WorldWideScience

Sample records for monophosphate camp-dependent protein

  1. Novel adenosine 3',5'-cyclic monophosphate dependent protein kinases in a marine diatom

    International Nuclear Information System (INIS)

    Lin, P.P.C.; Volcani, B.E.

    1989-01-01

    Two novel adenosine 3',5'-cyclic monophosphate (cAMP) dependent protein kinases have been isolated from the diatom Cylindrotheca fusiformis. The kinases, designated I and II, are eluted from DEAE-Sephacel at 0.10 and 0.15 M NaCl. They have a high affinity for cAMP and are activated by micromolar cAMP. They exhibit maximal activity at 5 mM Mg 2+ and pH 8 with the preferred phosphate donor ATP and phosphate acceptor histone H1. They phosphorylate sea urchin sperm histone H1 on a single serine site in the sequence Arg-Lys-Gly-Ser( 32 P)-Ser-Asn-Ala-Arg and have an apparent M r of 75,000 as determined by gel filtration and sucrose density sedimentation. In the kinase I preparation a single protein band with an apparent M r of about 78,000 is photolabeled with 8-azido[ 32 P]cAMP and is also phosphorylated with [γ- 32 P]ATP in a cAMP-dependent manner, after autoradiography following sodium dodecyl sulfate gel electrophoresis. The rate of phosphorylation of the 78,000-dalton band is independent of the enzyme concentration. The results indicate that (i) these diatom cAMP-dependent protein kinases are monomeric proteins, possessing both the cAMP-binding regulatory and catalytic domains on the same polypeptide chain, (ii) the enzymes do not dissociate into smaller species upon activation by binding cAMP, and (iii) self-phosphorylation of the enzymes by an intrapeptide reaction is cAMP dependent. The two diatom cAMP kinases are refractory to the heat-stable protein kinase modulator from rabbit muscle, but they respond differently to proteolytic degradation and to inhibition by arachidonic acid and several microbial alkaloids

  2. Discovery of a cAMP Deaminase That Quenches Cyclic AMP-Dependent Regulation

    Science.gov (United States)

    Goble, Alissa M.; Feng, Youjun; Raushel, Frank M.; Cronan, John E.

    2013-01-01

    An enzyme of unknown function within the amidohydrolase superfamily was discovered to catalyze the hydrolysis of the universal second messenger, cyclic-3’, 5’-adenosine monophosphate (cAMP). The enzyme, which we have named CadD, is encoded by the human pathogenic bacterium Leptospira interrogans. Although CadD is annotated as an adenosine deaminase, the protein specifically deaminates cAMP to cyclic-3’, 5’-inosine monophosphate (cIMP) with a kcat/Km of 2.7 ± 0.4 × 105 M−1 s−1 and has no activity on adenosine, adenine, or 5’-adenosine monophosphate (AMP). This is the first identification of a deaminase specific for cAMP. Expression of CadD in Escherichia coli mimics the loss of adenylate cyclase in that it blocks growth on carbon sources that require the cAMP-CRP transcriptional activator complex for expression of the cognate genes. The cIMP reaction product cannot replace cAMP as the ligand for CRP binding to DNA in vitro and cIMP is a very poor competitor of cAMP activation of CRP for DNA binding. Transcriptional analyses indicate that CadD expression represses expression of several cAMP-CRP dependent genes. CadD adds a new activity to the cAMP metabolic network and may be a useful tool in intracellular study of cAMP-dependent processes. PMID:24074367

  3. Alteration of sodium, potassium-adenosine triphosphatase activity in rabbit ciliary processes by cyclic adenosine monophosphate-dependent protein kinase

    International Nuclear Information System (INIS)

    Delamere, N.A.; Socci, R.R.; King, K.L.

    1990-01-01

    The response of sodium, potassium-adenosine triphosphatase (Na,K-ATPase) to cyclic adenosine monophosphate (cAMP)-dependent protein kinase was examined in membranes obtained from rabbit iris-ciliary body. In the presence of the protein kinase together with 10(-5) M cAMP, Na,K-ATPase activity was reduced. No change in Na,K-ATPase activity was detected in response to the protein kinase without added cAMP. Likewise cAMP alone did not alter Na,K-ATPase activity. Reduction of Na,K-ATPase activity was also observed in the presence of the cAMP-dependent protein kinase catalytic subunit. The response of the enzyme to the kinase catalytic subunit was also examined in membranes obtained from rabbit ciliary processes. In the presence of 8 micrograms/ml of the catalytic subunit, ciliary process Na,K-ATPase activity was reduced by more than 50%. To examine whether other ATPases were suppressed by the protein kinase, calcium-stimulated ATPase activity was examined; its activity was stimulated by the catalytic subunit. To test whether the response of the ciliary process Na,K-ATPase is unique, experiments were also performed using membrane preparations from rabbit lens epithelium or rabbit kidney; the catalytic subunit significantly reduced the activity of Na,K-ATPase from the kidney but not the lens. These Na,K-ATPase studies suggest that in the iris-ciliary body, cAMP may alter sodium pump activity. In parallel 86Rb uptake studies, we observed that ouabain-inhibitable potassium uptake by intact pieces of iris-ciliary body was reduced by exogenous dibutryl cAMP or by forskolin

  4. Cyclic adenosine 3:5-monophosphate binding proteins in Hartmannella culbertsoni

    International Nuclear Information System (INIS)

    Verma, A.K.; Krishna Murti, C.R.

    1976-01-01

    When 100, 000 g supernatant fractions of homogenates of Hartmannella culbertsoni were incubated with ('- 3 H)-cyclic adenosine 3 : 5 monophosphate and passed through a sephadex G-100 column, radioactivity appeared with protein fractions eluted after the void colume. About 75% radioactivity bound to these fractions was recovered as cyclic adenosine 3 : 5 monophosphate. Unlabelled cAMP diluted the amount of radioactivity bound. Adenosine, deoxyadenosine, 5-AMP, 3-AMP, ADP and ATP did not inhibit binding. (author)

  5. Cyclic adenosine monophosphate-dependent phosphorylation of mammalian mitochondrial proteins: enzyme and substrate characterization and functional role

    Czech Academy of Sciences Publication Activity Database

    Dobrová, Zuzana; Sardanelli, A. M.; Speranza, F.; Scacco, S.; Signorile, A.; Lorusso, V.; Papa, S.

    2001-01-01

    Roč. 40, - (2001), s. 13941-13947 ISSN 0006-2960 Institutional research plan: CEZ:AV0Z5020903 Keywords : cAMP * cyclic adenosine monophosphate Subject RIV: CE - Biochemistry Impact factor: 4.114, year: 2001

  6. New kids on the block: The Popeye domain containing (POPDC) protein family acting as a novel class of cAMP effector proteins in striated muscle.

    Science.gov (United States)

    Brand, Thomas; Schindler, Roland

    2017-12-01

    The cyclic 3',5'-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease.

    Science.gov (United States)

    Hernández-Ramírez, Laura C; Trivellin, Giampaolo; Stratakis, Constantine A

    2018-03-05

    The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy. Copyright © 2017. Published by Elsevier B.V.

  8. Protein kinase A and Epac activation by cAMP regulates the expression of glial fibrillary acidic protein in glial cells

    Directory of Open Access Journals (Sweden)

    Sugimoto Naotoshi

    2016-01-01

    Full Text Available Cyclic adenosine monophosphate (cAMP controls differentiation in several types of cells during brain development. However, the molecular mechanism of cAMP-controlled differentiation is not fully understood. We investigated the role of protein kinase A (PKA and exchange protein directly activated by cAMP (Epac on cAMP-induced glial fibrillary acidic protein (GFAP, an astrocyte marker, in cultured glial cells. B92 glial cells were treated with cAMP-elevating drugs, an activator of adenylate cyclase, phosphodiesterase inhibitor and a ß adrenal receptor agonist. These cAMP-elevating agents induced dramatic morphological changes and expression of GFAP. A cAMP analog, 8-Br-cAMP, which activates Epac as well as PKA, induced GFAP expression and morphological changes, while another cAMP analog, 8-CPT-cAMP, which activates Epac with greater efficacy when compared to PKA, induced GFAP expression but very weak morphological changes. Most importantly, the treatment with a PKA inhibitor partially reduced cAMP-induced GFAP expression. Taken together, these results indicate that cAMP-elevating drugs lead to the induction of GFAP via PKA and/or Epac activation in B92 glial cells.

  9. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana

    KAUST Repository

    Thomas, Ludivine

    2013-05-01

    The second messenger 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses in higher plants. Here we used proteomics to identify cAMP-dependent protein signatures in Arabidopsis thaliana and identify a number of differentially expressed proteins with a role in light- and temperature-dependent responses, notably photosystem II subunit P-1, plasma membrane associated cation-binding protein and chaperonin 60 β. Based on these proteomics results we conclude that, much like in cyanobacteria, algae and fungi, cAMP may have a role in light signaling and the regulation of photosynthesis as well as responses to temperature and we speculate that ACs could act as light and/or temperature sensors in higher plants. Biological significance: This current study is significant since it presents the first proteomic response to cAMP, a novel and key second messenger in plants. It will be relevant to researchers in plant physiology and in particular those with an interest in second messengers and their role in biotic and abiotic stress responses. © 2013 Elsevier B.V.

  10. Adenosine 3',5'-cyclic monophosphate (cAMP)-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors

    International Nuclear Information System (INIS)

    Lund, Kaleb C.; Wallace, Kendall B.

    2008-01-01

    Nucleoside analog reverse transcriptase inhibitors (NRTIs) are known to directly inhibit mitochondrial complex I activity as well as various mitochondrial kinases. Recent observations that complex I activity and superoxide production are modulated through cAMP-dependent phosphorylation suggests a mechanism through which NRTIs may affect mitochondrial respiration via kinase-dependent protein phosphorylation. In the current study, we examine the potential for NRTIs to inhibit the cAMP-dependent phosphorylation of complex I and the associated NADH:CoQ oxidoreductase activities and rates of superoxide production using HepG2 cells. Phosphoprotein staining of immunocaptured complex I revealed that 3'-azido-3'-deoxythymidine (AZT; 10 and 50 μM), AZT monophosphate (150 μM), and 2',3'-dideoxycytidine (ddC; 1 μM) prevented the phosphorylation of the NDUFB11 subunit of complex I. This was associated with a decrease in complex I activity with AZT and AZT monophosphate only. In the presence of succinate, superoxide production was increased with 2',3'-dideoxyinosine (ddI; 10 μM) and ddC (1 μM). In the presence of succinate + cAMP, AZT showed an inverse dose-dependent effect on superoxide production. None of the NRTIs examined inhibit PKA activity suggesting that the observed effects are due to a direct interaction with complex I. These data demonstrate a direct effect of NRTIs on cAMP-dependent regulation of mitochondrial bioenergetics independent of DNA polymerase-γ activity; in the case of AZT, these observations may provide a mechanism for the observed long-term toxicity with this drug

  11. "cAMP sponge": a buffer for cyclic adenosine 3', 5'-monophosphate.

    Directory of Open Access Journals (Sweden)

    Konstantinos Lefkimmiatis

    Full Text Available BACKGROUND: While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP. METHODS/PRINCIPAL FINDINGS: Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIbeta of protein kinase A (PKA. Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named "cAMP sponge" was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets. CONCLUSIONS: This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events.

  12. cAMP and forskolin decrease γ-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    International Nuclear Information System (INIS)

    Heuschneider, G.; Schwartz, R.D.

    1989-01-01

    The effects of the cyclic nucleotide cAMP on γ-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N 6 , O 2' -dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36 Cl - uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the γ-aminobutyric acid-gated Cl - channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36 Cl - uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl - channel directly. The data suggest that γ-aminobutyric acid (GABA A ) receptor function in brain can be regulated by cAMP-dependent phosphorylation

  13. Presence of cyclic adenosine-3':5'-monophosphate (cAMP) in primary shoots of Zea mays L

    International Nuclear Information System (INIS)

    Edlich, W.; Graeser, H.

    1978-01-01

    The concentration of cAMP was determined in extracts of crude homogenates of maize seedlings, 3800 . g supernatants and isolated chloroplasts by the isotope dilution test. After extractpurification by precipitation with BaSO 4 and by chromatography on aluminium oxide column, a factor by means of which the binding of [8- 3 H]-cAMP with cAMP-dependent protein kinase was inhibited. The inhibitor was found inactive after treatment of the extracts with phosphodiesterase. In conclusion, this factor was identical with cAMP. It is suggested that cAMP-synthesis is localized in chloroplasts. Microbial contaminations which might disturb the detection of cAMP was excluded at least in the preparations of chloroplasts. (author)

  14. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    Science.gov (United States)

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  15. A conjugate of decyltriphenylphosphonium with plastoquinone can carry cyclic adenosine monophosphate, but not cyclic guanosine monophosphate, across artificial and natural membranes.

    Science.gov (United States)

    Firsov, Alexander M; Rybalkina, Irina G; Kotova, Elena A; Rokitskaya, Tatyana I; Tashlitsky, Vadim N; Korshunova, Galina A; Rybalkin, Sergei D; Antonenko, Yuri N

    2018-02-01

    The present study demonstrated for the first time the interaction between adenosine 3',5'-cyclic monophosphate (cAMP), one of the most important signaling compounds in living organisms, and the mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1). The data obtained on model liquid membranes and human platelets revealed the ability of SkQ1 to selectively transport cAMP, but not guanosine 3',5'-cyclic monophosphate (cGMP), across both artificial and natural membranes. In particular, SkQ1 elicited translocation of cAMP from the source to the receiving phase of a Pressman-type cell, while showing low activity with cGMP. Importantly, only conjugate with plastoquinone, but not dodecyl-triphenylphosphonium, was effective in carrying cAMP. In human platelets, SkQ1 also appeared to serve as a carrier of cAMP, but not cGMP, from outside to inside the cell, as measured by phosphorylation of the vasodilator stimulated phosphoprotein. The SkQ1-induced transfer of cAMP across the plasma membrane found here can be tentatively suggested to interfere with cAMP signaling pathways in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A multi-angular mass spectrometric view at cyclic nucleotide signaling proteins : Structure/function and protein interactions of cAMP- and cGMP-dependent protein kinase

    NARCIS (Netherlands)

    Scholten, A.

    2006-01-01

    The primary focus of this thesis is the two kinases PKA and PKG, cAMP and cGMP dependent protein kinase respectively. PKA and PKG are studied both at structure/function level as well as at the level of interaction with other proteins in tissue. Our primary methods are all based on mass spectrometry.

  17. The Popeye Domain Containing Genes and cAMP Signaling

    Directory of Open Access Journals (Sweden)

    Thomas Brand

    2014-05-01

    Full Text Available 3'-5'-cyclic adenosine monophosphate (cAMP is a second messenger, which plays an important role in the heart. It is generated in response to activation of G-protein-coupled receptors (GPCRs. Initially, it was thought that protein kinase A (PKA exclusively mediates cAMP-induced cellular responses such as an increase in cardiac contractility, relaxation, and heart rate. With the identification of the exchange factor directly activated by cAMP (EPAC and hyperpolarizing cyclic nucleotide-gated (HCN channels as cAMP effector proteins it became clear that a protein network is involved in cAMP signaling. The Popeye domain containing (Popdc genes encode yet another family of cAMP-binding proteins, which are prominently expressed in the heart. Loss-of-function mutations in mice are associated with cardiac arrhythmia and impaired skeletal muscle regeneration. Interestingly, the cardiac phenotype, which is present in both, Popdc1 and Popdc2 null mutants, is characterized by a stress-induced sinus bradycardia, suggesting that Popdc proteins participate in cAMP signaling in the sinuatrial node. The identification of the two-pore channel TREK-1 and Caveolin 3 as Popdc-interacting proteins represents a first step into understanding the mechanisms of heart rate modulation triggered by Popdc proteins.

  18. Effects of sodium ions on rat thyrocyte (FRTL-5 cells) swelling- and thyrotropin-activated taurine efflux dependent on cAMP and Epac.

    Science.gov (United States)

    Fugelli, Kjell

    2016-03-01

    Cellular osmolyte release is important in preventing water accumulation and swelling. However, the signaling pathways that detect volume increase and activate solute efflux are still not fully understood. We investigated efflux activation of the osmolyte taurine which is actively accumulated in rat thyrocytes (FRTL-5). Efflux of accumulated [(3)H]taurine was stimulated by cellular swelling and thyrotropin (TSH). These effects were significantly diminished in cells having reduced TSH receptor concentrations. Phosphodiesterase inhibitors (IBMX, Rolipram) enhanced both responses. An analog of forskolin (FSK; 7-deacetyl-7-[O-(N-methylpiperazino)-γ-butyryl] dihydrochloride) and an analog of cAMP, specific for activating exchange protein activated directly by cAMP (Epac; 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, acetoxymethyl ester), significantly stimulated [(3)H]taurine efflux. A cAMP analog specific for activating protein kinase A (PKA; N6-benzoyladenosine-3',5'-cyclic monophosphate, acetoxymethyl ester) had no significant stimulatory effect on [(3)H]taurine efflux rate. The amiloride analog, 5-(N-ethyl-N-isopropyl)-amiloride, which inhibits a TSH-stimulated Na(+)/H(+) exchanger, enhanced (100 %) and ouabain inhibited (50 %) the TSH-stimulated [(3)H]taurine efflux rate. The effect of FSK on efflux was strongly potentiated by Na(+)-free iso-osmotic conditions and by osmolality/cell volume that affected also the db-cAMP-stimulated efflux. The TSH receptors and downstream elements of the signaling pathway comprising adenylyl cyclase, cAMP and Epac appeared to mediate the hormone-induced signal for [(3)H]taurine efflux from FRTL-5 cells. With less evidence, the cell volume/osmolality-induced [(3)H]taurine efflux cascade appeared to share some of the hormone signaling elements and to modulate the hormone signaling pathway at two levels through cellular Na(+).

  19. A simplified radioimmunoassay of adenosine-3':5'-monophosphate

    International Nuclear Information System (INIS)

    Katoh, Yoshiki; Takezawa, Junichi; Suzuki, Morio; Kuninaka, Akira; Yoshino, Hiroshi

    1975-01-01

    Dextran-coated charcoal was proved to be able to separate free adenosine-3':5'monophosphate (cAMP) from antibody-bound cAMP. Only free cAMO was adsorbed on dextran-coated charcoal within 1 min after contacting the charcoal. In a reaction mixture of cAMP and anti-cAMP-plasma, most of antibody-bound cAMP had not been adsorbed 4 min after contacting. The data obtained were found to be almost the same as the data of another experiment using cellulose ester filter separation technique. Thus, dextran-coated charcoal could be employed to simplify the radioimmunoassay of cAMP. (author)

  20. Effect of cholera toxin on cAMP levels and Na+ influx in isolated intestinal epithelial cells

    International Nuclear Information System (INIS)

    Hyun, C.S.; Kimmich, G.A.

    1982-01-01

    Freshly isolated chicken intestinal cells contain approximately 20 pmol adenosine 3',5'-cyclic monophosphate (cAMP)/mg cellular protein. Incubation with 3 μg/ml cholera toxin (CT) at 37 0 C induces an elevation of cellular cAMP beginning 10-15 min after initial exposure. The response is linear with time for 40-50 min and causes a six- to eightfold increase over control levels at steady state. Dibutyryl cAMP and agents that increase cAMP production inhibit Na + influx into the isolated enterocytes. Chlorpromazine completely abolishes the toxin-induced elevation of cAMP in the isolated cells and also reverses the effect on Na + entry. The data provide evidence for a cAMP-mediated control of intestinal cell Na + uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT on Na + during induction of intestinal secretory activity. Studies on the time-dependent effects of chlorpromazine on both intracellular cAMP concentration and Na + influx suggest that the reactivation of the Na + transport system after cAMP-induced inhibition is slow relative to the disappearance of cAMP

  1. A cAMP Biosensor-Based High-Throughput Screening Assay for Identification of Gs-Coupled GPCR Ligands and Phosphodiesterase Inhibitors

    DEFF Research Database (Denmark)

    Vedel, Line; Bräuner-Osborne, Hans; Mathiesen, Jesper Mosolff

    2015-01-01

    Cyclic adenosine 3',5'-monophosphate (cAMP) is an important second messenger, and quantification of intracellular cAMP levels is essential in studies of G protein-coupled receptors (GPCRs). The intracellular cAMP levels are regulated by the adenylate cyclase (AC) upon activation of either Gs- or ...... also observed for the other representative Gs-coupled GPCRs tested, GLP-1R and GlucagonR. The FRET-based cAMP biosensor assay is robust, reproducible, and inexpensive with good Z factors and is highly applicable for HTS....

  2. Kinetics of hydrogen-deuterium exchange in adenosine 5'-monophosphate, adenosine 3':5'-monophosphate, and poly(riboadenylic acid) determined by laser-Raman spectroscopy.

    Science.gov (United States)

    Thomas, G J; Livramento, J

    1975-11-18

    Pseudo-first-order rate constants governing the deuterium exchange of 8-CH groups in adenosine 5'-monophosphate, adenosine 3':5'-monophosphate, and poly(riboadenylic acid) (poly(rA)) were determined as a function of temperature in the range 20-90 degrees C by means of laser-Raman spectroscopy. For 5'-rAMP, the logarithm of the rate constant exhibits a strictly linear dependence on reciprocal temperature, i.e., kpsi = Ae-Ea/RT, with A = 2.3 X 10(14) hr-1 and Ea = 24.2 +/- 0.6 kcal/mol. For cAMP, above 50 degrees C, kpsi is nearly identical in magnitude and temperature dependence to that of 5'-rAMP. However, below 50 degrees C, isotope exchange in cAMP is much more rapid than in 5'-rAMP, characterized by a lower activation energy (17.7 kcal/mol) and frequency factor (9.6 X 10(9) hr-1). Exchange in poly(rA) is considerably slower than in 5'-rAMP at all temperatures, but like cAMP the in k vs. 1/T plot may be divided into high temperature and low temperature domains, each characterized by different Arrhenius parameters. Above 60 degrees C, poly(rA) gives Ea = 22.0 kcal/mol and A = 3.2 X 10(12) hr-1, while below 60 degrees C, Ea = 27.7 kcal/mol and A = 1.8 X 10(16) hr-1. Thus, increasing the temperature above 60 degrees C does not diminish the retardation of exchange in poly(rA) vis a vis 5'-rAMP. These results indicate that the distribution of electrons in the adenine ring of cAMP is altered by lowering the temperature below 50 degrees C, although no similar perturbation occurs for 5'-rAMP. Retardation of exchange in poly(rA) is most probably due to base stacking at lower temperatures and to steric hindrance from the ribopolymer backbone at higher temperatures. We also report the spectral effects of deuterium exchange on the vibrational Raman frequencies of 5'-rAMP, cAMP, and poly(rA) and suggest a number of new assignments for the 5' and cyclic ribosyl phosphate groups.

  3. Regulation of cAMP on the first mitotic cell cycle of mouse embryos.

    Science.gov (United States)

    Yu, Aiming; Zhang, Zhe; Bi, Qiang; Sun, Bingqi; Su, Wenhui; Guan, Yifu; Mu, Runqing; Miao, Changsheng; Zhang, Jie; Yu, Bingzhi

    2008-03-01

    Mitosis promoting factor (MPF) plays a central role during the first mitosis of mouse embryo. We demonstrated that MPF activity increased when one-cell stage mouse embryo initiated G2/M transition following the decrease of cyclic adenosine 3', 5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) activity. When cAMP and PKA activity increases again, MPF activity decreases and mouse embryo starts metaphase-anaphase transition. In the downstream of cAMP/PKA, there are some effectors such as polo-like kinase 1 (Plk1), Cdc25, Mos (mitogen-activated protein kinase kinase kinase), MEK (mitogen-activated protein kinase kinase), mitogen-activated protein kinase (MAPK), Wee1, anaphase-promoting complex (APC), and phosphoprotein phosphatase that are involved in the regulation of MPF activity. Here, we demonstrated that following activation of MPF, MAPK activity was steady, whereas Plk1 activity fluctuated during the first cell cycle. Plk1 activity was the highest at metaphase and decreased at metaphase-anaphase transition. Further, we established a mathematical model using Gepasi algorithm and the simulation was in agreement with the experimental data. Above all the evidences, we suggested that cAMP and PKA might be the upstream factors which were included in the regulation of the first cell cycle development of mouse embryo. Copyright 2007 Wiley-Liss, Inc.

  4. Possible involvement of G-proteins and cAMP in the induction of progesterone hydroxylating enzyme system in the vascular wilt fungus Fusarium oxysporum.

    Science.gov (United States)

    Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena

    2009-02-01

    Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.

  5. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling.

    Science.gov (United States)

    Inda, Carolina; Dos Santos Claro, Paula A; Bonfiglio, Juan J; Senin, Sergio A; Maccarrone, Giuseppina; Turck, Christoph W; Silberstein, Susana

    2016-07-18

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein-dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP. © 2016 Inda et al.

  6. Interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.

    Science.gov (United States)

    Yang, Ke-Ke; Sui, Yi; Zhou, Hui-Rong; Zhao, Hai-Lu

    2017-05-01

    Renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Renal adenosine monophosphate-activated protein kinase and its downstream molecule acetyl coenzyme A carboxylase were detected by immunohistochemistry and western blot at 10 months after uninephrectomy. Meanwhile, we examined renal carcinogenesis by histological transformation and expressions of Ki67 and mutant p53. During the study, fasting lipid profiles were detected dynamically at 3, 6, 8, and 10 months. The results indicated that adenosine monophosphate-activated protein kinase expression in uninephrectomized rats showed 36.8% reduction by immunohistochemistry and 89.73% reduction by western blot. Inversely, acetyl coenzyme A carboxylase expression increased 83.3% and 19.07% in parallel to hyperlipidemia at 6, 8, and 10 months. The histopathology of carcinogenesis in remnant kidneys was manifested by atypical proliferation and carcinoma in situ, as well as increased expressions of Ki67 and mutant p53. Intervention with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker significantly prevented the inhibition of adenosine monophosphate-activated protein kinase signaling pathway and renal carcinogenesis in uninephrectomized rats. In conclusion, the novel findings suggest that uninephrectomy-induced disturbance in adenosine monophosphate-activated protein kinase signaling pathway resulted in hyperlipidemia and

  7. Activation of protein kinase A and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Jia, Bingbing; Madsen, Lise; Petersen, Rasmus Koefoed

    2012-01-01

    ) and exchange protein directly activated by cAMP (Epac) in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS). We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence......Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA...... results emphasize the need for cAMP signaling in concert with treatment with a PPARγ or PPARδ agonist to secure efficient adipocyte differentiation of human hMADS mesenchymal stem cells....

  8. Regulation of cessation of respiration and killing by cyclic 3',5'-adenosine monophosphate and its receptor protein after far-ultraviolet irradiation of Escherichia coli

    International Nuclear Information System (INIS)

    Swenson, P.A.; Schenley, R.L.; Joshi, J.G.

    1978-01-01

    When Escherichia coli B/r cultures are irradiated with ultraviolet light (UV) (254 nm), those cells that are killed stop respiring by 60 min after irradiation. Post-UV treatment with cyclic adenosine 3',5'-adenosine monophosphate (cAMP) causes more cells to stop respiring and to die. We have studied these effects at a UV fluence of 52 I/m 2 in a a wild-type E. coli K 12 strain and in mutants defective in cAMP metabolism. Strain CA 8,000 has crp + and cya + genes for the cAMP receptor protein (CRP) (required for transcription of operons regulated by cAMP) and for adenylate cyclase, respectively; CA 7901 is crp - ; and CA 8306 is a cya deletion (Δ). The wild-type culture showed a small transient cessation of respiration, and addition of cAMP caused cessation to be nearly complete. The crp - culture showed no evidence of cessation of respiration, and cAMP had no effect. The Δ cya mutant also showed no cessation of respiration, but cAMP (5 mM) caused as complete inhibition as in the wild type. cAMP caused a 10-fold loss in viability of UV-irradiated wild-type and Δ cya liquid cultures but had no effect on the cpr - culture. Respiration and viability changes were also studied in a double mutant, CA8404 Δ cya crp*, which has an altered CRP that is, with respect to the lac operon, independent of cAMP. The respiration response to UV was similar to that of the wild-type culture, and both respiration and viability of cells in liquid culture were sensitive to cAMP. The survival data, obtained by plating immediately after irradiation, show the wild type, Δ cya strains, and Δ cya crp* to be equally sensitive and the crp - strain to be more resistant. We conclude that cessation of respiration and cell killing after UV irradiation are regulated by cAMP and the CRP. (orig.) [de

  9. cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP).

    Science.gov (United States)

    Roberts, Owain Llŷr; Dart, Caroline

    2014-02-01

    The second messenger cAMP plays a central role in mediating vascular smooth muscle relaxation in response to vasoactive transmitters and in strengthening endothelial cell-cell junctions that regulate the movement of solutes, cells and macromolecules between the blood and the surrounding tissue. The vasculature expresses three cAMP effector proteins: PKA (protein kinase A), CNG (cyclic-nucleotide-gated) ion channels, and the most recently discovered Epacs (exchange proteins directly activated by cAMP). Epacs are a family of GEFs (guanine-nucleotide-exchange factors) for the small Ras-related GTPases Rap1 and Rap2, and are being increasingly implicated as important mediators of cAMP signalling, both in their own right and in parallel with the prototypical cAMP target PKA. In the present paper, we review what is currently known about the role of Epac within blood vessels, particularly with regard to the regulation of vascular tone, endothelial barrier function and inflammation.

  10. Measurement of cAMP in an undergraduate teaching laboratory, using ALPHAscreen technology.

    Science.gov (United States)

    Bartho, Joseph D; Ly, Kien; Hay, Debbie L

    2012-02-14

    Adenosine 3',5'-monophosphate (cAMP) is a cellular second messenger with central relevance to pharmacology, cell biology, and biochemistry teaching programs. cAMP is produced from adenosine triphosphate by adenylate cyclase, and its production is reduced or enhanced upon activation of many G protein-coupled receptors. Therefore, the measurement of cAMP serves as an indicator of receptor activity. Although there are many assays available for measuring cAMP, few are suitable for large class teaching, and even fewer seem to have been adapted for this purpose. Here, we describe the use of bead-based ALPHAscreen (Amplified Luminescent Proximity Homogenous Assay) technology for teaching a class of more than 300 students the practical aspects of detecting signal transduction. This technology is applicable to the measurement of many different signaling pathways. This resource is designed to provide a practical guide for instructors and a useful model for developing other classes using similar technologies.

  11. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana

    KAUST Repository

    Thomas, Ludivine; Marondedze, Claudius; Ederli, Luisa; Pasqualini, Stefania; Gehring, Christoph A

    2013-01-01

    The second messenger 3'-5'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses

  12. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    Science.gov (United States)

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  13. Dendritic diameter influences the rate and magnitude of hippocampal cAMP and PKA transients during β-adrenergic receptor activation.

    Science.gov (United States)

    Luczak, Vincent; Blackwell, Kim T; Abel, Ted; Girault, Jean-Antoine; Gervasi, Nicolas

    2017-02-01

    In the hippocampus, cyclic-adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) form a critical signaling cascade required for long-lasting synaptic plasticity, learning and memory. Plasticity and memory are known to occur following pathway-specific changes in synaptic strength that are thought to result from spatially and temporally coordinated intracellular signaling events. To better understand how cAMP and PKA dynamically operate within the structural complexity of hippocampal neurons, we used live two-photon imaging and genetically-encoded fluorescent biosensors to monitor cAMP levels or PKA activity in CA1 neurons of acute hippocampal slices. Stimulation of β-adrenergic receptors (isoproterenol) or combined activation of adenylyl cyclase (forskolin) and inhibition of phosphodiesterase (IBMX) produced cAMP transients with greater amplitude and rapid on-rates in intermediate and distal dendrites compared to somata and proximal dendrites. In contrast, isoproterenol produced greater PKA activity in somata and proximal dendrites compared to intermediate and distal dendrites, and the on-rate of PKA activity did not differ between compartments. Computational models show that our observed compartmental difference in cAMP can be reproduced by a uniform distribution of PDE4 and a variable density of adenylyl cyclase that scales with compartment size to compensate for changes in surface to volume ratios. However, reproducing our observed compartmental difference in PKA activity required enrichment of protein phosphatase in small compartments; neither reduced PKA subunits nor increased PKA substrates were sufficient. Together, our imaging and computational results show that compartment diameter interacts with rate-limiting components like adenylyl cyclase, phosphodiesterase and protein phosphatase to shape the spatial and temporal components of cAMP and PKA signaling in CA1 neurons and suggests that small neuronal compartments are most sensitive to cAMP

  14. Regulation of melanogenesis: the role of cAMP and MITF

    Directory of Open Access Journals (Sweden)

    Michał Otręba

    2012-01-01

    Full Text Available The article presents the melanogenesis pathway and the role of cyclic adenosine monophosphate (cAMP and microphthalmia transcription factor (MITF in regulation of this process. Products of melanogenesis are eu- and/or pheomelanins synthesized in a multistage process of tyrosine oxidation and polymerization. The conversions require the presence of tyrosinase (TYR, key enzyme, tyrosine hydroxylase isoform I (THI and tyrosinase related proteins (TRP1 and TRP2. Many types of signal molecules and transcription factors participate in regulation of melanin synthesis, but the most important are cAMP and MITF. cAMP is the second messenger in the intracellular signal cascade, which is synthesized from adenosine triphosphate (ATP by adenylyl cyclase, activated among others by the melanocortin receptor and the αS subunit of G protein. The signal molecule cAMP regulates MITF, TYR, THI, GTP-cyclohydroxylase I (GTP-CHI transcription and phenylalanine hydroxylase (PAH phosphorylation at Ser16 by protein kinase A (PKA. Mutations of genes encoding proteins belonging to the cAMP signal cascade may lead to McCune-Albright and Carney syndromes. MITF is one of the most important nuclear transcription factors regulating melanogenesis. Currently 10 isoforms of human MITF are known, but in melanocytes only MITF-M, MITF-Mdel, MITF-A and MITF-H occur. MITF transcription factor regulates melanogenesis by activation of tyrosinase, TRP1 and TRP2 transcription. It also affects expression of other factors regulating melanosome maturation, biogenesis and transport. Moreover, it regulates melanocyte proliferation and protection against apoptosis. Mutations of the MITF gene may lead to hereditary diseases: Waardenburg type II and Tietz syndromes.

  15. Adenyl cyclases and cAMP in plant signaling - Past and present

    KAUST Repository

    Gehring, Christoph A.

    2010-06-25

    In lower eukaryotes and animals 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  16. Adenyl cyclases and cAMP in plant signaling - Past and present

    KAUST Repository

    Gehring, Christoph A

    2010-01-01

    In lower eukaryotes and animals 3'-5'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  17. Cyclic adenosine 3',5'-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter.

    Science.gov (United States)

    Clem, Brian F; Hudson, Elizabeth A; Clark, Barbara J

    2005-03-01

    Steroidogenic acute regulatory protein (StAR) transcription is regulated through cAMP-protein kinase A-dependent mechanisms that involve multiple transcription factors including the cAMP-responsive element binding protein (CREB) family members. Classically, binding of phosphorylated CREB to cis-acting cAMP-responsive elements (5'-TGACGTCA-3') within target gene promoters leads to recruitment of the coactivator CREB binding protein (CBP). Herein we examined the extent of CREB family member phosphorylation on protein-DNA interactions and CBP recruitment with the StAR promoter. Immunoblot analysis revealed that CREB, cAMP-responsive element modulator (CREM), and activating transcription factor (ATF)-1 are expressed in MA-10 mouse Leydig tumor cells, yet only CREB and ATF-1 are phosphorylated. (Bu)2cAMP treatment of MA-10 cells increased CREB phosphorylation approximately 2.3-fold within 30 min but did not change total nuclear CREB expression levels. Using DNA-affinity chromatography, we now show that CREB and ATF-1, but not CREM, interact with the StAR promoter, and this interaction is dependent on the activator protein-1 (AP-1) cis-acting element within the cAMP-responsive region. In addition, (Bu)2cAMP-treatment increased phosphorylated CREB (P-CREB) association with the StAR promoter but did not influence total CREB interaction. In vivo chromatin immunoprecipitation assays demonstrated CREB binding to the StAR proximal promoter is independent of (Bu)2cAMP-treatment, confirming our in vitro analysis. However, (Bu)2cAMP-treatment increased P-CREB and CBP interaction with the StAR promoter, demonstrating for the first time the physical role of P-CREB:DNA interactions in CBP recruitment to the StAR proximal promoter.

  18. Cardiac cAMP: production, hydrolysis, modulation and detection

    Directory of Open Access Journals (Sweden)

    Cédric eBOULARAN

    2015-10-01

    Full Text Available Cyclic adenosine 3’,5’-monophosphate (cAMP modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors’ signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability.

  19. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism

    KAUST Repository

    Alquraishi, May Majed; Gehring, Christoph A; Marondedze, Claudius

    2016-01-01

    The second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis.

  20. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism

    KAUST Repository

    Alquraishi, May Majed

    2016-06-01

    The second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis.

  1. Inhibitory action of certain cyclophosphate derivatives of cAMP on cAMP-dependent protein kinases

    NARCIS (Netherlands)

    Wit, René J.W. de; Hekstra, Doeke; Jastorff, Bernd; Stec, Wojciech J.; Baraniak, Janina; Driel, Roel van; Haastert, Peter J.M. van

    1984-01-01

    A series cAMP derivatives with modifications in the adenine, ribose and cyclophosphate moiety were screened for their binding affinity for the two types of cAMP-binding sites in mammalian protein kinase type I. In addition, the activation of the kinase by these analogs was monitored. The binding

  2. The Arabidopsis thaliana Cyclic-Nucleotide-Dependent Response – a Quantitative Proteomic and Phosphoproteomic Analysis

    KAUST Repository

    Alqurashi, May M.

    2013-11-01

    Protein phosphorylation governs many regulatory pathways and an increasing number of kinases, proteins that transfer phosphate groups, are in turn activated by cyclic nucleotides. One of the cyclic nucleotides, cyclic adenosine monophosphate (cAMP), has been shown to be a second messenger in abiotic and biotic stress responses. However, little is known about the precise role of cAMP in plants and in the down-stream activation of kinases, and hence cAMP-dependent phosphorylation. To increase our understanding of the role of cAMP, proteomic and phosphoproteomic profiles of Arabidopsis thaliana suspension culture cells were analyzed before and after treatment of cells with two different concentrations of 8-Bromo-cAMP (1 µM and 100 nM) and over a time-course of one hour. A comparative quantitative analysis was undertaken using two- dimensional gel electrophoresis and the Delta 2D software (DECODON) followed by protein spot identification by tandem mass spectrometry combined with Mascot and Scaffold. Differentially expressed proteins and regulated phosphoproteins were categorized according to their biological function using bioinformatics tools. The results revealed that the treatment with 1 µM and 100 nM 8-Bromo-cAMP was sufficient to induce specific concentration- and time-dependent changes at the proteome and phosphoproteome levels. In particular, different phosphorylation patterns were observed overtime preferentially affecting proteins in a number of functional categories, notably phosphatases, proteins that remove phosphate groups. This suggests that cAMP both transiently activates and deactivates proteins through specific phosphorylation events and provides new insight into biological mechanisms and functions at the systems level.

  3. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  4. Direct Light-up of cAMP Derivatives in Living Cells by Click Reactions

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2013-10-01

    Full Text Available 8-Azidoadenosine 3′,5′-cyclic monophosphate (8-azido cAMP was directly detected in living cells, by applying Cu-free azide-alkyne cycloaddition to probe cAMP derivatives by fluorescence light-up. Fluorescence emission was generated by two non-fluorescent molecules, 8-azido cAMP as a model target and difluorinated cyclooctyne (DIFO reagent as a probe. The azide-alkyne cycloaddition reaction between 8-azido cAMP and DIFO induces fluorescence in 8-azido cAMP. The fluorescence emission serves as a way to probe 8-azido cAMP in cells.

  5. A Temporal-Specific and Transient cAMP Increase Characterizes Odorant Classical Conditioning

    Science.gov (United States)

    Cui, Wen; Smith, Andrew; Darby-King, Andrea; Harley, Carolyn W.; McLean, John H.

    2007-01-01

    Increases in cyclic adenosine monophosphate (cAMP) are proposed to initiate learning in a wide variety of species. Here, we measure changes in cAMP in the olfactory bulb prior to, during, and following a classically conditioned odor preference trial in rat pups. Measurements were taken up to the point of maximal CREB phosphorylation in olfactory…

  6. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System

    Science.gov (United States)

    Ercu, Maria; Klussmann, Enno

    2018-01-01

    A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases. PMID:29461511

  7. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2018-04-01

    Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 39;217-230, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Evolutionary Paths of the cAMP-Dependent Protein Kinase (PKA) Catalytic Subunits

    Science.gov (United States)

    Søberg, Kristoffer; Jahnsen, Tore; Rognes, Torbjørn; Skålhegg, Bjørn S.; Laerdahl, Jon K.

    2013-01-01

    3′,5′-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits Cα and Cβ, encoded by the two genes PRKACA and PRKACB, respectively, are among the best understood and characterized human kinases. Here we have studied the evolution of this gene family in chordates, arthropods, mollusks and other animals employing probabilistic methods and show that Cα and Cβ arose by duplication of an ancestral PKA catalytic subunit in a common ancestor of vertebrates. The two genes have subsequently been duplicated in teleost fishes. The evolution of the PRKACG retroposon in simians was also investigated. Although the degree of sequence conservation in the PKA Cα/Cβ kinase family is exceptionally high, a small set of signature residues defining Cα and Cβ subfamilies were identified. These conserved residues might be important for functions that are unique to the Cα or Cβ clades. This study also provides a good example of a seemingly simple phylogenetic problem which, due to a very high degree of sequence conservation and corresponding weak phylogenetic signals, combined with problematic nonphylogenetic signals, is nontrivial for state-of-the-art probabilistic phylogenetic methods. PMID:23593352

  9. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    Science.gov (United States)

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Imaging alterations of cardiomyocyte cAMP microdomains in disease

    Directory of Open Access Journals (Sweden)

    Alexander eFroese

    2015-08-01

    Full Text Available 3’,5’-cyclic adenosine monophosphate (cAMP is an important second messenger which regulates heart function by acting in distinct subcellular microdomains. Recent years have provided deeper mechanistic insights into compartmentalized cAMP signaling and its link to cardiac disease. In this mini review, we summarize newest developments in this field achieved by cutting-edge biochemical and biophysical techniques. We further compile the data from different studies into a bigger picture of so far uncovered alterations in cardiomyocyte cAMP microdomains which occur in compensated cardiac hypertrophy and chronic heart failure. Finally, future research directions and translational perspectives are briefly discussed.

  11. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay.

    Science.gov (United States)

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco

    2011-04-01

    The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF.

  12. Activity of cAMP-dependent protein kinases and cAMP-binding proteins of rat kidney cytosol during dehydration

    International Nuclear Information System (INIS)

    Zelenina, M.N.; Solenov, E.I.; Ivanova, L.N.

    1985-01-01

    The activity of cAMP-dependent protein kinases, the binding of cAMP, and the spectrum of cAMP-binding proteins in the cytosol of the renal papilla was studied in intact rats and in rats after 24 h on a water-deprived diet. It was found that the activation of protein kinases by 10 -6 M cAMP is significantly higher in the experimental animals than in the intact animals. In chromatography on DEAE-cellulose, the positions of the peaks of specific reception of cAMP corresponded to the peaks of the regulatory subunits of cAMP-dependent protein kinases of types I and II. In this case, in intact animals more than 80% of the binding activity was detected in peaks II, whereas in rats subjected to water deprivation, more than 60% of the binding was observed in peak I. The general regulatory activity of the cytosol was unchanged in the experimental animals in comparison with intact animals. It is suggested that during dehydration there is an induction of the synthesis of the regulatory subunit of type I cAMP-dependent protein kinase in the renal papilla

  13. Release from Xenopus oocyte prophase I meiotic arrest is independent of a decrease in cAMP levels or PKA activity.

    Science.gov (United States)

    Nader, Nancy; Courjaret, Raphael; Dib, Maya; Kulkarni, Rashmi P; Machaca, Khaled

    2016-06-01

    Vertebrate oocytes arrest at prophase of meiosis I as a result of high levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) activity. In Xenopus, progesterone is believed to release meiotic arrest by inhibiting adenylate cyclase, lowering cAMP levels and repressing PKA. However, the exact timing and extent of the cAMP decrease is unclear, with conflicting reports in the literature. Using various in vivo reporters for cAMP and PKA at the single-cell level in real time, we fail to detect any significant changes in cAMP or PKA in response to progesterone. More interestingly, there was no correlation between the levels of PKA inhibition and the release of meiotic arrest. Furthermore, we devised conditions whereby meiotic arrest could be released in the presence of sustained high levels of cAMP. Consistently, lowering endogenous cAMP levels by >65% for prolonged time periods failed to induce spontaneous maturation. These results argue that the release of oocyte meiotic arrest in Xenopus is independent of a reduction in either cAMP levels or PKA activity, but rather proceeds through a parallel cAMP/PKA-independent pathway. © 2016. Published by The Company of Biologists Ltd.

  14. Regulation of insulin-like growth factor I transcription by cyclic adenosine 3',5'-monophosphate (cAMP) in fetal rat bone cells through an element within exon 1: protein kinase A-dependent control without a consensus AMP response element

    Science.gov (United States)

    McCarthy, T. L.; Thomas, M. J.; Centrella, M.; Rotwein, P.

    1995-01-01

    Insulin-like growth factor I (IGF-I) is a locally synthesized anabolic growth factor for bone. IGF-I synthesis by primary fetal rat osteoblasts (Ob) is stimulated by agents that increase the intracellular cAMP concentration, including prostaglandin E2 (PGE2). Previous studies with Ob cultures demonstrated that PGE2 enhanced IGF-I transcription through selective use of IGF-I promoter 1, with little effect on IGF-I messenger RNA half-life. Transient transfection of Ob cultures with an array of promoter 1-luciferase reporter fusion constructs has now allowed localization of a potential cis-acting promoter element(s) responsible for cAMP-stimulated gene expression to the 5'-untranslated region (5'-UTR) of IGF-I exon 1, within a segment lacking a consensus cAMP response element. Our evidence derives from three principal observations: 1) a transfection construct containing only 122 nucleotides (nt) of promoter 1 and 328 nt of the 5'-UTR retained full PGE2-stimulated reporter expression; 2) maximal PGE2-driven reporter expression required the presence of nt 196 to 328 of exon 1 when tested within the context of IGF-I promoter 1; 3) cotransfection of IGF-I promoter-luciferase-reporter constructs with a plasmid encoding the alpha-isoform of the catalytic subunit of murine cAMP-dependent protein kinase (PKA) produced results comparable to those seen with PGE2 treatment, whereas cotransfection with a plasmid encoding a mutant regulatory subunit of PKA that cannot bind cAMP blocked PGE2-induced reporter expression. Deoxyribonuclease I footprinting of the 5'-UTR of exon 1 demonstrated protected sequences at HS3A, HS3B, and HS3D, three of six DNA-protein binding sites previously characterized with rat liver nuclear extracts. Of these three regions, only the HS3D binding site is located within the functionally identified hormonally responsive segment of IGF-I exon 1. These results directly implicate PKA in the control of IGF-I gene transcription by PGE2 and identify a segment of

  15. Exchange Protein Activated by cAMP Enhances Long-Term Memory Formation Independent of Protein Kinase A

    Science.gov (United States)

    Ma, Nan; Abel, Ted; Hernandez, Pepe J.

    2009-01-01

    It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…

  16. Cyclic Nucleotide Signalling in Kidney Fibrosis

    Directory of Open Access Journals (Sweden)

    Elisabeth Schinner

    2015-01-01

    Full Text Available Kidney fibrosis is an important factor for the progression of kidney diseases, e.g., diabetes mellitus induced kidney failure, glomerulosclerosis and nephritis resulting in chronic kidney disease or end-stage renal disease. Cyclic adenosine monophosphate (cAMP and cyclic guanosine monophosphate (cGMP were implicated to suppress several of the above mentioned renal diseases. In this review article, identified effects and mechanisms of cGMP and cAMP regarding renal fibrosis are summarized. These mechanisms include several signalling pathways of nitric oxide/ANP/guanylyl cyclases/cGMP-dependent protein kinase and cAMP/Epac/adenylyl cyclases/cAMP-dependent protein kinase. Furthermore, diverse possible drugs activating these pathways are discussed. From these diverse mechanisms it is expected that new pharmacological treatments will evolve for the therapy or even prevention of kidney failure.

  17. The cAMP effectors PKA and Epac activate endothelial NO synthase through PI3K/Akt pathway in human endothelial cells.

    Science.gov (United States)

    García-Morales, Verónica; Luaces-Regueira, María; Campos-Toimil, Manuel

    2017-12-01

    3',5'-Cyclic adenosine monophosphate (cAMP) exerts an endothelium-dependent vasorelaxant action by stimulating endothelial NO synthase (eNOS) activity, and the subsequent NO release, through cAMP protein kinase (PKA) and exchange protein directly activated by cAMP (Epac) activation in endothelial cells. Here, we have investigated the mechanism by which the cAMP-Epac/PKA pathway activates eNOS. cAMP-elevating agents (forskolin and dibutyryl-cAMP) and the joint activation of PKA (6-Bnz-cAMP) and Epac (8-pCPT-2'-O-Me-cAMP) increased cytoplasmic Ca 2+ concentration ([Ca 2+ ] c ) in ≤30% of fura-2-loaded isolated human umbilical vein endothelial cells (HUVEC). However, these drugs did not modify [Ca 2+ ] c in fluo-4-loaded HUVEC monolayers. In DAF-2-loaded HUVEC monolayers, forskolin, PKA and Epac activators significantly increased NO release, and the forskolin effect was reduced by inhibition of PKA (Rp-cAMPs), Epac (ESI-09), eNOS (L-NAME) or phosphoinositide 3-kinase (PI3K; LY-294,002). On the other hand, inhibition of CaMKII (KN-93), AMPK (Compound C), or total absence of Ca 2+ , was without effect. In Western blot experiments, Serine 1177 phosphorylated-eNOS was significantly increased in HUVEC by cAMP-elevating agents and PKA or Epac activators. In isolated rat aortic rings LY-294,002, but not KN-93 or Compound C, significantly reduced the vasorelaxant effects of forskolin in the presence of endothelium. Our results suggest that Epac and PKA activate eNOS via Ser 1177 phosphorylation by activating the PI3K/Akt pathway, and independently of AMPK or CaMKII activation or [Ca 2+ ] c increase. This action explains, in part, the endothelium-dependent vasorelaxant effect of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Opioid withdrawal increases transient receptor potential vanilloid 1 activity in a protein kinase A-dependent manner.

    Science.gov (United States)

    Spahn, Viola; Fischer, Oliver; Endres-Becker, Jeannette; Schäfer, Michael; Stein, Christoph; Zöllner, Christian

    2013-04-01

    Hyperalgesia is a cardinal symptom of opioid withdrawal. The transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated ion channel expressed on sensory neurons responding to noxious heat, protons, and chemical stimuli such as capsaicin. TRPV1 can be inhibited via μ-opioid receptor (MOR)-mediated reduced activity of adenylyl cyclases (ACs) and decreased cyclic adenosine monophosphate (cAMP) levels. In contrast, opioid withdrawal following chronic activation of MOR uncovers AC superactivation and subsequent increases in cAMP and protein kinase A (PKA) activity. Here we investigated (1) whether an increase in cAMP during opioid withdrawal increases the activity of TRPV1 and (2) how opioid withdrawal modulates capsaicin-induced nocifensive behavior in rats. We applied whole-cell patch clamp, microfluorimetry, cAMP assays, radioligand binding, site-directed mutagenesis, and behavioral experiments. Opioid withdrawal significantly increased cAMP levels and capsaicin-induced TRPV1 activity in both transfected human embryonic kidney 293 cells and dissociated dorsal root ganglion (DRG) neurons. Inhibition of AC and PKA, as well as mutations of the PKA phosphorylation sites threonine 144 and serine 774, prevented the enhanced TRPV1 activity. Finally, capsaicin-induced nocifensive behavior was increased during opioid withdrawal in vivo. In summary, our results demonstrate an increased activity of TRPV1 in DRG neurons as a new mechanism contributing to opioid withdrawal-induced hyperalgesia. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome

    Science.gov (United States)

    Terrin, Anna; Monterisi, Stefania; Stangherlin, Alessandra; Zoccarato, Anna; Koschinski, Andreas; Surdo, Nicoletta C.; Mongillo, Marco; Sawa, Akira; Jordanides, Niove E.; Mountford, Joanne C.

    2012-01-01

    Previous work has shown that the protein kinase A (PKA)–regulated phosphodiesterase (PDE) 4D3 binds to A kinase–anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA–PDE4D3–AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals. PMID:22908311

  20. Genetically-encoded tools for cAMP probing and modulation in living systems.

    Directory of Open Access Journals (Sweden)

    Valeriy M Paramonov

    2015-09-01

    Full Text Available Intracellular 3'-5'-cyclic adenosine monophosphate (cAMP is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming - all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells, underpin the ensuing limitations of the conventional cAMP assays: 1 genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; 2 inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control – something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs.

  1. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling

    KAUST Repository

    Gehring, Christoph A; Turek, Ilona S.

    2017-01-01

    The cyclic nucleotide monophosphates (cNMPs), and notably 3′,5′-cyclic guanosine monophosphate (cGMP) and 3′,5′-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.

  2. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling

    KAUST Repository

    Gehring, Christoph A.

    2017-10-04

    The cyclic nucleotide monophosphates (cNMPs), and notably 3′,5′-cyclic guanosine monophosphate (cGMP) and 3′,5′-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.

  3. Elevated carbon dioxide blunts mammalian cAMP signaling dependent on inositol 1,4,5-triphosphate receptor-mediated Ca2+ release.

    Science.gov (United States)

    Cook, Zara C; Gray, Michael A; Cann, Martin J

    2012-07-27

    Elevated CO(2) is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO(2) blunts G protein-activated cAMP signaling. The effect of CO(2) is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO(2) on cAMP levels required the activity of the IP(3) receptor. Consistent with these findings, CO(2) caused an increase in steady state cytoplasmic Ca(2+) concentrations not observed in the absence of the IP(3) receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na(+)/H(+) antiporter (NHE3) to demonstrate a functional relevance for CO(2)-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO(2) abrogated the inhibitory effect of cAMP on NHE3 function via an IP(3) receptor-dependent mechanism.

  4. Elevated Carbon Dioxide Blunts Mammalian cAMP Signaling Dependent on Inositol 1,4,5-Triphosphate Receptor-mediated Ca2+ Release*

    Science.gov (United States)

    Cook, Zara C.; Gray, Michael A.; Cann, Martin J.

    2012-01-01

    Elevated CO2 is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO2 blunts G protein-activated cAMP signaling. The effect of CO2 is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO2 on cAMP levels required the activity of the IP3 receptor. Consistent with these findings, CO2 caused an increase in steady state cytoplasmic Ca2+ concentrations not observed in the absence of the IP3 receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na+/H+ antiporter (NHE3) to demonstrate a functional relevance for CO2-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO2 abrogated the inhibitory effect of cAMP on NHE3 function via an IP3 receptor-dependent mechanism. PMID:22654111

  5. Modulation of P1798 lymphosarcoma proliferation by protein phosphorylation

    International Nuclear Information System (INIS)

    Michnoff, C.A.H.

    1983-01-01

    The role of protein kinases in modulating cell proliferation was examined. Studies characterized the regulation of cell proliferation by adenosine 3':5'-monophosphate-dependent protein kinase (cA-Pk). Calcium/calmodulin-dependent myosin light chain kinase (MLCK) was isolated and examined as a potential substrate regulated by cA-PK in the rapidly proliferating P1798 lymphosarcoma. Modulation of cell proliferation by cA-PK was characterized by quantitating cell division by [methyl- 3 H] thymidine ([ 3 H]-dT) incorporation into DNA, cAMP accumulations, and activation of cA-PK using P1798 lymphosarcoma cells. Epinephrine and prostaglandin E 1 (PGE 1 ) were demonstrated to suppress [ 3 H]-dT incorporation into DNA, to stimulate cAMP accumulation, and to activate cA-PK with dose-dependency. Calcium/calmodulin-dependent MLCK was partially purified from P1798 lymphosarcoma. P1798 MLCK phosphorylated myosin regulatory light chains (P-LC) from thymus, cardiac and skeletal muscles. One mol [ 32 Pi] was transferred into one mol cardiac or skeletal P-LC by P1798 MLCK. Apparent Km values of 65 μM and 51 μM were determined for ATP and cardiac P-LC, respectively. The apparent molecular weight of P1798 MLCK was 135,000. P1798 MLCK was phosphorylated by cA-PK. Phosphorylated MLCK showed a 41% decrease in calcium-dependent activity. Two additional protein kinases from P1798 lymphosarcoma phosphorylated cardiac and skeletal light chains

  6. Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins

    KAUST Repository

    Marondedze, Claudius; Turek, Ilona; Parrott, Brian Jonathan; Thomas, Ludivine; Jankovic, Boris R.; Lilley, Kathryn S; Gehring, Christoph A

    2013-01-01

    molecule, the cell-permeant second messenger analogue, 8-bromo-3,5-cyclic guanosine monophosphate (8-Br-cGMP), results in a time-dependent increase in the content of oxidised methionine residues. Interestingly, the group of proteins affected by c

  7. G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase A-anchoring protein 5 (AKAP5) that constitutively inhibits cAMP production.

    Science.gov (United States)

    Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2014-08-08

    GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Plasma levels of cAMP, cGMP and CGRP in sildenafil-induced headache

    DEFF Research Database (Denmark)

    Kruuse, Christina Rostrup; Frandsen, E; Schifter, S

    2004-01-01

    Sildenafil, a selective inhibitor of the cyclic guanosine monophosphate (cGMP) degrading phosphodiestrase 5 (PDE5), induced migraine without aura in 10 of 12 migraine patients and in healthy subjects it induced significantly more headache than placebo. The aim of the present study was to determine...... whether the pain-inducing effects of sildenafil would be reflected in plasma levels of important signalling molecules in migraine: cGMP, cyclic adenosine monophosphate (cAMP) and calcitonin gene-related peptide (CGRP). Ten healthy subjects (four women, six men) and 12 patients (12 women) suffering from...... migraine without aura were included in two separate double-blind, placebo-controlled, cross-over studies in which placebo or sildenafil 100 mg was administered orally. Plasma levels of CGRP, cAMP and cGMP were determined in blood from the antecubital vein. Despite the ability of sildenafil to induce...

  9. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun-Ah [Department of Biochemistry and Molecular Biology, Cancer Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr [Department of Biochemistry and Molecular Biology, Cancer Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma}-ray irradiation. From

  10. Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells.

    Science.gov (United States)

    Caligiuri, Alessandra; Bertolani, Cristiana; Guerra, Cristina Tosti; Aleffi, Sara; Galastri, Sara; Trappoliere, Marco; Vizzutti, Francesco; Gelmini, Stefania; Laffi, Giacomo; Pinzani, Massimo; Marra, Fabio

    2008-02-01

    Adiponectin limits the development of liver fibrosis and activates adenosine monophosphate-activated protein kinase (AMPK). AMPK is a sensor of the cellular energy status, but its possible modulation of the fibrogenic properties of hepatic stellate cells (HSCs) has not been established. In this study, we investigated the role of AMPK activation in the biology of activated human HSCs. A time-dependent activation of AMPK was observed in response to a number of stimuli, including globular adiponectin, 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), or metformin. All these compounds significantly inhibited platelet-derived growth factor (PDGF)-stimulated proliferation and migration of human HSCs and reduced the secretion of monocyte chemoattractant protein-1. In addition, AICAR limited the secretion of type I procollagen. Knockdown of AMPK by gene silencing increased the mitogenic effects of PDGF, confirming the negative modulation exerted by this pathway on HSCs. AMPK activation did not reduce PDGF-dependent activation of extracellular signal-regulated kinase (ERK) or Akt at early time points, whereas a marked inhibition was observed 24 hours after addition of PDGF, reflecting a block in cell cycle progression. In contrast, AICAR blocked short-term phosphorylation of ribosomal S6 kinase (p70(S6K)) and 4E binding protein-1 (4EBP1), 2 downstream effectors of the mammalian target of rapamycin (mTOR) pathway, by PDGF. The ability of interleukin-a (IL-1) to activate nuclear factor kappa B (NF-kappaB) was also reduced by AICAR. Activation of AMPK negatively modulates the activated phenotype of HSCs.

  11. Targeting brain tumor cAMP: the case for sex-specific therapeutics

    Directory of Open Access Journals (Sweden)

    Nicole M Warrington

    2015-07-01

    Full Text Available A relationship between cyclic adenosine 3’, 5’-monophosphate (cAMP levels and brain tumor biology has been evident for nearly as long as cAMP and its synthetase, adenylate cyclase (ADCY have been known. The importance of the pathway in brain tumorigenesis has been demonstrated in vitro and in multiple animal models. Recently, we provided human validation for a cooperating oncogenic role for cAMP in brain tumorigenesis when we found that SNPs in ADCY8 were correlated with glioma (brain tumor risk in individuals with Neurofibromatosis type 1 (NF1. Together, these studies provide a strong rationale for targeting cAMP in brain tumor therapy. However, the cAMP pathway is well known to be sexually dimorphic, and SNPs in ADCY8 affected glioma risk in a sex-specific fashion, elevating the risk for females while protecting males. The cAMP pathway can be targeted at multiple levels in the regulation of its synthesis and degradation. Sex differences in response to drugs that target cAMP regulators indicate that successful targeting of the cAMP pathway for brain tumor patients is likely to require matching specific mechanisms of drug action with patient sex.

  12. Studies on c-AMP contents in sea urchin eggs fertilized with normal and x-irradiated sperm

    International Nuclear Information System (INIS)

    Kimura, Hiroshi

    1975-01-01

    Intracellular levels of cyclic 3', 5'-adenosine monophosphate (c-AMP) seemed to remain constant through the first cleavage cycle of sea urchin eggs. X-irradiation to the sperm, which induced the first cleavage delay, did not change this level. Although it was shown in the previous paper that X-ray-induced cleavage delay was reduced by caffeine but not by aminophyline, both caffeine and aminophyline caused an increase in c-AMP levels. These results indicated the possibility that c-AMP does not mediate this caffeine effect on cleavage delay. (auth.)

  13. Control of βAR- and N-methyl-D-aspartate (NMDA Receptor-Dependent cAMP Dynamics in Hippocampal Neurons.

    Directory of Open Access Journals (Sweden)

    Andrew Chay

    2016-02-01

    Full Text Available Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs, facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs. To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA, and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory.

  14. The importance of dietary modulation of cAMP and insulin signaling in adipose tissue and the development of obesity

    DEFF Research Database (Denmark)

    Madsen, Lise; Kristiansen, Karsten

    2010-01-01

    branches of cAMP signaling, the canonical protein kinase A-dependent pathways and the novel exchange protein activated by cAMP (Epac)-dependent pathways, and insulin signaling. We discuss how macronutrients via changes in the balance between insulin- and cAMP-dependent signaling can affect the development...

  15. Camps 2.0: exploring the sequence and structure space of prokaryotic, eukaryotic, and viral membrane proteins.

    Science.gov (United States)

    Neumann, Sindy; Hartmann, Holger; Martin-Galiano, Antonio J; Fuchs, Angelika; Frishman, Dmitrij

    2012-03-01

    Structural bioinformatics of membrane proteins is still in its infancy, and the picture of their fold space is only beginning to emerge. Because only a handful of three-dimensional structures are available, sequence comparison and structure prediction remain the main tools for investigating sequence-structure relationships in membrane protein families. Here we present a comprehensive analysis of the structural families corresponding to α-helical membrane proteins with at least three transmembrane helices. The new version of our CAMPS database (CAMPS 2.0) covers nearly 1300 eukaryotic, prokaryotic, and viral genomes. Using an advanced classification procedure, which is based on high-order hidden Markov models and considers both sequence similarity as well as the number of transmembrane helices and loop lengths, we identified 1353 structurally homogeneous clusters roughly corresponding to membrane protein folds. Only 53 clusters are associated with experimentally determined three-dimensional structures, and for these clusters CAMPS is in reasonable agreement with structure-based classification approaches such as SCOP and CATH. We therefore estimate that ∼1300 structures would need to be determined to provide a sufficient structural coverage of polytopic membrane proteins. CAMPS 2.0 is available at http://webclu.bio.wzw.tum.de/CAMPS2.0/. Copyright © 2011 Wiley Periodicals, Inc.

  16. The Arabidopsis thaliana Cyclic-Nucleotide-Dependent Response – a Quantitative Proteomic and Phosphoproteomic Analysis

    KAUST Repository

    Alqurashi, May M.

    2013-01-01

    monophosphate (cAMP), has been shown to be a second messenger in abiotic and biotic stress responses. However, little is known about the precise role of cAMP in plants and in the down-stream activation of kinases, and hence cAMP

  17. Modulation of adhesion-dependent cAMP signaling by echistatin and alendronate

    Science.gov (United States)

    Fong, J. H.; Ingber, D. E.

    1996-01-01

    We measured intracellular cAMP levels in cells during attachment and spreading on different extracellular matrix (ECM) proteins. Increases in cAMP were observed within minutes when cells attached to fibronectin, vitronectin, and a synthetic RGD-containing fibronectin peptide (Petite 2000), but not when they adhered to another integrin alpha nu beta 3 ligand, echistatin. Because echistatin also inhibits bone resorption, we measured the effects of adding another osteoporosis inhibitor, alendronate, in this system. Alendronate inhibited the cAMP increase induced by ligands that primarily utilize integrin alpha nu beta 3 (vitronectin, Peptite 2000), but not by fibronectin which can also use integrin alpha 5 beta 1. These results show that cell adhesion to ECM can increase intracellular cAPM levels and raise the possibility that inhibitors of osteoporosis may act, in part, by preventing activation of this pathway by integrins.

  18. Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes

    DEFF Research Database (Denmark)

    Petersen, Rasmus Koefoed; Madsen, Lise; Pedersen, Lone Møller

    2008-01-01

    AMP-dependent stimulation of adipocyte differentiation. Epac, working via Rap, acted synergistically with cAMP-dependent protein kinase (protein kinase A [PKA]) to promote adipogenesis. The major role of PKA was to down-regulate Rho and Rho-kinase activity, rather than to enhance CREB phosphorylation. Suppression of Rho......-kinase impaired proadipogenic insulin/insulin-like growth factor 1 signaling, which was restored by activation of Epac. This interplay between PKA and Epac-mediated processes not only provides novel insight into the initiation and tuning of adipocyte differentiation, but also demonstrates a new mechanism of c......AMP signaling whereby cAMP uses both PKA and Epac to achieve an appropriate cellular response....

  19. Inhibitory effects of ginseng total saponin on up-regulation of cAMP pathway induced by repeated administration of morphine.

    Science.gov (United States)

    Seo, Jeong-Ju; Lee, Jae-Woong; Lee, Wan-Kyu; Hong, Jin-Tae; Lee, Chong-Kil; Lee, Myung-Koo; Oh, Ki-Wan

    2008-02-01

    We have reported that ginseng total saponin (GTS) inhibited the development of physical and psychological dependence on morphine. However, the possible molecular mechanisms of GTS are unclear. Therefore, this study was undertaken to understand the possible molecular mechanism of GTS on the inhibitory effects of morphine-induced dependence. It has been reported that the up-regulated cAMP pathway in the LC of the mouse brain after repeated administration of morphine contributes to the feature of withdrawals. GTS inhibited up-regulation of cAMP pathway in the LC after repeated administration of morphine in this experiment. GTS inhibited cAMP levels and protein expression of protein kinase A (PKA). In addition, GTS inhibited the increase of cAMP response element binding protein (CREB) phosphorylation. Therefore, we conclude that the inhibitory effects of GTS on morphine-induced dependence might be mediated by the inhibition of cAMP pathway.

  20. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    Science.gov (United States)

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  1. Further studies on the effect of adenosine cyclic monophosphate derivatives on cell proliferation in the jejunal crypts of rat.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1982-01-01

    1. Cell proliferation in the jejunal crypt epithelium of rat was measured using a stathmokinetic technique. 2. Sodium butyrate was found to promote jejunal crypt cell proliferation. 3. N6, O2'-Dibutyryl cyclic adenosine monophosphate (cAMP), N6-monobutyryl-cAMP and N6-monobutyryl-8-bromo-cAMP were found to inhibit cell proliferation when compared to sodium butyrate treated tissues. 4. 8-Chlorophenylthio-cAMP was found to inhibit cell division when compared to untreated animals. 5. O2'-Monobutyryl cAMP and 8-bromo-cAMP were not found to inhibit cell proliferation.

  2. Molecular underpinnings of nitrite effect on CymA-dependent respiration in Shewanella oneidensis

    Directory of Open Access Journals (Sweden)

    Miao Jin

    2016-07-01

    Full Text Available Shewanella exhibit a remarkable versatility of respiration, with a diverse array of electron acceptors (EAs. In environments where these bacteria thrive, multiple EAs are usually present. However, we know little about strategies by which these EAs and their interaction affect ecophysiology of Shewanella. In this study, we demonstrate in the model strain, Shewanella oneidensis MR-1, that nitrite, not through nitric oxide to which it may convert, inhibits respiration of fumarate, and probably many other EAs whose reduction depends on quinol dehydrogenase CymA. This is achieved via the repression of cyclic adenosine monophosphate (cAMP production, a second messenger required for activation of cAMP-receptor protein (Crp which plays a primary role in regulation of respiration. If nitrite is not promptly removed, intracellular cAMP levels drop, and this impairs Crp activity. As a result, the production of nitrite reductase NrfA, CymA, and fumarate reductase FccA is substantially reduced. In contrast, nitrite can be simultaneously respired with trimethylamine N-oxide, resulting in enhanced biomass.

  3. A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium.

    Science.gov (United States)

    Lee, S; Parent, C A; Insall, R; Firtel, R A

    1999-09-01

    We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced approximately 60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras

  4. AS160 associates with the Na+,K+-ATPase and mediates the adenosine monophosphate-stimulated protein kinase-dependent regulation of sodium pump surface expression.

    Science.gov (United States)

    Alves, Daiane S; Farr, Glen A; Seo-Mayer, Patricia; Caplan, Michael J

    2010-12-01

    The Na(+),K(+)-ATPase is the major active transport protein found in the plasma membranes of most epithelial cell types. The regulation of Na(+),K(+)-ATPase activity involves a variety of mechanisms, including regulated endocytosis and recycling. Our efforts to identify novel Na(+),K(+)-ATPase binding partners revealed a direct association between the Na(+),K(+)-ATPase and AS160, a Rab-GTPase-activating protein. In COS cells, coexpression of AS160 and Na(+),K(+)-ATPase led to the intracellular retention of the sodium pump. We find that AS160 interacts with the large cytoplasmic NP domain of the α-subunit of the Na(+),K(+)-ATPase. Inhibition of the activity of the adenosine monophosphate-stimulated protein kinase (AMPK) in Madin-Darby canine kidney cells through treatment with Compound C induces Na(+),K(+)-ATPase endocytosis. This effect of Compound C is prevented through the short hairpin RNA-mediated knockdown of AS160, demonstrating that AMPK and AS160 participate in a common pathway to modulate the cell surface expression of the Na(+),K(+)-ATPase.

  5. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    International Nuclear Information System (INIS)

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki

    2007-01-01

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway

  6. Cows are not mice: the role of cyclic AMP, phosphodiesterases, and adenosine monophosphate-activated protein kinase in the maintenance of meiotic arrest in bovine oocytes.

    Science.gov (United States)

    Bilodeau-Goeseels, Sylvie

    2011-01-01

    Meiotic maturation in mammalian oocytes is initiated during fetal development, and is then arrested at the dictyate stage - possibly for several years. Oocyte meiosis resumes in preovulatory follicles in response to the lutenizing hormone (LH) surge or spontaneously when competent oocytes are removed from follicles and cultured. The mechanisms involved in meiotic arrest and resumption in bovine oocytes are not fully understood, and several studies point to important differences between oocytes from rodent and livestock species. This paper reviews earlier and contemporary studies on the effects of cAMP-elevating agents and phosphodiesterase (PDE) enzyme inhibitors on the maintenance of meiotic arrest in bovine oocytes in vitro. Contrary to results obtained with mouse oocytes, bovine oocyte meiosis is inhibited by activators of the energy sensor adenosine monophosphate-activated protein kinase (AMPK, mammalian gene PRKA), which is activated by AMP, the degradation product of cAMP. It is not clear whether or not the effects were due to AMPK activation, and they may depend on culture conditions. Evidence suggests that other signaling pathways (for example, the cGMP/nitric oxide pathway) are involved in bovine oocyte meiotic arrest, but further studies are needed to understand the interactions between the signaling pathways that lead to maturation promoting factor (MPF) being inactive or active. An improved understanding of the mechanisms involved in the control of bovine oocyte meiosis will facilitate better control of the process in vitro, resulting in increased developmental competence and increased efficiency of in vitro embryo production procedures. Copyright © 2011 Wiley Periodicals, Inc.

  7. Inhibition of Vascular Smooth Muscle Growth via Signaling Crosstalk between AMP-Activated Protein Kinase and cAMP-Dependent Protein Kinase

    Directory of Open Access Journals (Sweden)

    Joshua Daniel Stone

    2012-10-01

    Full Text Available Abnormal vascular smooth muscle (VSM growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK and cAMP-dependent protein kinase (PKA. Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remains unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells, the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSM cell migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashions. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth.

  8. Changes in expression of a functional Gi protein in cultured rat heart cells

    International Nuclear Information System (INIS)

    Allen, I.S.; Gaa, S.T.; Rogers, T.B.

    1988-01-01

    The muscarinic cholinergic agonist, carbachol, and pertussis toxin were used to examine the functional status of the guanine nucleotide-binding protein that inhibits adenylate cyclase (G i ) in cultured neonatal rat heart myocytes. The isoproterenol stimulation of adenylate cyclase activity in myocyte membranes and adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in intact cells (4 days in culture) were insensitive to carbachol. However, in cells cultured for 11 days, carbachol inhibited isoproterenol-stimulated cAMP accumulation by 30%. Angiotensin II (ANG II) was also found to inhibit isoproterenol-stimulated cAMP accumulation in day 11 cells in a dose-dependent manner. Pertussis toxin treatment reversed the inhibitory effects of both ANG II and carbachol, suggesting a role for G i in the process. Carbachol binding to membranes from day 4 cells was relatively insensitive to guanine nucleotides when compared with binding to membranes from day 11 or adult cells. Furthermore, pertussis toxin-mediated 32 P incorporation into a 39- to 41-kDa substrate in day 11 membranes was increased 3.2-fold over that measured in day 4 membranes. These findings support the view that, although G i is expressed, it is nonfunctional in 4-day-old cultured neonatal rat heart myocytes and acquisition of functional G i is dependent on culture conditions. Furthermore, the ANG II receptor can couple to G i in heart

  9. Mycobacterium tuberculosis cAMP Receptor Protein (Rv3676) Differs from the Escherichia coli Paradigm in Its cAMP Binding and DNA Binding Properties and Transcription Activation Properties*

    Science.gov (United States)

    Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978

  10. G-Protein Gαs controls medulloblastoma initiation by suppressing sonic hedgehog signaling.

    Science.gov (United States)

    He, Xuelian; Lu, Q Richard

    2015-01-01

    We identify Gαs as a novel tumor suppressor in medulloblastoma that functions principally by inhibition of sonic hedgehog signaling. Gαs not only stimulates cyclic adenosine monophosphate (cAMP)-dependent signaling but also inhibits ciliary trafficking of hedgehog components. Elevation of cAMP inhibits medulloblastoma growth and augments inhibition of smoothened to decrease tumor cell proliferation, thus highlighting Gαs as a potential therapeutic target.

  11. Immunomodulatory effect of APS and PSP is mediated by Ca2+-cAMP and TLR4/NF-κB signaling pathway in macrophage.

    Science.gov (United States)

    Wang, Zhixue; Liu, Zijing; Zhou, Lijng; Long, Tingting; Zhou, Xing; Bao, Yixi

    2017-01-01

    This study is to investigate the role of second messengers and TLR4/NF-κB signaling pathway in the immunomodulatory activities of Astragalus polysaccharide (APS) and Polysaccharopeptide (PSP) in macrophages. RAW 264.7 macrophage cells were treated with APS, PSP, lipopolysaccharide (LPS), or NiCl 2 . Power-spectral method was used to detect protein kinase C (PKC) and Griess reaction to detect nitric oxide (NO). ELISA was conducted to detect cyclic adenosine monophosphate (cAMP), diglycerides (DAG), inositol 1, 4, 5-triphosphate (IP3), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Confocal laser scanning microscopy was performed to detect calcium level. qRT-PCR and Western blot was used to detect mRNA and protein expression of NF-κB. APS and PSP significantly increased the concentrations of intracellular second messengers (NO, cAMP, DAG, IP3, Ca 2+ ) and the activity of PKC in macrophages (pAPS and PSP (pAPS and PSP mediated immunomodulatory activities in macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Identification of a specific assembly of the G protein Golf as a critical and regulated module of dopamine and adenosine-activated cAMP pathways in the striatum

    Directory of Open Access Journals (Sweden)

    Denis eHervé

    2011-08-01

    Full Text Available In the principal neurons of striatum (medium spiny neurons, MSNs, cAMP pathway is primarily activated through the stimulation of dopamine D1 and adenosine A2A receptors, these receptors being mainly expressed in striatonigral and striatopallidal MSNs, respectively. Since cAMP signaling pathway could be altered in various physiological and pathological situations, including drug addiction and Parkinson’s disease, it is of crucial importance to identify the molecular components involved in the activation of this pathway. In MSNs, cAMP pathway activation is not dependent on the classical Gs GTP-binding protein but requires a specific G protein subunit heterotrimer containing Galpha-olf/beta2/gamma7 in particular association with adenylate cyclase type 5. This assembly forms an authentic functional signaling unit since loss of one of its members leads to defects of cAMP pathway activation in response to D1 or A2A receptor stimulation, inducing dramatic impairments of behavioral responses dependent on these receptors. Interestingly, D1 receptor-dependent cAMP signaling is modulated by the neuronal levels of Galpha-olf, indicating that Galpha-olf represents the rate-limiting step in this signaling cascade and could constitute a critical element for regulation of D1 receptor responses. In both Parkinsonian patients and several animal models of Parkinson’s disease, the lesion of dopamine neurons produces a prolonged elevation of Galpha-olf levels. This observation gives an explanation for the cAMP pathway hypersensitivity to D1 stimulation, occurring despite an unaltered D1 receptor density. In conclusion, alterations in the highly specialized assembly of Galpha-olf/beta2/gamma7 subunits can happen in pathological conditions, such as Parkinson’s disease, and it could have important functional consequences in relation to changes in D1 receptor signaling in the striatum.

  13. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    Science.gov (United States)

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  14. Rac1 controls Schwann cell myelination through cAMP and NF2/merlin

    Science.gov (United States)

    Guo, Li; Moon, Chandra; Niehaus, Karen; Zheng, Yi; Ratner, Nancy

    2013-01-01

    During peripheral nervous system development, Schwann cells (SCs) surrounding single large axons differentiate into myelinating SCs. Previous studies implicate RhoGTPases in SC myelination, but the mechanisms involved in RhoGTPase regulation of SC myelination are unknown. Here, we show that SC myelination is arrested in Rac1 conditional knockout (Rac1-CKO) mice. Rac1 knockout abrogated phosphorylation of the effector p21-activated kinase (PAK) and decreased NF2/merlin phosphorylation. Mutation of NF2/merlin rescued the myelin deficit in Rac1-CKO mice in vivo, and the shortened processes in cultured Rac1-CKO SCs in vitro. Mechanistically, cyclic adenosine monophosphate (cAMP) levels and E-cadherin expression were decreased in the absence of Rac1, and both were restored by mutation of NF2/merlin. Reduced cAMP is a cause of the myelin deficiency in Rac1-CKO mice, as elevation of cAMP by rolipram in Rac1-CKO mice in vivo allowed myelin formation. Thus NF2/merlin and cAMP function downstream of Rac1 signaling in SC myelination, and cAMP levels control Rac1-regulated SC myelination. PMID:23197717

  15. cAMP level modulates scleral collagen remodeling, a critical step in the development of myopia.

    Directory of Open Access Journals (Sweden)

    Yijin Tao

    Full Text Available The development of myopia is associated with decreased ocular scleral collagen synthesis in humans and animal models. Collagen synthesis is, in part, under the influence of cyclic adenosine monophosphate (cAMP. We investigated the associations between cAMP, myopia development in guinea pigs, and collagen synthesis by human scleral fibroblasts (HSFs. Form-deprived myopia (FDM was induced by unilateral masking of guinea pig eyes. Scleral cAMP levels increased selectively in the FDM eyes and returned to normal levels after unmasking and recovery. Unilateral subconjunctival treatment with the adenylyl cyclase (AC activator forskolin resulted in a myopic shift accompanied by reduced collagen mRNA levels, but it did not affect retinal electroretinograms. The AC inhibitor SQ22536 attenuated the progression of FDM. Moreover, forskolin inhibited collagen mRNA levels and collagen secretion by HSFs. The inhibition was reversed by SQ22536. These results demonstrate a critical role of cAMP in control of myopia development. Selective regulation of cAMP to control scleral collagen synthesis may be a novel therapeutic strategy for preventing and treating myopia.

  16. Lipoic acid attenuates inflammation via cAMP and protein kinase A signaling.

    Directory of Open Access Journals (Sweden)

    Sonemany Salinthone

    2010-09-01

    Full Text Available Abnormal regulation of the inflammatory response is an important component of diseases such as diabetes, Alzheimer's disease and multiple sclerosis (MS. Lipoic acid (LA has been shown to have antioxidant and anti-inflammatory properties and is being pursued as a therapy for these diseases. We first reported that LA stimulates cAMP production via activation of G-protein coupled receptors and adenylyl cyclases. LA also suppressed NK cell activation and cytotoxicity. In this study we present evidence supporting the hypothesis that the anti-inflammatory properties of LA are mediated by the cAMP/PKA signaling cascade. Additionally, we show that LA oral administration elevates cAMP levels in MS subjects.We determined the effects of LA on IL-6, IL-17 and IL-10 secretion using ELISAs. Treatment with 50 µg/ml and 100 µg/ml LA significantly reduced IL-6 levels by 19 and 34%, respectively, in T cell enriched PBMCs. IL-17 levels were also reduced by 35 and 50%, respectively. Though not significant, LA appeared to have a biphasic effect on IL-10 production. Thymidine incorporation studies showed LA inhibited T cell proliferation by 90%. T-cell activation was reduced by 50% as measured by IL-2 secretion. Western blot analysis showed that LA treatment increased phosphorylation of Lck, a downstream effector of protein kinase A. Pretreatment with a peptide inhibitor of PKA, PKI, blocked LA inhibition of IL-2 and IFN gamma production, indicating that PKA mediates these responses. Oral administration of 1200 mg LA to MS subjects resulted in increased cAMP levels in PBMCs four hours after ingestion. Average cAMP levels in 20 subjects were 43% higher than baseline.Oral administration of LA in vivo resulted in significant increases in cAMP concentration. The anti-inflammatory effects of LA are mediated in part by the cAMP/PKA signaling cascade. These novel findings enhance our understanding of the mechanisms of action of LA.

  17. Involvement of G proteins and cAMP in the production of chitinolytic enzymes by Trichoderma harzianum Envolvimento de proteínas G e cAMP na produção de enzimas quitinolíticas por Trichoderma harzianum

    Directory of Open Access Journals (Sweden)

    Alexandre A.P. Firmino

    2002-06-01

    Full Text Available The effect of G protein modulators and cyclic AMP (cAMP on N-acetylglucosaminidase (NAGase production was investigated during 84 h of growth of a Trichoderma harzianum strain in chitin-containing medium. Caffeine (5 mM, N6--2'-O-dibutyryladenosine 3'5'-cyclic monophosphate sodium salt (dBcAMP (1 mM and 3-isobutyl-1-methylxanthine (IBMX (2 mM decreased extracellular NAGase activity by 80%, 77% and 37%, respectively. AlCl3/KF (100 µM/10 mM and 200 µM/ 20 mM decreased the activity by 85% and 95%, respectively. Cholera (10 µ/mL and pertussis (20 µ/mL toxins also affected NAGase activity, causing a decrease of approximately 75%. Upon all treatments, protein bands of approximately 73 kDa, 68 kDa and 45 kDa had their signals diminished whilst a 50 kDa band was enhanced only by treatment with cholera and pertussis toxins. N-terminal sequencing analysis identified the 73 kDa and 68 kDa proteins as being T. harzianum NAGase in two different truncated forms whereas the 45 kDa band comprised a T. harzianum endochitinase. The 50 kDa protein showed sequence similarity to Coriolus vesicolor cellobiohydrolase. The above results suggest that a signaling pathway comprising G-proteins, adenylate cyclase and cAMP may be involved in the synthesis of T. harzianum chitinases.O efeito de cAMP e de moduladores de proteínas G sobre a produção de N-acetilglicosaminidase (NAGase foi investigado durante o crescimento de Trichoderma harzianum em meio contendo quitina. Cafeína (5 mM, dBcAMP (1mM e IBMX (2 mM provocaram diminuições na atividade extracelular de NAGase em 80%, 77% e 37%, respectivamente. Por outro lado, a presença de AlCl3/KF nas concentrações de 100 µM/10 mM e 200 µM/ 20 mM causou decréscimo na atividade em 85% e 95%, respectivamente. A toxina do cólera (10 µ/mL e a toxina pertussis (20 µ/mL também afetaram a atividade de NAGase, causando um decréscimo de aproximadamente 75%. Análises eletroforéticas mostraram que todos os tratamentos

  18. CSF concentrations of cAMP and cGMP are lower in patients with Creutzfeldt-Jakob disease but not Parkinson's disease and amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Patrick Oeckl

    Full Text Available BACKGROUND: The cyclic nucleotides cyclic adenosine-3',5'-monophosphate (cAMP and cyclic guanosine-3',5'-monophosphate (cGMP are important second messengers and are potential biomarkers for Parkinson's disease (PD, amyotrophic lateral sclerosis (ALS and Creutzfeldt-Jakob disease (CJD. METHODOLOGY/PRINCIPAL FINDINGS: Here, we investigated by liquid chromatography/tandem mass spectrometry (LC-MS/MS the cerebrospinal fluid (CSF concentrations of cAMP and cGMP of 82 patients and evaluated their diagnostic potency as biomarkers. For comparison with a well-accepted biomarker, we measured tau concentrations in CSF of CJD and control patients. CJD patients (n = 15 had lower cAMP (-70% and cGMP (-55% concentrations in CSF compared with controls (n = 11. There was no difference in PD, PD dementia (PDD and ALS cases. Receiver operating characteristic (ROC curve analyses confirmed cAMP and cGMP as valuable diagnostic markers for CJD indicated by the area under the curve (AUC of 0.86 (cAMP and 0.85 (cGMP. We calculated a sensitivity of 100% and specificity of 64% for cAMP and a sensitivity of 67% and specificity of 100% for cGMP. The combination of both nucleotides increased the sensitivity to 80% and specificity to 91% for the term cAMPxcGMP (AUC 0.92 and to 93% and 100% for the ratio tau/cAMP (AUC 0.99. CONCLUSIONS/SIGNIFICANCE: We conclude that the CSF determination of cAMP and cGMP may easily be included in the diagnosis of CJD and could be helpful in monitoring disease progression as well as in therapy control.

  19. The clinical correlation of regulatory T cells and cyclic adenosine monophosphate in enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Shih-Min Wang

    Full Text Available Brainstem encephalitis (BE and pulmonary edema (PE are notable complications of enterovirus 71 (EV71 infection.This study investigated the immunoregulatory characterizations of EV71 neurological complications by disease severity and milrinone treatment.Patients <18 years with virologically confirmed EV71 infections were enrolled and divided into 2 groups: the hand, foot, and mouth disease (HFMD or BE group, and the autonomic nervous system (ANS dysregulation or PE group. Cytokine and cyclic adenosine monophosphate (cAMP levels, and the regulatory T cell (Tregs profiles of the patients were determined.Patients with ANS dysregulation or PE exhibited significantly low frequency of CD4(+CD25(+Foxp3+ and CD4(+Foxp3(+ T cells compared with patients with HFMD or BE. The expression frequency of CD4-CD8- was also significantly decreased in patients with ANS dysregulation or PE. Among patients with ANS dysregulation or PE, the expression frequency of CD4+Foxp3+ increased markedly after milrinone treatment, and was associated with reduction of plasma levels IL-6, IL-8 and IL-10. Plasma concentrations of cAMP were significantly decreased in patients with ANS dysregulation or PE compared with patients with HFMD or BE; however, cAMP levels increased after milrinone treatment.These findings suggested decreased different regulatory T populations and cAMP expression correlate with increased EV71 disease severity. Improved outcome after milrinone treatment may associate with increased regulatory T populations, cAMP expression and modulation of cytokines levels.

  20. Effect of cAMP on short-circuit current in isolated human ciliary body.

    Science.gov (United States)

    Wu, Ren-yi; Ma, Ning; Hu, Qian-qian

    2013-07-01

    Cyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current, Isc) across the ciliary processes in pigs. The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change. In an Ussing-type chamber system, the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed. The involvement of Cl(-) component in the bath solution was investigated. The effect of Cl(-) channel (10 µmol/L niflumic acid and 1 mmol/L 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)), K(+) channel (10 mmol/L tetraethylammonium chloride (TEA)), or Na(+) channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied. Dose-dependently, 8-bromo-cAMP (10 nmol/L-30 µmol/L) or forskolin (10 nmol/L-3 µmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue. Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side. When the tissue was bathed in low Cl(-) solutions, the Isc increase was significantly inhibited. Finally, niflumic acid and DIDS, but not TEA or amiloride, significantly prevented the Isc increase induced by 8-bromo-cAMP. cAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes. Chloride is likely to be among the ions, the transportation of which across the tissue is triggered by cAMP, suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.

  1. Phosphodiesterase inhibitors suppress Lactobacillus casei cell-wall-induced NF-κB and MAPK activations and cell proliferation through protein kinase A--or exchange protein activated by cAMP-dependent signal pathway.

    Science.gov (United States)

    Saito, Takekatsu; Sugimoto, Naotoshi; Ohta, Kunio; Shimizu, Tohru; Ohtani, Kaori; Nakayama, Yuko; Nakamura, Taichi; Hitomi, Yashiaki; Nakamura, Hiroyuki; Koizumi, Shoichi; Yachie, Akihiro

    2012-01-01

    Specific strains of Lactobacillus have been found to be beneficial in treating some types of diarrhea and vaginosis. However, a high mortality rate results from underlying immunosuppressive conditions in patients with Lactobacillus casei bacteremia. Cyclic AMP (cAMP) is a small second messenger molecule that mediates signal transduction. The onset and progression of inflammatory responses are sensitive to changes in steady-state cAMP levels. L. casei cell wall extract (LCWE) develops arteritis in mice through Toll-like receptor-2 signaling. The purpose of this study was to investigate whether intracellular cAMP affects LCWE-induced pathological signaling. LCWE was shown to induce phosphorylation of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and cell proliferation in mice fibroblast cells. Theophylline and phosphodiesterase inhibitor increased intracellular cAMP and inhibited LCWE-induced cell proliferation as well as phosphorylation of NF-κB and MAPK. Protein kinase A inhibitor H89 prevented cAMP-induced MAPK inhibition, but not cAMP-induced NF-κB inhibition. An exchange protein activated by cAMP (Epac) agonist inhibited NF-κB activation but not MAPK activation. These results indicate that an increase in intracellular cAMP prevents LCWE induction of pathological signaling pathways dependent on PKA and Epac signaling.

  2. cAMP Signaling Regulates Histone H3 Phosphorylation and Mitotic Entry Through a Disruption of G2 Progression

    OpenAIRE

    Rodriguez-Collazo, Pedro; Snyder, Sara K.; Chiffer, Rebecca C.; Bressler, Erin A.; Voss, Ty C.; Anderson, Eric P.; Genieser, Hans-Gottfried; Smith, Catharine L.

    2008-01-01

    cAMP signaling is known to have significant effects on cell growth, either inhibitory or stimulatory depending on the cell type. Study of cAMP-induced growth inhibition in mammalian somatic cells has focused mainly on the combined role of protein kinase A (PKA) and mitogen-activated protein (MAP) kinases in regulation of progression through the G1 phase of the cell cycle. Here we show that cAMP signaling regulates histone H3 phosphorylation in a cell cycle-dependent fashion, increasing it in ...

  3. cAMP response element binding protein (CREB activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene

    Directory of Open Access Journals (Sweden)

    Stefano Luisa

    2005-01-01

    Full Text Available Abstract Background The enzyme glucose-6-phosphatase catalyzes the dephosphorylation of glucose-6-phosphatase to glucose, the final step in the gluconeogenic and glycogenolytic pathways. Expression of the glucose-6-phosphatase gene is induced by glucocorticoids and elevated levels of intracellular cAMP. The effect of cAMP in regulating glucose-6-phosphatase gene transcription was corroborated by the identification of two genetic motifs CRE1 and CRE2 in the human and murine glucose-6-phosphatase gene promoter that resemble cAMP response elements (CRE. Results The cAMP response element is a point of convergence for many extracellular and intracellular signals, including cAMP, calcium, and neurotrophins. The major CRE binding protein CREB, a member of the basic region leucine zipper (bZIP family of transcription factors, requires phosphorylation to become a biologically active transcriptional activator. Since unphosphorylated CREB is transcriptionally silent simple overexpression studies cannot be performed to test the biological role of CRE-like sequences of the glucose-6-phosphatase gene. The use of a constitutively active CREB2/CREB fusion protein allowed us to uncouple the investigation of target genes of CREB from the variety of signaling pathways that lead to an activation of CREB. Here, we show that this constitutively active CREB2/CREB fusion protein strikingly enhanced reporter gene transcription mediated by either CRE1 or CRE2 derived from the glucose-6-phosphatase gene. Likewise, reporter gene transcription was enhanced following expression of the catalytic subunit of cAMP-dependent protein kinase (PKA in the nucleus of transfected cells. In contrast, activating transcription factor 2 (ATF2, known to compete with CREB for binding to the canonical CRE sequence 5'-TGACGTCA-3', did not transactivate reporter genes containing CRE1, CRE2, or both CREs derived from the glucose-6-phosphatase gene. Conclusions Using a constitutively active CREB2

  4. G Protein-Linked Signaling Pathways in Bipolar and Major Depressive Disorders

    Directory of Open Access Journals (Sweden)

    Hiroaki eTomita

    2013-12-01

    Full Text Available The G-protein linked signaling system (GPLS comprises a large number of G-proteins, G protein-coupled receptors (GPCRs, GPCR ligands, and downstream effector molecules. G-proteins interact with both GPCRs and downstream effectors such as cyclic adenosine monophosphate (cAMP, phosphatidylinositols, and ion channels. The GPLS is implicated in the pathophysiology and pharmacology of both major depressive disorder (MDD and bipolar disorder (BPD. This study evaluated whether GPLS is altered at the transcript level. The gene expression in the dorsolateral prefrontal (DLPFC and anterior cingulate (ACC were compared from MDD, BPD, and control subjects using Affymetrix Gene Chips and real time quantitative PCR. High quality brain tissue was used in the study to control for confounding effects of agonal events, tissue pH, RNA integrity, gender, and age. GPLS signaling transcripts were altered especially in the ACC of BPD and MDD subjects. Transcript levels of molecules which repress cAMP activity were increased in BPD and decreased in MDD. Two orphan GPCRs, GPRC5B and GPR37, showed significantly decreased expression levels in MDD, and significantly increased expression levels in BPD. Our results suggest opposite changes in BPD and MDD in the GPLS, ‘activated’ cAMP signaling activity in BPD and ‘blunted’ cAMP signaling activity in MDD. GPRC5B and GPR37 both appear to have behavioral effects, and are also candidate genes for neurodegenerative disorders. In the context of the opposite changes observed in BPD and MDD, these GPCRs warrant further study of their brain effects.

  5. Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride.

    Science.gov (United States)

    Brunner, Kurt; Omann, Markus; Pucher, Marion E; Delic, Marizela; Lehner, Sylvia M; Domnanich, Patrick; Kratochwill, Klaus; Druzhinina, Irina; Denk, Dagmar; Zeilinger, Susanne

    2008-12-01

    Galpha subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T. atroviride is not publicly available yet, we carried out an in silico exploration of the genome database of the close relative T. reesei. Twenty genes encoding putative GPCRs distributed over eight classes and additional 35 proteins similar to the Magnaporthe grisea PTH11 receptor were identified. Subsequently, four T. atroviride GPCR-encoding genes were isolated and affiliated to the cAMP receptor-like family by phylogenetic and topological analyses. All four genes showed lowest expression on glycerol and highest mRNA levels upon carbon starvation. Transcription of gpr3 and gpr4 responded to exogenously added cAMP and the shift from liquid to solid media. gpr3 mRNA levels also responded to the presence of fungal hyphae or cellulose membranes. Further characterisation of mutants bearing a gpr1-silencing construct revealed that Gpr1 is essential for vegetative growth, conidiation and conidial germination. Four genes encoding the first GPCRs described in Trichoderma were isolated and their expression characterized. At least one of these GPCRs is important for several cellular processes, supporting the fundamental role of G protein signalling in this fungus.

  6. Plasma concentrations of the cyclic nucleotides, adenosine 3',5'-monophosphate and guanosine 3'.5'-monophosphate, in healthy adults treated with theophylline

    DEFF Research Database (Denmark)

    Fenger, M; Eriksen, P B; Andersen, O

    1982-01-01

    Plasma concentrations of cyclic adenosine monophosphate and cyclic guanosine monophosphate were measured in 10 health adults before, during and after periods of theophylline administration. Cyclic adenosine monophosphate concentrations did not change significantly, but cyclic guanosine monophosph...

  7. Protein kinase A regulatory subunit distribution in medulloblastoma

    International Nuclear Information System (INIS)

    Mucignat-Caretta, Carla; Denaro, Luca; Redaelli, Marco; D'Avella, Domenico; Caretta, Antonio

    2010-01-01

    Previous studies showed a differential distribution of the four regulatory subunits of cAMP-dependent protein kinases inside the brain, that changed in rodent gliomas: therefore, the distribution of these proteins inside the brain can give information on the functional state of the cells. Our goal was to examine human brain tumors to provide evidence for a differential distribution of protein kinase A in different tumors. The distribution of detergent insoluble regulatory (R1 and R2) and catalytic subunits of cAMP dependent kinases was examined in pediatric brain tumors by immunohistochemistry and fluorescent cAMP analogues binding. R2 is organized in large single dots in medulloblastomas, while it has a different appearance in other tumors. Fluorescent cAMP labelling was observed only in medulloblastoma. A different distribution of cAMP dependent protein kinases has been observed in medulloblastoma

  8. The influence of dibutyryl adenosine cyclic monophosphate on cell proliferation in the epithelium of the jejunal crypts, the colonic crypts and in colonic carcinomata of rat.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1980-01-01

    1. Cell proliferation in the jejunal crypts, the colonic crypts and in dimethylhydrazine (DMH)-induced adenocarcinomata of rat colon was measured using a stathmokinetic technique. 2. Dibutryl cyclic adneosine monophosphate (dibutyryl cAMP) was found to inhibit cell proliferation in colonic crypts and in colonic adenocarcinomata. 3. Dibutryl cAMP at very high doses was found to inhibit jejunal crypt cell proliferation but at lower doses was found to accelerate jejunal crypt cell proliferation. 4. Neither bilateral adrenalectomy nor chemical sympathectomy was found to abolish the ability of dibutryl cAMP to stimulate jejunal crypt cell proliferation. 5. The present results are difficult to interpret in terms of known hormonal influences on cell proliferation in the tissues examined and of established actions, of these hormones on cyclic nucleotide metabolism in other tissues.

  9. Decreased levels of guanosine 3', 5'-monophosphate (cGMP) in cerebrospinal fluid (CSF) are associated with cognitive decline and amyloid pathology in Alzheimer's disease.

    Science.gov (United States)

    Ugarte, Ana; Gil-Bea, Francisco; García-Barroso, Carolina; Cedazo-Minguez, Ángel; Ramírez, M Javier; Franco, Rafael; García-Osta, Ana; Oyarzabal, Julen; Cuadrado-Tejedor, Mar

    2015-06-01

    Levels of the cyclic nucleotides guanosine 3', 5'-monophosphate (cGMP) or adenosine 3', 5'-monophosphate (cAMP) that play important roles in memory processes are not characterized in Alzheimer's disease (AD). The aim of this study was to analyse the levels of these nucleotides in cerebrospinal fluid (CSF) samples from patients diagnosed with clinical and prodromal stages of AD and study the expression level of the enzymes that hydrolyzed them [phosphodiesterases (PDEs)] in the brain of AD patients vs. For cGMP and cAMP CSF analysis, the cohort (n = 79) included cognitively normal participants (subjective cognitive impairment), individuals with stable mild cognitive impairment or AD converters (sMCI and cMCI), and mild AD patients. A high throughput liquid chromatography-tandem mass spectrometry method was used. Interactions between CSF cGMP or cAMP with mini-mental state examination (MMSE) score, CSF Aβ(1-42) and CSF p-tau were analysed. For PDE4, 5, 9 and 10 expression analysis, brains of AD patients vs. controls (n = 7 and n = 8) were used. cGMP, and not cAMP levels, were significantly lower in the CSF of patients diagnosed with mild AD when compared with nondemented controls. CSF levels of cGMP showed a significant association with MMSE-diagnosed clinical dementia and with CSF biomarker Aβ42 in AD patients. Significant increase in PDE5 expression was detected in temporal cortex of AD patients compared with that of age-matched healthy control subjects. No changes in the expression of others PDEs were detected. These results support the potential involvement of cGMP in the pathological and clinical development of AD. The cGMP reduction in early stages of AD might participate in the aggravation of amyloid pathology and cognitive decline. © 2014 British Neuropathological Society.

  10. Effects of prostaglandin E2 and cAMP elevating drugs on GM-CSF release by cultured human airway smooth muscle cells. Relevance to asthma therapy.

    Science.gov (United States)

    Lazzeri, N; Belvisi, M G; Patel, H J; Yacoub, M H; Chung, K F; Mitchell, J A

    2001-01-01

    Human airway smooth muscle (HASM) cells release granulocyte macrophage-colony stimulating factor (GM-CSF) and express cyclooxygenase (COX)-2 (resulting in the release of prostaglandin [PG] E2) after stimulation with cytokines. Because COX-2 activity can regulate a number of inflammatory processes, we have assessed its effects, as well as those of agents that modulate cyclic adenosine monophosphate (cAMP), on GM-CSF release by HASM cells. Cells stimulated with a combination of proinflammatory cytokines (interleukin-1beta and tumor necrosis factor-alpha each at 10 ng/ml) for 24 h released significant amounts of PGE2 (measured by radioimmunoassay) and GM-CSF (measured by enzyme-linked immunosorbent assay). Indomethacin and other COX-1/COX-2 inhibitors caused concentration-dependent inhibitions of PGE2 concomitantly with increases in GM-CSF formation. Addition of exogenous PGE2 or the beta2-agonist fenoterol, which increase cAMP, to cytokine-treated HASM cells had no effect on GM-CSF release unless COX activity was first blocked with indomethacin. The type 4 phosphodiesterase inhibitors rolipram and SB 207499 both caused concentration-dependent reductions in GM-CSF production. Thus, when HASM cells are activated with cytokines they release PGE2, which acts as a "braking mechanism" to limit the coproduction of GM-CSF. Moreover, agents that elevate cAMP also reduce GM-CSF formation by these cells.

  11. Effect of agmatine on the development of morphine dependence in rats: potential role of cAMP system

    Science.gov (United States)

    Aricioglu, Feyza; Means, Andrea; Regunathan, Soundar

    2010-01-01

    Agmatine is an endogenous amine derived from arginine that potentiates morphine analgesia and blocks symptoms of naloxone-precipitated morphine withdrawal in rats. In this study, we sought to determine whether treatment with agmatine during the development of morphine dependence inhibits the withdrawal symptoms and that the effect is mediated by cAMP system. Exposure of rats to morphine for 7 days resulted in marked naloxone-induced withdrawal symptoms and agmatine treatment along with morphine significantly decreasing the withdrawal symptoms. The levels of cAMP were markedly increased in morphine-treated rat brain slices when incubated with naloxone and this increase was significantly reduced in rats treated with morphine and agmatine. The induction of tyrosine hydroxylase after morphine exposure was also reduced in locus coeruleus when agmatine was administered along with morphine. We conclude that agmatine reduces the development of dependence to morphine and that this effect is probably mediated by the inhibition of cAMP signaling pathway during chronic morphine exposure. PMID:15541421

  12. Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists.

    Science.gov (United States)

    Hansen, Mette; Bangsbo, Jens; Jensen, Jørgen; Krause-Jensen, Matilde; Bibby, Bo Martin; Sollie, Ove; Hall, Ulrika Andersson; Madsen, Klavs

    2016-01-01

    Training camps for top-class endurance athletes place high physiological demands on the body. Focus on optimizing recovery between training sessions is necessary to minimize the risk of injuries and improve adaptations to the training stimuli. Carbohydrate supplementation during sessions is generally accepted as being beneficial to aid performance and recovery, whereas the effect of protein supplementation and timing is less well understood. We studied the effects of protein ingestion during training sessions on performance and recovery of elite cyclists during a strenuous training camp. In a randomized, double-blinded study, 18 elite cyclists consumed either a whey protein hydrolysate-carbohydrate beverage (PRO-CHO, 14 g protein/h and 69 g CHO/h) or an isocaloric carbohydrate beverage (CHO, 84 g/h) during each training session for six days (25-29 h cycling in total). Diet and training were standardized and supervised. The diet was energy balanced and contained 1.7 g protein/kg/day. A 10-s peak power test and a 5-min all-out performance test were conducted before and after the first training session and repeated at day 6 of the camp. Blood and saliva samples were collected in the morning after overnight fasting during the week and analyzed for biochemical markers of muscle damage, stress, and immune function. In both groups, 5-min all-out performance was reduced after the first training session and at day 6 compared to before the first training session, with no difference between groups. Peak power in the sprint test did not change significantly between tests or between groups. In addition, changes in markers for muscle damage, stress, and immune function were not significantly influenced by treatment. Intake of protein combined with carbohydrate during cycling at a training camp for top cyclists did not result in marked performance benefits compared to intake of carbohydrates when a recovery drink containing adequate protein and carbohydrate was ingested

  13. Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs reconsolidation of a memory associated with self-administered cocaine.

    Science.gov (United States)

    Wan, Xun; Torregrossa, Mary M; Sanchez, Hayde; Nairn, Angus C; Taylor, Jane R

    2014-01-01

    The intracellular mechanisms underlying memory reconsolidation critically involve cAMP signaling. These events were originally attributed to PKA activation by cAMP, but the identification of Exchange Protein Activated by cAMP (Epac), as a distinct mediator of cAMP signaling, suggests that cAMP-regulated processes that subserve memory reconsolidation are more complex. Here we investigated how activation of Epac with 8-pCPT-cAMP (8-CPT) impacts reconsolidation of a memory that had been associated with cocaine self-administration. Rats were trained to lever press for cocaine on an FR-1 schedule, in which each cocaine delivery was paired with a tone+light cue. Lever pressing was then extinguished in the absence of cue presentations and cocaine delivery. Following the last day of extinction, rats were put in a novel context, in which the conditioned cue was presented to reactivate the cocaine-associated memory. Immediate bilateral infusions of 8-CPT into the basolateral amygdala (BLA) following reactivation disrupted subsequent cue-induced reinstatement in a dose-dependent manner, and modestly reduced responding for conditioned reinforcement. When 8-CPT infusions were delayed for 3 hours after the cue reactivation session or were given after a cue extinction session, no effect on cue-induced reinstatement was observed. Co-administration of 8-CPT and the PKA activator 6-Bnz-cAMP (10 nmol/side) rescued memory reconsolidation while 6-Bnz alone had no effect, suggesting an antagonizing interaction between the two cAMP signaling substrates. Taken together, these studies suggest that activation of Epac represents a parallel cAMP-dependent pathway that can inhibit reconsolidation of cocaine-cue memories and reduce the ability of the cue to produce reinstatement of cocaine-seeking behavior.

  14. Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs reconsolidation of a memory associated with self-administered cocaine.

    Directory of Open Access Journals (Sweden)

    Xun Wan

    Full Text Available The intracellular mechanisms underlying memory reconsolidation critically involve cAMP signaling. These events were originally attributed to PKA activation by cAMP, but the identification of Exchange Protein Activated by cAMP (Epac, as a distinct mediator of cAMP signaling, suggests that cAMP-regulated processes that subserve memory reconsolidation are more complex. Here we investigated how activation of Epac with 8-pCPT-cAMP (8-CPT impacts reconsolidation of a memory that had been associated with cocaine self-administration. Rats were trained to lever press for cocaine on an FR-1 schedule, in which each cocaine delivery was paired with a tone+light cue. Lever pressing was then extinguished in the absence of cue presentations and cocaine delivery. Following the last day of extinction, rats were put in a novel context, in which the conditioned cue was presented to reactivate the cocaine-associated memory. Immediate bilateral infusions of 8-CPT into the basolateral amygdala (BLA following reactivation disrupted subsequent cue-induced reinstatement in a dose-dependent manner, and modestly reduced responding for conditioned reinforcement. When 8-CPT infusions were delayed for 3 hours after the cue reactivation session or were given after a cue extinction session, no effect on cue-induced reinstatement was observed. Co-administration of 8-CPT and the PKA activator 6-Bnz-cAMP (10 nmol/side rescued memory reconsolidation while 6-Bnz alone had no effect, suggesting an antagonizing interaction between the two cAMP signaling substrates. Taken together, these studies suggest that activation of Epac represents a parallel cAMP-dependent pathway that can inhibit reconsolidation of cocaine-cue memories and reduce the ability of the cue to produce reinstatement of cocaine-seeking behavior.

  15. Design of cAMP-CRP-activated promoters in Escherichia coli

    DEFF Research Database (Denmark)

    Valentin-Hansen, P; Holst, B; Søgaard-Andersen, L

    1991-01-01

    We have studied the deoP2 promoter of Escherichia coli to define features that are required for optimal activation by the complex of adenosine 3',5' monophosphate (cAMP) and the cAMP receptor protein (CRP). Systematic mutagenesis of deoP2 shows that the distance between the CRP site and the -10...

  16. Effect of cAMP derivates on assembly and maintenance of tight junctions in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Beese Michaela

    2010-09-01

    Full Text Available Abstract Background Endothelial tight and adherens junctions control a variety of physiological processes like adhesion, paracellular transport of solutes or trafficking of activated leukocytes. Formation and maintenance of endothelial junctions largely depend on the microenvironment of the specific vascular bed and on interactions of the endothelium with adjacent cell types. Consequently, primary cultures of endothelial cells often lose their specific junctional pattern and fail to establish tight monolayer in vitro. This is also true for endothelial cells isolated from the vein of human umbilical cords (HUVEC which are widely used as model for endothelial cell-related studies. Results We here compared the effect of cyclic 3'-5'-adenosine monophosphate (cAMP and its derivates on formation and stabilization of tight junctions and on alterations in paracellular permeability in HUVEC. We demonstrated by light and confocal laser microscopy that for shorter time periods the sodium salt of 8-bromoadenosine-cAMP (8-Br-cAMP/Na and for longer incubation periods 8-(4-chlorophenylthio-cAMP (pCPT-cAMP exerted the greatest effects of all compounds tested here on formation of continuous tight junction strands in HUVEC. We further demonstrated that although all compounds induced protein kinase A-dependent expression of the tight junction proteins claudin-5 and occludin only pCPT-cAMP slightly enhanced paracellular barrier functions. Moreover, we showed that pCPT-cAMP and 8-Br-cAMP/Na induced expression and membrane translocation of tricellulin. Conclusions pCPT-cAMP and, to a lesser extend, 8-Br-cAMP/Na improved formation of continuous tight junction strands and decreased paracellular permeability in primary HUVEC. We concluded that under these conditions HUVEC represent a feasible in vitro model to study formation and disassembly of endothelial tight junctions and to characterize tight junction-associated proteins

  17. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway.

    Directory of Open Access Journals (Sweden)

    Bhushan Vijay Nagpure

    Full Text Available Alzheimer's disease (AD is the leading cause of senile dementia in today's society. Its debilitating symptoms are manifested by disturbances in many important brain functions, which are influenced by adenosine. Hence, adenosinergic system is considered as a potential therapeutic target in AD treatment. In the present study, we found that sodium hydrosulfide (NaHS, an H2S donor, 100 µM attenuated HENECA (a selective A2A receptor agonist, 10-200 nM induced β-amyloid (1-42 (Aβ42 production in SH-SY5Y cells. NaHS also interfered with HENECA-stimulated production and post-translational modification of amyloid precursor protein (APP by inhibiting its maturation. Measurement of the C-terminal APP fragments generated from its enzymatic cleavage by β-site amyloid precursor protein cleaving enzyme 1 (BACE1 showed that NaHS did not have any significant effect on β-secretase activity. However, the direct measurements of HENECA-elevated γ-secretase activity and mRNA expressions of presenilins suggested that the suppression of Aβ42 production in NaHS pretreated cells was mediated by inhibiting γ-secretase. NaHS induced reductions were accompanied by similar decreases in intracellular cAMP levels and phosphorylation of cAMP responsive element binding protein (CREB. NaHS significantly reduced the elevated cAMP and Aβ42 production caused by forskolin (an adenylyl cyclase, AC agonist alone or forskolin in combination with IBMX (a phosphodiesterase inhibitor, but had no effect on those caused by IBMX alone. Moreover, pretreatment with NaHS significantly attenuated HENECA-elevated AC activity and mRNA expressions of various AC isoforms. These data suggest that NaHS may preferentially suppress AC activity when it was stimulated. In conclusion, H2S attenuated HENECA induced Aβ42 production in SH-SY5Y neuroblastoma cells through inhibiting γ-secretase via a cAMP dependent pathway.

  18. Post-translational Analysis of Arabidopsis thaliana Proteins in Response to Cyclic Guanosine Monophosphate Treatment

    KAUST Repository

    Parrott, Brian

    2011-12-12

    The introduction of mass spectrometry techniques to the field of biology has made possible the exploration of the proteome as a whole system as opposed to prior techniques, such as anti-body based assays or yeast two-hybrid studies, which were strictly limited to the study of a few proteins at a time. This practice has allowed for a systems biology approach of exploring the proteome, with the possibility of viewing entire pathways over increments of time. In this study, the effect of treating Arabidopsis thaliana suspension culture cells with 3’,5’-cyclic guanosine monophosphate (cGMP), which is a native second messenger, was examined. Samples were collected at four time points and proteins were extracted and enriched for both oxidation and phosphorylation before analysis via mass spectrometry. Preliminary results suggest a tendency towards an increased number of phosphorylated proteins as a result of cGMP treatment. The data also showed a sharp increase in methionine oxidation in response to the treatment, occurring within the first ten minutes. This finding suggests that cGMP may utilize methionine oxidation as a mechanism of signal transduction. As such, this study corroborates a growing body of evidence supporting the inclusion of methionine oxidation in intracellular signaling pathways.

  19. Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na+/K+-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes

    Directory of Open Access Journals (Sweden)

    Stefanie Klinger

    2018-03-01

    Full Text Available Background: Beneficial effects of Resveratrol (RSV have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the respective mechanisms. Methods: Porcine jejunum and ileum were incubated with RSV (300 µM, 30 min in Ussing chambers (functional studies and tissue bathes (detection of protein expression, phosphorylation, association with detergent resistant membranes (DRMs. Results: RSV reduced alanine and glucose-induced short circuit currents (ΔIsc and influenced forskolin-induced ΔIsc. The phosphorylation of sodium–glucose-linked transporter 1 (SGLT1, AMP-activated protein kinase (AMPK, protein kinase A substrates (PKA-S and liver kinase B1 (LKB1 increased but a causative relation to the inhibitory effects could not directly be established. The DRM association of SGLT1, peptide transporter 1 (PEPT1 and (phosphorylated Na+/H+-exchanger 3 (NHE3 did not change. Conclusion: RSV influences the intestinal transport of glucose, alanine and chloride and is likely to affect other transport processes. As the effects of protein kinase activation vary between the intestinal localizations, it would appear that increasing cyclic adenosine monophosphate (cAMP levels are part of the mechanism. Nonetheless, the physiological responses depend on cell type-specific structures.

  20. Isolation and characterization of cAMP-free and cAMP-bound forms of bovine heart type II cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Cobb, C.E.

    1986-01-01

    Bovine heart type II cAMP-dependent protein kinase holoenzyme (cAMP-PK) was purified to homogeneity as determined by denaturing SDS-PAGE. An HPLC-DEAE purification step resolved two distinct peaks of cAMP-dependent kinase activity, which were designated Peak 1 and Peak 2 based on their order of elution. They had the same Stoke's radii and had very similar sedimentation coefficients. As determined by densitometric scanning of SDS-PAGE brands, by their mobility on denaturing PAGE, and by the ratios of equilibrium [ 3 H] cAMP binding to maximal kinase activity, the subunit stoichiometry of the two peaks was the same. In a cAMP assay it was found that Peak 1 holoenzyme was cAMP-free, but half of the Peak 2 holoenzyme cAMP binding sites contained cAMP. Dissociation assays indicated that the cAMP was equally distributed in binding Site 1 and Site 2 of Peak 2. Although SDS-PAGE analysis ruled out conversions by proteolysis or autophosphorylation-dephosphorylation, Peak 1 could be partially converted to Peak 2 by the addition of subsaturating amounts of cAMP, and Peak 2 could be partially converted to Peak 1 by aging. The interconvertibility of the two holoenzyme peaks strongly suggested that the difference between the two peaks was caused by the presence of cAMP in Peak 2

  1. Inhibition of epithelial Na+ transport by atriopeptin, protein kinase c, and pertussis toxin

    International Nuclear Information System (INIS)

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A.

    1987-01-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na + by atrial natriuretic peptide and 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK i . Using 22 Na + fluxes, they further investigated the modulation of Na + transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na + uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators of protein kinase c, inhibit Na + uptake by 93 ± 13 and 51 ± 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK i cells, inhibits 22 Na + influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na + uptake. These events may be sequentially involved in the action of atrial natriuretic peptide

  2. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells.

    Science.gov (United States)

    Shepard, A R; Zhang, W; Eberhardt, N L

    1994-01-21

    We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.

  3. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states.

    Science.gov (United States)

    Mazhab-Jafari, Mohammad T; Das, Rahul; Fotheringham, Steven A; SilDas, Soumita; Chowdhury, Somenath; Melacini, Giuseppe

    2007-11-21

    cAMP (adenosine 3',5'-cyclic monophosphate) is a ubiquitous second messenger that activates a multitude of essential cellular responses. Two key receptors for cAMP in eukaryotes are protein kinase A (PKA) and the exchange protein directly activated by cAMP (EPAC), which is a recently discovered guanine nucleotide exchange factor (GEF) for the small GTPases Rap1 and Rap2. Previous attempts to investigate the mechanism of allosteric activation of eukaryotic cAMP-binding domains (CBDs) at atomic or residue resolution have been hampered by the instability of the apo form, which requires the use of mixed apo/holo systems, that have provided only a partial picture of the CBD apo state and of the allosteric networks controlled by cAMP. Here, we show that, unlike other eukaryotic CBDs, both apo and cAMP-bound states of the EPAC1 CBD are stable under our experimental conditions, providing a unique opportunity to define at an unprecedented level of detail the allosteric interactions linking two critical functional sites of this CBD. These are the phosphate binding cassette (PBC), where cAMP binds, and the N-terminal helical bundle (NTHB), which is the site of the inhibitory interactions between the regulatory and catalytic regions of EPAC. Specifically, the combined analysis of the cAMP-dependent changes in chemical shifts, 2 degrees structure probabilities, hydrogen/hydrogen exchange (H/H) and hydrogen/deuterium exchange (H/D) protection factors reveals that the long-range communication between the PBC and the NTHB is implemented by two distinct intramolecular cAMP-signaling pathways, respectively, mediated by the beta2-beta3 loop and the alpha6 helix. Docking of cAMP into the PBC perturbs the NTHB inner core packing and the helical probabilities of selected NTHB residues. The proposed model is consistent with the allosteric role previously hypothesized for L273 and F300 based on site-directed mutagenesis; however, our data show that such a contact is part of a

  4. Adrenal hormones and liver cAMP in exercising rats--different modes of anesthesia.

    Science.gov (United States)

    Winder, W W; Fuller, E O; Conlee, R K

    1983-11-01

    We have compared five different modes of anesthesia (iv and ip pentobarbital sodium, ether, CO2, and cervical dislocation) with respect to their effects on liver glycogen, liver adenosine 3',5'-cyclic monophosphate (cAMP), blood glucose and lactate, plasma corticosterone, norepinephrine, and epinephrine in resting rats and in rats run on a treadmill at 26 m/min for 30 min. Ether, CO2, and cervical dislocation were found to be unsuitable due to the marked elevation in plasma catecholamines seen in both resting and exercising rats. Injection of pentobarbital sodium ip required an average of 8 min before onset of surgical anesthesia as opposed to less than 5 s for iv pentobarbital. Exercising rats anesthetized with ip pentobarbital showed markedly lower plasma catecholamines compared with rats given iv pentobarbital. Hepatic cAMP increased in response to exercise in all groups except the ip pentobarbital group. This is most likely due to the long delay between the end of the exercise and freezing of the liver in the ip pentobarbital-anesthetized animals. We conclude that iv injection of pentobarbital is the most suitable method of anesthesia for obtaining accurate measurements of plasma stress hormones, substrates, and metabolites and of hepatic cAMP and glycogen in resting and exercising rats.

  5. Adenosine monophosphate-activated protein kinase from the mud ...

    Indian Academy of Sciences (India)

    2016-12-01

    Dec 1, 2016 ... to the understanding of the molecular mechanism of acclimation to cold hardiness in S. ... have shown that the stress associated with cold temperature ..... vation by cyclic-AMP-dependent protein kinase, studied using.

  6. Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain

    Science.gov (United States)

    Zippin, Jonathan H.; Farrell, Jeanne; Huron, David; Kamenetsky, Margarita; Hess, Kenneth C.; Fischman, Donald A.; Levin, Lonny R.; Buck, Jochen

    2004-01-01

    Bicarbonate-responsive “soluble” adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate pathway leading to CREB activation. PMID:14769862

  7. Inhibition of protein kinase A and GIRK channel reverses fentanyl-induced respiratory depression.

    Science.gov (United States)

    Liang, Xiaonan; Yong, Zheng; Su, Ruibin

    2018-06-11

    Opioid-induced respiratory depression is a major obstacle to improving the clinical management of moderate to severe chronic pain. Opioids inhibit neuronal activity via various pathways, including calcium channels, adenylyl cyclase, and potassium channels. Currently, the underlying molecular pathway of opioid-induced respiratory depression is only partially understood. This study aimed to investigate the mechanisms of opioid-induced respiratory depression in vivo by examining the effects of different pharmacological agents on fentanyl-induced respiratory depression. Respiratory parameters were detected using whole body plethysmography in conscious rats. We show that pre-treatment with the protein kinase A (PKA) inhibitor H89 reversed the fentanyl-related effects on respiratory rate, inspiratory time, and expiratory time. Pre-treatment with the G protein-gated inwardly rectifying potassium (GIRK) channel blocker Tertiapin-Q dose-dependently reversed the fentanyl-related effects on respiratory rate and inspiratory time. A phosphodiesterase 4 (PDE4) inhibitor and cyclic adenosine monophosphate (cAMP) analogs did not affect fentanyl-induced respiratory depression. These findings suggest that PKA and GIRK may be involved in fentanyl-induced respiratory depression and could represent useful therapeutic targets for the treatment of fentanyl-induced ventilatory depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Developmental Competence of Vitrified-Warmed Bovine Oocytes at the Germinal-Vesicle Stage is Improved by Cyclic Adenosine Monophosphate Modulators during In Vitro Maturation.

    Directory of Open Access Journals (Sweden)

    Kenji Ezoe

    Full Text Available Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK or 3-isobutyl-1-methylxanthine (IBMX to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming.

  9. An odor-specific threshold deficit implicates abnormal cAMP signaling in youths at clinical risk for psychosis.

    Science.gov (United States)

    Kamath, Vidyulata; Moberg, Paul J; Calkins, Monica E; Borgmann-Winter, Karin; Conroy, Catherine G; Gur, Raquel E; Kohler, Christian G; Turetsky, Bruce I

    2012-07-01

    While olfactory deficits have been reported in schizophrenia and youths at-risk for psychosis, few studies have linked these deficits to current pathophysiological models of the illness. There is evidence that disrupted cyclic adenosine 3',5'-monophosphate (cAMP) signaling may contribute to schizophrenia pathology. As cAMP mediates olfactory signal transduction, the degree to which this disruption could manifest in olfactory impairment was ascertained. Odor-detection thresholds to two odorants that differ in the degree to which they activate intracellular cAMP were assessed in clinical risk and low-risk participants. Birhinal assessments of odor-detection threshold sensitivity to lyral and citralva were acquired in youths experiencing prodromal symptoms (n=17) and controls at low risk for developing psychosis (n=15). Citralva and lyral are odorants that differ in cAMP activation; citralva is a strong cAMP activator and lyral is a weak cAMP activator. The overall group-by-odor interaction was statistically significant. At-risk youths showed significantly reduced odor detection thresholds for lyral, but showed intact detection thresholds for citralva. This odor-specific threshold deficit was uncorrelated with deficits in odor identification or discrimination, which were also present. ROC curve analysis revealed that olfactory performance correctly classified at-risk and low-risk youths with greater than 97% accuracy. This study extends prior findings of an odor-specific hyposmia implicating cAMP-mediated signal transduction in schizophrenia and unaffected first-degree relatives to include youths at clinical risk for developing the disorder. These results suggest that dysregulation of cAMP signaling may be present during the psychosis prodrome. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Regulation of ATP-sensitive K+ channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP

    International Nuclear Information System (INIS)

    De Weille, J.R.; Schmid-Antomarchi, H.; Fosset, M.; Lazdunski, M.

    1989-01-01

    The actions of somatostatin and of the phorbol ester 4β-phorbol 12-myristate 13-acetate (PMA) were studied in rat insulinoma (RINm5F) cells by electrophysiological and 86 Rb + flux techniques. Both PMA and somatostatin hyperpolarize insulinoma cells by activating ATP-sensitive K + channels. The presence of intracellular GTP is required for the somatostatin effects. PMA- and somatostatin-induced hyperpolarization and channel activity are inhibited by the sulfonylurea glibenclamide. Glibenclamide-sensitive 86 Rb + efflux from insulinoma cells is stimulated by somatostatin in a dose-dependent manner (half maximal effect at 0.7 nM) and abolished by pertussis toxin pretreatment. Mutual roles of a GTP-binding protein, of protein kinase C, and of cAMP in the regulation of ATP-sensitive K + channels are discussed

  11. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination.

    Directory of Open Access Journals (Sweden)

    Ketty Bacallao

    Full Text Available Isolated Schwann cells (SCs respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1. To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of isolated and axon-related SCs to cAMP analogs and ascorbate, a known inducer of axon ensheathment, basal lamina formation and myelination. In axon-related SCs, cAMP induced the expression of Krox-20 and O1 without a concomitant increase in the expression of myelin basic protein (MBP and without promoting axon ensheathment, collagen synthesis or basal lamina assembly. When cAMP was provided together with ascorbate, a dramatic enhancement of MBP expression occurred, indicating that cAMP primes SCs to form myelin only under conditions supportive of basal lamina formation. Experiments using a combination of cell permeable cAMP analogs and type-selective adenylyl cyclase (AC agonists and antagonists revealed that selective transmembrane AC (tmAC activation with forskolin was not sufficient for full SC differentiation and that the attainment of an O1 positive state also relied on the activity of the soluble AC (sAC, a bicarbonate sensor that is insensitive to forskolin and GPCR activation. Pharmacological and immunological evidence indicated that SCs expressed sAC and that sAC activity was required for morphological differentiation and the expression of myelin markers such as O1 and protein zero. To conclude, our data indicates that cAMP did not directly drive myelination but rather the transition into an O1 positive state, which is perhaps the most critical cAMP-dependent rate limiting step for the onset of myelination. The temporally restricted role of cAMP in inducing differentiation independently of basal lamina formation provides a clear example of the

  12. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells.

    Science.gov (United States)

    Arriola Benitez, Paula Constanza; Rey Serantes, Diego; Herrmann, Claudia Karina; Pesce Viglietti, Ayelén Ivana; Vanzulli, Silvia; Giambartolomei, Guillermo Hernán; Comerci, Diego José; Delpino, María Victoria

    2016-02-01

    The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Science.gov (United States)

    Gueguen, Marie; Vallin, Benjamin; Glorian, Martine; Blaise, Régis; Limon, Isabelle

    2016-01-01

    In response to various types of vascular stress, the smooth muscle cells of the vessel wall (VSMCs) change phenotype and acquire the capacity to react to abnormal signals. This phenomenon favors the involvement of these cells in the development of major vascular diseases, such as atherosclerosis, and some complications of angioplasty, such as restenosis. The cyclic adenosine monophosphate (cAMP) pathway plays a key role in the integration of stimuli from the immediate environment and in the development of cellular responses. The temporal and spatial subcellular compartmentalization of cAMP ensures that the signals transmitted are specific. This compartmentalization is dependent on the diversity of (1) proteins directly or indirectly regulating the synthesis, degradation or release of cAMP; (2) intracellular effectors of cAMP; (3) isoforms of all these proteins with unique biochemical properties and unique patterns of regulation and (4) the scaffolding proteins on which the macromolecular complexes are built. This review illustrates the ways in which changes in the profile of adenylyl cyclases (ACs) may play critical roles in signal integration, the response of muscle cells and pathological vascular remodeling. It also illustrates the relevance of the renewed consideration of ACs as potentially interesting treatment targets. © Société de Biologie, 2016.

  14. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    International Nuclear Information System (INIS)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2012-01-01

    Highlights: ► cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. ► cAMP blocks NF-κB activation induced by TNF and actinomycin D. ► cAMP blocks DISC formation following TNF and actinomycin D exposure. ► cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC

  15. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  16. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice

    OpenAIRE

    Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu

    2017-01-01

    Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and m...

  17. Biphasic action of cyclic adenosine 3',5'- monophosphate in gonadotropin-releasing hormone (GnRH) analog-stimulated hormone release from GH3 cells stably transfected with GnRH receptor complementary deoxyribonucleic acid.

    Science.gov (United States)

    Stanislaus, D; Arora, V; Awara, W M; Conn, P M

    1996-03-01

    GH3 cells are a PRL-secreting adenoma cell line derived from pituitary lactotropes. These cells have been stably transfected with rat GnRH receptor complementary DNA to produce four cell lines: GGH(3)1', GGH(3)2', GGH(3)6', and GGH(3)12'. In response to either GnRH or Buserelin (a metabolically stable GnRH agonist), these cell lines synthesize PRL in a cAMP-dependent manner. Only GGH(3)6' cells desensitize in response to persistent treatment with 10(-7) g/ml Buserelin. GGH(3)1', GGH(3)2', and GGH(3)12' cells, however, can be made refractory to Buserelin stimulation by raising cAMP levels either by the addition of (Bu)2cAMP to the medium or by treatment with cholera toxin. In GGH(3) cells, low levels of cAMP fulfill the requirements for a second messenger, whereas higher levels appear to mediate the development of desensitization. The observation that in GGH(3)6' cells, cAMP production persists after the onset of desensitization is consistent with the view that the mechanism responsible for desensitization is distal to the production of cAMP. Moreover, the absence of any significant difference in the amount of cAMP produced per cell in GGH(3)2', GGH(3)6', or GGH(3)12' cells suggests that elevated cAMP production per cell does not explain the development of desensitization in GGH(3)6' cells. We suggest that Buserelin-stimulated PRL synthesis in GGH(3)6' cells is mediated by a different cAMP-dependent protein kinase pool(s) than that in nondesensitizing GGH(3) cells. Such a protein kinase A pool(s) may be more susceptible to degradation via cAMP-mediated mechanisms than the protein kinase pools mediating the Buserelin response in nondesensitizing GGH(3) cells. A similar mechanism has been reported in other systems.

  18. cAMP biosensors applied in molecular pharmacological studies of G protein-coupled receptors

    DEFF Research Database (Denmark)

    Mathiesen, Jesper Mosolff; Vedel, Line; Bräuner-Osborne, Hans

    2013-01-01

    end-point assays for quantifying GPCR-mediated changes in intracellular cAMP levels exist. More recently, fluorescence resonance energy transfer (FRET)-based cAMP biosensors that can quantify intracellular cAMP levels in real time have been developed. These FRET-based cAMP biosensors have been used...... primarily in single cell FRET microscopy to monitor and visualize changes in cAMP upon GPCR activation. Here, a similar cAMP biosensor with a more efficient mCerulean/mCitrine FRET pair is described for use in the 384-well plate format. After cloning and expression in HEK293 cells, the biosensor...... is characterized in the 384-well plate format and used for measuring the signaling of the G(s)-coupled ß(2)-adrenergic receptor. The procedures described may be applied for other FRET-based biosensors in terms of characterization and conversion to the 384-well plate format....

  19. An unusual protein kinase phosphorylates the chemotactic receptor of Dictystelium discoideum

    International Nuclear Information System (INIS)

    Meier, K.; Klein, C.

    1988-01-01

    The authors report the cAMP-dependent phosphorylation of the chemotactic receptor of Dictyostelium discoideum in partially purified plasma membranes. The protein kinase responsible for receptor phosphorylation is associated with this fraction and preferentially phosphorylates the ligand-occupied form of the receptor. 8-Azido[ 32 P]cAMP labeling of the cell surface has shown that the cAMP receptor exists in two forms. A 45-kDa protein is predominant on unstimulated cells. cAMP stimulation results in an increased receptor phosphorylation such that the receptor migrates on NaDodSO 4 /PAGE as a 47-kDa protein. Phosphorylation of the chemotactic receptor is not detected in membrane preparations unless cAMP is added to the incubation mixture. Only under those conditions is the phosphorylated 47-kDa form observed. The requirement for cAMP reflects the fact that the kinase involved preferentially uses the ligand-occupied receptor as a substrate. In vitro phosphorylation of the receptor does not involve tyrosine residues. The enzyme does not appear to be a cAMP- or cGMP-dependent protein kinase nor is it sensitive to guanine nucleotides, Ca 2+ /calmodulin, Ca 2+ /phospholipid, or EGTA. Similarities with the β-adrenergic receptor protein kinase are discussed

  20. Propofol reduced myocardial contraction of vertebrates partly by mediating the cyclic AMP-dependent protein kinase phosphorylation pathway

    International Nuclear Information System (INIS)

    Sun, Xiaotong; Zhang, Xinyu; Bo, Qiyu; Meng, Tao; Lei, Zhen; Li, Jingxin; Hou, Yonghao; Yu, Xiaoqian; Yu, Jingui

    2016-01-01

    Propofol inhibits myocardial contraction in a dose dependent manner. The present study is designed to examine the effect of propofol on PKA mediated myocardial contraction in the absence of adrenoreceptor agonist. The contraction of isolated rat heart was measured in the presence or absence of PKA inhibitor H89 or propofol, using a pressure transducer. The levels of cAMP and PKA kinase activity were detected by ELISA. The mRNA and total protein or phosphorylation level of PKA and downstream proteins were tested in the presence or absence of PKA inhibitor H89 or propofol, using RT-PCR, QPCR and western blotting. The phosphorylation level of PKA was examined thoroughly using immunofluorescence and PKA activity non-radioactive detection kit. Propofol induced a dose-dependent negative contractile response on the rat heart. The inhibitory effect of high concentration propofol (50 μM) with 45% decease of control could be partly reversed by the PKA inhibitor H89 (10 μM) and the depressant effect of propofol decreased from 45% to 10%. PKA kinase activity was inhibited by propofol in a dose-dependent manner. Propofol also induced a decrease in phosphorylation of PKA, which was also inhibited by H89, but did not alter the production of cAMP and the mRNA levels of PKA. The downstream proteins of PKA, PLN and RyR2 were phosphorylated to a lesser extent with propofol or H89 than control. These results demonstrated that propofol induced a negative myocardial contractile response partly by mediating the PKA phosphorylation pathway.

  1. Activation of PKA in cell requires higher concentration of cAMP than in vitro: implications for compartmentalization of cAMP signalling.

    Science.gov (United States)

    Koschinski, Andreas; Zaccolo, Manuela

    2017-10-26

    cAMP is a ubiquitous second messenger responsible for the cellular effects of multiple hormones and neurotransmitters via activation of its main effector, protein kinase A (PKA). Multiple studies have shown that the basal concentration of cAMP in several cell types is about 1 μM. This value is well above the reported concentration of cAMP required to half-maximally activate PKA, which measures in the 100-300 nM range. Several hypotheses have been suggested to explain this apparent discrepancy including inaccurate measurements of intracellular free cAMP, inaccurate measurement of the apparent activation constant of PKA or shielding of PKA from bulk cytosolic cAMP via localization of the enzyme to microdomains with lower basal cAMP concentration. However, direct experimental evidence in support of any of these models is limited and a firm conclusion is missing. In this study we use multiple FRET-based reporters for the detection of cAMP and PKA activity in intact cells and we establish that the sensitivity of PKA to cAMP is almost twenty times lower when measured in cell than when measured in vitro. Our findings have important implications for the understanding of compartmentalized cAMP signalling.

  2. Melanogenesis-Inducing Effect of Cirsimaritin through Increases in Microphthalmia-Associated Transcription Factor and Tyrosinase Expression

    Directory of Open Access Journals (Sweden)

    Hyo Jung Kim

    2015-04-01

    Full Text Available The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP response element-binding protein (CREB in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.

  3. Exchange Protein Directly Activated by cAMP (epac) : A Multidomain cAMP Mediator in the Regulation of Diverse Biological Functions

    NARCIS (Netherlands)

    Schmidt, Martina; Dekker, Frank J.; Maarsingh, Harm

    Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and

  4. Evolution of the cAMP-dependent protein kinase (PKA catalytic subunit isoforms.

    Directory of Open Access Journals (Sweden)

    Kristoffer Søberg

    Full Text Available The 3',5'-cyclic adenosine monophosphate (cAMP-dependent protein kinase, or protein kinase A (PKA, pathway is one of the most versatile and best studied signaling pathways in eukaryotic cells. The two paralogous PKA catalytic subunits Cα and Cβ, encoded by the genes PRKACA and PRKACB, respectively, are among the best understood model kinases in signal transduction research. In this work, we explore and elucidate the evolution of the alternative 5' exons and the splicing pattern giving rise to the numerous PKA catalytic subunit isoforms. In addition to the universally conserved Cα1/Cβ1 isoforms, we find kinase variants with short N-termini in all main vertebrate classes, including the sperm-specific Cα2 isoform found to be conserved in all mammals. We also describe, for the first time, a PKA Cα isoform with a long N-terminus, paralogous to the PKA Cβ2 N-terminus. An analysis of isoform-specific variation highlights residues and motifs that are likely to be of functional importance.

  5. Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins

    KAUST Repository

    Marondedze, Claudius

    2013-01-05

    Background: Increasing structural and biochemical evidence suggests that post-translational methionine oxidation of proteins is not just a result of cellular damage but may provide the cell with information on the cellular oxidative status. In addition, oxidation of methionine residues in key regulatory proteins, such as calmodulin, does influence cellular homeostasis. Previous findings also indicate that oxidation of methionine residues in signaling molecules may have a role in stress responses since these specific structural modifications can in turn change biological activities of proteins. Findings. Here we use tandem mass spectrometry-based proteomics to show that treatment of Arabidopsis thaliana cells with a non-oxidative signaling molecule, the cell-permeant second messenger analogue, 8-bromo-3,5-cyclic guanosine monophosphate (8-Br-cGMP), results in a time-dependent increase in the content of oxidised methionine residues. Interestingly, the group of proteins affected by cGMP-dependent methionine oxidation is functionally enriched for stress response proteins. Furthermore, we also noted distinct signatures in the frequency of amino acids flanking oxidised and un-oxidised methionine residues on both the C- and N-terminus. Conclusions: Given both a structural and functional bias in methionine oxidation events in response to a signaling molecule, we propose that these are indicative of a specific role of such post-translational modifications in the direct or indirect regulation of cellular responses. The mechanisms that determine the specificity of the modifications remain to be elucidated. 2013 Marondedze et al.; licensee BioMed Central Ltd.

  6. cAMP response element binding protein1 is essential for activation of steroyl co-enzyme a desaturase 1 (Scd1 in mouse lung type II epithelial cells.

    Directory of Open Access Journals (Sweden)

    Nisha Antony

    Full Text Available Cyclic AMP Response Element-Binding Protein 1 (Creb1 is a transcription factor that mediates cyclic adenosine 3', 5'-monophosphate (cAMP signalling in many tissues. Creb1(-/- mice die at birth due to respiratory failure and previous genome-wide microarray analysis of E17.5 Creb1(-/- fetal mouse lung identified important Creb1-regulated gene targets during lung development. The lipogenic enzymes stearoyl-CoA desaturase 1 (Scd1 and fatty acid synthase (Fasn showed highly reduced gene expression in Creb1(-/- lungs. We therefore hypothesized that Creb1 plays a crucial role in the transcriptional regulation of genes involved in pulmonary lipid biosynthetic pathways during lung development. In this study we confirmed that Scd1 and Fasn mRNA levels were down regulated in the E17.5 Creb1(-/- mouse lung while the lipogenic-associated transcription factors SrebpF1, C/ebpα and Pparγ were increased. In vivo studies using germline (Creb1(-/- and lung epithelial-specific (Creb1(EpiΔ/Δ Creb1 knockout mice showed strongly reduced Scd1, but not Fasn gene expression and protein levels in lung epithelial cells. In vitro studies using mouse MLE-15 epithelial cells showed that forskolin-mediated activation of Creb1 increased both Scd1 gene expression and protein synthesis. Additionally, MLE15 cells transfected with a dominant-negative ACreb vector blocked forskolin-mediated stimulation of Scd1 gene expression. Lipid profiling in MLE15 cells showed that dominant-negative ACreb suppressed forskolin-induced desaturation of ether linked lipids to produce plasmalogens, as well as levels of phosphatidylethanolamine, ceramide and lysophosphatidylcholine. Taken together these results demonstrate that Creb1 is essential for the induction and maintenance of Scd1 in developing fetal mouse lung epithelial cells.

  7. CCAAT/enhancer-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene.

    Science.gov (United States)

    Christenson, L K; Johnson, P F; McAllister, J M; Strauss, J F

    1999-09-10

    Two putative CCAAT/enhancer-binding protein (C/EBP) response elements were identified in the proximal promoter of the human steroidogenic acute regulatory protein (StAR) gene, which encodes a key protein-regulating steroid hormone synthesis. Expression of C/EBPalpha and -beta increased StAR promoter activity in COS-1 and HepG2 cells. Cotransfection of C/EBPalpha or -beta and steroidogenic factor 1, a transcription factor required for cAMP regulation of StAR expression, into COS-1 augmented 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP)-stimulated promoter activity. When the putative C/EBP response elements were mutated, individually or together, a pronounced decline in basal StAR promoter activity in human granulosa-lutein cells resulted, but the fold stimulation of promoter activity by 8-Br-cAMP was unaffected. Recombinant C/EBPalpha and -beta bound to the two identified sequences but not the mutated elements. Human granulosa-lutein cell nuclear extracts also bound these elements but not the mutated sequences. An antibody to C/EBPbeta, but not C/EBPalpha, supershifted the nuclear protein complex associated with the more distal element. The complex formed by nuclear extracts with the proximal element was not supershifted by either antibody. Western blot analysis revealed the presence of C/EBPalpha and C/EBPbeta in human granulosa-lutein cell nuclear extracts. C/EBPbeta levels were up-regulated 3-fold by 8-Br-cAMP treatment. Our studies demonstrate a role for C/EBPbeta as well as yet to be identified proteins, which can bind to C/EBP response elements, in the regulation of StAR gene expression and suggest a mechanism by which C/EBPbeta participates in the cAMP regulation of StAR gene transcription.

  8. Increasing the flexibility of the LANCE cAMP detection kit.

    Science.gov (United States)

    Hunter, Morag Rose; Glass, Michelle

    2015-01-01

    The detection of cAMP signalling is a common endpoint in the study of G-protein coupled receptors. A number of commercially available kits enable easy detection of cAMP. These kits are based on competition for a cAMP binding site on an antibody or cAMP binding protein and as such have a limited dynamic range. Here, we describe the optimisation of the commercially-available LANCE cAMP detection kit (PerkinElmer) to enable detection in cell lysates. This kit has been designed for use with live cells, with detection reagents applied to cells without wash steps. The standard protocol therefore requires that all assay reagents are compatible with the antibody and the final fluorescent detection stage, limiting the range of assay media and test compounds that can be utilised. The entire experiment must be repeated if cAMP levels fall outside the limited dynamic range. Here we describe a modified protocol that enables the assay to be performed on cell lysates, thereby overcoming these limitations. In this modified protocol, cells are stimulated for a cAMP response in standard media/buffers, washed and then lysed. The cell lysate is then assayed using a modified protocol for the LANCE cAMP detection kit. Samples were tested for stability following a freeze-thaw cycle. The modified LANCE cAMP detection protocol gives a reproducible measurement of cAMP in cell lysate. Lysate samples remain stable when stored at -80°C. Separating the stimulation and detection phases of this cAMP assay allows a vast array of cell stimulation conditions to be tested. The lysate-modified protocol for the LANCE cAMP detection kit therefore increases the flexibility, versatility and convenience of the assay. As samples are insensitive to freeze-thaw, it enables retesting of samples under different dilution conditions to ensure that all samples remain within the dynamic range of the standard curve. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Induction of chinook salmon growth hormone promoter activity by the adenosine 3',5'-monophosphate (cAMP)-dependent pathway involves two cAMP-response elements with the CGTCA motif and the pituitary-specific transcription factor Pit-1.

    Science.gov (United States)

    Wong, A O; Le Drean, Y; Liu, D; Hu, Z Z; Du, S J; Hew, C L

    1996-05-01

    In this study, the functional role of two cAMP-response elements (CRE) in the promoter of the chinook salmon GH gene and their interactions with the transcription factor Pit-1 in regulating GH gene expression were examined. A chimeric construct of the chloramphenicol acetyltransferase (CAT) reporter gene with the CRE-containing GH promoter (pGH.CAT) was transiently transfected into primary cultures of rainbow trout pituitary cells. The expression of CAT activity was stimulated by an adenylate cyclase activator forskolin as well as a membrane-permeant cAMP analog 8-bromo-cAMP. Furthermore, these stimulatory responses were inhibited by a protein kinase A inhibitor H89, suggesting that these CREs are functionally coupled to the adenylate cyclase-cAMP-protein kinase A cascade. This hypothesis is supported by parallel studies using GH4ZR7 cells, a rat pituitary cell line stably transfected with dopamine D2 receptors. In this cell line, D2 receptor activation is known to inhibit adenylate cyclase activity and cAMP synthesis. Stimulation with a nonselective dopamine agonist, apomorphine, or a D2-specific agonist, Ly171555, suppressed the expression of pGH.CAT in GH4ZR7 cells, and this inhibition was blocked by simultaneous treatment with forskolin. These results indicate that inhibition of the cAMP-dependent pathway reduces the basal promoter activity of the CRE-containing pGH.CAT. The functionality of these CREs was further confirmed by deletion analysis and site-specific mutagenesis. In trout pituitary cells, the cAMP inducibility of pGH.CAT was inhibited after deleting the CRE-containing sequence from the GH promoter. When the CRE-containing sequence was cloned into a CAT construct with a viral thymidine kinase promoter, a significant elevation of cAMP inducibility was observed. This stimulatory response, however, was abolished by mutating the core sequence, CGTCA, in these CREs, suggesting that these cis-acting elements confer cAMP inducibility to the salmon GH gene

  10. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    Science.gov (United States)

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  11. Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP

    Energy Technology Data Exchange (ETDEWEB)

    Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Fujita, Norihisa, E-mail: nori@ph.ritsumei.ac.jp [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); School of Pharmacy, Ristumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delay of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.

  12. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid secretion in airway epithelia

    Science.gov (United States)

    Turner, Mark J.; Saint‐Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H.; Verdon, Bernard; Ward, Christopher; Garnett, James P.; Tarran, Robert; Cann, Martin J.

    2015-01-01

    Key points Raised arterial blood CO2 (hypercapnia) is a feature of many lung diseases.CO2 has been shown to act as a cell signalling molecule in human cells, notably by influencing the levels of cell signalling second messengers: cAMP and Ca2+.Hypercapnia reduced cAMP‐stimulated cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid transport in Calu‐3 cells and primary human airway epithelia but did not affect cAMP‐regulated HCO3 − transport via pendrin or Na+/HCO3 − cotransporters.These results further support the role of CO2 as a cell signalling molecule and suggests CO2‐induced reductions in airway anion and fluid transport may impair innate defence mechanisms of the lungs. Abstract Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist‐stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)‐mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP‐regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin‐stimulated elevations in intracellular cAMP as well as both adenosine‐ and forskolin‐stimulated increases in CFTR‐dependent transepithelial short‐circuit current, in polarised cultures of Calu‐3 human airway cells. This CO2‐induced reduction in anion secretion was not due to a decrease in HCO3 − transport given that neither a change in CFTR‐dependent HCO3 − efflux nor Na+/HCO3 − cotransporter‐dependent HCO3 − influx were CO2‐sensitive. Hypercapnia also reduced the volume of forskolin‐stimulated fluid

  13. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.

    Science.gov (United States)

    Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T

    2012-04-01

    The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Method of preparing thymidine-5'-monophosphate specifically or nonspecifically labelled with 14C or with 3H

    International Nuclear Information System (INIS)

    Nejedly, Z.; Filip, J.; Ekl, J.; Kolina, J.; Votruba, I.; Skoda, J.

    1977-01-01

    The invention claims a method for labelled thymidine-5'-monophosphate preparation by cultivating a special thymine-dependent Escherichia coli SPT - strain in the optimum synthetic culture medium containing 0.8 to 1.2 g/ml of labelled thymine. Practically the whole amount of labelled thymine is utilized for cellular deoxyribonucleic acid synthesis. The radioactive biomass obtained is processed using such chemical and enzymatic decomposition procedures as to allow separating the labelled thymidine-5'-monophosphate as the only thymine reaction product. Experiments conducted showed that the radiochemical purity of the thymidine-5'-monophosphate obtained was better than 98%. The absence of other nonactive substances was confirmed by spectrophotometric analysis. The overall product activity was 92.3% of the activity of thymine-2- 14 C introduced in the reaction. (Ha)

  15. Inhibition of Cyclic Adenosine Monophosphate-Specific Phosphodiesterase by Various Food Plant-Derived Phytotherapeutic Agents.

    Science.gov (United States)

    Röhrig, Teresa; Pacjuk, Olga; Hernández-Huguet, Silvia; Körner, Johanna; Scherer, Katharina; Richling, Elke

    2017-11-04

    Background: Phosphodiesterases (PDEs) play a major role in the regulation of cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-mediated pathways. Their inhibitors exhibit anti-inflammatory, vasodilatory and antithrombotic effects. Therefore, consumption of foods with PDE-inhibiting potential may possess beneficial influence on the risk of cardiovascular diseases. Methods: Four plant extracts ( Arbutus unedo , Camellia sinensis , Cynara scolymus , Zingiber officinale ) with promising ingredient profiles and physiological effects were tested for their ability to inhibit cAMP-specific PDE in vitro in a radioactive assay. Results: Strawberry tree fruit ( Arbutus unedo ) and tea ( Camellia sinensis ) extracts did not inhibit PDE markedly. Alternatively, artichoke ( Cynara scolymus ) extract had a significant inhibitory influence on PDE activity (IC 50 = 0.9 ± 0.1 mg/mL) as well as its flavone luteolin (IC 50 = 41 ± 10 μM) and 3,4-dicaffeoylquinic acid (IC 50 > 1.0 mM). Additionally, the ginger ( Zingiber officinale ) extract and one of its constituents, [6]-gingerol, significantly inhibited PDE (IC 50 = 1.7 ± 0.2 mg/mL and IC 50 > 1.7 mM, respectively). Crude fractionation of ginger extract showed that substances responsible for PDE inhibition were in the lipoid fraction (IC 50 = 455 ± 19 μg/mL). Conclusions: A PDE-inhibitory effect was shown for artichoke and ginger extract. Whether PDE inhibition in vivo can be achieved through ingestion of artichoke or ginger extracts leading to physiological effects concerning cardiovascular health should be addressed in future research.

  16. Inhibition of Cyclic Adenosine Monophosphate-Specific Phosphodiesterase by Various Food Plant-Derived Phytotherapeutic Agents

    Directory of Open Access Journals (Sweden)

    Teresa Röhrig

    2017-11-01

    Full Text Available Background: Phosphodiesterases (PDEs play a major role in the regulation of cyclic adenosine monophosphate (cAMP- and cyclic guanosine monophosphate (cGMP-mediated pathways. Their inhibitors exhibit anti-inflammatory, vasodilatory and antithrombotic effects. Therefore, consumption of foods with PDE-inhibiting potential may possess beneficial influence on the risk of cardiovascular diseases. Methods: Four plant extracts (Arbutus unedo, Camellia sinensis, Cynara scolymus, Zingiber officinale with promising ingredient profiles and physiological effects were tested for their ability to inhibit cAMP-specific PDE in vitro in a radioactive assay. Results: Strawberry tree fruit (Arbutus unedo and tea (Camellia sinensis extracts did not inhibit PDE markedly. Alternatively, artichoke (Cynara scolymus extract had a significant inhibitory influence on PDE activity (IC50 = 0.9 ± 0.1 mg/mL as well as its flavone luteolin (IC50 = 41 ± 10 μM and 3,4-dicaffeoylquinic acid (IC50 > 1.0 mM. Additionally, the ginger (Zingiber officinale extract and one of its constituents, [6]-gingerol, significantly inhibited PDE (IC50 = 1.7 ± 0.2 mg/mL and IC50 > 1.7 mM, respectively. Crude fractionation of ginger extract showed that substances responsible for PDE inhibition were in the lipoid fraction (IC50 = 455 ± 19 μg/mL. Conclusions: A PDE-inhibitory effect was shown for artichoke and ginger extract. Whether PDE inhibition in vivo can be achieved through ingestion of artichoke or ginger extracts leading to physiological effects concerning cardiovascular health should be addressed in future research.

  17. Octopamine regulates antennal sensory neurons via daytime-dependent changes in cAMP and IP3 levels in the hawkmoth Manduca sexta.

    Directory of Open Access Journals (Sweden)

    Thomas Schendzielorz

    Full Text Available The biogenic amine octopamine (OA mediates reward signals in olfactory learning and memory as well as circadian rhythms of sleep and activity. In the crepuscular hawkmoth Manduca sexta, OA changed pheromone detection thresholds daytime-dependently, suggesting that OA confers circadian control of olfactory transduction. Thus, with enzyme-linked immunosorbent assays we searched hawkmoth antennae for daytime-dependent changes in the concentration of OA and its respective second messengers. Antennal stimulation with OA raised cAMP- and IP3 levels. Furthermore, antennae expressed daytime-dependent changes in the concentration of OA, with maxima at Zeitgebertime (ZT 20 when moths were active and also maximal concentrations of cAMP occurred. Maximal IP3 levels at ZT 18 and 23 correlated with maximal flight activity of male moths, while minimal IP3 levels at dusk correlated with peaks of feeding activity. Half maximal effective concentration (EC50 for activation of the OA-receptor decreased during the moth's activity phase suggesting daytime-dependent changes in OA receptor sensitivity. With an antiserum against tyramine, the precursor of OA, two centrifugal neurons were detected projecting out into the sensory cell layer of the antenna, possibly mediating more rapid stimulus-dependent OA actions. Indeed, in fast kinetic assays OA receptor stimulation increased cAMP concentrations within 50 msec. Thus, we hypothesize that fast, stimulus-dependent centrifugal control of OA-release in the antenna occurs. Additional slow systemic OA actions might be based upon circadian release of OA into the hemolymph mediating circadian rhythms of antennal second messenger levels. The resulting rhythms of odor sensitivity are suggested to underlie circadian rhythms in odor-mediated behavior.

  18. Kinetics of hydrogen-deuterium exchange in guanosine 5'-monophosphate and guanosine 3':5'-monophosphate determined by laser-Raman spectroscopy.

    Science.gov (United States)

    Lane, M J; Thomas, G J

    1979-09-04

    Pseudo-first-order rate constants governing the deuterium exchange of 8-CH groups in guanosine 5'-monophosphate (5'-rGMP) and guanosine 3':5'-monophosphate (cGMP) were determined as a function of temperature in the range 30-80 degrees C by means of laser-Raman spectroscopy. For each guanine nucleotide the logarithm of the rate constant exhibits a strictly linear dependence on reciprocal temperature: i.e., k psi = Ae-Ea/RT with A = 8.84 X 10(14) h-1 and Ea = 24.6 kcal/mol for 5'-rGMP and A = 3.33 X 10(13) h-1 and Ea = 22.2 kcal/mol for cGMP. Exchange of the 8-CH groups in guanine nucleotides is generally 2-3 times more rapid than in adenine nucleotides [cf. g. j. thomas, Jr., & J. Livramento (1975) Biochemistry 14, 5210-5218]. As in the case of adenine nucleotides, cyclic and 5' nucleotides of guanine exchange at markedly different rates at lower temperatures, with exchange in the cyclic nucleotide being the more facile. Each of the guanine nucleotides was prepared in four different isotopic modifications for Raman spectral analysis. The Raman frequency shifts resulting from the various isotopic substitutions have been tabulated, and assignments have been given for most of the observed vibrational frequencies.

  19. The Orphan G Protein-coupled Receptor Gpr175 (Tpra40) Enhances Hedgehog Signaling by Modulating cAMP Levels.

    Science.gov (United States)

    Singh, Jaskirat; Wen, Xiaohui; Scales, Suzie J

    2015-12-04

    The Hedgehog (Hh) signaling pathway plays an essential role in vertebrate embryonic tissue patterning of many developing organs. Signaling occurs predominantly in primary cilia and is initiated by the entry of the G protein-coupled receptor (GPCR)-like protein Smoothened into cilia and culminates in gene transcription via the Gli family of transcription factors upon their nuclear entry. Here we identify an orphan GPCR, Gpr175 (also known as Tpra1 or Tpra40: transmembrane protein, adipocyte associated 1 or of 40 kDa), which also localizes to primary cilia upon Hh stimulation and positively regulates Hh signaling. Interaction experiments place Gpr175 at the level of PKA and upstream of the Gαi component of heterotrimeric G proteins, which itself localizes to cilia and can modulate Hh signaling. Gpr175 or Gαi1 depletion leads to increases in cellular cAMP levels and in Gli3 processing into its repressor form. Thus we propose that Gpr175 coupled to Gαi1 normally functions to inhibit the production of cAMP by adenylyl cyclase upon Hh stimulation, thus maximizing signaling by turning off PKA activity and hence Gli3 repressor formation. Taken together our data suggest that Gpr175 is a novel positive regulator of the Hh signaling pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. [Physiopathology of cAMP/PKA signaling in neurons].

    Science.gov (United States)

    Castro, Liliana; Yapo, Cedric; Vincent, Pierre

    2016-01-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases. © Société de Biologie, 2017.

  1. Imaging of persistent cAMP signaling by internalized G protein-coupled receptors.

    Science.gov (United States)

    Calebiro, Davide; Nikolaev, Viacheslav O; Lohse, Martin J

    2010-07-01

    G protein-coupled receptors (GPCRs) are the largest family of plasma membrane receptors. They mediate the effects of several endogenous cues and serve as important pharmacological targets. Although many biochemical events involved in GPCR signaling have been characterized in great detail, little is known about their spatiotemporal dynamics in living cells. The recent advent of optical methods based on fluorescent resonance energy transfer allows, for the first time, to directly monitor GPCR signaling in living cells. Utilizing these methods, it has been recently possible to show that the receptors for two protein/peptide hormones, the TSH and the parathyroid hormone, continue signaling to cAMP after their internalization into endosomes. This type of intracellular signaling is persistent and apparently triggers specific cellular outcomes. Here, we review these recent data and explain the optical methods used for such studies. Based on these findings, we propose a revision of the current model of the GPCR-cAMP signaling pathway to accommodate receptor signaling at endosomes.

  2. Metabolism of inositol 4-monophosphate in rat mammalian tissues

    International Nuclear Information System (INIS)

    Delvaux, A.; Dumont, J.E.; Erneux, C.

    1987-01-01

    Rat brain soluble fraction contains an enzymatic activity that dephosphorylates inositol 1,4-bisphosphate (Ins(1,4)P2). We have used anion exchange h.p.l.c. in order to identify the inositol monophosphate product of Ins(1,4)P2 hydrolysis (i.e. Ins(1)P1, Ins(4)P1 or both). When [ 3 H]Ins(1,4)P2 was used as substrate, we obtained an inositol monophosphate isomer that was separated from the co-injected standard [ 3 H]Ins(1)P1. This suggested an Ins(1,4)P21-phosphatase pathway leading to the production of the inositol 4-monophosphate isomer. The dephosphorylation of [ 32 P]Ins(4)P1 was measured in rat brain, liver and heart soluble fraction and was Li+-sensitive. Chromatography of the soluble fraction of a rat brain homogenate on DEAE-cellulose resolved a monophosphate phosphatase activity that hydrolyzed both [ 3 H]Ins(1)P1 and [4- 32 P]Ins(4)P1 isomers

  3. Dual inhibition of γ-oryzanol on cellular melanogenesis: inhibition of tyrosinase activity and reduction of melanogenic gene expression by a protein kinase A-dependent mechanism.

    Science.gov (United States)

    Jun, Hee-jin; Lee, Ji Hae; Cho, Bo-Ram; Seo, Woo-Duck; Kang, Hang-Won; Kim, Dong-Woo; Cho, Kang-Jin; Lee, Sung-Joon

    2012-10-26

    The in vitro effects on melanogenesis of γ-oryzanol (1), a rice bran-derived phytosterol, were investigated. The melanin content in B16F1 cells was significantly and dose-dependently reduced (-13% and -28% at 3 and 30 μM, respectively). Tyrosinase enzyme activity was inhibited by 1 both in a cell-free assay and when analyzed based on the measurement of cellular tyrosinase activity. Transcriptome analysis was performed to investigate the biological pathways altered by 1, and it was found that gene expression involving protein kinase A (PKA) signaling was markedly altered. Subsequent analyses revealed that 1 stimulation in B16 cells reduced cytosolic cAMP concentrations, PKA activity (-13% for cAMP levels and -40% for PKA activity), and phosphorylation of the cAMP-response element binding protein (-57%), which, in turn, downregulated the expression of microphthalmia-associated transcription factor (MITF; -59% for mRNA and -64% for protein), a key melanogenic gene transcription factor. Accordingly, tyrosinase-related protein 1 (TRP-1; -69% for mRNA and -82% for protein) and dopachrome tautomerase (-51% for mRNA and -92% for protein) in 1-stimulated B16F1 cells were also downregulated. These results suggest that 1 has dual inhibitory activities for cellular melanogenesis by inhibiting tyrosinase enzyme activity and reducing MITF and target genes in the PKA-dependent pathway.

  4. 1,3-Dichloro-2-propanol inhibits progesterone production through the expression of steroidogenic enzymes and cAMP concentration in Leydig cells.

    Science.gov (United States)

    Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Li, Guoqiang; Hu, Yunfeng; Li, Mingwei; Yan, Rian; Su, Zhijian; Huang, Yadong

    2014-07-01

    1,3-Dichloro-2-propanol (1,3-DCP) is a well-known food processing contaminant that has been shown to impede male reproductive function. However, its mechanism of action remains elusive. In this study, the effects of 1,3-DCP on progesterone production were investigated using the R2C Leydig cell model. 1,3-DCP significantly reduced cell viability from 7.48% to 97.4% at doses comprised between 0.5 and 6mM. Single cell gel/comet assays and atomic force microscopy assays showed that 1,3-DCP induced early phase cell apoptosis. In addition, 1,3-DCP significantly reduced progesterone production detected by radioimmunoassay (RIA). The results from quantitative polymerase chain reaction and western blotting demonstrated that the mRNA expression levels of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase were significantly down-regulated in R2C cells. Particularly, the change rhythm of Star expression was highly consistent with progesterone production. Furthermore, the cyclic adenosine monophosphate (cAMP) and the mitochondrial membrane potential mediated by ROS, which are involved in regulating progesterone synthesis were also decreased in response to the 1,3-DCP treatment. Overall, the data presented here suggested that 1,3-DCP interferes with the male steroidogenic capacity mainly by down-regulating the level of cAMP and the key enzymes involved in the androgen synthesis pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  6. Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Rui-Yun Peng

    2016-01-01

    With key roles in essential brain functions ranging from the long-term potentiation (LTP) to synaptic plasticity,the N-methyl-D-aspartic acid receptor (NMDAR) can be considered as one of the fundamental glutamate receptors in the central nervous system.The role of NMDA R was first identified in synaptic plasticity and has been extensively studied.Some molecules,such as Ca2+,postsynaptic density 95 (PSD-95),calcium/calmodulin-dependent protein kinase Ⅱ (CaMK Ⅱ),protein kinase A (PKA),mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB),are of special importance in learning and memory.This review mainly focused on the new research of key molecules connected with learning and memory,which played important roles in the NMDAR signaling pathway.

  7. Characterization of a crp* mutant of the E. coli cAMP receptor protein

    International Nuclear Information System (INIS)

    Ren, Y.L.; Garges, S.; Adhya, S.; Krakow, J.S.

    1987-01-01

    One of the crp* mutants previously isolated to activate lac promoter in vivo has been characterized with regard to its biochemical properties. CRP*592 shows a more open conformation than CRP as indicated by its sensitivity to proteolytic attack. Dithionitrobenzoic acid mediated intersubunit crosslinking of CRP requires cAMP; this reaction occurs with unliganded CRP*592. Binding of CRP to its site on the lac promoter and activation of abortive initiation is effected by cAMP but not by cGMP. CRP*592 can activate abortive initiation in the presence of cAMP or cGMP and also at a high CRP*592 concentration in the absence of cyclic nucleotide. DNase I footprinting shows that cAMP-CRP* binds to its site on lac P + while unliganded CRP* and cGMP-CRP* form a stable complex with the [ 32 P]lac P + only in the presence of RNA polymerase. While cGMP binds to CRP it cannot replace cAMP in effecting the conformation necessary for site specific promoter binding; the weakly active unliganded CRP*592 can be shifted to a functional conformation by cAMP, cGMP and RNA polymerase

  8. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines.

    Science.gov (United States)

    Alonso, Carlos Agustín I; Osycka-Salut, Claudia E; Castellano, Luciana; Cesari, Andreína; Di Siervi, Nicolás; Mutto, Adrián; Johannisson, Anders; Morrell, Jane M; Davio, Carlos; Perez-Martinez, Silvina

    2017-08-01

    Is extracellular cAMP involved in the regulation of signalling pathways in bovine sperm capacitation? Extracellular cAMP induces sperm capacitation through the activation of different signalling pathways that involve phospholipase C (PLC), PKC/ERK1-2 signalling and an increase in sperm Ca2+ levels, as well as soluble AC and cAMP/protein kinase A (PKA) signalling. In order to fertilize the oocyte, ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, known as capacitation. This correlates with a number of membrane and metabolic modifications that include an increased influx of bicarbonate and Ca2+, activation of a soluble adenylyl cyclase (sAC) to produce cAMP, PKA activation, protein tyrosine phosphorylation and the development of hyperactivated motility. We previously reported that cAMP efflux by Multidrug Resistance Protein 4 (MRP4) occurs during sperm capacitation and the pharmacological blockade of this inhibits the process. Moreover, the supplementation of incubation media with cAMP abolishes the inhibition and leads to sperm capacitation, suggesting that extracellular cAMP regulates crucial signalling cascades involved in this process. Bovine sperm were selected by the wool glass column method, and washed by centrifugation in BSA-Free Tyrode's Albumin Lactate Pyruvate (sp-TALP). Pellets were resuspended then diluted for each treatment. For in vitro capacitation, 10 to 15 × 106 SPZ/ml were incubated in 0.3% BSA sp-TALP at 38.5°C for 45 min under different experimental conditions. To evaluate the role of extracellular cAMP on different events associated with sperm capacitation, 10 nM cAMP was added to the incubation medium as well as different inhibitors of enzymes associated with signalling transduction pathways: U73122 (PLC inhibitor, 10 μM), Gö6983 (PKC inhibitor, 10 μM), PD98059 (ERK-1/2 inhibitor, 30 μM), H89 and KT (PKA inhibitors, 50 μM and 100 nM, respectively), KH7 (sAC inhibitor, 10 μM), BAPTA

  9. Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in Drosophila.

    Science.gov (United States)

    Kanellopoulos, Alexandros K; Semelidou, Ourania; Kotini, Andriana G; Anezaki, Maria; Skoulakis, Efthimios M C

    2012-09-19

    Loss of the RNA-binding fragile X protein [fragile X mental retardation protein (FMRP)] results in a spectrum of cognitive deficits, the fragile X syndrome (FXS), while aging individuals with decreased protein levels present with a subset of these symptoms and tremor. The broad range of behavioral deficits likely reflects the ubiquitous distribution and multiple functions of the protein. FMRP loss is expected to affect multiple neuronal proteins and intracellular signaling pathways, whose identity and interactions are essential in understanding and ameliorating FXS symptoms. We used heterozygous mutants and targeted RNA interference-mediated abrogation in Drosophila to uncover molecular pathways affected by FMRP reduction. We present evidence that FMRP loss results in excess metabotropic glutamate receptor (mGluR) activity, attributable at least in part to elevation of the protein in affected neurons. Using high-resolution behavioral, genetic, and biochemical analyses, we present evidence that excess mGluR upon FMRP attenuation is linked to the cAMP decrement reported in patients and models, and underlies olfactory associative learning and memory deficits. Furthermore, our data indicate positive transcriptional regulation of the fly fmr1 gene by cAMP, via protein kinase A, likely through the transcription factor CREB. Because the human Fmr1 gene also contains CREB binding sites, the interaction of mGluR excess and cAMP signaling defects we present suggests novel combinatorial pharmaceutical approaches to symptom amelioration upon FMRP attenuation.

  10. Regulation of cAMP Responsive Element Binding Protein 3-Like 1 (Creb3l1 Expression by Orphan Nuclear Receptor Nr4a1

    Directory of Open Access Journals (Sweden)

    Michael P. Greenwood

    2017-12-01

    Full Text Available Cyclic AMP (cAMP inducible transcription factor cAMP responsive element binding protein 3 like 1 (Creb3l1 is strongly activated in the hypothalamus in response to hyperosmotic cues such as dehydration (DH. We have recently shown that Creb3l1 expression is upregulated by cAMP pathways in vitro, however the exact mechanisms are not known. Here we show that increasing Creb3l1 transcription by raising cAMP levels in mouse pituitary AtT20 cells automatically initiates cleavage of Creb3l1, leading to a greater abundance of the transcriptionally active N-terminal portion. Inhibiting protein synthesis indicated that de novo protein synthesis of an intermediary transcription factor was required for Creb3l1 induction. Strategic mining of our microarray data from dehydrated rodent hypothalamus revealed four candidates, reduced to two by analysis of acute hyperosmotic-induced transcriptional activation profiles in the hypothalamus, and one, orphan nuclear receptor Nr4a1, by direct shRNA mediated silencing in AtT20 cells. We show that activation of Creb3l1 transcription by Nr4a1 involves interaction with a single NBRE site in the promoter region. The ability to activate Creb3l1 transcription by this pathway in vitro is dictated by the level of methylation of a CpG island within the proximal promoter/5′UTR of this gene. We thus identify a novel cAMP-Nr4a1-Creb3l1 transcriptional pathway in AtT20 cells and also, our evidence would suggest, in the hypothalamus.

  11. The pde2 gene of Saccharomyces cerevisiae is allelic to rca1 and encodes a phosphodiesterase which protects the cell from extracellular cAMP.

    Science.gov (United States)

    Wilson, R B; Renault, G; Jacquet, M; Tatchell, K

    1993-07-05

    The high affinity cAMP phosphodiesterase, encoded by PDE2, is an important component of the cAMP-dependent protein kinase signaling system in Saccharomyces cerevisiae. An unexpected phenotype of pde2 mutants is sensitivity to external cAMP. This trait has been found independently for rca1 mutants and has been used to monitor the effects of cAMP on several biological processes. We demonstrate here that RCA1 is identical to PDE2. Further analysis of the phenotype of pde2 deletions reveal that exogenously added cAMP results in an increase in the internal level of cAMP. This increase slows down the rate of cell division by increasing the length of the G1 phase of the cell cycle and leads to increased cell volume. Also, cells with a disrupted PDE2 gene previously arrested by nutrient starvation rapidly lose thermotolerance when incubated with exogenous cAMP. From these observations we propose that a role of the PDE2-encoded phosphodiesterase may be to help insulate the internal cAMP pools from the external environment. This protective role might also be important in other eukaryotic organisms where cAMP is a key second messenger.

  12. Physiological and Molecular Effects of the Cyclic Nucleotides cAMP and cGMP on Arabidopsis thaliana

    KAUST Repository

    Herrera, Natalia M.

    2012-12-01

    The cyclic nucleotide monophosphates (CNs), cAMP and cGMP, are second messengers that participate in the regulation of development, metabolism and adaptive responses. In plants, CNs are associated with the control of pathogen responses, pollen tube orientation, abiotic stress response, membrane transport regulation, stomatal movement and light perception. In this study, we hypothesize that cAMP and cGMP promote changes in the transcription level of genes related to photosynthesis, high light and membrane transport in Arabidopsis thaliana leaves and, that these changes at the molecular level can have functional biological consequences. For this reason we tested if CNs modulate the photosynthetic rate, responses to high light and root ion transport. Real time quantitative PCR was used to assess transcription levels of selected genes and infrared gas analyzers coupled to fluorescence sensors were used to measure the photosynthetic parameters. We present evidence that both cAMP and cGMP modulate foliar mRNA levels early after stimulation. The two CNs trigger different responses indicating that the signals have specificity. A comparison of proteomic and transcriptional changes suggest that both transcriptional and post-transcriptional mechanisms are modulated by CNs. cGMP up-regulates the mRNA levels of components of the photosynthesis and carbon metabolism. However, neither cAMP nor cGMP trigger differences in the rate of carbon assimilation, maximum efficiency of the photosystem II (PSII), or PSII operating efficiency. It was also demonstrated that CN regulate the expression of its own targets, the cyclic nucleotide gated channels - CNGC. Further studies are needed to identify the components of the signaling transduction pathway that mediate cellular changes and their respective regulatory and/or signaling roles.

  13. Marketing Your Day Camp.

    Science.gov (United States)

    Coleman, George

    1997-01-01

    Marketing strategies for day camps include encouraging camp staff to get involved in organizations involving children, families, and communities; holding camp fairs; offering the use of camp facilities to outside groups; hosting sport leagues and local youth outings; planning community fairs; and otherwise involving the camp in the community. (LP)

  14. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance

    International Nuclear Information System (INIS)

    Arana, Maite Rocío; Tocchetti, Guillermo Nicolás; Domizi, Pablo; Arias, Agostina; Rigalli, Juan Pablo; Ruiz, María Laura

    2015-01-01

    The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury. • PKA

  15. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance

    Energy Technology Data Exchange (ETDEWEB)

    Arana, Maite Rocío, E-mail: arana@ifise-conicet.gov.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Tocchetti, Guillermo Nicolás, E-mail: gtocchetti@live.com.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Domizi, Pablo, E-mail: domizi@ibr-conicet.gov.ar [Instituto de Biología Molecular y Celular de Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Arias, Agostina, E-mail: agoarias@yahoo.com.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Rigalli, Juan Pablo, E-mail: jprigalli@gmail.com [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Ruiz, María Laura, E-mail: ruiz@ifise-conicet.gov.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); and others

    2015-09-01

    The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury. • PKA

  16. High glucose enhances cAMP level and extracellular signal-regulated kinase phosphorylation in Chinese hamster ovary cell: Usage of Br-cAMP in foreign protein β-galactosidase expression.

    Science.gov (United States)

    Lin, Hsiao-Hsien; Lee, Tsung-Yih; Liu, Ting-Wei; Tseng, Ching-Ping

    2017-07-01

    Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27 kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells. Copyright © 2017. Published by Elsevier B.V.

  17. Respiration responses of a polA1 and a tif-1 mutant of Escherichia coli to far-ultraviolet irradiation

    International Nuclear Information System (INIS)

    Swenson, P.A.

    1981-01-01

    Cessation of respiration in Escherichia coli 60 min after far - ultra-violet (254 nm) irradiation is dependent upon the recA and lexA gene products and is regulated by cyclic 3', 5'-adenosine monophosphate (cAMP) and its receptor protein. Two E. coli B/r mutants were studied, polA1 and tif-1, both of which express other rec/lex functions after UV irradiation. After receiving a relatively high UV fluence, the polA1 mutant, deficient in DNA polymerase 1, showed a respiration shutoff response like the wild type cells. 5-Fluorouracil and rifampin, an RNA synthesis inhibitor, did not prevent respiration shutoff in the mutant cells as they did in the wild type cells. At lower fluences which did not shut off respiration of polA1 cells, cAMP did not cause a more complete shutoff as it did for the wild type cells. The tif-1 mutant has a modified recA protein, and when unirradiated cells are incubated at 42 0 C they form filaments, mutate, and show other rec/lex responses. This mutant did not shut off its respiration at either 30 or 42 0 C, and the response was not modified by cAMP. In an E. coli K12 strain, W3110, 52 J/m 2 UV did not shut off respiration and cAMP had no effect. (author)

  18. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors.

    Science.gov (United States)

    Castro, Liliana R V; Guiot, Elvire; Polito, Marina; Paupardin-Tritsch, Daniéle; Vincent, Pierre

    2014-02-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP-dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, pathfinding, efficacy of synaptic transmission, regulation of excitability, or long term changes. Genetically encoded optical biosensors for cAMP or PKA are considerably improving our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progress made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the sub-cellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus, and axon. Combining this imaging approach with pharmacology or genetic models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly emerge as a forefront tool to decipher the subtle mechanics of intracellular signaling. This will certainly help us to understand the mechanism of action of current drugs and foster the development of novel molecules for neuropsychiatric diseases. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Leptin interferes with 3',5'-Cyclic Adenosine Monophosphate (cAMP signaling to inhibit steroidogenesis in human granulosa cells

    Directory of Open Access Journals (Sweden)

    HoYuen Basil

    2009-10-01

    Full Text Available Abstract Background Obesity has been linked to an increased risk of female infertility. Leptin, an adipocytokine which is elevated during obesity, may influence gonadal function through modulating steroidogenesis in granulosa cells. Methods The effect of leptin on progesterone production in simian virus 40 immortalized granulosa (SVOG cells was examined by Enzyme linked immunosorbent assay (ELISA. The effect of leptin on the expression of the steroidogenic enzymes (StAR, P450scc, 3betaHSD in SVOG cells was examined by real-time PCR and Western blotting. The mRNA expression of leptin receptor isoforms in SVOG cells were examined by using PCR. SVOG cells were co-treated with leptin and specific pharmacological inhibitors to identify the signaling pathways involved in leptin-reduced progesterone production. Silencing RNA against leptin receptor was used to determine that the inhibition of leptin on cAMP-induced steroidogenesis acts in a leptin receptor-dependent manner. Results and Conclusion In the present study, we investigated the cellular mechanisms underlying leptin-regulated steroidogenesis in human granulosa cells. We show that leptin inhibits 8-bromo cAMP-stimulated progesterone production in a concentration-dependent manner. Furthermore, we show that leptin inhibits expression of the cAMP-stimulated steroidogenic acute regulatory (StAR protein, the rate limiting de novo protein in progesterone synthesis. Leptin induces the activation of ERK1/2, p38 and JNK but only the ERK1/2 (PD98059 and p38 (SB203580 inhibitors attenuate the leptin-induced inhibition of cAMP-stimulated StAR protein expression and progesterone production. These data suggest that the leptin-induced MAPK signal transduction pathway interferes with cAMP/PKA-stimulated steroidogenesis in human granulosa cells. Moreover, siRNA mediated knock-down of the endogenous leptin receptor attenuates the effect of leptin on cAMP-induced StAR protein expression and progesterone

  20. Interaction of the regulatory subunit of the cAMP-dependent protein kinase with PATZ1 (ZNF278)

    International Nuclear Information System (INIS)

    Yang, Weng-Lang; Ravatn, Roald; Kudoh, Kazuya; Alabanza, Leah; Chin, Khew-Voon

    2010-01-01

    The effects of cAMP in cell are predominantly mediated by the cAMP-dependent protein kinase (PKA), which is composed of two genetically distinct subunits, catalytic (C) and regulatory (R), forming a tetrameric holoenzyme R 2 C 2 . The only known function for the R subunit is that of inhibiting the activity of the C subunit kinase. It has been shown that overexpression of RIα, but not the C subunit kinase, is associated with neoplastic transformation. In addition, it has also been demonstrated that mutation in the RIα, but not the C subunit is associated with increased resistance to the DNA-damaging anticancer drug cisplatin, thus suggesting that the RIα subunit of PKA may have functions independent of the kinase. We show here that the RIα subunit interacts with a BTB/POZ domain zinc-finger transcription factor, PATZ1 (ZNF278), and co-expression with RIα results in its sequestration in the cytoplasm. The cytoplasmic/nuclear translocation is inducible by cAMP. C-terminus deletion abolishes PATZ1 interaction with RIα and results in its localization in the nucleus. PATZ1 transactivates the cMyc promoter and the presence of cAMP and co-expression with RIα modulates its transactivation. Moreover, PATZ1 is aberrantly expressed in cancer. Taken together, our results showed a potentially novel mechanism of cAMP signaling mediated through the interaction of RIα with PATZ1 that is independent of the kinase activity of PKA, and the aberrant expression of PATZ1 in cancer point to its role in cell growth regulation.

  1. A selective inhibitor of protein kinase A induces behavioural and neurological antidepressant-like effects in rats

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Müller, Heidi Kaastrup; Elfving, Betina

    2011-01-01

    Background: It is well established that cyclic adenosine monophosphate (AMP) signalling via cAMP-dependent protein kinase (PKA) within neurons plays an important role in depression and antidepressant treatment. However, the importance of several newly discovered targets that function independentl...

  2. Competitive cAMP Antagonists for cAMP-Receptor Proteins

    NARCIS (Netherlands)

    Haastert, Peter J.M. van; Driel, Roel van; Jastorff, Bernd; Baraniak, Janina; Stec, Wojciech J.; Wit, René J.W. de

    1984-01-01

    The two exocyclic oxygen atoms at phosphorus of cAMP have been replaced by a sulfur atom or by a dimethylamino group. These substitutions introduce chirality at the phosphorus atom; therefore, two diastereoisomers are known for each derivative: (SP)-cAMPS, (RP)-cAMPS, (SP)-cAMPN(CH3)2, and

  3. PDF and cAMP enhance PER stability in Drosophila clock neurons

    Science.gov (United States)

    Li, Yue; Guo, Fang; Shen, James; Rosbash, Michael

    2014-01-01

    The neuropeptide PDF is important for Drosophila circadian rhythms: pdf01 (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light–dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene perS ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the perS protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf01 circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF. PMID:24707054

  4. Investigation of cAMP microdomains as a path to novel cancer diagnostics.

    Science.gov (United States)

    Desman, Garrett; Waintraub, Caren; Zippin, Jonathan H

    2014-12-01

    Understanding of cAMP signaling has greatly improved over the past decade. The advent of live cell imaging techniques and more specific pharmacologic modulators has led to an improved understanding of the intricacies by which cAMP is able to modulate such a wide variety of cellular pathways. It is now appreciated that cAMP is able to activate multiple effector proteins at distinct areas in the cell leading to the activation of very different downstream targets. The investigation of signaling proteins in cancer is a common route to the development of diagnostic tools, prognostic tools, and/or therapeutic targets, and in this review we highlight how investigation of cAMP signaling microdomains driven by the soluble adenylyl cyclase in different cancers has led to the development of a novel cancer biomarker. Antibodies directed against the soluble adenylyl cyclase (sAC) are highly specific markers for melanoma especially for lentigo maligna melanoma and are being described as "second generation" cancer diagnostics, which are diagnostics that determine the 'state' of a cell and not just identify the cell type. Due to the wide presence of cAMP signaling pathways in cancer, we predict that further investigation of both sAC and other cAMP microdomains will lead to additional cancer biomarkers. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Imaging Live Drosophila Brain with Two-Photon Fluorescence Microscopy

    Science.gov (United States)

    Ahmed, Syeed Ehsan

    Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance change in nanometer scale. In this study we have investigated the effect of dopamine in cAMP dynamics in vivo. In our study two-photon fluorescence microscope was used for imaging mushroom bodies inside live Drosophila melanogaster brain and we developed a method for studying the change in cyclic AMP level.

  6. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  7. G-protein-mediated interconversions of cell-surface cAMP receptors and their involvement in excitation and desensitization of guanylate cyclase in Dictyostelium discoideum

    International Nuclear Information System (INIS)

    van Haastert, P.J.; de Wit, R.J.; Janssens, P.M.; Kesbeke, F.; DeGoede, J.

    1986-01-01

    In Dictyostelium discoideum cells, extracellular cAMP induces the rapid (within 2 s) activation of guanylate cyclase, which is followed by complete desensitization after about 10 s. cAMP binding to these cells is heterogeneous, showing a subclass of fast dissociating sites coupled to adenylate cyclase (A-sites) and a subclass of slowly dissociating sites coupled to guanylate cyclase (B-sites). The kinetics of the B-sites were further investigated on a seconds time scale. Statistical analysis of the association of [ 3 H]cAMP to the B-sites and dissociation of the complex revealed that the receptor can exist in three states which interconvert according to the following scheme. cAMP binds to the BF-state (off-rate 2.5 s) which rapidly (t1/2 = 3 s) converts to the BS-state (off-rate 15 s) and subsequently (without a detectable delay) into the BSS-state (off-rate 150 s). In membranes, both the BS- and BSS-states are converted to the BF-state by GTP and GDP, suggesting the involvement of a G-protein. Densensitized cells show a 80% reduction of the formation of the BSS-state, but no reduction of the BF- or BS-state. These data are combined into a model in which the transitions of the B-sites are mediated by a G-protein; activation of the G-protein and guanylate cyclase is associated with the transition of the BS- to the BSS-state of the receptor, whereas desensitization is associated with the inhibition of this transition

  8. Tauroursodeoxycholate Protects Rat Hepatocytes from Bile Acid-Induced Apoptosis via β1-Integrin- and Protein Kinase A-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Annika Sommerfeld

    2015-05-01

    Full Text Available Background/Aims: Ursodeoxycholic acid, which in vivo is rapidly converted into its taurine conjugate, is frequently used for the treatment of cholestatic liver disease. Apart from its choleretic effects, tauroursodeoxycholate (TUDC can protect hepatocytes from bile acid-induced apoptosis, but the mechanisms underlying its anti-apoptotic effects are poorly understood. Methods: These mechanisms were investigated in perfused rat liver and isolated rat hepatocytes. Results: It was found that TUDC inhibited the glycochenodeoxycholate (GCDC-induced activation of the CD95 death receptor at the level of association between CD95 and the epidermal growth factor receptor. This was due to a rapid TUDC-induced β1-integrin-dependent cyclic AMP (cAMP signal with induction of the dual specificity mitogen-activated protein (MAP kinase phosphatase 1 (MKP-1, which prevented GCDC-induced phosphorylation of mitogen-activated protein kinase kinase 4 (MKK4 and c-jun-NH2-terminal kinase (JNK activation. Furthermore, TUDC induced a protein kinase A (PKA-mediated serine/threonine phosphorylation of the CD95, which was recently identified as an internalization signal for CD95. Furthermore, TUDC inhibited GCDC-induced CD95 targeting to the plasma membrane in a β1-integrin-and PKA-dependent manner. In line with this, the β1-integrin siRNA knockdown in sodium taurocholate cotransporting polypeptide (Ntcp-transfected HepG2 cells abolished the protective effect of TUDC against GCDC-induced apoptosis. Conclusion: TUDC exerts its anti-apoptotic effect via a β1-integrin-mediated formation of cAMP, which prevents CD95 activation by hydrophobic bile acids at the levels of JNK activation and CD95 serine/threonine phosphorylation.

  9. Interaction of the regulatory subunit of the cAMP-dependent protein kinase with PATZ1 (ZNF278)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weng-Lang [Long Island Jewish Medical Center, North Shore University Hospital, Manhasset, NY 11030 (United States); Ravatn, Roald [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States); Kudoh, Kazuya [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States); Department of Obstetrics and Gynecology, National Defense Medical College, Tokorozawa, Saitama (Japan); Alabanza, Leah [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States); Chin, Khew-Voon, E-mail: khew-voon.chin@utoledo.edu [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States)

    2010-01-15

    The effects of cAMP in cell are predominantly mediated by the cAMP-dependent protein kinase (PKA), which is composed of two genetically distinct subunits, catalytic (C) and regulatory (R), forming a tetrameric holoenzyme R{sub 2}C{sub 2}. The only known function for the R subunit is that of inhibiting the activity of the C subunit kinase. It has been shown that overexpression of RI{alpha}, but not the C subunit kinase, is associated with neoplastic transformation. In addition, it has also been demonstrated that mutation in the RI{alpha}, but not the C subunit is associated with increased resistance to the DNA-damaging anticancer drug cisplatin, thus suggesting that the RI{alpha} subunit of PKA may have functions independent of the kinase. We show here that the RI{alpha} subunit interacts with a BTB/POZ domain zinc-finger transcription factor, PATZ1 (ZNF278), and co-expression with RI{alpha} results in its sequestration in the cytoplasm. The cytoplasmic/nuclear translocation is inducible by cAMP. C-terminus deletion abolishes PATZ1 interaction with RI{alpha} and results in its localization in the nucleus. PATZ1 transactivates the cMyc promoter and the presence of cAMP and co-expression with RI{alpha} modulates its transactivation. Moreover, PATZ1 is aberrantly expressed in cancer. Taken together, our results showed a potentially novel mechanism of cAMP signaling mediated through the interaction of RI{alpha} with PATZ1 that is independent of the kinase activity of PKA, and the aberrant expression of PATZ1 in cancer point to its role in cell growth regulation.

  10. Decreased hepatic response to glucagon, adrenergic agonists, and cAMP in glycogenolysis, gluconeogenesis, and glycolysis in tumor-bearing rats.

    Science.gov (United States)

    Biazi, Giuliana R; Frasson, Isabele G; Miksza, Daniele R; de Morais, Hely; de Fatima Silva, Flaviane; Bertolini, Gisele L; de Souza, Helenir M

    2018-05-15

    The response to glucagon and adrenaline in cancer cachexia is poorly known. The aim of this study was to investigate the response to glucagon, adrenergic agonists (α and β) and cyclic adenosine monophosphate (cAMP) on glycogenolysis, gluconeogenesis, and glycolysis in liver perfusion of Walker-256 tumor-bearing rats with advanced cachexia. Liver ATP content was also investigated. Rats without tumor (healthy) were used as controls. Agonists α (phenylephrine) and β (isoproterenol) adrenergic, instead of adrenaline, and cAMP, the second messenger of glucagon and isoproterenol, were used in an attempt to identify mechanisms involved in the responses. Glucagon (1 nM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in the liver of healthy and tumor-bearing rats, but their effects were lower in tumor-bearing rats. Isoproterenol (20 µM) stimulated glycogenolysis, gluconeogenesis, and glycolysis in healthy rats and had virtually no effect in tumor-bearing rats. cAMP (9 µM) also stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in healthy rats but had practically no effect in tumor-bearing rats. Phenylephrine (2 µM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis and these effects were also lower in tumor-bearing rats than in healthy. Liver ATP content was lower in tumor-bearing rats. In conclusion, tumor-bearing rats with advanced cachexia showed a decreased hepatic response to glucagon, adrenergic agonists (α and β), and cAMP in glycogenolysis, gluconeogenesis, and glycolysis, which may be due to a reduced rate of regulatory enzyme phosphorylation caused by the low ATP levels in the liver. © 2018 Wiley Periodicals, Inc.

  11. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-07-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  12. Hindbrain A2 noradrenergic neuron adenosine 5'-monophosphate-activated protein kinase activation, upstream kinase/phosphorylase protein expression, and receptivity to hormone and fuel reporters of short-term food deprivation are regulated by estradiol.

    Science.gov (United States)

    Briski, Karen P; Alenazi, Fahaad S H; Shakya, Manita; Sylvester, Paul W

    2017-07-01

    Estradiol (E) mitigates acute and postacute adverse effects of 12 hr-food deprivation (FD) on energy balance. Hindbrain 5'-monophosphate-activated protein kinase (AMPK) regulates hyperphagic and hypothalamic metabolic neuropeptide and norepinephrine responses to FD in an E-dependent manner. Energy-state information from AMPK-expressing hindbrain A2 noradrenergic neurons shapes neural responses to metabolic imbalance. Here we investigate the hypothesis that FD causes divergent changes in A2 AMPK activity in E- vs. oil (O)-implanted ovariectomized female rats, alongside dissimilar adjustments in circulating metabolic fuel (glucose, free fatty acids [FFA]) and energy deficit-sensitive hormone (corticosterone, glucagon, leptin) levels. FD decreased blood glucose in oil (O)- but not E-implanted ovariectomized female rats and elevated and reduced glucagon levels in O and E, respectively. FD decreased circulating leptin in O and E, but increased corticosterone and FFA concentrations in E only. Western blot analysis of laser-microdissected A2 neurons showed that glucocorticoid receptor type II and very-long-chain acyl-CoA synthetase 3 protein profiles were amplified in FD/E vs. FD/O. A2 total AMPK protein was elevated without change in activity in FD/O, whereas FD/E exhibited increased AMPK activation along with decreased upstream phosphatase expression. The catecholamine biosynthetic enzyme dopamine-β-hydroxylase (DβH) was increased in FD/O but not FD/E A2 cells. The data show discordance between A2 AMPK activation and glycemic responses to FD; sensor activity was refractory to glucose decrements in FD/O but augmented in FD/E despite stabilized glucose and elevated FFA levels. E-dependent amplification of AMPK activity may reflect adaptive conversion to fatty acid oxidation and/or glucocorticoid stimulation. FD augmentation of A2 DβH protein profiles in FD/O but not FD/E animals suggests that FD may correspondingly regulate NE synthesis vs. metabolism/release in the

  13. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases

    OpenAIRE

    Park, Sung-Jun; Ahmad, Faiyaz; Philp, Andrew; Baar, Keith; Williams, Tishan; Luo, Haibin; Ke, Hengming; Rehmann, Holger; Taussig, Ronald; Brown, Alexandra L.; Kim, Myung K.; Beaven, Michael A.; Burgin, Alex B.; Manganiello, Vincent; Chung, Jay H.

    2012-01-01

    Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca2...

  14. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    International Nuclear Information System (INIS)

    Sakamoto, C.; Matozaki, T.; Nagao, M.; Baba, S.

    1987-01-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced 125 I-[Tyr 1 ]somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate [Gpp(NH)p]>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg 2+ . When pancreatic acini were treated with 1 μg/ml pertussis toxin for 4 h, subsequent 125 I-[Tyr 1 ]somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor

  15. Monophosphate end groups produced in radiation induced strand breakage in DNA

    International Nuclear Information System (INIS)

    Kay, E.; Ward, J.F.

    1976-01-01

    A solution of DNA was gamma-irradiated and treated with monophosphatase for studies on the amount of inorganic phosphate released as a function of time. Studies were also conducted on: effect of alkali on yield of monophosphate end groups; induction of DNA strand breaks by treatment with DNAase; initial G values for monophosphate termini; and effect of alkali on radioinduced DNA damage

  16. Registration Day-Camp 2016

    CERN Multimedia

    Nursery School

    2016-01-01

    Reminder Registration for the CERN Staff Association Day-camp are open for children from 4 to 6 years old More information on the website: http://nurseryschool.web.cern.ch/. The day-camp is open to all children. An inscription per week is proposed, cost 480.-CHF/week, lunch included The camp will be open weeks 27, 28, 29 and 30, from 8:30 am to 5:30 pm. For further questions, thanks you for contacting us by email at Summer.Camp@cern.ch.

  17. Registration Summer Camp 2016

    CERN Multimedia

    2016-01-01

    Reminder: registration for the CERN Staff Association Summer Camp is now open for children from 4 to 6 years old.   More information on the website: http://nurseryschool.web.cern.ch/. The summer camp is open to all children. The proposed cost is 480.-CHF/week, lunch included. The camp will be open weeks 27, 28, 29 and 30, from 8:30 a.m. to 5:30 p.m. For further questions, you are welcome to contact us by email at Summer.Camp@cern.ch. CERN Staff Association

  18. Chlorella intake attenuates reduced salivary SIgA secretion in kendo training camp participants

    Directory of Open Access Journals (Sweden)

    Otsuki Takeshi

    2012-12-01

    Full Text Available Abstract Background The green alga Chlorella contains high levels of proteins, vitamins, and minerals. We previously reported that a chlorella-derived multicomponent supplement increased the secretion rate of salivary secretory immunoglobulin A (SIgA in humans. Here, we investigated whether intake of this chlorella-derived supplement attenuated the reduced salivary SIgA secretion rate during a kendo training camp. Methods Ten female kendo athletes participated in inter-university 6-day spring and 4-day summer camps. They were randomized into two groups; one took placebo tablets during the spring camp and chlorella tablets during the summer camp, while the other took chlorella tablets during the spring camp and placebo tablets during the summer camp. Subjects took these tablets starting 4 weeks before the camp until post-camp saliva sampling. Salivary SIgA concentrations were measured by ELISA. Results All subjects participated in nearly all training programs, and body-mass changes and subjective physical well-being scores during the camps were comparable between the groups. However, salivary SIgA secretion rate changes were different between these groups. Salivary SIgA secretion rates decreased during the camp in the placebo group (before vs. second, middle, and final day of camp, and after the camp: 146 ± 89 vs. 87 ± 56, 70 ± 45, 94 ± 58, and 116 ± 71 μg/min, whereas no such decreases were observed in the chlorella group (121 ± 53 vs. 113 ± 68, 98 ± 69,115 ± 80, and 128 ± 59 μg/min. Conclusion Our results suggest that a use of a chlorella-derived dietary supplement attenuates reduced salivary SIgA secretion during a training camp for a competitive sport.

  19. Spatiotemporal and functional characterisation of the Plasmodium falciparum cGMP-dependent protein kinase.

    Directory of Open Access Journals (Sweden)

    Christine S Hopp

    Full Text Available Signalling by 3'-5'-cyclic guanosine monophosphate (cGMP exists in virtually all eukaryotes. In the apicomplexan parasite Plasmodium, the cGMP-dependent protein kinase (PKG has previously been reported to play a critical role in four key stages of the life cycle. The Plasmodium falciparum isoform (PfPKG is essential for the initiation of gametogenesis and for blood stage schizont rupture and work on the orthologue from the rodent malaria parasite P. berghei (PbPKG has shown additional roles in ookinete differentiation and motility as well as liver stage schizont development. In the present study, PfPKG expression and subcellular location in asexual blood stages was investigated using transgenic epitope-tagged PfPKG-expressing P. falciparum parasites. In Western blotting experiments and immunofluorescence analysis (IFA, maximal PfPKG expression was detected at the late schizont stage. While IFA suggested a cytosolic location, a degree of overlap with markers of the endoplasmic reticulum (ER was found and subcellular fractionation showed some association with the peripheral membrane fraction. This broad localisation is consistent with the notion that PfPKG, as with the mammalian orthologue, has numerous cellular substrates. This idea is further supported by the global protein phosphorylation pattern of schizonts which was substantially changed following PfPKG inhibition, suggesting a complex role for PfPKG during schizogony.

  20. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes.

    Science.gov (United States)

    Agarwal, Shailesh R; Gratwohl, Jackson; Cozad, Mia; Yang, Pei-Chi; Clancy, Colleen E; Harvey, Robert D

    2018-01-01

    Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane

  1. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.

    Science.gov (United States)

    Ueda, Atsushi; Wu, Chun-Fang

    2012-03-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss

  2. Management of diabetes at summer camps.

    Science.gov (United States)

    Ciambra, Roberta; Locatelli, Chiara; Suprani, Tosca; Pocecco, Mauro

    2005-01-01

    We report our experience in the organization of diabetic children summer-camps since 1973. Guidelines for organization have been recently reported by the SIEDP (Società Italiana di Endocrinologia e Diabetologia Pediatrica). Our attention is focused on diabetes management at camp, organization and planning, medical staff composition and staff training, treatment of diabetes-related emergencies, written camp management plan, diabetes education and psychological issues at camp, prevention of possible risks, assessment of effectiveness of education in summer camps and research at camp.

  3. Adenosine 5'-Monophosphate Aerosol Challenge Does Not Provoke Airflow Limitation in Healthy Cats

    Directory of Open Access Journals (Sweden)

    K. Vondráková

    2006-01-01

    Full Text Available The purpose of our study was to investigate the effects of nebulized adenosine 5'- monophosphate on airflow limitation in healthy cats determined by barometric whole body plethysmography (BWBP, in comparison to the effects of carbachol. Ten healthy 4- to 6-year-old domestic shorthair cats were included in the study. Each cat was placed in a BWBP plexiglass chamber (volume 38 l. Changes in box pressure were measured at baseline and after nebulization of vehicle and increasing concentrations of carbachol and adenosine 5'- monophosphate. Airway responsiveness was monitored as increases in enhanced pause (PENH, a unitless variable derived from dose-response curves estimating airflow limitation. The chosen endpoint was the agonist concentration which increased PENH to 300% of the value obtained after saline nebulization (PCPENH 300. Inter-day repeatability of measurements was assessed by repeated bronchoprovocations with both agonists 2-3 days apart. For carbachol, PCPENH300 was reached in all cats and correlated significantly between days (mean ± SD; 0.54 ± 0.42 mg/ml and 0.64 ± 0.45 mg/ml respectively; r = 0.58, p < 0.05 In contrast, we found no reaction to adenosine 5'- monophosphate even with the highest concentration nebulized during both measurements. At baseline, mean ± SD PENH was 0.47 ± 0.18 and 0.58 ± 0.24 (measurements 1 and 2, whereas PENH after 500 mg/ml adenosine 5'- monophosphate was 0.46 ± 0.20 and 0.71 ± 0.37. All bronchoprovocation tests were well tolerated by the cats. We conclude that healthy airways in cats do not demonstrate airway responsiveness to inhaled adenosine 5'- monophosphate. This is in agreement with observations in humans as well as our previous findings in dogs, where adenosine 5'- monophosphate had no effect on healthy canine airways, but caused significant airflow limitation after induction of acute bronchitis. To define the value of bronchoprovocation testing with adenosine 5'- monophosphate in the feline

  4. Preserved cardiac function despite marked impairment of cAMP generation.

    Directory of Open Access Journals (Sweden)

    Mei Hua Gao

    Full Text Available So many clinical trials of positive inotropes have failed, that it is now axiomatic that agents that increase cAMP are deleterious to the failing heart. An alternative strategy is to alter myocardial Ca(2+ handling or myofilament response to Ca(2+ using agents that do not affect cAMP. Although left ventricular (LV function is tightly linked to adenylyl cyclase (AC activity, the beneficial effects of AC may be independent of cAMP and instead stem from effects on Ca(2+ handling. Here we ask whether an AC mutant molecule that reduces LV cAMP production would have favorable effects on LV function through its effects on Ca(2+ handling alone.We generated transgenic mice with cardiac-directed expression of an AC6 mutant (AC6mut. Cardiac myocytes showed impaired cAMP production in response to isoproterenol (74% reduction; p<0.001, but LV size and function were normal. Isolated hearts showed preserved LV function in response to isoproterenol stimulation. AC6mut expression was associated with increased sarcoplasmic reticulum Ca(2+ uptake and the EC50 for SERCA2a activation was reduced. Cardiac myocytes isolated from AC6mut mice showed increased amplitude of Ca(2+ transients in response to isoproterenol (p = 0.0001. AC6mut expression also was associated with increased expression of LV S100A1 (p = 0.03 and reduced expression of phospholamban protein (p = 0.01.LV AC mutant expression is associated with normal cardiac function despite impaired cAMP generation. The mechanism appears to be through effects on Ca(2+ handling - effects that occur despite diminished cAMP.

  5. Nicotine stimulates pancreatic cancer xenografts by systemic increase in stress neurotransmitters and suppression of the inhibitory neurotransmitter gamma-aminobutyric acid.

    Science.gov (United States)

    Al-Wadei, Hussein A N; Plummer, Howard K; Schuller, Hildegard M

    2009-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality in Western countries. We have shown previously that four representative human PDAC cell lines were regulated by beta-adrenoreceptors via cyclic adenosine 3',5'-monophosphate (cAMP)-dependent signaling. In the current study, we have tested the hypothesis that nicotine stimulates the growth of PDAC xenografts in nude mice by increasing the systemic levels of the stress neurotransmitters adrenaline and noradrenaline, which are the physiological agonists for beta-adrenoreceptors and that inhibition by gamma-aminobutyric acid (GABA) of the adenylyl cyclase-dependent pathway downstream of adrenoreceptors blocks this effect. The size of xenografts from PDAC cell line Panc-1 was determined 30 days after inoculation of the cancer cells. Stress neurotransmitters in serum as well as cAMP in the cellular fraction of blood and in tumor tissue were assessed by immunoassays. Levels of GABA, its synthesizing enzymes GAD65 and GAD67 and beta-adrenergic signaling proteins in the tumor tissue were determined by western blotting. Nicotine significantly increased the systemic levels of adrenaline, noradrenaline and cAMP while increasing xenograft size and protein levels of cAMP, cyclic AMP response element-binding protein and p-extracellular signal-regulated kinase 1/2 in the tumor tissue. Nicotine additionally reduced the protein levels of both GAD isozymes and GABA in tumor tissue. Treatment with GABA abolished these responses to nicotine and blocked the development of xenografts in mice not exposed to nicotine. These findings suggest that the development and progression of PDAC is subject to significant modulation by stimulatory stress neurotransmitters and inhibitory GABA and that treatment with GABA may be useful for marker-guided cancer intervention of PDAC.

  6. Effect of 3,3',5-triiodothyronine and 3,5-diiodothyronine on progesterone production, cAMP synthesis, and mRNA expression of STAR, CYP11A1, and HSD3B genes in granulosa layer of chicken preovulatory follicles.

    Science.gov (United States)

    Sechman, A; Pawlowska, K; Hrabia, A

    2011-10-01

    In vitro studies were performed to assess whether stimulatory effects of triiodothyronine (T3) on progesterone (P4) production in a granulosa layer (GL) of chicken preovulatory follicles are associated with 3',5'-cyclic adenosine monophosphate (cAMP) synthesis and mRNA expression of STAR protein, CYP11A1, and HSD3B. Effects of 3,5-diiodothyronine (3,5-T2) on steroidogenic function in these follicles were also investigated. The GL of F3 to F1 follicles was incubated in medium supplemented with T3 or 3,5-T2, LH, or forskolin (F), and a combination of each iodothyronine with LH or F. Levels of P4 and cAMP in culture media were determined by RIA. Expression of genes involved in P4 synthesis (ie, STAR protein, CYP11A1, and HSD3B) in the GL of F3 to F1 follicles incubated in medium with T3 or 3,5-T2 and their combination with LH was performed by real-time PCR. Triiodothyronine increased basal and LH- and F-stimulated P4 secretion by preovulatory follicles. The 3,5-T2 elevated P4 synthesis by F3, had no effect on F2 follicles, and diminished P4 production by the GL of F1 follicles. It had no effect on LH-stimulated P4 production; however, it augmented F-stimulated P4 production by F2 and F1 follicles. Although T3 did not affect basal and F-stimulated cAMP synthesis by the GL of preovulatory follicles, it increased LH-stimulated synthesis of this nucleotide. However, 3,5-T2 elevated F-stimulated cAMP synthesis in F3 and F2 follicles; it did not change basal and LH-stimulated cAMP production. Triiodothyronine decreased basal STAR and CYP11A1 mRNAs in F3 follicles, increased them in F1 follicles, and elevated HSD3B mRNA levels in F1 follicles. Triiodothyronine augmented LH-stimulated STAR, CYP11A1, and HSD3B mRNA levels in F2 and CYP11A1 in F1 follicles. However, T3 decreased LH-stimulated STAR and HSD3B mRNA levels in F1 follicles. The 3,5-T2 did not affect basal STAR and CYP11A1 mRNA expression in all investigated follicles; however, it decreased LH-stimulated STAR

  7. Nitric oxide synthesis-promoting effects of valsartan in human umbilical vein endothelial cells via the Akt/adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway

    Directory of Open Access Journals (Sweden)

    Yingshuai Zhao

    2017-05-01

    Full Text Available Valsartan (VAL, an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO. In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs. Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L, VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L, and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L groups. The NO content in the VAL-treated HUVEC line (EA.hy926 was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05 and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.

  8. Rescue of cAMP response element-binding protein signaling reversed spatial memory retention impairments induced by subanesthetic dose of propofol.

    Science.gov (United States)

    Zhang, Hao; Zhang, Shao-Bo; Zhang, Qing-Qing; Liu, Meng; He, Xing-Ying; Zou, Zui; Sun, Hai-Jing; You, Zhen-Dong; Shi, Xue-Yin

    2013-07-01

    The intravenous anesthetic propofol caused episodic memory impairments in human. We hypothesized propofol caused episodic-like spatial memory retention but not acquisition impairments in rats and rescuing cAMP response element-binding protein (CREB) signaling using selective type IV phosphodiesterase (PDEIV) inhibitor rolipram reversed these effects. Male Sprague-Dawley rats were randomized into four groups: control; propofol (25 mg/kg, intraperitoneal); rolipram; and rolipram + propofol (pretreatment of rolipram 25 min before propofol, 0.3 mg/kg, intraperitoneal). Sedation and motor coordination were evaluated 5, 15, and 25 min after propofol injection. Invisible Morris water maze (MWM) acquisition and probe test (memory retention) were performed 5 min and 24 h after propofol injection. Visible MWM training was simultaneously performed to resist nonspatial effects. Hippocampal CREB signaling was detected 5 min, 50 min, and 24 h after propofol administration. Rolipram did not change propofol-induced anesthetic/sedative states or impair motor skills. No difference was found on the latency to the platform during the visible MWM. Propofol impaired spatial memory retention but not acquisition. Rolipram reversed propofol-induced spatial memory impairments and suppression on cAMP levels, CaMKIIα and CREB phosphorylation, brain-derived neurotropic factor (BDNF) and Arc protein expression. Propofol caused spatial memory retention impairments but not acquisition inability possibly by inhibiting CREB signaling. © 2013 John Wiley & Sons Ltd.

  9. Registration Day-Camp 2016

    CERN Multimedia

    Nursery School

    2016-01-01

    Registration for the CERN SA Day-camp are open for children from 4 to 6 years old From March 14 to 25 for children already enrolled in CERN SA EVE and School From April 4 to 15 for the children of CERN members of the personnel (MP) From April 18 for other children More information on the website: http://nurseryschool.web.cern.ch/. The day-camp is open to all children. An inscription per week is proposed, cost 480.-CHF/week, lunch included The camp will be open weeks 27, 28, 29 and 30, from 8:30 am to 5:30 pm. For further questions, thanks you for contacting us by email at Summer.Camp@cern.ch.

  10. Camp's "Disneyland" Effect.

    Science.gov (United States)

    Renville, Gary

    1999-01-01

    Describes the positive mental, physical, and social growth impacts that the camping experience had on the author, and urges camp program evaluation to plan and implement such changes. Sidebar lists steps of effective evaluation: program goals and objectives, goals of evaluation, implementation of evaluation, data analysis, and findings and…

  11. Functional desensitization to isoproterenol without reducing cAMP production in canine failing cardiocytes.

    Science.gov (United States)

    Laurent, C E; Cardinal, R; Rousseau, G; Vermeulen, M; Bouchard, C; Wilkinson, M; Armour, J A; Bouvier, M

    2001-02-01

    To corroborate alterations in the functional responses to beta-adrenergic receptor (beta-AR) stimulation with changes in beta-AR signaling in failing cardiomyocytes, contractile and L-type Ca(2+) current responses to isoproterenol along with stimulated cAMP generation were compared among cardiomyocytes isolated from canines with tachycardia-induced heart failure or healthy hearts. The magnitude of shortening of failing cardiomyocytes was significantly depressed (by 22 +/- 4.4%) under basal conditions, and the maximal response to isoproterenol was significantly reduced (by 45 +/- 18%). Similar results were obtained when the responses in the rate of contraction and rate of relaxation to isoproterenol were considered. The L-type Ca(2+) current amplitude measured in failing cardiomyocytes under basal conditions was unchanged, but the responses to isoproterenol were significantly reduced compared with healthy cells. Isoproterenol-stimulated cAMP generation was similar in sarcolemmal membranes derived from the homogenates of failing (45 +/- 6.8) and healthy cardiomyocytes (52 +/- 8.5 pmol cAMP. mg protein(-1). min(-1)). However, stimulated cAMP generation was found to be significantly reduced when the membranes were derived from the homogenates of whole tissue (failing: 67 +/- 8.1 vs. healthy: 140 +/- 27.8 pmol cAMP. mg protein(-1). min(-1)). Total beta-AR density was not reduced in membranes derived from either whole tissue or isolated cardiomyocyte homogenates, but the beta(1)/beta(2) ratio was significantly reduced in the former (failing: 45/55 vs. healthy: 72/28) without being altered in the latter (failing: 72/28, healthy: 77/23). We thus conclude that, in tachycardia-induced heart failure, reduction in the functional responses of isolated cardiomyocytes to beta-AR stimulation may be attributed to alterations in the excitation-contraction machinery rather than to limitation of cAMP generation.

  12. cAMP promotes the synthesis in early G1 of gp115, a yeast glycoprotein containing glycosyl-phosphatidylinositol.

    Science.gov (United States)

    Grandori, R; Popolo, L; Vai, M; Alberghina, L

    1990-08-25

    The glycoprotein gp115 (Mr = 115,000, pI 4.8-5) is localized in the plasma membrane of Saccharomyces cerevisiae cells and maximally expressed during G1 phase. To gain insight on the mechanism regulating its synthesis, we have examined various conditions of cell proliferation arrest. We used pulse-labeling experiments with [35S]methionine and two-dimensional gel electrophoresis analysis, which allow the detection of the well characterized 100-kDa precursor of gp115 (p100). In the cAMP-requiring mutant cyr1, p100 synthesis is active during exponential growth, shut off by cAMP removal, and induced when growth is restored by cAMP readdition. The inhibition of p100 synthesis also occurs in TS1 mutant cells (ras1ras2-ts1) shifted from 24 to 37 degrees C. During nitrogen starvation of rca1 cells, a mutant permeable to cAMP, p100 synthesis is also inhibited. cAMP complements the effect of ammonium deprivation, promoting p100 synthesis, even when added to cells which have already entered G0. Experiments with the bcy1 and cyr1bcy1 mutants have indicated the involvement of the cAMP-dependent protein kinases in the control of p100 synthesis. Moreover, the synthesis of p100 was unaffected in A364A cells, terminally arrested at START B by alpha-factor. These results indicate that the switch operating on p100 synthesis is localized in early G1 (START A) and is one of the multiple events controlled by the cAMP pathway.

  13. Phosphorylation of protein kinase A (PKA) regulatory subunit RIα by protein kinase G (PKG) primes PKA for catalytic activity in cells.

    Science.gov (United States)

    Haushalter, Kristofer J; Casteel, Darren E; Raffeiner, Andrea; Stefan, Eduard; Patel, Hemal H; Taylor, Susan S

    2018-03-23

    cAMP-dependent protein kinase (PKAc) is a pivotal signaling protein in eukaryotic cells. PKAc has two well-characterized regulatory subunit proteins, RI and RII (each having α and β isoforms), which keep the PKAc catalytic subunit in a catalytically inactive state until activation by cAMP. Previous reports showed that the RIα regulatory subunit is phosphorylated by cGMP-dependent protein kinase (PKG) in vitro , whereupon phosphorylated RIα no longer inhibits PKAc at normal (1:1) stoichiometric ratios. However, the significance of this phosphorylation as a mechanism for activating type I PKA holoenzymes has not been fully explored, especially in cellular systems. In this study, we further examined the potential of RIα phosphorylation to regulate physiologically relevant "desensitization" of PKAc activity. First, the serine 101 site of RIα was validated as a target of PKGIα phosphorylation both in vitro and in cells. Analysis of a phosphomimetic substitution in RIα (S101E) showed that modification of this site increases PKAc activity in vitro and in cells, even without cAMP stimulation. Numerous techniques were used to show that although Ser 101 variants of RIα can bind PKAc, the modified linker region of the S101E mutant has a significantly reduced affinity for the PKAc active site. These findings suggest that RIα phosphorylation may be a novel mechanism to circumvent the requirement of cAMP stimulus to activate type I PKA in cells. We have thus proposed a model to explain how PKG phosphorylation of RIα creates a "sensitized intermediate" state that is in effect primed to trigger PKAc activity.

  14. Protein phosphorylation systems in postmortem human brain

    International Nuclear Information System (INIS)

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P.

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders

  15. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  16. An Analysis of the Relationship of Military Affiliation to Demographics, New Sailor Survey Responses, and Boot Camp Success

    National Research Council Canada - National Science Library

    Pond, Eric L

    2008-01-01

    .... Recruits' military affiliation showed no significant relationship with AFQT scores, age, bonus amounts, college level, graduation rate from boot camp, number of dependents, boot camp pay grade, race...

  17. Scrum Code Camps

    DEFF Research Database (Denmark)

    Pries-Heje, Lene; Pries-Heje, Jan; Dalgaard, Bente

    2013-01-01

    is required. In this paper we present the design of such a new approach, the Scrum Code Camp, which can be used to assess agile team capability in a transparent and consistent way. A design science research approach is used to analyze properties of two instances of the Scrum Code Camp where seven agile teams...

  18. Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells.

    Science.gov (United States)

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Andric, Silvana A; Kostic, Tatjana S

    2017-05-01

    The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.

  19. Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus: effect of novelty

    OpenAIRE

    Viola, Haydée Ana María; Furman, Melina; Izquierdo, Luciana Adriana; Alonso, Mariana; Barros, Daniela Martí; Souza, Márcia Maria de; Izquierdo, Ivan Antônio; Medina, Jorge Horacio

    2000-01-01

    From mollusks to mammals the activation of cAMP response element-binding protein (CREB) appears to be an important step in the formation of long-term memory (LTM). Here we show that a 5 min exposure to a novel environment (open field) 1 hr after acquisition of a one-trial inhibitory avoidance training hinders both the formation of LTM for the avoidance task and the increase in the phosphorylation state of hippocampal Ser 133 CREB [phosphorylated CREB (pCREB)] associated with the avoidance tra...

  20. Cyclic adenosine monophosphate levels and the function of skin microvascular endothelial cells.

    Science.gov (United States)

    Tuder, R M; Karasek, M A; Bensch, K G

    1990-02-01

    The maintenance of the normal epithelioid morphology of human dermal microvascular endothelial cells (MEC) grown in vitro depends strongly on the presence of factors that increase intracellular levels of cyclic AMP. Complete removal of dibutyryl cAMP and isobutylmethylxanthine (IMX) from the growth medium results in a progressive transition from an epithelioid to a spindle-shaped cell line. This transition cannot be reversed by the readdition of dibutyryl cAMP and IMX to the growth medium or by addition of agonists that increase cAMP levels. Spindle-shaped MEC lose the ability to express Factor VIII rAG and DR antigens and to bind peripheral blood mononuclear leukocyte (PBML). Ultrastructural analyses of transitional cells and spindle-shaped cells show decreased numbers of Weibel-Palade bodies in transitional cells and their complete absence in spindle-shaped cells. Interferon-gamma alters several functional properties of both epithelioid and spindle-shaped cells. In the absence of dibutyryl cAMP it accelerates the transition from epithelial to spindle-shaped cells, whereas in the presence of cyclic AMP interferon-gamma increases the binding of PBMLs to both epithelioid and spindle-shaped MEC and the endocytic activity of the endothelial cells. These results suggest that cyclic AMP is an important second messenger in the maintenance of several key functions of microvascular endothelial cells. Factors that influence the levels of this messenger in vivo can be expected to influence the angiogenic and immunologic functions of the microvasculature.

  1. Rapid synthesis of triazine inhibitors of inosine monophosphate dehydrogenase.

    Science.gov (United States)

    Pitts, William J; Guo, Junqing; Dhar, T G Murali; Shen, Zhongqi; Gu, Henry H; Watterson, Scott H; Bednarz, Mark S; Chen, Bang Chi; Barrish, Joel C; Bassolino, Donna; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-08-19

    A series of novel triazine-based small molecule inhibitors (IV) of inosine monophosphate dehydrogenase was prepared. The synthesis and the structure-activity relationships (SAR) derived from in vitro studies are described.

  2. Novel amide-based inhibitors of inosine 5'-monophosphate dehydrogenase.

    Science.gov (United States)

    Watterson, Scott H; Liu, Chunjian; Dhar, T G Murali; Gu, Henry H; Pitts, William J; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-10-21

    A series of novel amide-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are described.

  3. Selective enhancement of wnt4 expression by cyclic AMP-associated cooperation between rat central astrocytes and microglia

    International Nuclear Information System (INIS)

    Ohnishi, Masatoshi; Urasaki, Tomoka; Ochiai, Hiroyuki; Matsuoka, Kohei; Takeo, Shin; Harada, Tomoki; Ohsugi, Yoshihito; Inoue, Atsuko

    2015-01-01

    The wnt protein family has important members involved in cell differentiation, proliferation and plasticity expression; however, little is known about its biosynthesis processes. On the other hand, an increase in the intracerebral cyclic adenosine 3′, 5’-monophosphate (cAMP) level leads to synaptic plasticity via the de novo synthesis of any protein. Here, the effect of dibutyryl cAMP (dbcAMP), a membrane permeability cAMP analog, on the wnt family was investigated in rat primary-cultured glial cells containing astrocytes and microglia. Among wnt3a, 4, 5a, 7a and 11 mRNA, only wnt4 expression was increased by longer treatment (24 h), compared with short treatment (2 h), with dbcAMP in a concentration-dependent manner, and its effect reached statistical significance at 1 mM. In cultures of isolated astrocytes or microglia, wnt4 expression was not affected by 1 mM dbcAMP for 24 h, and microglial wnt4 protein was undetectable even when cells were treated with the drug. Mixed glial cells treated for 24 h with 1 mM dbcAMP showed significantly increased wnt4 protein, as well as mRNA. Immunofluorescence manifested that cells that expressed wnt4 protein were astrocytes, but not microglia. Intraperitoneal injection of 1.25 mg/kg rolipram, a phosphodiesterase (PDE) IV inhibitor that can pass through the blood brain barrier and inhibits cAMP degradation specifically, showed a tendency to increase wnt4 expression in the adult rat brain after 24 h, and the increases in wnt4 mRNA and protein levels reached statistical significance in the hippocampus and striatum, respectively. This is the first finding to help elucidate the selective biosynthesis of central wnt4 through cAMP-stimulated microglia and astrocytes interaction. - Highlights: • Dibutyryl cAMP increased wnt4, but not wnt3a, 5a, 7a and 11, mRNA in mixed glia. • Wnt4 protein increased in astrocytes co-cultivated with microglia. • It took a long time to robustly increase wnt4 expression. • Rolipram

  4. Selective enhancement of wnt4 expression by cyclic AMP-associated cooperation between rat central astrocytes and microglia

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Masatoshi, E-mail: ohnishi@fupharm.fukuyama-u.ac.jp [Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Urasaki, Tomoka [Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Ochiai, Hiroyuki; Matsuoka, Kohei; Takeo, Shin; Harada, Tomoki; Ohsugi, Yoshihito [Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Inoue, Atsuko [Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan)

    2015-11-13

    The wnt protein family has important members involved in cell differentiation, proliferation and plasticity expression; however, little is known about its biosynthesis processes. On the other hand, an increase in the intracerebral cyclic adenosine 3′, 5’-monophosphate (cAMP) level leads to synaptic plasticity via the de novo synthesis of any protein. Here, the effect of dibutyryl cAMP (dbcAMP), a membrane permeability cAMP analog, on the wnt family was investigated in rat primary-cultured glial cells containing astrocytes and microglia. Among wnt3a, 4, 5a, 7a and 11 mRNA, only wnt4 expression was increased by longer treatment (24 h), compared with short treatment (2 h), with dbcAMP in a concentration-dependent manner, and its effect reached statistical significance at 1 mM. In cultures of isolated astrocytes or microglia, wnt4 expression was not affected by 1 mM dbcAMP for 24 h, and microglial wnt4 protein was undetectable even when cells were treated with the drug. Mixed glial cells treated for 24 h with 1 mM dbcAMP showed significantly increased wnt4 protein, as well as mRNA. Immunofluorescence manifested that cells that expressed wnt4 protein were astrocytes, but not microglia. Intraperitoneal injection of 1.25 mg/kg rolipram, a phosphodiesterase (PDE) IV inhibitor that can pass through the blood brain barrier and inhibits cAMP degradation specifically, showed a tendency to increase wnt4 expression in the adult rat brain after 24 h, and the increases in wnt4 mRNA and protein levels reached statistical significance in the hippocampus and striatum, respectively. This is the first finding to help elucidate the selective biosynthesis of central wnt4 through cAMP-stimulated microglia and astrocytes interaction. - Highlights: • Dibutyryl cAMP increased wnt4, but not wnt3a, 5a, 7a and 11, mRNA in mixed glia. • Wnt4 protein increased in astrocytes co-cultivated with microglia. • It took a long time to robustly increase wnt4 expression. • Rolipram

  5. Epac Function and cAMP Scaffolds in the Heart and Lung

    Directory of Open Access Journals (Sweden)

    Marion Laudette

    2018-02-01

    Full Text Available Evidence collected over the last ten years indicates that Epac and cAMP scaffold proteins play a critical role in integrating and transducing multiple signaling pathways at the basis of cardiac and lung physiopathology. Some of the deleterious effects of Epac, such as cardiomyocyte hypertrophy and arrhythmia, initially described in vitro, have been confirmed in genetically modified mice for Epac1 and Epac2. Similar recent findings have been collected in the lung. The following sections will describe how Epac and cAMP signalosomes in different subcellular compartments may contribute to cardiac and lung diseases.

  6. Transformative Leadership: The Camp Counselor Experience

    Directory of Open Access Journals (Sweden)

    Stephanie Femrite

    2017-01-01

    Full Text Available A study, utilizing focus groups, was conducted with teens serving as camp counselors at the North Central 4-H camp in Missouri.  High school students, 14-18 years old, served as camp counselors during a four-day residential camp the summer of 2014. Each counselor was a current 4-H member and had served as a 4-H camp counselor in Missouri for at least one year, some serving as many as five years. Comparing two training models, evidence was found that intentional training sessions are crucial for the empowerment that leads to transformation.

  7. cAMP Stimulates Transepithelial Short-Circuit Current and Fluid Transport Across Porcine Ciliary Epithelium.

    Science.gov (United States)

    Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai

    2016-12-01

    To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.

  8. Mental health needs of children and adolescents at camp: are they being assessed and treated appropriately by the camp nurse?

    Science.gov (United States)

    Courey, Tamra J

    2006-11-01

    Increasingly, more children and adolescents are attending camps with mental health concerns. This can pose a challenge for camp nurses who may lack experience in assessment and treatment of mental health issues. To focus on the importance of addressing and treating mental health needs of children and adolescents at camp utilizing the Scope and Standards of Psychiatric Mental Health Nursing Practice. Personal observations, camp nursing experience, and scholarly published literature. It is paramount that mental health needs of children and adolescents at camp are addressed and managed appropriately by the camp nurse. Education of camp nurses and camp administrators is also a vital part of providing care.

  9. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    Science.gov (United States)

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  10. Method of preparing tritium-labelled thymidine-5'-monophosphates of high specific activity

    International Nuclear Information System (INIS)

    Filip, J.; Vesely, J.; Cihak, A.

    1976-01-01

    A method is described of preparing thymidine-5'-monophosphates labelled with tritium of high specific activity based on enzyme synthesis in vitro. Phosphorylation was carried out using the catalytic effect of an enzyme contained in the supernatant fraction prepared from Yoshida ascites carcinoma in rats. The course of the enzyme reaction can be controlled by the concentration of the individual reaction mixture components. The method described allows obtaining thymidine-5'-monophosphate of radiochemical purity better than 95%. (J.B.)

  11. Effect of sevoflurane on the ATPase activity of hippocampal neurons in a rat model of cerebral ischemia-reperfusion injury via the cAMP-PKA signaling pathway.

    Science.gov (United States)

    Liu, Tie-Jun; Zhang, Jin-Cun; Gao, Xiao-Zeng; Tan, Zhi-Bin; Wang, Jian-Jun; Zhang, Pan-Pan; Cheng, Ai-Bin; Zhang, Shu-Bo

    2018-01-01

    We aim to investigate the effects of sevoflurane on the ATPase activity of the hippocampal neurons in rats with cerebral ischemia-reperfusion injury (IRI) via the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) signaling pathway. Sixty rats were assigned into the normal, model and sevoflurane groups (n = 20, the latter two groups were established as focal cerebral IRI models). The ATPase activity was detected using an ultramicro Na (+)-K (+)-ATP enzyme kit. Immunohistochemical staining was used to detect the positive protein expression of cAMP and PKA. The hippocampal neurons were assigned to the normal, IRI, IRI + sevoflurane, IRI + forskolin, IRI + H89 and IRI + sevoflurane + H89 groups. qRT-PCR and Western blotting were performed for the expressions of cAMP, PKA, cAMP-responsive element-binding protein (CREB) and brain derived neurotrophic factor (BDNF). The normal and sevoflurane groups exhibited a greater positive protein expression of cAMP and PKA than the model group. Compared with the normal group, the expressions of cAMP, PKA, CREB and BDNF all reduced in the IRI, model and IRI + H89 groups. The sevoflurane group showed higher cAMP, PKA, CREB and BDNF expressions than the model group. Compared with the IRI group, ATPase activity and expressions of cAMP, PKA, CREB and BDNF all increased in the normal, IRI + sevoflurane and IRI + forskolin groups but decreased in the IRI + H89 group. It suggests that sevoflurane could enhance ATPase activity in hippocampal neurons of cerebral IRI rats through activating cAMP-PKA signaling pathway. Copyright © 2017. Published by Elsevier Taiwan.

  12. Summer Camp Registrations 2018

    CERN Multimedia

    Staff Association

    2018-01-01

    Registration for the CERN SA Summer camp, for children from 4 to 6 years old, is now open. The general conditions are available on the EVE and School website: http://nurseryschool.web.cern.ch For further questions, please contact us by email at  Summer.Camp@cern.ch An inscription per week is proposed, for 450.-CHF/week, lunch included. The camp will be open on weeks 27, 28, 29 and 30, from 8:30 am to 5:30 pm. This year the theme will be Vivaldi’s Four Seasons.

  13. Elevated cAMP increases aquaporin-3 plasma membrane diffusion

    DEFF Research Database (Denmark)

    Marlar, Saw; Christensen, Eva Arnspang; Koffman, Jennifer Skaarup

    2014-01-01

    be short-term regulated via changes in protein-protein interactions, incorporation into lipid rafts, and/or changes in steady-state turnover, which could result in changes in the diffusion behavior of AQP3. Thus we measured AQP3 diffusion coefficients upon stimulation with the AVP mimic forskolin to reveal...... if AQP3 could be short-term regulated by AVP. k-Space image correlation spectroscopy (kICS) analysis of time-lapse image sequences of basolateral enhanced green fluorescent protein-tagged AQP3 (AQP3-EGFP) revealed that the forskolin-mediated elevation of cAMP increased the diffusion coefficient by 58...

  14. Phosphodiesterase activity is regulated by CC2D1A that is implicated in non-syndromic intellectual disability

    KAUST Repository

    Altawashi, Azza

    2013-07-04

    Background: Cyclic adenosine 3?5?-monophosphate (cAMP) is a key regulator of many cellular processes, including in the neuronal system, and its activity is tuned by Phosphodiesterase (PDE) activation. Further, the CC2D1A protein, consisting of N-Terminal containing four DM14 domains and C-terminal containing C2 domain, was shown to regulate the cAMP-PKA pathway. A human deletion mutation lacking the fourth DM14 and the adjacent C2 domain results in Non Syndromic Intellectual Disability (NSID) also referred to as Non Syndromic Mental Retardation (NSMR). Findings. Here we demonstrate that in Mouse Embryonic Fibroblasts (MEF) CC2D1A co-localizes with PDE4D in the cytosol before cAMP stimulation and on the periphery after stimulation, and that the movement to the periphery requires the full-length CC2D1A. In CC2D1A mouse mutant cells, the absence of three of the four DM14 domains abolishes migration of the complex to the periphery and causes constitutive phosphorylation of PDE4D Serine 126 (Sssup126esup) via the cAMP-dependent protein kinase A (PKA) resulting in PDE4D hyperactivity. Suppressing PDE4D activity with Rolipram in turn restores the down-stream phosphorylation of the "cAMP response element-binding protein" (CREB) that is defective in mouse mutant cells. Conclusion: Our findings suggest that CC2D1A is a novel regulator of PDE4D. CC2D1A interacts directly with PDE4D regulating its activity and thereby fine-tuning cAMP-dependent downstream signaling. Based on our in vitro evidence we propose a model which links CC2D1A structure and function to cAMP homeostasis thereby affecting CREB phosphorylation. We speculate that CC2D1A and/or PDE4D may be promising targets for therapeutic interventions in many disorders with impaired PDE4D function such as NSID. 2013 Al-Tawashi and Gehring; licensee BioMed Central Ltd.

  15. Cyclic GMP-mediated memory enhancement in the object recognition test by inhibitors of phosphodiesterase-2 in mice.

    Science.gov (United States)

    Lueptow, Lindsay M; Zhan, Chang-Guo; O'Donnell, James M

    2016-02-01

    Cyclic nucleotide phosphodiesterase-2 (PDE2) is a potential therapeutic target for the treatment of cognitive dysfunction. Using the object recognition test (ORT), this study assessed the effects of two PDE2 inhibitors, Bay 60-7550 and ND7001, on learning and memory, and examined underlying mechanisms. To assess the role of PDE2 inhibition on phases of memory, Bay 60-7550 (3 mg/kg) was administered: 30 min prior to training; 0, 1, or 3 h after training; or 30 min prior to recall testing. To assess cyclic nucleotide involvement in PDE2 inhibitor-enhanced memory consolidation, either the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg; intraperitoneal (IP)), soluble guanylyl cyclase inhibitor 1H-[-1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ; 20 mg/kg; IP), protein kinase G inhibitor KT5823 (2.5 μg; intracerebroventricular (ICV)), or protein kinase A inhibitor H89 (1 μg; ICV) was administered 30 min prior to the PDE2 inhibitor Bay 60-7550 (3 mg/kg) or ND7001 (3 mg/kg). Changes in the phosphorylation of 3'5'-cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) at Ser-133 and vasodilator-stimulated phosphoprotein (VASP) at Ser-239 were determined to confirm activation of cAMP and 3'5'-cyclic guanosine monophosphate (cGMP) signaling. Bay 60-7550 (3 mg/kg) enhanced memory of mice in the ORT when given 30 min prior to training, immediately after training, or 30 min prior to recall. Inhibitors of the cGMP pathway blocked the memory-enhancing effects of both Bay 60-7550 (3 mg/kg) and ND7001 (3 mg/kg) on early consolidation processes. Bay 60-7550 (3 mg/kg) enhanced phosphorylation of CREB and VASP, both targets of cGMP-dependent protein kinase (PKG). These results confirm a potential of PDE2, or components of its signaling pathway, as a therapeutic target for drug discovery focused on restoring memory function.

  16. CDC Disease Detective Camp

    Centers for Disease Control (CDC) Podcasts

    The CDC Disease Detective Camp gives rising high school juniors and seniors exposure to key aspects of the CDC, including basic epidemiology, infectious and chronic disease tracking, public health law, and outbreak investigations. The camp also helps students explore careers in public health.

  17. Medical Record Keeping in the Summer Camp Setting.

    Science.gov (United States)

    Kaufman, Laura; Holland, Jaycelyn; Weinberg, Stuart; Rosenbloom, S Trent

    2016-12-14

    Approximately one fifth of school-aged children spend a significant portion of their year at residential summer camp, and a growing number have chronic medical conditions. Camp health records are essential for safe, efficient care and for transitions between camp and home providers, yet little research exists regarding these systems. To survey residential summer camps for children to determine how camps create, store, and use camper health records. To raise awareness in the informatics community of the issues experienced by health providers working in a special pediatric care setting. We designed a web-based electronic survey concerning medical recordkeeping and healthcare practices at summer camps. 953 camps accredited by the American Camp Association received the survey. Responses were consolidated and evaluated for trends and conclusions. Of 953 camps contacted, 298 (31%) responded to the survey. Among respondents, 49.3% stated that there was no computer available at the health center, and 14.8% of camps stated that there was not any computer available to health staff at all. 41.1% of camps stated that internet access was not available. The most common complaints concerning recordkeeping practices were time burden, adequate completion, and consistency. Summer camps in the United States make efforts to appropriately document healthcare given to campers, but inconsistency and inefficiency may be barriers to staff productivity, staff satisfaction, and quality of care. Survey responses suggest that the current methods used by camps to document healthcare cause limitations in consistency, efficiency, and communications between providers, camp staff, and parents. As of 2012, survey respondents articulated need for a standard software to document summer camp healthcare practices that accounts for camp-specific needs. Improvement may be achieved if documentation software offers the networking capability, simplicity, pediatrics-specific features, and avoidance of

  18. Marketing for Camp Trends.

    Science.gov (United States)

    Biddle, Alicia

    1998-01-01

    To effectively market a camp, current trends and issues must be considered: specialty programming, the Americans With Disabilities Act, competing recreational programs, changes in the school year, programming for seniors, and accountability. Camps should have a marketing strategy that includes public relations, a marketing plan, a pricing…

  19. Effects of octacosanol extracted from rice bran on blood hormone levels and gene expressions of glucose transporter protein-4 and adenosine monophosphate protein kinase in weaning piglets

    Directory of Open Access Journals (Sweden)

    Lei Long

    2015-12-01

    Full Text Available The object of this study was to explore the regulatory mechanism of octacosanol to the body of animals and the effects of octacosanol on blood hormone levels and gene expressions of glucose transporter protein (GLUT-4 and adenosine monophosphate protein kinase (AMPK in liver and muscle tissue of weaning piglets. A total of 105 crossbred piglets ([Yorkshire × Landrace] × Duroc with an initial BW of 5.70 ± 1.41 kg (21 d of age were used in a 6-wk trial to evaluate the effects of octacosanol and tiamulin supplementation on contents of triiodothyronine (T3, thyroxine (T4, growth hormone (GH, glucagon (GU and adrenaline (AD in blood and gene expressions of GLUT-4 and AMPK in liver and muscle. Piglets were randomly distributed into 3 dietary treatments on the basis of BW and sex. Each treatment had 7 replicate pens with 5 piglets per pen. Treatments were as followed: control group, tiamulin group and octacosanol group. The results showed that compared with control group and tiamulin group, octacosanol greatly promoted the secretion of T3, GH, GU and AD (P  0.05. Results of the present study has confirmed that octacosanol affects energy metabolism of body by regulating secretion of blood hormones and related gene expression in tissue of weaning piglets, which can reduce stress response and has an impact on performance.

  20. Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus.

    Science.gov (United States)

    Valdizán, Elsa Maria; Castro, Elena; Pazos, Angel

    2010-08-01

    5-HT1A receptors couple to different Go/Gi proteins in order to mediate a wide range of physiological actions. While activation of post-synaptic 5-HT1A receptors is mainly related to inhibition of adenylyl cyclase activity, functionality of autoreceptors located in raphe nuclei has been classically ascribed to modifications of the activity of potassium and calcium channels. In order to evaluate the possible existence of agonist-directed trafficking for 5-HT1A autoreceptors in the rat dorsal raphe nucleus, we studied their activation by two agonists with a different profile of efficacy [(+)8-OH-DPAT and buspirone], addressing simultaneously the identification of the specific Galpha subtypes ([35S]GTPgammaS labelling and immunoprecipitation) involved and the subsequent changes in cAMP formation. A significant increase (32%, plabelling of immunoprecipitates was obtained with anti-Galphai3 antibodies but not with anti-Galphao, anti-Galphai1, anti-Galphai2, anti-Galphaz or anti-Galphas antibodies. In contrast, in the presence of buspirone, significant [35S]GTPgammaS labelling of immunoprecipitates was obtained with anti-Galphai3 (50%, plabelling with anti-Galphai1, anti-Galphaz or anti-Galphas. The selective 5-HT1A antagonist WAY 100635 blocked the labelling induced by both agonists. Furthermore, (+)8-OH-DPAT failed to modify forskolin-stimulated cAMP accumulation, while buspirone induced a dose-dependent, WAY 100635-sensitive, inhibition of this response (Imax 30.8+/-4.9, pIC50 5.95+/-0.46). These results demonstrate the existence of an agonist-dependency pattern of G-protein coupling and transduction for 5-HT1A autoreceptors in native brain tissue. These data also open new perspectives for the understanding of the differential profiles of agonist efficacy in pre- vs. post-synaptic 5-HT1A receptor-associated responses.

  1. Role of AC-cAMP-PKA Cascade in Antidepressant Action of Electroacupuncture Treatment in Rats

    Directory of Open Access Journals (Sweden)

    Jian-hua Liu

    2012-01-01

    Full Text Available Adenylyl cyclase (AC-cyclic adenosine monophosphate (cAMP-cAMP-dependent protein kinase A (PKA cascade is considered to be associated with the pathogenesis and treatment of depression. The present study was conducted to explore the role of the cAMP cascade in antidepressant action of electroacupuncture (EA treatment for chronic mild stress (CMS-induced depression model rats. The results showed that EA improved significantly behavior symptoms in depression and dysfunction of AC-cAMP-PKA signal transduction pathway induced by CMS, which was as effective as fluoxetine. Moreover, the antidepressant effects of EA rather than Fluoxetine were completely abolished by H89, a specific PKA inhibitor. Consequently, EA has a significant antidepressant treatment in CMS-induced depression model rats, and AC-cAMP-PKA signal transduction pathway is crucial for it.

  2. Suicide in Nazi concentration camps, 1933-9.

    Science.gov (United States)

    Goeschel, Christian

    2010-01-01

    Too often histories of the concentration camps tend to be ignorant of the wider political context of nazi repression and control. This article tries to overcome this problem. Combining legal, social and political history, it contributes to a more thorough understanding of the changing relationship between the camps as places of extra-legal terror and the judiciary, between nazi terror and the law. It argues that the conflict between the judiciary and the SS was not a conflict between "good" and "evil," as existing accounts claim. Rather, it was a power struggle for jurisdiction over the camps. Concentration camp authorities covered up the murders of prisoners as suicides to prevent judicial investigations. This article also looks at actual suicides in the pre-war camps, to highlight individual inmates' reactions to life within the camps. The article concludes that the history of the concentration camps needs to be firmly integrated into the history of nazi terror and the Third Reich.

  3. Constitutive Activation of the G-Protein Subunit G[alpha]s within Forebrain Neurons Causes PKA-Dependent Alterations in Fear Conditioning and Cortical "Arc" mRNA Expression

    Science.gov (United States)

    Kelly, Michele P.; Cheung, York-Fong; Favilla, Christopher; Siegel, Steven J.; Kanes, Stephen J.; Houslay, Miles D.; Abel, Ted

    2008-01-01

    Memory formation requires cAMP signaling; thus, this cascade has been of great interest in the search for cognitive enhancers. Given that medications are administered long-term, we determined the effects of chronically increasing cAMP synthesis in the brain by expressing a constitutively active isoform of the G-protein subunit G[alpha]s…

  4. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity

    KAUST Repository

    Altawashi, Azza; Jung, Sung Yun; Liu, Dou; Su, Bing; Qin, Jun

    2012-01-01

    capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit

  5. Polarized Th1 and Th2 cells are less responsive to negative feedback by receptors coupled to the AC/cAMP system compared to freshly isolated T cells

    NARCIS (Netherlands)

    Heijink, Irene H; Vellenga, Edo; Borger, Peter; Postma, Dirkje S; Monchy, Jan G R de; Kauffman, Henk F

    1 The adenylyl cyclase (AC)/cyclic adenosine monophosphate (cAMP) system is known to negatively regulate transcriptional activity of T cells, thereby possibly modulating T-cell-mediated responses at the sites of inflammation. Effects of cAMP have been widely studied in freshly isolated T cells and

  6. Effects of oxytocin and methacholine on cyclic nucleotide levels of rabbit myometrium.

    Science.gov (United States)

    Schlageter, N; Janis, R A; Gualtieri, R T; Hechter, O

    1980-03-01

    The effects of oxytocin and methacholine on cyclic nucleotide levels in estrogen-primed rabbit myometrium were studied in the presence and absence of 1-methyl-3-isobutyl xanthine (MIX), a phosphodiesterase inhibitor. In the absence of MIX, methacholine increased guanosine 3',5'-cyclic monophosphate (cGMP) levels at a time when contraction was decreasing, but had no influence on adenosine 3',5'-cyclic monophosphate (cAMP) levels. In contrast, oxytocin did not elevate cGMP, but rapidly decreased cAMP levels. MIX (1 mM) increased both cAMP and cGMP levels. Oxytocin or methacholine further increased cGMP, indicating activation of guanylate cyclase. Oxytocin- but not methacholine-induced stimulation of guanylate cyclase was abolished in Ca2+-free solution. Oxytocin increased cAMP over the levels produced by MIX alone, whereas methacholine decreased cAMP below the MIX control values; these effects were insensitive to indomethacin. Tissue levels of cGMP and cAMP did not directly correlate with isometric tension. The results also indicate that both oxytocin and methacholine stimulate guanylate cyclase but have opposing effects on adenylate cyclase of rabbit myometrium.

  7. A protein-dependent side-chain rotamer library.

    KAUST Repository

    Bhuyan, M.S.; Gao, Xin

    2011-01-01

    Protein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries. In this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities. Experimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods.

  8. A protein-dependent side-chain rotamer library.

    KAUST Repository

    Bhuyan, M.S.

    2011-12-14

    Protein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries. In this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities. Experimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods.

  9. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    Science.gov (United States)

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  10. Solid-phase assay for the phosphorylation of proteins blotted on nitrocellulose membrane filters

    International Nuclear Information System (INIS)

    Valtorta, F.; Schiebler, W.; Jahn, R.; Ceccarelli, B.; Greengard, P.

    1986-01-01

    A new procedure for the phosphorylation and assay of phosphoproteins is described. Proteins are solubilized from tissue samples, separated by polyacrylamide gel electrophoresis, transferred onto nitrocellulose membrane filters, and the blotted polypeptides are phyosphorylated with the catalytic subunit of cyclic AMP (adenosine 3':5'-monophosphate)-dependent protein kinase. The method was developed for the assay of dephosphosynapsin I, but it has also proven suitable for the phosphorylation of other proteins. The patterns of phosphorylation of tissue samples phosphorylated using the new method are similar to those obtained using the conventional test tube assay. Once phosphorylated, the adsorbed proteins can be digested with proteases and subjected to phosphopeptide mapping. The phosphorylated blotted proteins can also be analyzed by overlay techniques for the immunological detection of polypeptides

  11. The Effect of Alcohol Administration on the Corpus Cavernosum

    Directory of Open Access Journals (Sweden)

    See Min Choi

    2017-04-01

    Full Text Available Purpose: We studied the effects of alcohol administration on the corpus cavernosum (CC using an animal model. Materials and Methods: CC sections and the aortic ring of rabbits were used in an organ bath study. After acute alcohol administration, changes in blood alcohol concentration and electrical stimulation induced intracavernosal pressure/mean arterial pressure (ICP/MAP percentage were compared in rats. Cyclic adenosine monophosphate (cAMP and cyclic guanosine monophosphate (cGMP levels in the CC were measured using immunoassays. After chronic alcohol administration, ICP/MAP percentage, cAMP and cGMP were compared in rats. Histological changes were examined using the Masson trichrome stain and the Sircol collagen assay. Endothelial nitric oxide synthase (eNOS expression was examined using immunohistochemistry and Western blotting. Results: Alcohol relaxed the CC in a dose-dependent manner, and the relaxation response was suppressed when pretreated with propranolol, indomethacin, glibenclamide, and 4-aminopyridine. In rats with acute alcohol exposure, the cAMP level in the CC was significantly greater than was observed in the control group (p<0.05. In rats with chronic alcohol exposure, however, changes in cAMP and cGMP levels were insignificant, and the CC showed markedly smaller areas of smooth muscle, greater amounts of dense collagen (p<0.05. Immunohistochemical analysis of eNOS showed a less intense response, and western blotting showed that eNOS expression was significantly lower in this group (p<0.05. Conclusions: Acute alcohol administration activated the cAMP pathway with positive effects on erectile function. In contrast, chronic alcohol administration changed the ultrastructures of the CC and suppressed eNOS expression, thereby leading to erectile dysfunction.

  12. Radiorestoring activity of few nucleotides on normal tissues of Jerusalem Artichoke after an irradiation with γ rays of 60Co

    International Nuclear Information System (INIS)

    Jonard, Robert; Bayonove, Jacqueline; Riedel, Michel.

    1978-01-01

    The nucleotides tested: adenosine triphosphate (ATP) and cyclic adenosine 3',5'-monophosphate (3',5'-cAMP), guanosine triphosphate (GTP) and cyclic guanosine 3',5'-monophosphate (3',5'-cGMP), are able to restore proliferation to irradiated (γ irradiation, 3,000 rad) Jesusalem Artichoke tissue. The 3',5'-cGMP shows the greater radiorestoring activity [fr

  13. EFFECT OF dbcAMP ON PROLIFERATION AND APOPTOSIS OF PORCINE GRANULOSA CELLS in vitro

    Directory of Open Access Journals (Sweden)

    Richard Alexa

    2013-02-01

    Full Text Available Cyclic nucleotide cAMP and its target protein kinase A (PKA dependent intracellular mechanisms can play an important role in regulation of ovarian cell function and in mediating gonadotropin action on these cells. The aim of the present study was to examine the effect of cAMP analogue, dibutyryl cyclic adenosine monophosphate (dbcAMP (0; 0.1; 1 and 10 µg/ml or FSH (0; 0,01; 1 IU/ml on proliferation and apoptosis of porcine granulosa cells in vitro. Indices of cell apoptosis (expression of apoptotic peptide bax and proliferation (expression of proliferation-associated peptide PCNA within ovarian granulosa cells were analysed by immunocytochemistry. It was observed that accumulation of PCNA was increased by dbcAMP and FSH at all doses added. The occurrence of bax was also stimulated by dbcAMP after exposition (at 0,1 and 1 µg/ml, but not at dose 10 µg/ml and by FSH (at all doses added. The stimulatory effect of both dbcAMP and FSH on both ovarian cell apoptosis and proliferation suggest, that these substances may promote ovarian follicular cell turnover. The similarity of dbcAMP and FSH effect may indicate that FSH can affect ovarian functions via cAMP-dependent intracellular mechanisms. The present data may provide new tools to regulate human and animal reproductive processes via cAMP-dependent mechanisms.

  14. Camp Wanna-Read: Program Guide for the Texas Reading Club 1991.

    Science.gov (United States)

    Switzer, Robin Works

    Camp Wanna-Read is the theme for the 1991 program for the Texas Reading Club, which centers around the experiences and types of things that happen at summer camp. Each chapter is a type of camp a child might attend such as cooking camp, art camp, music camp, science camp, Indian camp, nature camp, and regular summer camp. The chapters are divided…

  15. Identification of Toxoplasma gondii cAMP dependent protein kinase and its role in the tachyzoite growth.

    Directory of Open Access Journals (Sweden)

    Hitomi Kurokawa

    Full Text Available cAMP-dependent protein kinase (PKA has been implicated in the asexual stage of the Toxoplasma gondii life cycle through assaying the effect of a PKA-specific inhibitor on its growth rate. Since inhibition of the host cell PKA cannot be ruled out, a more precise evaluation of the role of PKA, as well as characterization of the kinase itself, is necessary.The inhibitory effects of two PKA inhibitors, H89, an ATP-competitive chemical inhibitor, and PKI, a substrate-competitive mammalian natural peptide inhibitor, were estimated. In the in vitro kinase assay, the inhibitory effect of PKI on a recombinant T. gondii PKA catalytic subunit (TgPKA-C was weaker compared to that on mammalian PKA-C. In a tachyzoite growth assay, PKI had little effect on the growth of tachyzoites, whereas H89 strongly inhibited it. Moreover, T. gondii PKA regulatory subunit (TgPKA-R-overexpressing tachyzoites showed a significant growth defect.Our data suggest that PKA plays an important role in the growth of tachyzoites, and the inhibitory effect of substrate-competitive inhibitor PKI on T. gondii PKA was low compared to that of the ATP competitive inhibitor H89.

  16. Novel guanidine-based inhibitors of inosine monophosphate dehydrogenase.

    Science.gov (United States)

    Iwanowicz, Edwin J; Watterson, Scott H; Liu, Chunjian; Gu, Henry H; Mitt, Toomas; Leftheris, Katerina; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L

    2002-10-21

    A series of novel guanidine-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.

  17. Electromagnetic Field Devices and Their Effects on Nociception and Peripheral Inflammatory Pain Mechanisms.

    Science.gov (United States)

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-03-01

    Context • During cell-communication processes, endogenous and exogenous signaling affects normal and pathological developmental conditions. Exogenous influences, such as extra-low-frequency (ELF) electromagnetic fields (EMFs) have been shown to affect pain and inflammation by modulating G-protein coupling receptors (GPCRs), downregulating cyclooxygenase-2 (Cox-2) activity, and downregulating inflammatory modulators, such as tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) as well as the transcription factor nuclear factor kappa B (NF-κB). EMF devices could help clinicians who seek an alternative or complementary treatment for relief of patients chronic pain and disability. Objective • The research team intended to review the literature on the effects of EMFs on inflammatory pain mechanisms. Design • We used a literature search of articles published in PubMed using the following key words: low-frequency electromagnetic field therapy, inflammatory pain markers, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), opioid receptors, G-protein coupling receptors, and enzymes. Setting • The study took place at the Wake Forest School of Medicine in Winston-Salem, NC, USA. Results • The mechanistic pathway most often considered for the biological effects of EMF is the plasma membrane, across which the EMF signal induces a voltage change. Oscillating EMF exerts forces on free ions that are present on both sides of the plasma membrane and that move across the cell surface through transmembrane proteins. The ions create a forced intracellular vibration that is responsible for phenomena such as the influx of extracellular calcium (Ca2+) and the binding affinity of calmodulin (CaM), which is the primary transduction pathway to the secondary messengers, cAMP and cGMP, which have been found to influence inflammatory pain. Conclusions • An emerging body of evidence indicates the existence of a frequency-dependent

  18. Total glucosides of paeony inhibit the proliferation of fibroblast-like synoviocytes through the regulation of G proteins in rats with collagen-induced arthritis.

    Science.gov (United States)

    Jia, Xiao-Yi; Chang, Yan; Sun, Xiao-Jing; Wu, Hua-Xun; Wang, Chun; Xu, Hong-Mei; Zhang, Lei; Zhang, Ling-Ling; Zheng, Yong-Qiu; Song, Li-Hua; Wei, Wei

    2014-01-01

    The aim of this study was to investigate the expression of G proteins in fibroblast-like synoviocytes (FLSs) from rats with collagen-induced arthritis (CIA) and to determine the effect of total glucosides of paeony (TGP). CIA rats were induced with chicken type II collagen (CCII) in Freund's complete adjuvant. The rats with experimental arthritis were randomly separated into five groups and then treated with TGP (25, 50, and 100mg/kg) from days 14 to 35 after immunization. The secondary inflammatory reactions were evaluated through the polyarthritis index and histopathological changes. The level of cyclic adenosine monophosphate (cAMP) was measured by radioimmunoassay. The FLS proliferation response was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The toxin-catalyzed ADP-ribosylation of G proteins was performed through autoradiography. The results show that TGP (25, 50, and 100mg/kg) significantly decreased the arthritis scores of CIA rats and improved the histopathological changes. TGP inhibited the proliferation of FLSs and increased the level of cAMP. Moreover, the FLS proliferation and the level of Gαi expression were significantly increased, but the level of Gαs expression was decreased after stimulation with IL-1β (10ng/ml) in vitro. TGP (12.5 and 62.5μg/ml) significantly inhibited the FLS proliferation and regulated the balance between Gαi and Gαs. These results demonstrate that TGP may exert its anti-inflammatory effects through the suppression of FLS proliferation, which may be associated with its ability to regulate the balance of G proteins. Thus, TGP may have potential as a therapeutic agent for the treatment of rheumatoid arthritis. © 2013.

  19. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Ravikrishna Ramanujam

    2010-05-01

    Full Text Available Cyclic AMP-dependent pathways mediate the communication between external stimuli and the intracellular signaling machinery, thereby influencing important aspects of cellular growth, morphogenesis and differentiation. Crucial to proper function and robustness of these signaling cascades is the strict regulation and maintenance of intracellular levels of cAMP through a fine balance between biosynthesis (by adenylate cyclases and hydrolysis (by cAMP phosphodiesterases. We functionally characterized gene-deletion mutants of a high-affinity (PdeH and a low-affinity (PdeL cAMP phosphodiesterase in order to gain insights into the spatial and temporal regulation of cAMP signaling in the rice-blast fungus Magnaporthe oryzae. In contrast to the expendable PdeL function, the PdeH activity was found to be a key regulator of asexual and pathogenic development in M. oryzae. Loss of PdeH led to increased accumulation of intracellular cAMP during vegetative and infectious growth. Furthermore, the pdeHDelta showed enhanced conidiation (2-3 fold, precocious appressorial development, loss of surface dependency during pathogenesis, and highly reduced in planta growth and host colonization. A pdeHDelta pdeLDelta mutant showed reduced conidiation, exhibited dramatically increased (approximately 10 fold cAMP levels relative to the wild type, and was completely defective in virulence. Exogenous addition of 8-Br-cAMP to the wild type simulated the pdeHDelta defects in conidiation as well as in planta growth and development. While a fully functional GFP-PdeH was cytosolic but associated dynamically with the plasma membrane and vesicular compartments, the GFP-PdeL localized predominantly to the nucleus. Based on data from cAMP measurements and Real-Time RTPCR, we uncover a PdeH-dependent biphasic regulation of cAMP levels during early and late stages of appressorial development in M. oryzae. We propose that PdeH-mediated sustenance and dynamic regulation of cAMP signaling

  20. CDC Disease Detective Camp

    Centers for Disease Control (CDC) Podcasts

    2010-08-02

    The CDC Disease Detective Camp gives rising high school juniors and seniors exposure to key aspects of the CDC, including basic epidemiology, infectious and chronic disease tracking, public health law, and outbreak investigations. The camp also helps students explore careers in public health.  Created: 8/2/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/2/2010.

  1. Components of Camp Experiences for Positive Youth Development

    Directory of Open Access Journals (Sweden)

    Karla A. Henderson

    2007-03-01

    Full Text Available Youth development specialists advocate that well designed, implemented, and staffed youth centered programs result in positive outcomes for young people. Youth organizations have provided opportunities for young people to participate in camping experiences for over a century. The purpose of this paper is to describe what program components were related to camp environments and positive youth development. We describe these program components related to positive youth development based on a large scale national study of ACA (American Camp Association accredited camps that included independent, religiously affiliated, government, and not-for-profit organizations. Based on the responses given by camp directors, contact and leadership from trained staff and the supportive relationships they provided were essential elements of camp. Other aspects leading to positive youth development in camps were program mission and structure along with elements of accountability, assessment of outcomes, and opportunities for skill building.

  2. Opening of a summer camp at CERN

    CERN Multimedia

    Nursery School

    2015-01-01

    The Staff Association has the pleasure to announce the opening of a summer camp in l’EVE et Ecole de l’AP du CERN. With a capacity of 40 children, aged 4 to 6 years, it will be open from July 6 to 30. Registration Summer camp 2015 Registration for the CERN SA Summer camp for children aged 4 to 6 is open 16 to 30 April 2015 More information on the website: http://nurseryschool.web.cern.ch/ The Summer camp is open to all children of CERN Staff. An inscription per week is proposed, cost 480.-CHF/week, lunch included. The camp will be open weeks 28, 29, 30 and 31, from 8:30 am to 5:30 pm.

  3. Inosine monophosphate dehydrogenase messenger RNA expression is correlated to clinical outcomes in mycophenolate mofetil-treated kidney transplant patients, whereas inosine monophosphate dehydrogenase activity is not

    NARCIS (Netherlands)

    Sombogaard, Ferdi; Peeters, Annemiek M. A.; Baan, Carla C.; Mathot, Ron A. A.; Quaedackers, Monique E.; Vulto, Arnold G.; Weimar, Willem; van Gelder, Teun

    2009-01-01

    Measurement of the pharmacodynamic biomarker inosine monophosphate dehydrogenase (IMPDH) activity in renal transplant recipients has been proposed to reflect the biological effect better than using pharmacokinetic parameters to monitor mycophenolate mofetil therapy. The IMPDH assays are however

  4. Extension Sustainability Camp: Design, Implementation, and Evaluation

    Science.gov (United States)

    Brain, Roslynn; Upton, Sally; Tingey, Brett

    2015-01-01

    Sustainability Camps provide an opportunity for Extension educators to be in the forefront of sustainability outreach and to meet the growing demand for sustainability education. This article shares development, implementation, and evaluation of an Extension Sustainability Camp for youth, grades 4-6. Camp impact was measured via daily pre-and…

  5. Asthma causes inflammation of human pulmonary arteries and decreases vasodilatation induced by prostaglandin I2 analogs.

    Science.gov (United States)

    Foudi, Nabil; Badi, Aouatef; Amrane, Mounira; Hodroj, Wassim

    2017-12-01

    Asthma is a chronic inflammatory disease associated with increased cardiovascular events. This study assesses the presence of inflammation and the vascular reactivity of pulmonary arteries in patients with acute asthma. Rings of human pulmonary arteries obtained from non-asthmatic and asthmatic patients were set up in organ bath for vascular tone monitoring. Reactivity was induced by vasoconstrictor and vasodilator agents. Protein expression of inflammatory markers was detected by western blot. Prostanoid releases and cyclic adenosine monophosphate (cAMP) levels were quantified using specific enzymatic kits. Protein expression of cluster of differentiation 68, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and cyclooxygenase-2 was significantly increased in arteries obtained from asthmatic patients. These effects were accompanied by an alteration of vasodilatation induced by iloprost and treprostinil, a decrease in cAMP levels and an increase in prostaglandin (PG) E 2 and PGI 2 synthesis. The use of forskolin (50 µmol/L) has restored the vasodilatation and cAMP release. No difference was observed between the two groups in reactivity induced by norepinephrine, angiotensin II, PGE 2 , KCl, sodium nitroprusside, and acetylcholine. Acute asthma causes inflammation of pulmonary arteries and decreases vasodilation induced by PGI 2 analogs through the impairment of cAMP pathway.

  6. Induction of increased cAMP levels in articular chondrocytes blocks matrix metalloproteinase-mediated cartilage degradation, but not aggrecanase-mediated cartilage degradation

    DEFF Research Database (Denmark)

    Karsdal, Morten Asser; Sumer, Eren Ufuk; Wulf, Helle

    2007-01-01

    OBJECTIVE: Calcitonin has been suggested to have chondroprotective effects. One signaling pathway of calcitonin is via the second messenger cAMP. We undertook this study to investigate whether increased cAMP levels in chondrocytes would be chondroprotective. METHODS: Cartilage degradation......-dependently inhibited by forskolin and IBMX. The highest concentration of IBMX lowered cytokine-induced release of sGAG by 72%. CONCLUSION: Levels of cAMP in chondrocytes play a key role in controlling catabolic activity. Increased cAMP levels in chondrocytes inhibited MMP expression and activity and consequently...... strongly inhibited cartilage degradation. Specific cAMP modulators in chondrocytes may be potential treatments for cartilage degenerative diseases....

  7. Heterologous desensitization of adenylate cyclase from pigeon erythrocytes under the action of the catalytic subunit of cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Popov, K.M.; Bulargina, T.V.; Severin, E.S.

    1985-01-01

    Preincubation of the plasma membranes from pigeon erythrocytes with the catalytic subunit of cAMP-dependent protein kinase leads to desensitization of adenylate cyclase of the erythrocytes. The adenylate cyclase activity, measured in the presence of 10 μM isoproterenol and 50 μM GTP-γ-S, is decreased by 40% in 10 min of incubation, while the activity in the presence of 50 μM GTP-γ-S is decreased by 35% in 20 min. The decrease in the adenylate cyclase activity is due to an increase in the lag phase of activation of the enzyme in the presence of a GTP analog stable to hydrolysis and a decrease in the activity in the steady-state phase of activation. Heterologous desensitization of adenylate cyclase under the action of cAMP-dependent protein kinase is coupled with a decrease in the number of β-adrenoreceptors capable of passing into a state of high affinity for antagonists in the absence of guanylic nucleotides. The influence of the catalytic subunit on adenylate cyclase entirely models the process of desensitization of the enzyme absorbed in the influence of isoproterenol or cAMP on erythrocytes

  8. Influence of cAMP on reporter bioassays for dioxin and dioxin-like compounds

    International Nuclear Information System (INIS)

    Kasai, Ayumi; Yao, Jian; Yamauchi, Kozue; Hiramatsu, Nobuhiko; Hayakawa, Kunihiro; Meng, Yiman; Maeda, Shuichiro; Kitamura, Masanori

    2006-01-01

    In reporter assays for detection of dioxins, the dioxin-responsive element (DRE) is generally used as a sensor sequence. In several systems, the CYP1A1 promoter containing DREs (DRE cyp ) is inserted into a part of the long terminal repeat of mouse mammary tumor virus (LTR MMTV ) to improve sensitivity of assays. We found that DRE cyp -LTR MMTV responds not only to dioxins and dioxin-like compounds but also to forskolin, a cAMP-elevating agent. This effect was dose-dependent and reproduced by other cAMP-elevating agents including 8-bromo-cAMP and 3-isobutyl-methylxanthine. The cAMP response element (CRE) and CRE-like sequences were absent in DRE cyp -LTR MMTV and not involved in this process. In contrast to the effect of dioxin, the activation of DRE cyp -LTR MMTV by cAMP was independent of the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor for DRE. Furthermore, neither DRE cyp , LTR MMTV nor the consensus sequence of DRE alone was activated in response to cAMP. These data elucidated for the first time that the combination of DRE cyp with LTR MMTV causes a peculiar response to cAMP and suggested that use of AhR antagonists is essential to exclude false-positive responses of DRE cyp -LTR MMTV -based bioassays for detection and quantification of dioxins and dioxin-like compounds

  9. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    Science.gov (United States)

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  10. Creating a Sun-Safe Camp.

    Science.gov (United States)

    Landrey, Ann

    1996-01-01

    Strategies for minimizing sun exposure of campers and staff include educating campers about the sun's effect on their skin, scheduling activities when the sun is less intense, creating shade at the camp site, incorporating sun protection into camp dress code, and training staff regarding sun protection. Addresses OSHA and liability issues. (LP)

  11. Ladders to Leadership: What Camp Counselor Positions Do for Youth

    Directory of Open Access Journals (Sweden)

    Darcy Tessman

    2012-09-01

    Full Text Available The 4-H youth development organization understands and has recognized residential camping as one of the major modes of program delivery. Primary benefactors of the residential camping program are those youth who serve as camp counselors. Not only are they recipients of the educational program, but also supervise and teach younger campers (Garst & Johnson, 2005; McNeely, 2004. As a result of their experience, camp counselors learn about and develop leadership and life skills (Thomas, 1996; Purcell, 1996. The residential camping experience allows youth to serve as volunteers through their role as camp counselors. In addition to the benefits earned from their volunteer role, residential camping provides youth camp counselors the opportunity to gain leadership skills (Arnold, 2003 as well as add to the camp structure, planning, and implementation (Hines & Riley, 2005.

  12. Adenosine Monophosphate Binding Stabilizes the KTN Domain of the Shewanella denitrificans Kef Potassium Efflux System.

    Science.gov (United States)

    Pliotas, Christos; Grayer, Samuel C; Ekkerman, Silvia; Chan, Anthony K N; Healy, Jess; Marius, Phedra; Bartlett, Wendy; Khan, Amjad; Cortopassi, Wilian A; Chandler, Shane A; Rasmussen, Tim; Benesch, Justin L P; Paton, Robert S; Claridge, Timothy D W; Miller, Samantha; Booth, Ian R; Naismith, James H; Conway, Stuart J

    2017-08-15

    Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.

  13. Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca²⁺ signals at key decision points in the life cycle of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Mathieu Brochet

    2014-03-01

    Full Text Available Many critical events in the Plasmodium life cycle rely on the controlled release of Ca²⁺ from intracellular stores to activate stage-specific Ca²⁺-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca²⁺ required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca²⁺ signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca²⁺ effectors, PKG emerges as a unifying factor to control multiple cellular Ca²⁺ signals essential for malaria parasite development and transmission.

  14. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    Science.gov (United States)

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  15. IL-4 induces cAMP and cGMP in human monocytic cells

    Directory of Open Access Journals (Sweden)

    B. Dugas

    1995-01-01

    Full Text Available Human monocytes, preincubated with IFN-γ respond to IL-4 by a cGMP increase through activation of an inducible NO synthase. Here, IL-4 was found to induce an accumulation of cGMP (1 – 3 min and cAMP (20 – 25 min in unstimulated monocytes. This was impaired with NOS inhibitors, but also with EGTA and calcium/calmodulin inhibitors. These results suggest that: (1 IL-4 may stimulate different NOS isoforms in resting and IFN-γ activated monocytes, and (2 cAMP accumulation may be partially dependent on the NO pathway. By RT-PCR, a type III constitutive NOS mRNA was detected in U937 monocytic cells. IL-4 also increased the [Ca2+]i in these cells. Different NOS may thus be expressed in monocytic cells depending on their differentiation and the signals they receive.

  16. [Accumulation of cyclic adenosine monophosphate in the ovary of the eel (Anguilla anguilla L.) in vitro under the effect of carp gonadotropin or ovine lutropin: kinetics and thermodependence].

    Science.gov (United States)

    Salmon, C; Marchelidon, J; Fontaine-Bertrand, E; Fontaine, Y A

    1986-01-01

    Cyclic AMP (cAMP) in pieces of eel ovary was greatly increased in vitro by the gonadotropin (cGTH) of carp, another teleost fish; after one hour at 20 degrees C, maximal stimulation = 31.7 and E.D. 50 = 0.08 micrograms/ml. Ovine lutropin (oLH) had less effect (maximal stimulation: 2.35; E.D. 50: 1.42 micrograms/ml); its action suggested that it involved a subfraction (oLH/cGTH RAc) of the receptor-adenylate cyclase (RAc) systems which mediate the action of cGTH. Another difference was the percentage of total cAMP accumulated under hormonal stimulation and released into the incubation medium; this percentage was much higher with oLH than with cGTH (47 vs 8% after one hour at 20 degrees C). This result might be explained by a localization of oLH/cGTH RAc in cells (theca ?) situated on the outside of the follicles and/or by a relative lack of cAMP binding proteins in the case of cAMP produced by oLH/cGTH RAc. Kinetic and thermodependence studies also disclosed hormone-dependent differences; at 5 degrees C, cAMP concentration was maximal after 40 min with oLH, whereas it was still increasing after 3 h with cGTH. Differences in the properties of phosphodiesterases and/or in the clearance rate of hormone-receptor (HR) complexes could explain these results. The set of RAc systems in eel ovary recognizing fish gonadotropin would then be heterogeneous; some of them would be endowed with original properties concerning receptor specificity and cAMP diffusion as well as associated phosphodiesterase activity and/or HR metabolism. We suggest that at a stage of evolution when a single sensu stricto GTH is present (instead of two in tetrapods), "isoreceptors", differing in specificity and in their fate after hormone binding, could be an important element in the fine regulation of gonadal functions.

  17. Rethinking the lessons from Za’atari refugee camp

    Directory of Open Access Journals (Sweden)

    Melissa N Gatter

    2018-02-01

    Full Text Available Humanitarian efforts to build a model refugee camp when constructing Azraq camp in Jordan – drawing on what was supposed to have been learned in Za’atari camp – missed crucial aspects of Za’atari’s governance.

  18. Parathyroid Hormone Activates Phospholipase C (PLC)-Independent Protein Kinase C Signaling Pathway via Protein Kinase A (PKA)-Dependent Mechanism: A New Defined Signaling Route Would Induce Alternative Consideration to Previous Conceptions.

    Science.gov (United States)

    Tong, Guojun; Meng, Yue; Hao, Song; Hu, Shaoyu; He, Youhua; Yan, Wenjuan; Yang, Dehong

    2017-04-20

    BACKGROUND Parathyroid hormone (PTH) is an effective anti-osteoporosis agent, after binding to its receptor PTHR1, several signaling pathways, including cAMP/protein kinase A (PKA) and phospholipase C (PLC)/protein kinase C (PKC), are initiated through G proteins; with the cAMP/PKA pathway as the major pathway. Earlier studies have reported that PTHR1 might also activate PKC via a PLC-independent mechanism, but this pathway remains unclear. MATERIAL AND METHODS In HEK293 cells, cAMP accumulation was measured with ELISA and PKC was measured with fluorescence resonance energy transfer (FRET) analysis using CKAR plasmid. In MC3T3-E1 cells, real-time PCR was performed to examine gene expressions. Then assays for cell apoptosis, cell differentiation, alkaline phosphatase activity, and mineralization were performed. RESULTS The FRET analysis found that PTH(1-34), [G1,R19]PTH(1-34) (GR(1-34), and [G1,R19]PTH(1-28) (GR(1-28) were all activated by PKC. The PKC activation ability of GR(1-28) was blocked by cAMP inhibitor (Rp-cAMP) and rescued with the addition of active PKA-α and PKA-β. The PKC activation ability of GR(1-34) was partially inhibited by Rp-cAMP. In MC3T3-E1 cells, gene expressions of ALP, CITED1, NR4a2, and OSX that was regulated by GR(1-28) were significantly changed by the pan-PKC inhibitor Go6983. After pretreatment with Rp-cAMP, the gene expressions of ALP, CITED1, and OPG were differentially regulated by GR(1-28) or GR(1-34), and the difference was blunted by Go6983. PTH(1-34), GR(1-28), and GR(1-34) significantly decreased early apoptosis and augmented osteoblastic differentiation in accordance with the activities of PKA and PKC. CONCLUSIONS PLC-independent PKC activation induced by PTH could be divided into two potential mechanisms: one was PKA-dependent and associated with PTH(1-28); the other was PKA-independent and associated with PTH(29-34). We also found that PTH could activate PLC-independent PKC via PKA-dependent mechanisms.

  19. The Popeye domain containing genes: essential elements in heart rate control.

    Science.gov (United States)

    Schindler, Roland F; Poon, Kar Lai; Simrick, Subreena; Brand, Thomas

    2012-12-01

    The Popeye domain containing (Popdc) gene family displays preferential expression in skeletal muscle and heart. Only recently a significant gain in the understanding of the function of Popdc genes in the heart has been obtained. The Popdc genes encode membrane proteins harboring an evolutionary conserved Popeye domain, which functions as a binding domain for cyclic adenosine monophosphate (cAMP). Popdc proteins interact with the two-pore channel TREK-1 and enhance its current. This protein interaction is modulated by cAMP. Null mutations of members of the Popdc gene family in zebrafish and mouse are associated with severe cardiac arrhythmia phenotypes. While in zebrafish an atrioventricular block was prevalent, in mouse a stress-induced sinus bradycardia was observed, which was due to the presence of sinus pauses. Moreover, the phenotype develops in an age-dependent manner, being absent in the young animal and becoming increasingly severe, as the animals grow older. This phenotype is reminiscent of the sick sinus syndrome (SSS), which affects mostly the elderly and is characterized by the poor ability of the cardiac pacemaker to adapt the heart rate to the physiological demand. While being a prevalent disease, which is responsible for a large fraction of pacemaker implantations in Western countries, SSS is poorly understood at the molecular level. It is therefore expected that the study of the molecular basis of the stress-induced bradycardia in Popdc mice will shed new light on the etiology of pacemaker disease.

  20. cAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells.

    Science.gov (United States)

    Inda, Carolina; Bonfiglio, Juan José; Dos Santos Claro, Paula A; Senin, Sergio A; Armando, Natalia G; Deussing, Jan M; Silberstein, Susana

    2017-05-16

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). Both cAMP sources were shown to be required for the phosphorylation of ERK1/2 triggered by activated G protein coupled receptor (GPCR) CRHR1 in neuronal and neuroendocrine contexts. Here, we show that activated CRHR1 promotes growth arrest and neurite elongation in neuronal hippocampal cells (HT22-CRHR1 cells). By characterising CRHR1 signalling mechanisms involved in the neuritogenic effect, we demonstrate that neurite outgrowth in HT22-CRHR1 cells takes place by a sAC-dependent, ERK1/2-independent signalling cascade. Both tmACs and sAC are involved in corticotropin-releasing hormone (CRH)-mediated CREB phosphorylation and c-fos induction, but only sAC-generated cAMP pools are critical for the neuritogenic effect of CRH, further highlighting the engagement of two sources of cAMP downstream of the activation of a GPCR, and reinforcing the notion that restricted cAMP microdomains may regulate independent cellular processes.

  1. Direct Determination of Six Cytokinin Nucleotide Monophosphates in Coconut Flesh by Reversed-Phase Liquid Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Cao, Zhao-Yun; Ma, You-Ning; Sun, Li-Hua; Mou, Ren-Xiang; Zhu, Zhi-Wei; Chen, Ming-Xue

    2017-11-15

    Coconut contains many uncharacterized cytokinins that have important physiological effects in plants and humans. In this work, a method based on liquid chromatography-tandem mass spectrometry was developed for identification and quantification of six cytokinin nucleotide monophosphates in coconut flesh. Excellent separation was achieved using a low-coverage C18 bonded-phase column with an acidic mobile phase, which greatly improved the retention of target compounds. To enable high-throughput analysis, a single-step solid-phase extraction using mixed-mode anion-exchange cartridges was employed for sample preparation. This proved to be an effective method to minimize matrix effects and ensure high selectivity. The limits of detection varied from 0.06 to 0.3 ng/mL, and the limits of quantification ranged from 0.2 to 1.0 ng/mL. The linearity was statistically verified over 2 orders of magnitude, giving a coefficient of determination (R 2 ) greater than 0.9981. The mean recoveries were from 81 to 108%; the intraday precision (n = 6) was less than 11%; and the interday precision (n = 11) was within 14%. The developed method was applied to the determination of cytokinin nucleotide monophosphates in coconut flesh samples, and four of them were successfully identified and quantified. The results showed that trans-zeatin riboside-5'-monophosphate was the dominant cytokinin, with a concentration of 2.7-34.2 ng/g, followed by N 6 -isopentenyladenosine-5'-monophosphate (≤12.9 ng/g), while the concentrations of cis-zeatin riboside-5'-monophosphate and dihydrozeatin riboside-5'-monophosphate were less than 2.2 and 4.9 ng/g, respectively.

  2. Synthesis and degradation of cyclic nucleotides in brain after a high dose of ionizing radiation

    International Nuclear Information System (INIS)

    Hunt, W.A.; Dalton, T.K.

    1981-01-01

    Previous data from our laboratory have indicated that a high dose of ionizing radiation can deplete the cyclic nucleotides guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP) on several areas of the rat brain. cGMP is more sensitive to radiation than cAMP and does not recover for at least 24 h after irradiation. The response of cAMP is transient and recovery occurs within 4 h. The purpose of the present paper is to determine whether alternations in the activity of the synthetic and degradative enzymes that regulate cyclic nucleotide levels could account for the observed effects. Guanylate and adenylate cyclase and cGMP and cAMP phosphodiesterase activities were determined 10 min after irradiation with 10,000 rad of high-energy electrons. No alteration was detected under these experimental conditions. The data suggest that the reduction in cyclic nucleotides is not a direct effect on their metabolic enzymes and is probably secondary to some as yet-undefined action of radiation on the brain

  3. IDENTIFYING DEMENTIA IN ELDERLY POPULATION : A CAMP APPROACH

    Directory of Open Access Journals (Sweden)

    Anand P

    2015-06-01

    Full Text Available BACKGROUND: Dementia is an emerging medico social problem affecting elderly, and poses a challenge to clinician and caregivers. It is usually identified in late stage where management becomes difficult. AIM: The aim of camp was to identify dementia in elderly population participating in screening camp. MATERIAL AND METHODS : The geriatric clinic and department of psychiatry jointly organised screening camp to detect dementia in elderly for five days in September 2014 to commemorate world Alzheimer’s day. The invitation regarding camp was sent to all senio r citizen forums and also published in leading Kannada daily newspaper. Mini Mental Status Examination and Diagnostic and Statistical Manual of Mental Disorders, 4 th edition criteria (DSM IV was used to identify dementia. RESULTS: Elderly male participate d in camp in more number than females and dementia was identified in 36% elderly with education less than 9 th standard. Dementia was found in 18% in our study population. CONCLUSION: The camp help identify elderly suffering from dementia and also created a wareness about it. Hypertension and diabetes mellitus were common co morbidity in study population. Our study suggested organising screening camp will help identify elderly living with dementia.

  4. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides

    Science.gov (United States)

    The cyclic AMP (cAMP)-PKA pathway is a central signaling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signaling in fungal biology has been well documented. Two key conserved components, adenylate cyclase (AC) and ca...

  5. Design and Development Issues for Educational Robotics Training Camps

    Science.gov (United States)

    Ucgul, Memet; Cagiltay, Kursat

    2014-01-01

    The aim of this study is to explore critical design issues for educational robotics training camps and to describe how these factors should be implemented in the development of such camps. For this purpose, two robotics training camps were organized for elementary school students. The first camp had 30 children attendees, and the second had 22. As…

  6. Cell membrane disruption stimulates cAMP and Ca2+ signaling to potentiate cell membrane resealing in neighboring cells

    Directory of Open Access Journals (Sweden)

    Tatsuru Togo

    2017-12-01

    Full Text Available Disruption of cellular plasma membranes is a common event in many animal tissues, and the membranes are usually rapidly resealed. Moreover, repeated membrane disruptions within a single cell reseal faster than the initial wound in a protein kinase A (PKA- and protein kinase C (PKC-dependent manner. In addition to wounded cells, recent studies have demonstrated that wounding of Madin-Darby canine kidney (MDCK cells potentiates membrane resealing in neighboring cells in the short-term by purinergic signaling, and in the long-term by nitric oxide/protein kinase G signaling. In the present study, real-time imaging showed that cell membrane disruption stimulated cAMP synthesis and Ca2+ mobilization from intracellular stores by purinergic signaling in neighboring MDCK cells. Furthermore, inhibition of PKA and PKC suppressed the ATP-mediated short-term potentiation of membrane resealing in neighboring cells. These results suggest that cell membrane disruption stimulates PKA and PKC via purinergic signaling to potentiate cell membrane resealing in neighboring MDCK cells.

  7. Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets.

    Directory of Open Access Journals (Sweden)

    Makoto Mizunami

    Full Text Available Ca(2+/calmodulin (CaM-dependent protein kinase II (CaMKII is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca(2+/CaM and cAMP signaling participates in long-term memory (LTM formation in olfactory conditioning in crickets, and here we show participation of CaMKII in LTM formation and propose its site of action in the biochemical cascades. Crickets subjected to 3-trial conditioning to associate an odor with reward exhibited memory that lasts for a few days, which is characterized as protein synthesis-dependent LTM. In contrast, animals subjected to 1-trial conditioning exhibited memory that lasts for only several hours (mid-term memory, MTM. Injection of a CaMKII inhibitor prior to 3-trial conditioning impaired 1-day memory retention but not 1-hour memory retention, suggesting that CaMKII participates in LTM formation but not in MTM formation. Animals injected with a cGMP analogue, calcium ionophore or cAMP analogue prior to 1-trial conditioning exhibited 1-day retention, and co-injection of a CaMKII inhibitor impaired induction of LTM by the cGMP analogue or that by the calcium ionophore but not that by the cAMP analogue, suggesting that CaMKII is downstream of cGMP production and Ca(2+ influx and upstream of cAMP production in biochemical cascades for LTM formation. Animals injected with an adenylyl cyclase (AC activator prior to 1-trial conditioning exhibited 1-day retention. Interestingly, a CaMKII inhibitor impaired LTM induction by the AC activator, although AC is expected to be a downstream target of CaMKII. The results suggest that CaMKII interacts with AC to facilitate cAMP production for LTM formation. We propose that CaMKII serves as a key molecule for interplay between Ca(2+ signaling and cAMP signaling for LTM formation, a new role of Ca

  8. Summer camps for children with burn injuries: a literature review.

    Science.gov (United States)

    Maslow, Gary R; Lobato, Debra

    2010-01-01

    The first summer camps for children with burn injuries started over 25 years ago, and as of 2008, there were 60 camps worldwide. This review examines the literature on summer pediatric burn camps. The authors describe common characteristics of burn camp structure, activities, and staffing and then examine the scientific evidence regarding the effect of burn camp programs on campers and camp staff volunteers. A search of Pubmed and Psychinfo databases from 1970 to 2008 for articles related to pediatric burn summer camps identified 17 articles, of which 13 fit the inclusion criteria. Existing literature consists primarily of qualitative studies, suggesting that burn camp can decrease camper isolation, improve self-esteem, and promote coping and social skills. Studies examining volunteer staff at burn camp have consistently found that there are both personal and professional benefits. Quantitative studies of self-esteem have yielded equivocal results. No studies have examined safety or the effect of burn camp on medical or rehabilitation outcomes. For the past 25 years, pediatric summer camps for children with burn injuries have played an important rehabilitation role and provided a strong community that benefits both campers and staff. Future research using more rigorous research methods and examining a broader range of outcomes (eg, safety and medical/rehabilitation outcomes) is recommended.

  9. Structural Characterization of the Molecular Events during a Slow Substrate-Product Transition in Orotidine 5'-Monophosphate Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P; Pai, Emil F; (TGRI); (Toronto); (Kyoto)

    2009-04-06

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6 of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.

  10. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases

    DEFF Research Database (Denmark)

    Issinger, O G; Beier, H; Speichermann, N

    1980-01-01

    Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were...... by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins...... from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates...

  11. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  12. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  13. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma.

    Science.gov (United States)

    Schuller, Hildegard M; Al-Wadei, Hussein A N; Majidi, Mourad

    2008-10-01

    Pulmonary adenocarcinoma (PAC) is the leading type of lung cancer in smokers and non-smokers that arises in most cases from small airway epithelial cells. PAC has a high mortality due to its aggressive behavior and resistance to cancer therapeutics. We have shown previously that the proliferation of human PAC cells NCI-H322 and immortalized human small airway epithelial cells HPL1D is stimulated by cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent phosphorylation of cyclic adenosine monophosphate response element-binding (CREB) protein and transactivation of the epidermal growth factor receptor and that this pathway is activated by beta-1-adrenoreceptors (beta(1)-ARs) and the non-genomic estrogen receptor beta. Our current in vitro studies with HPL1D and NCI-H322 cells showed that signaling via the gamma-amino butyric acid receptor (GABA(B)R) strongly inhibited base level and isoproterenol-induced cAMP, p-CREB, cyclic adenosine monophosphate response element-luciferase activity and p-extracellular regulated kinase-1 (ERK1)/2 and effectively blocked DNA synthesis and cell migration. The inhibitory effects of gamma-amino butyric acid (GABA) were disinhibited by the GABA(B)R antagonist CGP-35348 or GABA(B)R knockdown. Immunohistochemical investigation of hamster lungs showed significant underexpression of GABA in animals with small airway-derived PACs induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These findings suggest that GABA may have tumor suppressor function in small airway epithelia and the PACs derived from them and that downregulation of GABA by NNK may contribute to the development of this cancer in smokers. Our findings suggest that marker-guided treatment with GABA or a GABA(B)R agonist of individuals with downregulated pulmonary GABA may provide a novel targeted approach for the prevention of PAC in smokers.

  14. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients

    International Nuclear Information System (INIS)

    Diamond, I.; Wrubel, B.; Estrin, W.; Gordon, A.

    1987-01-01

    Alcoholism causes serious neurologic disease that may be due, in part, to the ability of ethanol to interact with neural cell membranes and change neuronal function. Adenosine receptors are membrane-bound proteins that appear to mediate some of the effects of ethanol in the brain. Human lymphocytes also have adenosine receptors, and their activation causes increases in cAMP levels. To test the hypothesis that basal and adenosine receptor-stimulated cAMP levels in lymphocytes might be abnormal in alcoholism, the authors studied lymphocytes from 10 alcoholic subjects, 10 age- and sex-matched normal individuals, and 10 patients with nonalcoholic liver disease. Basal and adenosine receptor-stimulated cAMP levels were reduced 75% in lymphocytes from alcoholic subjects. Also, there was a 76% reduction in ethanol stimulation of cAMP accumulation in lymphocytes from alcoholics. Similar results were demonstrable in isolated T cells. Unlike other laboratory tests examined, these measurements appeared to distinguish alcoholics from normal subjects and from patients with nonalcoholic liver disease. Reduced basal and adenosine receptor-stimulated levels of cAMP in lymphocytes from alcoholics may reflect a change in cell membranes due either to chronic alcohol abuse or to a genetic predisposition unique to alcoholic subjects

  15. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    Science.gov (United States)

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  16. Camping Safety--Bring 'Em Back Alive.

    Science.gov (United States)

    Schmidt, Ernest F.

    1980-01-01

    A "prioritized" list of dangers of the woods is discussed and suggestions for safety in organized camping are listed. Available from: Center for Environmental, Camping and Outdoor Education; University of North Carolina at Greensboro; Pine Lake Field Campus; 4016 Blumenthal Road; Greensboro, NC, 27406. (AN)

  17. Recreation Summer Camps

    Data.gov (United States)

    Montgomery County of Maryland — List of all Camps (Register here:https://apm.activecommunities.com/montgomerycounty/Home) to include Aquatics, Basketball, Soccer, Special Interest, General Sports,...

  18. dependent/calmodulin- stimulated protein kinase from moss

    Indian Academy of Sciences (India)

    Unknown

    stimulated protein kinase; CDPK, calmodulin domain-like protein kinase; KM14, 14 amino acid synthetic peptide; .... used were obtained from Sigma Chemical Company, USA, ..... Plant chimeric Ca2+/Calmodulin-dependent protein kinase.

  19. Running Boot Camp

    CERN Document Server

    Toporek, Chuck

    2008-01-01

    When Steve Jobs jumped on stage at Macworld San Francisco 2006 and announced the new Intel-based Macs, the question wasn't if, but when someone would figure out a hack to get Windows XP running on these new "Mactels." Enter Boot Camp, a new system utility that helps you partition and install Windows XP on your Intel Mac. Boot Camp does all the heavy lifting for you. You won't need to open the Terminal and hack on system files or wave a chicken bone over your iMac to get XP running. This free program makes it easy for anyone to turn their Mac into a dual-boot Windows/OS X machine. Running Bo

  20. Magnolol Alleviates Inflammatory Responses and Lipid Accumulation by AMP-Activated Protein Kinase-Dependent Peroxisome Proliferator-Activated Receptor α Activation

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2018-02-01

    Full Text Available Magnolol (MG is a kind of lignin isolated from Magnolia officinalis, which serves several different biological functions, such as antifungal, anticancer, antioxidant, and hepatoprotective functions. This study aimed to evaluate the protective effect of MG against oleic acid (OA-induced hepatic steatosis and inflammatory damage in HepG2 cells and in a tyloxapol (Ty-induced hyperlipidemia mouse model. Our findings indicated that MG can effectively inhibit OA-stimulated tumor necrosis factor α (TNF-α secretion, reactive oxygen species generation, and triglyceride (TG accumulation. Further study manifested that MG significantly suppressed OA-activated mitogen-activated protein kinase (MAPK and nuclear factor-kappa B (NF-κB signaling pathways and that these inflammatory responses can be negated by pretreatment with inhibitors of extracellular regulated protein kinase and c-Jun N-terminal kinase (U0126 and SP600125, respectively. In addition, MG dramatically upregulated peroxisome proliferator-activated receptor α (PPARα translocation and reduced sterol regulatory element-binding protein 1c (SREBP-1c protein synthesis and excretion, both of which are dependent upon the phosphorylation of adenosine monophosphate (AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase, and AKT kinase (AKT. However, MG suspended the activation of PPARα expression and was thus blocked by pretreatment with LY294002 and compound c (specific inhibitors of AKT and AMPK. Furthermore, MG clearly alleviated serum TG and total cholesterol release; upregulated AKT, AMPK, and PPARα expression; suppressed SREBP-1c generation; and alleviated hepatic steatosis and dyslipidemia in Ty-induced hyperlipidemia mice. Taken together, these results suggest that MG exerts protective effects against steatosis, hyperlipidemia, and the underlying mechanism, which may be closely associated with AKT/AMPK/PPARα activation and MAPK/NF-κB/SREBP-1c inhibition.

  1. Is ROEE Good for Your Camp?

    Science.gov (United States)

    Parry, Jim

    1998-01-01

    Resident outdoor environmental education (ROEE) is a camp-based extension of the classroom for two to five days, promoting student independence, interpersonal skills, and ecological awareness. Advantages and disadvantages of the "camp as innkeeper" and full program-provider models are given. Program development guidelines cover expenses,…

  2. Charge-density-wave instabilities expected in monophosphate tungsten bronzes

    International Nuclear Information System (INIS)

    Canadell, E.; Whangbo, M.

    1991-01-01

    On the basis of tight-binding band calculations, we examined the electronic structures of the tungsten oxide layers found in the monophosphate tungsten bronze (MPTB) phases. The Fermi surfaces of these MPTB phases consist of five well-nested one- and two-dimensional pieces. We calculated the nesting vectors of these Fermi surfaces and discussed the expected charge-density-wave instabilities

  3. Adrenomedullin stimulates cyclic AMP production in the airway epithelial cells of guinea-pigs and in the human epithelial cell line

    Directory of Open Access Journals (Sweden)

    Takashi Kawaguchi

    1999-01-01

    Full Text Available This study was designed to examine the effects of adrenomedullin (AM on airway epithelial cells. Primary cultures of guinea-pig tracheal epithelial cells and the human bronchiolar epithelial cell line NCI-H441 were used. Intracellular cyclic adenosine monophosphate (cAMP, cyclic guanosine monophosphate (cGMP, prostaglandin E2 (PGE2, and stable end-products of nitric oxide were assayed. Adrenomedullin (10−6 mol/L stimulated cAMP production in guinea-pig epithelial cells. Indomethacin (10−5 mol/L significantly decreased the basal level of intracellular cAMP in guinea-pig epithelial cells, but not in NCI-H441 cells. However, AM did not stimulate production of PGE2, a major product that can increase cAMP formation. In the case of NCI-H441 cells, AM (10−8 – 10−6 mol/L did not significantly affect intracellular cGMP levels or nitrite content in conditioned medium. Adrenomedullin and calcitonin gene-related peptide (CGRP each stimulated cAMP production in NCI-H441 cells, but AM-stimulated cAMP production was antagonized by the CGRP fragment CGRP8–37. These findings suggest that AM stimulates cAMP production and functionally competes with CGRP for binding sites in airway epithelial cells, at least in human epithelial cells, but that it does not stimulate the release of PGE2 and nitric oxide. Though cyclooxygenase products contribute to some extent to cAMP formation in guinea-pigs, AM independently stimulates intracellular cAMP formation in airway epithelial cells.

  4. Camp Marmal Flood Study

    Science.gov (United States)

    2012-03-01

    was simulated by means of a broad - crested weir built into the topography of the mesh. There is 0.5 m of freeboard and the width of the weir is 30 m...ER D C/ CH L TR -1 2- 5 Camp Marmal Flood Study Co as ta l a nd H yd ra ul ic s La bo ra to ry Jeremy A. Sharp , Steve H. Scott...Camp Marmal Flood Study Jeremy A. Sharp , Steve H. Scott, Mark R. Jourdan, and Gaurav Savant Coastal and Hydraulics Laboratory U.S. Army Engineer

  5. Inosine-5'-monophosphate is a candidate agent to resolve rigor mortis of skeletal muscle.

    Science.gov (United States)

    Matsuishi, Masanori; Tsuji, Mariko; Yamaguchi, Megumi; Kitamura, Natsumi; Tanaka, Sachi; Nakamura, Yukinobu; Okitani, Akihiro

    2016-11-01

    The object of the present study was to reveal the action of inosine-5'-monophosphate (IMP) toward myofibrils in postmortem muscles. IMP solubilized isolated actomyosin within a narrow range of KCl concentration, 0.19-0.20 mol/L, because of the dissociation of actomyosin into actin and myosin, but it did not solubilize the proteins in myofibrils with 0.2 mol/L KCl. However, IMP could solubilize both proteins in myofibrils with 0.2 mol/L KCl in the presence of 1 m mol/L pyrophosphate or 1.0-3.3 m mol/L adenosine-5'-diphosphate (ADP). Thus, we presumed that pyrophosphate and ADP released thin filaments composed of actin, and thick filaments composed of myosin from restraints of myofibrils, and then both filaments were solubilized through the IMP-induced dissociation of actomyosin. Thus, we concluded that IMP is a candidate agent to resolve rigor mortis because of its ability to break the association between thick and thin filaments. © 2016 Japanese Society of Animal Science.

  6. 49 CFR 218.75 - Methods of protection for camp cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Methods of protection for camp cars. 218.75... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Protection of Occupied Camp Cars § 218.75 Methods of protection for camp cars. When camp cars requiring protection are on either main track...

  7. Sustainable Design Principles for Refugee Camps

    NARCIS (Netherlands)

    Rooij, de L.L.; Wascher, D.M.; Paulissen, M.P.C.P.

    2016-01-01

    This report’s main focus is on the phenomenon of refugee camps as one of the most visible and spatially explicit results of refuge and migration movements at the global scale. Given the steadily growing numbers of people on the move and staying in temporary homes and settlements, refugee camps must

  8. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK...... activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from...... (Thr37/46) (P mTOR targets, suggesting mTOR signaling is blocked by prior AMPK activation. The AICAR-induced inhibition was partly rescued...

  9. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    Science.gov (United States)

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Free radical formation in deoxyguanosine-5'-monophosphate γ-irradiated in frozen solution. A computer-assisted analysis of temperature-dependent ESR spectra

    International Nuclear Information System (INIS)

    Gregoli, S.; Olast, M.; Bertinchamps, A.

    1977-01-01

    Deoxyguanosine-5'-monophosphate (dGMP) was γ-irradiated at 77 K in frozen aqueous solution and then annealed in a stepwise fashion up to the melting point. During this process, the primary radicals formed in DGMP at 77 K are progressively converted into secondary radical species. This is observed as changes in the spectrum intensity and conformation. Computer-assisted analysis of these temperature-dependent spectra permitted us to identify the transient radical species involved and to draw up single-radical concentration kinetics vs temperature. The radiation chemical behavior of dGMP was found to be quite similar to that of dAMP, investigated previously. In both these purine derivatives, radical anions are converted into radicals of H-addition to C-8, and radical cations are converted into radicals of OH-addition to the same position. In dGMP, however, the cationic channel is only induced under certain experimental conditions (alkaline pH, presence of electron scavengers). At neutral pH, G + radicals are quite stable and finally become deactivated without being converted into secondary GOH radicals. Specific deuterium substitution at carbon C-8, and irradiation in H 2 O or in D 2 O, confirmed that both H + and OH - attachments do occur at C-8, and that both the H + and OH - groups come from the aqueous medium

  11. Modulatory effects of cAMP and PKC activation on gap junctional intercellular communication among thymic epithelial cells

    Directory of Open Access Journals (Sweden)

    Neves-dos-Santos Sandra

    2010-01-01

    Full Text Available Abstract Background We investigated the effects of the signaling molecules, cyclic AMP (cAMP and protein-kinase C (PKC, on gap junctional intercellular communication (GJIC between thymic epithelial cells (TEC. Results Treatment with 8-Br-cAMP, a cAMP analog; or forskolin, which stimulates cAMP production, resulted in an increase in dye transfer between adjacent TEC, inducing a three-fold enhancement in the mean fluorescence of coupled cells, ascertained by flow cytometry after calcein transfer. These treatments also increased Cx43 mRNA expression, and stimulated Cx43 protein accumulation in regions of intercellular contacts. VIP, adenosine, and epinephrine which may also signal through cyclic nucleotides were tested. The first two molecules did not mimic the effects of 8-Br-cAMP, however epinephrine was able to increase GJIC suggesting that this molecule functions as an endogenous inter-TEC GJIC modulators. Stimulation of PKC by phorbol-myristate-acetate inhibited inter-TEC GJIC. Importantly, both the enhancing and the decreasing effects, respectively induced by cAMP and PKC, were observed in both mouse and human TEC preparations. Lastly, experiments using mouse thymocyte/TEC heterocellular co-cultures suggested that the presence of thymocytes does not affect the degree of inter-TEC GJIC. Conclusions Overall, our data indicate that cAMP and PKC intracellular pathways are involved in the homeostatic control of the gap junction-mediated communication in the thymic epithelium, exerting respectively a positive and negative role upon cell coupling. This control is phylogenetically conserved in the thymus, since it was seen in both mouse and human TEC preparations. Lastly, our work provides new clues for a better understanding of how the thymic epithelial network can work as a physiological syncytium.

  12. Measuring the Influences of Youth Participation in Ohio 4-H Camps

    Directory of Open Access Journals (Sweden)

    Greg Homan

    2008-06-01

    Full Text Available Findings from a multi-component 4-H camp marketing and enrollment study of Ohio 4-H camps are highlighted. Significant influencers on the camp enrollment decision (parents, other adults, peers, siblings, and the respective camper are evaluated as well as the effectiveness of various marketing techniques. The data found in this study indicates that the decision to enroll in camp is most influenced by the respective 4-H camper; however parents are also a strong factor in the choice to participate in 4-H camps. Alumni parents report significantly higher influence in the camp enrollment decision than those parents who are not alumni of 4-H. Personal methods of promoting camps were rated the most effective in reaching potential camp audiences.

  13. Assisting Groundwater Exploration for Refugee/IDP Camps by Remote Sensing and GIS

    Science.gov (United States)

    Wendt, Lorenz; Robl, Jörg; Hilberg, Sylke; Braun, Andreas; Rogenhofer, Edith; Dirnberger, Daniel; Strasser, Thomas; Füreder, Petra; Lang, Stefan

    2015-04-01

    Refugee camps and camps of internally displaced people (IDP) often form spontaneously or have to be established rapidly in remote, rural areas, where little is known about the hydrogeological situation. This requires a rapid assessment of the availability of groundwater to enable humanitarian organisations like Médecins Sans Frontières (MSF) to supply the camp population with sufficient potable water. Within the project EO4HumEn, hydrogeological reconnaissance maps are produced for MSF by integrating remote sensing data like SRTM, Landsat, ASTER, optical very-high resolution (VHR) imagery, and SAR data. Depending on the specific situation of the camps, these maps contain topography, permanent and temporary water bodies, hard rock outcrops and their geological variability, locations of existing boreholes and wells (if available), potential contamination sources, roads and obstacles (e.g. swampland). In areas characterized by unconsolidated sediments, specific landforms like alluvial fans, meanders, levees, deltas or beach ridges are identified. Here, the reconnaissance map can be sufficient to plan drill sites for groundwater abstraction. In hard rock areas, the lithology is determined, if the vegetation cover allows it. Fractures, faults and karst features are mapped to resolve the structural setting. Anomalous vegetation patterns are interpreted in terms of near-surface groundwater. The maps provide an overview of the camp surroundings, and allow the field hydrogeologists to focus their investigations on the most promising locations. The maps are complemented by a literature review on geological maps, articles and reports available for the area of interest. Assisting groundwater exploration by remote sensing data analysis is not a new development, but it has not been widely adopted by the humanitarian community as interfaces between humanitarian organisations and GI-scientists were missing. EO4HumEn fills this gap by a strong interdisciplinary cooperation

  14. JNK mitogen-activated protein kinase limits calcium-dependent chloride secretion across colonic epithelial cells.

    LENUS (Irish Health Repository)

    Donnellan, Fergal

    2010-01-01

    Neuroimmune agonists induce epithelial Cl(-) secretion through elevations in intracellular Ca2+ or cAMP. Previously, we demonstrated that epidermal growth factor receptor (EGFR) transactivation and subsequent ERK MAPK activation limits secretory responses to Ca2+-dependent, but not cAMP-dependent, agonists. Although JNK MAPKs are also expressed in epithelial cells, their role in regulating transport function is unknown. Here, we investigated the potential role for JNK in regulating Cl(-) secretion in T(84) colonic epithelial cells. Western blot analysis revealed that a prototypical Ca2+-dependent secretagogue, carbachol (CCh; 100 microM), induced phosphorylation of both the 46-kDa and 54-kDa isoforms of JNK. This effect was mimicked by thapsigargin (TG), which specifically elevates intracellular Ca2+, but not by forskolin (FSK; 10 microM), which elevates cAMP. CCh-induced JNK phosphorylation was attenuated by the EGFR inhibitor, tyrphostin-AG1478 (1 microM). Pretreatment of voltage-clamped T(84) cells with SP600125 (2 microM), a specific JNK inhibitor, potentiated secretory responses to both CCh and TG but not to FSK. The effects of SP600125 on CCh-induced secretion were not additive with those of the ERK inhibitor, PD98059. Finally, in apically permeabilized T(84) cell monolayers, SP600125 potentiated CCh-induced K+ conductances but not Na+\\/K+ATPase activity. These data demonstrate a novel role for JNK MAPK in regulating Ca2+ but not cAMP-dependent epithelial Cl(-) secretion. JNK activation is mediated by EGFR transactivation and exerts its antisecretory effects through inhibition of basolateral K+ channels. These data further our understanding of mechanisms regulating epithelial secretion and underscore the potential for exploitation of MAPK-dependent signaling in treatment of intestinal transport disorders.

  15. Adventure Code Camp: Library Mobile Design in the Backcountry

    OpenAIRE

    Ward, David; Hahn, James; Mestre, Lori

    2014-01-01

    This article presents a case study exploring the use of a student Coding Camp as a bottom-up mobile design process to generate library mobile apps. A code camp sources student programmer talent and ideas for designing software services and features.  This case study reviews process, outcomes, and next steps in mobile web app coding camps. It concludes by offering implications for services design beyond the local camp presented in this study. By understanding how patrons expect to integrate li...

  16. Neuron membrane trafficking and protein kinases involved in autism and ADHD.

    Science.gov (United States)

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-30

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  17. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2015-01-01

    Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  18. Cooperative DNA binding of heterologous proteins: Evidence for contact between the cyclic AMP receptor protein and RNA polymerase

    International Nuclear Information System (INIS)

    Ren, Y.L.; Garges, S.; Adhya, S.; Krakow, J.S.

    1988-01-01

    Four cAMP-independent receptor protein mutants (designated CRP* mutants) isolated previously are able to activate in vivo gene transcription in the absence of cAMP and their activity can be enhanced by cAMP or cGMP. One of the four mutant proteins, CRP*598 (Arg-142 to His, Ala-144 to Thr), has been characterized with regard to its conformational properties and ability to bind to and support abortive initiation from the lac promoter. Binding of wild-type CRP to its site on the lac promoter and activation of abortive initiation by RNA polymerase on this promoter are effected by cAMP but not by cGMP. CRP*598 can activate lacP + -directed abortive initiation in the presence of cAMP and less efficiently in the presence of cGMP or in the absence of cyclic nucleotide. DNase I protection (footprinting) indicates that cAMP-CRP* binds to its site on the lac promoter whereas unliganded CRP* and cGMP-CRP* form a stable complex with the [ 32 P]lacP + fragment only in the presence of RNA polymerase, showing cooperative binding of two heterologous proteins. This cooperative binding provides strong evidence for a contact between CRP and RNA polymerase for activation of transcription. Although cGMP binds to CRP, it cannot replace cAMP in effecting the requisite conformational transition necessary for site-specific promoter binding

  19. IDENTIFYING DEMENTIA IN ELDERLY POPULATION : A CAMP APPROACH

    OpenAIRE

    Anand P; Chaukimath; Srikanth; Koli

    2015-01-01

    BACKGROUND: Dementia is an emerging medico social problem affecting elderly, and poses a challenge to clinician and caregivers. It is usually identified in late stage where management becomes difficult. AIM: The aim of camp was to identify dementia in elderly population participating in screening camp. MATERIAL AND METHODS : The geriatric clinic and department of psychiatry jointly organised screening camp to detect dementia in elderly for five days in Sept...

  20. Identification of the subunit of cAMP receptor protein (CRP) that functionally interacts with CytR in CRP-CytR-mediated transcriptional repression

    DEFF Research Database (Denmark)

    Meibom, K L; Kallipolitis, B H; Ebright, R H

    2000-01-01

    At promoters of the Escherichia coli CytR regulon, the cAMP receptor protein (CRP) interacts with the repressor CytR to form transcriptionally inactive CRP-CytR-promoter or (CRP)(2)-CytR-promoter complexes. Here, using "oriented heterodimer" analysis, we show that only one subunit of the CRP dimer......, the subunit proximal to CytR, functionally interacts with CytR in CRP-CytR-promoter and (CRP)(2)-CytR-promoter complexes. Our results provide information about the architecture of CRP-CytR-promoter and (CRP)(2)-CytR-promoter complexes and rule out the proposal that masking of activating region 2 of CRP...

  1. In vivo and in vitro animal investigation of the effect of a mixture of herbal extracts from Tribulus terrestris and Cornus officinalis on penile erection.

    Science.gov (United States)

    Kam, Sung Chul; Do, Jung Mo; Choi, Jae Hwi; Jeon, Byeong Tak; Roh, Gu Seob; Hyun, Jae Seog

    2012-10-01

    Herbal preparations have long been used as folk remedies for erectile dysfunction (ED). This study examined the effects of Tribulus terrestris and Cornus officinalis extracts on relaxation of the smooth muscle of the corpus cavernosum (CC), their mechanisms of action, and the effects of oral administration of a mixture of the herbal extracts on penile erection. The relaxation effects and the mechanisms of action of T. terrestris extract, C. officinalis extract, and the mixture of both extracts on the rabbit CC were investigated in an organ bath. To evaluate whether the relaxation response of the CC shown in an organ bath occurs in vivo, intracavernous pressure (ICP) was calculated in rats after oral administration for a month. Additionally, adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3', 5'-cyclic monophosphate (cGMP) in the CC were measured using immunoassay. Smooth muscle relaxation was expressed as the percent decrease in precontraction induced by phenylephrine. ICP was assessed in rats after the oral administration of a mixture of both extracts for 1 month and changes in cGMP and cAMP concentrations were measured based on the concentration of the mixture of both extracts. T. terrestris extract, C. officinalis extract, and the mixture of both extracts showed concentration-dependent relaxation effects of the CC. In both the endothelium-removed group and N(G)-nitro-L-arginine methyl ester pretreatment group, T. terrestris extract inhibited relaxation. ICP measured after oral administration of the extract mixture for a month was higher than that measured in the control group, and a significant increase in cAMP was observed in the mixture group. T. terrestris extract and C. officinalis extract exhibited concentration-dependent relaxation in an organ bath. In the in vivo study of the extract mixture, ICP and cAMP was significantly potentiated. Accordingly, the mixture of T. terrestris extract and C. officinalis extract may improve erectile function.

  2. 49 CFR 218.80 - Movement of occupied camp cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of occupied camp cars. 218.80 Section 218... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Protection of Occupied Camp Cars § 218.80 Movement of occupied camp cars. Occupied cars may not be humped or flat switched unless coupled to...

  3. Thinking Big for 25 Years: Astronomy Camp Research Projects

    Science.gov (United States)

    Hooper, Eric Jon; McCarthy, D. W.; Benecchi, S. D.; Henry, T. J.; Kirkpatrick, J. D.; Kulesa, C.; Oey, M. S.; Regester, J.; Schlingman, W. M.; Camp Staff, Astronomy

    2013-01-01

    Astronomy Camp is a deep immersion educational adventure for teenagers and adults in southern Arizona that is entering its 25th year of existence. The Camp Director (McCarthy) is the winner of the 2012 AAS Education Prize. A general overview of the program is given in an accompanying contribution (McCarthy et al.). In this presentation we describe some of the research projects conducted by Astronomy Camp participants over the years. Many of the Camps contain a strong project-oriented emphasis, which reaches its pinnacle in the Advanced Camps for teenagers. High school students from around the world participate in a microcosm of the full arc of astronomy research. They plan their own projects before the start of Camp, and the staff provide a series of "key projects." Early in the Camp the students submit observing proposals to utilize time on telescopes. (The block of observing time is secured in advance by the staff.) The participants collect, reduce and analyze astronomical data with the help of staff, and they present the results to their peers on the last night of Camp, all in a span of eight days. The Camps provide research grade telescopes and instruments, in addition to amateur telescopes. Some of the Camps occur on Kitt Peak, where we use an ensemble of telescopes: the 2.3-meter (University of Arizona) with a spectrograph; the WIYN 0.9-meter; the McMath-Pierce Solar Telescope; and the 12-meter millimeter wave telescope. Additionally the Camp has one night on the 10-meter Submillimeter Telescope on Mt. Graham. Campers use these resources to study stars, galaxies, AGN, transiting planets, molecular clouds, etc. Some of the camper-initiated projects have led to very high level performances in prestigious international competitions, such as the Intel International Science and Engineering Fair. The key projects often contribute to published astronomical research (e.g., Benecchi et al. 2010, Icarus, 207, 978). Many former Campers have received Ph.D. degrees in

  4. Advances in Pediatric Cardiology Boot Camp: Boot Camp Training Promotes Fellowship Readiness and Enables Retention of Knowledge.

    Science.gov (United States)

    Ceresnak, Scott R; Axelrod, David M; Sacks, Loren D; Motonaga, Kara S; Johnson, Emily R; Krawczeski, Catherine D

    2017-03-01

    We previously demonstrated that a pediatric cardiology boot camp can improve knowledge acquisition and decrease anxiety for trainees. We sought to determine if boot camp participants entered fellowship with a knowledge advantage over fellows who did not attend and if there was moderate-term retention of that knowledge. A 2-day training program was provided for incoming pediatric cardiology fellows from eight fellowship programs in April 2016. Hands-on, immersive experiences and simulations were provided in all major areas of pediatric cardiology. Knowledge-based examinations were completed by each participant prior to boot camp (PRE), immediately post-training (POST), and prior to the start of fellowship in June 2016 (F/U). A control group of fellows who did not attend boot camp also completed an examination prior to fellowship (CTRL). Comparisons of scores were made for individual participants and between participants and controls. A total of 16 participants and 16 control subjects were included. Baseline exam scores were similar between participants and controls (PRE 47 ± 11% vs. CTRL 52 ± 10%; p = 0.22). Participants' knowledge improved with boot camp training (PRE 47 ± 11% vs. POST 70 ± 8%; p cardiology knowledge after the training program and had excellent moderate-term retention of that knowledge. Participants began fellowship with a larger fund of knowledge than those fellows who did not attend.

  5. Camp Health Aide Manual = Manual para trabajadores de salud.

    Science.gov (United States)

    Robinson, June Grube; And Others

    This bilingual manual serves as a textbook for migrant Camp Health Aides. Camp Health Aides are members of migrant labor camps enlisted to provide information about health and social services to migrant workers and their families. The manual is divided into 12 tabbed sections representing lessons. Teaching notes printed on contrasting paper…

  6. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-01

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells

  7. The Combination of Mitragynine and Morphine Prevents the Development of Morphine Tolerance in Mice

    Directory of Open Access Journals (Sweden)

    Sharida Fakurazi

    2013-01-01

    Full Text Available Mitragynine (MG is the major active alkaloid found in Mitragyna speciosa Korth. In the present study, we investigated the enhancement of analgesic action of MG when combined with morphine and the effect of the combination on the development of tolerance towards morphine. Mice were administered intraperitoneally with a dose of MG (15 and 25 mg/kg b.wt combined with morphine (5 mg/kg b.wt respectively for 9 days. The antinociceptive effect was evaluated by a hot plate test. The protein expression of cyclic adenosine monophosphate (cAMP and cAMP response element binding (CREB was analyzed by immunoblot. Toxicological parameters especially liver and kidney function tests were assessed after the combination treatment with MG and morphine. The concurrent administration of MG and morphine showed significant (p < 0.05 increase in latency time when compared to morphine alone group and the outstanding analgesic effects in the combination regimens were maintained until day 9. For the protein expression, there was a significant increment of cAMP and CREB levels (p < 0.05 in group treated with 5 mg/kg morphine but there was no significant change of these protein expressions when MG was combined with morphine. There was a significant changes in toxicological parameters of various treated groups. The combination treatment of MG and morphine effectively reduce the tolerance due to the chronic administration of morphine.

  8. Good Camping for Children and Youth of Low Income Families; Some Suggestions for Camps Concerned About Providing Equal Opportunities for Children and Youth.

    Science.gov (United States)

    Richards, Catharine V.

    Guidelines are offered for positive camping experiences for poverty children and youth. There are sections on community organizations which can offer services for camp placement, recruitment of campers from among disadvantaged groups, and the orientation of new campers to camp (including such practical suggestions as the types of food and snacks…

  9. Therapeutic effects of the joint administration of magnesium aspartate and adenosine monophosphate in gamma-irradiated mice

    International Nuclear Information System (INIS)

    Pospisil, M.; Netikova, J.; Pipalova, I.; Kozubik, A.

    1990-01-01

    The joint administration of magnesium aspartate and adenosine monophosphate, injected on days 1 to 4 post radiation, has been found to exert stimulatory effects on the recovery of hemopoietic functions in sublethally gamma-irradiated mice. These therapeutical effects were enhanced in animals protected by peroral administration of cystamine. The treatment scheme used did not modify survival of lethally irradiated mice. The therapeutic effects of magnesium aspartate and adenosine monophosphate in sublethally irradiated mice are explained by the stimulatory action of these drugs on the cell adenylate cyclase system, which influences the erythropoietic functions. (author)

  10. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture

    International Nuclear Information System (INIS)

    Ishikawa, S.; Okada, K.; Saito, T.

    1988-01-01

    The role of calcium (Ca) in the cellular action of arginine vasopressin (AVP) was examined in rat renal papillary collecting tubule cells in culture. AVP increased both the cellular free Ca concentration ([Ca2+]i) using fura-2, and cAMP production in a dose-dependent manner. AVP-induced cellular Ca mobilization was totally blocked by the antagonist to the antidiuretic action of AVP, and somewhat weakened by the antagonist to the vascular action of AVP. 1-Deamino-8-D-AVP (dDAVP). an antidiuretic analog of AVP, also increased [Ca2+] significantly. Cellular Ca mobilization was not obtained with cAMP, forskolin (a diterpene activator of adenylate cyclase), or phorbol-12-myristate-13-acetate. The early phase of [Ca2+]i depended on the intracellular Ca pool, since an AVP-induced rise in [Ca2+]i was obtained in cells pretreated with Ca-free medium containing 1 mM EGTA, verapamil, or cobalt, which blocked cellular Ca uptake. Also, AVP increased 45 Ca2+ influx during the initial 10 min, which initiated the sustained phase of cellular Ca mobilization. However, cellular cAMP production induced by AVP during the 10-min observation period was diminished in the cells pretreated with Ca-free medium, verapamil, or cobalt, but was still significantly higher than the basal level. This was also diminished by a high Ca concentration in medium. These results indicate that 1) AVP concomitantly regulates cellular free Ca as well as its second messenger cAMP production; 2) AVP-induced elevation of cellular free Ca is dependent on both the cellular Ca pool and extracellular Ca; and 3) there is an optimal level of extracellular Ca to modulate the AVP action in renal papillary collecting tubule cells

  11. Camp as a Teaching Method in Health Education

    DEFF Research Database (Denmark)

    Ringby, Betina

    Background Camp as a learning activity was introduced in entrepreneurship teaching. Students were engaged to get experiences on how to cope with uncertainty, complexity and to take action in collaboration with external partners. Relevance Society calls for creative and innovative health professio......Background Camp as a learning activity was introduced in entrepreneurship teaching. Students were engaged to get experiences on how to cope with uncertainty, complexity and to take action in collaboration with external partners. Relevance Society calls for creative and innovative health...... to the future didactic development in health education. Camp as a learning process based on participation, creativity and an innovative approach combined with a professional focus seems relevant when trying to engage students to take action. Keywords Innovation, method, camp...

  12. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein*

    Science.gov (United States)

    Townsend, Philip D.; Rodgers, Thomas L.; Glover, Laura C.; Korhonen, Heidi J.; Richards, Shane A.; Colwell, Lucy J.; Pohl, Ehmke; Wilson, Mark R.; Hodgson, David R. W.; McLeish, Tom C. B.; Cann, Martin J.

    2015-01-01

    Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. Both experimental and theoretical evidence demonstrate that allostery can be communicated through altered slow relaxation protein dynamics without conformational change. The catabolite activator protein (CAP) of Escherichia coli is an exemplar for the analysis of such entropically driven allostery. Negative allostery in CAP occurs between identical cAMP binding sites. Changes to the cAMP-binding pocket can therefore impact the allosteric properties of CAP. Here we demonstrate, through a combination of coarse-grained modeling, isothermal calorimetry, and structural analysis, that decreasing the affinity of CAP for cAMP enhances negative cooperativity through an entropic penalty for ligand binding. The use of variant cAMP ligands indicates the data are not explained by structural heterogeneity between protein mutants. We observe computationally that altered interaction strength between CAP and cAMP variously modifies the change in allosteric cooperativity due to second site CAP mutations. As the degree of correlated motion between the cAMP-contacting site and a second site on CAP increases, there is a tendency for computed double mutations at these sites to drive CAP toward noncooperativity. Naturally occurring pairs of covarying residues in CAP do not display this tendency, suggesting a selection pressure to fine tune allostery on changes to the CAP ligand-binding pocket without a drive to a noncooperative state. In general, we hypothesize an evolutionary selection pressure to retain slow relaxation dynamics-induced allostery in proteins in which evolution of the ligand-binding site is occurring. PMID:26187469

  13. Transitioning Traditions: Rectifying an Ontario Camp's Indian Council Ring

    Science.gov (United States)

    Wilkes, Taylor

    2011-01-01

    Council Ring has always been a very special event, remembered fondly by generations of campers. Taylor Statten Camps (TSC) are not the only camps to cherish such an activity. Across Canada there are dozens of camps that have supported "Indian" assemblies in the past, but a select few still do. Most organizations abandoned them during the…

  14. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.

    Science.gov (United States)

    Park, Sung-Jun; Ahmad, Faiyaz; Philp, Andrew; Baar, Keith; Williams, Tishan; Luo, Haibin; Ke, Hengming; Rehmann, Holger; Taussig, Ronald; Brown, Alexandra L; Kim, Myung K; Beaven, Michael A; Burgin, Alex B; Manganiello, Vincent; Chung, Jay H

    2012-02-03

    Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca(2+) levels and activates the CamKKβ-AMPK pathway via phospholipase C and the ryanodine receptor Ca(2+)-release channel. As a consequence, resveratrol increases NAD(+) and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Hitler's Death Camps.

    Science.gov (United States)

    Wieser, Paul

    1995-01-01

    Presents a high school lesson on Hitler's death camps and the widespread policy of brutality and oppression against European Jews. Includes student objectives, instructional procedures, and a chart listing the value of used clothing taken from the Jews. (CFR)

  16. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    Science.gov (United States)

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  17. Adventure Code Camp: Library Mobile Design in the Backcountry

    Directory of Open Access Journals (Sweden)

    David Ward

    2014-09-01

    Full Text Available This article presents a case study exploring the use of a student Coding Camp as a bottom-up mobile design process to generate library mobile apps. A code camp sources student programmer talent and ideas for designing software services and features.  This case study reviews process, outcomes, and next steps in mobile web app coding camps. It concludes by offering implications for services design beyond the local camp presented in this study. By understanding how patrons expect to integrate library services and resources into their use of mobile devices, librarians can better design the user experience for this environment.

  18. The NO/cGMP pathway inhibits transient cAMP signals through the activation of PDE2 in striatal neurons

    Directory of Open Access Journals (Sweden)

    Marina ePolito

    2013-11-01

    Full Text Available The NO-cGMP signaling plays an important role in the regulation of striatal function although the mechanisms of action of cGMP specifically in medium spiny neurons (MSNs remain unclear. Using genetically encoded fluorescent biosensors, including a novel Epac-based sensor (EPAC-SH150 with increased sensitivity for cAMP, we analyze the cGMP response to NO and whether it affected cAMP/PKA signaling in MSNs. The Cygnet2 sensor for cGMP reported large responses to NO donors in both striatonigral and striatopallidal MSNs, and this cGMP signal was controlled partially by PDE2. At the level of cAMP brief forskolin stimulations produced transient cAMP signals which differed between D1 and D2 medium spiny neurons. NO inhibited these cAMP transients through cGMP-dependent PDE2 activation, an effect that was translated and magnified downstream of cAMP, at the level of PKA. PDE2 thus appears as a critical effector of NO which modulates the post-synaptic response of MSNs to dopaminergic transmission.

  19. Inhibition of the cAMP/PKA/CREB Pathway Contributes to the Analgesic Effects of Electroacupuncture in the Anterior Cingulate Cortex in a Rat Pain Memory Model.

    Science.gov (United States)

    Shao, Xiao-Mei; Sun, Jing; Jiang, Yong-Liang; Liu, Bo-Yi; Shen, Zui; Fang, Fang; Du, Jun-Ying; Wu, Yuan-Yuan; Wang, Jia-Ling; Fang, Jian-Qiao

    2016-01-01

    Pain memory is considered as endopathic factor underlying stubborn chronic pain. Our previous study demonstrated that electroacupuncture (EA) can alleviate retrieval of pain memory. This study was designed to observe the different effects between EA and indomethacin (a kind of nonsteroid anti-inflammatory drugs, NSAIDs) in a rat pain memory model. To explore the critical role of protein kinase A (PKA) in pain memory, a PKA inhibitor was microinjected into anterior cingulate cortex (ACC) in model rats. We further investigated the roles of the cyclic adenosine monophosphate (cAMP), PKA, cAMP response element-binding protein (CREB), and cAMP/PKA/CREB pathway in pain memory to explore the potential molecular mechanism. The results showed that EA alleviates the retrieval of pain memory while indomethacin failed. Intra-ACC microinjection of a PKA inhibitor blocked the occurrence of pain memory. EA reduced the activation of cAMP, PKA, and CREB and the coexpression levels of cAMP/PKA and PKA/CREB in the ACC of pain memory model rats, but indomethacin failed. The present findings identified a critical role of PKA in ACC in retrieval of pain memory. We propose that the proper mechanism of EA on pain memory is possibly due to the partial inhibition of cAMP/PKA/CREB signaling pathway by EA.

  20. Vegetation response to wagon wheel camp layouts.

    African Journals Online (AJOL)

    Wagon wheel camp layouts have been favoured, in some quarters, for rotational grazing due to the economy and convenience of having the camps radially arranged around central facilities. A possible disadvantage of such layouts is the tendency for over-grazing near the hub and under-grazing at the extremities.

  1. The Camp Hill Project: Objectives and Design

    Science.gov (United States)

    Mattingly, John B.

    1976-01-01

    Available from: EC 090 474. Outlined are the problems and objectives of Pennsylvania's Camp Hill Project--a program designed to complete psychological needs assessments for juveniles incarcerated at Camp Hill, to develop project policies and guidelines in preparation for meeting with juvenile court judges, and to hire staff. (SBH)

  2. [Central Work Camp in Jaworzno (1945-1949) -- epidemiological aspects -- attempt of evaluation].

    Science.gov (United States)

    Smolik, Przemysław

    2013-01-01

    Publication presents the short history of camp hospital which was organised in 1943 Nazi concentration camp Neu-Dachs in Jaworzno. The camp was a branch of Oświecim concentration camp. Atfer the war damage of the camp, the restoration was begun in 1945. Already in Febraury 1945, in place of German concentration camp, rises Central Work Camp. Several thousands of prisoners of war were placed there. The prisoners of war: Germans, Volksdeutches, Silesians were forced emlpoyed in nearby coal mines. Since 1947 the camp was a place of staying for several thousands Ukrainians who were displaced from eastern part of Poland in "Vistula Operation". Based on available written materials, publication is an attempt to analyse and evaluate: sanitary conditions, prison illnesses, mortality reasons among prisoners, hospital equipment, personel work conditions. The publication gives opportunity to compare conditions of prison hospital under nazi occupation and conditions in the camp which was organised in the same place under Stalin system of terror.

  3. Seafloor Science and Remotely Operated Vehicle (SSROV) Day Camp: A Week-Long, Hands-On STEM Summer Camp

    Science.gov (United States)

    Wheat, C. G.; Fournier, T.; Monahan, K.; Paul, C.

    2015-12-01

    RETINA (Robotic Exploration Technologies IN Astrobiology) has developed a program geared towards stimulating our youth with innovative and relevant hands-on learning modules under a STEM umbrella. Given the breadth of potential science and engineering topics that excite children, the RETINA Program focuses on interactive participation in the design and development of simple robotic and sensor systems, providing a range of challenges to engage students through project-based learning (PBL). Thus, young students experience scientific discovery through the use and understanding of technology. This groundwork serves as the foundation for SSROV Camp, a week-long, summer day camp for 6th-8th grade students. The camp is centered on the sensors and platforms that guide seafloor exploration and discovery and builds upon the notion that transformative discoveries in the deep sea result from either sampling new environments or making new measurements with sensors adapted to this extreme environment. These technical and scientific needs are folded into the curriculum. Each of the first four days of the camp includes four team-based, hands-on technical challenges, communication among peer groups, and competition. The fifth day includes additional activities, culminating in camper-led presentations to describe a planned mission based on a given geologic setting. Presentations include hypotheses, operational requirements and expected data products. SSROV Camp was initiated last summer for three sessions, two in Monterey, CA and one in Oxford, MS. Campers from both regions grasped key elements of the program, based on written responses to questions before and after the camp. On average, 32% of the pre-test questions were answered correctly compared with 80% of the post-test questions. Additional confirmation of gains in campers' knowledge, skills, and critical thinking on environmental issues and engineering problems were apparent during the "jeopardy" competition, nightly homework

  4. IBMX protects human proximal tubular epithelial cells from hypoxic stress through suppressing hypoxia-inducible factor-1α expression.

    Science.gov (United States)

    Hasan, Arif Ul; Kittikulsuth, Wararat; Yamaguchi, Fuminori; Musarrat Ansary, Tuba; Rahman, Asadur; Shibayama, Yuki; Nakano, Daisuke; Hitomi, Hirofumi; Tokuda, Masaaki; Nishiyama, Akira

    2017-09-15

    Hypoxia predisposes renal fibrosis. This study was conducted to identify novel approaches to ameliorate the pathogenic effect of hypoxia. Using human proximal tubular epithelial cells we showed that a pan-phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX) dose and time dependently downregulated hypoxia-inducible factor 1α (HIF-1α) mRNA expression, which was further augmented by addition of a transcriptional inhibitor, actinomycin D. IBMX also increased the cellular cyclic adenosine monophosphate (cAMP) level. Luciferase assay showed that blocking of protein kinase A (PKA) using H89 reduced, while 8-Br-cAMP agonized the repression of HIF-1α promoter activity in hypoxic condition. Deletion of cAMP response element binding sites from the HIF-1α promoter abrogated the effect of IBMX. Western blot and immunofluorescent study confirmed that the CoCl 2 induced increased HIF-1α protein in whole cell lysate and in nucleus was reduced by the IBMX. Through this process, IBMX attenuated both CoCl 2 and hypoxia induced mRNA expressions of two pro-fibrogenic factors, platelet-derived growth factor B and lysyl oxidase. Moreover, IBMX reduced production of a mesenchymal transformation factor, β-catenin; as well as protected against hypoxia induced cell-death. Taken together, our study showed novel evidence that the PDE inhibitor IBMX can downregulate the transcription of HIF-1α, and thus may attenuate hypoxia induced renal fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Body and Gender in Nazi Concentration Camps

    Directory of Open Access Journals (Sweden)

    Bożena Karwowska

    2009-01-01

    Full Text Available The article Body and Gender in Nazi Concentration Camps is an attempt to discuss difficult issues of human sexuality and sexually marked behaviors in the context of the concentration camps, and their descriptions in the memoirs of the survivors. Using notions and concepts of the so called "black American feminism" the author (referring extensively to books by Stanisław Grzesiuk and Zofia Romanowiczowa shows how in the concentration camp the human body became the only space of a relative privacy of the prisoner. At the same time the body becomes a territory on which all - both biological and socially constructed - human fates cross.

  6. Life Skills Developed on the Camp "Stage."

    Science.gov (United States)

    Powell, Gwynn M.

    2000-01-01

    Draws on research concerning the components of sense of place, the rootedness of college students to their hometowns, and categories of environmental competence. Offer insights to camp staff into fostering sense of place and the emotional attachments to camp that comprise place attachment, and to developing environmental competence among campers…

  7. Summer Camp of Mathematical Modeling in China

    Science.gov (United States)

    Tian, Xiaoxi; Xie, Jinxing

    2013-01-01

    The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…

  8. 1940s: Camping in the War Years.

    Science.gov (United States)

    Camping Magazine, 1999

    1999-01-01

    Camps continued to operate during World War II, but young male counselors, food, and supplies were difficult to obtain. An illustrative article from 1943, "Meal Planning for Summer Camps in Wartime" (Agnes B. Peterson), presents a guide to planning nutritious meals for campers despite shortages caused by wartime rationing, increased food…

  9. Forest Fire: A Crisis Reality for Camp.

    Science.gov (United States)

    Brown, Don; Mickelson, Rhonda

    2002-01-01

    Two camp directors were interviewed about evacuations from their camps due to forest fires. Topics covered include descriptions of the events; actions taken; aspects of advance planning that proved helpful; unexpected portions of the experience and resultant changes made in plans; relations with outside agencies, the media, and parents; working…

  10. Variation in the excitability of developed D. discoideum cells as a function of agar concentration in the substrate

    Science.gov (United States)

    Oikawa, Noriko; Bae, Albert; Amselem, Gabriel; Bodenschatz, Eberhard

    2010-03-01

    In the absence of nutrients, Dictyostelium discoideum cells enter a developmental cycle--they signal each other, aggregate, and ultimately form fruiting bodies. During the signaling stage, the cells relay waves of cyclic adenosine 3',5' monophosphate (cAMP). We observed a transition from spiral to circular patterns in the signaling wave, depending on the agar concentration of the substrate. In this talk we will present the changes in the times for the onset of signaling and synchronization versus agar concentration, as measured by spectral entropy. We also will discuss the origin of these effects.

  11. Teen Moms and Babies Benefit from Camping.

    Science.gov (United States)

    Goode, Marsha; Broesamle, Barbara

    1987-01-01

    Describes nine-day residential camp for Michigan teenage mothers/babies to enhance personal growth and develop responsible social skills. Outlines goals, pre-camp planning, staff, activities, evaluation. Reports 31 teen moms (ages 13-21) and 35 babies attended in 1986. Indicates participants were in therapy, experienced abuse, had low self-esteem,…

  12. Calcium-dependent but calmodulin-independent protein kinase from soybean

    International Nuclear Information System (INIS)

    Harmon, A.C.; Putnam-Evans, C.; Cormier, M.J.

    1987-01-01

    A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≥ 2 micromolar). The protein kinase activity was stimulated 100-fold by ≥ 10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤ 2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45 Ca 2+ in the presence of KCl and MgCl 2 , which indicated that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity

  13. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoqi Zhao

    Full Text Available Abstract Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions.

  14. Radioprotection of the rat parotid gland by cAMP

    International Nuclear Information System (INIS)

    Sodicoff, M.; Conger, A.D.

    1983-01-01

    Most earlier studies showing a radioprotective effect by cAMP show only slight degrees of protection. The present study demonstrates a substantial protective effect (DMF, 1.63) of exogenously administered cAMP on the rat parotid gland and supports the mechanism suggested previously for protection afforded the parotid glands by the β-adrenergic agonist isoproterenol, which is known to elevate endogenous intracellular cAMP

  15. Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus.

    Science.gov (United States)

    Kim, Choon-Mee; Kim, Seong-Jung; Shin, Sung-Heui

    2012-04-01

    The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability.

  16. The cyclic AMP cascade is altered in the fragile X nervous system.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2007-09-01

    Full Text Available Fragile X syndrome (FX, the most common heritable cause of mental retardation and autism, is a developmental disorder characterized by physical, cognitive, and behavioral deficits. FX results from a trinucleotide expansion mutation in the fmr1 gene that reduces levels of fragile X mental retardation protein (FMRP. Although research efforts have focused on FMRP's impact on mGluR signaling, how the loss of FMRP leads to the individual symptoms of FX is not known. Previous studies on human FX blood cells revealed alterations in the cyclic adenosine 3', 5'-monophosphate (cAMP cascade. We tested the hypothesis that cAMP signaling is altered in the FX nervous system using three different model systems. Induced levels of cAMP in platelets and in brains of fmr1 knockout mice are substantially reduced. Cyclic AMP induction is also significantly reduced in human FX neural cells. Furthermore, cAMP production is decreased in the heads of FX Drosophila and this defect can be rescued by reintroduction of the dfmr gene. Our results indicate that a robust defect in cAMP production in FX is conserved across species and suggest that cAMP metabolism may serve as a useful biomarker in the human disease population. Reduced cAMP induction has implications for the underlying causes of FX and autism spectrum disorders. Pharmacological agents known to modulate the cAMP cascade may be therapeutic in FX patients and can be tested in these models, thus supplementing current efforts centered on mGluR signaling.

  17. A second look at the heavy half of the camping market

    Science.gov (United States)

    Wilbur R. LaPage; Dale P. Ragain; Dale P. Ragain

    1971-01-01

    A 1968 survey of campers revealed that one-half of the campers did more than three-fourths of all the reported camping. Campers in this heavy half of the camping market were found to differ significantly from light-half campers in their camping motivations, past experience, and investments in camping equipment (LdPage 1969). However, the 1968 survey identified heavy-...

  18. Ex vivo relaxation effect of Cuscuta chinensis extract on rabbit corpus cavernosum.

    Science.gov (United States)

    Sun, Kai; Zhao, Chen; Chen, Xiang-Feng; Kim, Hye-Kyung; Choi, Bo-Ram; Huang, Yi-Ran; Park, Jong-Kwan

    2013-01-01

    The effect of Cuscuta chinensis extract on the rabbit penile corpus cavernosum (PCC) was evaluated in the present study. Penises obtained from healthy male New Zealand white rabbits (2.5-3.0 kg) were precontracted with phenylephrine (Phe, 10 µmol l(-1)) and then treated with various concentrations of Cuscuta chinensis extract (1, 2, 3, 4 and 5 mg ml(-1)). The change in penile tension was recorded, and cyclic nucleotides in the PCC were measured by radioimmunoassay (RIA). The interaction between Cuscuta chinensis and sildenafil was also evaluated. The result indicated that the PCC relaxation induced by Cuscuta chinensis extract was concentration-dependent. Pre-treatment with an nitric oxide synthase (NOS) inhibitor (Nω nitro-L-arginine-methyl ester, L-NAME), a guanylyl cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ), or a protein kinase A inhibitor (KT 5720) did not completely inhibit the relaxation. Incubation of penile cavernous tissue with the Cuscuta chinensis extract significantly increased cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) in the PCC. Moreover, the Cuscuta chinensis extract significantly enhanced sildenafil-induced PCC relaxation. In conclusion, the Cuscuta chinensis extract exerts a relaxing effect on penile cavernous tissue in part by activating the NO-cGMP pathway, and it may improve erectile dysfunction (ED), which does not completely respond to sildenafil citrate.

  19. Intracellular interactions of umeclidinium and vilanterol in human airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Shaikh N

    2017-06-01

    Full Text Available Nooreen Shaikh,1,2 Malcolm Johnson,3 David A Hall,4 Kian Fan Chung,1,2 John H Riley,3 Sally Worsley,5 Pankaj K Bhavsar1,2 1Experimental Studies, National Heart and Lung Institute, Imperial College London, 2Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, 3Respiratory Global Franchise, GlaxoSmithKline, Uxbridge, 4Fibrosis and Lung Injury Development Planning Unit, GlaxoSmithKline, Stevenage, 5Respiratory Research & Development, GlaxoSmithKline, Uxbridge, UK Background: Intracellular mechanisms of action of umeclidinium (UMEC, a long-acting muscarinic receptor antagonist, and vilanterol (VI, a long-acting β2-adrenoceptor (β2R agonist, were investigated in target cells: human airway smooth-muscle cells (ASMCs. Materials and methods: ASMCs from tracheas of healthy lung-transplant donors were treated with VI, UMEC, UMEC and VI combined, or control compounds (salmeterol, propranolol, ICI 118.551, or methacholine [MCh]. Cyclic adenosine monophosphate (cAMP was measured using an enzyme-linked immunosorbent assay, intracellular free calcium ([Ca2+]i using a fluorescence assay, and regulator of G-protein signaling 2 (RGS2 messenger RNA using real-time quantitative polymerase chain reaction. Results: VI and salmeterol (10–12–10–6 M induced cAMP production from ASMCs in a concentration-dependent manner, which was greater for VI at all concentrations. β2R antagonism by propranolol or ICI 118.551 (10–12–10–4 M resulted in concentration-dependent inhibition of VI-induced cAMP production, and ICI 118.551 was more potent. MCh (5×10–6 M, 30 minutes attenuated VI-induced cAMP production (P<0.05, whereas pretreatment with UMEC (10–8 M, 1 hour restored the magnitude of VI-induced cAMP production. ASMC stimulation with MCh (10–11–5×10–6 M resulted in a concentration-dependent increase in [Ca2+]i, which was attenuated with UMEC pretreatment. Reduction of MCh-induced [Ca2+]i release was greater with UMEC + VI versus

  20. Investigation of Sylvatic Typhus at a Wilderness Camp

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dr. Greg Dasch discusses an outbreak of four cases of sylvatic typhus that occurred at a wilderness camp in Pennsylvania. Sylvatic typhus is very rare in the United States, with only 41 cases since it was discovered in the United States in 1975. Lab work at CDC and the discovery that all four camp counselors who became ill had slept in the same bunk at the camp between 2004 and 2006 ultimately led to confirmation that flying squirrels living in the wall of the cabin were to blame for the illnesses.

  1. Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion.

    Science.gov (United States)

    Soares, Juliana Mikaelly Dias; Pereira Leal, Ana Ediléia Barbosa; Silva, Juliane Cabral; Almeida, Jackson R G S; de Oliveira, Helinando Pequeno

    2017-01-01

    The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin secretagogue. To study the influence of flavonoid on overall modulation mechanisms of insulin secretion. The research was conducted in the following databases and platforms: PubMed, Scopus, ISI Web of Knowledge, SciELO, LILACS, and ScienceDirect, and the MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. Twelve articles were included and represent the basis of discussion on mechanisms of insulin secretion of flavonoids. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and SciELO databases. According to the literature, the majority of flavonoid subclasses can modulate insulin secretion through several pathways, in an indication that corresponding molecule is a potential candidate for active materials to be applied in the treatment of diabetes. The action of natural products on insulin secretion represents an important investigation topic due to their importance in the diabetes controlIn addition to their typical antioxidant properties, flavonoids contribute to the insulin secretionThe modulation of insulin secretion is induced by flavonoids according to different mechanisms. Abbreviations used: K ATP channels: ATP-sensitive K + channels, GLUT4: Glucose transporter 4, ERK1/2: Extracellular signal-regulated protein kinases 1 and 2, L-VDCCs: L-type voltage-dependent Ca +2 channels, GLUT1: Glucose transporter 1, AMPK: Adenosine monophosphate-activated protein kinase, PTP1B: Protein tyrosine phosphatase 1B, GLUT2: Glucose transporter 2, cAMP: Cyclic adenosine monophosphate, PKA: Protein kinase A, PTK: Protein tyrosine kinase, CaMK II: Ca 2+ /calmodulin-dependent

  2. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein.

    Science.gov (United States)

    Townsend, Philip D; Rodgers, Thomas L; Glover, Laura C; Korhonen, Heidi J; Richards, Shane A; Colwell, Lucy J; Pohl, Ehmke; Wilson, Mark R; Hodgson, David R W; McLeish, Tom C B; Cann, Martin J

    2015-09-04

    Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. Both experimental and theoretical evidence demonstrate that allostery can be communicated through altered slow relaxation protein dynamics without conformational change. The catabolite activator protein (CAP) of Escherichia coli is an exemplar for the analysis of such entropically driven allostery. Negative allostery in CAP occurs between identical cAMP binding sites. Changes to the cAMP-binding pocket can therefore impact the allosteric properties of CAP. Here we demonstrate, through a combination of coarse-grained modeling, isothermal calorimetry, and structural analysis, that decreasing the affinity of CAP for cAMP enhances negative cooperativity through an entropic penalty for ligand binding. The use of variant cAMP ligands indicates the data are not explained by structural heterogeneity between protein mutants. We observe computationally that altered interaction strength between CAP and cAMP variously modifies the change in allosteric cooperativity due to second site CAP mutations. As the degree of correlated motion between the cAMP-contacting site and a second site on CAP increases, there is a tendency for computed double mutations at these sites to drive CAP toward noncooperativity. Naturally occurring pairs of covarying residues in CAP do not display this tendency, suggesting a selection pressure to fine tune allostery on changes to the CAP ligand-binding pocket without a drive to a noncooperative state. In general, we hypothesize an evolutionary selection pressure to retain slow relaxation dynamics-induced allostery in proteins in which evolution of the ligand-binding site is occurring. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency

    OpenAIRE

    Garone, Caterina; Garc??a-D??az, Beatriz; Emmanuele, Valentina; L??pez Garc??a, Luis Carlos; Tadesse, Saba; Akman, Hasan O.; Tanji, Kurenai; Quinzii, Catarina M.; Hirano, Michio

    2014-01-01

    Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2 −/− ) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-...

  4. The transcription factor cyclic adenosine 3',5'-monophosphate response element-binding protein enhances the odonto/osteogenic differentiation of stem cells from the apical papilla.

    Science.gov (United States)

    Su, S; Zhu, Y; Li, S; Liang, Y; Zhang, J

    2017-09-01

    To investigate the role of cAMP response element-binding protein (CREB) in the regulation of odonto/osteogenic differentiation of stem cells from the apical papilla (SCAPs). Stem cells from the apical papilla were obtained from human impacted third molars (n = 15). Isolated SCAPs were transfected with CREB overexpressing/silenced lentivirus. Transfected cells were stained with alizarin red to investigate mineralized nodule formation. The expression of the mineralization-related genes, alkaline phosphatase (ALP), collagen type I (Col I), runt-related transcription factor 2 (RUNX2), osterix (OSX) and osteocalcin (OCN), was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Protein expression of the odontogenic-related marker dentine sialoprotein (DSP) and the osteogenic-related marker RUNX2 was measured by Western blotting analysis. One-way analysis of variance (anova) and Student's t-test were used for statistical analysis (a = 0.05). The overexpression of CREB enhanced mineralized nodule formation and up-regulated (P odonto/osteogenic-related markers, including ALP, Col I, RUNX2, OSX and OCN, and also increased (P odonto/osteogenic-related markers. Up-regulation of CREB expression promoted odonto/osteogenic differentiation of SCAPs and provided a potential method for the regeneration of the dentine-pulp complex. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Effects and Mechanism of Action of a Tribulus terrestris Extract on Penile Erection

    Science.gov (United States)

    Do, Jungmo; Choi, Seemin; Choi, Jaehwi

    2013-01-01

    Purpose Tribulus terrestris has been used as an aphrodisiac. However, little is known about the effects and mechanism of action of T. terrestris on penile erection. Therefore, the effect of a T. terrestris extract and the mechanism of action of the extract on relaxation of the corpus cavernosum (CC) were investigated. The erectogenic effects of an oral preparation of the extract were also assessed. Materials and Methods The relaxation effects and mechanism of action of the T. terrestris extract on rabbit CC were investigated in an organ bath. The intracavernous pressure (ICP) was calculated after oral administration of the extract for 1 month to evaluate whether the relaxation response of the CC shown in the organ bath occurred in vivo. Additionally, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were measured in the CC by immunoassay. Smooth muscle relaxation was expressed as the percentage decrease in precontraction induced by phenylephrine. The ICP was also assessed in rats after oral administration of the extract for 1 month, and changes in concentrations of cGMP and cAMP were monitored. Results Concentration-dependent relaxation effects of the extract on the CC were detected in the organ bath study. Relaxation of the CC by the T. terrestris extract was inhibited in both an endothelium-removed group and an L-arginen methyl ester pretreatment group. The ICP measured after oral administration of the T. terrestris extract for 1 month was higher than that measured in the control group, and a significant increase in cAMP was observed in the T. terrestris extract group. Conclusions The T. terrestris extract induced concentration-dependent relaxation of the CC in an organ bath. The mechanism included a reaction involving the nitric oxide/nitric oxide synthase pathway and endothelium of the CC. Moreover, in an in vivo study, the T. terrestris extract showed a significant concentration-dependent increase in ICP. Accordingly, the T

  6. Effects and Mechanism of Action of a Tribulus terrestris Extract on Penile Erection.

    Science.gov (United States)

    Do, Jungmo; Choi, Seemin; Choi, Jaehwi; Hyun, Jae Seog

    2013-03-01

    Tribulus terrestris has been used as an aphrodisiac. However, little is known about the effects and mechanism of action of T. terrestris on penile erection. Therefore, the effect of a T. terrestris extract and the mechanism of action of the extract on relaxation of the corpus cavernosum (CC) were investigated. The erectogenic effects of an oral preparation of the extract were also assessed. The relaxation effects and mechanism of action of the T. terrestris extract on rabbit CC were investigated in an organ bath. The intracavernous pressure (ICP) was calculated after oral administration of the extract for 1 month to evaluate whether the relaxation response of the CC shown in the organ bath occurred in vivo. Additionally, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were measured in the CC by immunoassay. Smooth muscle relaxation was expressed as the percentage decrease in precontraction induced by phenylephrine. The ICP was also assessed in rats after oral administration of the extract for 1 month, and changes in concentrations of cGMP and cAMP were monitored. Concentration-dependent relaxation effects of the extract on the CC were detected in the organ bath study. Relaxation of the CC by the T. terrestris extract was inhibited in both an endothelium-removed group and an L-arginen methyl ester pretreatment group. The ICP measured after oral administration of the T. terrestris extract for 1 month was higher than that measured in the control group, and a significant increase in cAMP was observed in the T. terrestris extract group. The T. terrestris extract induced concentration-dependent relaxation of the CC in an organ bath. The mechanism included a reaction involving the nitric oxide/nitric oxide synthase pathway and endothelium of the CC. Moreover, in an in vivo study, the T. terrestris extract showed a significant concentration-dependent increase in ICP. Accordingly, the T. terrestris extract may improve erectile function.

  7. DECK: Distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking

    Directory of Open Access Journals (Sweden)

    Vakser Ilya A

    2011-07-01

    Full Text Available Abstract Background Computational approaches to protein-protein docking typically include scoring aimed at improving the rank of the near-native structure relative to the false-positive matches. Knowledge-based potentials improve modeling of protein complexes by taking advantage of the rapidly increasing amount of experimentally derived information on protein-protein association. An essential element of knowledge-based potentials is defining the reference state for an optimal description of the residue-residue (or atom-atom pairs in the non-interaction state. Results The study presents a new Distance- and Environment-dependent, Coarse-grained, Knowledge-based (DECK potential for scoring of protein-protein docking predictions. Training sets of protein-protein matches were generated based on bound and unbound forms of proteins taken from the DOCKGROUND resource. Each residue was represented by a pseudo-atom in the geometric center of the side chain. To capture the long-range and the multi-body interactions, residues in different secondary structure elements at protein-protein interfaces were considered as different residue types. Five reference states for the potentials were defined and tested. The optimal reference state was selected and the cutoff effect on the distance-dependent potentials investigated. The potentials were validated on the docking decoys sets, showing better performance than the existing potentials used in scoring of protein-protein docking results. Conclusions A novel residue-based statistical potential for protein-protein docking was developed and validated on docking decoy sets. The results show that the scoring function DECK can successfully identify near-native protein-protein matches and thus is useful in protein docking. In addition to the practical application of the potentials, the study provides insights into the relative utility of the reference states, the scope of the distance dependence, and the coarse-graining of

  8. Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280).

    Science.gov (United States)

    Li, Ming; Li, Chuanyu; Weingarten, Paul; Bunzow, James R; Grandy, David K; Zhou, Qun Yong

    2002-03-01

    Proteins that bind to G protein-coupled receptors have been identified as regulators of receptor localization and signaling. In our previous studies, a cytoskeletal protein, actin-binding protein 280 (ABP-280), was found to associate with the third cytoplasmic loop of dopamine D(2) receptors. In this study, we demonstrate that ABP-280 also interacts with dopamine D(3) receptors, but not with D(4) receptors. Similar to the dopamine D(2) receptor, the D(3)/ABP-280 association is of signaling importance. In human melanoma M2 cells lacking ABP-280, D(3) receptors were unable to inhibit forskolin-stimulated cyclic AMP (cAMP) production significantly. D(4) receptors, however, exhibited a similar degree of inhibition of forskolin-stimulated cAMP production in ABP-280-deficient M2 cells and ABP-280-replent M2 subclones (A7 cells). Further experiments revealed that the D(3)/ABP-280 interaction was critically dependent upon a 36 amino acid carboxyl domain of the D(3) receptor third loop, which is conserved in the D(2) receptor but not in the D(4) receptor. Our results demonstrate a subtype-specific regulation of dopamine D(2)-family receptor signaling by the cytoskeletal protein ABP-280.

  9. Specific Interactions of Antitumor Metallocenes with Deoxydinucleoside Monophosphates

    Science.gov (United States)

    Eberle, Rahel P.; Hari, Yvonne; Schürch, Stefan

    2017-09-01

    Bent metallocenes Cp2MCl2 (M = Ti, V, Nb, Mo) are known to exhibit cytotoxic activity against a variety of cancer types. Though the mechanism of action is not fully understood yet, the accumulation of the metal ions in the nucleus points towards DNA as one of the primary targets. A set of eight deoxydinucleoside monophosphates was used to study the adduct yields with metallocenes and cisplatin. The binding affinities are reflected by the relative intensities of the adducts and were found to follow the order of Pt > V > Ti > Mo (no adducts were detected with Nb). High-resolution tandem mass spectrometry was applied to locate the binding patterns in the deoxydinucleoside monophosphates. Whereas cisplatin binds to the soft nitrogen atoms in the purine nucleobases, the metallocenes additionally interact with the hard phosphate oxygen, which is in good agreement with the hard and soft (Lewis) acids and bases (HSAB) concept. However, the binding specificities were found to be unique for each metallocene. The hard Lewis acids titanium and vanadium predominantly bind to the deprotonated phosphate oxygen, whereas molybdenum, an intermediate Lewis acid, preferentially interacts with the nucleobases. Nucleobases comprise alternative binding sites for titanium and vanadium, presumably oxygen atoms for the first and nitrogen atoms for the latter. In summary, the intrinsic binding behavior of the different metallodrugs is reflected by the gas-phase dissociation of the adducts. Consequently, MS/MS can provide insights into therapeutically relevant interactions between metallodrugs and their cellular targets. [Figure not available: see fulltext.

  10. Molecular characterization of adenosine 5'-monophosphate deaminase--the key enzyme responsible for the umami taste of nori (Porphyra yezoensis Ueda, Rhodophyta).

    Science.gov (United States)

    Minami, Seiko; Sato, Minoru; Shiraiwa, Yoshihiro; Iwamoto, Koji

    2011-12-01

    The enzyme adenosine 5'-monophosphate deaminase (AMPD, EC 3.5.4.6) catalyzes the conversion of adenosine 5'-monophosphate to inosine 5'-mononucleotide (IMP). IMP is generally known as the compound responsible for the umami taste of the edible red alga Porphyra yezoensis Ueda that is known in Japan as nori. Therefore, we suspect that AMPD plays a key role in providing a favorable nori taste. In this study, we undertake the molecular characterization of nori-derived AMPD. The nori AMPD protein has a molecular mass of 55 kDa as estimated from both gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The calculated molecular mass from the amino acid sequence deduced from cDNA is 57.1 kDa. The isoelectric point is 5.71. The coding region of AMPD consists of 1,566 bp encoding 522 amino acids and possesses a transmembrane domain and two N-glycosylation sites. The sequence identity of nori AMPD in human and yeast AMPDs was found to be less than 50% and 20% in DNA and amino acid sequences, respectively. Proline in the conserved motif of [SA]-[LIVM]-[NGS]-[STA]-D-D-P was found to be converted to glutamate. These results indicate that nori AMPD is a novel type of AMPD.

  11. PKA-RIIB Deficiency Induces Brown Fatlike Adipocytes in Inguinal WAT and Promotes Energy Expenditure in Male FVB/NJ Mice.

    Science.gov (United States)

    Su, Jing; Wu, Wei; Huang, Shan; Xue, Ruidan; Wang, Yi; Wan, Yun; Zhang, Lv; Qin, Lang; Zhang, Qiongyue; Zhu, Xiaoming; Zhang, Zhaoyun; Ye, Hongying; Wu, Xiaohui; Li, Yiming

    2017-03-01

    Obesity has become the most common metabolic disorder worldwide. Promoting brown adipose tissue (BAT) and beige adipose tissue formation, and therefore, a functional increase in energy expenditure, may counteract obesity. Mice lacking type IIβ regulatory subunit of adenosine 3',5' cyclic monophosphate (cAMP)-dependent protein kinase A (PKA-RIIB) display reduced adiposity and resistance to diet-induced obesity. PKA-RIIB, encoded by the Prkar2b gene, is most abundant in BAT and white adipose tissue (WAT) and in the brain. In this study, we show that mice lacking PKA-RIIB have increased energy expenditure, limited weight gain, and improved glucose metabolism. PKA-RIIB deficiency induces brownlike adipocyte in inguinal WAT (iWAT). PKA-RIIB deficiency also increases the expression of uncoupling protein 1 and other thermogenic genes in iWAT and primary preadipocytes from iWAT through a mechanism involving increased PKA activity, which is represented by increased phosphorylation of PKA substrate, cAMP response element binding protein, and P38 mitogen-activated protein kinase. Our study provides evidence for the role of PKA-RIIB deficiency in regulating thermogenesis in WAT, which may potentially have therapeutic implications for the treatment of obesity and related metabolic disorders. Copyright © 2017 by the Endocrine Society.

  12. Inhibition of hepatitis C virus replication through adenosine monophosphate-activated protein kinase-dependent and -independent pathways.

    Science.gov (United States)

    Nakashima, Kenji; Takeuchi, Kenji; Chihara, Kazuyasu; Hotta, Hak; Sada, Kiyonao

    2011-11-01

    Persistent infection with hepatitis C virus (HCV) is closely correlated with type 2 diabetes. In this study, replication of HCV at different glucose concentrations was investigated by using J6/JFH1-derived cell-adapted HCV in Huh-7.5 cells and the mechanism of regulation of HCV replication by AMP-activated protein kinase (AMPK) as an energy sensor of the cell analyzed. Reducing the glucose concentration in the cell culture medium from 4.5 to 1.0 g/L resulted in suppression of HCV replication, along with activation of AMPK. Whereas treatment of cells with AMPK activator 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) suppressed HCV replication, compound C, a specific AMPK inhibitor, prevented AICAR's effect, suggesting that AICAR suppresses the replication of HCV by activating AMPK in Huh-7.5 cells. In contrast, compound C induced further suppression of HCV replication when the cells were cultured in low glucose concentrations or with metformin. These results suggest that low glucose concentrations and metformin have anti-HCV effects independently of AMPK activation. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  13. Identification and Characterization of Novel Plant Adenylate Cyclases – The Arabidopsis Thaliana Potassium Uptake Permeases

    KAUST Repository

    Al-Younis, Inas

    2018-01-01

    Adenylyl Cyclases (ACs) catalyze the formation of the key universal second messenger adenosine 3’, 5’-cyclic monophosphate (cAMP) from adenosine 5’- triphosphate. Cyclic AMP participates in several signal transduction pathways and is present

  14. Effects of Averrhoa carambola L. (Oxalidaceae) juice mediated on hyperglycemia, hyperlipidemia, and its influence on regulatory protein expression in the injured kidneys of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Pham, Hoa Thi Thai; Huang, Wansu; Han, Chuangye; Li, Juman; Xie, Qiuqiao; Wei, Jinbin; Xu, Xiaohui; Lai, Zefeng; Huang, Xiang; Huang, Renbin; Wen, Qingwei

    2017-01-01

    Recently, many reports have shown that Averrhoa carambola L. (Oxalidaceae) juice (EACJ) could reduce blood glucose in humans. However, its mechanisms have not been well explored; therefore, our study aimed to investigate the beneficial effects of EACJ on hyperglycemia, hyperlipidemia and renal injury in streptozotocin (STZ)-induced diabetic mice. Those mice were injected with STZ via the tail vein (120 mg/kg body weight) and were identified as diabetic mice when the level of blood glucose was ≥ 11.1 mmol/L. Those mice were intragastriced gavage with saline, EACJ (25, 50, 100 g/kg body weight/d) and metformin (320 mg/kg body weight/d) for 21 days. The fasting blood glucose (FBG), free fatty acids (FFA), total cholesterol (TC), triglycerides (TG), Scr (CREA) and blood urea nitrogen (BUN) were significantly decreased, while the sorbitol dehydrogenase (SDH), Cyclic Adenosine monophosphate (cAMP), malondialdehyde (MDA), superoxide dismutase (SOD), and insulin were elevated. Diabetes-dependent alterations in the kidney, such as glomerular hypertrophy, thicken and tubular basement membrane, were improved after 21 days of EACJ treatment. Hyperglycemia, renal formation and the expressions of related proteins such as connective tissue growth factor (CTGF) and transforming growth factor beta 1 (TGF-β1) were markedly decreased by EACJ. These results indicate that EACJ treatment decrease hyperglycemia, hyperlipidemia and inhibit the progression of diabetic nephropathy (DN), which may be linked to regulating several pharmacological targets for treating or preventing DN.

  15. Calcium pathways such as cAMP modulate clothianidin action through activation of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors.

    Science.gov (United States)

    Calas-List, Delphine; List, Olivier; Quinchard, Sophie; Thany, Steeve H

    2013-07-01

    Clothianidin is a neonicotinoid insecticide developed in the early 2000s. We have recently demonstrated that it was a full agonist of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors expressed in the cockroach dorsal unpaired median neurons. Clothianidin was able to act as an agonist of imidacloprid-insensitive nAChR2 receptor and internal regulation of cAMP concentration modulated nAChR2 sensitivity to clothianidin. In the present study, we demonstrated that cAMP modulated the agonist action of clothianidin via α-bungarotoxin-sensitive and insensitive receptors. Clothianidin-induced current-voltage curves were dependent to clothianidin concentrations. At 10 μM clothianidin, increasing cAMP concentration induced a linear current-voltage curve. Clothianidin effects were blocked by 0.5 μM α-bungarotoxin suggesting that cAMP modulation occurred through α-bungarotoxin-sensitive receptors. At 1 mM clothianidin, cAMP effects were associated to α-bungarotoxin-insensitive receptors because clothianidin-induced currents were blocked by 5 μM mecamylamine and 20 μM d-tubocurarine. In addition, we found that application of 1mM clothianidin induced a strong increase of intracellular calcium concentration. These data reinforced the finding that calcium pathways including cAMP modulated clothianidin action on insect nicotinic acetylcholine receptors. We proposed that intracellular calcium pathways such as cAMP could be a target to modulate the mode of action of neonicotinoid insecticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Acridone-based inhibitors of inosine 5'-monophosphate dehydrogenase: discovery and SAR leading to the identification of N-(2-(6-(4-ethylpiperazin-1-yl)pyridin-3-yl)propan-2-yl)-2- fluoro-9-oxo-9,10-dihydroacridine-3-carboxamide (BMS-566419).

    Science.gov (United States)

    Watterson, Scott H; Chen, Ping; Zhao, Yufen; Gu, Henry H; Dhar, T G Murali; Xiao, Zili; Ballentine, Shelley K; Shen, Zhongqi; Fleener, Catherine A; Rouleau, Katherine A; Obermeier, Mary; Yang, Zheng; McIntyre, Kim W; Shuster, David J; Witmer, Mark; Dambach, Donna; Chao, Sam; Mathur, Arvind; Chen, Bang-Chi; Barrish, Joel C; Robl, Jeffrey A; Townsend, Robert; Iwanowicz, Edwin J

    2007-07-26

    Inosine monophosphate dehydrogenase (IMPDH), a key enzyme in the de novo synthesis of guanosine nucleotides, catalyzes the irreversible nicotinamide-adenine dinucleotide dependent oxidation of inosine-5'-monophosphate to xanthosine-5'-monophosphate. Mycophenolate Mofetil (MMF), a prodrug of mycophenolic acid, has clinical utility for the treatment of transplant rejection based on its inhibition of IMPDH. The overall clinical benefit of MMF is limited by what is generally believed to be compound-based, dose-limiting gastrointestinal (GI) toxicity that is related to its specific pharmacokinetic characteristics. Thus, development of an IMPDH inhibitor with a novel structure and a different pharmacokinetic profile may reduce the likelihood of GI toxicity and allow for increased efficacy. This article will detail the discovery and SAR leading to a novel and potent acridone-based IMPDH inhibitor 4m and its efficacy and GI tolerability when administered orally in a rat adjuvant arthritis model.

  17. Boot Camps: A Critique and a Proposed Alternative.

    Science.gov (United States)

    Salerno, Anthony W.

    1994-01-01

    Explores origins of boot camp concept and application of its principles to juvenile delinquents. Offers eight-point critique of concept itself. Concludes with alternative: combination of intermittent incarceration (lasting at least six months and comprised of "no frills" camp for one week, followed by weekends gradually spaced further…

  18. cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness.

    Directory of Open Access Journals (Sweden)

    Sonja Langmesser

    Full Text Available Many effects of nitric oxide (NO are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP. cGMP activates cGMP-dependent protein kinases (PRKGs, which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1 in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS duration and in non-REM sleep (NREMS consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG power in the delta frequency range (1-4 Hz under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.

  19. The Physics of Quidditch Summer Camp: An Interdisciplinary Approach

    Science.gov (United States)

    Hammer, Donna; Uher, Tim

    The University of Maryland Physics Department has developed an innovative summer camp program that takes an interdisciplinary approach to engaging and teaching physics. The Physics of Quidditch Camp uniquely sits at the intersection of physics, sports, and literature, utilizing the real-life sport of quidditch adapted from the Harry Potter novels to stimulate critical thinking about real laws of physics and leaps of imagination, while actively engaging students in learning the sport and discussing the literature. Throughout the camp, middle school participants become immersed in fun physics experiments and exciting physical activities, which aim to build and enhance skills in problem-solving, analytical thinking, and teamwork. This camp has pioneered new ways of teaching physics to pre-college students, successfully engaged middle school students in learning physics, and grown a large demand for such activities.

  20. An antisense oligodeoxynucleotide targeted against the type IIβ regulatory subunit mRNA of protein kinase inhibits cAMP-induced differentiation in HL-60 leukemia cells without affecting phorbol ester effects

    International Nuclear Information System (INIS)

    Tortora, G.; Clair, T.; Cho-Chung, Y.S.

    1990-01-01

    The type II β regulatory subunit of cAMP-dependent protein kinase (RII β ) has been hypothesized to play an important role in the growth inhibition and differentiation induced by site-selective cAMP analogs in human cancer cells, but direct proof of this function has been lacking. To address this tissue, HL-60 human promyelocytic leukemia cells were exposed to RII β antisense synthetic oligodeoxynucleotide, and the effects on cAMP-induced growth regulation were examined. Exposure of these cells to RII β antisense oligodeoxynucleotide resulted in a decrease in cAMP analog-induced growth inhibition and differentiation without apparent effect on differentiation induced by phorbol esters. This loss in cAMP growth regulatory function correlated with a decrease in basal and induced levels of RII β protein. Exposure to RII β sense, RI α and RII α antisense, or irrelevant oligodeoxynucleotides had no such effect. These results show that the RII β regulatory subunit of protein kinase plays a critical role in the cAMP-induced growth regulation of HL-60 leukemia cells

  1. FRET-based binding assay between a fluorescent cAMP analogue and a cyclic nucleotide-binding domain tagged with a CFP.

    Science.gov (United States)

    Romero, Francisco; Santana-Calvo, Carmen; Sánchez-Guevara, Yoloxochitl; Nishigaki, Takuya

    2017-09-01

    The cyclic nucleotide-binding domain (CNBD) functions as a regulatory domain of many proteins involved in cyclic nucleotide signalling. We developed a straightforward and reliable binding assay based on intermolecular fluorescence resonance energy transfer (FRET) between an adenosine-3', 5'-cyclic monophosphate analogue labelled with fluorescein and a recombinant CNBD of human EPAC1 tagged with a cyan fluorescence protein (CFP). The high FRET efficiency of this method (~ 80%) allowed us to perform several types of binding experiments with nanomolar range of sample using conventional equipment. In addition, the CFP tag on the CNBD enabled us to perform a specific binding experiment using an unpurified protein. Considering these advantages, this technique is useful to study poorly characterized CNBDs. © 2017 Federation of European Biochemical Societies.

  2. Exploring Marine Science through the University of Delaware's TIDE camp

    Science.gov (United States)

    Veron, D. E.; Newton, F. A.; Veron, F.; Trembanis, A. C.; Miller, D. C.

    2012-12-01

    For the past five years, the University of Delaware has offered a two-week, residential, summer camp to rising sophomores, juniors, and seniors who are interested in marine science. The camp, named TIDE (Taking an Interest in Delaware's Estuary) camp, is designed to introduce students to the breadth of marine science while providing them with a college experience. Campers participate in a variety of academic activities which include classroom, laboratory, and field experiences, as well as numerous social activities. Two unique features of this small, focused camp is the large number of university faculty that are involved, and the ability of students to participate in ongoing research projects. At various times students have participated in fish and dolphin counts, AUV deployment, wind-wave tank experiments, coastal water and beach studies, and ROV activities. In addition, each year campers have participated in a local service project. Through communication with former TIDE participants, it is clear that this two-week, formative experience plays a large role in students choice of major when entering college.2012 Tide Camp - Salt marsh in southern Delaware 2012 Tide Camp - Field trip on a small boat

  3. Refugee camps, fire disasters and burn injuries

    Science.gov (United States)

    Atiyeh, B.S.; Gunn, S.W.A.

    2017-01-01

    Summary In the past five years, no fewer than 15 conflicts have brought unspeakable tragedy and misery to millions across the world. At present, nearly 20 people are forcibly displaced every minute as a result of conflict or persecution, representing a crisis of historic proportions. Many displaced persons end up in camps generally developing in an impromptu fashion, and are totally dependent on humanitarian aid. The precarious condition of temporary installations puts the nearly 700 refugee camps worldwide at high risk of disease, child soldier and terrorist recruitment, and physical and sexual violence. Poorly planned, densely packed refugee settlements are also one of the most pathogenic environments possible, representing high risk for fires with potential for uncontrolled fire spread and development over sometimes quite large areas. Moreover, providing healthcare to refugees comes with its own unique challenges. Internationally recognized guidelines for minimum standards in shelters and settlements have been set, however they remain largely inapplicable. As for fire risk reduction, and despite the high number of fire incidents, it is not evident that fire safety can justify a higher priority. In that regard, a number of often conflicting influences will need to be considered. The greatest challenge remains in balancing the various risks, such as the need/cost of shelter against the fire risk/cost of fire protection. PMID:29849526

  4. Investigation of Sylvatic Typhus at a Wilderness Camp

    Centers for Disease Control (CDC) Podcasts

    2009-06-30

    In this podcast, Dr. Greg Dasch discusses an outbreak of four cases of sylvatic typhus that occurred at a wilderness camp in Pennsylvania. Sylvatic typhus is very rare in the United States, with only 41 cases since it was discovered in the United States in 1975. Lab work at CDC and the discovery that all four camp counselors who became ill had slept in the same bunk at the camp between 2004 and 2006 ultimately led to confirmation that flying squirrels living in the wall of the cabin were to blame for the illnesses.  Created: 6/30/2009 by Emerging Infectious Diseases.   Date Released: 6/30/2009.

  5. The cAMP-activated GTP exchange factor, Epac1 Upregulates Plasma Membrane and Nuclear Akt Kinase Activities in 8-CPT-2-O-Me-cAMP-Stimulated Macrophages: Gene silencing of the cAMP-activated GTP exchange Epac1 prevents 8-CPT-2-O-Me-cAMP activation of Akt activity in macrophages*

    OpenAIRE

    Misra, Uma K.; Kaczowka, Steven; Pizzo, Salvatore V.

    2008-01-01

    cAMP regulates a wide range of processes through its downstream effectors including PKA, and the family of guanine nucleotide exchange factors. Depending on the cell type, cAMP inhibits or stimulates growth and proliferation in a PKA-dependent or independent manner. PKA-independent effects are mediated by PI 3-kinases-Akt signaling and EPAC1 (exchange protein directly activated by cAMP) activation. Recently, we reported PKA-independent activation of the protein kinase Akt as well co-immunopre...

  6. Regulation of Constitutive GPR3 Signaling and Surface Localization by GRK2 and β-arrestin-2 Overexpression in HEK293 Cells.

    Directory of Open Access Journals (Sweden)

    Katie M Lowther

    Full Text Available G protein-coupled receptor 3 (GPR3 is a constitutively active receptor that maintains high 3'-5'-cyclic adenosine monophosphate (cAMP levels required for meiotic arrest in oocytes and CNS function. Ligand-activated G protein-coupled receptors (GPCRs signal at the cell surface and are silenced by phosphorylation and β-arrestin recruitment upon endocytosis. Some GPCRs can also signal from endosomes following internalization. Little is known about the localization, signaling, and regulation of constitutively active GPCRs. We demonstrate herein that exogenously-expressed GPR3 localizes to the cell membrane and undergoes internalization in HEK293 cells. Inhibition of endocytosis increased cell surface-localized GPR3 and cAMP levels while overexpression of GPCR-Kinase 2 (GRK2 and β-arrestin-2 decreased cell surface-localized GPR3 and cAMP levels. GRK2 by itself is sufficient to decrease cAMP production but both GRK2 and β-arrestin-2 are required to decrease cell surface GPR3. GRK2 regulates GPR3 independently of its kinase activity since a kinase inactive GRK2-K220R mutant significantly decreased cAMP levels. However, GRK2-K220R and β-arrestin-2 do not diminish cell surface GPR3, suggesting that phosphorylation is required to induce GPR3 internalization. To understand which residues are targeted for desensitization, we mutated potential phosphorylation sites in the third intracellular loop and C-terminus and examined the effect on cAMP and receptor surface localization. Mutation of residues in the third intracellular loop dramatically increased cAMP levels whereas mutation of residues in the C-terminus produced cAMP levels comparable to GPR3 wild type. Interestingly, both mutations significantly reduced cell surface expression of GPR3. These results demonstrate that GPR3 signals at the plasma membrane and can be silenced by GRK2/β-arrestin overexpression. These results also strongly implicate the serine and/or threonine residues in the third

  7. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response. Published by Elsevier Inc.

  8. Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac

    Science.gov (United States)

    Zhou, L; Ma, S L; Yeung, P K K; Wong, Y H; Tsim, K W K; So, K F; Lam, L C W; Chung, S K

    2016-01-01

    Intracellular cAMP and serotonin are important modulators of anxiety and depression. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) also known as Prozac, is widely used against depression, potentially by activating cAMP response element-binding protein (CREB) and increasing brain-derived neurotrophic factor (BDNF) through protein kinase A (PKA). However, the role of Epac1 and Epac2 (Rap guanine nucleotide exchange factors, RAPGEF3 and RAPGEF4, respectively) as potential downstream targets of SSRI/cAMP in mood regulations is not yet clear. Here, we investigated the phenotypes of Epac1 (Epac1−/−) or Epac2 (Epac2−/−) knockout mice by comparing them with their wild-type counterparts. Surprisingly, Epac2−/− mice exhibited a wide range of mood disorders, including anxiety and depression with learning and memory deficits in contextual and cued fear-conditioning tests without affecting Epac1 expression or PKA activity. Interestingly, rs17746510, one of the three single-nucleotide polymorphisms (SNPs) in RAPGEF4 associated with cognitive decline in Chinese Alzheimer's disease (AD) patients, was significantly correlated with apathy and mood disturbance, whereas no significant association was observed between RAPGEF3 SNPs and the risk of AD or neuropsychiatric inventory scores. To further determine the detailed role of Epac2 in SSRI/serotonin/cAMP-involved mood disorders, we treated Epac2−/− mice with a SSRI, Prozac. The alteration in open field behavior and impaired hippocampal cell proliferation in Epac2−/− mice were alleviated by Prozac. Taken together, Epac2 gene polymorphism is a putative risk factor for mood disorders in AD patients in part by affecting the hippocampal neurogenesis. PMID:27598965

  9. Emergency Medicine Residency Boot Camp Curriculum: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ataya, Ramsey

    2015-03-01

    Full Text Available Introduction: Establishing a boot camp curriculum is pertinent for emergency medicine (EM residents in order to develop proficiency in a large scope of procedures and leadership skills.  In this article, we describe our program’s EM boot camp curriculum as well as measure the confidence levels of resident physicians through a pre- and post-boot camp survey. Methods: We designed a one-month boot camp curriculum with the intention of improving the confidence, procedural performance, leadership, communication and resource management of EM interns. Our curriculum consisted of 12 hours of initial training and culminated in a two-day boot camp. The initial day consisted of clinical skill training and the second day included code drill scenarios followed by interprofessional debriefing.   Results: Twelve EM interns entered residency with an overall confidence score of 3.2 (1-5 scale across all surveyed skills. Interns reported the highest pre-survey confidence scores in suturing (4.3 and genitourinary exams (3.9. The lowest pre-survey confidence score was in thoracostomy (2.4. Following the capstone experience, overall confidence scores increased to 4.0. Confidence increased the most in defibrillation and thoracostomy. Additionally, all interns reported post-survey confidence scores of at least 3.0 in all skills, representing an internal anchor of “moderately confident/need guidance at times to perform procedure.” Conclusion: At the completion of the boot camp curriculum, EM interns had improvement in self-reported confidence across all surveyed skills and procedures. The described EM boot camp curriculum was effective, feasible and provided a foundation to our trainees during their first month of residency. [West J Emerg Med. 2015;16(2:356–361.

  10. Studies on the mechanism of action of enterotoxin-induced fluid secretion in the gut

    International Nuclear Information System (INIS)

    Schirgi-Degen, A.

    1992-12-01

    The mechanism of action of Clostridium difficile enterotoxin A (CA), of Escherichia coli enterotoxin (STa) and of cholera toxin (CT), which are known to cause severe diarrhea, were studied in a preparation of ligated jejunal loops of anesthetized rats in vivo. The toxins were administered intraluminally. Pharmacological agents, which were tested for their potency to influence toxin-related effects, were administered subcutaneously. Net fluid transport was determined gravimetrically, prostaglandin (PG) E 2 -output into the lumen, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) contents in the mucosa were measured by radioimmunoassay, serotonin-(5-HT)-output into the lumen was determined by high performance liquid chromatography. The histopathological effects of CA and CT were examined by light- and scanning electron microscopy. All three toxins caused net fluid secretion (FS). 5-HT 2 -(ketanserin) and 5-HT 3 -receptor antagonists (tropisetron, ondansetron, granisetron) dose-dependently reduced or abolished CT- and STa-induced net FS, CA-induced net FS was not influenced. Indomethacin reduced CA-, CT- and STa-induced net FS. Elevation of PGE 2 -output occurred after exposure to CA and CT and was reduced by indomethacin. CA caused severe histopathological lesions and also CT time-dependently caused morphological changes, which may take part in the secretory response. It is concluded that 5-HT, using both 5-HT 2 - and 5-HT 3 -receptors, mediates CT- and STa, but not CA-induced FS. PGE 2 is involved in FS caused by all three toxins. CAMP and cGMP are presumedly no causative mediators of toxin-induced FS

  11. Uridine 5'-Monophosphate Synthase Is Transcriptionally Regulated by Pyrimidine Levels in Nicotiana plumbaginifolia

    Science.gov (United States)

    Santoso; Thornburg

    1998-02-01

    To understand the regulation and expression of pyrimidine biosynthesis in plants, we have examined the effect of the metabolic inhibitor 5-fluoroorotic acid (FOA) on uridine-5'-monophosphate synthase (UMPSase) expression in cell cultures of Nicotiana plumbaginifolia. UMPSase is the rate-limiting step of pyrimidine biosynthesis in plants. Addition of FOA causes an up-regulation of UMPSase enzyme activity in cell cultures after a lag phase of several days. Western-blot analysis demonstrated that the up-regulation in enzyme activity was caused by increased expression of the UMPSase protein. Northern-blot analysis demonstrated a higher level of UMPSase mRNA in the FOA-induced tissues than in control tissues. Run-on transcriptional assays showed that the UMPSase gene was transcriptionally activated after FOA treatment. The mechanism of toxicity of FOA is through thymine starvation. We found that addition of thymine abrogated the FOA-mediated up-regulation of UMPSase. In addition, methotrexate and aminopterin, which affect thymine levels by inhibiting dihydrofolate reductase, also up-regulate UMPSase in N. plumbaginifolia cells.

  12. Participant Perspectives on the ESO Astronomy Camp Programme

    Science.gov (United States)

    Olivotto, C.; Cenadelli, D.; Gamal, M.; Grossmann, D.; Teller, L. A. I.; Marta, A. S.; Matoni, C. L.; Taillard, A.

    2015-09-01

    This article describes the experience of attending the European Southern Observatory (ESO) Astronomy Camp from the perspective of its participants - students aged between 16 and 18 years old from around the world. The students shared a week together during the winter of 2014 in the Alpine village of Saint-Barthelemy, Italy. The camp was organised by ESO in collaboration with Sterrenlab and the Astronomical Observatory of the Autonomous Region of the Aosta Valley and offered a rich programme of astronomy and leisure activities. This article focuses on the concept of astronomy camps, and their role as a unique tool to complement formal classroom education, rather than on the astronomy activities and the scientific programme. Thus, it is not an academic review of the implemented methodologies, but rather a reflection on the overall experience. The article was brought together from collaborative accounts by some of the participants who were asked to reflect on the experience. The participants who contributed to this article represent the diversity of the ESO Astronomy Camp's alumni community.

  13. Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Zhong-Rong Zhang

    2017-06-01

    Full Text Available Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L. Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB. Blockage of cAMP/CREB downstream signals with protein kinase A (PKA inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression.

  14. Camp Verde Adult Reading Program. Final Performance Report.

    Science.gov (United States)

    Maynard, David A.

    This document begins with a four-page performance report describing how the Camp Verde Adult Reading Program site was relocated to the Community Center Complex, and the Town Council contracted directly with the Friends of the Camp Verde Library to provide for the requirements of the program. The U.S. Department of Education grant allowed the…

  15. Effect of Increased Cyclic AMP Concentration on Muscle Protein Synthesis and Beta-Adrenergic Receptor Expression in Chicken Skeletal Muscle Cells in Culture

    Science.gov (United States)

    Young, R. B.; Vaughn, J. R.; Bridge, K. Y.; Smith, C. K.

    1998-01-01

    Analogies of epinephrine are known to cause hypertrophy of skeletal muscle when fed to animals. These compounds presumably exert their physiological action through interaction with the P-adrenergic receptor. Since the intracellular signal generated by the Beta-adrenergic receptor is cyclic AMP (cAMP), experiments were initiated in cell culture to determine if artificial elevation of cAMP by treatment with forskolin would alter muscle protein metabolism and P-adrenergic receptor expression. Chicken skeletal muscle cells after 7 days in culture were treated with 0.2-30 micrometers forskolin for a total of three days. At the end of the treatment period, both the concentration of cAMP and the quantity of myosin heavy chain (MHC) were measured. Concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. In contrast, the quantity of MHC was increased approximately 50% above control cells at 0.2 micrometers forskolin, but exhibited a gradual decline at higher levels of forskolin so that the quantity of MHC in cells treated with 30 micrometers forskolin was not significantly different from controls. Curiously, the intracellular concentration of cAMP which elicited the maximum increase in the quantity of MHC was only 40% higher than cAMP concentration in control cells.

  16. He Sapa Bloketu Waecun: 2008 Summer Science and Cultural Camps

    Science.gov (United States)

    Kliche, D. V.; Sanovia, J.; Decker, R.; Bolman, J.

    2008-12-01

    The South Dakota School of Mines, Humboldt State University and Sinte Gleska University with support from the National Science Foundation, sponsored four camps for South Dakota Lakota youth to nurture a geosciences learning community linked to culturally significant sites in the Black Hills. These camps utilized outdoor, experiential learning to integrate indigenous knowledge with contemporary western science. The project resulted in increased awareness among Native and non-Native Americans, young and adult, about the importance of geosciences in their connection and interpretation of nature. The project also motivated participants in learning and becoming active in land and resources protection and the importance of becoming knowledgeable and active in regulatory policies (both Tribal and State). The four camps were scheduled during the month of June, 2008, which is the month of the summer solstice, a sacred time for the Lakota people which signal the Lakota Sundance Ceremony. The timing of the camps was chosen to give the Native American participants the framework to express their connection to Native lands through the understanding of their oral history. For the first time in such camps, middle and high school students were encouraged to have a parent or relative attending with them. The camps proved to be a great success among students and their families. The curriculum and activities helped participants immerse themselves mentally, physically and spiritually into an experience of a life time. We plan to show our results from these camps and emphasize the usefulness of this new approach in teaching science and encouraging the new generation to pursue careers in geosciences.

  17. Effect of thuringiensin on adenylate cyclase in rat cerebral cortex

    International Nuclear Information System (INIS)

    Tsai, S.-F.; Yang Chi; Wang, S.-C.; Wang, J.-S.; Hwang, J.-S.; Ho, S.-P.

    2004-01-01

    The purpose of this work is to evaluate the effect of thuringiensin on the adenylate cyclase activity in rat cerebral cortex. The cyclic adenosine 3'5'-monophosphate (cAMP) levels were shown to be dose-dependently elevated 17-450% or 54-377% by thuringiensin at concentrations of 10 μM-100 mM or 0.5-4 mM, due to the activation of basal adenylate cyclase activity of rat cerebral cortical membrane preparation. Thuringiensin also activated basal activity of a commercial adenylate cyclase from Escherichia coli. However, the forskolin-stimulated adenylate cyclase activity in rat cerebral cortex was inhibited by thuringiensin at concentrations of 1-100 μM, thus cAMP production decreased. Furthermore, thuringiensin or adenylate cyclase inhibitor (MDL-12330A) reduced the forskolin (10 μM)-stimulated adenylate cyclase activity at concentrations of 10 μM, 49% or 43% inhibition, respectively. In conclusion, this study demonstrated that thuringiensin could activate basal adenylate cyclase activity and increase cAMP concentrations in rat cerebral cortex or in a commercial adenylate cyclase. Comparing the dose-dependent effects of thuringiensin on the basal and forskolin-stimulated adenylate cyclase activity, thuringiensin can be regarded as a weak activator of adenylate cyclase or an inhibitor of forskolin-stimulated adenylate cyclase

  18. Geographies of the camp

    NARCIS (Netherlands)

    Minca, C.

    2015-01-01

    Facing the current growing global archipelago of encampments – including concentration, detention, transit, identification, refugee, military and training camps, this article is a geographical reflection on ‘the camp’, as a modern institution and as a spatial bio-political technology. In particular,

  19. Endogenous Parathyroid Hormone Promotes Fracture Healing by Increasing Expression of BMPR2 through cAMP/PKA/CREB Pathway in Mice

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2017-06-01

    Full Text Available Background/Aims: Endogenous parathyroid hormone (PTH plays an important role in fracture healing. This study investigated whether endogenous PTH regulates fracture healing by bone morphogenetic protein (BMP and/or the transforming growth factor-β (TGF-β signaling pathway. Methods: Eight-week-old wild-type (WT and PTH-knockout (PTH KO male mice were selected, and models of open right-femoral fracture were constructed. Fracture healing and callus characteristics of mice in the two groups were compared by X-ray, micro-computed tomography, histological, and immunohistochemical examinations. Bone marrow mesenchymal stem cells (BMMSCs of 8-week-old WT and PTHKO male mice were obtained and induced into osteoblasts and chondrocytes. Results: We found that expression levels of Runt-related transcription factor (RUNX2, bone morphogenetic protein-receptor-type Ⅱ (BMPR2, phosphorylated Smad 1/5/8, and phosphorylated cyclic adenosine monophosphate-responsive element binding protein (CREB in the callus of PTHKO mice were significantly decreased, whereas no significant difference in expression of SOX9, TGF-βR2,or pSMAD2/3 was observed between PTHKO and WT mice. Additionally, the activity of osteoblast alkaline phosphatase was low at 7 days post-induction, and was upregulated by addition of PTH or dibutyryl cyclic adenosine monophosphate (dbcAMP to the cell culture. Furthermore, H89 (protein kinase A inhibitoreliminated the simulating effects of PTH and dbcAMP, and a low concentration of cyclic adenosine monophosphate (cAMP was observed in PTHKO mouse BMMSCs. Conclusion: These results suggested that endogenous PTH enhanced BMPR2 expression by a cAMP/PKA/CREB pathway in osteoblasts, and increased RUNX2 expression through transduction of the BMP/pSMAD1/5/8 signaling pathway.

  20. Opposing effects of cAMP and T259 phosphorylation on plasma membrane diffusion of the water channel aquaporin-5 in Madin-Darby canine kidney cells

    DEFF Research Database (Denmark)

    Koffman, Jennifer Skaarup; Christensen, Eva Arnspang; Marlar, Saw

    2015-01-01

    Aquaporin-5 (AQP5) facilitates passive water transport in glandular epithelia in response to secretory stimuli via intracellular pathways involving calcium release, cAMP and protein kinase A (PKA). In epithelial plasma membranes, AQP5 may be acutely regulated to facilitate water transport...... in the plasma membrane diffusion coefficient of AQP5. We aimed to test the short-term regulatory effects of the above pathways, by measuring lateral diffusion of AQP5 and an AQP5 phospho-mutant, T259A, using k-space Image Correlation Spectroscopy of quantum dot- and EGFP-labeled AQP5. Elevated cAMP and PKA...... inhibition significantly decreased lateral diffusion of AQP5, whereas T259A mutation showed opposing effects; slowing diffusion without stimulation and increasing diffusion to basal levels after cAMP elevation. Thus, lateral diffusion of AQP5 is significantly regulated by cAMP, PKA, and T259 phosphorylation...

  1. Simulation-based otolaryngology - head and neck surgery boot camp: 'how I do it'.

    Science.gov (United States)

    Chin, C J; Chin, C A; Roth, K; Rotenberg, B W; Fung, K

    2016-03-01

    In otolaryngology, surgical emergencies can occur at any time. An annual surgical training camp (or 'boot camp') offers junior residents from across North America the opportunity to learn and practice these skills in a safe environment. The goals of this study were to describe the set-up and execution of a simulation-based otolaryngology boot camp and to determine participants' confidence in performing routine and emergency on-call procedures in stressful situations before and after the boot camp. There were three main components of the boot camp: task trainers, simulations and an interactive panel discussion. Surveys were given to participants before and after the boot camp, and their confidence in performing the different tasks was assessed via multiple t-tests. Participants comprised 22 residents from 12 different universities; 10 of these completed both boot camp surveys. Of the nine tasks, the residents reported a significant improvement in confidence levels for six, including surgical airway and orbital haematoma management. An otolaryngology boot camp gives residents the chance to learn and practice emergency skills before encountering the emergencies in everyday practice. Their confidence in multiple skillsets was significantly improved after the boot camp. Given the shift towards competency-based learning in medical training, this study has implications for all surgical and procedural specialties.

  2. Klambi Lurik Compang-Camping: Sebuah Komposisi Karawitan

    Directory of Open Access Journals (Sweden)

    SUHARDJONO -

    2013-11-01

    Full Text Available Klambi Lurik Compang-Camping Karawitan Composition. This article discusses the creation process ofKlambi Lurik Compang Camping karawitan composition. This composition is inspired by Jineman Klambi Lurik,penned by Wasiran –a traditional artist and teaching staff in Karawitan study programme in ISI Yogyakarta. Thisjineman is favoured by both laypeople and karawitan traditional artists. This composition consists of eight parts,united as one full composition. The creation methods are exploration, improvisation, and shaping.

  3. Summer camp course in nuclear operations

    International Nuclear Information System (INIS)

    Peterson, P.F.; James, J.Z.; Terrell, B.E.

    1993-01-01

    This paper describes a new kind of nuclear engineering curriculum that echoes an old method of professional training - the intensive summer camp. For many years a staple of the training of civil engineers and foresters, summer camp courses immerse the student in an intensive, focused experience, isolated from the familiar campus and resembling the actual work environment for which the student is being trained. With financial support from the U.S. Department of Energy, University of California-Berkeley (UCB) and Pacific Gas ampersand Electric (PG ampersand E) have launched such a course for UCB nuclear engineering undergraduates

  4. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A–Phosphatidylinositol 3 Kinase–p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages

    Directory of Open Access Journals (Sweden)

    Hyo-Ji Lee

    2018-04-01

    Full Text Available Tuberculosis is caused by the infectious agent Mycobacterium tuberculosis (Mtb. Mtb has various survival strategies, including blockade of phagosome maturation and inhibition of antigen presentation. Lysophosphatidylcholine (LPC is a major phospholipid component of oxidized low-density lipoprotein and is involved in various cellular responses, such as activation of second messengers and bactericidal activity in neutrophils. In this study, macrophages were infected with a low infectious dose of Mtb and treated with LPC to investigate the bactericidal activity of LPC against Mtb. In macrophages infected with Mtb strain, H37Ra or H37Rv, LPC suppressed bacterial growth; however, this effect was suppressed in bone marrow-derived macrophages (BMDMs isolated from G2A (a G protein-coupled receptor involved in some LPC actions knockout mice. LPC also promoted phagosome maturation via phosphatidylinositol 3 kinase (PI3K–p38 mitogen-activated protein kinase (MAPK-mediated reactive oxygen species production and intracellular Ca2+ release during Mtb infection. In addition, LPC induced increased levels of intracellular cyclic adenosine monophosphate (cAMP and phosphorylated glycogen synthase kinase 3 beta (GSK3β in Mtb-infected macrophages. Protein kinase A (PKA-induced phosphorylation of GSK3β suppressed activation of NF-κB in LPC-treated macrophages during Mtb infection, leading to decreased secretion of pro-inflammatory cytokines and increased secretion of anti-inflammatory cytokines. These results suggest that LPC can effectively control Mtb growth by promoting phagosome maturation via cAMP-induced activation of the PKA–PI3K–p38 MAPK pathway. Moreover, LPC can regulate excessive production of pro-inflammatory cytokines associated with bacterial infection of macrophages.

  5. Summer Camp July 2017 - Registration

    CERN Multimedia

    EVE et École

    2017-01-01

    The CERN Staff Association’s Summer Camp will be open for children from 4 to 6 years old during four weeks, from 3 to 28 July. Registration is offered on a weekly basis for 450 CHF, lunch included. This year, the various activities will revolve around the theme of the Four Elements. Registration opened on 20 March 2017 for children currently attending the EVE and School of the Association. It will be open from 3 April for children of CERN Members of Personnel, and starting from 24 April for all other children. The general conditions are available on the website of the EVE and School of CERN Staff Association: http://nurseryschool.web.cern.ch. For further questions, please contact us by email at Summer.Camp@cern.ch.

  6. Melatonin regulates CRE-dependent gene transcription underlying osteoblast proliferation by activating Src and PKA in parallel.

    Science.gov (United States)

    Tao, Lin; Zhu, Yue

    2018-01-01

    Several studies have indicated a relationship between melatonin and idiopathic scoliosis, including our previous work which demonstrated that melatonin can inhibit osteoblast proliferation; however, the mechanism remains unclear. Here, we utilized a MTT assay to show that melatonin significantly reduces osteoblast proliferation in a concentration-and time-dependent manner. Through a combination of techniques, including real-time PCR, MTT assays, immunofluorescence, and luciferase assays, we confirmed that melatonin-induced changes in phosphorylated cAMP response element-binding protein (CREB) reduced transcriptional activity in a melatonin receptor-dependent manner. Surprisingly, treatment of osteoblasts with the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor PD98059 up-regulated other cascades upstream of CREB. We next treated cells with PKA and Src inhibitors and observed that melatonin can also activate the protein kinase A (PKA) and Src pathways. To examine whether Src is upstream from the cAMP-PKA pathway, we measured cAMP levels in response to melatonin with and without a Src inhibitor (PP2) and found that PP2 had no additional effect. Therefore, the transcription-dependent mechanisms involved in CREB phosphorylation, along with melatonin, activated Src via a parallel signaling pathway that was separate from that of PKA. Finally, we transfected osteoblasts with lentiviral CREB short hairpin (sh) RNAs and found a decrease in the expression of proliferating cell nuclear antigen (PCNA) and osteoblast proliferation. These results suggest that CREB and PCNA are downstream targets of melatonin signaling, and that the down-regulation of CREB, which is regulated via PKA and Src pathways, contributes to the melatonin-induced inhibition of osteoblast proliferation.

  7. The camp analogue, dbcAMP can stimulate rabbit reproductive functions: I. Effect on ovarian folliculogenesis, ovulation and embryo production

    Directory of Open Access Journals (Sweden)

    Chrenek P.

    2012-01-01

    Full Text Available The aim of our study was to examine the influence of administration of N6,2’-dibutyryladenosine 3’5’-cyclic monophosphate (dbcAMP, a cAMP agonist, on ovarian folliculogenesis and atresia, as well as on reproductive efficiency in rabbits, whose ovarian cycle and ovulation was induced by gonadotropins. Ovarian cycle and ovulation of control rabbits were induced by 20 IU/kg PMSG followed by 35 IU/kg hCG administration. Experimental animals received PMSG and hCG together with dbcAMP (at 5, 25 or 50 μg/animal. After ovulation and insemination, the animals were sacrificed. Ovaries were weighted, histological sections of ovaries were prepared, and the presence of ovulated and not ovulated follicles and different stages of atresia was evaluated by light microscopy. The eggs were flushed from the oviducts after insemination and cultured up to blastocyst cell stage. Numbers of ovarian Corpora lutea, ovulated oocytes and oocyte-derived zygotes and embryos reaching hatched blastocyst stage were determined. Administration of dbcAMP (at doses 25 or 50 μg/animal, but not at 5 μg/animal was able to increase the proportion of follicles with cystic and luteinization-related atresia. Furthermore, dbcAMP (50 μg/animal, but not lower doses increased the ovarian mass, number of Corpora lutea, number of harvested oocytes, zygotes and embryos at blastocyst stage derived from these zygotes after culture. These data demonstrate that dbcAMP can stimulate rabbit ovarian follicle atresia, ovulation, oocyte, zygote and embryo yield and development. Furthermore, they confirm in the involvement of cyclic nucleotide-dependent intracellular mechanisms in the control of rabbit reproductive functions and potential practical usefulness of dbcAMP in improving animal reproduction and fertility.

  8. Homosexual inmates in the Buchenwald Concentration Camp.

    Science.gov (United States)

    Röll, W

    1996-01-01

    The treatment of homosexual inmates in Nazi concentration camps is a subject which was largely ignored by historians in both West and East Germany after the war. Not until the 1980s, when research began to focus on some of the lesser-known victims of Nazi terror, did attention shift to the fate of homosexuals. This process can be seen clearly at the Buchenwald Memorial in the former GDR, the site of the persecution and also the death of considerable numbers of prisoners identified by the pink triangle on their clothing. The persecution of homosexuals in Nazi Germany began in 1933, even before Buchenwald was built in 1937. The Nazis aimed to eradicate homosexuality, which they saw as a threat to the survival of the German people. Incarceration in concentration camps like Buchenwald marked a stage in the radicalization of Nazi policy against homosexuals. There they were subjected to the harshest conditions and treated as the lowest of the low in the camp hierarchy. They were continually exposed to the terror of the SS but also the latent prejudices of the rest of the camp population. The culminating points of their maltreatment in Buchenwald were the use of homosexuals in experiments to develop immunization against typhus fever and the attempt by an SS doctor to "cure" homosexuality through the implantation of sexual hormones.

  9. Preparing for the primary care clinic: an ambulatory boot camp for internal medicine interns

    Science.gov (United States)

    Esch, Lindsay M.; Bird, Amber-Nicole; Oyler, Julie L.; Lee, Wei Wei; Shah, Sachin D.; Pincavage, Amber T.

    2015-01-01

    Introduction Internal medicine (IM) interns start continuity clinic with variable ambulatory training. Multiple other specialties have utilized a boot camp style curriculum to improve surgical and procedural skills, but boot camps have not been used to improve interns’ ambulatory knowledge and confidence. The authors implemented and assessed the impact of an intern ambulatory boot camp pilot on primary care knowledge, confidence, and curricular satisfaction. Methods During July 2014, IM interns attended ambulatory boot camp. It included clinically focused case-based didactic sessions on common ambulatory topics as well as orientation to the clinic and electronic medical records. Interns anonymously completed a 15-question pre-test on topics covered in the boot camp as well as an identical post-test after the boot camp. The interns were surveyed regarding their confidence and satisfaction. Results Thirty-eight interns participated in the boot camp. Prior to the boot camp, few interns reported confidence managing common outpatient conditions. The average pre-test knowledge score was 46.3%. The average post-test knowledge score significantly improved to 76.1% (pinterns reported that the boot camp was good preparation for clinics and 97% felt that the boot camp boosted their confidence. Conclusions The ambulatory boot camp pilot improved primary care knowledge, and interns thought it was good preparation for clinic. The ambulatory boot camp was well received and may be an effective way to improve the preparation of interns for primary care clinic. Further assessment of clinical performance and expansion to other programs and specialties should be considered. PMID:26609962

  10. Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions.

    Science.gov (United States)

    Li, H J; Sutton-McDowall, M L; Wang, X; Sugimura, S; Thompson, J G; Gilchrist, R B

    2016-04-01

    Can bovine oocyte antioxidant defence and oocyte quality be improved by extending the duration of pre-in vitro maturation (IVM) with cyclic adenosine mono-phosphate (cAMP) modulators? Lengthening the duration of cAMP-modulated pre-IVM elevates intra-oocyte reduced glutathione (GSH) content and reduces hydrogen peroxide (H2O2) via increased cumulus cell-oocyte gap-junctional communication (GJC), associated with an improvement in subsequent embryo development and quality. Oocytes are susceptible to oxidative stress and the oocyte's most important antioxidant glutathione is supplied, at least in part, by cumulus cells. A temporary inhibition of spontaneous meiotic resumption in oocytes can be achieved by preventing a fall in cAMP, and cyclic AMP-modulated pre-IVM maintains cumulus-oocyte GJC and improves subsequent embryo development. This study consisted of a series of 10 experiments using bovine oocytes in vitro, each with multiple replicates. A range of pre-IVM durations were examined as the key study treatments which were compared with a control. The study was designed to examine if one of the oocyte's major antioxidant defences can be enhanced by pre-IVM with cAMP modulators, and to examine the contribution of cumulus-oocyte GJC on these processes. Immature bovine cumulus-oocyte complexes were treated in vitro without (control) or with the cAMP modulators; 100 µM forskolin (FSK) and 500 µM 3-isobutyl-1-methyxanthine (IBMX), for 0, 2, 4 or 6 h (pre-IVM phase) prior to IVM. Oocyte developmental competence was assessed by embryo development and quality post-IVM/IVF. Cumulus-oocyte GJC, intra-oocyte GSH and H2O2 were quantified at various time points during pre-IVM and IVM, in the presence and the absence of functional inhibitors: carbenoxolone (CBX) to block GJC and buthionine sulfoximide (BSO) to inhibit glutathione synthesis. Pre-IVM with FSK + IBMX increased subsequent blastocyst formation rate and quality compared with standard IVM (P gap junctions between

  11. Proven Effectiveness of Missouri 4-H Camps in Developing Life Skills in Youth

    Directory of Open Access Journals (Sweden)

    Michelle D. Klem

    2008-03-01

    Full Text Available Camping is generally believed to be a context for positive youth development. The 4-H Camp environments presumably focus on the development of life skills including managing and thinking; relating and caring; giving and working and; living and being. However, the effectiveness of the Missouri 4-H Camp environments in developing life skills among campers had never been evaluated in a consistent manner across the multiple camping programs. In order to evaluate the efficacy of these camp programs, resident campers within the 10-13 year age range were surveyed about their camping experience during the summer of 2005 and a similar group was surveyed in 2006. Parents of campers were also surveyed both years to gather their perceptions of 4-H Camp’s impact on their children in developing the life skill areas identified above. Parents and youth agreed strongly that the 4-H Camp experience was substantially valuable in developing the life skills identified in the Targeting Life Skills Model (Hendricks, 1998.

  12. Hack City Summer: Computer Camps Can Bring a Vacation of Keyboard Delights.

    Science.gov (United States)

    Shell, Ellen Ruppel

    1983-01-01

    Activities at a summer computer camp (Camp Atari held at East Stroudsburg State College PA) are described. The curriculum, using logic, systematic analysis, and other fundamental programing skills, teaches students to interact effectively and creatively with computers. Sources for finding a computer camp are included. (JN)

  13. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    Science.gov (United States)

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  14. Type II cGMP‑dependent protein kinase inhibits the migration, invasion and proliferation of several types of human cancer cells.

    Science.gov (United States)

    Wu, Min; Wu, Yan; Qian, Hai; Tao, Yan; Pang, Ji; Wang, Ying; Chen, Yongchang

    2017-10-01

    Previous studies have indicated that type II cyclic guanosine monophosphate (cGMP)‑dependent protein kinase (PKG II) could inhibit the proliferation and migration of gastric cancer cells. However, the effects of PKG II on the biological functions of other types of cancer cells remain to be elucidated. Therefore, the aim of the present study was to investigate the effects of PKG II on cancer cells derived from various types of human tissues, including A549 lung, HepG2 hepatic, OS‑RC‑2 renal, SW480 colon cancer cells and U251 glioma cells. Cancer cells were infected with adenoviral constructs coding PKG II (Ad‑PKG II) to up‑regulate PKG II expression, and treated with 8‑(4‑chlorophenylthio) (8‑pCPT)‑cGMP to activate the kinase. A Cell Counting kit 8 assay was used to detect cell proliferation. Cell migration was measured using a Transwell assay, whereas a terminal deoxynucleotidyl transferase 2'‑deoxyuridine, 5'‑triphosphate nick‑end labeling assay was used to detect cell apoptosis. A pull‑down assay was used to investigate the activation of Ras‑related C3 botulinum toxin substrate (Rac) 1 and western blotting was used to detect the expression of proteins of interest. The present results demonstrated that EGF (100 ng/ml, 24 h) promoted the proliferation and migration of cancer cells, and it suppressed their apoptosis. In addition, treatment with EGF enhanced the activation of Rac1, and up‑regulated the protein expression of proliferating cell nuclear antigen, matrix metalloproteinase (MMP)2, MMP7 and B‑cell lymphoma (Bcl)‑2, whereas it down‑regulated the expression of Bcl‑2‑associated X protein. Transfection of cancer cells with Ad‑PKG II, and PKG II activation with 8‑pCPT‑cGMP, was identified to counteract the effects triggered by EGF. The present results suggested that PKG II may exert inhibitory effects on the proliferation and migration of various types of cancer cells.

  15. Assessing Disaster Preparedness Among Select Children's Summer Camps in the United States and Canada.

    Science.gov (United States)

    Chang, Megan; Sielaff, Alan; Bradin, Stuart; Walker, Kevin; Ambrose, Michael; Hashikawa, Andrew

    2017-08-01

    Children's summer camps are at risk for multiple pediatric casualties during a disaster. The degree to which summer camps have instituted disaster preparedness is unknown. We assessed disaster preparedness among selected camps nationally for a range of disasters. We partnered with a national, web-based electronic health records system to send camp leadership of 315 camp organizations a 14-question online survey of disaster preparedness. One response from each camp was selected in the following order of importance: owner, director, physician, nurse, medical technician, office staff, and other. The results were analyzed using descriptive statistics. A total of 181 camps responses were received, 169 of which were complete. Camp types were overnight (60%), day (21%), special/medical needs (14%), and other (5%). Survey respondents were directors (52%), nurses (14%), office staff (10%), physicians (5%), owners (5%), emergency medical technicians (2%), and other (12%). Almost 18% of camps were located >20 mi from a major medical center, and 36% were >5 mi from police/fire departments. Many camps were missing emergency supplies: car/booster seats for evacuation (68%), shelter (35%), vehicles for evacuation (26%), quarantine isolation areas (21%), or emergency supplies of extra water (20%) or food (17%). Plans were unavailable for the following: power outages (23%); lockdowns (15%); illness outbreaks (15%); tornadoes (11%); evacuation for fire, flood, or chemical spill (9%); and other severe weather (8%). Many camps did not have online emergency plans (53%), plans for children with special/medical needs (38%), methods to rapidly communicate information to parents (25%), or methods to identify children for evacuation/reunification with parents (40%). Respondents reported that staff participation in disaster drills varied for weather (58%), evacuations (46%), and lockdowns (36%). The majority (75%) of respondents had not collaborated with medical organizations for planning. A

  16. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.

    Science.gov (United States)

    Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J

    1993-01-01

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692

  17. Cis-Lunar Base Camp

    Science.gov (United States)

    Merrill, Raymond G.; Goodliff, Kandyce E.; Mazanek, Daniel D.; Reeves, John D., Jr.

    2012-01-01

    Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign

  18. Crystallization and preliminary X-ray crystallographic analysis of adenosine 5′-monophosphate deaminase (AMPD) from Arabidopsis thaliana in complex with coformycin 5′-phosphate

    International Nuclear Information System (INIS)

    Han, Byung Woo; Bingman, Craig A.; Mahnke, Donna K.; Sabina, Richard L.; Phillips, George N. Jr

    2005-01-01

    Adenosine 5′-monophosphate deaminase from A. thaliana has been crystallized in complex with coformycin 5′-phosphate. Diffraction data have been collected to 3.34 Å resolution. Adenosine 5′-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5′-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5′-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6 2 22, with unit-cell parameters a = b = 131.325, c = 208.254 Å, α = β = 90, γ = 120°. Diffraction data were collected to 3.34 Å resolution from a crystal in complex with coformycin 5′-phosphate and to 4.05 Å resolution from a crystal of a mercury derivative

  19. Crystallization and preliminary X-ray crystallographic analysis of adenosine 5′-monophosphate deaminase (AMPD) from Arabidopsis thaliana in complex with coformycin 5′-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byung Woo [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Bingman, Craig A. [Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Mahnke, Donna K.; Sabina, Richard L. [Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, WI 53226-4801 (United States); Phillips, George N. Jr, E-mail: phillips@biochem.wisc.edu [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States)

    2005-08-01

    Adenosine 5′-monophosphate deaminase from A. thaliana has been crystallized in complex with coformycin 5′-phosphate. Diffraction data have been collected to 3.34 Å resolution. Adenosine 5′-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5′-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5′-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6{sub 2}22, with unit-cell parameters a = b = 131.325, c = 208.254 Å, α = β = 90, γ = 120°. Diffraction data were collected to 3.34 Å resolution from a crystal in complex with coformycin 5′-phosphate and to 4.05 Å resolution from a crystal of a mercury derivative.

  20. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-01-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V M = 2.3 Å 3 Da −1 )

  1. Involvement of adenosine monophosphate activated kinase in interleukin-6 regulation of steroidogenic acute regulatory protein and cholesterol side chain cleavage enzyme in the bovine zona fasciculata and zona reticularis.

    Science.gov (United States)

    De Silva, Matharage S I; Dayton, Adam W; Rhoten, Lance R; Mallett, John W; Reese, Jared C; Squires, Mathieu D; Dalley, Andrew P; Porter, James P; Judd, Allan M

    2018-06-01

    In bovine adrenal zona fasciculata (ZF) and NCI-H295R cells, interleukin-6 (IL-6) increases cortisol release, increases expression of steroidogenic acute regulatory protein (StAR), cholesterol side chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) (increases steroidogenic proteins), and decreases the expression of adrenal hypoplasia congenita-like protein (DAX-1) (inhibits steroidogenic proteins). In contrast, IL-6 decreases bovine adrenal zona reticularis (ZR) androgen release, StAR, P450scc, and SF-1 expression, and increases DAX-1 expression. Adenosine monophosphate (AMP) activated kinase (AMPK) regulates steroidogenesis, but its role in IL-6 regulation of adrenal steroidogenesis is unknown. In the present study, an AMPK activator (AICAR) increased (P < 0.01) NCI-H295R StAR promoter activity, StAR and P450scc expression, and the phosphorylation of AMPK (PAMPK) and acetyl-CoA carboxylase (PACC) (indexes of AMPK activity). In ZR (decreased StAR, P450scc, SF-1, increased DAX-1) (P < 0.01) and ZF tissues (increased StAR, P450scc, SF-1, decreased DAX-1) (P < 0.01), AICAR modified StAR, P450scc, SF-1 and DAX-1 mRNAs/proteins similar to the effects of IL-6. The activity (increased PAMPK and PACC) (P < 0.01) of AMPK in the ZF and ZR was increased by AICAR and IL-6. In support of an AMPK role in IL-6 ZF and ZR effects, the AMPK inhibitor compound C blocked (P < 0.01) the effects of IL-6 on the expression of StAR, P450scc, SF-1, and DAX-1. Therefore, IL-6 modification of the expression of StAR and P450scc in the ZF and ZR may involve activation of AMPK and these changes may be related to changes in the expression of SF-1 and DAX-1. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Gold Core Mesoporous Organosilica Shell Degradable Nanoparticles for Two-Photon Imaging and Gemcitabine Monophosphate Delivery

    KAUST Repository

    Rhamani, Saher

    2017-09-12

    The synthesis of gold core degradable mesoporous organosilica shell nanoparticles is described. The nanopaticles were very efficient for two-photon luminescence imaging of cancer cells and for in vitro gemcitabine monophosphate delivery, allowing promising theranostic applications in the nanomedicine field.

  3. Gold Core Mesoporous Organosilica Shell Degradable Nanoparticles for Two-Photon Imaging and Gemcitabine Monophosphate Delivery

    KAUST Repository

    Rhamani, Saher; Chaix, Arnaud; Aggad, Dina; Hoang, Phuong Mai; Moosa, Basem; Garcia, Marcel; Gary-Bobo, Magali; Charnay, Clarence; Almalik, Abdulaziz; Durand, Jean-Olivier; Khashab, Niveen M.

    2017-01-01

    The synthesis of gold core degradable mesoporous organosilica shell nanoparticles is described. The nanopaticles were very efficient for two-photon luminescence imaging of cancer cells and for in vitro gemcitabine monophosphate delivery, allowing promising theranostic applications in the nanomedicine field.

  4. Liposome-based Formulation for Intracellular Delivery of Functional Proteins

    Directory of Open Access Journals (Sweden)

    Benoît Chatin

    2015-01-01

    Full Text Available The intracellular delivery of biologically active protein represents an important emerging strategy for both fundamental and therapeutic applications. Here, we optimized in vitro delivery of two functional proteins, the β-galactosidase (β-gal enzyme and the anti-cytokeratin8 (K8 antibody, using liposome-based formulation. The guanidinium-cholesterol cationic lipid bis (guanidinium-tren-cholesterol (BGTC (bis (guanidinium-tren-cholesterol combined to the colipid dioleoyl phosphatidylethanolamine (DOPE (dioleoyl phosphatidylethanolamine was shown to efficiently deliver the β-gal intracellularly without compromising its activity. The lipid/protein molar ratio, protein amount, and culture medium were demonstrated to be key parameters affecting delivery efficiency. The protein itself is an essential factor requiring selection of the appropriate cationic lipid as illustrated by low K8 binding activity of the anti-K8 antibody using guanidinium-based liposome. Optimization of various lipids led to the identification of the aminoglycoside lipid dioleyl succinyl paromomycin (DOSP associated with the imidazole-based helper lipid MM27 as a potent delivery system for K8 antibody, achieving delivery in 67% of HeLa cells. Cryo-transmission electron microscopy showed that the structure of supramolecular assemblies BGTC:DOPE/β-gal and DOSP:MM27/K8 were different depending on liposome types and lipid/protein molar ratio. Finally, we observed that K8 treatment with DOSP:MM27/K8 rescues the cyclic adenosine monophosphate (cAMP-dependent chloride efflux in F508del-CFTR expressing cells, providing a new tool for the study of channelopathies.

  5. Expression of phosphorylated cAMP response element binding protein (p-CREB) in bladder afferent pathways in VIP-/- mice with cyclophosphamide (CYP)-induced cystitis

    DEFF Research Database (Denmark)

    Jensen, Dorthe G; Studeny, Simon; May, Victor

    2008-01-01

    The expression of phosphorylated cAMP response element binding protein (p-CREB) in dorsal root ganglia (DRG) with and without cyclophosphamide (CYP)-induced cystitis (150 mg/kg, i.p; 48 h) was determined in VIP(-/-) and wild-type (WT) mice. p-CREB immunoreactivity (IR) was determined in bladder...... (Fast blue) afferent cells. Nerve growth factor (NGF) bladder content was determined by enzyme-linked immunosorbent assays. Basal expression of p-CREB-IR in DRG of VIP(-/-) mice was (p DRG compared to WT mice. CYP treatment in WT mice increased (p ...-CREB-IR in L1, L2, L5-S1 DRG. CYP treatment in VIP(-/-) mice (p DRG compared to WT with CYP. In WT mice, bladder afferent cells (20-38%) in DRG expressed p-CREB-IR under basal conditions. With CYP, p-CREB-IR increased in bladder afferent cells (60...

  6. Impact of incarceration in Nazi concentration camps on multimorbidity of former prisoners

    Science.gov (United States)

    Jablonski, Robert K; Leszek, Jerzy; Rosińczuk, Joanna; Uchmanowicz, Izabella; Panaszek, Bernard

    2015-01-01

    Objective To show the extent to which the health of former prisoners was affected by incarceration in extermination camps after 5 and 30 years of leaving the camp, and to determine the etiological factors underlying particular dysfunctions. Methods Medical records of former prisoners developed in 1950 (n=250) and 1975 (n=120) were then, after several decades, retrospectively analyzed and compared with the control group, randomized and matched according to age, sex, occupation, and environment. None of the subjects in the control group was a prisoner either at a concentration camp or at any other prison or detention facility. Results Multimorbidity affected mainly the central nervous system (CNS). Five years after leaving a camp, CNS dysfunctions were observed in 66% of former prisoners. Skeletal (42.4%) and cardiovascular system (34.4%) dysfunctions were the second and third most frequent dysfunctions. Thirty years after leaving a camp, the most prevalent coexisting conditions were also found within the CNS (80%), cardiovascular system (58.33%), and skeletal system (55%). Five and 30 years after leaving a camp, multiorgan lesions were found in 21.6% and 60% of survivors, respectively. Multimorbidity was more frequent in a group of prisoners who underwent the state of apathy and depression or who had been incarcerated longer than 24 months. The rate of CNS diseases was four times higher, and the rate of cardiovascular diseases or skeletal system dysfunctions was two times higher, in the study group after 30 years of leaving a camp compared with the control group. Conclusion The consequences of incarceration in concentration camps manifesting as multimorbidity, premature aging, and dramatic increase in mortality rate are observed in the majority of former prisoners. The multimorbidity mostly affected older prisoners who stayed at a camp for a longer time period. PMID:25792836

  7. Peroxisome proliferator-activated receptor delta (PPARdelta )-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling

    DEFF Research Database (Denmark)

    Hansen, Jacob B.; Zhang, H; Rasmussen, T H

    2001-01-01

    of a PPARdelta ligand and methylisobutylxanthine (MIX) or other cAMP elevating agents. We further show that ligands and MIX synergistically stimulated PPARdelta-mediated transactivation. In 3T3-L1 preadipocytes, simultaneous administration of a PPARdelta-selective ligand and MIX significantly enhanced the early...

  8. Short-term treatment with budesonide does not improve hyperresponsiveness to adenosine 5 '-monophosphate in COPD

    NARCIS (Netherlands)

    Rutgers, [No Value; Koeter, GH; van der Mark, TW; Postma, DS

    The role of inhaled corticosteroids in the treatment of chronic obstructive pulmonary disease (COPD) is unclear. We investigated the effects of budesonide on airway hyperresponsiveness (AHR) to methacholine (MCh) and adenosine 5'-monophosphate (AMP), to which we hypothesized the existence of greater

  9. Camp GLOW (Girls Leading Our World): Handbook for Volunteers.

    Science.gov (United States)

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    Camp GLOW (Girls Leading Our World) began in Romania in 1995 as a weeklong leadership camp with the purpose of encouraging young women to become active citizens by building their self-esteem and confidence, increasing their self-awareness, and developing their skills in goal-setting, assertiveness, and career and life planning. Since that first…

  10. Science Camp - lystigt eller lærerigt

    DEFF Research Database (Denmark)

    Ahrenkiel, Linda; Albrechtsen, Thomas S. R.

    2013-01-01

    I oplægget vil vi undersøge fænomenet Science Camps nærmere ved at fortælle om dets historiske udvikling og ikke mindst lægge op til en diskussion af en definition. Derudover vil vi præsentere en case, hvor der med udgangspunkt i et aktuelt ph.d.-projekt er blevet undersøgt, hvad deltagerne får ud...... af at deltage i en science camp: Kan man både vække begejstring og medvirke til læring?...

  11. The accidental city : violence, economy and humanitarianism in Kakuma refugee camp Kenya

    NARCIS (Netherlands)

    Jansen, B.J.

    2011-01-01

    In this research I examine social ordering processes in Kakuma refugee camp in

    Kenya. I view the camp as an accidental city, by which I challenge the image of

    the camp as a temporary and artificial waiting space or a protracted refugee crisis

    per se. The reference to the

  12. Prayer Camps and Biomedical Care in Ghana: Is Collaboration in Mental Health Care Possible?

    Science.gov (United States)

    Arias, Daniel; Taylor, Lauren; Ofori-Atta, Angela; Bradley, Elizabeth H

    2016-01-01

    Experts have suggested that intersectoral partnerships between prayer camps and biomedical care providers may be an effective strategy to address the overwhelming shortage of mental health care workers in Africa and other low-income settings. Nevertheless, previous studies have not explored whether the prayer camp and biomedical staff beliefs and practices provide sufficient common ground to enable cooperative relationships. Therefore, we sought to examine the beliefs and practices of prayer camp staff and the perspective of biomedical care providers, with the goal of characterizing interest in-and potential for-intersectoral partnership between prayer camp staff and biomedical care providers. We conducted 50 open-ended, semi-structured interviews with prophets and staff at nine Christian prayer camps in Ghana, and with staff within Ghana's three public psychiatric hospitals. We used the purposive sampling method to recruit participants and the constant comparative method for qualitative data analysis. Prayer camp staff expressed interest in collaboration with biomedical mental health care providers, particularly if partnerships could provide technical support introducing medications in the prayer camp and address key shortcomings in their infrastructure and hygienic conditions. Nevertheless, challenges for collaboration were apparent as prayer camp staff expressed strong beliefs in a spiritual rather than biomedical explanatory model for mental illness, frequently used fasting and chained restraints in the course of treatment, and endorsed only short-term use of medication to treat mental illness-expressing concerns that long-term medication regimens masked underlying spiritual causes of illness. Biomedical providers were skeptical about the spiritual interpretations of mental illness held by faith healers, and were concerned by the use of chains, fasting, and the lack of adequate living facilities for patients in prayer camps; many, however, expressed interest in

  13. Science and technology camp for girls. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This document reports on the success of Pacific University`s camp held during the summers of 1992 and 1993; ultimate goal of this summer day camp was to increase the number of women in technical and scientific fields. Some experimentation was done with the age groups (7th and 8th grade girls). The curriculum was biology, chemistry, physics, and mathematics/computer science. Laboratory work and field trips were emphasized, along with socialization.

  14. CRP-dependent positive autoregulation and proteolytic degradation regulate competence activator Sxy of Escherichia coli

    DEFF Research Database (Denmark)

    Jaskólska, Milena; Gerdes, Kenn

    2015-01-01

    is positively autoregulated at the level of transcription by a mechanism that requires cAMP receptor protein (CRP), cyclic AMP (cAMP) and a CRP-S site in the sxy promoter. Similarly, we found no evidence that Sxy expression in E. coli was regulated at the translational level. However, our analysis revealed...

  15. Impact of pediatric burn camps on participants' self esteem and body image: an empirical study.

    Science.gov (United States)

    Bakker, Anne; Van der Heijden, Peter G M; Van Son, Maarten J M; Van de Schoot, Rens; Van Loey, Nancy E E

    2011-12-01

    This study focuses on possible effects of specialized summer camps on young burn survivors' self esteem and body image. Quantitative as well as qualitative measures was used. To study possible effects, a pretest-posttest comparison group design with a follow-up was employed. Self-report questionnaires were used to measure self esteem and body image in a burn camp group (n=83, 8-18 years) and in a comparison group of children with burns who did not attend a burn camp during the course of the study (n=90, 8-18 years). Additionally, burn camp participants and parents completed an evaluation form about benefits derived from burn camp. A small positive short-term effect of burn camp participation was found on the 'satisfaction with appearance' component of body image. Overall, participants and parents showed high appreciation of the burn camps and reported several benefits, particularly concerning meeting other young burn survivors. Albeit statistically modest, this is the first quantitative study to document on a significant short-term impact of burn camp on young burn survivors' body image. Implications of this result for future research and burn camp organization were discussed, including the strengths of residential camps for young burn survivors. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  16. G protein-coupled estrogen receptor 1 (GPER1)/GPR30 increases ERK1/2 activity through PDZ motif-dependent and -independent mechanisms.

    Science.gov (United States)

    Gonzalez de Valdivia, Ernesto; Broselid, Stefan; Kahn, Robin; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2017-06-16

    G protein-coupled receptor 30 (GPR30), also called G protein-coupled estrogen receptor 1 (GPER1), is thought to play important roles in breast cancer and cardiometabolic regulation, but many questions remain about ligand activation, effector coupling, and subcellular localization. We showed recently that GPR30 interacts through the C-terminal type I PDZ motif with SAP97 and protein kinase A (PKA)-anchoring protein (AKAP) 5, which anchor the receptor in the plasma membrane and mediate an apparently constitutive decrease in cAMP production independently of G i/o Here, we show that GPR30 also constitutively increases ERK1/2 activity. Removing the receptor PDZ motif or knocking down specifically AKAP5 inhibited the increase, showing that this increase also requires the PDZ interaction. However, the increase was inhibited by pertussis toxin as well as by wortmannin but not by AG1478, indicating that G i/o and phosphoinositide 3-kinase (PI3K) mediate the increase independently of epidermal growth factor receptor transactivation. FK506 and okadaic acid also inhibited the increase, implying that a protein phosphatase is involved. The proposed GPR30 agonist G-1 also increased ERK1/2 activity, but this increase was only observed at a level of receptor expression below that required for the constitutive increase. Furthermore, deleting the PDZ motif did not inhibit the G-1-stimulated increase. Based on these results, we propose that GPR30 increases ERK1/2 activity via two G i/o -mediated mechanisms, a PDZ-dependent, apparently constitutive mechanism and a PDZ-independent G-1-stimulated mechanism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Toscana virus NSs protein promotes degradation of double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Kalveram, Birte; Ikegami, Tetsuro

    2013-04-01

    Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses-i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus-has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells.

  18. Global and local missions of cAMP signaling in neural plasticity, learning and memory

    Directory of Open Access Journals (Sweden)

    Daewoo eLee

    2015-08-01

    Full Text Available The fruit fly Drosophila melanogaster has been a popular model to study cAMP signaling and resultant behaviors due to its powerful genetic approaches. All molecular components (AC, PDE, PKA, CREB, etc essential for cAMP signaling have been identified in the fly. Among them, adenylyl cyclase (AC gene rutabaga and phosphodiesterase (PDE gene dunce have been intensively studied to understand the role of cAMP signaling. Interestingly, these two mutant genes were originally identified on the basis of associative learning deficits. This commentary summarizes findings on the role of cAMP in Drosophila neuronal excitability, synaptic plasticity and memory. It mainly focuses on two distinct mechanisms (global versus local regulating excitatory and inhibitory synaptic plasticity related to cAMP homeostasis. This dual regulatory role of cAMP is to increase the strength of excitatory neural circuits on one hand, but to act locally on postsynaptic GABA receptors to decrease inhibitory synaptic plasticity on the other. Thus the action of cAMP could result in a global increase in the neural circuit excitability and memory. Implications of this cAMP signaling related to drug discovery for neural diseases are also described.

  19. Summer Camp of the CERN Staff Association

    CERN Document Server

    Staff Association

    2017-01-01

    A Journey to Discover the Four Elements Over the past few years, the Children’s Day-Care Centre and School (EVEE) of the CERN Staff Association has transformed into a summer camp for the four weeks of July. Every year, this summer camp welcomes up to 40 children from 4 to 6 years old. The camp offers a rich and varied program. This year, the theme was the four elements of life, and the children set out on a journey to discover a different element every week: WATER was the theme of the first week. What is water? What purpose does it serve? Where can we find it? With these questions and many others in mind, the children set out on a cruise, sailing across Lake Geneva to visit the Lake Geneva Museum in Nyon. All through the week, the children were able to discover the different properties of water by carrying out various scientific experiments. For instance, getting soaked can certainly help observe a simple property of water: it’s wet! Giggles guaranteed. The children made fancy hats and e...

  20. EVERYDAY LIFE IN CAMPS FOR DISPLACED PERSONS IN GERMANY (ON PERSONAL MEMOIRS OF THEIR INHABITANTS

    Directory of Open Access Journals (Sweden)

    Татьяна Александровна Котова

    2015-12-01

    Full Text Available The object of the research of the article is to reveal the main lines of everyday life in camps for displaced persons on the example of such camps as Fyussen, Kempten and Shlayskhaym, located in Germany. The author reveals thepeculiarities of the structure of the camps, household, cultural and spiritual life. The article is written on the basis of memoirs of contemporaries of that time, inhabitants of camps DPs I. N. Koren, V. Gashurova, O. Bezradetskaya-Astromova, I. Hrapunov, I. Savostina and others. The author concludes that in the camps for displaced persons there was active life, but not without difficulties. Despite various problems, in DP camps there was cultural life, various sporting and game events; inhabitants of camps spent leisure time by participating in theatrical and scout circles, ballet troupes. An important role in people’sadaptation to difficult conditions of accommodation in camps was played by publishing activities and the Church which helped people to survive financially and spiritually.

  1. Summer Camp, July 2016

    CERN Multimedia

    Staff Association

    2016-01-01

    During the month of July, the Staff Association’s Children’s Day-Care Centre and School EVEE held a summer camp for 4- to 6-year-olds. 24 children altogether joined in on the adventures. On the summer camp, the children got to “travel” to a different continent of the world every week. Day after day, they would pass through make-believe Customs upon arrival and get their passports stamped by a “customs officer”. For the first week, we went on a trip to Africa. In the spirit of the theme, the children got to do plenty of crafts and coloring, make their own little bindles and play various games. They even had the chance to visit the Museum of Ethnography in Geneva (MEG), learn to play the balafon and make musical instruments with Sterrenlab. For the second week, we set off to discover the Americas, exploring both the South and the North. Alongside different workshops (singing, dancing, storytelling, crafts), the children could enjoy several special ac...

  2. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners

    DEFF Research Database (Denmark)

    Hansen, Mette; Bangsbo, Jens; Jensen, Jørgen

    2015-01-01

    This trial aimed to examine the effect of whey protein hydrolysate intake before and after exercise sessions on endurance performance and recovery in elite orienteers during a training camp. Eighteen elite orienteers participated in a randomized controlled intervention trial during a 1-week...... a strenuous 1-week training camp. The results indicate that protein supplementation in conjunction with each exercise session facilitates the recovery from strenuous training in elite orienteers....

  3. Integrating Enhanced STEM Themes in the UTEP CAREERS Weather Camp for Youth

    Science.gov (United States)

    Güereque, M.; Olgin, J. G.; Kier, M. W.; Winston, C. E.; Fitzgerald, R. M.; Morris, V. R.

    2014-12-01

    The NOAA Center for Atmospheric Science (NCAS) sponsors a network of high school and middle school summer camps entitled "Channeling Atmospheric Research into Educational Experiences Reaching Students program, CAREERS". These camps are conducted nationwide at NCAS academic partners; the University of Texas at El Paso (UTEP), Howard University (HU), University of Puerto Rico at Mayagüez (UPRM), and Jackson State University (JSU). The goals of these camps are to increase the interest of secondary school (HS) students in atmospheric and weather related sciences, target under-represented students, and to ultimately boost their college enrollment in STEM related fields. For 2014 at UTEP, the annual student-outreach weather camp program underwent a thematic overhaul that sought to incorporate more of the geological and environmental context of the region. Doctoral students were allowed to assume greater responsibility for the design, development and implementation of the camp activities. The prevailing assumption was that these Ph.D. students were better suited for peer mentoring, bridging the age and interest gap, and delivering the material through the modern technologies and modes of communication. The redesigned approach focused on the identification of climate drivers within the region and this concept formed a thread throughout the planning and design of the camp modules. The outcome resulted in the incorporation of project based learning (PBL) activities, field excursions, and deployment of weather instrumentation, for explaining regional climate processes and events. Standardized surveys were administered to camp participants to evaluate the efficacy, as well as student perceptions of the camp and its activities. Results will be presented that are based on qualitative and quantitative analysis of student responses.

  4. Teen camp: a unique approach to recruit future nurses.

    Science.gov (United States)

    Redding, Donna A; Riech, Sandy; Prater, Marsha A

    2004-01-01

    A collaborative and unique approach to interest high school students in nursing. To inform educators and nursing departments about an innovative approach to recruit future nurses. Professional literature and authors' experience. All students related positive experiences. The initial camp evaluation produced innovative input from the students, and each camp met its goal of creating career interest in the nursing profession.

  5. Impacts of a Southern Indiana Summer Camp: Adult Reflections on Childhood Experiences

    Directory of Open Access Journals (Sweden)

    Colin L. Snider

    2017-01-01

    Full Text Available Scholars have well documented the impact on youth of attending a residential summer camp. Quantitative studies, generally consisting of pre/post assessments, have found positive outcomes related to self-esteem, self-efficacy, hard skills, and social skills. We explored the long-term outcomes of the camp experience through adult recollections of the camp experience. Participants’ interviews provided four primary, emergent themes: self growth, affinity for nature, life skills, and relationship. Outcomes appear to stem from camper-counselor relationships and unstructured free time. This study highlights the lifelong benefits of the camp experience and suggests there is utility in collecting adult long-term recollections of childhood memories.

  6. Combined activity of post-exercise concentrations of NA and eHsp72 on human neutrophil function: role of cAMP.

    Science.gov (United States)

    Giraldo, Esther; Hinchado, María D; Ortega, Eduardo

    2013-09-01

    Extracellular heat shock proteins of 72 kDa (eHsp72) and noradrenaline (NA) can act as "danger signals" during exercise-induced stress by activating neutrophil function (chemotaxis, phagocytosis, and fungicidal capacity). In addition, post-exercise concentrations of NA increase the expression and release of Hsp72 by human neutrophils, and adrenoreceptors and cAMP are involved in the stimulation of neutrophils by eHsp72. This suggests an interaction between the two molecules in the modulation of neutrophils during exercise-induced stress. Given this context, the aim of the present investigation was to study the combined activity of post-exercise circulating concentrations of NA and eHsp72 on the neutrophil phagocytic process, and to evaluate the role of cAMP as intracellular signal in these effects. Results showed an accumulative stimulation of chemotaxis induced by NA and eHsp72. However, while NA and eHsp72, separately, stimulate the phagocytosis and fungicidal activity of neutrophils, when they act together they do not modify these capacities of neutrophils. Similarly, post-exercise concentrations of NA and eHsp72 separately increased the intracellular level of cAMP, but NA and eHsp72 acting together did not modify the intracellular concentration of cAMP. These results confirm that cAMP can be involved in the autocrine/paracrine physiological regulation of phagocytosis and fungicidal capacity of human neutrophils mediated by NA and eHsp72 in the context of exercise-induced stress. Copyright © 2013 Wiley Periodicals, Inc.

  7. A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example.

    Directory of Open Access Journals (Sweden)

    Gerard N M van der Krogt

    Full Text Available We recently reported on CFP-Epac-YFP, an Epac-based single polypeptide FRET reporter to resolve cAMP levels in living cells. In this study, we compared and optimized the fluorescent protein donor/acceptor pairs for use in biosensors such as CFP-Epac-YFP. Our strategy was to prepare a wide range of constructs consisting of different donor and acceptor fluorescent proteins separated by a short linker. Constructs were expressed in HEK293 cells and tested for FRET and other relevant properties. The most promising pairs were subsequently used in an attempt to improve the FRET span of the Epac-based cAMP sensor. The results show significant albeit not perfect correlation between performance in the spacer construct and in the Epac sensor. Finally, this strategy enabled us to identify improved sensors both for detection by sensitized emission and by fluorescent lifetime imaging. The present overview should be helpful in guiding development of future FRET sensors.

  8. Developing Social Skills of Summer Campers with Autism Spectrum Disorder: A Case Study of Camps on TRACKS Implementation in an Inclusive Day-Camp Setting

    Science.gov (United States)

    Maich, Kimberly; Hall, Carmen L.; van Rhijn, Tricia Marie; Quinlan, Laurie

    2015-01-01

    This research provides preliminary results of an exploratory case study conducted of the Camps on TRACKS program in an inclusive, municipal day-camp program in southwestern Ontario, Canada. Positive changes are demonstrated in the social skills of nine day campers with an autism spectrum disorder (ASD) who participated in the program. In this…

  9. The Effect of a Disability Camp Program on Attitudes towards the Inclusion of Children with Disabilities in a Summer Sport and Leisure Activity Camp

    Science.gov (United States)

    Papaioannou, Christina; Evaggelinou, Christina

    2014-01-01

    The aim of the present study was to examine the impact of a specific Disability Camp Program (DCP) in the attitudes of children without disabilities toward the inclusion of children with disabilities in a summer sport and leisure activity camp. Three hundred eighty-seven campers without disabilities participated in the study and were divided into…

  10. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework

    Science.gov (United States)

    2014-01-01

    Motivation Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. Results We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set. PMID:24646119

  11. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework.

    Science.gov (United States)

    Simha, Ramanuja; Shatkay, Hagit

    2014-03-19

    Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set.

  12. Camp life: Are northern work camps safe havens for a migrant workforce, or dens of iniquity rampant with sex, drugs and alcohol?

    Energy Technology Data Exchange (ETDEWEB)

    Laverty, K.

    2004-02-01

    Two studies, dealing with life in work camps in northern Alberta and yielding contradictory results, are discussed. One study by a graduate student in sociology found that many of the men and women housed in work camps in remote locations of the northeastern oilsands belt use drugs, alcohol and casual sex to relieve boredom and loneliness. The other study, commissioned by the Athabasca Regional Issues Working Group (RWIG) found that camp workers visit Fort McMurray on the average of just over once a week, and use that time to take care of normal business, such as visiting health care professionals, buying gasoline, clothing, etc. It found no evidence of widespread sex, or drug or alcohol abuse among work camp residents. The RWIG study surveyed 25 per cent of the 6,272 worker population living in three camps in the Wood Buffalo region during June 2003. The study prepared by V. Taylor for a M.A. degree in sociology at the University of Calgary was severely criticized, primarily for its conclusions being based on a sample size of only nine men and one woman. Despite the criticism, the Taylor study made headlines across the country and has been instrumental in raising awareness of the special needs of a mobile workforce. A more broadly-based study is in progress at the University of Alberta, supported by the RCMP and a number of workplace stakeholders. Its objectives are to examine the situation more thoroughly, identify gaps in services and to explore long term solutions to what is undeniably a serious problem, indicated, if not proven, by the Taylor study.

  13. Uridine 5′-Monophosphate Synthase Is Transcriptionally Regulated by Pyrimidine Levels in Nicotiana plumbaginifolia1

    Science.gov (United States)

    Santoso, Djoko; Thornburg, Robert

    1998-01-01

    To understand the regulation and expression of pyrimidine biosynthesis in plants, we have examined the effect of the metabolic inhibitor 5-fluoroorotic acid (FOA) on uridine-5′-monophosphate synthase (UMPSase) expression in cell cultures of Nicotiana plumbaginifolia. UMPSase is the rate-limiting step of pyrimidine biosynthesis in plants. Addition of FOA causes an up-regulation of UMPSase enzyme activity in cell cultures after a lag phase of several days. Western-blot analysis demonstrated that the up-regulation in enzyme activity was caused by increased expression of the UMPSase protein. Northern-blot analysis demonstrated a higher level of UMPSase mRNA in the FOA-induced tissues than in control tissues. Run-on transcriptional assays showed that the UMPSase gene was transcriptionally activated after FOA treatment. The mechanism of toxicity of FOA is through thymine starvation. We found that addition of thymine abrogated the FOA-mediated up-regulation of UMPSase. In addition, methotrexate and aminopterin, which affect thymine levels by inhibiting dihydrofolate reductase, also up-regulate UMPSase in N. plumbaginifolia cells. PMID:9490773

  14. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  15. Tying the Design of Your Camp Staff Training to the Delivery of Desired Youth Outcomes

    Science.gov (United States)

    Galloway, Robin; Bourdeau, Virginia; Arnold, Mary; Nott, Brooke D.

    2013-01-01

    As experience camp directors, we've seen the challenges faced by young camp counselors and inexperienced staff. Evaluations from staff at many camps motivated us to help our people be more effective with their campers. In response we created a comprehensive camp staff training. Lessons showed staff what we wanted them to do and say as they…

  16. Do GnRH analogues directly affect human endometrial epithelial cell gene expression?

    KAUST Repository

    Zhang, Xiaomei; Bocca, Silvina Maria; Franchi, Anahí ; Anderson, Sandra; Kaur, Mandeep; Bajic, Vladimir B.; Oehninger, Sergio Carlos

    2010-01-01

    were: (i) to study the modulatory effect of GnRH analogues by RT-PCR [in the absence and presence of E2 and P4, and cyclic adenosine monophos-phate (cAMP)] on mRNA expression of genes modulated during the window of implantation in GnRH analogues

  17. The Development of Environmental Conservation Youth Camping Using Environmental Education Process

    Directory of Open Access Journals (Sweden)

    Okrit Tee-ngarm

    2016-12-01

    Full Text Available The purposes of this research were: to make youths camp activities using environmental education process, to study and to compare the knowledge and attitude before and after the camp activities for conserving environment by using the process of environmental education. The sample were 30 youths in Mueng district, Sisaket province. The tools used in the research including activity manual, knowledge test, attitudes test and participation measurement. The data were analyzed by percentage, mean, standard deviation, and Paired t-test at significant level .05. The result showed that After camp activities for conserving environment by using the process of environmental education, the participats had mean score of knowledge and attitude toward environmental conservation at was higher than before the activities at statistical significantly level .05. And they had participation in youths camp activities for environmental conservation at the most level.

  18. Characterization of radiation-induced products of thymidine 3'-monophosphate and thymidylyl (3'→5') thymidine by high-performance liquid chromatography and laser-desorption fourier-transform mass spectrometry

    International Nuclear Information System (INIS)

    Yoshida, H.; Hettich, R.L.

    1994-01-01

    High-performance liquid chromatography (HPLC) and laser-desorption Fourier-transform mass spectrometry (LD FTMS) have been applied for direct measurements of radiation-induced products of nucleic acid constituents containing thymidine. Laser desorption FTMS could be used for the direct detection (neither hydrolyzed nor derivatized) of X-ray-induced decomposition products of aqueous thymidine monophosphate. After these initial experiments, a variety of hydrogenated and hydroxylated thymine standards were acquired and examined by FTMS to assist in the identification of unknown radiation-induced decomposition products of thymine-containing nucleotides and dinucleotides. To extend these studies to dinucleotides, the radiation-induced products generated by the gamma radiolysis of thymidylyl (3'→5') thymidine (TpT) were isolated by reverse-phase HPLC and identified by LD FTMS. Thymine and thymidine 3'-monophosphate were observed as the major products in this case. Several of the minor products of the HPLC profile were pooled in a single fraction and characterized simultaneously by LD FTMS. The resulting mass spectra indicated the presence of hydroxy-5,6-dihydothymidine monophosphate, 5,6-dihydrothymidine monophosphate and thymidine monophosphate, thymine glycol, hydroxy-5,6-dihydrothymine, 5-hydroxy-methyl-uracil and 5,6-dihydrothymine. The combination of HPLC purification and LD FTMS structural characterization provides a useful tool for the direct measurement of radiation-induced products of nucleotides and dinucleotides. 28 refs., 6 figs., 2 tabs

  19. Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists

    DEFF Research Database (Denmark)

    Hansen, Mette; Bangsbo, Jens; Jensen, Jørgen

    2016-01-01

    BACKGROUND: Training camps for top-class endurance athletes place high physiological demands on the body. Focus on optimizing recovery between training sessions is necessary to minimize the risk of injuries and improve adaptations to the training stimuli. Carbohydrate supplementation during sessi...

  20. Hypotonicity-induced reduction of aquaporin-2 transcription in mpkCCD cells is independent of the tonicity responsive element, vasopressin, and cAMP.

    Science.gov (United States)

    Kortenoeven, Marleen L A; van den Brand, Michiel; Wetzels, Jack F M; Deen, Peter M T

    2011-04-15

    The syndrome of inappropriate antidiuretic hormone secretion is characterized by excessive water uptake and hyponatremia. The extent of hyponatremia, however, is less than anticipated, which is ascribed to a defense mechanism, the vasopressin-escape, and is suggested to involve a tonicity-determined down-regulation of the water channel aquaporin-2 (AQP2). The underlying mechanism, however, is poorly understood. To study this, we used the mouse cortical collecting duct (mpkCCD) cell line. MpkCCD cells, transfected with an AQP2-promoter luciferase construct showed a reduced and increased AQP2 abundance and transcription following culture in hypotonic and hypertonic medium, respectively. This depended on tonicity rather than osmolality and occurred independently of the vasopressin analog dDAVP, cAMP levels, or protein kinase A activity. Although prostaglandins and nitric oxide reduced AQP2 abundance, inhibition of their synthesis did not influence tonicity-induced AQP2 transcription. Also, cells in which the cAMP or tonicity-responsive element (CRE/TonE) in the AQP2-promoter were mutated showed a similar response to hypotonicity. Instead, the tonicity-responsive elements were pin-pointed to nucleotides -283 to -252 and -157 to -126 bp. In conclusion, our data indicate that hypotonicity reduces AQP2 abundance and transcription, which occurs independently of vasopressin, cAMP, and the known TonE and CRE in the AQP2-promoter. Increased prostaglandin and nitric oxide, as found in vivo, may contribute to reduced AQP2 in vasopressin-escape, but do not mediate the effect of hypotonicity on AQP2 transcription. Our data suggest that two novel segments (-283 to -252 and -157 to -126 bp) in the AQP2-promoter mediate the hypotonicity-induced AQP2 down-regulation during vasopressin-escape.

  1. Using lot quality assurance sampling to assess access to water, sanitation and hygiene services in a refugee camp setting in South Sudan: a feasibility study.

    Science.gov (United States)

    Harding, Elizabeth; Beckworth, Colin; Fesselet, Jean-Francois; Lenglet, Annick; Lako, Richard; Valadez, Joseph J

    2017-08-08

    Humanitarian agencies working in refugee camp settings require rapid assessment methods to measure the needs of the populations they serve. Due to the high level of dependency of refugees, agencies need to carry out these assessments. Lot Quality Assurance Sampling (LQAS) is a method commonly used in development settings to assess populations living in a project catchment area to identify their greatest needs. LQAS could be well suited to serve the needs of refugee populations, but it has rarely been used in humanitarian settings. We adapted and implemented an LQAS survey design in Batil refugee camp, South Sudan in May 2013 to measure the added value of using it for sub-camp level assessment. Using pre-existing divisions within the camp, we divided the Batil catchment area into six contiguous segments, called 'supervision areas' (SA). Six teams of two data collectors randomly selected 19 respondents in each SA, who they interviewed to collect information on water, sanitation, hygiene, and diarrhoea prevalence. These findings were aggregated into a stratified random sample of 114 respondents, and the results were analysed to produce a coverage estimate with 95% confidence interval for the camp and to prioritize SAs within the camp. The survey provided coverage estimates on WASH indicators as well as evidence that areas of the camp closer to the main road, to clinics and to the market were better served than areas at the periphery of the camp. This assumption did not hold for all services, however, as sanitation services were uniformly high regardless of location. While it was necessary to adapt the standard LQAS protocol used in low-resource communities, the LQAS model proved to be feasible in a refugee camp setting, and program managers found the results useful at both the catchment area and SA level. This study, one of the few adaptations of LQAS for a camp setting, shows that it is a feasible method for regular monitoring, with the added value of enabling camp

  2. Using lot quality assurance sampling to assess access to water, sanitation and hygiene services in a refugee camp setting in South Sudan: a feasibility study

    Directory of Open Access Journals (Sweden)

    Elizabeth Harding

    2017-08-01

    Full Text Available Abstract Background Humanitarian agencies working in refugee camp settings require rapid assessment methods to measure the needs of the populations they serve. Due to the high level of dependency of refugees, agencies need to carry out these assessments. Lot Quality Assurance Sampling (LQAS is a method commonly used in development settings to assess populations living in a project catchment area to identify their greatest needs. LQAS could be well suited to serve the needs of refugee populations, but it has rarely been used in humanitarian settings. We adapted and implemented an LQAS survey design in Batil refugee camp, South Sudan in May 2013 to measure the added value of using it for sub-camp level assessment. Methods Using pre-existing divisions within the camp, we divided the Batil catchment area into six contiguous segments, called ‘supervision areas’ (SA. Six teams of two data collectors randomly selected 19 respondents in each SA, who they interviewed to collect information on water, sanitation, hygiene, and diarrhoea prevalence. These findings were aggregated into a stratified random sample of 114 respondents, and the results were analysed to produce a coverage estimate with 95% confidence interval for the camp and to prioritize SAs within the camp. Results The survey provided coverage estimates on WASH indicators as well as evidence that areas of the camp closer to the main road, to clinics and to the market were better served than areas at the periphery of the camp. This assumption did not hold for all services, however, as sanitation services were uniformly high regardless of location. While it was necessary to adapt the standard LQAS protocol used in low-resource communities, the LQAS model proved to be feasible in a refugee camp setting, and program managers found the results useful at both the catchment area and SA level. Conclusions This study, one of the few adaptations of LQAS for a camp setting, shows that it is a feasible

  3. Orotidine-5'-monophosphate decarboxylase catalysis: Kinetic isotope effects and the state of hybridization of a bound transition-state analogue

    Energy Technology Data Exchange (ETDEWEB)

    Acheson, S.A.; Bell, J.B.; Jones, M.E.; Wolfenden, R. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))

    1990-04-03

    The enzymatic decarboxylation of orotidine 5'-monophosphate may proceed by an addition-elimination mechanism involving a covalently bound intermediate or by elimination of CO2 to generate a nitrogen ylide. In an attempt to distinguish between these two alternatives, 1-(phosphoribosyl)barbituric acid was synthesized with 13C at the 5-position. Interaction of this potential transition-state analogue inhibitor with yeast orotidine-5'-monophosphate decarboxylase resulted in a small (0.6 ppm) downfield displacement of the C-5 resonance, indicating no rehybridization of the kind that might have been expected to accompany 5,6-addition of an enzyme nucleophile. When the substrate orotidine 5'-monophosphate was synthesized with deuterium at C-5, no significant change in kcat (H/D = 0.99 +/- 0.06) or kcat/KM (H/D = 1.00 +/- 0.06) was found to result, suggesting that C-5 does not undergo significant changes in geometry before or during the step that determines the rate of the catalytic process. These results are consistent with a nitrogen ylide mechanism and offer no support for the intervention of covalently bound intermediates in the catalytic process.

  4. A survey of cyclic replacements for the central diamide moiety of inhibitors of inosine monophosphate dehydrogenase.

    Science.gov (United States)

    Dhar, T G Murali; Liu, Chunjian; Pitts, William J; Guo, Junquing; Watterson, Scott H; Gu, Henry; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Barrish, Joel C; Hollenbaugh, Diane; Iwanowicz, Edwin J

    2002-11-04

    A series of heterocyclic replacements for the central diamide moiety of 1, a potent small molecule inhibitor of inosine monophosphate dehydrogenase (IMPDH) were explored The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for these new series of inhibitors is given.

  5. Regulation of the autophagy protein LC3 by phosphorylation

    Science.gov (United States)

    Cherra, Salvatore J.; Kulich, Scott M.; Uechi, Guy; Balasubramani, Manimalha; Mountzouris, John; Day, Billy W.

    2010-01-01

    Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease–associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl–cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity. PMID:20713600

  6. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Y., E-mail: kurita@cs.tut.ac.jp; Murakawa, T., E-mail: kurita@cs.tut.ac.jp; Shimamura, K., E-mail: kurita@cs.tut.ac.jp; Oishi, M., E-mail: kurita@cs.tut.ac.jp; Ohyama, T., E-mail: kurita@cs.tut.ac.jp; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 (Japan)

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  7. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    International Nuclear Information System (INIS)

    Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.

    2015-01-01

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA

  8. Control of cytoplasmic and nuclear protein kinase A by phosphodiesterases and phosphatases in cardiac myocytes

    Science.gov (United States)

    Haj Slimane, Zeineb; Bedioune, Ibrahim; Lechêne, Patrick; Varin, Audrey; Lefebvre, Florence; Mateo, Philippe; Domergue-Dupont, Valérie; Dewenter, Matthias; Richter, Wito; Conti, Marco; El-Armouche, Ali; Zhang, Jin; Fischmeister, Rodolphe; Vandecasteele, Grégoire

    2014-01-01

    Aims The cAMP-dependent protein kinase (PKA) mediates β-adrenoceptor (β-AR) regulation of cardiac contraction and gene expression. Whereas PKA activity is well characterized in various subcellular compartments of adult cardiomyocytes, its regulation in the nucleus remains largely unknown. The aim of the present study was to compare the modalities of PKA regulation in the cytoplasm and nucleus of cardiomyocytes. Methods and results Cytoplasmic and nuclear cAMP and PKA activity were measured with targeted fluorescence resonance energy transfer probes in adult rat ventricular myocytes. β-AR stimulation with isoprenaline (Iso) led to fast cAMP elevation in both compartments, whereas PKA activity was fast in the cytoplasm but markedly slower in the nucleus. Iso was also more potent and efficient in activating cytoplasmic than nuclear PKA. Similar slow kinetics of nuclear PKA activation was observed upon adenylyl cyclase activation with L-858051 or phosphodiesterase (PDE) inhibition with 3-isobutyl-1-methylxantine. Consistently, pulse stimulation with Iso (15 s) maximally induced PKA and myosin-binding protein C phosphorylation in the cytoplasm, but marginally activated PKA and cAMP response element-binding protein phosphorylation in the nucleus. Inhibition of PDE4 or ablation of the Pde4d gene in mice prolonged cytoplasmic PKA activation and enhanced nuclear PKA responses. In the cytoplasm, phosphatase 1 (PP1) and 2A (PP2A) contributed to the termination of PKA responses, whereas only PP1 played a role in the nucleus. Conclusion Our study reveals a differential integration of cytoplasmic and nuclear PKA responses to β-AR stimulation in cardiac myocytes. This may have important implications in the physiological and pathological hypertrophic response to β-AR stimulation. PMID:24550350

  9. Reflections on Refugee Students' Major Perceptions of Education in Kakuma Refugee Camp, Kenya

    Science.gov (United States)

    Mareng, Chuei D.

    2010-01-01

    This reflective study explores refugee students' perceptions of the educational approach used in Kakuma Refugee Camp in Kenya. The study focuses on my personal reflections as a teacher and a student in this camp, and as a refugee. My goal of writing this narrative is to reflect fully on the refugee students' life in a camp and then contribute to…

  10. Children's cancer camps: a sense of community, a sense of family.

    Science.gov (United States)

    Laing, Catherine M; Moules, Nancy J

    2014-05-01

    Childhood cancer is a family affair, and each year in Canada, approximately 1,400 children and adolescents under the age of 20 are diagnosed with cancer. Innumerable challenges accompany this diagnosis, and in recognition of the stress of childhood cancer, children's cancer camps arose in the 1970s to help children and their families escape the rigidity and severity of cancer treatment. Very little is known about these cancer camps, and to that end, a philosophical hermeneutic study was conducted to understand the meaning of children's cancer camps for the child with cancer and the family. Six families were interviewed to bring understanding to this topic. While the research included findings related to the concept of play, fit and acceptance, storytelling, and grief, this paper will detail the finding related to the solidarity of the community--the "camp family"--as one that creates intense, healing bonds.

  11. Prissy’s Quittin’ Time: The Black Camp Aesthetics of Kara Walker

    Directory of Open Access Journals (Sweden)

    Stephens Brian

    2017-12-01

    Full Text Available Through a close reading of Walker’s first silhouette instalment-the audaciously titled Gone, An Historical Romance of a Civil War as it Occurred Between the Dusky Thighs of One Young Negress and Her Heart (1994-this article examines how Walker utilises black camp to undermine both white supremacist and restrictive black uplift discourse. To be sure, the article is not an attempt to conflate these two, for the former is powerfully worse than the latter. However, it is necessary to explore how both discourses reinforce essentialist articulations of blackness and also to examine how black camp is a provocative analytic for their simultaneous disruption. Camp is usually understood as a queer-derived cultural practice that inflates identity to expose the constructed nature of gender. However, this article shows that black articulations of camp inflate identity to demonstrate the fiction of race as well.

  12. Human muscle-specific A-kinase anchoring protein (mAKAP) polymorphisms modulate the susceptibility to cardiovascular diseases by altering cAMP/ PKA signaling.

    Science.gov (United States)

    Suryavanshi, Santosh V; Jadhav, Shweta M; Anderson, Kody L; Katsonis, Panagiotis; Lichtarge, Olivier; McConnell, Bradley K

    2018-03-30

    One of the crucial cardiac signaling pathways is cAMP-mediated PKA signal transduction which is regulated by a family of scaffolding proteins, A-kinase anchoring proteins (AKAPs). Muscle-specific AKAP (mAKAP) partly regulates cardiac cAMP/PKA signaling by binding to PKA and phosphodiesterase4D3 (PDE4D3) among other proteins and plays a central role in modulating cardiac remodeling. Moreover, genetics plays an incomparable role in modifying the risk of cardiovascular diseases (CVDs). Especially, single nucleotide polymorphisms (SNPs) in various proteins have been shown to predispose individuals to CVDs. Hence, we hypothesized that human mAKAP polymorphisms found in humans with CVDs alter cAMP/PKA pathway influencing the susceptibility of individuals to CVDs. Our computational analyses revealed two mAKAP SNPs found in cardiac disease related patients with highest predicted deleterious effects, Ser(S) 1653 Arg(R) and Glu(E) 2124 Gly(G). Co-immunoprecipitation data in HEK293T cells showed that S1653R SNP, present in the PDE4D3 binding domain of mAKAP, changed the binding of PDE4D3 to mAKAP and E2124G SNP, flanking the 3'-PKA binding domain, changed the binding of PKA before and after stimulation with isoproterenol. These SNPs significantly altered intracellular cAMP levels, global PKA activity and cytosolic PDE activity when compared with the wild-type (WT) before and after isoproterenol stimulation. PKA-mediated phosphorylation of pathological markers was found to be up-regulated after cell stimulation in both mutants. In conclusion, human mAKAP polymorphisms may influence the propensity of developing CVDs by affecting cAMP/PKA signaling supporting the clinical significance of PKA-mAKAP-PDE4D3 interactions.

  13. Vitamin K-dependent carboxylation of pulmonary surfactant-associated proteins

    International Nuclear Information System (INIS)

    Rannels, S.R.; Gallaher, K.J.; Wallin, R.; Rannels, D.E.

    1987-01-01

    Rat type II pneumocytes expressed vitamin K-dependent carboxylase activity that incorporated 14 CO 2 into microsomal protein precursors of molecular weights similar to those of surfactant-associated proteins (SAP). Compared to carboxylated precursor proteins present in the liver, these molecules appeared to be unique to the lung. Antibodies raised against purified rat surfactant reacted with SAP resolved by NaDodSO 4 /PAGE and with surfactant-containing lamellar bodies in type II pneumocyte cytoplasm. NaDodSO 4 /PAGE of microsomal proteins, after carboxylase-catalyzed incorporation of 14 CO 2 , demonstrated radiolabeled, immunoreactive products identical to SAP. The presence of γ-carboxyglutamic acid in these proteins was confirmed by HPLC analysis of SAP hydrolysates. Furthermore, lung carboxylase activity and SAP matured over similar time courses during fetal lung development. These results show that SAP are carboxylated by type II cells via a vitamin K-dependent pathway analogous to that for hepatic carboxylation of clotting factors. Further analogy to the clotting system suggest that γ-carboxyglutamic acid residues in SAP polypeptides play a role in Ca 2+ binding and thus in the known requirements for both cation and SAP in the physiological function of pulmonary surfactant

  14. Identification of Redox and Glucose-Dependent Txnip Protein Interactions

    Directory of Open Access Journals (Sweden)

    Benjamin J. Forred

    2016-01-01

    Full Text Available Thioredoxin-interacting protein (Txnip acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S. Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip.

  15. Health-related quality of life of Palestinian refugees inside and outside camps in Jordan.

    Science.gov (United States)

    Alduraidi, Hamza; Waters, Catherine M

    Jordan hosts more Palestinian refugees than any country in the world. Conditions under which people in a community live influence their health-related quality of life (HRQOL). The purpose of this descriptive comparative cross-sectional study was to compare HRQOL of Palestinian refugees in Jordan who live inside camps with those who live outside camps. Participants, recruited from inside the Baqa'a camp (n = 86) and the surrounding Abu Nsair community (n = 91), completed the World Health Organization Quality of Life Brief questionnaire. There were disparities in education and social relations and environment HRQOL related to income and residency, but not gender, among refugees. Refugees living inside camps, particularly if poorer, fared worse than refugees living outside camps. Enhanced programs and policies may be needed to improve HRQOL, education, and socioeconomics for camp refugees. Nursing's perspective on refugee health could make an important contribution to humanitarian efforts and health diplomacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Joining psychiatric care and faith healing in a prayer camp in Ghana: randomised trial.

    Science.gov (United States)

    Ofori-Atta, A; Attafuah, J; Jack, H; Baning, F; Rosenheck, R

    2018-01-01

    Care of people with serious mental illness in prayer camps in low-income countries generates human rights concerns and ethical challenges for outcome researchers. Aims To ethically evaluate joining traditional faith healing with psychiatric care including medications (Clinical trials.gov identifier NCT02593734). Residents of a Ghana prayer camp were randomly assigned to receive either indicated medication for schizophrenia or mood disorders along with usual prayer camp activities (prayers, chain restraints and fasting) (n = 71); or the prayer camp activities alone (n = 68). Masked psychologists assessed Brief Psychiatric Rating Scale (BPRS) outcomes at 2, 4 and 6 weeks. Researchers discouraged use of chaining, but chaining decisions remained under the control of prayer camp staff. Total BPRS symptoms were significantly lower in the experimental group (P = 0.003, effect size -0.48). There was no significant difference in days in chains. Joining psychiatric and prayer camp care brought symptom benefits but, in the short-run, did not significantly reduce days spent in chains. Declaration of interest None.

  17. Specialized Summer Camps: Provide Benefits for Children and Families Alike

    Science.gov (United States)

    Neff, John M.

    2009-01-01

    The arrival of summer signals a season of endless days of swimming, fishing, summer camps, and other outdoor activities. For children with chronic or terminal illnesses, it can be difficult to participate in many of these activities as well as challenging for parents to find summer camps that not only engage their children, but also offer the…

  18. Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity

    Directory of Open Access Journals (Sweden)

    Tobias Fromme

    2018-02-01

    Full Text Available Objective: Non-shivering thermogenesis in mammalian brown adipose tissue depends on thermogenic uncoupling protein 1. Its activity is triggered by free fatty acids while purine nucleotides mediate inhibition. During activation, it is thought that free fatty acids overcome purine-mediated inhibition. We measured the cellular concentration and the release of purine nucleotide metabolites to uncover a possible role of purine nucleotide degradation in uncoupling protein 1 activation. Methods: With mass spectrometry, purine nucleotide metabolites were quantified in cellular homogenates and supernatants of cultured primary brown adipocytes. We also determined oxygen consumption in response to a β-adrenergic agonist. Results: Upon adrenergic activation, brown adipocytes decreased the intracellular concentration of inhibitory nucleotides (ATP, ADP, GTP and GDP and released the respective degradation products. At the same time, an increase in cellular calcium occurred. None of these phenomena occurred in white adipocytes or myotubes. The brown adipocyte expression of enzymes implicated in purine metabolic remodeling is altered upon cold exposure. Pharmacological and genetic interference of purine metabolism altered uncoupling protein 1 mediated uncoupled respiration. Conclusion: Adrenergic stimulation of brown adipocytes lowers the intracellular concentration of purine nucleotides, thereby contributing to uncoupling protein 1 activation. Keywords: Purine nucleotides, Uncoupling protein 1, Brown adipose tissue, Non-shivering thermogenesis, HILIC-MS/MS, Guanosine monophosphate reductase

  19. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.

    Science.gov (United States)

    Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H

    2012-10-25

    Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in

  20. Overexpression of cyclic adenosine monophosphate effluent protein MRP4 induces an altered response to β-adrenergic stimulation in the senescent rat heart.

    Science.gov (United States)

    Carillion, Aude; Feldman, Sarah; Jiang, Cheng; Atassi, Fabrice; Na, Na; Mougenot, Nathalie; Besse, Sophie; Hulot, Jean-Sébastien; Riou, Bruno; Amour, Julien

    2015-02-01

    In the senescent heart, the positive inotropic response to β-adrenoceptor stimulation is reduced, partly by dysregulation of β1- and β3-adrenoceptors. The multidrug resistance protein 4 (MRP4) takes part in the control of intracellular cyclic adenosine monophosphate concentration by controlling its efflux but the role of MRP4 in the β-adrenergic dysfunction of the senescent heart remains unknown. The β-adrenergic responses to isoproterenol were investigated in vivo (stress echocardiography) and in vitro (isolated cardiomyocyte by Ionoptix with sarcomere shortening and calcium transient) in young (3 months old) and senescent (24 months old) rats pretreated or not with MK571, a specific MRP4 inhibitor. MRP4 was quantified in left ventricular homogenates by Western blotting. Data are mean ± SD expressed as percent of baseline value. The positive inotropic effect of isoproterenol was reduced in senescent rats in vivo (left ventricular shortening fraction 120 ± 16% vs. 158 ± 20%, P < 0.001, n = 16 rats) and in vitro (sarcomere shortening 129 ± 37% vs. 148 ± 35%, P = 0.004, n = 41 or 43 cells) as compared to young rats. MRP4 expression increased 3.6-fold in senescent compared to young rat myocardium (P = 0.012, n = 8 rats per group). In senescent rats, inhibition of MRP4 by MK571 restored the positive inotropic effect of isoproterenol in vivo (143 ± 11%, n = 8 rats). In vitro in senescent cardiomyocytes pretreated with MK571, both sarcomere shortening (161 ± 45% vs. 129 ± 37%, P = 0.007, n = 41 cells per group) and calcium transient amplitude (132 ± 25% vs. 113 ± 27%, P = 0.007) increased significantly. MRP4 overexpression contributes to the reduction of the positive inotropic response to β-adrenoceptor stimulation in the senescent heart.

  1. 2012 USGS Lidar: Brooks Camp (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) had a requirement for high resolution Lidar needed for mapping the Brooks Camp region of Katmai National Park in Alaska....

  2. Lyme Disease Comes to Camp.

    Science.gov (United States)

    Peterson, Michael

    1989-01-01

    Describes one summer camp's plan for dealing with Lyme disease. Describes the disease and the deer tick. Recommends avoiding tick exposure through clothing, frequent examination, showers, and avoiding high grass and brushy areas, and using chemical insect repellents and chemicals to kill ticks in deer mouse nests. (DHP)

  3. [Effect of baicalin on ATPase and LDH and its regulatory effect on the AC/cAMP/PKA signaling pathway in rats with attention deficit hyperactivity disorder].

    Science.gov (United States)

    Zhou, Rong-Yi; Wang, Jiao-Jiao; You, Yue; Sun, Ji-Chao; Song, Yu-Chen; Yuan, Hai-Xia; Han, Xin-Min

    2017-05-01

    To study the effect of baicalin on synaptosomal adenosine triphosphatase (ATPase) and lactate dehydrogenase (LDH) and its regulatory effect on the adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway in rats with attention deficit hyperactivity disorder (ADHD). A total of 40 SHR rats were randomly divided into five groups: ADHD model, methylphenidate hydrochloride treatment (0.07 mg/mL), and low-dose (3.33 mg/mL), medium-dose (6.67 mg/mL), and high-dose (10 mg/mL) baicalin treatment (n=8 each). Eight WKY rats were selected as normal control group. Percoll density gradient centrifugation was used to prepare brain synaptosomes and an electron microscope was used to observe their structure. Colorimetry was used to measure the activities of ATPase and LDH in synaptosomes. ELISA was used to measure the content