced molecule recognition.

  15. Crystallographic study of Glu58Ala RNase T1 x 2'-guanosine monophosphate at 1.9-A resolution.

    Science.gov (United States)

    Pletinckx, J; Steyaert, J; Zegers, I; Choe, H W; Heinemann, U; Wyns, L

    1994-02-22

    Glu58 is known to participate in phosphodiester transesterification catalyzed by the enzyme RNase T1. For Glu58 RNase T1, an altered mechanism has been proposed in which His40 replaces Glu58 as the base catalyst [Steyaert, J., Hallenga, K., Wyns, L., & Stanssens, P. (1990) Biochemistry 29, 9064-9072]. Glu58Ala Rnase T1 has been cocrystallized with guanosine 2'-monophosphate (2'-GMP). The crystals are of space group P2(1), with one molecule per asymmetric unit (a = 32.44 A, b = 49.64 A, c = 26.09 A, beta = 99.17 degrees). The three-dimensional structure of the enzyme was determined to a nominal resolution of 1.9 A, yielding a crystallographic R factor of 0.178 for all X-ray data. Comparison of this structure with wild-type structures leads to the following conclusions. The minor changes apparent in the tertiary structure can be explained by either the mutation of Glu58 or by the change in the space group. In the active site, the extra space available through the mutation of Glu58 is occupied by the phosphate group (after a reorientation) and by a solvent molecule replacing a carboxylate oxygen of Glu58. This solvent molecule is a candidate for participation in the altered mechanism of this mutant enzyme. Following up on a study of conserved water sites in RNase T1 crystallized in space group P2(1)2(1)2(1) [Malin, R., Zielenkiewicz, P., & Saenger, W. (1991) J. Mol. Biol. 266, 4848-4852], we investigated the hydration structure for four different packing modes of RNase T1.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Thiamine diphosphate in whole blood, thiamine and thiamine monophosphate in breast-milk in a refugee population.

    Directory of Open Access Journals (Sweden)

    Wolfgang Stuetz

    Full Text Available BACKGROUND: The provision of high doses of thiamine may prevent thiamine deficiency in the post-partum period of displaced persons. METHODOLOGY/PRINCIPAL FINDINGS: The study aimed to evaluate a supplementation regimen of thiamine mononitrate (100 mg daily at the antenatal clinics in Maela refugee camp. Women were enrolled during antenatal care and followed after delivery. Samples were collected at 12 weeks post partum. Thiamine diphosphate (TDP in whole blood and thiamine in breast-milk of 636 lactating women were measured. Thiamine in breast-milk consisted of thiamine monophosphate (TMP in addition to thiamine, with a mean TMP to total thiamine ratio of 63%. Mean whole blood TDP (130 nmol/L and total thiamine in breast-milk (755 nmol/L were within the upper range reported for well-nourished women. The prevalence of women with low whole blood TDP (<65 nmol/L was 5% and with deficient breast-milk total thiamine (<300 nmol/L was 4%. Whole blood TDP predicted both breast-milk thiamine and TMP (R(2 = 0.36 and 0.10, p<0.001. A ratio of TMP to total thiamine ≥63% was associated with a 7.5 and 4-fold higher risk of low whole blood TDP and deficient total breast-milk thiamine, respectively. Routine provision of daily 100 mg of thiamine mononitrate post-partum compared to the previous weekly 10 mg of thiamine hydrochloride resulted in significantly higher total thiamine in breast-milk. CONCLUSIONS/SIGNIFICANCE: Thiamine supplementation for lactating women in Maela refugee camp is effective and should be continued. TMP and its ratio to total thiamine in breast-milk, reported for the first time in this study, provided useful information on thiamine status and should be included in future studies of breast-milk thiamine.

  17. Myricetin is a novel inhibitor of human inosine 5′-monophosphate dehydrogenase with anti-leukemia activity

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huiling; Hu, Qian; Wang, Jingyuan; Liu, Zehui; Wu, Dang [Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237 (China); Lu, Weiqiang, E-mail: wqlu@bio.ecnu.edu.cn [Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Huang, Jin, E-mail: huangjin@ecust.edu.cn [Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237 (China)

    2016-09-02

    Human inosine 5′-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC{sub 50} values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanning fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity. - Highlights: • Myricetin, a common dietary flavonoid, is a novel inhibitor of hIMPDH1/2. • Myricetin directly binds with hIMPDH1/2 and induces cell cycle arrest and apoptosis of leukemia cells. • The cytotoxicity of myricetin on K562 cells is markedly attenuated by exogenous addition of guanosine.

  18. Methacholine and adenosine 5'-monophosphate (AMP) responsiveness, and the presence and degree of atopy in children with asthma.

    Science.gov (United States)

    Suh, Dong I; Lee, Ju K; Kim, Chang K; Koh, Young Y

    2011-02-01

    The relationship between atopy and bronchial hyperresponsiveness (BHR), both key features of asthma, remains to be clarified. BHR is commonly evaluated by bronchial challenges using direct and indirect stimuli. The aim of this study was to investigate the degree of BHR to methacholine (direct stimulus) and adenosine 5'-monophosphate (AMP) (indirect stimulus) according to the presence and degree of atopy in children with asthma. We performed a retrospective analysis of data from 120 children presenting with a diagnosis of asthma. These children were characterized by skin-prick tests (SPTs), spirometry and bronchial challenges with methacholine and AMP. Atopy was defined by at least one positive reaction to SPTs, and its degree was measured using serum total IgE levels, number of positive SPTs and atopic scores (sum of graded wheal size). A provocative concentration causing a 20% decline in FEV(1) (PC(20) ) was determined for each challenge. Patients with atopy(n=94) had a significantly lower AMP PC(20) than non-atopic patients (n=26), whereas methacholine PC(20) was not different between the two groups. Among the patients with atopy, there was no association between methacholine PC(20) and any atopy parameter. In contrast, a significant association was found between AMP PC(20) and the degree of atopy reflected in serum total IgE, number of positive SPTs and atopic scores (anova trend test, p=0.002, 0.001, 0.003, respectively). AMP responsiveness was associated with the presence and degree of atopy, whereas such a relationship was not observed for methacholine responsiveness. These findings suggest that atopic status may be better reflected by bronchial responsiveness assessed by AMP than by methacholine.

  19. Mechanism of the Orotidine 5’-Monophosphate Decarboxylase-Catalyzed Reaction: Importance of Residues in the Orotate Binding Site†

    Science.gov (United States)

    Iiams, Vanessa; Desai, Bijoy J.; Fedorov, Alexander A.; Fedorov, Elena V.; Almo, Steven C.; Gerlt, John A.

    2011-01-01

    The reaction catalyzed by orotidine 5’-monophosphate decarboxylase (OMPDC) is accompanied by exceptional values for the rate enhancement [kcat/knon = 7.1 × 1016] and catalytic proficiency [(kcat/KM)/knon = 4.8 × 1022 M−1]. Although a stabilized vinyl carbanion/carbene intermediate is located on the reaction coordinate, the structural strategies by which the reduction in the activation energy barrier is realized remain incompletely understood. This laboratory recently reported that “substrate destabilization” by Asp 70 in the OMPDC from Methanothermobacter thermoautotrophicus (MtOMPDC) lowers the activation energy barrier by ~5 kcal/mol (contributing ~2.7 × 103 to the rate enhancement) [K. K. Chan, B. M. Wood, A. A. Fedorov, E. V. Fedorov, H. J. Imker, T. L. Amyes, J. P. Richard, S. C. Almo, and J. A. Gerlt (2009) Biochemistry 48, 5518–31]. We now report that substitutions of hydrophobic residues in a pocket proximal to the carboxylate group of the substrate (Ile 96, Leu 123, and Val 155) with neutral hydrophilic residues decrease the value of kcat by as much as 400-fold but have minimal effect on the value of kex for exchange of H6 of the FUMP product analog with solvent deuterium; we hypothesize that this pocket destabilizes the substrate by preventing hydration of the substrate carboxylate group. We also report that substitutions for Ser 127 that is proximal to O4 of the orotate ring decrease the value of kcat/KM, with the S127P substitution that eliminates hydrogen-bonding interactions with O4 producing a 2.5 × 106-fold reduction in the value of kcat/KM; this effect is consistent with delocalization of the negative charge of the carbanionic intermediate on O4 to produce an anionic carbene intermediate and thereby provide a structural strategy for stabilization of the intermediate. These observations provide additional information on the identities of the active site residues that contribute to the rate enhancement and, therefore, insights into the

  20. A label-free and self-assembled electrochemical biosensor for highly sensitive detection of cyclic diguanylate monophosphate (c-di-GMP) based on RNA riboswitch.

    Science.gov (United States)

    Xie, Qingyun; Zhao, Fulin; Liu, Hongrui; Shan, Yanke; Liu, Fei

    2015-07-02

    Cyclic diguanylate monophosphate (c-di-GMP) is an important second messenger that regulates a variety of complex physiological processes involved in motility, virulence, biofilm formation and cell cycle progression in several bacteria. Herein we report a simple label-free and self-assembled RNA riboswitch-based biosensor for sensitive and selective detection of c-di-GMP. The detectable concentration range of c-di-GMP is from 50 nM to 1 μM with a detection limit of 50 nM.

  1. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5'-monophosphate.

    Science.gov (United States)

    Shi, Fan; Gong, Shixing; Xu, Li; Zhu, Huanhuan; Sun, Zhenfan; Sun, Wei

    2013-12-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5'-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results.

  2. Schistosoma mansoni c-AMP-dependent Protein Kinase (PKA): A Potential New Drug Target

    Science.gov (United States)

    2009-12-07

    chloroadenosine 3’,5’-monophosphate in breast cancer patients and xenograft bearing mice. Ann Oncol 7: 291-296. 129. Tortora G, Ciardiello F, Pepe S...cyclic-AMP-dependent protein kinases by using cyclic nucleotide analogs. Eur J Biochem 181: 19-31. 47. Yokozaki H, Tortora G, Pepe S, Maronde E...181: 19-31. 150 28. Ally S, Tortora G, Clair T, Grieco D, Merlo G, et al. (1988) Selective modulation of protein kinase isozymes by the site

  3. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus.

    Science.gov (United States)

    Bowman, Lisa; Zeden, Merve S; Schuster, Christopher F; Kaever, Volkhard; Gründling, Angelika

    2016-12-30

    Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5'-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism.

  4. Electronic band structure and Fermi surfaces of the quasi-two-dimensional monophosphate tungsten bronze, P4W12O44

    Science.gov (United States)

    Paul, S.; Ghosh, A.; Sato, T.; Sarma, D. D.; Takahashi, T.; Wang, E.; Greenblatt, M.; Raj, S.

    2014-02-01

    The electronic structure of quasi-two-dimensional monophosphate tungsten bronze, P4W12O44, has been investigated by high-resolution angle-resolved photoemission spectroscopy and density functional theoretical calculations. Experimental electron-like bands around \\Gamma point and Fermi surfaces have similar shapes as predicted by calculations. Fermi surface mapping at different temperatures shows a depletion of density of states at low temperature in certain flat portions of the Fermi surfaces. These flat portions of the Fermi surfaces satisfy the partial nesting condition with incommensurate nesting vectors q_1 and q_2 , which leads to the formation of charge density waves in this phosphate tungsten bronzes. The setting up of charge density wave in these bronzes can well explain the anomaly observed in its transport properties.

  5. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    Science.gov (United States)

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  6. Effect of dietary fluorine from Araxá rock phosphate on the hepatic production of cyclic-adenosine monophosphate in broilers

    Directory of Open Access Journals (Sweden)

    Rezende M.J.M.

    1999-01-01

    Full Text Available The cyclic adenosine 3?, 5?-monophosphate (cAMP production was evaluated in liver thin sections of broiler chicks fed on a experimental diet containing bicalcium phosphate or Araxá rock phosphate (ARP as source of P, with a high content of fluorine, at different ages: from the first to the 42nd and from the 21st to the 42nd day of age. The intake of the ARP formulated diet starting from birth elicited an increase of cAMP production in broiler liver. However, when this diet was offered after the 21st day of age, the hepatic cAMP production in broilers was not significantly (P>0.05 affected, suggesting that the effect of high fluorine present in Araxá rock phosphate, on hepatic cAMP of broiler chicks depends on the age in which the experimental diet is started.

  7. Evolution of coherent collective modes through consecutive charge-density-wave transitions in the (PO2)4(WO3)12 monophosphate tungsten bronze

    Science.gov (United States)

    Stojchevska, L.; Borovšak, M.; Foury-Leylekian, P.; Pouget, J.-P.; Mertelj, T.; Mihailovic, D.

    2017-07-01

    All-optical femtosecond relaxation dynamics in a single crystal of monophosphate tungsten bronze (PO2)4(WO3)2m with alternate stacking m =6 of WO3 layers was studied through the three consequent charge-density-wave (CDW) transitions. Several transient coherent collective modes associated with the different CDW transitions were observed and analyzed in the framework of the time-dependent Ginzburg-Landau theory. Remarkably, the interference of the modes leads to an apparent rectification effect in the transient reflectivity response. A saturation of the coherent-mode amplitudes with increasing pump fluence well below the CDWs destruction threshold fluence indicates a decoupling of the electronic and lattice parts of the order parameter on the femtosecond timescale.

  8. Behavior of the monophosphate tungsten bronzes (PO{sub 2}){sub 4}(WO{sub 3}){sub 2m} (m=4 and 6) in electrochemical lithium insertion

    Energy Technology Data Exchange (ETDEWEB)

    Longoria Rodriguez, F.E.; Martinez-de la Cruz, A.; Lopez Cuellar, E. [Division de Estudios de Posgrado, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Pedro de Alba s/n, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, NL (Mexico)

    2006-10-06

    The electrochemical lithium insertion process has been studied in the family of monophosphate tungsten bronzes (PO{sub 2}){sub 4}(WO{sub 3}){sub 2m}, where m=4 and 6. Structural changes in the pristine oxides were followed as lithium insertion proceeded. Through potentiostatic intermittent technique, the different processes which take place in the cathode during the discharge of the cell were analysed. The nature of the bronzes Li{sub x}(PO{sub 2}){sub 4}(WO{sub 3}){sub 2m} formed was determined by in situ X-ray diffraction experiments. These results have allowed establishment of a correlation with the reversible/irreversible processes detected during the electrochemical lithium insertion. Measurements of resistivity showed that upon lithium insertion, the metallic pristine oxides become insulating. (author)

  9. Investigation on the occurrence and significance of cyclic adenosine 3':5'-monophosphate in phytoplankton and natural aquatic communities

    Energy Technology Data Exchange (ETDEWEB)

    Francko, D.A.

    1980-01-01

    This study demonstrates, on the basis of several analyanalytical criteria, that the production and extracellular release of cyclic adenosine 3':5'-monophosphate (cAMP) is widespread among phytoplankton species. The production and release of CAMP varied markedly among different species grown under similar environmental conditions, and intraspecifically during the life cycle of a given algal species. This investigation marks the first time cAMP has been investigated in natural aquatic systems. An examination of epilimnetic lakewater samples from Lawrence Lake, a hardwater oligotrophic lake, and Wintergreen Lake, a hardwater hypereutrophic lake, both in southwestern Michigan, demonstrated that cAMP existed in both particulate-associated and dissolved forms in these systems.

  10. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  11. Bacterial inosine 5'-monophosphate dehydrogenase ("IMPDH") DNA as a dominant selectable marker in mammals and other eukaryotes

    Science.gov (United States)

    Huberman, Eliezer; Baccam, Mekhine J.

    2007-02-27

    The present invention relates to a nucleic acid sequence and its corresponding protein sequence useful as a dominant selectable marker in eukaryotes. More specifically the invention relates to a nucleic acid encoding a bacterial IMPDH gene that has been engineered into a eukaryotic expression vectors, thereby permitting bacterial IMPDH expression in mammalian cells. Bacterial IMPDH expression confers resistance to MPA which can be used as dominant selectable marker in eukaryotes including mammals. The invention also relates to expression vectors and cells that express the bacterial IMPDH gene as well as gene therapies and protein synthesis.

  12. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides

    Science.gov (United States)

    The cyclic AMP (cAMP)-PKA pathway is a central signaling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signaling in fungal biology has been well documented. Two key conserved components, adenylate cyclase (AC) and ca...

  13. The prion protein binds thiamine.

    Science.gov (United States)

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction.

  14. Leptin interferes with 3',5'-Cyclic Adenosine Monophosphate (cAMP signaling to inhibit steroidogenesis in human granulosa cells

    Directory of Open Access Journals (Sweden)

    HoYuen Basil

    2009-10-01

    Full Text Available Abstract Background Obesity has been linked to an increased risk of female infertility. Leptin, an adipocytokine which is elevated during obesity, may influence gonadal function through modulating steroidogenesis in granulosa cells. Methods The effect of leptin on progesterone production in simian virus 40 immortalized granulosa (SVOG cells was examined by Enzyme linked immunosorbent assay (ELISA. The effect of leptin on the expression of the steroidogenic enzymes (StAR, P450scc, 3betaHSD in SVOG cells was examined by real-time PCR and Western blotting. The mRNA expression of leptin receptor isoforms in SVOG cells were examined by using PCR. SVOG cells were co-treated with leptin and specific pharmacological inhibitors to identify the signaling pathways involved in leptin-reduced progesterone production. Silencing RNA against leptin receptor was used to determine that the inhibition of leptin on cAMP-induced steroidogenesis acts in a leptin receptor-dependent manner. Results and Conclusion In the present study, we investigated the cellular mechanisms underlying leptin-regulated steroidogenesis in human granulosa cells. We show that leptin inhibits 8-bromo cAMP-stimulated progesterone production in a concentration-dependent manner. Furthermore, we show that leptin inhibits expression of the cAMP-stimulated steroidogenic acute regulatory (StAR protein, the rate limiting de novo protein in progesterone synthesis. Leptin induces the activation of ERK1/2, p38 and JNK but only the ERK1/2 (PD98059 and p38 (SB203580 inhibitors attenuate the leptin-induced inhibition of cAMP-stimulated StAR protein expression and progesterone production. These data suggest that the leptin-induced MAPK signal transduction pathway interferes with cAMP/PKA-stimulated steroidogenesis in human granulosa cells. Moreover, siRNA mediated knock-down of the endogenous leptin receptor attenuates the effect of leptin on cAMP-induced StAR protein expression and progesterone

  15. The use of online heart-cutting high-performance liquid chromatography coupled with linear ion trap mass spectrometry in the identification of impurities in vidarabine monophosphate.

    Science.gov (United States)

    Wang, Hang; Xu, Tongzhou; Yuan, Jiaojian

    2017-02-17

    It is difficult to identify unknown impurities in nucleotide analogues by mass spectrometry because mass-spectrometry-incompatible mobile phases need to be used to separate the major ingredient from impurities. In this study, vidarabine monophosphate was selected, and unknown impurities were identified by online heart-cutting two-dimensional high-performance liquid chromatography and linear ion trap mass spectrometry. The one-dimensional reversed-phase column was filled with a mobile phase containing nonvolatile salt. In two-dimensional high-performance liquid chromatography, we used an Acclaim Q1 column with volatile salt, and the detection wavelength was 260 nm. The mass spectrum was scanned in positive- and negative-ion mode. The online heart-cutting and online demineralization technique ensured that the mobile phase was compatible with mass spectrometry; seven impurities were identified by MS(2) and MS(3) fragments. The mass fragmentation patterns of these impurities were investigated. The two isomers were semiprepared and complemented by nuclear magnetic resonance. The results were further compared with those of normal-phase high-performance liquid chromatography with mass spectrometry. The online heart-cutting two-dimensional high-performance liquid chromatography with mass spectrometry was superior in identifying more impurities. The method solves the problem of incompatibility between the mobile phase and mass spectrometry, so it is suitable for identifying unknown impurities. This method may also be used for investigating impurities in other nucleotide analogues.

  16. Symmetry and twins in the monophosphate tungsten bronze series (P02)4(W03)2m (2 < or = m < or = 14)

    Science.gov (United States)

    Roussel; Labbe; Groult

    2000-06-01

    Monophosphate tungsten bronze with pentagonal tunnels (PO2)4(WO3)2m are low-dimensional materials with charge density wave (CDW)-type electron instabilities. Two forms of the structure can thus be expected for all the members of the series: a low-temperature form (LT) corresponding to the CDW state and a high-temperature form (HT) corresponding to a normal metallic state. The HT form is described here for m = 9 and compared with that of the m = 5 and m = 7 counterparts. It is shown that a systematic twin phenomenon must be taken into account for HT members because of two possible configurations of the tilting mode of WO6 octahedra, The structure is also compared with that of m = 10, which exhibits the modulated CDW-LT form at room temperature. Owing to two possible polarization directions of the segments built of m WO6 octahedra, a twin phenomenon is also encountered in the LT forms. A review of all the structures known at present (m = 2, 4, 5, 6, 7, 8, 9, 10, 12) leads us to propose a structural law based on the building mode of W06 octahedra in W03-type slabs to explain the symmetry changes observed between even and odd members of the series.

  17. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning

    Science.gov (United States)

    GAO, Hanchao; ZHAO, Chengjiang; XIANG, Xi; LI, Yong; ZHAO, Yanli; LI, Zesong; PAN, Dengke; DAI, Yifan; HARA, Hidetaka; COOPER, David K.C.; CAI, Zhiming; MOU, Lisha

    2016-01-01

    Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT). Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) instead of SCNT, to generate double gene-knockout pigs. First, we applied the CRISPR/Cas9 system to target α1,3-galactosyltransferase (GGTA1) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes simultaneously in porcine fetal fibroblast cells (PFFs), which were derived from wild-type Chinese domestic miniature Wuzhishan pigs. Cell colonies were obtained by screening and were identified by Surveyor assay and sequencing. Next, we chose the GGTA1/CMAH double-knockout (DKO) cells for HMC to produce piglets. As a result, we obtained 11 live bi-allelic GGTA1/CMAH DKO piglets with the identical phenotype. Compared to cells from GGTA1-knockout pigs, human antibody binding and antibody-mediated complement-dependent cytotoxicity were significantly reduced in cells from GGTA1/CMAH DKO pigs, which demonstrated that our pigs would exhibit reduced humoral rejection in xenotransplantation. These data suggested that the combination of CRISPR/Cas9 and HMC technology provided an efficient and new strategy for producing pigs with multiple genetic modifications. PMID:27725344

  18. Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease.

    Science.gov (United States)

    Hernández-Ramírez, Laura C; Trivellin, Giampaolo; Stratakis, Constantine A

    2017-08-16

    The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy. Copyright © 2017. Published by Elsevier B.V.

  19. 从RNA酶解液中分离5'-尿苷酸%Separation of Uridine 5'-Monophosphate from the Enzymatic Degradation Solution of RNA

    Institute of Scientific and Technical Information of China (English)

    李德莹; 丁庆豹

    2011-01-01

    采用2根强酸性阳离子交换柱、1根弱碱性阴离子交换柱和1根强碱性阴离子交换柱进行4柱串联,可以从RNA酶解液中分离得到5'-尿苷酸,而不混有其它核苷酸,并对离子交换树脂种类、树脂量、洗脱剂等作了进一步研究.结果表明,采用4柱串联分离5'-尿苷酸,其总收率达到92.1%、结晶纯度达到86%以上.%Uridine 5'-monophosphate(UMP) could be separated from the enzymatic degradation solution of RNA with two strong acid cation exchange columns, one weak base anionic exchange column and one strong alkali anionic exchange column. UMP Obtained was not contaminated with other three ribonucleotides. The total yield of UMP achieved 92. 1% and the purity of UMP crystal reached above 86%. The type of ion exchange resin, resin amount and eluent were further studied.

  20. Investigation on the occurrence and significance of cyclic adenosine 3':5'-monophosphate in phytoplankton and natural aquatic communities

    Energy Technology Data Exchange (ETDEWEB)

    Francko, D.A.

    1980-01-01

    This study is an investigation into the occurrence and potential functions of cyclic adenosine 3':5'-monophosphate (cAMP), a potent and ubiquitous metabolic regulatory molecule in heterotrophic organisms, in phytoplankton and in natural aquatic communities. Laboratory-cultured phytoplankton were grown under both optimal and suboptimal nutrient regimes under constant temperature and illumination regimes. Cellular and extracellular cAMP production, characterized by a number of biochemical techniques, was correlated with growth rate dynamics, chlorophyll a synthesis, /sup 14/C-bicarbonate uptake, alkaline phosphatase activity, and heterocyst formation. The blue-green alga Anabaena flos-aquae was used as a model system in the examination of these metabolic variables. Additionally, this alga was used to test the effects of perturbation of cAMP levels on the aforementioned metabolic variables. Investigations on the occurrence and seasonal dynamics of cAMP in aquatic systems were conducted on Lawrence Lake, a hardwater oligotrophic lake, and on Wintergreen Lake, a hardwater hypereutrophic lake, both in southwestern Michigan. Putative cAMP from both systems was characterized by several biochemical techniques. Weekly sampling of particulate and dissolved cAMP in the epilimnia of both lakes was correlated with data on the rates of primary productivity, alkaline phosphatase activity, chlorophyll a synthesis and changes in phytoplankton community structure.

  1. Structural Basis of Differential Ligand Recognition by Two Classes of bis-(3-5)-cyclic Dimeric Guanosine Monophosphate-binding Riboswitches

    Energy Technology Data Exchange (ETDEWEB)

    K Smith; C Shanahan; E Moore; A Simon; S Strobel

    2011-12-31

    The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway regulates biofilm formation, virulence, and other processes in many bacterial species and is critical for their survival. Two classes of c-di-GMP-binding riboswitches have been discovered that bind this second messenger with high affinity and regulate diverse downstream genes, underscoring the importance of RNA receptors in this pathway. We have solved the structure of a c-di-GMP-II riboswitch, which reveals that the ligand is bound as part of a triplex formed with a pseudoknot. The structure also shows that the guanine bases of c-di-GMP are recognized through noncanonical pairings and that the phosphodiester backbone is not contacted by the RNA. Recognition is quite different from that observed in the c-di-GMP-I riboswitch, demonstrating that at least two independent solutions for RNA second messenger binding have evolved. We exploited these differences to design a c-di-GMP analog that selectively binds the c-di-GMP-II aptamer over the c-di-GMP-I RNA. There are several bacterial species that contain both types of riboswitches, and this approach holds promise as an important tool for targeting one riboswitch, and thus one gene, over another in a selective fashion.

  2. Solubility of disodium cytidine 5′-monophosphate in different binary mixtures from 288.15 K to 313.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Ma, Tianle; Li, An [National Engineering Technique Research Center for Biotechnology, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing (China); Chen, Xiaochun; Chen, Yong; Xie, Jingjing [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Wu, Jinglan, E-mail: yinghanjie@njut.edu.cn [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Ying, Hanjie [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing (China)

    2013-08-10

    Highlights: • Solubility of 5′-CMPNa{sub 2} in different systems was measured the first time. • Experimental data were correlated by CNIBS/Redlich–Kister model and Apelblat model. • Good agreement has been observed between the calculated and the experimental data. • Enthalpy and entropy were calculated by the van’t Hoff equation and Gibbs equation. - Abstract: The solubility of disodium cytidine 5′-monophosphate (5′-CMPNa{sub 2}) in methanol + water and ethanol + water binary mixtures was measured experimentally at the temperatures ranging from 288.15 to 313.15 K. The results showed that the solubility of 5′-CMPNa{sub 2} increased with the increasing of temperature and the mole fraction of water in different binary mixtures. The (CNIBS)/Redlich–Kister model and the semi-empirical Apelblat model were applied for the prediction of the experimental data. Both models could give satisfactory simulation results. In addition, the thermodynamic properties of the dissolution process such as Gibbs energy, enthalpy, and entropy were calculated using the van’t Hoff equation and the Gibbs equation. The results indicated that the dissolution process was endothermic.

  3. Application and optimization of the tenderization of pig Longissimus dorsi muscle by adenosine 5'-monophosphate (AMP) using the response surface methodology.

    Science.gov (United States)

    Deng, Shaoying; Wang, Daoying; Zhang, Muhan; Geng, Zhiming; Sun, Chong; Bian, Huan; Xu, Weimin; Zhu, Yongzhi; Liu, Fang; Wu, Haihong

    2016-03-01

    Based on single factor experiments, NaCl concentration, adenosine 5'-monophosphate (AMP) concentration and temperature were selected as independent variables for a three-level Box-Behnken experimental design, and the shear force and cooking loss were response values for regression analysis. According to the statistical models, it showed that all independent variables had significant effects on shear force and cooking loss, and optimal values were at the NaCl concentration of 4.15%, AMP concentration of 22.27 mmol/L and temperature of 16.70°C, which was determined with three-dimensional response surface diagrams and contour plots. Under this condition, the observed shear force and cooking loss were 0.625 kg and 8.07%, respectively, exhibiting a good agreement with their predicted values, showing the good applicability and feasibility of response surface methodology (RSM) for improving pork tenderness. Compared with control pig muscles, AMP combined with NaCl treatment demonstrated significant effects on improvement of meat tenderness and reduction of cooking loss. Therefore, AMP could be regarded as an effective tenderization agent for pork.

  4. Developmental Competence of Vitrified-Warmed Bovine Oocytes at the Germinal-Vesicle Stage is Improved by Cyclic Adenosine Monophosphate Modulators during In Vitro Maturation.

    Directory of Open Access Journals (Sweden)

    Kenji Ezoe

    Full Text Available Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK or 3-isobutyl-1-methylxanthine (IBMX to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming.

  5. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5′-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa)

    Science.gov (United States)

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E.; Gallo-Reynoso, Juan P.

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5′-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5′-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), ATP, guanosine 5′-diphosphate (GDP), guanosine 5′-triphosphate (GTP), and xanthosine 5′-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  6. Role of 3'-5'-cyclic adenosine monophosphate on the epidermal growth factor dependent survival in mammary epithelial cells.

    Science.gov (United States)

    Grinman, Diego Y; Romorini, Leonardo; Presman, Diego M; Rocha-Viegas, Luciana; Coso, Omar A; Davio, Carlos; Pecci, Adali

    2016-01-01

    Epidermal growth factor (EGF) has been suggested to play a key role in the maintenance of epithelial cell survival during lactation. Previously, we demonstrated that EGF dependent activation of PI3K pathway prevents apoptosis in confluent murine HC11 cells cultured under low nutrient conditions. The EGF protective effect is associated with increased levels of the antiapoptotic protein Bcl-XL. Here, we identify the EGF-dependent mechanism involved in cell survival that converges in the regulation of bcl-X expression by activated CREB. EGF induces Bcl-XL expression through activation of a unique bcl-X promoter, the P1; being not only the PI3K/AKT signaling pathway but also the increase in cAMP levels and the concomitant PKA/CREB activation necessary for both bcl-XL upregulation and apoptosis avoidance. Results presented in this work suggest the existence of a novel connection between the EGF receptor and the adenylate cyclase that would have an impact in preventing apoptosis under low nutrient conditions.

  7. A kinase-anchoring proteins and adenylyl cyclase in cardiovascular physiology and pathology.

    Science.gov (United States)

    Efendiev, Riad; Dessauer, Carmen W

    2011-10-01

    3'-5'-Cyclic adenosine monophosphate (cAMP), generated by adenylyl cyclase (AC), serves as a second messenger in signaling pathways regulating many aspects of cardiac physiology, including contraction rate and action potential duration, and in the pathophysiology of hypertrophy and heart failure. A kinase-anchoring proteins localize the effect of cAMP in space and time by organizing receptors, AC, protein kinase A, and other components of the cAMP cascade into multiprotein complexes. In this review, we discuss how the interaction of A kinase-anchoring proteins with distinct AC isoforms affects cardiovascular physiology.

  8. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.

    Science.gov (United States)

    Ueda, Atsushi; Wu, Chun-Fang

    2012-03-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss

  9. Conformational Changes in Orotidine 5’-Monophosphate Decarboxylase: A Structure-Based Explanation for How the 5’-Phosphate Group Activates the Enzyme†

    Science.gov (United States)

    Desai, Bijoy J.; Wood, McKay; Fedorov, Alexander A.; Fedorov, Elena V.; Goryanova, Bogdana; Amyes, Tina L.; Richard, John P.; Almo, Steven C.; Gerlt, John A.

    2012-01-01

    The binding of a ligand to orotidine 5’-monophosphate decarboxylase (OMPDC) is accompanied by a conformational change from an open, inactive conformation (Eo) to a closed, active conformation (Ec). As the substrate traverses the reaction coordinate to form the stabilized vinyl carbanion/carbene intermediate, interactions are enforced that destabilize the carboxylate group of the substrate as well as stabilize the intermediate (in the Ec•S‡ complex). Focusing on the OMPDC from Methanothermobacter thermautotrophicus, the “remote” 5’-phosphate group of the substrate activates the enzyme 2.4 × 108-fold; the activation is equivalently described by an intrinsic binding energy (IBE) of 11.4 kcal/mol. We studied residues in the activation that 1) directly contact the 5’-phosphate group; 2) participate in a hydrophobic cluster near the base of the active site loop that sequesters the bound substrate from solvent; and 3) form hydrogen-bonding interactions across the interface between the “mobile” and “fixed” half-barrel domains of the (β/α8-barrel structure. Our data support a model in which the IBE provided by the 5’-phosphate group is used to enable interactions both near the N-terminus of the active site loop and across the domain interface that stabilize both the Ec•S and Ec•S‡ complexes relative to the Eo•S complex. The conclusion that the IBE of the 5’-phosphate group provides stabilization of both the Ec•S and Ec•S‡ complexes, not just the Ec•S‡ complex, is central to understanding the structural origins of enzymatic catalysis as well as the requirements for the de novo design of enzymes that catalyze novel reactions. PMID:23030629

  10. Cytidine-5'-monophosphate-N-acetylneuraminic acid. Asialoglycoprotein sialic acid transferase activity in liver and serum of patients with juvenile hepatic cirrhosis and alpha-1-antitrypsin deficiency.

    Science.gov (United States)

    Kuhlenschmidt, M S; Peters, S P; Pinkard, O D; Glew, R H; Sharp, H

    1976-04-08

    The molecular basis for the accumulation of a substance which displays the immunological reactivity of alpha-1-antitrypsin within vesicles of liver parenchymal cells of individuals with hepatic cirrhosis and serum alpha-1-antitrypsin deficiency remains unclear. We recently reported that serum from a patient with alpha-1-antitrypsin deficiency and hepatic cirrhosis was substantially deficient in sialyltransferease (EC 2.4.99.1) an enzyme which transfers sialic acid from cytidine 5'-monophosphate-N-acetylneuraminic acid to a variety of asialoglycoprotein acceptors. In the present report we have extended these studies to include serum from five additional patients with alpha-1-antitrypsin deficiency and juvenile hepatic cirrhosis as well as a liver specimen obtained at autopsy of one of these patients. We find the sialytransferase activity in serum from six patients with alpha-1-antitrypsin deficiency and hepatic cirrhosis to be 50% of healthy pediatric control values and 30% of pediatric patients with liver disease. However, serum from family members homozygous for alpha-1-antitrypsin deficiency but without hepatic cirrhosis, and serum from patients with a variety of other kinds of liver disease, failed to exhibit the marked sialytransferase deficiency. Similar assays carried out on a homogenate of a liver sample from one patient with alpha-1-antitrypsin deficiency and hepatic cirrhosis indicated that the deficiency of sialyltransferase activity was not demonstrable in liver. Furthermore, a comparative kinetic analysis of serum and liver sialytransferase in normal and afflicted individuals failed to detect differences in substrate affinities which might account for a decrease in functional sialyltransferase capacity in individuals with alpha-1-antitrypsin deficiency and hepatic cirrhosis. These observations suggest that the serum sialyltransferase deficiency in such patients probably arises after chronic and extensive liver disease involving hepatic accumulation of

  11. Probing the Interaction between a DNA Nucleotide (Adenosine-5'-Monophosphate Disodium) and Surface Active Ionic Liquids by Rotational Relaxation Measurement and Fluorescence Correlation Spectroscopy.

    Science.gov (United States)

    Roy, Arpita; Banerjee, Pavel; Dutta, Rupam; Kundu, Sangita; Sarkar, Nilmoni

    2016-10-02

    This article demonstrates the interaction of a deoxyribonucleic acid (DNA) nucleotide, adenosine-5'-monophosphate disodium (AMP) with a cationic surface active ionic liquid (SAIL) 1-dodecyl-3-methylimidazoium chloride (C12mimCl) and an anionic SAIL, 1-butyl-3-methylimidazolium n-octylsulfate ([C4mim][C8SO4]). Dynamic light scattering (DLS) measurements and 1H NMR (nuclear magnetic resonance) studies indicate that substantial interaction is taking place among the DNA nucleotide, AMP and the SAILs. Moreover, cryogenic transmission electron microscopy (cryo-TEM) suggests that SAILs containing micellar assemblies are transformed into larger micellar assemblies in presence of DNA nucleotide. Additionally, the rotational motion of two oppositely charged molecules, Rhodamine 6G perchlorate (R6G) and Fluorescein sodium salt (Fl-Na) have been monitored in these aggregates. The rotational motion of R6G and Fl-Na differs significantly between SAILs micelles, and SAILs-AMP containing larger micellar aggregates. The effect of negatively charged DNA nucleotide (AMP) addition into the cationic and anionic SAILs is more prominent for the cationic charged molecule R6G than that of anionic probe Fl-Na due to the favourable electrostatic interaction between the AMP and cationic R6G. Moreover, the influence of the anionic DNA nucleotide on the cationic and anionic SAIL micelles is monitored through the variation of the lateral diffusion motion of oppositely charged probe molecules (R6G and Fl-Na) inside these aggregates. This variation in diffusion coefficient values also suggests that interaction pattern of these oppositely charged probes are different within the SAILs-nucleotide containing aggregates. Therefore, both rotational and translational diffusion measurements confirm that the DNA nucleotide (AMP) renders more rigid microenvironment within the micellar solution of SAILs.

  12. Mode-specific vibrational relaxation of photoexcited guanosine 5'-monophosphate and its acid form: a femtosecond broadband mid-IR transient absorption and theoretical study.

    Science.gov (United States)

    Zhang, Yuyuan; Improta, Roberto; Kohler, Bern

    2014-01-28

    UV-pump/broadband-mid-IR-probe transient absorption (TA) experiments and ab initio quantum mechanical (QM) calculations were used to investigate the photophysics in heavy water of the neutral and acid forms of guanosine 5'-monophosphate (GMP and GMPD(+), respectively). Excited GMP undergoes ultrafast internal conversion (IC) and returns to the electronic ground state in less than one picosecond with a large amount of excess vibrational energy. The spectroscopic signals are dominated by vibrational cooling - a process in which the solute dissipates vibrational energy to the solvent. For neutral GMP, cooling proceeds with a time constant of 3 ps. Following IC, at least some medium-frequency modes such as the carbonyl stretch and an in-plane ring vibration are excited, suggesting that the vibrational energy distribution is non-statistical. This is consistent with predicted structural changes upon passage through the S1/S0 conical intersection. GMPD(+) differs from GMP by a single deuteron at the N7 position, but has a dramatically longer lifetime of 200 ps. Vibrational cooling of the S1 state of GMPD(+) was monitored via several medium-frequency modes that were assigned using QM calculations. These medium-frequency modes are also vibrationally excited in a non-statistical fashion. Excitation of these modes is in line with the change in geometry at the S1 minimum of GMPD(+) predicted by QM calculations. Furthermore, these modes relax at different rates, fully consistent with QM calculations, which predict that excited vibrational states of the carbonyl stretch couple strongly to the D2O solvent and thus deactivate via intermolecular energy transfer (IET). In contrast, the ring stretch couples strongly to other ring modes of the guanine chromophore and appears to decay via intramolecular vibrational energy redistribution (IVR).

  13. Protein kinase A dependent phosphorylation activates Mg2+ efflux in the basolateral region of the liver.

    Science.gov (United States)

    Cefaratti, C; Ruse, Cristian

    2007-03-01

    Isolated hepatocytes in physiological [Na(+)]( 0 ) tightly maintain [Mg(2+)]( i ). Upon beta-adrenergic stimulation or in the presence of permeable cAMP, hepatocytes release 5-10% (1-3 mM Mg(2+)) of their total Mg(2+) content. However, isolated basolateral liver plasma membranes (bLPM), release Mg(2+) in the presence of [Na(+)]( o ) even in the absence of catecholamine stimulation. The data indicate that a physiological brake for Mg(2+) efflux is present in the hepatocyte and is removed upon cellular signaling. In contrast, this regulation "brake" is absent in purified bLPM thus rendering them fully active. The present study was carried out to reconstruct the missing regulatory component. Activation of Mg(2+) extrusion in intact cells is consistent with cAMP dependent phosphorylation of the transporter or a regulatory protein. Treatment of bLPM with a non-specific phosphatase such as alkaline phosphatase (AP), decreased Mg(2+) efflux by 70% compared to untreated bLPM. When AP-treated bLPM were loaded with protein kinase A (PKA), and stimulated with permeable cAMP, Mg(2+) transport fully recovered. These data suggest that phosphorylation of the Na(+)/Mg(2+) exchanger or a nearby protein activates the Mg(2+) transport mechanism in hepatocytes.

  14. Altered Regulation of Protein Kinase A Activity in the Medial Prefrontal Cortex of Normal and Brain-Injured Animals Actively Engaged in a Working Memory Task

    OpenAIRE

    Kobori, Nobuhide; Moore, Anthony N.; Pramod K Dash

    2015-01-01

    Cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) signaling is required for short- and long-term memory. In contrast, enhanced PKA activity has been shown to impair working memory, a prefrontal cortex (PFC)-dependent, transient form of memory critical for cognition and goal-directed behaviors. Working memory can be impaired after traumatic brain injury (TBI) in the absence of overt damage to the PFC. The cellular and molecular mechanisms that contribute to this deficit ar...

  15. A Facile and Sensitive Method for Quantification of Cyclic Nucleotide Monophosphates in Mammalian Organs: Basal Levels of Eight cNMPs and Identification of 2',3'-cIMP

    OpenAIRE

    Xin Jia; Fontaine, Benjamin M.; Fred Strobel; Weinert, Emily E.

    2014-01-01

    A sensitive, versatile and economical method to extract and quantify cyclic nucleotide monophosphates (cNMPs) using LC-MS/MS, including both 3',5'-cNMPs and 2',3'-cNMPs, in mammalian tissues and cellular systems has been developed. Problems, such as matrix effects from complex biological samples, are addressed and have been optimized. This protocol allows for comparison of multiple cNMPs in the same system and was used to examine the relationship between tissue levels of cNMPs in a panel of ...

  16. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain

    DEFF Research Database (Denmark)

    Jensen, R B; Lykke-Andersen, K; Frandsen, G I

    2000-01-01

    containing the ZAC-C2 domain bind anionic phospholipids non-specifically, with some variance in Ca2+ and salt dependence. Similar assays demonstrated specific affinity of the ZAC N-terminal region (residues 1-174) for phosphatidylinositol 3-monophosphate (PI-3-P). Binding was dependent in part on an intact...... zinc finger motif, but proteins containing only the zinc finger domain (residues 1-105) did not bind PI-3-P. Recombinant ZAC possessed GTPase-activating activity on Arabidopsis ARF proteins. These data identify a novel PI-3-P-binding protein region and thereby provide evidence...

  17. cAMP receptor protein (CRP) downregulates Klebsiella pneumoniae nif promoters in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In enteric bacteria, in response to the PTS system, the cAMP receptor protein (CRP) mediates the glucose effect, via regulating s70-dependent catabolic genes at transcriptional level. In this study, it is observed that the nitrogen fixation capacity of Klebsiella pneumoniae varies strongly when cells are grown on different carbohydrates, and this carbon effect occurs at the level of nif gene expression. Here we show that CRP can repress s54-dependent nif promoters (nifB, nifE, nifF, nifH, nifJ, nifLA and nifU), in a cAMP dependent fashion, in closed related E. coli background. Sequence analysis of these nif promoters indicates that there is no direct correlation between the fold of CRP-cAMP-mediated inhibition and the upstream cis elements at the promoters. In addition, the crp gene of K. pneumoniae has been isolated and sequenced, which is structural and functional highly homologous to that of E. coli. This suggests that CRP-cAMP-mediated inhibition on the nif promoters could be the reason for carbon effect on nitrogen fixation and thus has its physiological significance. A novel regulatory linkage between carbon metabolism and nitrogen fixation is proposed.

  18. Health benefits and risks of plant proteins.

    Science.gov (United States)

    Krajcovicova-Kudlackova, M; Babinska, K; Valachovicova, M

    2005-01-01

    Plant proteins have a reduced content of essential amino acids in comparison to animal proteins. A significant reduction of limiting amino acids (methionine, lysine, tryptophan) means lower protein synthesis. In subjects with predominant or exclusive consumption of plant food a higher incidence of hypoproteinemia due to significant reduction of methionine and lysine intakes was observed. On the other hand, lower intake of these amino acids provides a preventive effect against cardiovascular disease via cholesterol regulation by an inhibited hepatic phospholipid metabolism. Vegetarians have a significantly higher intake of non-essential amino acids arginine and pyruvigenic amino acids glycine, alanine, serine. When plant protein is high in non-essential amino acids, down-regulation of insulin and up-regulation of glucagon is a logical consequence. The action of glucagon in the liver is mediated by stimulation of adenyl cyclase that raises cyclic-AMP (adenosine-3,5-monophosphate) concentrations. Cyclic-AMP down-regulates the synthesis of a number of enzymes required for de novo lipogenesis and cholesterol synthesis, up-regulates key gluconeogenic enzymes and the LDL receptors and decreases the IGF-1 activity (insulin-like growth factor). Cyclic-AMP thus provides a reduction of atherosclerosis risk factors as well as a retardation of cancer development. A sufficient consumption of plant proteins has the protective effects against chronic degenerative diseases (Tab. 2, Ref. 26).

  19. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2015-01-01

    Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  20. Effects of metformin on expression of AMP-activated protein kinase in rat glomerular mesangial cells

    Institute of Scientific and Technical Information of China (English)

    顾俊菲

    2014-01-01

    Objective To observe the effects of metformin on expression of Adenosine 5’-monophosphate(AMP)-activated protein kinase(AMPK),nuclear factor-κB(NF-κB)and transforming growth factorβ1(TGF-β1)in cultured rat glomerular mesangial cells(MCs),and explore its reno-protective mechanisms.Methods MCs were cultured in the medium with normal glucose(group NG,5.6mmol/L),high glucose(group HG,25 mmol/L)and different concentrations of metformin(group M1,M2,M3).After 48 h exposure,the supernatants and MCs

  1. A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: basal levels of eight cNMPs and identification of 2',3'-cIMP.

    Science.gov (United States)

    Jia, Xin; Fontaine, Benjamin M; Strobel, Fred; Weinert, Emily E

    2014-12-12

    A sensitive, versatile and economical method to extract and quantify cyclic nucleotide monophosphates (cNMPs) using LC-MS/MS, including both 3',5'-cNMPs and 2',3'-cNMPs, in mammalian tissues and cellular systems has been developed. Problems, such as matrix effects from complex biological samples, are addressed and have been optimized. This protocol allows for comparison of multiple cNMPs in the same system and was used to examine the relationship between tissue levels of cNMPs in a panel of rat organs. In addition, the study reports the first identification and quantification of 2',3'-cIMP. The developed method will allow for quantification of cNMPs levels in cells and tissues with varying disease states, which will provide insight into the role(s) and interplay of cNMP signalling pathways.

  2. A Facile and Sensitive Method for Quantification of Cyclic Nucleotide Monophosphates in Mammalian Organs: Basal Levels of Eight cNMPs and Identification of 2',3'-cIMP

    Directory of Open Access Journals (Sweden)

    Xin Jia

    2014-12-01

    Full Text Available A sensitive, versatile and economical method to extract and quantify cyclic nucleotide monophosphates (cNMPs using LC-MS/MS, including both 3',5'-cNMPs and 2',3'-cNMPs, in mammalian tissues and cellular systems has been developed. Problems, such as matrix effects from complex biological samples, are addressed and have been optimized. This protocol allows for comparison of multiple cNMPs in the same system and was used to examine the relationship between tissue levels of cNMPs in a panel of rat organs. In addition, the study reports the first identification and quantification of 2',3'-cIMP. The developed method will allow for quantification of cNMPs levels in cells and tissues with varying disease states, which will provide insight into the role(s and interplay of cNMP signalling pathways.

  3. Behavior of the monophosphate tungsten bronzes (PO{sub 2}){sub 4}(WO{sub 3}){sub 2m} (m = 7 and 8) in the course of electrochemical lithium insertion

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-de la Cruz, A. [Division de Estudios de Posgrado, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Pedro de Alba s/n, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, N.L. (Mexico); Longoria Rodriguez, F.E.; Gonzalez, Lucy T. [Departamento de Quimica, Unidad de Cursos Basicos, Nucleo Monagas, UDO, Av Universidad Los Guaritos, Maturin, Monagas (Venezuela); Torres-Martinez, Leticia M. [Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Av Universidad s/n, San Nicolas de los Garza, N.L. (Mexico)

    2007-07-10

    The electrochemical lithium insertion process has been studied in the family of monophosphate tungsten bronzes (PO{sub 2}){sub 4}(WO{sub 3}){sub 2m}, where m = 7 and 8. Structural changes in the pristine oxides were followed as lithium insertion proceeded. Through potentiostatic intermittent technique the different processes which take place in the cathode during the discharge of the cell were analyzed. The nature of the bronzes Li{sub x}(PO{sub 2}){sub 4}(WO{sub 3}){sub 2m} formed was determined by in situ X-ray diffraction experiments. These results have allowed establishing a correlation with the reversible/irreversible processes detected during the electrochemical lithium insertion. (author)

  4. Promotion and inhibition of cardiac hypertrophy by A-kinase anchor proteins.

    Science.gov (United States)

    Blant, Alexandra; Czubryt, Michael P

    2012-09-01

    Originally identified as mediators of cyclic adenosine monophosphate (cAMP) and protein kinase A signaling, A-kinase anchor proteins (AKAPs) are now recognized as a diverse family of molecular scaffolds capable of interacting with many other proteins. Members of the AKAP family within the heart can take on either pro- or anti-hypertrophic roles by interacting with a myriad of protein kinases and phosphatases in the process. AKAPs often form the core of large signaling complexes (or signalosomes) that allow multiple pathways to converge and functionally intertwine. Approximately 30% of AKAPs discovered to date are expressed in the heart, but the functions of many of these remain to be discovered. This review focuses on AKAPs that have been demonstrated to play roles in mediating cardiac hypertrophy.

  5. Compartmentalization Role of A-Kinase Anchoring Proteins (AKAPs in Mediating Protein Kinase A (PKA Signaling and Cardiomyocyte Hypertrophy

    Directory of Open Access Journals (Sweden)

    Abeer Rababa'h

    2014-12-01

    Full Text Available The Beta-adrenergic receptors (β-ARs stimulation enhances contractility through protein kinase-A (PKA substrate phosphorylation. This PKA signaling is conferred in part by PKA binding to A-kinase anchoring proteins (AKAPs. AKAPs coordinate multi-protein signaling networks that are targeted to specific intracellular locations, resulting in the localization of enzyme activity and transmitting intracellular actions of neurotransmitters and hormones to its target substrates. In particular, mAKAP (muscle-selective AKAP has been shown to be present on the nuclear envelope of cardiomyocytes with various proteins including: PKA-regulatory subunit (RIIα, phosphodiesterase-4D3, protein phosphatase-2A, and ryanodine receptor (RyR2. Therefore, through the coordination of spatial-temporal signaling of proteins and enzymes, mAKAP controls cyclic-adenosine monophosphate (cAMP levels very tightly and functions as a regulator of PKA-mediated substrate phosphorylation leading to changes in calcium availability and myofilament calcium sensitivity. The goal of this review is to elucidate the critical compartmentalization role of mAKAP in mediating PKA signaling and regulating cardiomyocyte hypertrophy by acting as a scaffolding protein. Based on our literature search and studying the structure–function relationship between AKAP scaffolding protein and its binding partners, we propose possible explanations for the mechanism by which mAKAP promotes cardiac hypertrophy.

  6. cGMP-Dependent Protein Kinase Type I Is Implicated in the Regulation of the Timing and Quality of Sleep and Wakefulness

    OpenAIRE

    Sonja Langmesser; Paul Franken; Susanne Feil; Yann Emmenegger; Urs Albrecht; Robert Feil

    2009-01-01

    Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) ...

  7. Protein Foods

    Science.gov (United States)

    ... Text Size: A A A Listen En Español Protein Foods Foods high in protein such as fish, ... for the vegetarian proteins, whether they have carbohydrate. Protein Choices Plant-Based Proteins Plant-based protein foods ...

  8. Regulation of synaptic strength at mixed synapses: effects of dopamine receptor blockade and protein kinase C activation.

    Science.gov (United States)

    Silva, A; Kumar, S; Pereda, A; Faber, D S

    1995-11-01

    Previous studies of the mixed excitatory synapses between eighth nerve afferents and the lateral dendrite of the goldfish Mauthner (M-) cell have shown that synaptic strength is enhanced for an hour or longer following either repeated brief tetanizations or local extracellular applications of dopamine. Both the initial electrotonic coupling potential, mediated via current flow through gap junctions, and the subsequent chemically mediated excitatory postsynaptic potentials (EPSPs) are potentiated. Different second messenger pathways are implicated in the postsynaptic induction of these potentiations, with a Ca2+ influx presumably triggering the activity dependent long-term potentiations (LTP) and dopamine acting via a cAMP dependent pathway. Experiments performed to determine whether the LTP involves a stimulus-induced release of dopamine or requires a background level of dopamine receptor activation suggest neither is the case, as tetanization in the presence of a D1 receptor antagonist, which blocks the dopamine effects, produced an LTP comparable to that in the absence of the blocker. The effects of Ca2+ are presumably not due to protein kinase C (PKC) activation, since phorbol esters had no effect on the mixed excitatory synaptic responses, although they did enhance the frequency of spontaneously occurring inhibitory PSPs.

  9. AMP-activated protein kinase: An emerging target for ginseng

    Directory of Open Access Journals (Sweden)

    Kyong Ju Jeong

    2014-04-01

    Full Text Available The adenosine monophosphate (AMP-activated protein kinase (AMPK is a key sensor of cellular energy. Once activated, it switches on catabolic pathways generating adenosine triphosphate (ATP, while switching off biosynthetic pathways consuming ATP. Pharmacological activation of AMPK by metformin holds a therapeutic potential to reverse metabolic abnormalities such as type 2 diabetes and nonalcoholic fatty liver disease. In addition, altered metabolism of tumor cells is widely recognized and AMPK is a potential target for cancer prevention and/or treatment. Panax ginseng is known to be useful for treatment and/or prevention of cancer and metabolic diseases including diabetes, hyperlipidemia, and obesity. In this review, we discuss the ginseng extracts and ginsenosides that activate AMPK, we clarify the various mechanisms by which they achieve this, and we discuss the evidence that shows that ginseng or ginsenosides might be useful in the treatment and/or prevention of metabolic diseases and cancer.

  10. A double-blind, randomized, comparative study of the use of a combination of uridine triphosphate trisodium, cytidine monophosphate disodium, and hydroxocobalamin, versus isolated treatment with hydroxocobalamin, in patients presenting with compressive neuralgias

    Directory of Open Access Journals (Sweden)

    Goldberg H

    2017-02-01

    Full Text Available Henrique Goldberg,1 Marco Antonio Mibielli,2 Carlos Pereira Nunes,2 Stephanie Wrobel Goldberg,3 Luiz Buchman,4 Spyros GE Mezitis,5 Helio Rzetelna,6 Lisa Oliveira,2 Mauro Geller,2 Fernanda Wajnsztajn7 1UERJ Medical School, Rio de Janeiro, Brazil; 2UNIFESO Medical School, Teresópolis, Brazil; 3Washington University School of Medicine, St Louis, MO, USA; 4Instituto de Pós-Graduação Médica Carlos Chagas (ICC, Rio de Janeiro, Brazil; 5New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY, USA; 6Santa Casa da Misericórdia do Rio de Janeiro, Rio de Janeiro, Brazil; 7New York-Presbyterian Hospital/Columbia University Medical Center, Neurology, New York, NY, USA Context: This paper reports on the results of treatment of compressive neuralgia using a combination of nucleotides (uridine triphosphate trisodium [UTP] and cytidine monophosphate disodium [CMP] and vitamin B12.Objectives: To assess the safety and efficacy of the combination of nucleotides (UTP and CMP and vitamin B12 in patients presenting with neuralgia arising from neural compression associated with degenerative orthopedic alterations and trauma, and to compare these effects with isolated administration of vitamin B12. Methods: A randomized, double-blind, controlled trial, consisting of a 30-day oral treatment period: Group A (n=200 receiving nucleotides + vitamin B12, and Group B (n=200 receiving vitamin B12 alone. The primary study endpoint was the percentage of subjects presenting pain visual analog scale (VAS scores ≤20 at end of study treatment period. Secondary study endpoints included the percentage of subjects presenting improvement ≥5 points on the patient functionality questionnaire (PFQ; percentage of subjects presenting pain reduction (reduction in VAS scores at study end in relation to pretreatment; and number of subjects presenting adverse events. Results: The results of this study showed a more expressive improvement in efficacy evaluations among

  11. Structure of Deinococcus radiodurans tunicamycin-resistance protein (TmrD), a phosphotransferase

    Science.gov (United States)

    Kapp, Ulrike; Macedo, Sofia; Hall, David Richard; Leiros, Ingar; McSweeney, Sean M.; Mitchell, Edward

    2008-01-01

    The open-reading frame (ORF) DR_1419 in the Deinococcus radiodurans genome is annotated as a representative of the wide family of tunicamycin-resistance proteins as identified in a range of bacterial genomes. The D. radiodurans ORF DR_1419 was cloned and expressed; the protein TmrD was crystallized and its X-ray crystal structure was determined to 1.95 Å resolution. The structure was determined using single-wavelength anomalous diffraction with selenomethionine-derivatized protein. The refined structure is the first to be reported for a member of the tunicamycin-resistance family. It reveals strong structural similarity to the family of nucleoside monophosphate kinases and to the chloramphenicol phosphotransferase of Streptomyces venezuelae, suggesting that the mode of action is possibly by phosphorylation of tunicamycin. PMID:18540055

  12. Online cleanup of accelerated solvent extractions for determination of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly using high-performance liquid chromatography.

    Science.gov (United States)

    Xue, Xiaofeng; Wang, Feng; Zhou, Jinhui; Chen, Fang; Li, Yi; Zhao, Jing

    2009-06-10

    Determination of the levels of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly is important for the study of its pharmacological activities, health benefits, and adenosine phosphate degradation. In this study was developed a novel method to determine ATP, ADP, and AMP levels in royal jelly using accelerated solvent extraction (ASE) followed by online cleanup and high-performance liquid chromatography (HPLC) with diode array detection (DAD). The optimum extraction conditions were obtained using an 11 mL ASE cell, ethanol/water (5:5 v/v) as the extraction solvent, 1500 psi, 80 degrees C, a 5 min static time, and a 60% flush volume. Optimum separation of the three compounds was achieved in AMP levels in 15 samples of royal jelly of different origins was performed. Sample results indicated that the AMP concentration was 24.2-2214.4 mg kg(-1), whereas ATP and ADP were not detectable or present only at low levels.

  13. Studies on Relationship between Serum Nitric Oxide and Plasma Cyclic Guanosine Monophosphate and Prolonged Bleeding after Medical Abortion as well as Prophylaxis and Treatment of Bleeding with Traditional Chinese Medicine

    Institute of Scientific and Technical Information of China (English)

    廖玎玲; 谭布珍; 辛华; 贺晓菊

    1999-01-01

    Objectives To study the relationship between serum nitric oxide(NO and plasma cyclic guanosine monophosphate(cGMP)and prolonged bleeding after medical abortion.Methods A total of 120women having received medical abortions at random were recruited and divided into two groups:the one(Group A,n=60) taking “Gong-Fu Mixture(Uterus-Recovering Mixture)”and the other(Group B,n=60)not taking it after abortion.On d 10,20 and 30 after medical abortion,serum NO and plasma cGMP were tested before and after mifepristone administration and 10 d later by Gresis reac-tion method and radioimmunoassay respectively.Results NO concentration in serum and cGMP concentration in plasma decreased signifi-cantly after taking mifeprlstone given(P<0. 05).Ten days later,the number of thos ewith bleeding discontinuation in the group A was significantly greater than that in the group B(P<0.05).Serum NO level and plasma cGMP level in the group A de-creased more significantly than those in the group B(P<0. 05).Conclusion The slow decrease of serum NO and plasma cGMP is closely related to prolonged bleeding after medical abortion.“Gong-Fu Mixture(uterus-recovering mixture)”is effective in prevention and treatment of prolonged bleeding.

  14. Action of cyclic adenosine 3',5' monophosphate on L-14C-leucine incorporation in a system of rough microsomes from bovine thyroid gland.

    Science.gov (United States)

    Wägar, G

    1976-01-01

    The effect of cAMP and varying concentrations of potassium (18-72 mM) on the incorporation of L-14C-leucine into TCA-precipitable protein was studied in a cell-free system comprising rough thyroid microsomes. cAMP (2mM) alone or in combination with theopylline increased the incorporation of leucine into ribosome-bound (after DOC treatment) and extra-vesicular material, but had no significant effect on the DOC-released intravesicular material. Increase of the K+ concentration from 18 mM to 72 mM affected the incorporation of leucine into the microsomal compartments in much the same way as cAMP did. The effect of cAMP and potassium seems to be due in partly to enhanced activation of amino acids, since in a system of pH5 fraction and cell sap, both cAMP and K+ increased the incorporation of 14C-leucine into cold TCA-precipitable material. Experiments with 14C-leucyl-tRNA as a marker suggest that the effect of cAMP and K+ is a consequence not only of increased activation of amino acids, but also of increased binding of activated amino acyl-tRNA to ribosomes.

  15. Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets

    Directory of Open Access Journals (Sweden)

    Jung-Hae Shin

    2015-10-01

    Conclusion: These results strongly indicate that KRG-TS is a potent beneficial compound that inhibits [Ca2+]i mobilization in thrombin–platelet interactions, which may result in the prevention of platelet aggregation-mediated thrombotic disease.

  16. Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity.

    Science.gov (United States)

    Cohen, B E; Lee, G; Arispe, N; Pollard, H B

    1995-12-27

    The annexin (Anx) gene family comprises a set of calcium-dependent membrane binding proteins, which have been implicated in a wide variety of cellular processes including membrane fusion and calcium channel activity. We report here that cAMP activates Ca(2+)-dependent aggregation of both phosphatidylserine (PS) liposomes and bovine chromaffin granules driven by [des 1-12]annexin I (lipocortin I, Anx1). The mechanism of cAMP action involves an increase in AnxI-dependent cooperativity on the rate of such a reaction without affecting the corresponding k1/2 values. Cyclic AMP causes the values of the Hill coefficient (nH) for AnxI to change from 3 to 6 in both PS liposomes and chromaffin granules. By contrast, ATP inhibits the rate of aggregation activity without affecting the cooperativity or the extent of aggregation process. We were also able to photolabel Anx1 specifically with an 8-azido analogue of cAMP by a calcium-independent process. Such a process is saturable, yielding a Kd = 0.8 microM by Scatchard analysis. Specific displacement occurs in the presence of cAMP and ATP. Finally, we found that cAMP alters the conductance of calcium channels formed by AnxI in planar lipid bilayers. We interpret these data to indicate that AnxI binds both calcium and cAMP independently, and that both actions have functional consequences. This is the first report of a nucleotide binding function for a member of the annexin gene family.

  17. Molecular Characterization of the Cytidine Monophosphate-N-Acetylneuraminic Acid Hydroxylase (CMAH) Gene Associated with the Feline AB Blood Group System

    Science.gov (United States)

    Tada, Naomi; Ochiai, Kazuhiko; Chong, Yong Hwa; Kato, Yuiko; Mitsui, Hiroko; Gin, Azusa; Oda, Hitomi; Azakami, Daigo; Tamura, Kyoichi; Sako, Toshinori; Inagaki, Takeshi; Sakamoto, Atsushi; Tsutsui, Toshihiko; Bonkobara, Makoto; Tsuchida, Shuichi; Ikemoto, Shigenori

    2016-01-01

    Cat’s AB blood group system (blood types A, B, and AB) is of major importance in feline transfusion medicine. Type A and type B antigens are Neu5Gc and Neu5Ac, respectively, and the enzyme CMAH participating in the synthesis of Neu5Gc from Neu5Ac is associated with this cat blood group system. Rare type AB erythrocytes express both Neu5Gc and Neu5Ac. Cat serum contains naturally occurring antibodies against antigens occurring in the other blood types. To understand the molecular genetic basis of this blood group system, we investigated the distribution of AB blood group antigens, CMAH gene structure, mutation, diplotypes, and haplotypes of the cat CMAH genes. Blood-typing revealed that 734 of the cats analyzed type A (95.1%), 38 cats were type B (4.9%), and none were type AB. A family of three Ragdoll cats including two type AB cats and one type A was also used in this study. CMAH sequence analyses showed that the CMAH protein was generated from two mRNA isoforms differing in exon 1. Analyses of the nucleotide sequences of the 16 exons including the coding region of CMAH examined in the 34 type B cats and in the family of type AB cats carried the CMAH variants, and revealed multiple novel diplotypes comprising several polymorphisms. Haplotype inference, which was focused on non-synonymous SNPs revealed that eight haplotypes carried one to four mutations in CMAH, and all cats with type B (n = 34) and AB (n = 2) blood carried two alleles derived from the mutated CMAH gene. These results suggested that double haploids selected from multiple recessive alleles in the cat CMAH loci were highly associated with the expression of the Neu5Ac on erythrocyte membrane in types B and AB of the feline AB blood group system. PMID:27755584

  18. Protein-protein interactions

    DEFF Research Database (Denmark)

    Byron, Olwyn; Vestergaard, Bente

    2015-01-01

    Responsive formation of protein:protein interaction (PPI) upon diverse stimuli is a fundament of cellular function. As a consequence, PPIs are complex, adaptive entities, and exist in structurally heterogeneous interplays defined by the energetic states of the free and complexed protomers....... The biophysical and structural investigations of PPIs consequently demand hybrid approaches, implementing orthogonal methods and strategies for global data analysis. Currently, impressive developments in hardware and software within several methodologies define a new era for the biostructural community. Data can...

  19. Selective Allosteric Antagonists for the G Protein-Coupled Receptor GPRC6A Based on the 2-Phenylindole Privileged Structure Scaffold

    DEFF Research Database (Denmark)

    Johansson, Henrik; Boesgaard, Michael Worch; Nørskov-Lauritsen, Lenea

    2015-01-01

    G protein-coupled receptors (GPCRs) represent a biological target class of fundamental importance in drug therapy. The GPRC6A receptor is a newly deorphanized class C GPCR that we recently reported for the first allosteric antagonists based on the 2-arylindole privileged structure scaffold (e.g., 1......-3). Herein, we present the first structure-activity relationship study for the 2-arylindole antagonist 3, comprising the design, synthesis, and pharmacological evaluation of a focused library of 3-substituted 2-arylindoles. In a FRET-based inositol monophosphate (IP1) assay we identified compounds 7, 13e...

  20. Nitric oxide-mediated protein modification in cardiovascular physiology and pathology.

    Science.gov (United States)

    Gödecke, Axel; Schrader, Jürgen; Reinartz, Michael

    2008-06-01

    Nitric oxide (NO) is a key regulator of cardiovascular functions including the control of vascular tone, anti-inflammatory properties of the endothelium, cardiac contractility, and thrombocyte activation and aggregation. Numerous experimental data support the view that NO not only acts via cyclic guanosine monophosphate (cGMP)-dependent mechanisms but also modulates protein function by nitrosation, nitrosylation, glutathiolation, and nitration, respectively. To understand how NO regulates all of these diverse biological processes on the molecular level a comprehensive assessment of NO-mediated cGMP-dependent and independent targets is required. Novel proteomic approaches allow the simultaneous identification of large quantities of proteins modified in an NO-dependent manner and thereby will considerably deepen our understanding of the role NO plays in cardiovascular physiology and pathophysiology.

  1. Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins.

    Science.gov (United States)

    Fehér, Attila; Lajkó, Dézi Bianka

    2015-08-01

    Rho-type small GTP-binding plant proteins function as two-state molecular switches in cellular signalling. There is accumulating evidence that Rho-of-plants (ROP) signalling is positively controlled by plant receptor kinases, through the ROP guanine nucleotide exchange factor proteins. These signalling modules regulate cell polarity, cell shape, hormone responses, and pathogen defence, among other things. Other ROP-regulatory proteins might also be subjected to protein phosphorylation by cellular kinases (e.g., mitogen-activated protein kinases or calcium-dependent protein kinases), in order to integrate various cellular signalling pathways with ROP GTPase-dependent processes. In contrast to the role of kinases in upstream ROP regulation, much less is known about the potential link between ROP GTPases and downstream kinase signalling. In other eukaryotes, Rho-type G-protein-activated kinases are widespread and have a key role in many cellular processes. Recent data indicate the existence of structurally different ROP-activated kinases in plants, but their ROP-dependent biological functions still need to be validated. In addition to these direct interactions, ROPs may also indirectly control the activity of mitogen-activated protein kinases or calcium-dependent protein kinases. These kinases may therefore function as upstream as well as downstream kinases in ROP-mediated signalling pathways, such as the phosphatidylinositol monophosphate kinases involved in cell polarity establishment.

  2. A double-blind, randomized, comparative study of the use of a combination of uridine triphosphate trisodium, cytidine monophosphate disodium, and hydroxocobalamin, versus isolated treatment with hydroxocobalamin, in patients presenting with compressive neuralgias

    Science.gov (United States)

    Goldberg, Henrique; Mibielli, Marco Antonio; Nunes, Carlos Pereira; Goldberg, Stephanie Wrobel; Buchman, Luiz; Mezitis, Spyros GE; Rzetelna, Helio; Oliveira, Lisa; Geller, Mauro; Wajnsztajn, Fernanda

    2017-01-01

    Context This paper reports on the results of treatment of compressive neuralgia using a combination of nucleotides (uridine triphosphate trisodium [UTP] and cytidine monophosphate disodium [CMP]) and vitamin B12. Objectives To assess the safety and efficacy of the combination of nucleotides (UTP and CMP) and vitamin B12 in patients presenting with neuralgia arising from neural compression associated with degenerative orthopedic alterations and trauma, and to compare these effects with isolated administration of vitamin B12. Methods A randomized, double-blind, controlled trial, consisting of a 30-day oral treatment period: Group A (n=200) receiving nucleotides + vitamin B12, and Group B (n=200) receiving vitamin B12 alone. The primary study endpoint was the percentage of subjects presenting pain visual analog scale (VAS) scores ≤20 at end of study treatment period. Secondary study endpoints included the percentage of subjects presenting improvement ≥5 points on the patient functionality questionnaire (PFQ); percentage of subjects presenting pain reduction (reduction in VAS scores at study end in relation to pretreatment); and number of subjects presenting adverse events. Results The results of this study showed a more expressive improvement in efficacy evaluations among subjects treated with the combination of nucleotides + vitamin B12, with a statistically significant superiority of the combination in pain reduction (evidenced by VAS scores). There were adverse events in both treatment groups, but these were transitory and no severe adverse event was recorded during the study period. Safety parameters were maintained throughout the study in both treatment groups. Conclusion The combination of uridine, cytidine, and vitamin B12 was safe and effective in the treatment of neuralgias arising from neural compression associated with degenerative orthopedic alterations and trauma. PMID:28243144

  3. Effect of atrial natriuretic factor and 8-bromo cyclic guanosine 3':5'-monophosphate on ( sup 3 H)acetylcholine outflow from myenteric-plexus longitudinal muscle of the guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Matusak, O.; Kuchel, O.; Hamet, P. (Clinical Research Institute of Montreal, Quebec, (Canada))

    1991-04-01

    We report that atrial natriuretic factor (ANF) inhibits electrically induced cholinergic twitches of longitudinal muscle in whole intestinal segments and myenteric-plexus longitudinal muscle (MPLM) strips from the guinea pig ileum. To elucidate the possible presynaptic mechanism of ANF's action, we studied spontaneous and stimulation-evoked radiolabeled acetylcholine (ACh) outflow from MPLM after incubation with ({sup 3}H)choline. We developed a method of mounting and treating MPLM preparations, which allowed us, at the same time, to record isometric contractions and to determine ({sup 3}H)ACh outflow upon electrical stimulation by a train of three pulses. ANF (5 x 10{sup {minus} 8}M), norepinephrine (2 x 10{sup {minus} 7}) M and 8-bromoguanosine 3':5'-cyclic monophosphate (10{sup {minus} 3} M) in nearly equieffective concentrations caused a similar inhibition of cholinergic twitches. However, ANF had no effect on ({sup 3}H)ACh outflow, whereas norepinephrine was found to suppress ({sup 3}H)ACh outflow and 8-bromoguanosine 3':5'-cGMP to enhanced ({sup 3}H)ACh outflow. ANF (5 x 10{sup {minus} 8} M) caused a 7.0-fold increase of cGMP over control values, predominantly in muscle layers, whereas Escherichia coli heat-stable toxin (12.5 U/ml) elicited a 35-fold increment of cGMP in the extramuscular layer. Thus, ANF is able to elevate cGMP in intestinal smooth muscle and to inhibit cholinergic contractions of MPLM. This inhibition is mimicked by exogenous cGMP and by endogenously generated cyclic nucleotides. We suggest that the depressive action of ANF on cholinergic contractions of MPLM is mediated via its postsynaptic impact implicating elevation of cGMP in smooth muscle.

  4. Lack of cross-resistance to FF-10501, an inhibitor of inosine-5'-monophosphate dehydrogenase, in azacitidine-resistant cell lines selected from SKM-1 and MOLM-13 leukemia cell lines.

    Science.gov (United States)

    Murase, Motohiko; Iwamura, Hiroyuki; Komatsu, Kensuke; Saito, Motoki; Maekawa, Toshihiko; Nakamura, Takaaki; Yokokawa, Takuya; Shimada, Yasuhiro

    2016-02-01

    Resistance to azacitidine is a major issue in the treatments of myelodysplastic syndrome and acute myeloid leukemia, and previous studies suggest that changes in drug metabolism are involved in the resistance. Therefore, drugs with mechanisms resistant or alternative to such metabolic changes have been desired for the treatment of resistant disease. We generated azacitidine-resistant cells derived from SKM-1 and MOLM-13 leukemia cell lines in vitro, analyzed the mechanisms, and examined the impact on the efficacy of other antimetabolic drugs. It appeared that the cell growth-inhibitory effect of azacitidine, expression levels of uridine-cytidine kinase 2, and the concentrations of azacitidine triphosphate were remarkably decreased in the resistant cells compared with those in parent cells. These results were consistent with previous observations that azacitidine resistance is derived from metabolic changes. Cross-resistance of greater than 10-fold (shift in IC50 value) was observed in azacitidine-resistant cells for decitabine and for cytarabine, but not for gemcitabine or the inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors FF-10501 and mycophenolate mofetil (cross-resistance to 5-fluorouracil was cell line dependent). The IMPDH inhibitors maintained their cell growth-inhibitory activities in the azacitidine-resistant cell lines, in which the levels of adenine phosphoribosyltransferase (which converts FF-10501 to its active form, FF-10501 ribosylmonophosphate [FF-10501RMP]), FF-10501RMP, and the target enzyme, IMPDH, were equivalent to those in the parent cell lines. These results suggest that an IMPDH inhibitor such as FF-10501 could be an alternative therapeutic treatment for leukemia patients with acquired resistance to azacitidine.

  5. 以次黄嘌呤单核苷酸脱氢酶为靶点的新型抗结核药物高通量筛选模型的建立及应用%Establishment and application of a novel high-throughput screening model targeting to inosine monophosphate dehydrogenase for antitubercular drugs

    Institute of Scientific and Technical Information of China (English)

    熊小椒; 周爽; 杨延辉; 关艳; 肖春玲

    2011-01-01

    Objective To establish a high-throughput (HTS) screening model targeting inosine monophosphate dehydrogenase (IMPDH) for the discovery of novel antitubercular drugs.Methods The H37Rv IMPDH coding gene guaB2 was amplified and cloned into pBEV expression vector. The recombinant GuaB2 protein was expressed in Escherichia coli BL21(DE3)pLysS and itsactivity was measured at 340 run wavelength absorbance. HTS screening model was established based on the activity of GuaB2 and Z' factor was used to evaluate the quality of the HTS model. Total of 1765 compounds were screened for the inhibition of GuaB2 activity with the model.Results Recombinant H37Rv GuaBl vector was successfully constructed and expressed, with the optimal enzymatic activity being 736 U/mg for the GuaB2 protein. The parameter Z' factor was 0.68, suggesting that the HTS model was highly feasible and stable for drug screening. In order to test the HTS model, 1765 compounds were screened and 5 compounds were found to inhibit GuaB2 activity, showing the 0.28% positive rate.Conclusion A steady and sensitive HTS model for potential GuaB2 inhibitors was established. The hits of GuaB2 inhibitors were meaningful to further study.%目的 建立以结核分枝杆菌次黄嘌呤单核苷酸脱氢酶为靶点的新型抗结核药物高通量筛选模型.方法 以结核分枝杆菌H37Rv基因组为模板,pBEV表达质粒为载体,将guaB2基因克隆至pBEV以构建pBEV::guaB2重组表达质粒,表达并纯化重组的结核分枝杆菌次黄嘌呤单核苷酸脱氢酶;建立以测定反应体系340 nm吸光值变化速率来评价该酶活性的检定方法;构建次黄嘌呤单核苷酸脱氢酶抑制剂的高通量筛选模型,对该模型的可靠性进行评价并应用该模型对1765个化合物进行筛选.结果 成功构建了结核分枝杆菌guaB2基因的表达载体;最佳反应条件下重组结核分枝杆菌次黄嘌呤单核苷酸脱氢酶酶比活力为736 U/mg;所建立的高通

  6. Protein Condensation

    Science.gov (United States)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  7. Protein C

    Science.gov (United States)

    ... have an unexplained blood clot, or a family history of blood clots. Protein C helps control blood clotting. A lack of this protein or problem with the function of this protein may cause blood clots to ...

  8. Protein S

    Science.gov (United States)

    ... have an unexplained blood clot, or a family history of blood clots. Protein S helps control blood clotting. A lack of this protein or problem with the function of this protein may cause blood clots to ...

  9. 枯草芽孢杆菌二步发酵法生产5'-肌苷酸%Production of inosine 5'-monophosphate by Bacillus subtilis using a novel two-step fermentation method

    Institute of Scientific and Technical Information of China (English)

    何菊华; 吴雪娇; 谢希贤; 徐庆阳; 张成林; 陈宁

    2015-01-01

    5'-Monophosphate (5'-IMP) plays an important role in food additive industry since it is an indispensable component of flavor enhancer.To shorten the period and lower the cost of 5 '-IMP production,characteristic of acid phosphotranferase (AP/PTase) from Morganella morganii was studied and its encoding gene was cloned to inosine-producing strain Bacillus subtilis JG to obtain Bacillus subtilis JAB and Bacillus subtilis JAF.Then according to the character of inosine production and phosphotranferase expression by the two strains,5'-IMP production by twostep fermentation combined with inosine accumulation and enzyme catalysis was achieved.The final production of 5'-IMP by the two strains was 2.4 g/L and 3.0 g/L,respectively.This study provided new insights into 5'-IMP production that used fermentation products as substrates.%5'-肌苷酸作为新一代增味剂的重要组成成分,在调味品行业具有十分重要的地位.为进一步缩短5'-肌苷酸生产周期,降低生产成本,在研究来源于摩氏摩根菌Morganella morganii的酸性磷酸酶AP/PTaseM催化条件基础上,将该酶编码基因phoCYM克隆至肌苷生产菌株Bacillus subtilis JG,获得B.subtilis JAB和B.subtilis JAF,并根据重组菌株合成肌苷及表达酸性磷酸酶的特性,通过调控发酵条件实现了肌苷发酵和酶催化相偶联的二步发酵法生产5'-肌苷酸.经摇瓶发酵实验验证,两菌株5'-肌苷酸产量分别为2.4 g/L和3.0 g/L.

  10. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay

    OpenAIRE

    2010-01-01

    Abstract: The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory ...

  11. Modulation of glycogen and breast meat processing ability by nutrition in chickens: effect of crude protein level in 2 chicken genotypes.

    Science.gov (United States)

    Jlali, M; Gigaud, V; Métayer-Coustard, S; Sellier, N; Tesseraud, S; Le Bihan-Duval, E; Berri, C

    2012-02-01

    The aim of the study was to evaluate the impact of 2 isoenergetic growing diets with different CP (17 vs. 23%) on the performance and breast meat quality of 2 lines of chicken divergently selected for abdominal fatness [i.e., fat and lean (LL) lines]. Growth performance, breast and abdominal fat yields, breast meat quality parameters (pH, color, drip loss), and muscle glycogen storage at death were measured. Increased dietary CP resulted in increased BW, increased breast meat yield, and reduced abdominal fatness at slaughter regardless of genotype (P muscle glycogen (P muscle glycogen content observed in LL receiving the low-CP diet compared with the high-CP diet occurred concomitantly with greater phosphorylation amount for the α-catalytic subunit of adenosine monophosphate-activated protein kinase and glycogen synthase. This was consistent with the reduced muscle glycogen content observed in LL fed the low-CP diet because adenosine monophosphate-activated protein kinase inhibits glycogen synthesis through its action on glycogen synthase. Our results demonstrated that nutrition is an effective means of modulating breast meat properties in the chicken. The results also highlighted the need to take into account interaction with the genetic background of the animal to select nutritional strategies to improve meat quality traits in poultry.

  12. Short hairpin RNA targeting insulin-like growth factor binding protein-3 restores the bioavailability of insulin-like growth factor-1 in diabetic rats

    Directory of Open Access Journals (Sweden)

    Zhang-Yan Zhou

    2016-02-01

    Full Text Available ABSTRACT Purpose To investigate whether intracavernosal injection of short hairpin RNA for IGFBP-3 could improve erectile function in streptozotocin-induced diabetic rats. Materials and methods After 12 weeks of IGFBP-3 short hairpin RNA injection treatment, intracavernous pressure responses to electrical stimulation of cavernous nerves were evaluated. The expression of IGFBP-3 and IGF-1 at mRNA and protein levels were detected by quantitative real-time PCR analysis and Western blot, respectively. The concentration of cavernous cyclic guanosine monophosphate was detected by enzyme-linked immunosorbent assay. Results At 12 weeks after intracavernous administration of IGFBP-3 shRNA, the cavernosal pressure was significantly increased in response to the cavernous nerves stimulation compared to the diabetic group (P<0.05. Cavernous IGFBP-3 expression at both mRNA and protein levels was significantly inhibited. At the same time, cavernous IGF-1 expression was significantly increased in the IGFBP-3 shRNA treatment group compared to the diabetic group (P<0.01. Cavernous cyclic guanosine monophosphate concentration was significantly increased in the IGFBP-3 shRNA treatment group compared to the diabetic group (P<0.01. Conclusions Gene transfer of IGFBP-3 shRNA could improve erectile function via the restoration of cavernous IGF-1 bioavailability and an increase of cavernous cGMP concentration in the pathogenesis of erectile dysfunction in streptozotocin-induced diabetic rats.

  13. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress.

    Science.gov (United States)

    Toyama, Erin Quan; Herzig, Sébastien; Courchet, Julien; Lewis, Tommy L; Losón, Oliver C; Hellberg, Kristina; Young, Nathan P; Chen, Hsiuchen; Polleux, Franck; Chan, David C; Shaw, Reuben J

    2016-01-15

    Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA-linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)-activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission.

  14. Protein Sialylation Regulates a Gene Expression Signature that Promotes Breast Cancer Cell Pathogenicity.

    Science.gov (United States)

    Kohnz, Rebecca A; Roberts, Lindsay S; DeTomaso, David; Bideyan, Lara; Yan, Peter; Bandyopadhyay, Sourav; Goga, Andrei; Yosef, Nir; Nomura, Daniel K

    2016-08-19

    Many mechanisms have been proposed for how heightened aerobic glycolytic metabolism fuels cancer pathogenicity, but there are still many unexplored pathways. Here, we have performed metabolomic profiling to map glucose incorporation into metabolic pathways upon transformation of mammary epithelial cells by 11 commonly mutated human oncogenes. We show that transformation of mammary epithelial cells by oncogenic stimuli commonly shunts glucose-derived carbons into synthesis of sialic acid, a hexosamine pathway metabolite that is converted to CMP-sialic acid by cytidine monophosphate N-acetylneuraminic acid synthase (CMAS) as a precursor to glycoprotein and glycolipid sialylation. We show that CMAS knockdown leads to elevations in intracellular sialic acid levels, a depletion of cellular sialylation, and alterations in the expression of many cancer-relevant genes to impair breast cancer pathogenicity. Our study reveals the heretofore unrecognized role of sialic acid metabolism and protein sialylation in regulating the expression of genes that maintain breast cancer pathogenicity.

  15. Liposome-based Formulation for Intracellular Delivery of Functional Proteins

    Directory of Open Access Journals (Sweden)

    Benoît Chatin

    2015-01-01

    Full Text Available The intracellular delivery of biologically active protein represents an important emerging strategy for both fundamental and therapeutic applications. Here, we optimized in vitro delivery of two functional proteins, the β-galactosidase (β-gal enzyme and the anti-cytokeratin8 (K8 antibody, using liposome-based formulation. The guanidinium-cholesterol cationic lipid bis (guanidinium-tren-cholesterol (BGTC (bis (guanidinium-tren-cholesterol combined to the colipid dioleoyl phosphatidylethanolamine (DOPE (dioleoyl phosphatidylethanolamine was shown to efficiently deliver the β-gal intracellularly without compromising its activity. The lipid/protein molar ratio, protein amount, and culture medium were demonstrated to be key parameters affecting delivery efficiency. The protein itself is an essential factor requiring selection of the appropriate cationic lipid as illustrated by low K8 binding activity of the anti-K8 antibody using guanidinium-based liposome. Optimization of various lipids led to the identification of the aminoglycoside lipid dioleyl succinyl paromomycin (DOSP associated with the imidazole-based helper lipid MM27 as a potent delivery system for K8 antibody, achieving delivery in 67% of HeLa cells. Cryo-transmission electron microscopy showed that the structure of supramolecular assemblies BGTC:DOPE/β-gal and DOSP:MM27/K8 were different depending on liposome types and lipid/protein molar ratio. Finally, we observed that K8 treatment with DOSP:MM27/K8 rescues the cyclic adenosine monophosphate (cAMP-dependent chloride efflux in F508del-CFTR expressing cells, providing a new tool for the study of channelopathies.

  16. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity

    KAUST Repository

    Al-Tawashi, Azza

    2012-02-28

    Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation. 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Mucin-like glycoprotein secretion is mediated by cyclic-AMP and protein kinase C signal transduction pathways in rat corneal epithelium.

    Science.gov (United States)

    Nakamura, M; Endo, K; Nakata, K

    1998-05-01

    Ocular surface mucin is secreted from both goblet cells in the conjunctival epithelium and corneal epithelial cells. To clarify its mechanism of secretion in corneal epithelial cells, a rat cornea organ culture system was used to evaluate the second messenger roles of cyclic-AMP (cAMP), cyclic-GMP (cGMP) and protein kinase C (PKC) in modulating mucin-like glycoprotein secretion. Rat cornea sections (3 mm diameter) were cultured in TC-199 medium, and radiolabeled with sodium sulfate for 18 hr. After washing, the corneas were treated with various second messenger modulating agents for 30 min. The culture media were reacted with Dolichos biflorus (DBA)-lectin, and mucin-like glycoprotein was isolated. Then the radioactivity of DBA-binding mucin-like glycoprotein was isolated. Then the radioactivity of DBA-binding mucin-like glycoprotein was measured. There was a time-dependent increase in mucin-like glycoprotein was measured. There was a time-dependent increase in mucin-like glycoprotein secretion, whereas after corneal epithelial debridement the secretion was markedly inhibited by 81%. Mucin-like glycoprotein secretion was stimulated in a dose-dependent manner following elevation of cAMP levels by exposure to either forskolin, dibutyryl cAMP or 3-isobutyl-1-methylxanthine. Concomitant exposure to the cAMP dependent protein kinase inhibitor, KT5720 completely inhibited their stimulatory effects. Neither exposure to dibutyryl cGMP nor nitroprusside affected mucin-like glycoprotein secretion. Stimulation by PKC, phorbol 12, 13-dibutyrate (PDBu) also increased mucin-like glycoprotein secretion in a dose-dependent fashion. The PKC inhibitor, calphostin C completely inhibited the stimulation by PDBu of mucine-like glycoprotein secretion. These results demonstrate that corneal epithelial cells secrete mucin-like glycoprotein, which is mediated by cAMP and PKC signal transduction pathways.

  18. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  19. Endogenous occurrence of protein S-guanylation in Escherichia coli: Target identification and genetic regulation.

    Science.gov (United States)

    Tsutsuki, Hiroyasu; Jung, Minkyung; Zhang, Tianli; Ono, Katsuhiko; Ida, Tomoaki; Kunieda, Kohei; Ihara, Hideshi; Akaike, Takaaki; Sawa, Tomohiro

    2016-09-09

    8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a nitrated cGMP derivative formed in response to nitric oxide (NO) and reactive oxygen species (ROS). It can cause a post-translational modification (PTM) of protein thiols through cGMP adduction (protein S-guanylation). Accumulating evidence has suggested that, in mammals, S-guanylation of redox-sensor proteins may implicate in regulation of adaptive responses against ROS-associated oxidative stress. Occurrence as well as protein targets of S-guanylation in bacteria remained unknown, however. Here we demonstrated, for the first time, the endogenous occurrence of protein S-guanylation in Escherichia coli (E. coli). Western blotting using anti-S-guanylation antibody clearly showed that multiple proteins were S-guanylated in E. coli. Interestingly, some of those proteins were more intensely S-guanylated when bacteria were cultured under static culture condition than shaking culture condition. It has been known that E. coli is deficient of guanylate cyclase, an enzyme indispensable for 8-nitro-cGMP formation in mammals. We found that adenylate cyclase from E. coli potentially catalyzed 8-nitro-cGMP formation from its precursor 8-nitroguanosine 5'-triphosphate. More importantly, E. coli lacking adenylate cyclase showed significantly reduced formation of S-guanylated proteins. Our S-guanylation proteomics successfully identified S-guanylation protein targets in E. coli, including chaperons, ribosomal proteins, and enzymes which associate with protein synthesis, redox regulation and metabolism. Understanding of functional impacts for protein S-guanylation in bacterial signal transduction is necessary basis for development of potential chemotherapy and new diagnostic strategy for control of pathogenic bacterial infections.

  20. Rhubarb tannins extract inhibits the expression of aquaporins 2 and 3 in magnesium sulphate-induced diarrhoea model.

    Science.gov (United States)

    Liu, Chunfang; Zheng, Yanfang; Xu, Wen; Wang, Hui; Lin, Na

    2014-01-01

    Tannins, a group of major active components of Chinese rhubarb and widely distributed in nature, have a significant antidiarrhoeal activity. Aquaporins (AQPs) 2 and 3 play important roles in regulating water transfer during diarrhoea. The present study aims to determine the effect of the total tannins extract of rhubarb on aquaporins (AQPs) 2 and 3 in diarrhoea mice and HT-29 cells both induced by magnesium sulphate (MgSO4). Our results showed that rhubarb tannins extract (RTE) significantly decreased the faecal water content in colon and evaluation index of defecation of diarrhoea mice. Interestingly, RTE could markedly reduce the mRNA and protein expression levels of AQPs 2 and 3 in apical and lateral mucosal epithelial cells in the colons of diarrhoea mice and HT-29 cells both induced by MgSO4 in a dose-dependent manner. Furthermore, RTE suppressed the production of cyclic monophosphate- (cAMP-) dependent protein kinase A catalytic subunits α (PKA C-α) and phosphorylated cAMP response element-binding protein (p-CREB, Ser133) in MgSO4-induced HT-29 cells. Our data showed for the first time that RTE inhibit AQPs 2 and 3 expression in vivo and in vitro via downregulating PKA/p-CREB signal pathway, which accounts for the antidiarrhoeal effect of RTE.

  1. Protein Structure

    Science.gov (United States)

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  2. cAMP dependent and independent regulation of thyroglobulin synthesis by two clones of the OVNIS 6H thyroid cell line.

    Science.gov (United States)

    Aouani, A; Hovsépian, S; Fayet, G

    1987-07-01

    The hormonal regulation of thyroglobulin synthesis has been studied using two independent clones of the OVNIS 6H cell line. Insulin, hydrocortisone and TSH were able to stimulate thyroglobulin synthesis, whereas transferrin, somatostatin and glycyl-histidyl-lysine were without effect. Insulin stimulated thyroglobulin synthesis without affecting cAMP production. Hydrocortisone, when combined with insulin was a stimulator too; this stimulation was not accompanied by an increase in cAMP. TSH alone was unable to stimulate either cAMP or thyroglobulin synthesis. The stimulatory effect of TSH on thyroglobulin synthesis took place only when combined with insulin or insulin plus hydrocortisone, and was mediated by cAMP. Consequently, insulin and hydrocortisone stimulated thyroglobulin synthesis by cAMP-independent mechanisms, whereas TSH acted via the cAMP system. Forskolin mimicked TSH effects on cAMP and thyroglobulin synthesis. Calf serum inhibited cAMP and thyroglobulin production. Optimal cAMP and thyroglobulin synthesis as well as TSH responsiveness were obtained in serum-free medium supplemented with 5 micrograms/ml insulin, 100 nM hydrocortisone and 1 mU/ml TSH.

  3. Characterization of a cell-free protein synthesizing system isolated from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, L.E.; Harper, A.E.

    1987-05-01

    The authors have characterized a cell-free preparation from rat brain that can initiate translation of endogenous mRNAs in vitro and maintain protein synthesis for at least 90 minutes at an optimum temperature of 37C. The essential component of this system is a postmitochondrial supernate (PMS) obtained by centrifuging a whole brain homogenate at 10,000 x g for 10 minutes at 4C. In the presence of phosphocreatine (PC), ATP and GTP there is active incorporation of (TVS)methionine into trichloroacetic acid precipitable protein. Incorporation is sensitive to the concentrations of PC, magnesium and potassium ions and spermidine and is inhibited 50-60% in the presence of 7-methylguanosine 5'-monophosphate, a specific inhibitor of polypeptide chain initiation. The proteolysis of brain protein that occurs when the system is incubated for more than 60 min. can be minimized by adding bovine serum albumin. The addition of 3.0 mM 5'-guanylimidodiphosphate a non-hydrolyzable analog of GTP, blocks incorporation entirely. The phosphocreatine requirement for maintaining an optimum endogenous concentration of GTP is lowered from 10.0 mM to 5.0 mM in the presence of 2.0 mM NADPH. The system that initiates protein synthesis in vitro can be used to study changes in brain protein synthesis as a result of various treatments, and the mechanisms underlying such changes.

  4. Direct protein introduction into plant cells using a multi-gas plasma jet.

    Science.gov (United States)

    Yanagawa, Yuki; Kawano, Hiroaki; Kobayashi, Tomohiro; Miyahara, Hidekazu; Okino, Akitoshi; Mitsuhara, Ichiro

    2017-01-01

    Protein introduction into cells is more difficult in plants than in mammalian cells, although it was reported that protein introduction was successful in shoot apical meristem and leaves only together with a cell-penetrating peptide. In this study, we tried to introduce superfolder green fluorescent protein (sGFP)-fused to adenylate cyclase as a reporter protein without a cell-penetrating peptide into the cells of tobacco leaves by treatment with atmospheric non-thermal plasmas. For this purpose, CO2 or N2 plasma was generated using a multi-gas plasma jet. Confocal microscopy indicated that sGFP signals were observed inside of leaf cells after treatment with CO2 or N2 plasma without substantial damage. In addition, the amount of cyclic adenosine monophosphate (cAMP) formed by the catalytic enzyme adenylate cyclase, which requires cellular calmodulin for its activity, was significantly increased in leaves treated with CO2 or N2 plasma, also indicating the introduction of sGFP-fused adenylate cyclase into the cells. These results suggested that treatment with CO2 or N2 plasma could be a useful technique for protein introduction into plant tissues.

  5. Optimization of Electrospray Ionization by Statistical Design of Experiments and Response Surface Methodology: Protein-Ligand Equilibrium Dissociation Constant Determinations

    Science.gov (United States)

    Pedro, Liliana; Van Voorhis, Wesley C.; Quinn, Ronald J.

    2016-09-01

    Electrospray ionization mass spectrometry (ESI-MS) binding studies between proteins and ligands under native conditions require that instrumental ESI source conditions are optimized if relative solution-phase equilibrium concentrations between the protein-ligand complex and free protein are to be retained. Instrumental ESI source conditions that simultaneously maximize the relative ionization efficiency of the protein-ligand complex over free protein and minimize the protein-ligand complex dissociation during the ESI process and the transfer from atmospheric pressure to vacuum are generally specific for each protein-ligand system and should be established when an accurate equilibrium dissociation constant (KD) is to be determined via titration. In this paper, a straightforward and systematic approach for ESI source optimization is presented. The method uses statistical design of experiments (DOE) in conjunction with response surface methodology (RSM) and is demonstrated for the complexes between Plasmodium vivax guanylate kinase ( PvGK) and two ligands: 5'-guanosine monophosphate (GMP) and 5'-guanosine diphosphate (GDP). It was verified that even though the ligands are structurally similar, the most appropriate ESI conditions for KD determination by titration are different for each.

  6. Treatment with alpha-melanocyte stimulating hormone preserves calcium regulatory proteins in rat heart allografts.

    Science.gov (United States)

    Colombo, Gualtiero; Sordi, Andrea; Lonati, Caterina; Carlin, Andrea; Turcatti, Flavia; Leonardi, Patrizia; Gatti, Stefano; Catania, Anna

    2008-08-01

    Prevention of graft dysfunction is a major objective in transplantation medicine. Previous research on experimental heart transplantation indicated that treatment with the immunomodulatory peptide alpha-melanocyte stimulating hormone (alpha-MSH) improves histopathology, prolongs allograft survival, and reduces expression of the main tissue injury mediators. Because calcium-handling is critical in heart graft function, we determined the effects of transplantation injury and influences of alpha-MSH treatment on representative calcium regulatory proteins in rat heart allografts. Hearts from Brown Norway rats were transplanted heterotopically into MHC incompatible Lewis rats. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), protein kinase C epsilon (PKC epsilon), sarcoplasmic/endoplasmic reticulum calcium-ATPase 2 (SERCA2a), arrestin-beta1 (Arrb1), cholinergic receptor M2 (Chrm2), and inositol 1,4,5-triphosphate receptor 1 (InsP(3)R1) were examined in: (1) non-transplanted donor hearts; (2) allografts from saline-treated rats; and (3) allografts from rats treated with the synthetic alpha-MSH analog Nle4-DPhe7-alpha-MSH (NDP-alpha-MSH) (100 microg i.p. every 12h). Transplantation injury was associated with severe reduction in calcium regulatory protein transcription and expression level. NDP-alpha-MSH administration partly reversed inhibition of protein transcription and almost completely prevented protein loss. Finally, because certain effects of cyclic 3'-5'-adenosine monophosphate (cAMP) signaling on calcium handling in cardiac myocytes depend on activation of exchange protein directly activated by cAMP 1 (Epac1), we determined Epac1 mRNA and protein expression in heart allografts. Transplantation injury markedly reduced Epac1. NDP-alpha-MSH treatment significantly preserved both Epac1 protein and mRNA in the allografts. Administration of alpha-MSH or related melanocortins could reduce transplantation-induced dysfunction through protection of heart calcium

  7. Whey Protein

    Science.gov (United States)

    ... Fraction de Lactosérum, Fraction de Petit-Lait, Goat Milk Whey, Goat Whey, Isolat de Protéine de Lactosérum, Isolat ... Lactosérum de Lait de Chèvre, MBP, Milk Protein, Milk Protein Isolate, Mineral Whey Concentrate, Proteínas del Suero de la Leche, Protéine ...

  8. Glutathione upregulates cAMP signalling via G protein alpha 2 during the development of Dictyostelium discoideum.

    Science.gov (United States)

    Lee, Hyang-Mi; Kim, Ji-Sun; Kang, Sa-Ouk

    2016-12-01

    Despite the importance of glutathione in Dictyostelium, the role of glutathione synthetase (gshB/GSS) has not been clearly investigated. In this study, we observed that increasing glutathione content by constitutive expression of gshB leads to mound-arrest and defects in 3',5'-cyclic adenosine monophosphate (cAMP)-mediated aggregation and developmental gene expression. The overexpression of gpaB encoding G protein alpha 2 (Gα2), an essential component of the cAMP signalling pathway, results in a phenotype similar to that caused by gshB overexpression, whereas gpaB knockdown in gshB-overexpressing cells partially rescues the above-mentioned phenotypic defects. Furthermore, Gα2 is highly enriched at the plasma membrane of gshB-overexpressing cells compared to wild-type cells. Therefore, our findings suggest that glutathione upregulates cAMP signalling via Gα2 modulation during Dictyostelium development. © 2016 Federation of European Biochemical Societies.

  9. Tau protein

    DEFF Research Database (Denmark)

    Frederiksen, Jette Lautrup Battistini; Kristensen, Kim; Bahl, Jmc

    2011-01-01

    Background: Tau protein has been proposed as biomarker of axonal damage leading to irreversible neurological impairment in MS. CSF concentrations may be useful when determining risk of progression from ON to MS. Objective: To investigate the association between tau protein concentration and 14......-3-3 protein in the cerebrospinal fluid (CSF) of patients with monosymptomatic optic neuritis (ON) versus patients with monosymptomatic onset who progressed to multiple sclerosis (MS). To evaluate results against data found in a complete literature review. Methods: A total of 66 patients with MS and/or ON from...... the Department of Neurology of Glostrup Hospital, University of Copenhagen, Denmark, were included. CSF samples were analysed for tau protein and 14-3-3 protein, and clinical and paraclinical information was obtained from medical records. Results: The study shows a significantly increased concentration of tau...

  10. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level.

    Science.gov (United States)

    Ishibashi, Yuji; Nishino, Yuri; Matsui, Takanori; Takeuchi, Masayoshi; Yamagishi, Sho-ichi

    2011-09-01

    Advanced glycation end products (AGE) and receptor for AGE (RAGE) interaction elicits reactive oxygen species (ROS) generation and inflammatory reactions, thereby being involved in the development and progression of diabetic nephropathy. Recently, we, along with others, found that glucagon-like peptide-1 (GLP-1), one of the incretins and a gut hormone secreted from L cells in the intestine in response to food intake, could have anti-inflammatory and antithrombogenic properties in cultured endothelial cells. However, the effects of GLP-1 on renal mesangial cells are largely unknown. Therefore, to elucidate the role of GLP-1 in diabetic nephropathy, this study investigated whether and how GLP-1 blocked AGE-induced monocyte chemoattractant protein-1 expression in human cultured mesangial cells. Gene and protein expression was analyzed by quantitative real-time reverse transcription polymerase chain reactions, Western blots, and enzyme-linked immunosorbent assay. The ROS generation was measured with dihydroethidium staining. Glucagon-like peptide-1 receptor (GLP-1R) was expressed in mesangial cells. Glucagon-like peptide-1 inhibited RAGE gene expression in mesangial cells, which was blocked by small interfering RNAs raised against GLP-1R. Furthermore, GLP-1 decreased ROS generation and subsequently reduced monocyte chemoattractant protein-1 gene and protein expression in AGE-exposed mesangial cells. An analogue of cyclic adenosine monophosphate mimicked the effects of GLP-1 on mesangial cells. Our present study suggests that GLP-1 may directly act on mesangial cells via GLP-1R and that it could work as an anti-inflammatory agent against AGE by reducing RAGE expression via activation of cyclic adenosine monophosphate pathway.

  11. Functional effects of a pathogenic mutation in Cereblon (CRBN) on the regulation of protein synthesis via the AMPK-mTOR cascade.

    Science.gov (United States)

    Lee, Kwang Min; Yang, Seung-Joo; Choi, Ja-Hyun; Park, Chul-Seung

    2014-08-22

    Initially identified as a protein implicated in human mental deficit, cereblon (CRBN) was recently recognized as a negative regulator of adenosine monophosphate-activated protein kinase (AMPK) in vivo and in vitro. Here, we present results showing that CRBN can effectively regulate new protein synthesis through the mammalian target of rapamycin (mTOR) signaling pathway, a downstream target of AMPK. Whereas deficiency of Crbn repressed protein translation via activation of the AMPK-mTOR cascade in Crbn-knock-out mice, ectopic expression of the wild-type CRBN increased protein synthesis by inhibiting endogenous AMPK. Unlike the wild-type CRBN, a mutant CRBN found in human patients, which lacks the last 24 amino acids, failed to rescue mTOR-dependent repression of protein synthesis in Crbn-deficient mouse fibroblasts. These results provide the first evidence that Crbn can activate the protein synthesis machinery through the mTOR signaling pathway by inhibiting AMPK. In light of the fact that protein synthesis regulated by mTOR is essential for various forms of synaptic plasticity that underlie the cognitive functions of the brain, the results of this study suggest a plausible mechanism for CRBN involvement in higher brain function in humans, and they may help explain how a specific mutation in CRBN can affect the cognitive ability of patients.

  12. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    of research are explored. Here we present an overview of the most widely used protein-protein interaction databases and the methods they employ to gather, combine, and predict interactions. We also point out the trade-off between comprehensiveness and accuracy and the main pitfall scientists have to be aware......Years of meticulous curation of scientific literature and increasingly reliable computational predictions have resulted in creation of vast databases of protein interaction data. Over the years, these repositories have become a basic framework in which experiments are analyzed and new directions...

  13. Detection of cyclic diguanylate G-octaplex assembly and interaction with proteins.

    Directory of Open Access Journals (Sweden)

    Ori J Lieberman

    Full Text Available Bacterial signaling networks control a wide variety of cellular processes including growth, metabolism, and pathogenesis. Bis-(3'-5'-cyclic dimeric guanosine monophosphate (cdiGMP is a secondary signaling nucleotide that controls cellulose synthesis, biofilm formation, motility and virulence in a wide range of gram-negative bacterial species. CdiGMP is a dynamic molecule that forms different tertiary structures in vitro, including a trans-monomer, cis-monomer, cis-dimer and G-octaplex (G8. Although the monomer and dimer have been shown to be physiologically relevant in modulating protein activity and transcription, the biological effects of the cdiGMP G8 has not yet been described. Here, we have developed a TLC-based assay to detect radiolabeled cdiGMP G8 formation. Utilizing the radiolabeled cdiGMP G8, we have also shown a novel inhibitory interaction between the cdiGMP G8 and HIV-1 reverse transcriptase and that the cdiGMP G8 does not interact with proteins from Pseudomonas aeruginosa known to bind monomeric and dimeric cdiGMP. These results suggest that the radiolabeled cdiGMP G8 can be used to measure interactions between the cdiGMP G8 and cellular proteins, providing an avenue through which the biological significance of this molecule could be investigated.

  14. Detection of cyclic diguanylate G-octaplex assembly and interaction with proteins.

    Science.gov (United States)

    Lieberman, Ori J; DeStefano, Jeffrey J; Lee, Vincent T

    2013-01-01

    Bacterial signaling networks control a wide variety of cellular processes including growth, metabolism, and pathogenesis. Bis-(3'-5')-cyclic dimeric guanosine monophosphate (cdiGMP) is a secondary signaling nucleotide that controls cellulose synthesis, biofilm formation, motility and virulence in a wide range of gram-negative bacterial species. CdiGMP is a dynamic molecule that forms different tertiary structures in vitro, including a trans-monomer, cis-monomer, cis-dimer and G-octaplex (G8). Although the monomer and dimer have been shown to be physiologically relevant in modulating protein activity and transcription, the biological effects of the cdiGMP G8 has not yet been described. Here, we have developed a TLC-based assay to detect radiolabeled cdiGMP G8 formation. Utilizing the radiolabeled cdiGMP G8, we have also shown a novel inhibitory interaction between the cdiGMP G8 and HIV-1 reverse transcriptase and that the cdiGMP G8 does not interact with proteins from Pseudomonas aeruginosa known to bind monomeric and dimeric cdiGMP. These results suggest that the radiolabeled cdiGMP G8 can be used to measure interactions between the cdiGMP G8 and cellular proteins, providing an avenue through which the biological significance of this molecule could be investigated.

  15. Protein Crystallization

    Science.gov (United States)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  16. Contractility and protein phosphorylation in cardiomyocytes: effects of isoproterenol and AR-L57.

    Science.gov (United States)

    Hayes, J S; Bowling, N; Boder, G B

    1984-08-01

    The cardiotonic drugs AR-L57 [2-(2,4-dimethoxyphenyl)-1H-imidazo(4,5b)-pyridine] and isoproterenol stimulated contractility in cultured heart cells in concentration-dependent manners; only the effects of isoproterenol were blocked by propranolol. Isoproterenol, but not AR-L57, enhanced the phosphorylation state of seven protein bands [relative molecular weights (MrS) 155,000, 96,000, 27,000, 24,000, 20,000, 16,000, 12,000] and resulted in the dephosphorylation of one protein band (Mr 21,000). Also, only isoproterenol increased the activation states of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase and glycogen phosphorylase. The eight protein bands resolved by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and detected by autoradiography were altered by isoproterenol in time- and concentration-dependent manners. The 24,000-Mr protein substrate phosphorylated in response to isoproterenol was converted to a 12,000-Mr species by heating in the presence of SDS prior to electrophoresis, suggesting that the two substrates were in fact identical proteins. A comparison of the 2-min responses to varying concentrations of isoproterenol resulted in excellent correlations between the phosphorylation states of individual protein bands and contractility. This was true even for the 21,000-Mr species that was dephosphorylated. However, only the 27,000-, 24-12,000-, and 16,000-Mr substrates were phosphorylated rapidly enough to be associated with the onset of the inotropic response. Cultured myocytes are an important feature of these studies as they are 84% pure ventricular cells that remain 100% viable throughout an experiment. Because this system is suitable for biochemical measurements and the effects of agents on heart cell contractility can be determined, it is possible to correlate changes in biochemical parameters with alterations in physiological state.

  17. Mechanism of prostaglandin (PG)E2-induced prolactin expression in human T cells: cooperation of two PGE2 receptor subtypes, E-prostanoid (EP) 3 and EP4, via calcium- and cyclic adenosine 5'-monophosphate-mediated signaling pathways.

    Science.gov (United States)

    Gerlo, Sarah; Verdood, Peggy; Gellersen, Birgit; Hooghe-Peters, Elisabeth L; Kooijman, Ron

    2004-11-15

    We previously reported that prolactin gene expression in the T-leukemic cell line Jurkat is stimulated by PGE(2) and that cAMP acts synergistically with Ca(2+) or protein kinase C on the activation of the upstream prolactin promoter. Using the transcription inhibitor actinomycin D, we now show that PGE(2)-induced prolactin expression requires de novo prolactin mRNA synthesis and that PGE(2) does not influence prolactin mRNA stability. Furthermore, PGE(2)-induced prolactin expression was inhibited by protein kinase inhibitor fragment 14-22 and BAPTA-AM, which respectively, inhibit protein kinase A- and Ca(2+)-mediated signaling cascades. Using specific PGE(2) receptor agonists and antagonists, we show that PGE(2) induces prolactin expression through engagement of E-prostanoid (EP) 3 and EP4 receptors. We also found that PGE(2) induces an increase in intracellular cAMP concentration as well as intracellular calcium concentration via EP4 and EP3 receptors, respectively. In transient transfections, 3000 bp flanking the leukocyte prolactin promoter conferred a weak induction of the luciferase reporter gene by PGE(2) and cAMP, whereas cAMP in synergy with ionomycin strongly activated the promoter. Mutation of a C/EBP responsive element at -214 partially abolished the response of the leukocyte prolactin promoter to PGE(2), cAMP, and ionomycin plus cAMP.

  18. Plasmodium falciparum: characterization of toxin-associated proteins and identification of a hemoglobin containing parasite cytokine stimulator

    DEFF Research Database (Denmark)

    Kristensen, G; Jakobsen, P H

    1996-01-01

    ]-methionine and immunoprecipitated the labeled antigens with an antiserum against IMP which blocks malaria parasite-induced TNF production. We detected four proteins associated with IMP when the immunoprecipitates were separated by SDS-PAGE and analyzed by autoradiography. To evaluate the capacity of different P. falciparum...... antigens to induce cytokine production we separated a mixture of exoantigens by SDS-PAGE gels. Antigen fractions of 43-71 kDa and of a low molecular mass of TNF alpha interleukin 1 alpha, and interleukin 6 production from human mononuclear cells. The low......Previous studies have indicated the inositol monophosphate (IMP) is a component of the malaria parasite toxin that induces cytokines such as tumour necrosis factor (TNF). To further characterize the toxin we have labeled Plasmodium falciparum in vitro cultures with [14C]inositol or [35S...

  19. Developmental and Diurnal Dynamics of Pax4 Expression in the Mammalian Pineal Gland: Nocturnal Down-Regulation Is Mediated by Adrenergic-Cyclic Adenosine 3′,5′-Monophosphate Signaling

    OpenAIRE

    Rath, Martin F.; Michael J Bailey; Kim, Jong-So; Ho, Anthony K.; Gaildrat, Pascaline; Coon, Steven L.; Møller, Morten; Klein, David C.

    2008-01-01

    Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland. In this study we report that Pax4 is strongly expressed in the pineal gland and retina of the rat. Pineal Pax4 transcripts are low in the fetus and increase postnatally; Pax6 exhibits an inverse pattern of expression, being more strongly expressed in the fetus. In ...

  20. Structure-activity relationships of fatty acid amide ligands in activating and desensitizing G protein-coupled receptor 119.

    Science.gov (United States)

    Kumar, Pritesh; Kumar, Akhilesh; Song, Zhao-Hui

    2014-01-15

    The purpose of the current study was to apply a high throughput assay to investigate the structure-activity relationships of fatty acid amides for activating and desensitizing G protein-coupled receptor 119, a promising therapeutic target for both type 2 diabetes and obesity. A cell-based, homogenous time resolved fluorescence (HTRF) method for measuring G protein-coupled receptor 119-mediated increase of cyclic adenosine monophosphate (cAMP) levels was validated and applied in this study. Using novel fatty acid amides and detailed potency and efficacy analyses, we have demonstrated that degree of saturation in acyl chain and charged head groups of fatty acid amides have profound effects on the ability of these compounds to activate G protein-coupled receptor 119. In addition, we have demonstrated for the first time that pretreatments with G protein-coupled receptor 119 agonists desensitize the receptor and the degrees of desensitization caused by fatty acid amides correlate well with their structure-activity relationships in activating the receptor.

  1. Protein Kinase N2 Regulates AMP-Kinase Signaling and Insulin Responsiveness of Glucose Metabolism in Skeletal Muscle.

    Science.gov (United States)

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-07-18

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. As skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. While Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5' adenosine monophosphate-activated protein kinase (AMPK) signaling, while stimulating fatty acid oxidation and incorporation into triglycerides, and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC1α and SREBP1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017, American Journal of Physiology-Endocrinology and Metabolism.

  2. Piceatannol Exerts Anti-Obesity Effects in C57BL/6 Mice through Modulating Adipogenic Proteins and Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Yen-Chen Tung

    2016-10-01

    Full Text Available Obesity is a global health concern. Piceatannol (Pic, an analog of resveratrol (Res, has many reported biological activities. In this study, we investigated the anti-obesity effect of Pic in a high-fat diet (HFD-induced obese animal model. The results showed that Pic significantly reduced mouse body weight in a dose-dependent manner without affecting food intake. Serum total cholesterol (TC, low-density lipoprotein (LDL, high-density lipoprotein (HDL levels, and blood glucose (GLU were significantly lowered in Pic-treated groups. Pic significantly decreased the weight of liver, spleen, perigonadal and retroperitoneal fat compared with the HFD group. Pic significantly reduced the adipocyte cell size of perigonadal fat and decreased the weight of liver. Pic-treated mice showed higher phosphorylated adenosine 5′-monophosphate-activated protein kinase (pAMPK and phosphorylated acetyl-CoA carboxylase (pACC protein levels and decreased protein levels of CCAAT/enhancer-binding protein C/EBPα, peroxisome proliferator-activated receptor PPARγ and fatty acid synthase (FAS, resulting in decreased lipid accumulation in adipocytes and the liver. Pic altered the composition of the gut microbiota by increasing Firmicutes and Lactobacillus and decreasing Bacteroidetes compared with the HFD group. Collectively, these results suggest that Pic may be a candidate for obesity treatment.

  3. Piceatannol Exerts Anti-Obesity Effects in C57BL/6 Mice through Modulating Adipogenic Proteins and Gut Microbiota.

    Science.gov (United States)

    Tung, Yen-Chen; Lin, Yu-Hsuan; Chen, Hong-Jhang; Chou, Shen-Chieh; Cheng, An-Chin; Kalyanam, Nagabhushanam; Ho, Chi-Tang; Pan, Min-Hsiung

    2016-10-25

    Obesity is a global health concern. Piceatannol (Pic), an analog of resveratrol (Res), has many reported biological activities. In this study, we investigated the anti-obesity effect of Pic in a high-fat diet (HFD)-induced obese animal model. The results showed that Pic significantly reduced mouse body weight in a dose-dependent manner without affecting food intake. Serum total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL) levels, and blood glucose (GLU) were significantly lowered in Pic-treated groups. Pic significantly decreased the weight of liver, spleen, perigonadal and retroperitoneal fat compared with the HFD group. Pic significantly reduced the adipocyte cell size of perigonadal fat and decreased the weight of liver. Pic-treated mice showed higher phosphorylated adenosine 5'-monophosphate-activated protein kinase (pAMPK) and phosphorylated acetyl-CoA carboxylase (pACC) protein levels and decreased protein levels of CCAAT/enhancer-binding protein C/EBPα, peroxisome proliferator-activated receptor PPARγ and fatty acid synthase (FAS), resulting in decreased lipid accumulation in adipocytes and the liver. Pic altered the composition of the gut microbiota by increasing Firmicutes and Lactobacillus and decreasing Bacteroidetes compared with the HFD group. Collectively, these results suggest that Pic may be a candidate for obesity treatment.

  4. Comparison of antigenic proteins from Lactococcus garvieae KG- and KG+ strains that are recognized by olive flounder (Paralichthys olivaceus) antibodies.

    Science.gov (United States)

    Shin, Gee-Wook; Nho, Seong-Won; Park, Seong-Bin; Jang, Ho-Bin; Cha, In-Seok; Ha, Mi-Ae; Kim, Young-Rim; Dalvi, Rishikesh S; Joh, Seong-Joon; Jung, Tae-Sung

    2009-10-20

    Lactococcus garvieae is an important etiological agent of lactococcosis in various fish species including olive flounder (Paralichthys olivaceus). In this study, proteomic and immunoproteomic analyses were employed to compare the antigenic profiles of strains KG9408, MS93003, and NSS9310 strains of L. garvieae. Proteomic analysis using two-dimensional gel electrophoresis (2-DE) revealed differences in five protein spots among the different L. garvieae strains. In immunoproteomic analysis, there was a significant difference in the 2-DE immunoblot profiles of the L. garvieae strains using sera collected from fish surviving infection with either L. garvieae strains KG9408 or NSS9310. These sera reacted with 8 and 7 unique antigenic protein spots, respectively. Heat shock protein (HSP) 70 and DNA-directed RNA polymerase were among the specific antigens recognized by the anti-NSS9310 serum. In addition, the anti-NSS9310 and anti-KG9408 olive flounder sera reacted with 25 common antigenic protein spots of all the L. garvieae strains, which included elongation factor (EF)-Tu, arginine deiminase (AD), inosine-5'-monophosphate dehydrogenase (IMPD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphomannomutase (PMM), L-lactate dehydrogenase (L-LDH), 6-phosphofructokinase and UDP-galactose 4-epimerase (UDP-galactose). Based on the present results, the 8 antigens recognized by the anti-KG9408 serum and the 25 common antigens recognized by both sera may serve as potential markers for developing an effective vaccine against this bacterium.

  5. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells.

    Science.gov (United States)

    Arriola Benitez, Paula Constanza; Rey Serantes, Diego; Herrmann, Claudia Karina; Pesce Viglietti, Ayelén Ivana; Vanzulli, Silvia; Giambartolomei, Guillermo Hernán; Comerci, Diego José; Delpino, María Victoria

    2015-12-14

    The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway.

  6. Protein inference: A protein quantification perspective.

    Science.gov (United States)

    He, Zengyou; Huang, Ting; Liu, Xiaoqing; Zhu, Peijun; Teng, Ben; Deng, Shengchun

    2016-08-01

    In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/.

  7. Phosphoramidate pronucleotides: a comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins.

    Science.gov (United States)

    Chou, Tsui-Fen; Baraniak, Janina; Kaczmarek, Renata; Zhou, Xin; Cheng, Jilin; Ghosh, Brahma; Wagner, Carston R

    2007-01-01

    To facilitate the delivery of nucleotide-based therapeutics to cells and tissues, a variety of pronucleotide approaches have been developed. Our laboratory and others have demonstrated that nucleoside phosphoramidates can be activated intracellularly to the corresponding 5'-monophosphate nucleotide and that histidine triad nucleotide binding proteins (Hints) are potentially responsible for their bioactivation. Hints are conserved and ubiquitous enzymes that hydrolyze phosphoramidate bonds between nucleoside 5'-monophosphate and an amine leaving group. On the basis of the ability of nucleosides to quench the fluorescence of covalently linked amines containing indole, a sensitive, continuous fluorescence-based assay was developed. A series of substrates linking the naturally fluorogenic indole derivatives to nucleoside 5'-monophosphates were synthesized, and their steady state kinetic parameters of hydrolysis by human Hint1 and Escherichia coli hinT were evaluated. To characterize the elemental and stereochemical effect on the reaction, two P-diastereoisomers of adenosine or guanosine phosphoramidothioates were synthesized and studied to reveal a 15-200-fold decrease in the specificity constant (kcat/Km) when the phosphoryl oxygen is replaced with sulfur. While a stereochemical preference was not observed for E. coli hinT, hHint1 exhibited a 300-fold preference for d-tryptophan phosphoramidates over l-isomers. The most efficient substrates evaluated to date are those that contain the less sterically hindering amine leaving group, tryptamine, with kcat and Km values comparable to those found for adenosine kinase. The apparent second-order rate constants (kcat/Km) for adenosine tryptamine phosphoramidate monoester were found to be 107 M-1 s-1 for hHint1 and 106 M-1 s-1 for E. coli hinT. Both the human and E. coli enzymes preferred purine over pyrimidine analogues. Consistent with observed hydrogen bonding between the 2'-OH group of adenosine monophosphate and the

  8. Spatiotemporal and functional characterisation of the Plasmodium falciparum cGMP-dependent protein kinase.

    Directory of Open Access Journals (Sweden)

    Christine S Hopp

    Full Text Available Signalling by 3'-5'-cyclic guanosine monophosphate (cGMP exists in virtually all eukaryotes. In the apicomplexan parasite Plasmodium, the cGMP-dependent protein kinase (PKG has previously been reported to play a critical role in four key stages of the life cycle. The Plasmodium falciparum isoform (PfPKG is essential for the initiation of gametogenesis and for blood stage schizont rupture and work on the orthologue from the rodent malaria parasite P. berghei (PbPKG has shown additional roles in ookinete differentiation and motility as well as liver stage schizont development. In the present study, PfPKG expression and subcellular location in asexual blood stages was investigated using transgenic epitope-tagged PfPKG-expressing P. falciparum parasites. In Western blotting experiments and immunofluorescence analysis (IFA, maximal PfPKG expression was detected at the late schizont stage. While IFA suggested a cytosolic location, a degree of overlap with markers of the endoplasmic reticulum (ER was found and subcellular fractionation showed some association with the peripheral membrane fraction. This broad localisation is consistent with the notion that PfPKG, as with the mammalian orthologue, has numerous cellular substrates. This idea is further supported by the global protein phosphorylation pattern of schizonts which was substantially changed following PfPKG inhibition, suggesting a complex role for PfPKG during schizogony.

  9. Effect of Purified Mushroom Tyrosinase on Melanin Content and Melanogenic Protein Expression

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2016-01-01

    Full Text Available In mammalian melanocytes, melanosome is a highly specialized organelle where melanin is synthesized. Melanin synthesis is controlled by tyrosinase, the vital enzyme in melanogenic pathway. The present investigation is based on an effect of purified mushroom tyrosinase of Agaricus bisporus on B16F10 melanocytes for the melanin production via blocking pigment cell machinery. Using B16F10 melanocytes showed that the stimulation of melanogenesis by purified tyrosinase is due to increased tyrosinase absorption. Cellular tyrosinase activity and melanin content in B16F10 melanocytes were increased by purified tyrosinase in a dose-dependent manner. Western blot analysis revealed that cellular tyrosinase levels were enhanced after treatment with purified tyrosinase for 48 hours. Furthermore, tyrosinase induced phosphorylation of cyclic adenosine monophosphate (cAMP response element-binding protein (CREB in a dose-dependent manner. The purified tyrosinase-mediated increase of tyrosinase activity was significantly attenuated by H89, LY294002, Ro-32-0432, and PD98059, cAMP-dependent protein kinase inhibitors. The results indicate that purified tyrosinase can be used as contestant for the treatment of vitiligous skin conditions.

  10. Elucidating biological risk factors in suicide: role of protein kinase A.

    Science.gov (United States)

    Dwivedi, Yogesh; Pandey, Ghanshyam N

    2011-06-01

    Suicide is a major public health concern. Although there have been several studies of suicidal behavior that focused on the roles of psychosocial and sociocultural factors, these factors are of too little predictive value to be clinically useful. Therefore, research on the biological perspective of suicide has gained a stronghold and appears to provide a promising approach to identify biological risk factors associated with suicidal behavior. Recent studies demonstrate that an alteration in synaptic and structural plasticity is key to affective illnesses and suicide. Signal transduction molecules play an important role in such plastic events. Protein kinase A (PKA) is a crucial enzyme in the adenylyl cyclase signal transduction pathway and is involved in regulating gene transcription, cell survival, and plasticity. In this review, we critically and comprehensively discuss the role of PKA in suicidal behavior. Because stress is an important component of suicide, we also discuss whether stress affects PKA and how this may be associated with suicidal behavior. In addition, we also discuss the functional significance of the findings regarding PKA by describing the role of important PKA substrates (i.e., Rap1, cyclic adenosine monophosphate response element binding protein, and target gene brain-derived neurotrophic factor). These studies suggest the interesting possibility that PKA and related signaling molecules may serve as important neurobiological factors in suicide and may be relevant in target-specific therapeutic interventions for these disorders.

  11. Effect of Purified Mushroom Tyrosinase on Melanin Content and Melanogenic Protein Expression

    Science.gov (United States)

    Ali, Ayesha S.

    2016-01-01

    In mammalian melanocytes, melanosome is a highly specialized organelle where melanin is synthesized. Melanin synthesis is controlled by tyrosinase, the vital enzyme in melanogenic pathway. The present investigation is based on an effect of purified mushroom tyrosinase of Agaricus bisporus on B16F10 melanocytes for the melanin production via blocking pigment cell machinery. Using B16F10 melanocytes showed that the stimulation of melanogenesis by purified tyrosinase is due to increased tyrosinase absorption. Cellular tyrosinase activity and melanin content in B16F10 melanocytes were increased by purified tyrosinase in a dose-dependent manner. Western blot analysis revealed that cellular tyrosinase levels were enhanced after treatment with purified tyrosinase for 48 hours. Furthermore, tyrosinase induced phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in a dose-dependent manner. The purified tyrosinase-mediated increase of tyrosinase activity was significantly attenuated by H89, LY294002, Ro-32-0432, and PD98059, cAMP-dependent protein kinase inhibitors. The results indicate that purified tyrosinase can be used as contestant for the treatment of vitiligous skin conditions. PMID:27699070

  12. Protein immobilization strategies for protein biochips

    NARCIS (Netherlands)

    Rusmini, F.; Rusmini, Federica; Zhong, Zhiyuan; Feijen, Jan

    2007-01-01

    In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein

  13. Protein immobilization strategies for protein biochips

    NARCIS (Netherlands)

    Rusmini, F.; Rusmini, Federica; Zhong, Zhiyuan; Feijen, Jan

    2007-01-01

    In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein i

  14. Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins

    KAUST Repository

    Marondedze, Claudius

    2013-01-05

    Background: Increasing structural and biochemical evidence suggests that post-translational methionine oxidation of proteins is not just a result of cellular damage but may provide the cell with information on the cellular oxidative status. In addition, oxidation of methionine residues in key regulatory proteins, such as calmodulin, does influence cellular homeostasis. Previous findings also indicate that oxidation of methionine residues in signaling molecules may have a role in stress responses since these specific structural modifications can in turn change biological activities of proteins. Findings. Here we use tandem mass spectrometry-based proteomics to show that treatment of Arabidopsis thaliana cells with a non-oxidative signaling molecule, the cell-permeant second messenger analogue, 8-bromo-3,5-cyclic guanosine monophosphate (8-Br-cGMP), results in a time-dependent increase in the content of oxidised methionine residues. Interestingly, the group of proteins affected by cGMP-dependent methionine oxidation is functionally enriched for stress response proteins. Furthermore, we also noted distinct signatures in the frequency of amino acids flanking oxidised and un-oxidised methionine residues on both the C- and N-terminus. Conclusions: Given both a structural and functional bias in methionine oxidation events in response to a signaling molecule, we propose that these are indicative of a specific role of such post-translational modifications in the direct or indirect regulation of cellular responses. The mechanisms that determine the specificity of the modifications remain to be elucidated. 2013 Marondedze et al.; licensee BioMed Central Ltd.

  15. AMP N1-Oxide, a Unique Compound of Royal Jelly, Induces Neurite Outgrowth from PC12 Vells via Signaling by Protein Kinase A Independent of that by Mitogen-Activated Protein Kinase

    Directory of Open Access Journals (Sweden)

    Noriko Hattori

    2010-01-01

    Full Text Available Earlier we identified adenosine monophosphate (AMP N1-oxide as a unique compound of royal jelly (RJ that induces neurite outgrowth (neuritegenesis from cultured rat pheochromocytoma PC12 cells via the adenosine A2A receptor. Now, we found that AMP N1-oxide stimulated the phosphorylation of not only mitogen-activated protein kinase (MAPK but also that of cAMP/calcium-response element-binding protein (CREB in a dose-dependent manner. Inhibition of MAPK activation by a MEK inhibitor, PD98059, did not influence the AMP N1-oxide-induced neuritegenesis, whereas that of protein kinase A (PKA by a selective inhibitor, KT5720, significantly reduced neurite outgrowth. AMP N1-oxide also had the activity of suppressing the growth of PC12 cells, which correlated well with the neurite outgrowth-promoting activity. KT5720 restored the growth of AMP N1-oxide-treated PC12 cells. It is well known that nerve growth factor suppresses proliferation of PC12 cells before causing stimulation of neuronal differentiation. Thus, AMP N1-oxide elicited neuronal differentiation of PC12 cells, as evidenced by generation of neurites, and inhibited cell growth through adenosine A2A receptor-mediated PKA signaling, which may be responsible for characteristic actions of RJ.

  16. Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor

    Science.gov (United States)

    Vijayaraj, Preethi; Kröger, Cornelia; Reuter, Ursula; Windoffer, Reinhard; Leube, Rudolf E.

    2009-01-01

    Keratin intermediate filament proteins form cytoskeletal scaffolds in epithelia, the disruption of which affects cytoarchitecture, cell growth, survival, and organelle transport. However, owing to redundancy, the global function of keratins has not been defined in full. Using a targeted gene deletion strategy, we generated transgenic mice lacking the entire keratin multiprotein family. In this study, we report that without keratins, embryonic epithelia suffer no cytolysis and maintain apical polarity but display mislocalized desmosomes. All keratin-null embryos die from severe growth retardation at embryonic day 9.5. We find that GLUT1 and -3 are mislocalized from the apical plasma membrane in embryonic epithelia, which subsequently activates the energy sensor adenosine monophosphate kinase (AMPK). Analysis of the mammalian target of rapamycin (mTOR) pathway reveals that AMPK induction activates Raptor, repressing protein biosynthesis through mTORC1's downstream targets S6 kinase and 4E-binding protein 1. Our findings demonstrate a novel keratin function upstream of mTOR signaling via GLUT localization and have implications for pathomechanisms and therapy approaches for keratin disorders and the analysis of other gene families. PMID:19841136

  17. Sarco(endo)plasmic reticulum ATPase is a molecular partner of Wolfram syndrome 1 protein, which negatively regulates its expression.

    Science.gov (United States)

    Zatyka, Malgorzata; Da Silva Xavier, Gabriela; Bellomo, Elisa A; Leadbeater, Wendy; Astuti, Dewi; Smith, Joel; Michelangeli, Frank; Rutter, Guy A; Barrett, Timothy G

    2015-02-01

    Wolfram syndrome is an autosomal recessive disorder characterized by neurodegeneration and diabetes mellitus. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER)-resident transmembrane protein that is involved in the regulation of the unfolded protein response (UPR), intracellular ion homeostasis, cyclic adenosine monophosphate production and regulation of insulin biosynthesis and secretion. In this study, single cell Ca(2+) imaging with fura-2 and direct measurements of free cytosolic ATP concentration ([ATP]CYT) with adenovirally expressed luciferase confirmed a reduced and delayed rise in cytosolic free Ca(2+) concentration ([Ca(2+)]CYT), and additionally, diminished [ATP]CYT rises in response to elevated glucose concentrations in WFS1-depleted MIN6 cells. We also observed that sarco(endo)plasmic reticulum ATPase (SERCA) expression was elevated in several WFS1-depleted cell models and primary islets. We demonstrated a novel interaction between WFS1 and SERCA by co-immunoprecipitation in Cos7 cells and with endogenous proteins in human neuroblastoma cells. This interaction was reduced when cells were treated with the ER stress inducer dithiothreitol. Treatment of WFS1-depleted neuroblastoma cells with the proteasome inhibitor MG132 resulted in reduced accumulation of SERCA levels compared with wild-type cells. Together these results reveal a role for WFS1 in the negative regulation of SERCA and provide further insights into the function of WFS1 in calcium homeostasis.

  18. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3',5'-monophosphate signaling.

    Science.gov (United States)

    Rath, Martin F; Bailey, Michael J; Kim, Jong-So; Ho, Anthony K; Gaildrat, Pascaline; Coon, Steven L; Møller, Morten; Klein, David C

    2009-02-01

    Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland. In this study we report that Pax4 is strongly expressed in the pineal gland and retina of the rat. Pineal Pax4 transcripts are low in the fetus and increase postnatally; Pax6 exhibits an inverse pattern of expression, being more strongly expressed in the fetus. In the adult the abundance of Pax4 mRNA exhibits a diurnal rhythm in the pineal gland with maximal levels occurring late during the light period. Sympathetic denervation of the pineal gland by superior cervical ganglionectomy prevents the nocturnal decrease in pineal Pax4 mRNA. At night the pineal gland is adrenergically stimulated by release of norepinephrine from the sympathetic innervation; here, we found that treatment with adrenergic agonists suppresses pineal Pax4 expression in vivo and in vitro. This suppression appears to be mediated by cAMP, a second messenger of norepinephrine in the pineal gland, based on the observation that treatment with a cAMP mimic reduces pineal Pax4 mRNA levels. These findings suggest that the nocturnal decrease in pineal Pax4 mRNA is controlled by the sympathetic neural pathway that controls pineal function acting via an adrenergic-cAMP mechanism. The daily changes in Pax4 expression may influence gene expression in the pineal gland.

  19. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  20. Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases

    Institute of Scientific and Technical Information of China (English)

    Debby Ickowicz; Maya Finkelstein; Haim Breitbart

    2012-01-01

    Mammalian sperm must undergo a series of biochemical and physiological modifications,collectively called capacitation,in the female reproductive tract prior to the acrosome reaction (AR).The mechanisms of these modifications are not well characterized though protein kinases were shown to be involved in the regulation of intracellular Ca2+ during both capacitation and the AR.In the present review,we summarize some of the signaling events that are involved in capacitation.During the capacitation process,phosphatidyl-inositol-3-kinase (P13K) is phosphorylated/activated via a protein kinase A (PKA)-dependent cascade,and downregulated by protein kinase C α (PKCα).PKCα is active at the beginning of capacitation,resulting in P13K inactivation.During capacitation,PKCα as well as PP1γ2 is degraded by a PKA-dependent mechanism,allowing the activation of P13K.The activation of PKA during capacitation depends mainly on cyclic adenosine monophosphate (cAMP) produced by the bicarbonate-dependent soluble adenylyl cyclase.This activation of PKA leads to an increase in actin polymerization,an essential process for the development of hyperactivated motility,which is necessary for successful fertilization.Actin polymerization is mediated by PIP2 in two ways:first,P(I)P2 acts as a cofactor for phospholipase D (PLD) activation,and second,as a molecule that binds and inhibits actin-severing proteins such as gelsolin.Tyrosine phosphorylation of gelsolin during capacitation by Src family kinase (SFK) is also important for its inactivation.Prior to the AR,gelsolin is released from P(I)P2 and undergoes dephosphorylation/activation,resulting in fast F-actin depolymerization,leading to the AR.

  1. cAMP-binding proteins in medullary tubules from rat kidney: effect of ADH

    Energy Technology Data Exchange (ETDEWEB)

    Gapstur, S.M.; Homma, S.; Dousa, T.P.

    1988-08-01

    Little is known of the regulatory steps in the cellular action of vasopressin (AVP) on the renal epithelium, subsequent to the cAMP generation. We studied cAMP-binding proteins in the medullary collecting tubule (MCT) and the thick ascending limb of Henle's loop (MTAL) microdissected from the rat kidney by use of photoaffinity labeling. Microdissected tubules were homogenized and photoaffinity labeled by incubation with 1 microM 32P-labeled 8-azido-adenosine 3',5'-cyclic monophosphate (N3-8-(32P)-cAMP); the incorporated 32P was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Both in MCT and MTAL preparations, the analyses showed incorporation of N3-8-(32P)cAMP into two bands (Mr = 49,000 and Mr = 55,000) that comigrated with standards of the cAMP-dependent protein kinase regulatory subunits RI and RII. In MCT, most of the 32P (80%) was incorporated into RI, whereas in MTAL the 32P incorporated into RI and RII was equivalent. When freshly dissected MCT segments were incubated with 10(-12)-10(-6) M AVP, the subsequent photoaffinity labeling of RI with N3-8-(32P)cAMP was markedly diminished in a dose-dependent manner compared with controls. Our results suggest that cAMP binds in MCT and MTAL to regulatory subunits RI and RII of cAMP-dependent protein kinase. However, in MCT the dominant type of cAMP-dependent protein kinase appears to be type I. The outlined procedure is suitable to indirectly measure the occupancy of RI by endogenous cAMP generated in MCT cells in response to physiological levels (10(-12) M) of AVP.

  2. G Protein-Linked Signaling Pathways in Bipolar and Major Depressive Disorders

    Directory of Open Access Journals (Sweden)

    Hiroaki eTomita

    2013-12-01

    Full Text Available The G-protein linked signaling system (GPLS comprises a large number of G-proteins, G protein-coupled receptors (GPCRs, GPCR ligands, and downstream effector molecules. G-proteins interact with both GPCRs and downstream effectors such as cyclic adenosine monophosphate (cAMP, phosphatidylinositols, and ion channels. The GPLS is implicated in the pathophysiology and pharmacology of both major depressive disorder (MDD and bipolar disorder (BPD. This study evaluated whether GPLS is altered at the transcript level. The gene expression in the dorsolateral prefrontal (DLPFC and anterior cingulate (ACC were compared from MDD, BPD, and control subjects using Affymetrix Gene Chips and real time quantitative PCR. High quality brain tissue was used in the study to control for confounding effects of agonal events, tissue pH, RNA integrity, gender, and age. GPLS signaling transcripts were altered especially in the ACC of BPD and MDD subjects. Transcript levels of molecules which repress cAMP activity were increased in BPD and decreased in MDD. Two orphan GPCRs, GPRC5B and GPR37, showed significantly decreased expression levels in MDD, and significantly increased expression levels in BPD. Our results suggest opposite changes in BPD and MDD in the GPLS, ‘activated’ cAMP signaling activity in BPD and ‘blunted’ cAMP signaling activity in MDD. GPRC5B and GPR37 both appear to have behavioral effects, and are also candidate genes for neurodegenerative disorders. In the context of the opposite changes observed in BPD and MDD, these GPCRs warrant further study of their brain effects.

  3. Molecular principles of protein stability and protein-protein interactions

    OpenAIRE

    Lendel, Christofer

    2005-01-01

    Proteins with highly specific binding properties constitute the basis for many important applications in biotechnology and medicine. Immunoglobulins have so far been the obvious choice but recent advances in protein engineering have provided several novel constructs that indeed challenge antibodies. One class of such binding proteins is based on the 58 residues three-helix bundle Z domain from staphylococcal protein A (SPA). These so-called affibodies are selected from libraries containing Z ...

  4. Small heat shock proteins, protein degradation and protein aggregation diseases

    NARCIS (Netherlands)

    Vos, Michel J.; Zijlstra, Marianne P.; Carra, Serena; Sibon, Ody C. M.; Kampinga, Harm H.

    Small heat shock proteins have been characterized in vitro as ATP-independent molecular chaperones that can prevent aggregation of un- or misfolded proteins and assist in their refolding with the help of ATP-dependent chaperone machines (e. g., the Hsp70 proteins). Comparison of the functionality of

  5. EDITORIAL: Precision proteins Precision proteins

    Science.gov (United States)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  6. Fusion-protein-assisted protein crystallization.

    Science.gov (United States)

    Kobe, Bostjan; Ve, Thomas; Williams, Simon J

    2015-07-01

    Fusion proteins can be used directly in protein crystallization to assist crystallization in at least two different ways. In one approach, the `heterologous fusion-protein approach', the fusion partner can provide additional surface area to promote crystal contact formation. In another approach, the `fusion of interacting proteins approach', protein assemblies can be stabilized by covalently linking the interacting partners. The linker connecting the proteins plays different roles in the two applications: in the first approach a rigid linker is required to reduce conformational heterogeneity; in the second, conversely, a flexible linker is required that allows the native interaction between the fused proteins. The two approaches can also be combined. The recent applications of fusion-protein technology in protein crystallization from the work of our own and other laboratories are briefly reviewed.

  7. Scaffolds for blocking protein-protein interactions.

    Science.gov (United States)

    Hershberger, Stefan J; Lee, Song-Gil; Chmielewski, Jean

    2007-01-01

    Due to the pivotal roles that protein-protein interactions play in a plethora of biological processes, the design of therapeutic agents targeting these interactions has become an attractive and important area of research. The development of such agents is faced with a variety of challenges. Nevertheless, considerable progress has been made in the design of proteomimetics capable of disrupting protein-protein interactions. Those inhibitors based on molecular scaffold designs hold considerable interest because of the ease of variation in regard to their displayed functionality. In particular, protein surface mimetics, alpha-helical mimetics, beta-sheet/beta-strand mimetics, as well as beta-turn mimetics have successfully modulated protein-protein interactions involved in such diseases as cancer and HIV. In this review, current progress in the development of molecular scaffolds designed for the disruption of protein-protein interactions will be discussed with an emphasis on those active against biological targets.

  8. Synthesis, structure and NMR characterization of a new monomeric aluminophosphate [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 containing four different types of monophosphates

    Science.gov (United States)

    Chen, Peng; Li, Jiyang; Xu, Jun; Duan, Fangzheng; Deng, Feng; Xu, Ruren

    2009-03-01

    A new zero-dimensional (0D) aluminophosphate monomer [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 (designated AlPO-CJ38) with Al/P ratio of 1/6 has been solvothermally prepared by using racemic cobalt complex dl-Co(en) 3Cl 3 as the template. The Al atom is octahedrally linked to six P atoms via bridging oxygen atoms, forming a unique [Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2] 6- monomer. Notably, there exists intramolecular symmetrical O⋯H⋯O bonds, which results in pseudo-4-rings stabilized by the strong H-bonding interactions. The structure is also featured by the existence of four different types of monophosphates that have been confirmed by 31P NMR and 1H NMR spectra. The crystal data are as follows: AlPO-CJ38, [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4, M = 1476.33, monoclinic, C2/ c (No. 15), a = 36.028(7) Å, b = 8.9877(18) Å, c = 16.006(3) Å, β = 100.68(3)°, U = 5093.2(18) Å 3,Z = 4, R1 = 0.0509 ( I > 2 σ( I)) and wR2 = 0.1074 (all data). CCDC number 689491.

  9. Molecular cloning, sequence analysis and expression of genome segment 7 (S7) of Antheraea mylitta cypovirus (AmCPV) that encodes a viral structural protein.

    Science.gov (United States)

    Chavali, Venkata Ramana Murthy; Ghosh, Ananta K

    2007-10-01

    The Genome segment 7 (S7) of the 11 double stranded RNA genomes from Antheraea mylitta cypovirus (AmCPV) was converted to cDNA, cloned and sequenced. The nucleotide sequence showed that segment 7 consisted of 1789 nucleotides with an ORF of 530 amino acids and could encode a protein of approximately 61 kDa, termed P61. The 5' terminal sequence, AGTAAT and the 3' terminal sequence, AGAGC of the plus strand was found to be the same as genome segment 10 of AmCPV encoding polyhedrin. No sequence similarity was found by searching nucleic acid and protein sequence databases using BLAST. The secondary structure prediction showed the presence of 17 alpha-helices, 18 extended beta-sheets along the entire length of P61. The ORF of segment 7 was expressed in E. coli as His-tagged fusion protein, purified through Ni-NTA chromatography, and polyclonal antibody was raised in rabbit indicating that P61 is immunogenic. Immunoblot analysis using this antibody on viral infected cells as well as purified polyhedra showed that P61 is a viral structural protein. Motif scan search showed some similarity of P61 with Inosine monophosphate dehydrogenase (IMPDH) cystathionine-beta-synthase (CBS) domain at the C-terminus and it was hypothesized that by binding to single stranded viral RNA through its CBS domain P61 may help in virus replication or transcription.

  10. Low-ω3 Fatty Acid and Soy Protein Attenuate Alcohol-Induced Fatty Liver and Injury by Regulating the Opposing Lipid Oxidation and Lipogenic Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Karina Reyes-Gordillo

    2016-01-01

    Full Text Available Chronic ethanol-induced downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β affect hepatic lipid oxidation and lipogenesis, respectively, leading to fatty liver injury. Low-ω3 fatty acid (Low-ω3FA that primarily regulates PGC1α and soy protein (SP that seems to have its major regulatory effect on PGC1β were evaluated for their protective effects against ethanol-induced hepatosteatosis in rats fed with Lieber-deCarli control or ethanol liquid diets with high or low ω3FA fish oil and soy protein. Low-ω3FA and SP opposed the actions of chronic ethanol by reducing serum and liver lipids with concomitant decreased fatty liver. They also prevented the downregulation of hepatic Sirtuin 1 (SIRT1 and PGC1α and their target fatty acid oxidation pathway genes and attenuated the upregulation of hepatic PGC1β and sterol regulatory element-binding protein 1c (SREBP1c and their target lipogenic pathway genes via the phosphorylation of 5′ adenosine monophosphate-activated protein kinase (AMPK. Thus, these two novel modulators attenuate ethanol-induced hepatosteatosis and consequent liver injury potentially by regulating the two opposing lipid oxidation and lipogenic pathways.

  11. Comprehensive overexpression analysis of cyclic-di-GMP signalling proteins in the phytopathogen Pectobacterium atrosepticum reveals diverse effects on motility and virulence phenotypes.

    Science.gov (United States)

    Tan, H; West, J A; Ramsay, J P; Monson, R E; Griffin, J L; Toth, I K; Salmond, G P C

    2014-07-01

    Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous bacterial signalling molecule produced by diguanylate cyclases of the GGDEF-domain family. Elevated c-di-GMP levels or increased GGDEF protein expression is frequently associated with the onset of sessility and biofilm formation in numerous bacterial species. Conversely, phosphodiesterase-dependent diminution of c-di-GMP levels by EAL- and HD-GYP-domain proteins is often accompanied by increased motility and virulence. In this study, we individually overexpressed 23 predicted GGDEF, EAL or HD-GYP-domain proteins encoded by the phytopathogen Pectobacterium atrosepticum strain SCRI1043. MS-based detection of c-di-GMP and 5'-phosphoguanylyl-(3'-5')-guanosine in these strains revealed that overexpression of most genes promoted modest 1-10-fold changes in cellular levels of c-di-GMP, with the exception of the GGDEF-domain proteins ECA0659 and ECA3374, which induced 1290- and 7660-fold increases, respectively. Overexpression of most EAL domain proteins increased motility, while overexpression of most GGDEF domain proteins reduced motility and increased poly-β-1,6-N-acetyl-glucosamine-dependent flocculation. In contrast to domain-based predictions, overexpression of the EAL protein ECA3549 or the HD-GYP protein ECA3548 increased c-di-GMP concentrations and reduced motility. Most overexpression constructs altered the levels of secreted cellulases, pectinases and proteases, confirming c-di-GMP regulation of virulence in Pe. atrosepticum. However, there was no apparent correlation between virulence-factor induction and the domain class expressed or cellular c-di-GMP levels, suggesting that regulation was in response to specific effectors within the network, rather than total c-di-GMP concentration. Finally, we demonstrated that the cellular localization patterns vary considerably for GGDEF/EAL/HD-GYP proteins, indicating it is a likely factor restricting specific interactions within the c

  12. Green tea catechins enhance norepinephrine-induced lipolysis via a protein kinase A-dependent pathway in adipocytes.

    Science.gov (United States)

    Chen, Shu; Osaki, Noriko; Shimotoyodome, Akira

    2015-05-22

    Green tea catechins have been shown to attenuate obesity in animals and humans. The catechins activate adenosine monophosphate-activated protein kinase (AMPK), and thereby increase fatty acid oxidation in liver and skeletal muscles. Green tea catechins have also been shown to reduce body fat in humans. However, the effect of the catechins on lipolysis in adipose tissue has not been fully understood. The aim of this study was to clarify the effect of green tea catechins on lipolysis in adipocytes and to elucidate the underlying mechanism. Differentiated mouse adipocyte cell line (3T3-L1) was stimulated with green tea catechins in the presence or absence of norepinephrine. Glycerol and free fatty acids in the media were measured. Phosphorylation of hormone-sensitive lipase (HSL) was determined by Western blotting, and the mRNA expression levels of HSL, adipose triglyceride lipase (ATGL), and perilipin were determined by quantitative RT-PCR. The cells were treated with inhibitors of protein kinase A (PKA), protein kinase C (PKC), protein kinase G (PKG), or mitogen-activated protein kinase (MAPK) to determine the responsible pathway. Treatment of 3T3-L1 adipocytes with green tea catechins increased the level of glycerol and free fatty acids released into the media in the presence, but not absence, of norepinephrine, and increased the level of phosphorylated HSL in the cells. The catechins also increased mRNA and protein levels of HSL and ATGL. PKA inhibitor (H89) attenuated the catechin-induced increase in glycerol release and HSL phosphorylation. The results demonstrate that green tea catechins enhance lipolysis in the presence of norepinephrine via a PKA-dependent pathway in 3T3-L1 adipocytes, providing a potential mechanism by which green tea catechins could reduce body fat.

  13. Protein docking prediction using predicted protein-protein interface

    Directory of Open Access Journals (Sweden)

    Li Bin

    2012-01-01

    Full Text Available Abstract Background Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. Results We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm, is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. Conclusion We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  14. Metformin directly inhibits ghrelin secretion through AMP-activated protein kinase in rat primary gastric cells.

    Science.gov (United States)

    Gagnon, J; Sheppard, E; Anini, Y

    2013-03-01

    The antidiabetic drug Metformin causes weight loss in both diabetic and non-diabetic individuals. Metformin treatment is also associated with lower circulating levels of the orexigenic hormone ghrelin. To test whether Metformin directly affects ghrelin cells, rat primary stomach cells were treated with Metformin and the levels of ghrelin secretion, proghrelin gene expression and activation of adenosine monophosphate-activated protein kinase (AMPK) were examined. Metformin significantly reduced ghrelin secretion and proghrelin mRNA production and both these effects were blocked by co-incubation with the AMPK inhibitor compound C. Furthermore, the AMPK activator 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) significantly inhibited ghrelin secretion. Additionally, ghrelin cells were shown to express AMPK. Finally, Metformin treatment caused a significant increase in the level of phosphorylated (active) AMPK. Our results show that Metformin directly inhibits stomach ghrelin production and secretion through AMPK. This reduction in ghrelin secretion may be one of the key components in Metformin's mechanism of weight loss.

  15. Protein Crystal Based Nanomaterials

    Science.gov (United States)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  16. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  17. Protein folding, protein homeostasis, and cancer

    Institute of Scientific and Technical Information of China (English)

    John H. Van Drie

    2011-01-01

    Proteins fold into their functional 3-dimensional structures from a linear amino acid sequence. In vitro this process is spontaneous; while in vivo it is orchestrated by a specialized set of proteins, called chaperones. Protein folding is an ongoing cellular process, as cellular proteins constantly undergo synthesis and degradation. Here emerging links between this process and cancer are reviewed. This perspective both yields insights into the current struggle to develop novel cancer chemotherapeutics and has implications for future chemotherapy discovery.

  18. Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126.

    Science.gov (United States)

    Paavola, Kevin J; Sidik, Harwin; Zuchero, J Bradley; Eckart, Michael; Talbot, William S

    2014-08-12

    GPR126 is an orphan heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) that is essential for the development of diverse organs. We found that type IV collagen, a major constituent of the basement membrane, binds to Gpr126 and activates its signaling function. Type IV collagen stimulated the production of cyclic adenosine monophosphate in rodent Schwann cells, which require Gpr126 activity to differentiate, and in human embryonic kidney (HEK) 293 cells expressing exogenous Gpr126. Type IV collagen specifically bound to the extracellular amino-terminal region of Gpr126 containing the CUB (complement, Uegf, Bmp1) and pentraxin domains. Gpr126 derivatives lacking the entire amino-terminal region were constitutively active, suggesting that this region inhibits signaling and that ligand binding relieves this inhibition to stimulate receptor activity. A new zebrafish mutation that truncates Gpr126 after the CUB and pentraxin domains disrupted development of peripheral nerves and the inner ear. Thus, our findings identify type IV collagen as an activating ligand for GPR126, define its mechanism of activation, and highlight a previously unrecognized signaling function of type IV collagen in basement membranes.

  19. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  20. Protein-losing enteropathy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  1. Protein and Heart Health

    Science.gov (United States)

    ... It Works Healthy Workplace Food and Beverage Toolkit Protein and Heart Health Updated:May 5,2015 Protein ... said. What’s the harm in getting too much protein? The main problem is that often the extra ...

  2. Conductometric monitoring of protein-protein interactions.

    Science.gov (United States)

    Spera, Rosanna; Festa, Fernanda; Bragazzi, Nicola L; Pechkova, Eugenia; LaBaer, Joshua; Nicolini, Claudio

    2013-12-06

    Conductometric monitoring of protein-protein and protein-sterol interactions is here proved feasible by coupling quartz crystal microbalance with dissipation monitoring (QCM_D) to nucleic acid programmable protein arrays (NAPPA). The conductance curves measured in NAPPA microarrays printed on quartz surface allowed the identification of binding events between the immobilized proteins and the query. NAPPA allows the immobilization on the quartz surface of a wide range of proteins and can be easily adapted to generate innumerous types of biosensors. Indeed multiple proteins on the same quartz crystal have been tested and envisaged proving the possibility of analyzing the same array for several distinct interactions. Two examples of NAPPA-based conductometer applications with clinical relevance are presented herein, the interaction between the transcription factors Jun and ATF2 and the interaction between Cytochrome P540scc and cholesterol.

  3. Crystal Structure of the Escherichia coli Fic Toxin-Like Protein in Complex with Its Cognate Antitoxin

    Science.gov (United States)

    Stanger, Frédéric V.; Harms, Alexander; Dehio, Christoph; Schirmer, Tilman

    2016-01-01

    FIC domain proteins mediate post-translational modifications of target proteins, which typically results in their inactivation. Depending on the conservation of crucial active site residues, the FIC fold serves as structural scaffold for various enzymatic activities, mostly target adenylylation. The founding member of the vast Fic protein family, EcFicT, was identified in Escherichia coli some time ago. The G55R point mutant of EcFicT displays the “filamentation induced by cAMP” (Fic) phenotype at high 3',5'-cyclic adenosine monophosphate (cAMP) concentrations and elevated temperature, but the underlying molecular mechanism and any putative biochemical activity of EcFicT have remained unknown. EcFicT belongs to class I Fic toxin proteins that are encoded together with a small inhibitory protein (antitoxin), named EcFicA in E. coli. Here, we report the crystal structures of two mutant EcFicT/EcFicA complexes (EcFicTG55RA and EcFicTAE28G) both showing close resemblance with the structure of the AMP-transferase VbhT from Bartonella schoenbuchensis in complex with its cognate antitoxin VbhA. However, crucial differences in the active site of EcFicT compared to VbhT and other AMP-transferases rationalize the lack of evidence for adenylylation activity. Comprehensive bioinformatic analysis suggests that EcFicT has evolved from canonical AMP-transferases and has acquired a conserved binding site for a yet to be discovered novel substrate. The G55R mutation has no effect on structure or thermal stability of EcFicT, such that the molecular basis for its associated Fic phenotype remains elusive. We anticipate that this structure will inspire further bioinformatic and experimental analyses in order to characterize the enzymatic activity of EcFicT and help revealing its physiological role. PMID:27657533

  4. Effect of methylglyoxal modification on the structure and properties of human small heat shock protein HspB6 (Hsp20).

    Science.gov (United States)

    Muranova, Lydia K; Perfilov, Maxim M; Serebryakova, Marina V; Gusev, Nikolai B

    2016-07-01

    Human small heat shock protein HspB6 (Hsp20) was modified by metabolic α-dicarbonyl compound methylglyoxal (MGO). At low MGO/HspB6 molar ratio, Arg13, Arg14, Arg27, and Arg102 were the primary sites of MGO modification. At high MGO/HspB6 ratio, practically, all Arg and Lys residues of HspB6 were modified. Both mild and extensive MGO modification decreased susceptibility of HspB6 to trypsinolysis and prevented its heat-induced aggregation. Modification by MGO was accompanied by formation of small quantities of chemically crosslinked dimers and did not dramatically affect quaternary structure of HspB6. Mild modification by MGO did not affect whereas extensive modification decreased interaction of HspB6 with HspB1. Phosphorylation of HspB6 by cyclic adenosine monophosphate (cAMP)-dependent protein kinase was inhibited after mild modification and completely prevented after extensive modification by MGO. Chaperone-like activity of HspB6 measured with subfragment 1 of skeletal myosin was enhanced after MGO modifications. It is concluded that Arg residues located in the N-terminal domain of HspB6 are easily accessible to MGO modification and that even mild modification by MGO affects susceptibility to trypsinolysis, phosphorylation by cAMP-dependent protein kinase, and chaperone-like activity of HspB6.

  5. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3,4,5-Trimethoxyphenoxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Kuan-Han Lee

    2014-01-01

    Full Text Available Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxybenzoic acid (TMPBA and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 µM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4',6-diamidino-2-phenylindole (DAPI nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP kinases, 5' adenosine monophosphate-activated protein kinase (AMPK, and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy.

  6. Rolipram stimulates angiogenesis and attenuates neuronal apoptosis through the cAMP/cAMP-responsive element binding protein pathway following ischemic stroke in rats.

    Science.gov (United States)

    Hu, Shouye; Cao, Qingwen; Xu, Peng; Ji, Wenchen; Wang, Gang; Zhang, Yuelin

    2016-03-01

    Rolipram, a phosphodiesterase-4 inhibitor, can activate the cyclic adenosine monophosphate (cAMP)/cAMP-responsive element binding protein (CREB) pathway to facilitate functional recovery following ischemic stroke. However, to date, the effects of rolipram on angiogenesis and cerebral ischemia-induced neuronal apoptosis are yet to be fully elucidated. In this study, the aim was to reveal the effect of rolipram on the angiogenesis and neuronal apoptosis following brain cerebral ischemia. Rat models of ischemic stroke were established following transient middle cerebral artery occlusion and rolipram was administered for three, seven and 14 days. The results were examined using behavioral tests, triphenyl tetrazolium chloride staining, immunostaining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) to evaluate the effects of rolipram therapy on functional outcome, angiogenesis and apoptosis. Western blot analysis was used to show the phosphorylated- (p-)CREB protein level in the ischemic hemisphere. The rolipram treatment group exhibited a marked reduction in infarct size and modified neurological severity score compared with the vehicle group, and rolipram treatment significantly promoted the microvessel density in the ischemic boundary region and increased p-CREB protein levels in the ischemic hemisphere. Furthermore, a significant reduction in the number of TUNEL-positive cells was observed in the rolipram group compared with the vehicle group. These findings suggest that rolipram has the ability to attenuate cerebral ischemic injury, stimulate angiogenesis and reduce neuronal apoptosis though the cAMP/CREB pathway.

  7. Metalloprotease cleavage of the N terminus of the orphan G protein-coupled receptor GPR37L1 reduces its constitutive activity.

    Science.gov (United States)

    Coleman, James L J; Ngo, Tony; Schmidt, Johannes; Mrad, Nadine; Liew, Chu Kong; Jones, Nicole M; Graham, Robert M; Smith, Nicola J

    2016-04-12

    Little is known about the pharmacology or physiology of GPR37L1, a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor that is abundant in the cerebellum. Mice deficient in this receptor exhibit precocious cerebellar development and hypertension. We showed that GPR37L1 coupled to the G protein Gα(s) when heterologously expressed in cultured cells in the absence of any added ligand, whereas a mutant receptor that lacked the amino terminus was inactive. Conversely, inhibition of ADAMs (a disintegrin and metalloproteases) enhanced receptor activity, indicating that the presence of the amino terminus is necessary for GPR37L1 signaling. Metalloprotease-dependent processing of GPR37L1 was evident in rodent cerebellum, where we detected predominantly the cleaved, inactive form. However, comparison of the accumulation of cAMP (adenosine 3',5'-monophosphate) in response to phosphodiesterase inhibition in cerebellar slice preparations from wild-type and GPR37L1-null mice showed that some constitutive signaling remained in the wild-type mice. In reporter assays of Gα(s) or Gα(i) signaling, the synthetic, prosaposin-derived peptide prosaptide (TX14A) did not increase GPR37L1 activity. Our data indicate that GPR37L1 may be a constitutively active receptor, or perhaps its ligand is present under the conditions that we used for analysis, and that the activity of this receptor is instead controlled by signals that regulate metalloprotease activity in the tissue.

  8. Protein Structure Prediction by Protein Threading

    Science.gov (United States)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  9. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  10. Prediction of Protein-Protein Interactions Using Protein Signature Profiling

    Institute of Scientific and Technical Information of China (English)

    Mahmood A. Mahdavi; Yen-Han Lin

    2007-01-01

    Protein domains are conserved and functionally independent structures that play an important role in interactions among related proteins. Domain-domain inter- actions have been recently used to predict protein-protein interactions (PPI). In general, the interaction probability of a pair of domains is scored using a trained scoring function. Satisfying a threshold, the protein pairs carrying those domains are regarded as "interacting". In this study, the signature contents of proteins were utilized to predict PPI pairs in Saccharomyces cerevisiae, Caenorhabditis ele- gans, and Homo sapiens. Similarity between protein signature patterns was scored and PPI predictions were drawn based on the binary similarity scoring function. Results show that the true positive rate of prediction by the proposed approach is approximately 32% higher than that using the maximum likelihood estimation method when compared with a test set, resulting in 22% increase in the area un- der the receiver operating characteristic (ROC) curve. When proteins containing one or two signatures were removed, the sensitivity of the predicted PPI pairs in- creased significantly. The predicted PPI pairs are on average 11 times more likely to interact than the random selection at a confidence level of 0.95, and on aver- age 4 times better than those predicted by either phylogenetic profiling or gene expression profiling.

  11. Substrate Binding Induces Domain Movements in Orotidine 5'-Monophosphate Decarboxylase

    DEFF Research Database (Denmark)

    Harris, Pernille Hanne; Poulsen, Jens-Christian Navarro; Jensen, Kaj Frank;

    2002-01-01

    ); here we present the 2.5 Å structure of the uncomplexed apo enzyme, determined from twinned crystals. A structural analysis and comparison of the two structures of the E. coli enzyme show that binding of the inhibitor is accompanied by significant domain movements of approximately 12° around a hinge...... that crosses the active site. Hence, the ODCase dimer, which contains two active sites, may be divided in three domains: a central domain that is fixed, and two lids which independently move 12° upon binding. Corresponding analyses, presented herein, of the two Saccharomyces cerevisiae ODCase structures (with...

  12. Inferring Protein Associations Using Protein Pulldown Assays

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Julia L.; Anderson, Kevin K.; Daly, Don S.; Auberry, Deanna L.; Borkowski, John J.; Cannon, William R.

    2007-02-01

    Background: One method to infer protein-protein associations is through a “bait-prey pulldown” assay using a protein affinity agent and an LC-MS (liquid chromatography-mass spectrometry)-based protein identification method. False positive and negative protein identifications are not uncommon, however, leading to incorrect inferences. Methods: A pulldown experiment generates a protein association matrix wherein each column represents a sample from one bait protein, each row represents one prey protein and each cell contains a presence/absence association indicator. Our method evaluates the presence/absence pattern across a prey protein (row) with a Likelihood Ratio Test (LRT), computing its p-value with simulated LRT test statistic distributions after a check with simulated binomial random variates disqualified the large sample 2 test. A pulldown experiment often involves hundreds of tests so we apply the false discovery rate method to control the false positive rate. Based on the p-value, each prey protein is assigned a category (specific association, non-specific association, or not associated) and appraised with respect to the pulldown experiment’s goal and design. The method is illustrated using a pulldown experiment investigating the protein complexes of Shewanella oneidensis MR-1. Results: The Monte Carlo simulated LRT p-values objectively reveal specific and ubiquitous prey, as well as potential systematic errors. The example analysis shows the results to be biologically sensible and more realistic than the ad hoc screening methods previously utilized. Conclusions: The method presented appears to be informative for screening for protein-protein associations.

  13. Visualization of drug-nucleic acid interactions at atomic resolution. VI. Structure of two drug/ dinucleoside monophosphate crystalline complexes, ellipticine: 5-iodocytidylyl(3'-5')guanosine and 3,5,6,8-tetramethyl-n-methyl phenanthrolinium: 5-iodocytidylyl(3'-5')guanosine

    Energy Technology Data Exchange (ETDEWEB)

    Jain, S.C.; Bhandary, K.K.; Sobell, H.M.

    1979-01-01

    Ellipticine and 3,5,6,8-tetramethyl-N-methyl phenanthrolinium (TMP) form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3'-5')guanosine (iodoCpG). These crystals are isomorphous: ellipticine-iodoCpG crystals are monoclinic, space group P2/sub 1/, with a = 13.88 A, b = 19.11 A, c = 21.42 A, ..beta.. = 105.4; TMP-iodoCpG crystals are monoclinic, space group P2/sub 1/, with a = 13.99 A, b = 19.12 A, c = 21.31 A, ..beta.. = 104.9. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least squares. The asymmetric unit in the ellipticine-iodoCpG structure contains two ellipticine molecules, two iodoCpG molecules, 16 water molecules and 2 methanol molecules, a total of 140 atoms, whereas, in the tetramethyl-N-methyl phenanthrolinium-iodoCpG complex, the asymmetric unit contains two TMP molecules, two iodoCpG molecules, 17 water molecules and 2 methanol molecules, a total of 141 atoms. In both structures, the two iodoCpG molecules are hydrogen bonded together by guanine-cytosine Watson--Crick base-pairing. Adjacent base-pairs within this paired iodoCpG structure are separated by about 6.7 A; this separation results from intercalative binding by one ellipticine (of TMP) molecule and stacking by the other ellipticine (or TMP) molecule above or below the base-pairs. Base-pairs within the paired nucleotide units are related by a twist of 10 to 12/sup 0/. The stereochemistry observed in these model drug-nucleic acid intercalative complexes is almost identical to that observed in the ethidium-iodoUpA and iodoCpG complexesdetermined previously. This stereochemistry is also very similar to that observed in the 9-amino-acridine-iodoCpG and acridine orange-iodoCpG complexes.

  14. Ethologically based resolution of D2-like dopamine receptor agonist-versus antagonist-induced behavioral topography in dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein of 32 kDa "knockout" mutants congenic on the C57BL/6 genetic background.

    Science.gov (United States)

    Nally, Rachel E; Kinsella, Anthony; Tighe, Orna; Croke, David T; Fienberg, Allen A; Greengard, Paul; Waddington, John L

    2004-09-01

    Given the critical role of dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein of 32 kDa (DARPP-32) in the regulation of dopaminergic function, DARPP-32-null mutant mice congenic on the inbred C57BL/6 strain for 10 generations were examined phenotypically for their ethogram of responsivity to the selective D2-like receptor agonist RU 24213 (N-n-propyl-N-phenylethyl-p-3-hydroxyphenylethylamine) and the selective D2-like receptor antagonist YM 09151-2 (cis-N-[1-benzyl-2-methyl-pyrrolidin-3-yl]-5-chloro-2-methoxy-4-methylaminobenzamide), using procedures that resolve all topographies of behavior in the natural repertoire. After vehicle challenge, levels of sniffing and rearing seated were reduced in DARPP-32 mutants; the injection procedure seems to constitute a "stressor" that reveals phenotypic effects of DARPP-32 deletion not apparent under natural conditions. Topographical effects of 0.3 to 10.0 mg/kg RU 24213, primarily induction of sniffing and ponderous locomotion with accompanying reductions in rearing, grooming, sifting and chewing, were not altered to any material extent in DARPP-32-null mice. However, topographical effects of 0.005 to 0.625 mg/kg YM 09151-2, namely, reduction in sniffing, locomotion, rearing, grooming, and chewing but not sifting, were essentially absent in DARPP-32 mutants. Thus, the D2-like receptor agonist-mediated ethogram was essentially conserved, whereas major elements of the corresponding D2-like receptor antagonist-mediated ethogram were essentially absent in DARPP-32-null mice. This suggests some relationship between 1) extent of tonic dopaminergic activation of DARPP-32 mechanisms and 2) compensatory mechanisms consequent to the developmental absence of DARPP-32, which may emerge to act differentially on individual elements of the DARPP-32 system. Critically, the present data indicate that phenotypic effects of a given gene deletion using an agonist acting on the system disrupted cannot be generalized to a

  15. Polymer Directed Protein Assemblies

    NARCIS (Netherlands)

    van Rijn, Patrick

    2013-01-01

    Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e. g., virus particles. Viruses are a multi-protein assembly of which the morphology is

  16. Polymer Directed Protein Assemblies

    NARCIS (Netherlands)

    van Rijn, Patrick

    Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e. g., virus particles. Viruses are a multi-protein assembly of which the morphology is

  17. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  18. Urine Protein and Urine Protein to Creatinine Ratio

    Science.gov (United States)

    ... products and services. Advertising & Sponsorship: Policy | Opportunities Urine Protein and Urine Protein to Creatinine Ratio Share this page: Was this page helpful? Also known as: 24-Hour Urine Protein; Urine Total Protein; Urine Protein to Creatinine Ratio; ...

  19. Calcium regulates motility and protein phosphorylation by changing cAMP and ATP concentrations in boar sperm in vitro.

    Science.gov (United States)

    Li, Xinhong; Wang, Lirui; Li, Yuhua; Zhao, Na; Zhen, Linqing; Fu, Jieli; Yang, Qiangzhen

    2016-09-01

    Considering the importance of calcium (Ca(2+)) in regulating sperm capacitation, hyperactivation and acrosome reaction, little is known about the molecular mechanism of action of this ion in this process. In the present study, assessment of the molecular mechanism from the perspective of energy metabolism occurred. Sperm motility variables were determined using computer-assisted sperm analysis (CASA) and the phosphorylation of PKA substrates, tyrosine residues and AMP-activated protein kinase (AMPK) were analyzed by Western blot. Moreover, intracellular sperm-specific glyceraldehyde 3-phosphatedehydrogenase (GAPDH) activity, 3'-5'-cyclic adenosine monophosphate (cAMP) and adenosine 5'-triphosphate (ATP) concentrations were assessed in boar sperm treated with Ca(2+). Results of the present study indicated that, under greater extracellular Ca(2+)concentrations (≥3.0mM), sperm motility and protein phosphorylation were inhibited. Interestingly, these changes were correlated with that of GAPDH activity, AMPK phosphorylation, cAMP and ATP concentrations. The negative effects of Ca(2+) on these intracellular processes were attenuated by addition of the calmodulin (CaM) inhibitor W7 and the inhibitor of calmodulin-dependent protein kinase (CaMK), KN-93. In the presence of greater extracellular Ca(2+), however, the phosphorylation pathway was suppressed by H-89. Taken together, these results suggested that Ca(2+) had a dual role in regulating boar sperm motility and protein phosphorylation due to the changes of cAMP and ATP concentrations, in response to cAMP-mediated signal transduction and the Ca(2+) signaling cascade. The present study provided some novel insights into the molecular mechanism underlying the effects of Ca(2+) on boar sperm as well as the involvement of energy metabolism in this mechanism.

  20. Induction of a cytoplasmic activator of DNA synthesis in lymphocytes is mediated through a membrane-associated protein kinase.

    Science.gov (United States)

    Autieri, M V; Fresa, K L; Coffman, F D; Katz, M E; Cohen, S

    1990-12-01

    We have shown previously that cytoplasmic extracts from actively dividing lymphoid cells are capable of inducing DNA synthesis in isolated nuclei. One of the factors involved in this activity, ADR, appears to be a greater than 90 kDa heat-labile protease. Cytoplasmic extracts prepared from nonproliferating lymphocytes express little to no ADR activity. However, ADR activity can be generated in these extracts by brief exposure to a membrane-enriched fraction of spontaneously proliferating, leukemic human T lymphoblastoid (MOLT-4) cells. This suggests that ADR activity is present in the resting cytoplasm in an inactive or precursor form. This in vitro generation of ADR activity can be inhibited in a dose-dependent manner by the isoquinolinesulfonamide derivative, H-7 (1-(5-isoquinoline-sulfonyl)-2-methylpiperazine dihydrochloride), an inhibitor of both cyclic adenosine monophosphate (cAMP)-dependent protein kinases and protein kinase C (PKC). However, more specific inhibitors of cAMP-dependent protein kinases, including N-[( 2-methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H8) and N-(2-gua-nidinoethyl)-5-isoquinolinesulfonamide (HA-1004), had little to no effect on the in vitro generation of ADR activity. Furthermore, membranes from MOLT-4 cells depleted of PKC by long-term exposure (24 h) to phorbol esters and calcium ionophores were unable to induce ADR activity in resting peripheral blood lymphocytes extracts. The results of these studies suggest 1) ADR activity is present in resting cell cytoplasm in an inactive or precursor form; and 2) ADR activity can be induced in this resting cytoplasm through a mechanism involving a membrane-associated protein kinase, possibly PKC. The ability of alkaline phosphatase to deplete the activity of preformed ADR suggests the possibility that ADR itself is phosphoprotein.

  1. IGSF9 Family Proteins

    DEFF Research Database (Denmark)

    Hansen, Maria; Walmod, Peter Schledermann

    2013-01-01

    The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene......, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle...... facilitates homophilic cell adhesion. Moreover, IGSF9 family proteins have been implicated in the outgrowth and branching of neurites, axon guidance, synapse maturation, self-avoidance, and tiling. However, despite the few published studies on IGSF9 family proteins, reports on the functions of both Turtle...

  2. Protein function annotation with Structurally Aligned Local Sites of Activity (SALSAs

    Directory of Open Access Journals (Sweden)

    Wang Zhouxi

    2013-02-01

    Full Text Available Abstract Background The prediction of biochemical function from the 3D structure of a protein has proved to be much more difficult than was originally foreseen. A reliable method to test the likelihood of putative annotations and to predict function from structure would add tremendous value to structural genomics data. We report on a new method, Structurally Aligned Local Sites of Activity (SALSA, for the prediction of biochemical function based on a local structural match at the predicted catalytic or binding site. Results Implementation of the SALSA method is described. For the structural genomics protein PY01515 (PDB ID 2aqw from Plasmodium yoelii, it is shown that the putative annotation, Orotidine 5'-monophosphate decarboxylase (OMPDC, is most likely correct. SALSA analysis of YP_001304206.1 (PDB ID 3h3l, a putative sugar hydrolase from Parabacteroides distasonis, shows that its active site does not bear close resemblance to any previously characterized member of its superfamily, the Concanavalin A-like lectins/glucanases. It is noted that three residues in the active site of the thermophilic beta-1,4-xylanase from Nonomuraea flexuosa (PDB ID 1m4w, Y78, E87, and E176, overlap with POOL-predicted residues of similar type, Y168, D153, and E232, in YP_001304206.1. The substrate recognition regions of the two proteins are rather different, suggesting that YP_001304206.1 is a new functional type within the superfamily. A structural genomics protein from Mycobacterium avium (PDB ID 3q1t has been reported to be an enoyl-CoA hydratase (ECH, but SALSA analysis shows a poor match between the predicted residues for the SG protein and those of known ECHs. A better local structural match is obtained with Anabaena beta-diketone hydrolase (ABDH, a known β-diketone hydrolase from Cyanobacterium anabaena (PDB ID 2j5s. This suggests that the reported ECH function of the SG protein is incorrect and that it is more likely a β-diketone hydrolase. Conclusions

  3. Physics of protein motility and motor proteins

    Science.gov (United States)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  4. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  5. G Protein-Coupled Receptor Signaling Analysis Using Homogenous Time-Resolved Förster Resonance Energy Transfer (HTRF® Technology

    Directory of Open Access Journals (Sweden)

    Lenea Nørskov-Lauritsen

    2014-02-01

    Full Text Available Studying multidimensional signaling of G protein-coupled receptors (GPCRs in search of new and better treatments requires flexible, reliable and sensitive assays in high throughput screening (HTS formats. Today, more than half of the detection techniques used in HTS are based on fluorescence, because of the high sensitivity and rich signal, but quenching, optical interferences and light scattering are serious drawbacks. In the 1990s the HTRF® (Cisbio Bioassays, Codolet, France technology based on Förster resonance energy transfer (FRET in a time-resolved homogeneous format was developed. This improved technology diminished the traditional drawbacks. The optimized protocol described here based on HTRF® technology was used to study the activation and signaling pathways of the calcium-sensing receptor, CaSR, a GPCR responsible for maintaining calcium homeostasis. Stimulation of the CaSR by agonists activated several pathways, which were detected by measuring accumulation of the second messengers D-myo-inositol 1-phosphate (IP1 and cyclic adenosine 3',5'-monophosphate (cAMP, and by measuring the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2. Here we show how an optimized HTRF® platform with numerous advantages compared to previous assays provides a substantial and robust mode of investigating GPCR signaling. It is furthermore discussed how these assays can be optimized and miniaturized to meet HTS requirements and for screening compound libraries.

  6. G protein-coupled receptor signaling analysis using homogenous time-resolved Förster resonance energy transfer (HTRF®) technology.

    Science.gov (United States)

    Nørskov-Lauritsen, Lenea; Thomsen, Alex Rojas Bie; Bräuner-Osborne, Hans

    2014-02-13

    Studying multidimensional signaling of G protein-coupled receptors (GPCRs) in search of new and better treatments requires flexible, reliable and sensitive assays in high throughput screening (HTS) formats. Today, more than half of the detection techniques used in HTS are based on fluorescence, because of the high sensitivity and rich signal, but quenching, optical interferences and light scattering are serious drawbacks. In the 1990s the HTRF® (Cisbio Bioassays, Codolet, France) technology based on Förster resonance energy transfer (FRET) in a time-resolved homogeneous format was developed. This improved technology diminished the traditional drawbacks. The optimized protocol described here based on HTRF® technology was used to study the activation and signaling pathways of the calcium-sensing receptor, CaSR, a GPCR responsible for maintaining calcium homeostasis. Stimulation of the CaSR by agonists activated several pathways, which were detected by measuring accumulation of the second messengers D-myo-inositol 1-phosphate (IP1) and cyclic adenosine 3',5'-monophosphate (cAMP), and by measuring the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Here we show how an optimized HTRF® platform with numerous advantages compared to previous assays provides a substantial and robust mode of investigating GPCR signaling. It is furthermore discussed how these assays can be optimized and miniaturized to meet HTS requirements and for screening compound libraries.

  7. Ubiquinol (QH(2)) functions as a negative regulator of purine nucleotide inhibition of Acanthamoeba castellanii mitochondrial uncoupling protein.

    Science.gov (United States)

    Woyda-Ploszczyca, Andrzej; Jarmuszkiewicz, Wieslawa

    2011-01-01

    We compared the influence of different adenine and guanine nucleotides on the free fatty acid-induced uncoupling protein (UCP) activity in non-phosphorylating Acanthamoeba castellanii mitochondria when the membranous ubiquinone (Q) redox state was varied. The purine nucleotides exhibit an inhibitory effect in the following descending order: GTP>ATP>GDP>ADP≫GMP>AMP. The efficiency of guanine and adenine nucleotides to inhibit UCP-sustained uncoupling in A. castellanii mitochondria depends on the Q redox state. Inhibition by purine nucleotides can be increased with decreasing Q reduction level (thereby ubiquinol, QH₂ concentration) even with nucleoside monophosphates that are very weak inhibitors at the initial respiration. On the other hand, the inhibition can be alleviated with increasing Q reduction level (thereby QH₂ concentration). The most important finding was that ubiquinol (QH₂) but not oxidised Q functions as a negative regulator of UCP inhibition by purine nucleotides. For a given concentration of QH₂, the linoleic acid-induced GTP-inhibited H(+) leak was the same for two types of A. castellanii mitochondria that differ in the endogenous Q content. When availability of the inhibitor (GTP) or the negative inhibition modulator (QH₂) was changed, a competitive influence on the UCP activity was observed. QH₂ decreases the affinity of UCP for GTP and, vice versa, GTP decreases the affinity of UCP for QH₂. These results describe the kinetic mechanism of regulation of UCP affinity for purine nucleotides by endogenous QH₂ in the mitochondria of a unicellular eukaryote.

  8. Changes in metabolic proteins in ex vivo rat retina during glutamate-induced neural progenitor cell induction.

    Science.gov (United States)

    Tokuda, Kazuhiro; Kuramitsu, Yasuhiro; Baron, Byron; Kitagawa, Takao; Tokuda, Nobuko; Kobayashi, Masaaki; Kimura, Kazuhiro; Sonoda, Koh-Hei; Nakamura, Kazuyuki

    2016-08-01

    Understanding how energy metabolism and related proteins influence neural progenitor cells in adult tissues is critical for developing new strategies in clinical tissue regeneration therapy. We have recently reported that a subtoxic concentration of glutamate-induced neural progenitor cells in the mature ex vivo rat retina. We herein explore changes in the metabolic pathways during the process. We firstly observed an increase in lactate and lactate dehydrogenase concentration in the glutamate-treated retina. We then investigated the levels of glycolytic enzymes and confirmed significant upregulation of pyruvate kinase M type (PKM), especially PKM2, enolase, phosphoglycerate mutase 1 (PGAM1), and inosine-5'-monophosphate dehydrogenase (IMPDH1) in the glutamate-treated retina compared to the untreated retina. An analysis of the subcellular localization of PKM2 revealed nuclear translocation in the treated retina, which has been reported to regulate cell cycle proliferation and glycolytic enzymes. Our findings indicate that the mature rat retina undergoes an increase in aerobic glycolysis. PKM2, both in the cytoplasm and in the nucleus, may thus play an important role during neural progenitor cell induction, as it does in other proliferating cells.

  9. Overexpression of circadian clock protein cryptochrome (CRY) 1 alleviates sleep deprivation-induced vascular inflammation in a mouse model.

    Science.gov (United States)

    Qin, Bing; Deng, Yunlong

    2015-01-01

    Disturbance of the circadian clock by sleep deprivation has been proposed to be involved in the regulation of inflammation. However, the underlying mechanism of circadian oscillator components in regulating the pro-inflammatory process during sleep deprivation remains poorly understood. Using a sleep deprivation mouse model, we showed here that sleep deprivation increased the expression of pro-inflammatory cytokines expression and decreased the expression of cryptochrome 1 (CRY1) in vascular endothelial cells. Furthermore, the adhesion molecules including intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin were elevated in vascular endothelial cells and the monocytes binding to vascular endothelial cells were also increased by sleep deprivation. Interestingly, overexpression of CRY1 in a mouse model by adenovirus vector significantly inhibited the expression of inflammatory cytokines and adhesion molecules, and NF-κB signal pathway activation, as well as the binding of monocytes to vascular endothelial cells. Using a luciferase reporter assay, we found that CRY1 could repress the transcriptional activity of nuclear factor (NF)-κB in vitro. Subsequently, we demonstrated that overexpression of CRY1 inhibited the basal concentration of cyclic adenosine monophosphate (cAMP), leading to decreased protein kinase A activity, which resulted in decreased phosphorylation of p65. Taken together, these results suggested that the overexpression of CRY1 inhibited sleep deprivation-induced vascular inflammation that might be associated with NF-κB and cAMP/PKA pathways.

  10. Protein and protein hydrolysates in sports nutrition.

    Science.gov (United States)

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  11. Protein Data Bank (PDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Protein Data Bank (PDB) archive is the single worldwide repository of information about the 3D structures of large biological molecules, including proteins and...

  12. Protein electrophoresis - serum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003540.htm Protein electrophoresis - serum To use the sharing features on ... JavaScript. This lab test measures the types of protein in the fluid (serum) part of a blood ...

  13. Urine protein electrophoresis test

    Science.gov (United States)

    Urine protein electrophoresis; UPEP; Multiple myeloma - UPEP; Waldenström macroglobulinemia - UPEP; Amyloidosis - UPEP ... special paper and apply an electric current. The proteins move and form visible bands. These reveal the ...

  14. Protein in diet

    Science.gov (United States)

    ... building blocks of life. Every cell in the human body contains protein. The basic structure of protein is ... into parts called amino acids during digestion. The human body needs a number of amino acids in large ...

  15. Abnormal protein aggregationand neurodegenerativediseases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Abnormal protein aggregation or amyloid is the major cause ofmany neurodegenerative disorders. The present review focuses on the correlation between sequence and structure features of proteins related to the diseases and abnormal protein aggregation. Recent progress has improved our knowledge on understand-ing the mechanism of amyloid formation. We suggest a nucleation model for ordered protein aggregation, which can also explain pathogenesis mechanisms of these neurodegenerative diseases in vivo.

  16. Of proteins and processing

    NARCIS (Netherlands)

    Salazar Villanea, Sergio

    2017-01-01

    Hydrothermal processing is a common practice during the manufacture of protein-rich feed ingredients, such as rapeseed meal (RSM), and feeds. This processing step can induce physical and chemical changes to the proteins, thereby reducing the digestibility and utilization of crude protein (CP) and

  17. Protein Frustratometer 2

    DEFF Research Database (Denmark)

    Gonzalo Parra, R.; Schafer, Nicholas P.; Radusky, Leandro G.

    2016-01-01

    The protein frustratometer is an energy landscape theory-inspired algorithm that aims at localizing and quantifying the energetic frustration present in protein molecules. Frustration is a useful concept for analyzing proteins' biological behavior. It compares the energy distributions of the nati...

  18. Destabilized bioluminescent proteins

    Science.gov (United States)

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  19. CSF total protein

    Science.gov (United States)

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...

  20. Destabilized bioluminescent proteins

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Michael S. (Knoxville, TN); Rakesh, Gupta (New Delhi, IN); Gary, Sayler S. (Blaine, TN)

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  1. Protein domain prediction

    NARCIS (Netherlands)

    Ingolfsson, Helgi; Yona, Golan

    2008-01-01

    Domains are considered to be the building blocks of protein structures. A protein can contain a single domain or multiple domains, each one typically associated with a specific function. The combination of domains determines the function of the protein, its subcellular localization and the interacti

  2. A scaffold protein connects type IV pili with the Chp chemosensory system to mediate activation of virulence signaling in Pseudomonas aeruginosa.

    Science.gov (United States)

    Inclan, Yuki F; Persat, Alexandre; Greninger, Alexander; Von Dollen, John; Johnson, Jeffery; Krogan, Nevan; Gitai, Zemer; Engel, Joanne N

    2016-08-01

    Type IV pili (TFP) function as mechanosensors to trigger acute virulence programs in Pseudomonas aeruginosa. On surface contact, TFP retraction activates the Chp chemosensory system phosphorelay to upregulate 3', 5'-cyclic monophosphate (cAMP) production and transcription of virulence-associated genes. To dissect the specific interactions mediating the mechanochemical relay, we used affinity purification/mass spectrometry, directed co-immunoprecipitations in P. aeruginosa, single cell analysis of contact-dependent transcriptional reporters, subcellular localization and bacterial two hybrid assays. We demonstrate that FimL, a Chp chemosensory system accessory protein of unknown function, directly links the integral component of the TFP structural complex FimV, a peptidoglycan binding protein, with one of the Chp system output response regulators PilG. FimL and PilG colocalize at cell poles in a FimV-dependent manner. While PilG phosphorylation is required for TFP function and mechanochemical signaling, it is not required for polar localization or binding to FimL. Phylogenetic analysis reveals other bacterial species simultaneously encode TFP, the Chp system, FimL, FimV and adenylate cyclase homologs, suggesting that surface sensing may be widespread among TFP-expressing bacteria. We propose that FimL acts as a scaffold enabling spatial colocalization of TFP and Chp system components to coordinate signaling leading to cAMP-dependent upregulation of virulence genes on surface contact. © 2016 John Wiley & Sons Ltd.

  3. 牙龈卟啉单胞菌合成环二腺苷酸的高效液相色谱-串联质谱法定性分析%Qualitative analysis of bis-(3’-5’)-cyclic dimeric adenosine monophosphate ofPorphyromonas gingivalis by high per-formance liquid chromatography coupled with mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    谭咏梅; 杨小军; 杜娟; 赵望泓; 陈晓丹; 侯晋

    2016-01-01

    目的:定性检测牙龈卟啉单胞菌(P. gingivalis)是否能产生细菌信号分子环二腺苷酸(c-di-AMP),为探索其在P. gingivalis生命代谢以及牙周炎免疫中的作用奠定基础。方法以P. gingivalis标准菌株ATCC33277为实验菌株,抽提细菌内核酸物质作为样品,配置c-di-AMP标准品,通过高效液相色谱-串联质谱法(HPLC-MS/MS)和高效液相色谱法(HPLC)对样品进行验证。结果 HPLC-MS/MS检出限按照信噪比(S/N)3∶1计算,c-di-AMP标准品出峰的保留时间为7.49 min,P. gingivalis提取物样品在保留时间为8.82 min时有目标峰出现(大于3 S/N)。HPLC检测结果表明,P. gingivalis核酸提取物样品及c-di-AMP标准品均在15.7 min处出现目标峰,且二者的紫外吸收光谱相同。结论牙龈卟啉单胞菌核酸提取物中含有c-di-AMP,牙龈卟啉单胞菌可以合成产生c-di-AMP。%Objective To test whether Porphyromonas gingivalis (P. gingivalis) could produce bacterial signal molecule, bis-(3’-5’)-cyclic dimeric adenosine monophosphate (c-di-AMP) and lay the foundation for explorations of its roles in life metabolism and periodontitis immunity of P. gingivalis. Methods P. gingivalis standard strain ATCC33277 was used as the experimental strain to extract nucleic acids from the bacteria. Then, c-di-AMP was detected using high performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Subsequently, HPLC was used to validate the sample further. Results Based on the signal/noise (S/N) for 3∶1, the limit of determination of HPLC-MS/MS for peak time of c-di-AMP standard substances was 7.49 min and nucleic acid extractions from P. gingivalis was 8.82 min (S/N>3). Further confirmation of HPLC showed that nucleic acid extractions from both P. gingivalis and c-di-AMP standard substances presented goal absorbent peaks at 15.7 min, with the same ultraviolet absorbent spectrum. Conclusion The nucleic

  4. Protopia: a protein-protein interaction tool

    Science.gov (United States)

    Real-Chicharro, Alejandro; Ruiz-Mostazo, Iván; Navas-Delgado, Ismael; Kerzazi, Amine; Chniber, Othmane; Sánchez-Jiménez, Francisca; Medina, Miguel Ángel; Aldana-Montes, José F

    2009-01-01

    Background Protein-protein interactions can be considered the basic skeleton for living organism self-organization and homeostasis. Impressive quantities of experimental data are being obtained and computational tools are essential to integrate and to organize this information. This paper presents Protopia, a biological tool that offers a way of searching for proteins and their interactions in different Protein Interaction Web Databases, as a part of a multidisciplinary initiative of our institution for the integration of biological data . Results The tool accesses the different Databases (at present, the free version of Transfac, DIP, Hprd, Int-Act and iHop), and results are expressed with biological protein names or databases codes and can be depicted as a vector or a matrix. They can be represented and handled interactively as an organic graph. Comparison among databases is carried out using the Uniprot codes annotated for each protein. Conclusion The tool locates and integrates the current information stored in the aforementioned databases, and redundancies among them are detected. Results are compatible with the most important network analysers, so that they can be compared and analysed by other world-wide known tools and platforms. The visualization possibilities help to attain this goal and they are especially interesting for handling multiple-step or complex networks. PMID:19828077

  5. Protein oxidation and peroxidation

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function....... Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides...

  6. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  7. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  8. Protein crystallization with paper

    Science.gov (United States)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  9. Modulation of biofilm-formation in Salmonella enterica serovar Typhimurium by the periplasmic DsbA/DsbB oxidoreductase system requires the GGDEF-EAL domain protein STM3615.

    Directory of Open Access Journals (Sweden)

    Naeem Anwar

    Full Text Available In Salmonella enterica serovar Typhimurium (S. Typhimurium, biofilm-formation is controlled by the cytoplasmic intracellular small-molecular second messenger cyclic 3', 5'-di- guanosine monophosphate (c-di-GMP through the activities of GGDEF and EAL domain proteins. Here we describe that deleting either dsbA or dsbB, respectively encoding a periplasmic protein disulfide oxidase and a cytoplasmic membrane disulfide oxidoreductase, resulted in increased biofilm-formation on solid medium. This increased biofilm-formation, defined as a red, dry and rough (rdar colony morphotype, paralleled with enhanced expression of the biofilm master regulator CsgD and the biofilm-associated fimbrial subunit CsgA. Deleting csgD in either dsb mutant abrogated the enhanced biofilm-formation. Likewise, overexpression of the c-di-GMP phosphodiesterase YhjH, or mutationally inactivating the CsgD activator EAL-domain protein YdiV, reduced biofilm-formation in either of the dsb mutants. Intriguingly, deleting the GGDEF-EAL domain protein gene STM3615 (yhjK, previously not connected to rdar morphotype development, also abrogated the escalated rdar morphotype formation in dsb mutant backgrounds. Enhanced biofilm-formation in dsb mutants was furthermore annulled by exposure to the protein disulfide catalyst copper chloride. When analyzed for the effect of exogenous reducing stress on biofilm-formation, both dsb mutants initially showed an escalated rdar morphotype development that later dissolved to reveal a smooth mucoid colony morphotype. From these results we conclude that biofilm-development in S. Typhimurium is affected by periplasmic protein disulphide bond status through CsgD, and discuss the involvement of selected GGDEF/EAL domain protein(s as signaling mediators.

  10. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB.

    Science.gov (United States)

    Zhang, Yanling; Zhen, Wei; Maechler, Pierre; Liu, Dongmin

    2013-04-01

    Chronic hyperlipidemia causes β-cell apoptosis and dysfunction, thereby contributing to the pathogenesis of type 2 diabetes (T2D). Thus, searching for agents to promote pancreatic β-cell survival and improve its function could be a promising strategy to prevent and treat T2D. We investigated the effects of kaempferol, a small molecule isolated from ginkgo biloba, on apoptosis and function of β-cells and further determined the mechanism underlying its actions. Kaempferol treatment promoted viability, inhibited apoptosis and reduced caspase-3 activity in INS-1E cells and human islets chronically exposed to palmitate. In addition, kaempferol prevented the lipotoxicity-induced down-regulation of antiapoptotic proteins Akt and Bcl-2. The cytoprotective effects of kaempferol were associated with improved insulin secretion, synthesis, and pancreatic and duodenal homeobox-1 (PDX-1) expression. Chronic hyperlipidemia significantly diminished cyclic adenosine monophosphate (cAMP) production, protein kinase A (PKA) activation, cAMP-responsive element binding protein (CREB) phosphorylation and its regulated transcriptional activity in β-cells, all of which were restored by kaempferol treatment. Disruption of CREB expression by transfection of CREB siRNA in INS-1E cells or adenoviral transfer of dominant-negative forms of CREB in human islets ablated kaempferol protection of β-cell apoptosis and dysfunction caused by palmitate. Incubation of INS-1E cells or human islets with kaempferol for 48h induced PDX-1 expression. This effect of kaempferol on PDX-1 expression was not shared by a host of structurally related flavonoid compounds. PDX-1 gene knockdown reduced kaempferol-stimulated cAMP generation and CREB activation in INS-1E cells. These findings demonstrate that kaempferol is a novel survivor factor for pancreatic β-cells via up-regulating the PDX-1/cAMP/PKA/CREB signaling cascade.

  11. Characterization of the binding between a 70-kDa heat shock protein, HspA1A, and phosphoinositides.

    Science.gov (United States)

    McCallister, Chelsea; Kdeiss, Brianna; Oliverio, Ryan; Nikolaidis, Nikolas

    2016-03-25

    HspA1A, a seventy-kilodalton heat shock protein, binds to specific anionic lipids and this interaction regulates important physiological phenomena like apoptosis, tumor growth, and lysosomal rescue. However, whether HspA1A binds to phosphoinositides has yet to be established and quantified. Therefore, in this study, we determined the binding affinity of HspA1A to several phosphoinositides and characterized five aspects of their molecular interaction. First, we established that HspA1A binds phosphatidylinositol monophosphates with higher affinity than di- and triphosphorylated inositides. Second, using high concentrations of potassium we found that HSPA1A embeds within the lipid bilayer of all phosphoinositides tested. However, the effects of the high salt concentrations were significantly different between the different phosphoinositides. Third, using calcium and reaction buffers equilibrated at different pH values we found that these differentially affected HspA1A-phosphoinositide binding, revealing a lipid-specific pattern of binding. Fourth, by assessing the binding properties of the two HspA1A domains, the nucleotide-binding domain and the substrate-binding domain, we determined that in most cases the full-length protein is necessary for binding to phosphoinositides. Fifth, by including in the reactions nucleotides and protein substrates we determined that they minimally and differentially affected phosphoinositide-binding. Collectively, these findings strongly suggest that the HspA1A-phosphoinositide binding is complex yet specific, is mediated by both electrostatic and hydrophobic interactions, is not related to the lipid-head charge, and depends on the physicochemical properties of the lipid.

  12. Protein aggregate myopathies

    Directory of Open Access Journals (Sweden)

    Sharma M

    2005-01-01

    Full Text Available Protein aggregate myopathies (PAM are an emerging group of muscle diseases characterized by structural abnormalities. Protein aggregate myopathies are marked by the aggregation of intrinsic proteins within muscle fibers and fall into four major groups or conditions: (1 desmin-related myopathies (DRM that include desminopathies, a-B crystallinopathies, selenoproteinopathies caused by mutations in the, a-B crystallin and selenoprotein N1 genes, (2 hereditary inclusion body myopathies, several of which have been linked to different chromosomal gene loci, but with as yet unidentified protein product, (3 actinopathies marked by mutations in the sarcomeric ACTA1 gene, and (4 myosinopathy marked by a mutation in the MYH-7 gene. While PAM forms 1 and 2 are probably based on impaired extralysosomal protein degradation, resulting in the accumulation of numerous and diverse proteins (in familial types in addition to respective mutant proteins, PAM forms 3 and 4 may represent anabolic or developmental defects because of preservation of sarcomeres outside of the actin and myosin aggregates and dearth or absence of other proteins in these actin or myosin aggregates, respectively. The pathogenetic principles governing protein aggregation within muscle fibers and subsequent structural sarcomeres are still largely unknown in both the putative catabolic and anabolic forms of PAM. Presence of inclusions and their protein composition in other congenital myopathies such as reducing bodies, cylindrical spirals, tubular aggregates and others await clarification. The hitherto described PAMs were first identified by immunohistochemistry of proteins and subsequently by molecular analysis of their genes.

  13. Protein and vegetarian diets.

    Science.gov (United States)

    Marsh, Kate A; Munn, Elizabeth A; Baines, Surinder K

    2013-08-19

    A vegetarian diet can easily meet human dietary protein requirements as long as energy needs are met and a variety of foods are eaten. Vegetarians should obtain protein from a variety of plant sources, including legumes, soy products, grains, nuts and seeds. Eggs and dairy products also provide protein for those following a lacto-ovo-vegetarian diet. There is no need to consciously combine different plant proteins at each meal as long as a variety of foods are eaten from day to day, because the human body maintains a pool of amino acids which can be used to complement dietary protein. The consumption of plant proteins rather than animal proteins by vegetarians may contribute to their reduced risk of chronic diseases such as diabetes and heart disease.

  14. Racemic protein crystallography.

    Science.gov (United States)

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  15. Packing in protein cores

    Science.gov (United States)

    Gaines, J. C.; Clark, A. H.; Regan, L.; O'Hern, C. S.

    2017-07-01

    Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. It is well-established that a large contribution to protein stability originates from the sequestration from solvent of hydrophobic residues in the protein core. How are such hydrophobic residues arranged in the core; how can one best model the packing of these residues, and are residues loosely packed with multiple allowed side chain conformations or densely packed with a single allowed side chain conformation? Here we show that to properly model the packing of residues in protein cores it is essential that amino acids are represented by appropriately calibrated atom sizes, and that hydrogen atoms are explicitly included. We show that protein cores possess a packing fraction of φ ≈ 0.56 , which is significantly less than the typically quoted value of 0.74 obtained using the extended atom representation. We also compare the results for the packing of amino acids in protein cores to results obtained for jammed packings from discrete element simulations of spheres, elongated particles, and composite particles with bumpy surfaces. We show that amino acids in protein cores pack as densely as disordered jammed packings of particles with similar values for the aspect ratio and bumpiness as found for amino acids. Knowing the structural properties of protein cores is of both fundamental and practical importance. Practically, it enables the assessment of changes in the structure and stability of proteins arising from amino acid mutations (such as those identified as a result of the massive human genome sequencing efforts) and the design of new folded, stable proteins and protein-protein interactions with tunable specificity and affinity.

  16. Dicty_cDB: CHH347 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available MM1-0008P-R014-B11.B, mRNA sequence. 72 2e-08 1 CV511301 |CV511301.1 kc39e08.y1 Xiphinema... index CSEQDA01 Xiphinema index cDNA 5' similar to SW:KAPC_CAEEL P21137 CAMP-DEPENDENT PROTEIN KINA

  17. Dicty_cDB: CHM664 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available R354088 |CR354088.1 Gallus gallus finished cDNA, clone ChEST371o8. 68 5e-07 1 CV511301 |CV511301.1 kc39e08.y1 Xiphinema... index CSEQDA01 Xiphinema index cDNA 5' similar to SW:KAPC_CAEEL P21137 CAMP-DEPENDENT PROTEIN KI

  18. Nucleic acids, proteins, and chirality

    Science.gov (United States)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  19. Toxic proteins in plants.

    Science.gov (United States)

    Dang, Liuyi; Van Damme, Els J M

    2015-09-01

    Plants have evolved to synthesize a variety of noxious compounds to cope with unfavorable circumstances, among which a large group of toxic proteins that play a critical role in plant defense against predators and microbes. Up to now, a wide range of harmful proteins have been discovered in different plants, including lectins, ribosome-inactivating proteins, protease inhibitors, ureases, arcelins, antimicrobial peptides and pore-forming toxins. To fulfill their role in plant defense, these proteins exhibit various degrees of toxicity towards animals, insects, bacteria or fungi. Numerous studies have been carried out to investigate the toxic effects and mode of action of these plant proteins in order to explore their possible applications. Indeed, because of their biological activities, toxic plant proteins are also considered as potentially useful tools in crop protection and in biomedical applications, such as cancer treatment. Genes encoding toxic plant proteins have been introduced into crop genomes using genetic engineering technology in order to increase the plant's resistance against pathogens and diseases. Despite the availability of ample information on toxic plant proteins, very few publications have attempted to summarize the research progress made during the last decades. This review focuses on the diversity of toxic plant proteins in view of their toxicity as well as their mode of action. Furthermore, an outlook towards the biological role(s) of these proteins and their potential applications is discussed.

  20. PROTEIN - WHICH IS BEST?

    Directory of Open Access Journals (Sweden)

    Michael J. Falvo

    2004-09-01

    Full Text Available Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids, whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function are also reviewed

  1. Protein kinesis: The dynamics of protein trafficking and stability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  2. Protein: FEA4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEA4 Proteins in gibberellin signaling GID2 F-box protein GID2 Gibberellin-insensitive dwarf protein 2, Prot...ein GIBBERELLIN INSENSITIVE DWARF2 39947 Oryza sativa subsp. japonica Q7XAK4 ...

  3. Protein Electrophoresis/Immunofixation Electrophoresis

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Protein Electrophoresis Immunofixation Electrophoresis Share this page: Was this page helpful? Also known as: Serum Protein Electrophoresis; Protein ELP; SPE; SPEP; Urine Protein Electrophoresis; ...

  4. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Amarnath Chtterjee; Ashutosh Kumar; Jeetender Chugh; Sudha Srivastava; Neel S Bhavesh; Ramakrishna V Hosur

    2005-01-01

    In the post-genomic era, as more and more genome sequences are becoming known and hectic efforts are underway to decode the information content in them, it is becoming increasingly evident that flexibility in proteins plays a crucial role in many of the biological functions. Many proteins have intrinsic disorder either wholly or in specific regions. It appears that this disorder may be important for regulatory functions of the proteins, on the one hand, and may help in directing the folding process to reach the compact native state, on the other. Nuclear magnetic resonance (NMR) has over the last two decades emerged as the sole, most powerful technique to help characterize these disordered protein systems. In this review, we first discuss the significance of disorder in proteins and then describe the recent developments in NMR methods for their characterization. A brief description of the results obtained on several disordered proteins is presented at the end.

  5. Mayaro virus proteins.

    Science.gov (United States)

    Mezencio, J M; Rebello, M A

    1993-01-01

    Mayaro virus was grown in BHK-21 cells and purified by centrifugation in a potassium-tartrate gradient (5-50%). The electron microscopy analyses of the purified virus showed an homogeneous population of enveloped particles with 69 +/- 2.3 nm in diameter. Three structural virus proteins were identified and designated p1, p2 and p3. Their average molecular weight were p1, 54 KDa; p2, 50 KDa and p3, 34 KDa. In Mayaro virus infected Aedes albopictus cells and in BHK-21 infected cells we detected six viral proteins, in which three of them are the structural virus proteins and the other three were products from processing of precursors of viral proteins, whose molecular weights are 62 KDa, 64 KDa and 110 KDa. The 34 KDa protein was the first viral protein synthesized at 5 hours post-infection in both cell lines studied.

  6. Mayaro virus proteins

    Directory of Open Access Journals (Sweden)

    J. M. S. Mezencio

    1993-06-01

    Full Text Available Mayaro virus was grown in BHK-21 cells and purified by centrifugation in a potassium-tartrate gradient (5-50%. The electron microscopy analyses of the purified virus showed an homogeneous population of enveloped particles with 69 ñ 2.3 nm in diameter. Three structural virus proteins were identified and designated pl, p2 and p3. Their average molecular weight were p1, 54 KDa; p2, 50 KDa and p3, 34 KDa. In Mayaro virus infected. Aedes albopictus cells and in BHK-21 infected cells we detected six viral proteins, in wich three of them are the structural virus proteins and the other three were products from processing of precursors of viral proteins, whose molecular weights are 62 KDa, 64 KDa and 110 KDa. The 34 KDa protein was the first viral protein sinthesized at 5 hours post-infection in both cell lines studied.

  7. Protein Models Comparator

    CERN Document Server

    Widera, Paweł

    2011-01-01

    The process of comparison of computer generated protein structural models is an important element of protein structure prediction. It has many uses including model quality evaluation, selection of the final models from a large set of candidates or optimisation of parameters of energy functions used in template free modelling and refinement. Although many protein comparison methods are available online on numerous web servers, their ability to handle a large scale model comparison is often very limited. Most of the servers offer only a single pairwise structural comparison, and they usually do not provide a model-specific comparison with a fixed alignment between the models. To bridge the gap between the protein and model structure comparison we have developed the Protein Models Comparator (pm-cmp). To be able to deliver the scalability on demand and handle large comparison experiments the pm-cmp was implemented "in the cloud". Protein Models Comparator is a scalable web application for a fast distributed comp...

  8. Supramolecular Chemistry Targeting Proteins.

    Science.gov (United States)

    van Dun, Sam; Ottmann, Christian; Milroy, Lech-Gustav; Brunsveld, Luc

    2017-09-28

    The specific recognition of protein surface elements is a fundamental challenge in the life sciences. New developments in this field will form the basis of advanced therapeutic approaches and lead to applications such as sensors, affinity tags, immobilization techniques, and protein-based materials. Synthetic supramolecular molecules and materials are creating new opportunities for protein recognition that are orthogonal to classical small molecule and protein-based approaches. As outlined here, their unique molecular features enable the recognition of amino acids, peptides, and even whole protein surfaces, which can be applied to the modulation and assembly of proteins. We believe that structural insights into these processes are of great value for the further development of this field and have therefore focused this Perspective on contributions that provide such structural data.

  9. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together...... with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part...

  10. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together...... with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part...

  11. Protein-protein interactions as drug targets.

    Science.gov (United States)

    Skwarczynska, Malgorzata; Ottmann, Christian

    2015-01-01

    Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3.

  12. Acanthamoeba castellanii STAT Protein

    OpenAIRE

    Anna Kicinska; Jacek Leluk; Wieslawa Jarmuszkiewicz

    2014-01-01

    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyos...

  13. Proteins: Form and function

    OpenAIRE

    Roy D Sleator

    2012-01-01

    An overwhelming array of structural variants has evolved from a comparatively small number of protein structural domains; which has in turn facilitated an expanse of functional derivatives. Herein, I review the primary mechanisms which have contributed to the vastness of our existing, and expanding, protein repertoires. Protein function prediction strategies, both sequence and structure based, are also discussed and their associated strengths and weaknesses assessed.

  14. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  15. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  16. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Science.gov (United States)

    Palorini, Roberta; Votta, Giuseppina; Pirola, Yuri; De Vitto, Humberto; De Palma, Sara; Airoldi, Cristina; Vasso, Michele; Ricciardiello, Francesca; Lombardi, Pietro Paolo; Cirulli, Claudia; Rizzi, Raffaella; Nicotra, Francesco; Hiller, Karsten; Gelfi, Cecilia; Alberghina, Lilia; Chiaradonna, Ferdinando

    2016-03-01

    Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA) axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER) stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  17. Effects of hypergravity on the expression of multidrug resistance proteins in human melanocytic cells

    Science.gov (United States)

    Lambers, B.; Stieber, C.; Grigorieva, O.; Block, I.; Bromeis, B.; Buravkova, L.; Gerzer, R.; Ivanova, K.

    In humans the skin serves as a barrier against potentially harmful effects of the environment Human melanocytes constitute the principal cells for skin pigmentation by synthesizing the pigment melanin Melanin acts as a scavenger for free radicals that may arise during metabolic stress The melanocytes are also able to secrete a wide range of signal molecules In previous studies we found that normal human melanocytes NHMs and non-metastatic melanoma cells respond to long-time exposure to hypergravity up to 5 g for 24 h with elevated efflux of guanosine 3 5 -cyclic monophosphate cGMP in the presence of phosphodiesterase PDE inhibitors e g 3-isobutyl-1-methylxanthine Cyclic GMP is known to play a signaling role in human melanocyte physiology It controls the signaling activities of nitric oxide NO in relation to melanogenesis as well as in melanocyte-extracellular matrix interactions that may be important for some pathological processes including metastasis The present study investigated the effects of hypergravity on the expression of the multidrug resistance proteins MRP 4 and 5 as highly selective cGMP exporters in non-stimulated and NO-stimulated NHMs and melanoma cells MCs on mRNA levels using semi-quantitative RT-PCR analysis Hypergravity up to 5 g for 24 h was produced by horizontal centrifugal acceleration The NONOate DETA-NO 0 1 mM was used as a direct NO donor for cell stimulation For 5-g experiments the mRNA levels for the highly specific cGMP transporter MRP5 appeared to be

  18. PIC: Protein Interactions Calculator.

    Science.gov (United States)

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside.

  19. Dietary proteins and angiogenesis.

    Science.gov (United States)

    Medina, Miguel Ángel; Quesada, Ana R

    2014-01-17

    Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis.

  20. [Alternative scaffold proteins].

    Science.gov (United States)

    Petrovskaia, L E; Shingarova, L N; Dolgikh, D A; Kirpichnikov, M P

    2011-01-01

    Review is devoted to the challenging direction in modem molecular biology and bioengineering - the properties of alternative scaffold proteins (ASP) and methods for obtaining ASP binding molecules. ASP molecules incorporate conservative protein core and hypervariable regions, providing for the binding function. Structural classification of ASP includes several types which differ also in their molecular targets and potential applications. Construction of artificial binding proteins on the ASP basis implies a combinatorial library design with subsequent selection of specific binders with the use of phage display or the modem cell-free systems. Alternative binding proteins on non-immunoglobulin scaffolds find broad applications in different fields ofbiotechnology and molecular medicine.

  1. Acanthamoeba castellanii STAT protein.

    Directory of Open Access Journals (Sweden)

    Anna Kicinska

    Full Text Available STAT (signal transducers and activators of transcription proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil, a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups.

  2. Acanthamoeba castellanii STAT protein.

    Science.gov (United States)

    Kicinska, Anna; Leluk, Jacek; Jarmuszkiewicz, Wieslawa

    2014-01-01

    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil), a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds) or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups.

  3. Simulations of Protein Folding

    CERN Document Server

    Cahill, M; Cahill, K E; Cahill, Michael; Fleharty, Mark; Cahill, Kevin

    2000-01-01

    We have developed a simple, phenomenological, Monte-Carlo code that predicts the three-dimensional structure of globular proteins from the DNA sequences that define them. We have applied this code to two small proteins, the villin headpiece (1VII) and cole1 rop (1ROP). Our code folded the 36-residue villin headpiece to a mean rms distance of less than 5 A from its native structure as revealed by NMR; it folded a 56-residue fragment of the protein cole1 rop to within 11 A of its native structure. The denatured starting configurations of these two proteins were, respectively, 29 A and 55 A distant from their native structures.

  4. Moonlighting proteins in cancer.

    Science.gov (United States)

    Min, Kyung-Won; Lee, Seong-Ho; Baek, Seung Joon

    2016-01-01

    Since the 1980s, growing evidence suggested that the cellular localization of proteins determined their activity and biological functions. In a classical view, a protein is characterized by the single cellular compartment where it primarily resides and functions. It is now believed that when proteins appear in different subcellular locations, the cells surpass the expected activity of proteins given the same genomic information to fulfill complex biological behavior. Many proteins are recognized for having the potential to exist in multiple locations in cells. Dysregulation of translocation may cause cancer or contribute to poorer cancer prognosis. Thus, quantitative and comprehensive assessment of dynamic proteins and associated protein movements could be a promising indicator in determining cancer prognosis and efficiency of cancer treatment and therapy. This review will summarize these so-called moonlighting proteins, in terms of a coupled intracellular cancer signaling pathway. Determination of the detailed biological intracellular and extracellular transit and regulatory activity of moonlighting proteins permits a better understanding of cancer and identification of potential means of molecular intervention.

  5. Self assembling proteins

    Science.gov (United States)

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  6. Characterization of Metal Proteins

    Science.gov (United States)

    Unno, Masaki; Ikeda-Saito, Masao

    Some metals are essential for life. Most of these metals are associated with biological macromolecule like DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and more often with proteins: metals bind or interact with them. A number of protein molecules intrinsically contain metals in their structure. Some of these proteins catalyze unique chemical reactions and perform specific physiological functions. In this chapter, we will shed light on the several metalcontaining proteins, termed metalloproteins, and other proteins interacting metals. We will also introduce several key techniques which have been used to characterize these proteins. Characterizing these proteins and to understand the relationships between their structures and functions shall continue to be one of the major avenues to solve the mysteries of life. At first, we introduce what are the protein structures and how these proteins interact with metals. In the next section, we discuss the physiological roles of some representative metals. Next, we show two examples of special metal cofactors those help the biological macromolecules to carry out their functions. Then we describe some functions of metalloproteins. Finally, we introduce some physical methods to characterize metalloproteins.

  7. Ultrafiltration of pegylated proteins

    Science.gov (United States)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  8. Protein: FBB5 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available ependent protein kinase activator A PKR-associated protein X, PKR-associating protein X, Protein activator o...f the interferon-induced protein kinase, Protein kinase, interferon-inducible double stranded RNA-dependent activator 9606 Homo sapiens O75569 8575 2DIX 8575 O75569 ...

  9. Phosphoregulation of the ceramide transport protein CERT at serine 315 in the interaction with VAMP-associated protein (VAP) for inter-organelle trafficking of ceramide in mammalian cells.

    Science.gov (United States)

    Kumagai, Keigo; Kawano-Kawada, Miyuki; Hanada, Kentaro

    2014-04-11

    The ceramide transport protein CERT mediates the inter-organelle transport of ceramide for the synthesis of sphingomyelin, presumably through endoplasmic reticulum (ER)-Golgi membrane contact sites. CERT has a short peptide motif named FFAT, which associates with the ER-resident membrane protein VAP. We show that the phosphorylation of CERT at serine 315, which is adjacent to the FFAT motif, markedly enhanced the interaction of CERT with VAP. The phosphomimetic CERT S315E mutant exhibited higher activity to support the ER-to-Golgi transport of ceramide than the wild-type control in a semi-intact cell system, and this enhanced activity was abrogated when its FFAT motif was deleted. The level of phosphorylation of CERT at Ser-315 increased in HeLa cells treated with a sphingolipid biosynthesis inhibitor or exogenous sphingomyelinase. Expression of CERT S315E induced intracellular punctate structures, to which CERT and VAP were co-localized, and the occurrence of the structure was dependent on both phosphatidylinositol 4-monophosphate binding and VAP binding activities of CERT. Phosphorylation of another region (named a serine-rich motif) in CERT is known to down-regulate the activity of CERT. Analysis of various CERT mutant constructs showed that the de-phosphorylation of the serine-rich motif and the phosphorylation of Ser-315 likely have the additive contribution to enhance the activity of CERT. These results demonstrate that the phosphorylation of CERT at the FFAT motif-adjacent serine affected its affinity for VAP, which may regulate the inter-organelle trafficking of ceramide in response to the perturbation of cellular sphingomyelin and/or other sphingolipids.

  10. Phosphoregulation of the Ceramide Transport Protein CERT at Serine 315 in the Interaction with VAMP-associated Protein (VAP) for Inter-organelle Trafficking of Ceramide in Mammalian Cells*

    Science.gov (United States)

    Kumagai, Keigo; Kawano-Kawada, Miyuki; Hanada, Kentaro

    2014-01-01

    The ceramide transport protein CERT mediates the inter-organelle transport of ceramide for the synthesis of sphingomyelin, presumably through endoplasmic reticulum (ER)-Golgi membrane contact sites. CERT has a short peptide motif named FFAT, which associates with the ER-resident membrane protein VAP. We show that the phosphorylation of CERT at serine 315, which is adjacent to the FFAT motif, markedly enhanced the interaction of CERT with VAP. The phosphomimetic CERT S315E mutant exhibited higher activity to support the ER-to-Golgi transport of ceramide than the wild-type control in a semi-intact cell system, and this enhanced activity was abrogated when its FFAT motif was deleted. The level of phosphorylation of CERT at Ser-315 increased in HeLa cells treated with a sphingolipid biosynthesis inhibitor or exogenous sphingomyelinase. Expression of CERT S315E induced intracellular punctate structures, to which CERT and VAP were co-localized, and the occurrence of the structure was dependent on both phosphatidylinositol 4-monophosphate binding and VAP binding activities of CERT. Phosphorylation of another region (named a serine-rich motif) in CERT is known to down-regulate the activity of CERT. Analysis of various CERT mutant constructs showed that the de-phosphorylation of the serine-rich motif and the phosphorylation of Ser-315 likely have the additive contribution to enhance the activity of CERT. These results demonstrate that the phosphorylation of CERT at the FFAT motif-adjacent serine affected its affinity for VAP, which may regulate the inter-organelle trafficking of ceramide in response to the perturbation of cellular sphingomyelin and/or other sphingolipids. PMID:24569996

  11. Protein Attachment on Nanodiamonds.

    Science.gov (United States)

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery.

  12. Poxviral Ankyrin Proteins

    Directory of Open Access Journals (Sweden)

    Michael H. Herbert

    2015-02-01

    Full Text Available Multiple repeats of the ankyrin motif (ANK are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.

  13. Engineered Protein Polymers

    Science.gov (United States)

    2010-05-31

    of each pure polymer, we plan to combine the various polymer solutions in different ratios to tune the composition and physico-chemical properties...protein materials as vehicles for storage and delivery of small molecules. Each protein polymer under concentrations for particle formation ( vida

  14. MODELS OF PROTEIN FOLDING

    Directory of Open Access Journals (Sweden)

    Unnati Ahluwalia

    2012-12-01

    Full Text Available In an attempt to explore the understanding of protein folding mechanism, various models have been proposed in the literature. Advances in recent experimental and computational techniques rationalized our understanding on some of the fundamental features of the protein folding pathways. The goal of this review is to revisit the various models and outline the essential aspects of the folding reaction.

  15. Poxviral Ankyrin Proteins

    Science.gov (United States)

    Herbert, Michael H.; Squire, Christopher J.; Mercer, Andrew A

    2015-01-01

    Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range. PMID:25690795

  16. Advances in Protein Precipitation

    NARCIS (Netherlands)

    Golubovic, M.

    2009-01-01

    Proteins are biological macromolecules, which are among the key components of all living organisms. Proteins are nowadays present in all fields of biotech industry, such as food and feed, synthetic and pharmaceutical industry. They are isolated from their natural sources or produced in different cel

  17. Brushes and proteins

    NARCIS (Netherlands)

    Bosker, W.T.E.

    2011-01-01

      Brushes and Proteins   Wouter T. E. Bosker         Protein adsorption at solid surfaces can be prevented by applying a polymer brush at the surface. A polymer brush consists of polymer chains end-grafted to the surface at such a grafting density that th

  18. Manipulating and Visualizing Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates

  19. Sensitizing properties of proteins

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Ladics, Gregory S; McClain, Scott

    2014-01-01

    The scope of allergy risk is diverse considering the myriad ways in which protein allergenicity is affected by physiochemical characteristics of proteins. The complexity created by the matrices of foods and the variability of the human immune system add additional challenges to understanding...... the relationship between sensitization potential and allergy disease. To address these and other issues, an April 2012 international symposium was held in Prague, Czech Republic, to review and discuss the state-of-the-science of sensitizing properties of protein allergens. The symposium, organized by the Protein...... Allergenicity Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, featured presentations on current methods, test systems, research trends, and unanswered questions in the field of protein sensitization. A diverse group of over 70 interdisciplinary...

  20. Unconventional protein secretion.

    Science.gov (United States)

    Ding, Yu; Wang, Juan; Wang, Junqi; Stierhof, York-Dieter; Robinson, David G; Jiang, Liwen

    2012-10-01

    It is generally believed that protein secretion or exocytosis is achieved via a conventional ER (endoplasmic reticulum)-Golgi-TGN (trans-Golgi network)-PM (plasma membrane) pathway in the plant endomembrane system. However, such signal peptide (SP)-dependent protein secretion cannot explain the increasing number of SP-lacking proteins which are found outside of the PM in plant cells. The process by which such leaderless secretory proteins (LSPs) gain access to the cell exterior is termed unconventional protein secretion (UPS) and has been well-studied in animal and yeast cells, but largely ignored by the plant community. Here, we review the evidence for UPS in plants especially in regard to the recently discovered EXPO (exocyst-positive-organelle).

  1. Protein Unfolding and Alzheimer's

    Science.gov (United States)

    Cheng, Kelvin

    2012-10-01

    Early interaction events of beta-amyloid (Aβ) proteins with neurons have been associated with the pathogenesis of Alzheimer's disease. Knowledge pertaining to the role of lipid molecules, particularly cholesterol, in modulating the single Aβ interactions with neurons at the atomic length and picosecond time resolutions, remains unclear. In our research, we have used atomistic molecular dynamics simulations to explore early molecular events including protein insertion kinetics, protein unfolding, and protein-induced membrane disruption of Aβ in lipid domains that mimic the nanoscopic raft and non-raft regions of the neural membrane. In this talk, I will summarize our current work on investigating the role of cholesterol in regulating the Aβ interaction events with membranes at the molecular level. I will also explain how our results will provide new insights into understanding the pathogenesis of Alzheimer's disease associated with the Aβ proteins.

  2. Transdermal delivery of proteins.

    Science.gov (United States)

    Kalluri, Haripriya; Banga, Ajay K

    2011-03-01

    Transdermal delivery of peptides and proteins avoids the disadvantages associated with the invasive parenteral route of administration and other alternative routes such as the pulmonary and nasal routes. Since proteins have a large size and are hydrophilic in nature, they cannot permeate passively across the skin due to the stratum corneum which allows the transport of only small lipophilic drug molecules. Enhancement techniques such as chemical enhancers, iontophoresis, microneedles, electroporation, sonophoresis, thermal ablation, laser ablation, radiofrequency ablation and noninvasive jet injectors aid in the delivery of proteins by overcoming the skin barrier in different ways. In this review, these enhancement techniques that can enable the transdermal delivery of proteins are discussed, including a discussion of mechanisms, sterility requirements, and commercial development of products. Combination of enhancement techniques may result in a synergistic effect allowing increased protein delivery and these are also discussed.

  3. Role of dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein in neuronal signal transmission and integration%多巴胺和环磷酸腺苷调节的磷酸蛋白在神经元信号传递及整合中的地位

    Institute of Scientific and Technical Information of China (English)

    刘凤莲

    2005-01-01

    '-monophosphate-regulated phosphoprotein (DARPP 32) in neuronal signal transmission and integration to provide a theoretical basis for study of the clinical treatment and functional rehabilitation of neurological diseases.DATA SOURCES: A computer-based search was conducted for related literatures published between January 1980 and December 2004 indexed in Medline Database, using the key words of "DARPP-32" and "role",with the language of the articles limited to English. A similar search was also conducted for Chinese articles indexed in Chinese Academic Journal Full-text Database and Wanfang Database, using the equivalent Chinese terms for the same key words.STUDY SELECTION: A preliminary selection of the 98 retrieved articles was carried out to identify randomized controlled experiments or trials and relevant chapters in monographs for inclusion, with repetitive studies and Meta-analysis excluded.DATA EXTRACTION: Totally 29 original articles, reviews and monographs pertaining to the study of DARPP-32 were collected. Summarization, synthesis and abstraction of the articles was carried out according to the results and discussions in the articles.DATA SYNTHESIS: DARPP-32 is expressed in the neurons in the neostriatum and other nuclei, performing multiple roles in signal regulation and integration. After binding to corresponding receptors, dopamine, glutamate or other neurotransmitters cause phosphorylation or dephosphorylation of DARPP-32 at 34-Thr or other three sites to affect the activities of such important phospholipases as phospholipase 1 and 2B, so that all the signals from various pathways can be integrated and the neuronal functions and the behaviors governed by these neurons altered. The functions of DARPP32 are related to many neurotransmitters and their receptors and can be explored using gene knockout technique.CONCLUSION: DARPP-32 plays a central role in the complex signal transmission and integration processes of neurons. The research of DARPP32 may provide evidence

  4. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are separate

  5. New Compound Classes: Protein-Protein Interactions.

    Science.gov (United States)

    Ottmann, C

    2016-01-01

    "Protein-protein interactions (PPIs) are one of the most promising new targets in drug discovery. With estimates between 300,000 and 650,000 in human physiology, targeted modulation of PPIs would tremendously extend the "druggable" genome. In fact, in every disease a wealth of potentially addressable PPIs can be found making pharmacological intervention based on PPI modulators in principle a generally applicable technology. An impressing number of success stories in small-molecule PPI inhibition and natural-product PPI stabilization increasingly encourage academia and industry to invest in PPI modulation. In this chapter examples of both inhibition as well as stabilization of PPIs are reviewed including some of the technologies which has been used for their identification."

  6. Anchored design of protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Steven M Lewis

    Full Text Available BACKGROUND: Few existing protein-protein interface design methods allow for extensive backbone rearrangements during the design process. There is also a dichotomy between redesign methods, which take advantage of the native interface, and de novo methods, which produce novel binders. METHODOLOGY: Here, we propose a new method for designing novel protein reagents that combines advantages of redesign and de novo methods and allows for extensive backbone motion. This method requires a bound structure of a target and one of its natural binding partners. A key interaction in this interface, the anchor, is computationally grafted out of the partner and into a surface loop on the design scaffold. The design scaffold's surface is then redesigned with backbone flexibility to create a new binding partner for the target. Careful choice of a scaffold will bring experimentally desirable characteristics into the new complex. The use of an anchor both expedites the design process and ensures that binding proceeds against a known location on the target. The use of surface loops on the scaffold allows for flexible-backbone redesign to properly search conformational space. CONCLUSIONS AND SIGNIFICANCE: This protocol was implemented within the Rosetta3 software suite. To demonstrate and evaluate this protocol, we have developed a benchmarking set of structures from the PDB with loop-mediated interfaces. This protocol can recover the correct loop-mediated interface in 15 out of 16 tested structures, using only a single residue as an anchor.

  7. Protein Binding Pocket Dynamics.

    Science.gov (United States)

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  8. PSC: protein surface classification.

    Science.gov (United States)

    Tseng, Yan Yuan; Li, Wen-Hsiung

    2012-07-01

    We recently proposed to classify proteins by their functional surfaces. Using the structural attributes of functional surfaces, we inferred the pairwise relationships of proteins and constructed an expandable database of protein surface classification (PSC). As the functional surface(s) of a protein is the local region where the protein performs its function, our classification may reflect the functional relationships among proteins. Currently, PSC contains a library of 1974 surface types that include 25,857 functional surfaces identified from 24,170 bound structures. The search tool in PSC empowers users to explore related surfaces that share similar local structures and core functions. Each functional surface is characterized by structural attributes, which are geometric, physicochemical or evolutionary features. The attributes have been normalized as descriptors and integrated to produce a profile for each functional surface in PSC. In addition, binding ligands are recorded for comparisons among homologs. PSC allows users to exploit related binding surfaces to reveal the changes in functionally important residues on homologs that have led to functional divergence during evolution. The substitutions at the key residues of a spatial pattern may determine the functional evolution of a protein. In PSC (http://pocket.uchicago.edu/psc/), a pool of changes in residues on similar functional surfaces is provided.

  9. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response.

  10. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  11. Bacterial Ice Crystal Controlling Proteins

    Directory of Open Access Journals (Sweden)

    Janet S. H. Lorv

    2014-01-01

    Full Text Available Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  12. Piezoelectric allostery of protein

    Science.gov (United States)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  13. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  14. Sound of proteins

    DEFF Research Database (Denmark)

    2007-01-01

    In my group we work with Molecular Dynamics to model several different proteins and protein systems. We submit our modelled molecules to changes in temperature, changes in solvent composition and even external pulling forces. To analyze our simulation results we have so far used visual inspection...... and statistical analysis of the resulting molecular trajectories (as everybody else!). However, recently I started assigning a particular sound frequency to each amino acid in the protein, and by setting the amplitude of each frequency according to the movement amplitude we can "hear" whenever two aminoacids...

  15. Protein oxidation and ageing

    DEFF Research Database (Denmark)

    Linton, S; Davies, Michael Jonathan; Dean, R T

    2001-01-01

    of redox-active metal ions that could catalyse oxidant formation. As a result of this decrease in antioxidant defences, and increased rate of ROS formation, it is possible that the impact of ROS increases with age. ROS are known to oxidise biological macromolecules, with proteins an important target....... If the argument that the impact of ROS increases with age is true, then proteins would be expected to accumulate oxidised materials with age, and the rate of such accumulation should increase with time, reflecting impaired inefficiency of homeostasis. Here we review the evidence for the accumulation of oxidised......, or modified, extra- and intra-cellular proteins in vivo....

  16. Protein crystallography prescreen kit

    Science.gov (United States)

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  17. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum.

    Science.gov (United States)

    Yin, Tao; Zhang, Qiang; Wang, Jianhua; Liu, Huiquan; Wang, Chenfang; Xu, Jin-Rong; Jiang, Cong

    2017-01-31

    Fusarium graminearum is a causal agent of wheat scab and a producer of the trichothecene mycotoxin deoxynivalenol (DON). The expression of trichothecene biosynthesis (TRI) genes and DON production are mainly regulated by the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway and two pathway-specific transcription factors (TRI6 and TRI10). Interestingly, deletion mutants of TRI6 show reduced expression of several components of cAMP signalling, including the FgCAP1 adenylate-binding protein gene that has not been functionally characterized in F. graminearum. In this study, we show that FgCap1 interacts with Fac1 adenylate cyclase and that deletion of FgCAP1 reduces the intracellular cAMP level and PKA activity. The Fgcap1 deletion mutant is defective in vegetative growth, conidiogenesis and plant infection. It also shows significantly reduced DON production and TRI gene expression, which can be suppressed by exogenous cAMP, indicating a PKA-dependent regulation of DON biosynthesis by FgCap1. The wild-type, but not tri6 mutant, shows increased levels of intracellular cAMP and FgCAP1 expression under DON-producing conditions. Furthermore, the promoter of FgCAP1 contains one putative Tri6-binding site that is important for its function during DON biosynthesis, but is dispensable for hyphal growth, conidiogenesis and pathogenesis. In addition, FgCap1 shows an actin-like localization to the cortical patches at the apical region of hyphal tips. Phosphorylation of FgCap1 at S353 was identified by phosphoproteomics analysis. The S353A mutation in FgCAP1 has no effect on its functions during vegetative growth, conidiation and DON production. However, expression of the FgCAP1(S353A) allele fails to complement the defects of the Fgcap1 mutant in plant infection, indicating the importance of the phosphorylation of FgCap1 at S353 during pathogenesis. Taken together, our results suggest that FgCAP1 is involved in the regulation of DON production via cAMP signalling

  18. Protein: MPA6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available in 30 kDa adipocyte complement-related protein, Adipocyte complement-related 30 kDa protein, Adipocyte, C1q ...and collagen domain-containing protein, Adipose most abundant gene transcript 1 protein, Gelatin-binding protein 9606 Homo sapiens Q15848 9370 9370 Q15848 18054335, 19646806 ...

  19. Protein: FEB6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEB6 Photoresponse regulatory proteins HD1 SE1 Zinc finger protein HD1 Protein CONSTANS-like, Prot...ein HEADING DATE 1, Protein PHOTOPERIOD SENSITIVITY 1 39947 Oryza sativa subsp. japonica 4340746 Q9FDX8 21952207, 19246394 #shimamoto ...

  20. New approach for predicting protein-protein interactions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Protein-protein interactions (PPIs) are of vital importance for virtually all processes of a living cell. The study of these associations of protein molecules could improve people's understanding of diseases and provide basis for therapeutic approaches.

  1. Analysis of correlations between protein complex and protein-protein interaction and mRNA expression

    Institute of Scientific and Technical Information of China (English)

    CAI Lun; XUE Hong; LU Hongchao; ZHAO Yi; ZHU Xiaopeng; BU Dongbo; LING Lunjiang; CHEN Runsheng

    2003-01-01

    Protein-protein interaction is a physical interaction of two proteins in living cells. In budding yeast Saccharomyces cerevisiae, large-scale protein-protein interaction data have been obtained through high-throughput yeast two-hybrid systems (Y2H) and protein complex purification techniques based on mass-spectrometry. Here, we collect 11855 interactions between total 2617 proteins. Through seriate genome-wide mRNA expression data, similarity between two genes could be measured. Protein complex data can also be obtained publicly and can be translated to pair relationship that any two proteins can only exist in the same complex or not. Analysis of protein complex data, protein-protein interaction data and mRNA expression data can elucidate correlations between them. The results show that proteins that have interactions or similar expression patterns have a higher possibility to be in the same protein complex than randomized selected proteins, and proteins which have interactions and similar expression patterns are even more possible to exist in the same protein complex. The work indicates that comprehensive integration and analysis of public large-scale bioinformatical data, such as protein complex data, protein-protein interaction data and mRNA expression data, may help to uncover their relationships and common biological information underlying these data. The strategies described here may help to integrate and analyze other functional genomic and proteomic data, such as gene expression profiling, protein-localization mapping and large-scale phenotypic data, both in yeast and in other organisms.

  2. Protein Model Database

    Energy Technology Data Exchange (ETDEWEB)

    Fidelis, K; Adzhubej, A; Kryshtafovych, A; Daniluk, P

    2005-02-23

    The phenomenal success of the genome sequencing projects reveals the power of completeness in revolutionizing biological science. Currently it is possible to sequence entire organisms at a time, allowing for a systemic rather than fractional view of their organization and the various genome-encoded functions. There is an international plan to move towards a similar goal in the area of protein structure. This will not be achieved by experiment alone, but rather by a combination of efforts in crystallography, NMR spectroscopy, and computational modeling. Only a small fraction of structures are expected to be identified experimentally, the remainder to be modeled. Presently there is no organized infrastructure to critically evaluate and present these data to the biological community. The goal of the Protein Model Database project is to create such infrastructure, including (1) public database of theoretically derived protein structures; (2) reliable annotation of protein model quality, (3) novel structure analysis tools, and (4) access to the highest quality modeling techniques available.

  3. Protein urine test

    Science.gov (United States)

    ... Urine albumin; Proteinuria; Albuminuria Images White nail syndrome Protein urine test References Gerber GS, Brendler CB. Evaluation of the urologic patient: history, physical examination, and urinalysis. In: Wein AJ, Kavoussi ...

  4. MicroProteins

    DEFF Research Database (Denmark)

    Eguen, Teinai Ebimienere; Straub, Daniel; Graeff, Moritz;

    2015-01-01

    MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining...... characteristics of a miP. In this opinion article, we clearly state the characteristics of a miP as evidenced by known proteins that fit the definition; we explain why modulatory proteins misrepresented as miPs do not qualify as true miPs. We also discuss the evolutionary history of miPs, and how the miP concept...

  5. The Pentapeptide Repeat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.

  6. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  7. Protein Polymers and Amyloids

    DEFF Research Database (Denmark)

    Risør, Michael Wulff

    2014-01-01

    Several human disorders are caused by a common general disease mechanism arising from abnormal folding and aggregation of the underlying protein. These include the prevalent dementias like Alzheimer’s and Parkinson’s, where accumulation of protein fibrillar structures, known as amyloid fibrils......, is a general hallmark. They also include the α1-antitrypsin deficiency, where disease-causing mutations in the serine protease inhibitor, α1-antitrypsin (α1AT), leads to accumulation of the aberrant protein in the liver of these patients. The native metastable structure of α1AT constitutes a molecular trap...... that inhibits its target protease through a large conformational change but mutations compromise this function and cause premature structural collapse into hyperstable polymers. Understanding the conformational disorders at a molecular level is not only important for our general knowledge on protein folding...

  8. Markers of protein oxidation

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan

    2004-01-01

    Exposure of proteins to radicals in the presence of O2 gives both side-chain oxidation and backbone fragmentation. These processes can be interrelated, with initial side-chain oxidation giving rise to backbone damage via transfer reactions. We have shown previously that alkoxyl radicals formed...... of this process depends on the extent of oxidation at C-3 compared with other sites. HO*, generated by gamma radiolysis, gave the highest total carbonyl yield, with protein-bound carbonyls predominating over released. In contrast, metal ion/H2O2 systems, gave more released than bound carbonyls, with this ratio...... modulated by EDTA. This is ascribed to metal ion-protein interactions affecting the sites of initial oxidation. Hypochlorous acid gave low concentrations of released carbonyls, but high yields of protein-bound material. The peroxyl radical generator 2,2'-azobis(2-amidinopropane) hydrochloride...

  9. Protein Colloidal Aggregation Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  10. Protein dimerization. Inside job.

    Science.gov (United States)

    Metzger, H

    1994-04-01

    In a sophisticated combination of genetic engineering and organic synthesis, a general method for dimerizing recombinant intracellular proteins has been devised; the usefulness of the method should now be testable.

  11. Plant protein glycosylation

    Science.gov (United States)

    Strasser, Richard

    2016-01-01

    Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures. PMID:26911286

  12. Protein digestion in ruminants

    African Journals Online (AJOL)

    protein nitrogen (NPN) in the rumen, the effect of digestible energy on the rate and .... Fahey, 1982) and inhibitors of amino acid deamination. (Chalupa & Scott, 1976). ... the omasum, although both urea and ammonia may be absorbed (0,9 gld.

  13. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  14. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...... specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition......-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function....

  15. Ligustrazine attenuates the platelet-derived growth factor-BB-induced proliferation and migration of vascular smooth muscle cells by interrupting extracellular signal-regulated kinase and P38 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yu, Lifei; Huang, Xiaojing; Huang, Kai; Gui, Chun; Huang, Qiaojuan; Wei, Bin

    2015-07-01

    The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) leads to intimal thickening of the aorta and is, therefore, important in the development of arteriosclerosis. As a result, the use of antiproliferative and antimigratory agents for VSMCs offers promise for the treatment of vascular disorders. Although several studies have demonstrated that ligustrazine may be used to treat heart and blood vessel diseases, the detailed mechanism underlying its actions remain to be elucidated. In the present study, the inhibitory effect of ligustrazine on platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation and migration, and the underlying mechanisms were investigated. The findings demonstrated that ligustrazine significantly inhibited PDGF-BB-stimulated VSMC proliferation. VSMCs dedifferentiated into a proliferative phenotype under PDGF-BB stimulation, which was effectively reversed by the administration of ligustrazine. In addition, ligustrazine also downregulated the production of nitric oxide and cyclic guanine monophosphate, induced by PDGF-BB. Additionally, ligustrazine significantly inhibited PDGF-BB-stimulated VSMC migration. Mechanistic investigation indicated that the upregulation of cell cycle-associated proteins and the activation of the extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (MAPK) signaling induced by PDGF-BB was suppressed by the administration of ligustrazine. In conclusion, the present study, demonstrated for the first time, to the best of our knowledge, that ligustrazine downregulated PDGF-BB-induced VSMC proliferation and migration partly, at least, through inhibiting the activation of the ERK and P38 MAPK signaling.

  16. Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca²⁺ signals at key decision points in the life cycle of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Mathieu Brochet

    2014-03-01

    Full Text Available Many critical events in the Plasmodium life cycle rely on the controlled release of Ca²⁺ from intracellular stores to activate stage-specific Ca²⁺-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca²⁺ required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca²⁺ signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca²⁺ effectors, PKG emerges as a unifying factor to control multiple cellular Ca²⁺ signals essential for malaria parasite development and transmission.

  17. Occupational protein contact dermatitis.

    Science.gov (United States)

    Barbaud, Annick; Poreaux, Claire; Penven, Emmanuelle; Waton, Julie

    2015-01-01

    Occupational contact dermatitis is generally caused by haptens but can also be induced by proteins causing mainly immunological contact urticaria (ICU); chronic hand eczema in the context of protein contact dermatitis (PCD). In a monocentric retrospective study, from our database, only 31 (0.41%) of patients with contact dermatitis had positive skin tests with proteins: 22 had occupational PCD, 3 had non-occupational PCD, 5 occupational ICU and 1 cook had a neutrophilic fixed food eruption (NFFE) due to fish. From these results and analysis of literature, the characteristics of PCD can be summarized as follows. It is a chronic eczematous dermatitis, possibly exacerbated by work, suggestive if associated with inflammatory perionyxix and immediate erythema with pruritis, to be investigated when the patient resumes work after a period of interruption. Prick tests with the suspected protein-containing material are essential, as patch tests have negative results. In case of multisensitisation revealed by prick tests, it is advisable to analyse IgE against recombinant allergens. A history of atopy, found in 56 to 68% of the patients, has to be checked for. Most of the cases are observed among food-handlers but PCD can also be due to non-edible plants, latex, hydrolysed proteins or animal proteins. Occupational exposure to proteins can thus lead to the development of ICU. Reflecting hypersensitivity to very low concentrations of allergens, investigating ICU therefore requires caution and prick tests should be performed with a diluted form of the causative protein-containing product. Causes are food, especially fruit peel, non-edible plants, cosmetic products, latex, animals.

  18. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  19. Protein tyrosine nitration

    Science.gov (United States)

    Chaki, Mounira; Leterrier, Marina; Barroso, Juan B

    2009-01-01

    Nitric oxide metabolism in plant cells has a relative short history. Nitration is a chemical process which consists of introducing a nitro group (-NO2) into a chemical compound. in biological systems, this process has been found in different molecules such as proteins, lipids and nucleic acids that can affect its function. This mini-review offers an overview of this process with special emphasis on protein tyrosine nitration in plants and its involvement in the process of nitrosative stress. PMID:19826215

  20. Digestibility of sorghum proteins.

    OpenAIRE

    Axtell, J D; Kirleis, A. W.; Hassen, M M; D'Croz Mason, N; Mertz, E T; Munck, L.

    1981-01-01

    Published information indicates that rice, maize, and wheat proteins are much more digestible in children than sorghum proteins are (66-81% compared with 46%). However, this digestibility difference cannot be demonstrated with the weanling rat, which gave digestibility values of 80% for cooked and 85% for uncooked sorghum gruels. Therefore, a search was made for a laboratory system sensitive to the digestibility differences between sorghum and other cereals. We found that porcine pepsin in vi...

  1. Colorimetric protein assay techniques.

    Science.gov (United States)

    Sapan, C V; Lundblad, R L; Price, N C

    1999-04-01

    There has been an increase in the number of colorimetric assay techniques for the determination of protein concentration over the past 20 years. This has resulted in a perceived increase in sensitivity and accuracy with the advent of new techniques. The present review considers these advances with emphasis on the potential use of such technologies in the assay of biopharmaceuticals. The techniques reviewed include Coomassie Blue G-250 dye binding (the Bradford assay), the Lowry assay, the bicinchoninic acid assay and the biuret assay. It is shown that each assay has advantages and disadvantages relative to sensitivity, ease of performance, acceptance in the literature, accuracy and reproducibility/coefficient of variation/laboratory-to-laboratory variation. A comparison of the use of several assays with the same sample population is presented. It is suggested that the most critical issue in the use of a chromogenic protein assay for the characterization of a biopharmaceutical is the selection of a standard for the calibration of the assay; it is crucial that the standard be representative of the sample. If it is not possible to match the standard with the sample from the perspective of protein composition, then it is preferable to use an assay that is not sensitive to the composition of the protein such as a micro-Kjeldahl technique, quantitative amino acid analysis or the biuret assay. In a complex mixture it might be inappropriate to focus on a general method of protein determination and much more informative to use specific methods relating to the protein(s) of particular interest, using either specific assays or antibody-based methods. The key point is that whatever method is adopted as the 'gold standard' for a given protein, this method needs to be used routinely for calibration.

  2. Protein Nitrogen Determination

    Science.gov (United States)

    Nielsen, S. Suzanne

    The protein content of foods can be determined by numerous methods. The Kjeldahl method and the nitrogen combustion (Dumas) method for protein analysis are based on nitrogen determination. Both methods are official for the purposes of nutrition labeling of foods. While the Kjeldahl method has been used widely for over a hundred years, the recent availability of automated instrumentation for the Dumas method in many cases is replacing use of the Kjeldahl method.

  3. Transdermal Delivery of Proteins

    OpenAIRE

    Kalluri, Haripriya; Banga, Ajay K.

    2011-01-01

    Transdermal delivery of peptides and proteins avoids the disadvantages associated with the invasive parenteral route of administration and other alternative routes such as the pulmonary and nasal routes. Since proteins have a large size and are hydrophilic in nature, they cannot permeate passively across the skin due to the stratum corneum which allows the transport of only small lipophilic drug molecules. Enhancement techniques such as chemical enhancers, iontophoresis, microneedles, electro...

  4. Hepatitis C virus proteins

    Institute of Scientific and Technical Information of China (English)

    Jean Dubuisson

    2007-01-01

    Hepatitis C virus (HCV) encodes a single polyprotein,which is processed by cellular and viral proteases to generate 10 polypeptides. The HCV genome also contains an overlapping +1 reading frame that may lead to the synthesis of an additional protein. Until recently,studies of HCV have been hampered by the lack of a productive cell culture system. Since the identification of HCV genome approximately 17 years ago, structural,biochemical and biological information on HCV proteins has mainly been obtained with proteins produced by heterologous expression systems. In addition, some functional studies have also been confirmed with replicon systems or with retroviral particles pseudotyped with HCV envelope glycoproteins. The data that have accumulated on HCV proteins begin to provide a framework for understanding the molecular mechanisms involved in the major steps of HCV life cycle. Moreover,the knowledge accumulated on HCV proteins is also leading to the development of antiviral drugs among which some are showing promising results in early-phase clinical trials. This review summarizes the current knowledge on the functions and biochemical features of HCV proteins.

  5. Cardiolipin Interactions with Proteins.

    Science.gov (United States)

    Planas-Iglesias, Joan; Dwarakanath, Himal; Mohammadyani, Dariush; Yanamala, Naveena; Kagan, Valerian E; Klein-Seetharaman, Judith

    2015-09-15

    Cardiolipins (CL) represent unique phospholipids of bacteria and eukaryotic mitochondria with four acyl chains and two phosphate groups that have been implicated in numerous functions from energy metabolism to apoptosis. Many proteins are known to interact with CL, and several cocrystal structures of protein-CL complexes exist. In this work, we describe the collection of the first systematic and, to the best of our knowledge, the comprehensive gold standard data set of all known CL-binding proteins. There are 62 proteins in this data set, 21 of which have nonredundant crystal structures with bound CL molecules available. Using binding patch analysis of amino acid frequencies, secondary structures and loop supersecondary structures considering phosphate and acyl chain binding regions together and separately, we gained a detailed understanding of the general structural and dynamic features involved in CL binding to proteins. Exhaustive docking of CL to all known structures of proteins experimentally shown to interact with CL demonstrated the validity of the docking approach, and provides a rich source of information for experimentalists who may wish to validate predictions.

  6. Disease specific protein corona

    Science.gov (United States)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  7. Fast protein folding kinetics

    Science.gov (United States)

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  8. Fast protein folding kinetics.

    Science.gov (United States)

    Gelman, Hannah; Gruebele, Martin

    2014-05-01

    Fast-folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast-folding proteins has provided insight into the mechanisms, which allow some proteins to find their native conformation well fast folders also informs our understanding of even 'slow' folding processes: fast folders are small; relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast-folding proteins and provides an overview of the major findings of fast-folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general, as well as some work that is left to do.

  9. Recombinant human milk proteins.

    Science.gov (United States)

    Lönnerdal, Bo

    2006-01-01

    Human milk provides proteins that benefit newborn infants. They not only provide amino acids, but also facilitate the absorption of nutrients, stimulate growth and development of the intestine, modulate immune function, and aid in the digestion of other nutrients. Breastfed infants have a lower prevalence of infections than formula-fed infants. Since many women in industrialized countries choose not to breastfeed, and an increasing proportion of women in developing countries are advised not to breastfeed because of the risk of HIV transmission, incorporation of recombinant human milk proteins into infant foods is likely to be beneficial. We are expressing human milk proteins known to have anti-infective activity in rice. Since rice is a normal constituent of the diet of infants and children, limited purification of the proteins is required. Lactoferrin has antimicrobial and iron-binding activities. Lysozyme is an enzyme that is bactericidal and also acts synergistically with lactoferrin. These recombinant proteins have biological activities identical to their native counterparts. They are equally resistant to heat processing, which is necessary for food applications, and to acid and proteolytic enzymes which are needed to maintain their biological activity in the gastrointestinal tract of infants. These recombinant human milk proteins may be incorporated into infant formulas, baby foods and complementary foods, and used with the goal to reduce infectious diseases.

  10. Protein phosphorylation and photorespiration.

    Science.gov (United States)

    Hodges, M; Jossier, M; Boex-Fontvieille, E; Tcherkez, G

    2013-07-01

    Photorespiration allows the recycling of carbon atoms of 2-phosphoglycolate produced by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenase activity, as well as the removal of potentially toxic metabolites. The photorespiratory pathway takes place in the light, encompasses four cellular compartments and interacts with several other metabolic pathways and functions. Therefore, the regulation of this cycle is probably of paramount importance to plant metabolism, however, our current knowledge is poor. To rapidly respond to changing conditions, proteins undergo a number of different post-translational modifications that include acetylation, methylation and ubiquitylation, but protein phosphorylation is probably the most common. The reversible covalent addition of a phosphate group to a specific amino acid residue allows the modulation of protein function, such as activity, subcellular localisation, capacity to interact with other proteins and stability. Recent data indicate that many photorespiratory enzymes can be phosphorylated, and thus it seems that the photorespiratory cycle is, in part, regulated by protein phosphorylation. In this review, the known phosphorylation sites of each Arabidopsis thaliana photorespiratory enzyme and several photorespiratory-associated proteins are described and discussed. A brief account of phosphoproteomic protocols is also given since the published data compiled in this review are the fruit of this approach.

  11. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  12. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  13. Similarity measures for protein ensembles

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper

    2009-01-01

    Analyses of similarities and changes in protein conformation can provide important information regarding protein function and evolution. Many scores, including the commonly used root mean square deviation, have therefore been developed to quantify the similarities of different protein conformatio...

  14. Controllability in protein interaction networks.

    Science.gov (United States)

    Wuchty, Stefan

    2014-05-13

    Recently, the focus of network research shifted to network controllability, prompting us to determine proteins that are important for the control of the underlying interaction webs. In particular, we determined minimum dominating sets of proteins (MDSets) in human and yeast protein interaction networks. Such groups of proteins were defined as optimized subsets where each non-MDSet protein can be reached by an interaction from an MDSet protein. Notably, we found that MDSet proteins were enriched with essential, cancer-related, and virus-targeted genes. Their central position allowed MDSet proteins to connect protein complexes and to have a higher impact on network resilience than hub proteins. As for their involvement in regulatory functions, MDSet proteins were enriched with transcription factors and protein kinases and were significantly involved in bottleneck interactions, regulatory links, phosphorylation events, and genetic interactions.

  15. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300.

    Science.gov (United States)

    Lim, Joong-Yeon; Oh, Min-A; Kim, Won Ho; Sohn, Hee-Young; Park, Sang Ick

    2012-03-01

    Liver fibrosis is a common consequence of various chronic liver injuries, including virus infection and ethanol. Activated hepatic stellate cells (HSCs) contribute to liver fibrosis through the accumulation of extracellular matrix proteins, including type I alpha collagen (COL1A). The activation of adenosine monophosphate-activated protein kinase (AMPK) modulates HSCs activation, but its underlying mechanism remains unclear. Here, we report that AMPK inhibits transforming growth factor (TGF)-β-induced fibrogenic property of HSCs by regulating transcriptional coactivator p300. We treated human (LX-2) and rat (CFSC-2G) HSC lines with TGF-β to induce fibrogenic activation of HSCs. Pharmacological activation of AMPK by treatment with 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), metformin, or adiponectin lowered TGF-β-induced expression of COL1A and myofibroblast marker alpha-smooth muscle actin (α-SMA). Transient transduction of constitutively active AMPKα (caAMPKα) was sufficient to attenuate COL1A and α-SMA expression, whereas an AMPK inhibitor considerably abrogated the inhibitory effect of AICAR on fibrogenic gene expression. Although AMPK significantly suppressed Smad-dependent transcription, it did not affect TGF-β-stimulated phosphorylation, nuclear localization, or DNA-binding activity of Smad2/3. AICAR rather attenuated TGF-β-induced Smad3 interaction with transcriptional coactivator p300 accompanying with reduction of Smad3 acetylation. Moreover, AICAR induced not only physical interaction between AMPK and p300 but also proteasomal degradation of p300 protein. Our data provide substantial evidence that AMPK could be a novel therapeutic target for treatment of liver fibrosis, by demonstrating the underlying mechanism of AMPK-induced antifibrotic function in HSCs.

  16. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    Science.gov (United States)

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  17. Notch2 controls prolactin and insulin-like growth factor binding protein-1 expression in decidualizing human stromal cells of early pregnancy.

    Directory of Open Access Journals (Sweden)

    Gerlinde R Otti

    Full Text Available Decidualization, the transformation of the human uterine mucosa into the endometrium of pregnancy, is critical for successful implantation and embryonic development. However, key regulatory factors controlling differentiation of uterine stromal cells into hormone-secreting decidual cells have not been fully elucidated. Hence, we herein investigated the role of the Notch signaling pathway in human decidual stromal cells (HDSC isolated from early pregnancy samples. Immunofluorescence of first trimester decidual tissues revealed expression of Notch2 receptor and its putative, membrane-anchored interaction partners Jagged1, Delta-like (DLL 1 and DLL4 in stromal cells whereas other Notch receptors and ligands were absent from these cells. During in vitro differentiation with estrogen/progesterone (E2P4 and/or cyclic adenosine monophosphate (cAMP HDSC constitutively expressed Notch2 and weakly downregulated Jagged1 mRNA and protein, measured by quantitative PCR (qPCR and Western blotting, respectively. However, increased levels of DLL1 and DLL4 were observed in the decidualizing cultures. Transfection of a Notch luciferase reporter and qPCR of the Notch target gene hairy and enhancer of split 1 (HES1 revealed an induction of canonical Notch activity during in vitro differentiation. In contrast, treatment of HDSC with a chemical Notch/γ-secretase inhibitor decreased cAMP/E2P4-stimulated Notch luciferase activity, HES1 transcript levels and mRNA expression of the decidual marker genes prolactin (PRL and insulin-like growth factor binding protein 1 (IGFBP1. Similarly, siRNA-mediated gene silencing or antibody-mediated blocking of Notch2 diminished HES1, PRL and IGFBP1 mRNA levels as well as secreted PRL protein. In summary, the data suggest that canonical, Notch2-dependent signaling plays a role in human decidualization.

  18. Protein hydrolysates in sports nutrition

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2009-09-01

    Full Text Available Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle glycogen resynthesis are discussed.

  19. Protein Functionality in Food Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Panpan

    2010-01-01

    The structure,shape,color,smell and taste of food were decided by protein functionality.The utilization of protein will improve by changing the protein functionality.Protein functionality is also advantage to maintain and utilize the nutrition of food.This paper summarized the nature,classification,factors and prospect of protein functionality.It ccn provide a theoretical basis for application of protein in food industry.

  20. Serine/Threonine Kinase 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1 as a Key Regulator of Cell Migration and Cancer Dissemination

    Directory of Open Access Journals (Sweden)

    Laura Di Blasio

    2017-03-01

    Full Text Available Dissecting the cellular signaling that governs the motility of eukaryotic cells is one of the fundamental tasks of modern cell biology, not only because of the large number of physiological processes in which cell migration is crucial, but even more so because of the pathological ones, in particular tumor invasion and metastasis. Cell migration requires the coordination of at least four major processes: polarization of intracellular signaling, regulation of the actin cytoskeleton and membrane extension, focal adhesion and integrin signaling and contractile forces generation and rear retraction. Among the molecular components involved in the regulation of locomotion, the phosphatidylinositol-3-kinase (PI3K pathway has been shown to exert fundamental role. A pivotal node of such pathway is represented by the serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDPK1 or PDK1. PDK1, and the majority of its substrates, belong to the AGC family of kinases (related to cAMP-dependent protein kinase 1, cyclic Guanosine monophosphate-dependent protein kinase and protein kinase C, and control a plethora of cellular processes, downstream either to PI3K or to other pathways, such as RAS GTPase-MAPK (mitogen-activated protein kinase. Interestingly, PDK1 has been demonstrated to be crucial for the regulation of each step of cell migration, by activating several proteins such as protein kinase B/Akt (PKB/Akt, myotonic dystrophy-related CDC42-binding kinases alpha (MRCKα, Rho associated coiled-coil containing protein kinase 1 (ROCK1, phospholipase C gamma 1 (PLCγ1 and β3 integrin. Moreover, PDK1