WorldWideScience

Sample records for monooxygenase gene recombinant

  1. [Association of kynurenine-3-monooxygenase gene with schizophrenia].

    Science.gov (United States)

    Golimbet, V E; Lezheiko, T V; Alfimova, M V; Abramova, L I; Kondrat'ev, N V

    2014-06-01

    Neurotoxic products produced during tryptophan metabolism via the kynurenine pathway could be involved in schizophrenia pathogenesis. It has been shown that kynurenine-3-monooxygenase (KMO) is indirectly involved in these products' formation. KMO polymorphic loci rs2275163 (C/T) and rs1053230 (A/G) were examined in 187 schizophrenia patients and 229 healthy subjects. A genetic combination of allele T and genotype GG was observed more often in a patient group compared with healthy controls (p = 0.003, OR 2.0 (95% CI 1.2-2.9). In the latter group, this combination was associated with schizophrenia endophenotype (p = 0.04), which manifested in a higher expression of schizotypal personality traits assessed using the MMPI test.

  2. Influence of kynurenine 3-monooxygenase (KMO) gene polymorphism on cognitive function in schizophrenia✰,✰✰

    Science.gov (United States)

    Wonodi, Ikwunga; McMahon, Robert P.; Krishna, Nithin; Mitchell, Braxton D.; Liu, Judy; Glassman, Matthew; Hong, L. Elliot; Gold, James M.

    2015-01-01

    Background Cognitive deficits compromise quality of life and productivity for individuals with schizophrenia and have no effective treatments. Preclinical data point to the kynurenine pathway of tryptophan metabolism as a potential target for pro-cognitive drug development. We have previously demonstrated association of a kynurenine 3-monooxygenase (KMO) gene variant with reduced KMO gene expression in postmortem schizophrenia cortex, and neurocognitive endophenotypic deficits in a clinical sample. KMO encodes kynurenine 3-monooxygenase (KMO), the rate-limiting microglial enzyme of cortical kynurenine metabolism. Aberration of the KMO gene might be the proximal cause of impaired cortical kynurenine metabolism observed in schizophrenia. However, the relationship between KMO variation and cognitive function in schizophrenia is unknown. This study examined the effects of the KMO rs2275163C>T C (risk) allele on cognitive function in schizophrenia. Methods We examined the association of KMO polymorphisms with general neuropsychological performance and P50 gating in a sample of 150 schizophrenia and 95 healthy controls. Results Consistent with our original report, the KMO rs2275163C>T C (risk) allele was associated with deficits in general neuropsychological performance, and this effect was more marked in schizophrenia compared with controls. Additionally, the C (Arg452) allele of the missense rs1053230C>T variant (KMO Arg452Cys) showed a trend effect on cognitive function. Neither variant affected P50 gating. Conclusions These data suggest that KMO variation influences a range of cognitive domains known to predict functional outcome. Extensive molecular characterization of this gene would elucidate its role in cognitive function with implications for vertical integration with basic discovery. PMID:25464917

  3. Influence of kynurenine 3-monooxygenase (KMO) gene polymorphism on cognitive function in schizophrenia.

    Science.gov (United States)

    Wonodi, Ikwunga; McMahon, Robert P; Krishna, Nithin; Mitchell, Braxton D; Liu, Judy; Glassman, Matthew; Hong, L Elliot; Gold, James M

    2014-12-01

    Cognitive deficits compromise quality of life and productivity for individuals with schizophrenia and have no effective treatments. Preclinical data point to the kynurenine pathway of tryptophan metabolism as a potential target for pro-cognitive drug development. We have previously demonstrated association of a kynurenine 3-monooxygenase (KMO) gene variant with reduced KMO gene expression in postmortem schizophrenia cortex, and neurocognitive endophenotypic deficits in a clinical sample. KMO encodes kynurenine 3-monooxygenase (KMO), the rate-limiting microglial enzyme of cortical kynurenine metabolism. Aberration of the KMO gene might be the proximal cause of impaired cortical kynurenine metabolism observed in schizophrenia. However, the relationship between KMO variation and cognitive function in schizophrenia is unknown. This study examined the effects of the KMO rs2275163C>T C (risk) allele on cognitive function in schizophrenia. We examined the association of KMO polymorphisms with general neuropsychological performance and P50 gating in a sample of 150 schizophrenia and 95 healthy controls. Consistent with our original report, the KMO rs2275163C>T C (risk) allele was associated with deficits in general neuropsychological performance, and this effect was more marked in schizophrenia compared with controls. Additionally, the C (Arg452) allele of the missense rs1053230C>T variant (KMO Arg452Cys) showed a trend effect on cognitive function. Neither variant affected P50 gating. These data suggest that KMO variation influences a range of cognitive domains known to predict functional outcome. Extensive molecular characterization of this gene would elucidate its role in cognitive function with implications for vertical integration with basic discovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1.

    Science.gov (United States)

    Ryu, Ji-Young; Seo, Jiyoung; Unno, Tatsuya; Ahn, Joong-Hoon; Yan, Tao; Sadowsky, Michael J; Hur, Hor-Gil

    2010-03-01

    The plant-derived phenylpropanoids eugenol and isoeugenol have been proposed as useful precursors for the production of natural vanillin. Genes involved in the metabolism of eugenol and isoeugenol were clustered in region of about a 30 kb of Pseudomonas nitroreducens Jin1. Two of the 23 ORFs in this region, ORFs 26 (iemR) and 27 (iem), were predicted to be involved in the conversion of isoeugenol to vanillin. The deduced amino acid sequence of isoeugenol monooxygenase (Iem) of strain Jin1 had 81.4% identity to isoeugenol monooxygenase from Pseudomonas putida IE27, which also transforms isoeugenol to vanillin. Iem was expressed in E. coli BL21(DE3) and was found to lead to isoeugenol to vanillin transformation. Deletion and cloning analyses indicated that the gene iemR, located upstream of iem, is required for expression of iem in the presence of isoeugenol, suggesting it to be the iem regulatory gene. Reverse transcription, real-time PCR analyses indicated that the genes involved in the metabolism of eugenol and isoeugenol were differently induced by isoeugenol, eugenol, and vanillin.

  5. Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase.

    Science.gov (United States)

    Chen, Yin; Patel, Nisha A; Crombie, Andrew; Scrivens, James H; Murrell, J Colin

    2011-10-25

    Flavin-containing monooxygenases (FMOs) are one of the most important monooxygenase systems in Eukaryotes and have many important physiological functions. FMOs have also been found in bacteria; however, their physiological function is not known. Here, we report the identification and characterization of trimethylamine (TMA) monooxygenase, termed Tmm, from Methylocella silvestris, using a combination of proteomic, biochemical, and genetic approaches. This bacterial FMO contains the FMO sequence motif (FXGXXXHXXXF/Y) and typical flavin adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-binding domains. The enzyme was highly expressed in TMA-grown M. silvestris and absent during growth on methanol. The gene, tmm, was expressed in Escherichia coli, and the purified recombinant protein had high Tmm activity. Mutagenesis of this gene abolished the ability of M. silvestris to grow on TMA as a sole carbon and energy source. Close homologs of tmm occur in many Alphaproteobacteria, in particular Rhodobacteraceae (marine Roseobacter clade, MRC) and the marine SAR11 clade (Pelagibacter ubique). We show that the ability of MRC to use TMA as a sole carbon and/or nitrogen source is directly linked to the presence of tmm in the genomes, and purified Tmm of MRC and SAR11 from recombinant E. coli showed Tmm activities. The tmm gene is highly abundant in the metagenomes of the Global Ocean Sampling expedition, and we estimate that 20% of the bacteria in the surface ocean contain tmm. Taken together, our results suggest that Tmm, a bacterial FMO, plays an important yet overlooked role in the global carbon and nitrogen cycles.

  6. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Characterization of Biocatalytically Active Bacterial Strains and of Cytochrome P450 Monooxygenase Enzymes and Their Genes

    Science.gov (United States)

    Jungmann, Volker; Molnár, István; Hammer, Philip E.; Hill, D. Steven; Zirkle, Ross; Buckel, Thomas G.; Buckel, Dagmar; Ligon, James M.; Pachlatko, J. Paul

    2005-01-01

    4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined. PMID:16269732

  7. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2010-07-01

    Full Text Available Abstract Background Plant cytochrome P450 monooxygenases (CYP mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS in the upstream region and three candidate polyadenylation (PolyA sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression

  8. Optimized formation of detergent micelles of beta-carotene and retinal production using recombinant human beta,beta-carotene 15,15'-monooxygenase.

    Science.gov (United States)

    Kim, Nam-Hee; Kim, Yeong-Su; Kim, Hye-Jung; Oh, Deok-Kun

    2008-01-01

    The formation of beta-carotene detergent micelles and their conversion into retinal by recombinant human beta,beta-carotene 15,15'-monooxygenase was optimized under aqueous conditions. Toluene was the most hydrophobic among the organic solvents tested; thus, it was used to dissolve beta-carotene, which is a hydrophobic compound. Tween 80 was selected as the detergent because it supported the highest level of retinal production among all of the detergents tested. The maximum production of retinal was achieved in detergent micelles containing 200 mg/L of beta-carotene and 2.4% (w/v) Tween 80. Under these conditions, the recombinant enzyme produced 97 mg/L of retinal after 16 h with a conversion yield of 48.5% (w/w). The amount of retinal produced, which is the highest ever reported, is a result of the ability of our system to dissolve large amounts of beta-carotene.

  9. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    Science.gov (United States)

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  10. Differential Transcriptional Activation of Genes Encoding Soluble Methane Monooxygenase in a Facultative Versus an Obligate Methanotroph

    OpenAIRE

    Angela V. Smirnova; Peter F. Dunfield

    2018-01-01

    Methanotrophs are a specialized group of bacteria that can utilize methane (CH4) as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO), of either a soluble, cytoplasmic type (sMMO), or a particulate, membrane-bound type (pMMO). Methylocella silvestris BL2 and Methyloferula stellata AR4 are closely related methanotroph species that oxidize methane via sMMO only. However, Methyloferula stellata is an obligate methanotroph, while Methylocella silv...

  11. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.

    Science.gov (United States)

    Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung

    2015-05-01

    We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.

  12. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Lao, Shu-Hua; Huang, Xiao-Hui; Huang, Hai-Jian; Liu, Cheng-Wen; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2015-11-01

    The cytochrome P450 monooxygenase (P450) gene family is one of the most abundant eukaryotic gene families that encode detoxification enzymes. In this study, we identified an abundance of P450 gene repertoire through genome- and transcriptome-wide analysis in the brown planthopper (Nilaparvata lugens), the most destructive rice pest in Asia. Detailed gene information including the exon-intron organization, size, transcription orientation and distribution in the genome revealed that many P450 loci were closely situated on the same scaffold, indicating frequent occurrence of gene duplications. Insecticide-response expression profiling revealed that imidacloprid significantly increased NlCYP6CS1v2, NLCYP4CE1v2, NlCYP4DE1, NlCYP417A1v2 and NlCYP439A1 expression; while triazophos and deltamethrin notably enhanced NlCYP303A1 expression. Expression analysis at the developmental stage showed the egg-, nymph-, male- and female-specific expression patterns of N. lugens P450 genes. These novel findings will be helpful for clarifying the P450 functions in physiological processes including development, reproduction and insecticide resistance in this insect species. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b.

    Science.gov (United States)

    Farhan Ul-Haque, Muhammad; Kalidass, Bhagyalakshmi; Vorobev, Alexey; Baral, Bipin S; DiSpirito, Alan A; Semrau, Jeremy D

    2015-04-01

    Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 μM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin "piracy" may be commonplace. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus.

    Science.gov (United States)

    Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs

    2015-02-01

    Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Differential Transcriptional Activation of Genes Encoding Soluble Methane Monooxygenase in a Facultative Versus an Obligate Methanotroph.

    Science.gov (United States)

    Smirnova, Angela V; Dunfield, Peter F

    2018-03-06

    Methanotrophs are a specialized group of bacteria that can utilize methane (CH₄) as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO), of either a soluble, cytoplasmic type (sMMO), or a particulate, membrane-bound type (pMMO). Methylocella silvestris BL2 and Methyloferula stellata AR4 are closely related methanotroph species that oxidize methane via sMMO only. However, Methyloferula stellata is an obligate methanotroph, while Methylocella silvestris is a facultative methanotroph able to grow on several multicarbon substrates in addition to methane. We constructed transcriptional fusions of the mmo promoters of Methyloferula stellata and Methylocella silvestris to a promoterless gfp in order to compare their transcriptional regulation in response to different growth substrates, in the genetic background of both organisms. The following patterns were observed: (1) The mmo promoter of the facultative methanotroph Methylocella silvestris was either transcriptionally downregulated or repressed by any growth substrate other than methane in the genetic background of Methylocella silvetris ; (2) Growth on methane alone upregulated the mmo promoter of Methylocella silvetris in its native background but not in the obligate methanotroph Methyloferula stellata ; (3) The mmo promoter of Methyloferula stellata was constitutive in both organisms regardless of the growth substrate, but with much lower promoter activity than the mmo promoter of Methylocella silvetris . These results support a conclusion that a different mode of transcriptional regulation of sMMO contributes to the facultative lifestyle of Methylocella silvetris compared to the obligate methanotroph Methyloferula stellata .

  16. Differential Transcriptional Activation of Genes Encoding Soluble Methane Monooxygenase in a Facultative Versus an Obligate Methanotroph

    Directory of Open Access Journals (Sweden)

    Angela V. Smirnova

    2018-03-01

    Full Text Available Methanotrophs are a specialized group of bacteria that can utilize methane (CH4 as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO, of either a soluble, cytoplasmic type (sMMO, or a particulate, membrane-bound type (pMMO. Methylocella silvestris BL2 and Methyloferula stellata AR4 are closely related methanotroph species that oxidize methane via sMMO only. However, Methyloferula stellata is an obligate methanotroph, while Methylocella silvestris is a facultative methanotroph able to grow on several multicarbon substrates in addition to methane. We constructed transcriptional fusions of the mmo promoters of Methyloferula stellata and Methylocella silvestris to a promoterless gfp in order to compare their transcriptional regulation in response to different growth substrates, in the genetic background of both organisms. The following patterns were observed: (1 The mmo promoter of the facultative methanotroph Methylocella silvestris was either transcriptionally downregulated or repressed by any growth substrate other than methane in the genetic background of Methylocella silvetris; (2 Growth on methane alone upregulated the mmo promoter of Methylocella silvetris in its native background but not in the obligate methanotroph Methyloferula stellata; (3 The mmo promoter of Methyloferula stellata was constitutive in both organisms regardless of the growth substrate, but with much lower promoter activity than the mmo promoter of Methylocella silvetris. These results support a conclusion that a different mode of transcriptional regulation of sMMO contributes to the facultative lifestyle of Methylocella silvetris compared to the obligate methanotroph Methyloferula stellata.

  17. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2018-05-01

    Full Text Available A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea. A novel pathogenicity-related gene BcKMO, which encodes kynurenine 3-monooxygenase (KMO, was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO-complementing mutant (BCG183/BcKMO were similar to those of the wild-type (WT strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/BcKMO. Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H2O2, and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP and mitogen-activated protein kinase (MAPK signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1, Pka2, PkaR, Bcg2, Bcg3, bmp1, and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea. Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea.

  18. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea.

    Science.gov (United States)

    Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao

    2018-01-01

    A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea . A novel pathogenicity-related gene BcKMO , which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO -complementing mutant (BCG183/ BcKMO ) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/ BcKMO . Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H 2 O 2 , and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1 , Pka2 , PkaR , Bcg2 , Bcg3 , bmp1 , and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea . Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea .

  19. Recombinant Brucella abortus gene expressing immunogenic protein

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, J.E.; Tabatabai, L.B.

    1991-06-11

    This patent describes a synthetic recombinant DNA molecule containing a DNA sequence. It comprises a gene of Brucella abortus encoding an immunogenic protein having a molecular weight of approximately 31,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis under denaturing conditions, the protein having an isoelectric point around 4.9, and containing a twenty-five amino acid sequence from its amino terminal end consisting of Gln-Ala-Pro-Thr-Phe-Phe-Arg-Ile-Gly-Thr-Gly-Gly-Thr-Ala-Gly-Thr-Tyr-Tyr-Pro-Ile-Gly-Gly-Leu-Ile-Ala, wherein Gln, Ala, Pro, Thr, Phe, Arg, Ile, Gly, Tyr, and Leu, respectively, represent glutamine, alanine, proline, threonine, phenylalanine, arginine, isolecuine, glycine, tyrosine, and leucine.

  20. Identification of the Regulator Gene Responsible for the Acetone-Responsive Expression of the Binuclear Iron Monooxygenase Gene Cluster in Mycobacteria ▿

    Science.gov (United States)

    Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847

  1. Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes.

    Science.gov (United States)

    Wonodi, Ikwunga; Stine, O Colin; Sathyasaikumar, Korrapati V; Roberts, Rosalinda C; Mitchell, Braxton D; Hong, L Elliot; Kajii, Yasushi; Thaker, Gunvant K; Schwarcz, Robert

    2011-07-01

    Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan degradation, is an antagonist at N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors and modulates glutamate, dopamine, and acetylcholine signaling. Cortical kynurenic acid concentrations are elevated in the brain and cerebrospinal fluid of schizophrenia patients. The proximal cause may be an impairment of kynurenine 3-monooxygenase (KMO), a rate-limiting enzyme at the branching point of the kynurenine pathway. To examine KMO messenger RNA expression and KMO enzyme activity in postmortem tissue from the frontal eye field (FEF; Brodmann area 6) obtained from schizophrenia individuals compared with healthy control individuals and to explore the relationship between KMO single-nucleotide polymorphisms and schizophrenia oculomotor endophenotypes. Case-control postmortem and clinical study. Maryland Brain Collection, outpatient clinics. Postmortem specimens from schizophrenia patients (n = 32) and control donors (n = 32) and a clinical sample of schizophrenia patients (n = 248) and healthy controls (n = 228). Comparison of quantitative KMO messenger RNA expression and KMO enzyme activity in postmortem FEF tissue between schizophrenia patients and controls and association of KMO single-nucleotide polymorphisms with messenger RNA expression in postmortem FEF and schizophrenia and oculomotor endophenotypes (ie, smooth pursuit eye movements and oculomotor delayed response). In postmortem tissue, we found a significant and correlated reduction in KMO gene expression and KMO enzyme activity in the FEF in schizophrenia patients. In the clinical sample, KMO rs2275163 was not associated with a diagnosis of schizophrenia but showed modest effects on predictive pursuit and visuospatial working memory endophenotypes. Our results provide converging lines of evidence implicating reduced KMO activity in the etiopathophysiology of schizophrenia and related neurocognitive deficits.

  2. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    OpenAIRE

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics ...

  3. Diversity of alkane degrading bacteria associated with plants in a petroleum oil-contaminated environment and expression of alkane monooxygenase (alkB) genes

    Science.gov (United States)

    Andria, V.; Yousaf, S.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A.

    2009-04-01

    Among twenty-six different plant species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo), and the combination of both plants performed well in a petroleum oil contaminated soil. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Higher numbers of culturable, degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Our results indicated that alkB genes have spread through horizontal gene transfer, particularly in the Italian ryegrass rhizosphere, and suggested mobility of catabolic genes between Gram-negative and Gram-positive bacteria. We furthermore studied the colonization behaviour of selected hydrocarbon-degrading strains (comprising an endopyhte and a rhizosphere strain) as well as the expression of their alkane monooxygenase genes in association with Italian ryegrass. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.

  4. The Origin and Evolution of Baeyer-Villiger Monooxygenases (BVMOs: An Ancestral Family of Flavin Monooxygenases.

    Directory of Open Access Journals (Sweden)

    Maria Laura Mascotti

    Full Text Available The Baeyer-Villiger Monooxygenases (BVMOs are enzymes belonging to the "Class B" of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga and Haptophyta (Emiliania huxleyi for the first time. Furthermore, a search for other "Class B" monooxygenases (flavoprotein monooxygenases--FMOs--and N-hydroxylating monooxygenases--NMOs was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all "Class B" monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes.

  5. The Origin and Evolution of Baeyer—Villiger Monooxygenases (BVMOs): An Ancestral Family of Flavin Monooxygenases

    Science.gov (United States)

    Mascotti, Maria Laura; Lapadula, Walter Jesús; Juri Ayub, Maximiliano

    2015-01-01

    The Baeyer—Villiger Monooxygenases (BVMOs) are enzymes belonging to the “Class B” of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga) and Haptophyta (Emiliania huxleyi) for the first time. Furthermore, a search for other “Class B” monooxygenases (flavoprotein monooxygenases –FMOs – and N-hydroxylating monooxygenases – NMOs) was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all “Class B” monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA) and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes. PMID:26161776

  6. Genetic recombination is targeted towards gene promoter regions in dogs.

    Science.gov (United States)

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J Kim; Hayward, Jessica J; Cohen, Paula E; Greally, John M; Wang, Jun; Bustamante, Carlos D; Boyko, Adam R

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred.

  7. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  8. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  9. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    Science.gov (United States)

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  10. A network approach to analyzing highly recombinant malaria parasite genes.

    Science.gov (United States)

    Larremore, Daniel B; Clauset, Aaron; Buckee, Caroline O

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  11. A network approach to analyzing highly recombinant malaria parasite genes.

    Directory of Open Access Journals (Sweden)

    Daniel B Larremore

    Full Text Available The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs, and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  12. MPN- and Real-Time-Based PCR Methods for the Quantification of Alkane Monooxygenase Homologous Genes (alkB) in Environmental Samples

    Science.gov (United States)

    Pérez-de-Mora, Alfredo; Schulz, Stephan; Schloter, Michael

    Hydrocarbons are major contaminants of soil ecosystems as a result of uncontrolled oil spills and wastes disposal into the environment. Ecological risk assessment and remediation of affected sites is often constrained due to lack of suitable prognostic and diagnostic tools that provide information of abiotic-biotic interactions occurring between contaminants and biological targets. Therefore, the identification and quantification of genes involved in the degradation of hydrocarbons may play a crucial role for evaluating the natural attenuation potential of contaminated sites and the development of successful bioremediation strategies. Besides other gene clusters, the alk operon has been identified as a major player for alkane degradation in different soils. An oxygenase gene (alkB) codes for the initial step of the degradation of aliphatic alkanes under aerobic conditions. In this work, we present an MPN- and a real-time PCR method for the quantification of the bacterial gene alkB (coding for rubredoxin-dependent alkane monooxygenase) in environmental samples. Both approaches enable a rapid culture-independent screening of the alkB gene in the environment, which can be used to assess the intrinsic natural attenuation potential of a site or to follow up the on-going progress of bioremediation assays.

  13. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants.

    Science.gov (United States)

    Rong Tan, Li; Chen Lu, Yi; Jing Zhang, Jing; Luo, Fang; Yang, Hong

    2015-09-01

    Plant cytochrome P450 monooxygenases constitute one of the largest families of protein genes involved in plant growth, development and acclimation to biotic and abiotic stresses. However, whether these genes respond to organic toxic compounds and their biological functions for detoxifying toxic compounds such as herbicides in rice are poorly understood. The present study identified 201 genes encoding cytochrome P450s from an atrazine-exposed rice transcriptome through high-throughput sequencing. Of these, 69 cytochrome P450 genes were validated by microarray and some of them were confirmed by real time PCR. Activities of NADPH-cytochrome P450 reductase (CPR) and p-nitroanisole O-demethylase (PNOD) related to toxicity were determined and significantly induced by atrazine exposure. To dissect the mechanism underlying atrazine modification and detoxification by P450, metabolites (or derivatives) of atrazine in plants were analyzed by ultra performance liquid chromatography mass spectrometry (UPLC/MS). Major metabolites comprised desmethylatrazine (DMA), desethylatrazine (DEA), desisopropylatrazine (DIA), hydroxyatrazine (HA), hydroxyethylatrazine (HEA) and hydroxyisopropylatrazine (HIA). All of them were chemically modified by P450s. Furthermore, two specific inhibitors of piperonyl butoxide (PBO) and malathion (MAL) were used to assess the correlation between the P450s activity and rice responses including accumulation of atrazine in tissues, shoot and root growth and detoxification. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Recombination facilitates neofunctionalization of duplicate genes via originalization

    Directory of Open Access Journals (Sweden)

    Huang Ren

    2010-06-01

    Full Text Available Abstract Background Recently originalization was proposed to be an effective way of duplicate-gene preservation, in which recombination provokes the high frequency of original (or wild-type allele on both duplicated loci. Because the high frequency of wild-type allele might drive the arising and accumulating of advantageous mutation, it is hypothesized that recombination might enlarge the probability of neofunctionalization (Pneo of duplicate genes. In this article this hypothesis has been tested theoretically. Results Results show that through originalization recombination might not only shorten mean time to neofunctionalizaiton, but also enlarge Pneo. Conclusions Therefore, recombination might facilitate neofunctionalization via originalization. Several extensive applications of these results on genomic evolution have been discussed: 1. Time to nonfunctionalization can be much longer than a few million generations expected before; 2. Homogenization on duplicated loci results from not only gene conversion, but also originalization; 3. Although the rate of advantageous mutation is much small compared with that of degenerative mutation, Pneo cannot be expected to be small.

  15. Physical map location of the multicopy genes coding for ammonia monooxygenase and hydroxylamine oxidoreductase in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11.

    Science.gov (United States)

    Hirota, R; Yamagata, A; Kato, J; Kuroda, A; Ikeda, T; Takiguchi, N; Ohtake, H

    2000-02-01

    Pulsed-field gel electrophoresis of PmeI digests of the Nitrosomonas sp. strain ENI-11 chromosome produced four bands ranging from 1,200 to 480 kb in size. Southern hybridizations suggested that a 487-kb PmeI fragment contained two copies of the amoCAB genes, coding for ammonia monooxygenase (designated amoCAB(1) and amoCAB(2)), and three copies of the hao gene, coding for hydroxylamine oxidoreductase (hao(1), hao(2), and hao(3)). In this DNA fragment, amoCAB(1) and amoCAB(2) were about 390 kb apart, while hao(1), hao(2), and hao(3) were separated by at least about 100 kb from each other. Interestingly, hao(1) and hao(2) were located relatively close to amoCAB(1) and amoCAB(2), respectively. DNA sequence analysis revealed that hao(1) and hao(2) shared 160 identical nucleotides immediately upstream of each translation initiation codon. However, hao(3) showed only 30% nucleotide identity in the 160-bp corresponding region.

  16. Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida.

    Science.gov (United States)

    Yamada, Mamoru; Okada, Yukiyoshi; Yoshida, Toyokazu; Nagasawa, Toru

    2008-04-01

    The isoeugenol monooxygenase gene of Pseudomonas putida IE27 was inserted into an expression vector, pET21a, under the control of the T7 promoter. The recombinant plasmid was introduced into Escherichia coli BL21(DE3) cells, containing no vanillin-degrading activity. The transformed E. coli BL21(DE3) cells produced 28.3 g vanillin/l from 230 mM isoeugenol, with a molar conversion yield of 81% at 20 degrees C after 6 h. In the reaction system, no accumulation of undesired by-products, such as vanillic acid or acetaldehyde, was observed.

  17. Gene Delivery into Plant Cells for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2015-01-01

    Full Text Available Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

  18. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Directory of Open Access Journals (Sweden)

    Martina eCappelletti

    2015-05-01

    Full Text Available Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from butane metabolism. Two gene clusters, prmABCD and smoABCD – coding for soluble di-iron monooxgenases (SDIMOs involved in gaseous n-alkanes oxidation – were detected in the BCP1 genome. By means of reverse transcriptase-quantitative PCR (RT-qPCR analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids or during the cell growth on rich medium (Luria Bertani broth. The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane and/or liquid (n-hexane short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step.

  19. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Science.gov (United States)

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  20. The peptidylglycine-α-amidating monooxygenase (PAM) gene rs13175330 A>G polymorphism is associated with hypertension in a Korean population.

    Science.gov (United States)

    Yoo, Hye Jin; Kim, Minjoo; Kim, Minkyung; Chae, Jey Sook; Lee, Sang-Hyun; Lee, Jong Ho

    2017-11-21

    Peptidylglycine-α-amidating monooxygenase (PAM) may play a role in the secretion of atrial natriuretic peptide (ANP), which is a hormone involved in the maintenance of blood pressure (BP). The objective of the present study was to determine whether PAM is a novel candidate gene for hypertension (HTN). A total of 2153 Korean participants with normotension and HTN were included. Genotype data were obtained using the Korean Chip. The rs13175330 polymorphism of the PAM gene was selected from the ten single nucleotide polymorphisms (SNPs) most strongly associated with BP. The presence of the G allele of the PAM rs13175330 A>G SNP was associated with a higher risk of HTN after adjustments for age, sex, BMI, smoking, and drinking [OR 1.607 (95% CI 1.220-2.116), p = 0.001]. The rs13175330 G allele carriers in the HTN group treated without antihypertensive therapy (HTN w/o therapy) had significantly higher systolic and diastolic BP than the AA carriers, whereas the G allele carriers in the HTN group treated with antihypertensive therapy (HTN w/ therapy) showed significantly higher diastolic BP. Furthermore, rs13175330 G allele carriers in the HTN w/o therapy group had significantly increased levels of insulin, insulin resistance, and oxidized low-density lipoprotein (LDL) and significantly decreased LDL-cholesterol levels and LDL particle sizes compared to the AA carriers. These results suggest that the PAM rs13175330 A>G SNP is a novel candidate gene for HTN in the Korean population. Additionally, the PAM rs13175330 G allele might be associated with insulin resistance and LDL atherogenicity in patients with HTN.

  1. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1979-01-01

    Effects of the rad52 mutation in Saccharomyces cerevisiae on meiotic, γ-ray-induced, uv-induced, and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Intra- and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the hisl-1/hisl-315 and trp5-2/trp5-48 heteroalleles. Gene-centromere recombination was also not observed in rad52/rad52 diploids. No γ-ray-induced intragenic mitotic recombination is seen in rad52/rad52 diploids and uv-induced intragenic recombination is greatly reduced. However, spontaneous mitotic recombination is not similarly affected. The RAD52 gene thus functions in recombination in meiosis and in γ-ray and uv-induced mitotic recombination but not in spontaneous mitotic recombination

  2. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15'-monooxygenase.

    Directory of Open Access Journals (Sweden)

    Eamonn P Culligan

    Full Text Available The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.

  3. Recombinant carcinoembryonic antigen as a reporter gene for molecular imaging

    International Nuclear Information System (INIS)

    Kenanova, Vania; Barat, Bhaswati; Olafsen, Tove; Chatziioannou, Arion; Herschman, Harvey R.; Wu, Anna M.; Braun, Jonathan

    2009-01-01

    Reporter genes can provide a way of noninvasively assessing gene activity in vivo. However, current reporter gene strategies may be limited by the immunogenicity of foreign reporter proteins, endogenous expression, or unwanted biological activity. We have developed a reporter gene based on carcinoembryonic antigen (CEA), a human protein with limited normal tissue expression. To construct a CEA reporter gene for PET, a CEA minigene (N-A3) was fused to the extracellular and transmembrane domains of the human FcγRIIb receptor. The NA3-FcγRIIb recombinant gene, driven by a CMV promoter, was transfected in Jurkat (human T cell leukemia) cells. Expression was analyzed by flow cytometry, immunohistochemistry (IHC), and microPET imaging. Flow cytometry identified Jurkat clones stably expressing NA3-FcγRIIb at low, medium, and high levels. High and medium NA3-FcγRIIb expression could also be detected by Western blot. Reporter gene positive and negative Jurkat cells were used to establish xenografts in athymic mice. IHC showed staining of the tumor with high reporter gene expression; medium and low N-A3 expression was not detected. MicroPET imaging, using an anti-CEA 124 I-labeled single-chain Fv-Fc antibody fragment, demonstrated that only high N-A3 expression could be detected. Specific accumulation of activity was visualized at the N-A3 positive tumor as early as 4 h. MicroPET image quantitation showed tumor activity of 1.8 ± 0.2, 15.2 ± 1.3, and 4.6 ± 1.2 percent injected dose per gram (%ID/g) at 4, 20, and 48 h, respectively. Biodistribution at 48 h demonstrated tumor uptake of 4.8 ± 0.8%ID/g. The CEA N-A3 minigene has the potential to be used as a reporter gene for imaging cells in vivo. (orig.)

  4. Kynurenine 3-Monooxygenase Gene Associated With Nicotine Initiation and Addiction: Analysis of Novel Regulatory Features at 5′ and 3′-Regions

    Directory of Open Access Journals (Sweden)

    Hassan A. Aziz

    2018-06-01

    Full Text Available Tobacco smoking is widespread behavior in Qatar and worldwide and is considered one of the major preventable causes of ill health and death. Nicotine is part of tobacco smoke that causes numerous health risks and is incredibly addictive; it binds to the α7 nicotinic acetylcholine receptor (α7nAChR in the brain. Recent studies showed α7nAChR involvement in the initiation and addiction of smoking. Kynurenic acid (KA, a significant tryptophan metabolite, is an antagonist of α7nAChR. Inhibition of kynurenine 3-monooxygenase enzyme encoded by KMO enhances the KA levels. Modulating KMO gene expression could be a useful tactic for the treatment of tobacco initiation and dependence. Since KMO regulation is still poorly understood, we aimed to investigate the 5′ and 3′-regulatory factors of KMO gene to advance our knowledge to modulate KMO gene expression. In this study, bioinformatics methods were used to identify the regulatory sequences associated with expression of KMO. The displayed differential expression of KMO mRNA in the same tissue and different tissues suggested the specific usage of the KMO multiple alternative promoters. Eleven KMO alternative promoters identified at 5′-regulatory region contain TATA-Box, lack CpG Island (CGI and showed dinucleotide base-stacking energy values specific to transcription factor binding sites (TFBSs. The structural features of regulatory sequences can influence the transcription process and cell type-specific expression. The uncharacterized LOC105373233 locus coding for non-coding RNA (ncRNA located on the reverse strand in a convergent manner at the 3′-side of KMO locus. The two genes likely expressed by a promoter that lacks TATA-Box harbor CGI and two TFBSs linked to the bidirectional transcription, the NRF1, and ZNF14 motifs. We identified two types of microRNA (miR in the uncharacterized LOC105373233 ncRNA, which are like hsa-miR-5096 and hsa-miR-1285-3p and can target the miR recognition

  5. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  6. Five low energy phosphorene allotropes constructed through gene segments recombination.

    Science.gov (United States)

    He, Chaoyu; Zhang, ChunXiao; Tang, Chao; Ouyang, Tao; Li, Jin; Zhong, Jianxin

    2017-04-27

    Based on the crystal structures of the previously proposed low energy η-P and θ-P, five new phosphorene allotropes were predicted through gene segments recombination method. These five new phosphorene allotropes are confirmed dynamically stable and energetically more favorable than their parents (η-P and θ-P). Especially, the XX-XX type G1-P is confirmed energetically more favorable than most of all the previously proposed phosphorene allotropes, including black phosphorene and blue phosphorene, which is highly expected to be synthesized in future experiment through vapor deposition or epitaxial growth method like blue β-P. The calculated results also show that such a new promising phosphorene allotrope G1-P is a potential candidate for application in nano-electronics according to its middle band gap of about 1.491 eV from DFT-HSE06 calculation.

  7. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    Science.gov (United States)

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  8. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  9. Rare codons effect on expression of recombinant gene cassette in Escherichia coli BL21(DE3

    Directory of Open Access Journals (Sweden)

    Aghil Esmaeili-Bandboni

    2017-11-01

    Full Text Available Objective: To demonstrate the sensitivity of expression of fusion genes to existence of a large number of rare codons in recombinant gene sequenced. Methods: Primers for amplification of cholera toxin B, Shiga toxin B and gfp genes were designed by Primer3 software and synthesized. All of these 3 genes were cloned. Then the genes were fused together by restriction sites and enzymatic method. Two linkers were used as a flexible bridge in connection of these genes. Results: Cloning and fusion of cholera toxin B, Shiga toxin B and gfp genes were done correctly. After that, expression of the recombinant gene construction was surveyed. Conclusions: According to what was seen, because of the accumulation of 12 rare codons of Shiga toxin B and 19 rare codons of cholera toxin B in this gene cassette, the expression of the recombinant gene cassette, in Escherichia coli BL21, failed.

  10. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  11. Functional mitochondrial ATP synthase proteolipid gene produced by recombination of parental genes in a petunia somatic hybrid

    International Nuclear Information System (INIS)

    Rothenberg, M.; Hanson, M.R.

    1988-01-01

    A novel ATP synthase subunit 9 gene (atp9) was identified in the mitochondrial genome of a Petunia somatic hybrid line (13-133) which was produced from a fusion between Petunia lines 3688 and 3704. The novel gene was generated by intergenomic recombination between atp9 genes from the two parental plant lines. The entire atp9 coding region is represented on the recombinant gene. Comparison of gene sequences using electrophoresis and autoradiography, indicate that the 5' transcribed region is contributed by an atp9 gene from 3704 and the 3' transcribed region is contributed by an atp9 gene from 3688. The recombinant atp9 gene is transcriptionally active. The location of the 5' and 3' transcript termini are conserved with respect to the parental genes, resulting in the production of hybrid transcripts

  12. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    Science.gov (United States)

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L

    2015-01-01

    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  13. Cloning an artificial gene encoding angiostatic anginex: From designed peptide to functional recombinant protein

    International Nuclear Information System (INIS)

    Brandwijk, Ricardo J.M.G.E.; Nesmelova, Irina; Dings, Ruud P.M.; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W.

    2005-01-01

    Anginex, a designed peptide 33-mer, is a potent angiogenesis inhibitor and anti-tumor agent in vivo. Anginex functions by inhibiting endothelial cell (EC) proliferation and migration leading to detachment and apoptosis of activated EC's. To better understand tumor endothelium targeting properties of anginex and enable its use in gene therapy, we constructed an artificial gene encoding the biologically exogenous peptide and produced the protein recombinantly in Pichia pastoris. Mass spectrometry shows recombinant anginex to be a dimer and circular dichroism shows the recombinant protein folds with β-strand structure like the synthetic peptide. Moreover, like parent anginex, the recombinant protein is active at inhibiting EC growth and migration, as well as inhibiting angiogenesis in vivo in the chorioallantoic membrane of the chick embryo. This study demonstrated that it is possible to produce a functionally active protein version of a rationally designed peptide, using an artificial gene and the recombinant protein approach

  14. Gene evolutionary trajectories and GC patterns driven by recombination in Zea mays

    Science.gov (United States)

    Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another in...

  15. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages

    KAUST Repository

    Phelan, Jody E.; Coll, Francesc; Bergval, Indra; Anthony, Richard M.; Warren, Rob; Sampson, Samantha L.; Gey van Pittius, Nicolaas C.; Glynn, Judith R.; Crampin, Amelia C.; Alves, Adriana; Bessa, Theolis Barbosa; Campino, Susana; Dheda, Keertan; Grandjean, Louis; Hasan, Rumina; Hasan, Zahra; Miranda, Anabela; Moore, David; Panaiotov, Stefan; Perdigao, Joao; Portugal, Isabel; Sheen, Patricia; de Oliveira Sousa, Erivelton; Streicher, Elizabeth M.; van Helden, Paul D.; Viveiros, Miguel; Hibberd, Martin L.; Pain, Arnab; McNerney, Ruth; Clark, Taane G.

    2016-01-01

    . tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified

  16. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  17. Recombiner

    International Nuclear Information System (INIS)

    Saalfrank, H.

    1985-01-01

    Air containing hydrogen can be oxidized by heating in a container called a recombiner, in order to avoid the collection of hydrogen. The container is long and a large number of straight heating bars are arranged in parallel in it and they are flanged to a lid. The heating bars are surrounded by tubes, in order to obtain good heat transfer by a narrow annular gap. (orig.) [de

  18. A recombinant lactobacillus strain expressing genes coding for ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... venting sexual transmission of HIV in women. Base on the .... genetically engineer lactobacilli that can express these .... nerative Medicine, an emerging interdisciplinary field of research and ... Barriers to recombination. In S.

  19. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1980-01-01

    Effects of the rad 52 mutation in Saccharomyces cerevisiae on meiotic, γ-ray-induced, uv-induced and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Both intra and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the his1-1/his1-315 and trp-5-2/trp5-48 heteroalleles. Gene-centromere recombination also was not observed in rad/52/rad52 diploids. No γ-ray- or uv-induced intragenic mitotic recombination is seen in rad52/rad52 diploids. The rate of spontaneous mitotic recombination is lowered five-fold at the his1-1/his1-315 and leu1-c/leu1-12 heteroalleles. Spontaneous reversion rates of both his1-1 and his1-315 were elevated 10 to 20 fold in rad52/rad52 diploids. The RAD52 gene function is required for spontaneous mitotic recombination, uv- and γ-ray-induced mitotic recombination and mitotic recombination

  20. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine.

    Science.gov (United States)

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-06-16

    Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  1. Recombinant HT{sub m4} gene, protein and assays

    Science.gov (United States)

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  2. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination.

    Science.gov (United States)

    Carmona, Lina Marcela; Schatz, David G

    2017-06-01

    The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented. © 2016 Federation of European Biochemical Societies.

  3. Lyophilization conditions for the storage of monooxygenases

    NARCIS (Netherlands)

    van Beek, Hugo L.; Beyer, Nina; Janssen, Dick B.; Fraaije, Marco W.

    2015-01-01

    Cyclohexanone monooxygenase (CHMO) was used as a model enzyme to find suitable freeze-drying conditions for long-term storage of an isolated monooxygenase. CHMO is a Baeyer-Villiger monooxygenase (BVMO) known for its ability to catalyze a large number of oxidation reactions. With a focus on

  4. The population and evolutionary dynamics of homologous gene recombination in bacterial populations.

    Directory of Open Access Journals (Sweden)

    Bruce R Levin

    2009-08-01

    Full Text Available In bacteria, recombination is a rare event, not a part of the reproductive process. Nevertheless, recombination -- broadly defined to include the acquisition of genes from external sources, i.e., horizontal gene transfer (HGT -- plays a central role as a source of variation for adaptive evolution in many species of bacteria. Much of niche expansion, resistance to antibiotics and other environmental stresses, virulence, and other characteristics that make bacteria interesting and problematic, is achieved through the expression of genes and genetic elements obtained from other populations of bacteria of the same and different species, as well as from eukaryotes and archaea. While recombination of homologous genes among members of the same species has played a central role in the development of the genetics and molecular biology of bacteria, the contribution of homologous gene recombination (HGR to bacterial evolution is not at all clear. Also, not so clear are the selective pressures responsible for the evolution and maintenance of transformation, the only bacteria-encoded form of HGR. Using a semi-stochastic simulation of mutation, recombination, and selection within bacterial populations and competition between populations, we explore (1 the contribution of HGR to the rate of adaptive evolution in these populations and (2 the conditions under which HGR will provide a bacterial population a selective advantage over non-recombining or more slowly recombining populations. The results of our simulation indicate that, under broad conditions: (1 HGR occurring at rates in the range anticipated for bacteria like Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, and Bacillus subtilis will accelerate the rate at which a population adapts to environmental conditions; (2 once established in a population, selection for this capacity to increase rates of adaptive evolution can maintain bacteria-encoded mechanisms of recombination and prevent

  5. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    Science.gov (United States)

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  6. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    International Nuclear Information System (INIS)

    Andria, Verania; Reichenauer, Thomas G.; Sessitsch, Angela

    2009-01-01

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  7. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Andria, Verania [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Unit of Environmental Resources and Technologies, A-2444 Seibersdorf (Austria); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.a [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2009-12-15

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  8. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  9. Recombinational DSBs-intersected genes converge on specific disease- and adaptability-related pathways.

    Science.gov (United States)

    Yang, Zhi-Kai; Luo, Hao; Zhang, Yanming; Wang, Baijing; Gao, Feng

    2018-05-03

    The budding yeast Saccharomyces cerevisiae is a model species powerful for studying the recombination of eukaryotes. Although many recombination studies have been performed for this species by experimental methods, the population genomic study based on bioinformatics analyses is urgently needed to greatly increase the range and accuracy of recombination detection. Here, we carry out the population genomic analysis of recombination in S. cerevisiae to reveal the potential rules between recombination and evolution in eukaryotes. By population genomic analysis, we discover significantly more and longer recombination events in clinical strains, which indicates that adverse environmental conditions create an obviously wider range of genetic combination in response to the selective pressure. Based on the analysis of recombinational DSBs-intersected genes (RDIGs), we find that RDIGs significantly converge on specific disease- and adaptability-related pathways, indicating that recombination plays a biologically key role in the repair of DSBs related to diseases and environmental adaptability, especially the human neurological disorders (NDs). By evolutionary analysis of RDIGs, we find that the RDIGs highly prevailing in populations of yeast tend to be more evolutionarily conserved, indicating the accurate repair of DSBs in these RDIGs is critical to ensure the eukaryotic survival or fitness. fgao@tju.edu.cn. Supplementary data are available at Bioinformatics online.

  10. Designer genes. Recombinant antibody fragments for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A.M.; Yazaki, P.J. [Beckman Research Institute of the City of Hope, Duarte, CA (United States). Dept. of Molecular Biology

    2000-09-01

    Monoclonal antibodies (MAbs), with high specificity and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs or toxins in vivo. However, the implementation of radiolabeled antibodies as magic bullets for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-17 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-C{sub H}3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor: blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering

  11. Designer genes. Recombinant antibody fragments for biological imaging

    International Nuclear Information System (INIS)

    Wu, A.M.; Yazaki, P.J.

    2000-01-01

    Monoclonal antibodies (MAbs), with high specificy and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs or toxins in vivo. However, the implementation of radiolabeled antibodies as magic bullets for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-17 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-C H 3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor: blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering and

  12. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs

    Directory of Open Access Journals (Sweden)

    Gong Shiaochin

    2009-03-01

    Full Text Available Abstract Background Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. Results We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1 subclone genes of interest into BAC linking vectors, (2 insert desired reporter genes into respective genes and (3 link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. Conclusion The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  13. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs.

    Science.gov (United States)

    Maye, Peter; Stover, Mary Louise; Liu, Yaling; Rowe, David W; Gong, Shiaochin; Lichtler, Alexander C

    2009-03-13

    Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP) reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1) subclone genes of interest into BAC linking vectors, (2) insert desired reporter genes into respective genes and (3) link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  14. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Directory of Open Access Journals (Sweden)

    Chen Dishi

    2011-06-01

    Full Text Available Abstract Background Porcine parvovirus (PPV VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs with similar morphology to the native capsid. Here, a pseudorabies virus (PRV system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28 following virulent PPV challenge compared with the control (7 of 31. Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  15. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    International Nuclear Information System (INIS)

    Golubnitchaya-Labudova, O.; Hoefer, M.; Portele, A.; Vacata, V.; Rink, H.; Lubec, G.

    1997-01-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer the question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the inserts of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9. (author)

  16. Genetic recombination within the human T-cell receptor α-chain gene complex

    International Nuclear Information System (INIS)

    Robinson, M.A.; Kindt, T.J.

    1987-01-01

    Genetic analyses of the human T-cell receptor (TCR) α-chain genes indicate that recombination events may occur frequently within this gene complex. Examination of the inheritance of restriction fragment length polymorphisms (RFLP) detected by using probes for constant or variable region gene segments made it possible to assign TCRα haplotypes to the 16 parents and 43 offspring of eight families studied. A total of six RFLP, three for the constant region and three for variable region segments, were examined in the present studies. Most enzyme and probe combinations tested revealed no polymorphism and those finally selected for the study showed limited polymorphism in that only two or, in one case, three allelic forms of the gene were seen. In spite of limited variability at this level, extensive heterogeneity was observed for the combinations of markers present in haplotypes, suggesting that frequent recombination events have occurred. Most strikingly, multiple combinations of RFLP occurring in close proximity of the TCRα constant region gene were observed in this study. A high recombination frequency for the TCRα gene complex is further supported by the observation that two children, one in each of two families, inherited recombinant TCRα haplotypes

  17. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii.

    Science.gov (United States)

    Oh, Young Hoon; Eom, Gyeong Tae; Kang, Kyoung Hee; Joo, Jeong Chan; Jang, Young-Ah; Choi, Jae Woo; Song, Bong Keun; Lee, Seung Hwan; Park, Si Jae

    2016-04-01

    Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources.

  18. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca

    NARCIS (Netherlands)

    Schallmey, Anett; den Besten, Gijs; Teune, Ite G. P.; Kembaren, Roga F.; Janssen, Dick B.

    Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic soil bacterium Thermobifida fusca. The

  19. Treatment of rat gliomas with recombinant retrovirus harboring Herpes simplex virus thymidine kinase suicide gene

    International Nuclear Information System (INIS)

    Hlavaty, J.; Hlubinova, K.; Altanerova, V.; Liska, J.; Altaner, C.

    1997-01-01

    The retrovirus vector containing Herpes simplex virus type 1 thymidine kinase (HSVtk) gene was constructed. The vector was transfected into the packaging cell line PG13. It was shown that individual transfected cells differ in the production of recombinant retrovirus and in their susceptibility to be killed by ganciclovir. Recombinant retrovirus with a gibbon envelope was able to transduced the HSVtk gene into rat glioma cells. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to influence subcutaneous and intracerebral tumors developed after injection of C 6 rat glioma cells with subsequent injection of HSVtk retrovirus producing cells. (author)

  20. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation.

    Science.gov (United States)

    Jin, Shuangxia; Singh, Nameirakpam D; Li, Lebin; Zhang, Xianlong; Daniell, Henry

    2015-04-01

    In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. [Expression and activity determination of recombinant capsid protein VP2 gene of enterovirus type 71].

    Science.gov (United States)

    Huang, Xueyong; Liu, Guohua; Hu, Xiaoning; Du, Yanhua; Li, Xingle; Xu, Yuling; Chen, Haomin; Xu, Bianli

    2014-04-01

    To clone and express the recombinant capsid protein VP2 of enterovirus type 71 (EV71) and to identify the immune activity of expressed protein in order to build a basis for the investigation work of vaccine and diagnostic antigen. VP2 gene of EV71 was amplified by PCR, and then was cut by restriction enzyme and inserted into expression vector pMAL-c2X. The positive recombinants were transferred into E.coli TB1, the genetically engineered bacteria including pMAL-c2X-VP2 plasmids were induced by isopropyl thiogalactoside ( IPTG) , and the expression products were analyzed by SDS-PAGE and western blotting method. EV71 IgM antibody detection method by ELISA was set up, and the sensitivity and specificity of this method was assessed; 60 neutralizing antibody positive serum samples from hand foot and mouth disease (HFMD) patients were determined, of which 52 samples were positive and 8 samples were negative; a total of 88 acute phase serum samples of HFMD patients diagnosed in clinical were also detected. VP2 gene of 762 bp was obtained by PCR, the gene segment inserted into the recombinant vector was identified using restriction enzyme digestion. The recombinant vector could express a specific about 71 500 fusion protein in E.coli by SDS-PAGE. The purified recombinant protein of EV71-VP2 can react with the serum of HFMD patients to produce a specific band by western blotting. The sensitivity and specificity of ELISA was 87% and 83%, respectively. Of the 88 acute phase serum samples from children with HFMD, 48 samples (55%) were positive by the ELISA assay. VP2 gene of EV71 has been cloned and a prokaryotic high expression system for VP2 gene was successfully constructed in the present study. The recombination EV71-VP2 has well antigenicity, which could be useful for developing diagnose reagent or vaccine of EV71.

  2. A VNTR element associated with steroid sulfatase gene deletions stimulates recombination in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.; Li, X.M.; Shapiro, L.J. [UCSF School of Medicine, San Francisco, CA (United States)] [and others

    1994-09-01

    Steroid sulfatase deficiency is a common genetic disorder, with a prevalence of approximately one in every 3500 males world wide. About 90% of these patients have complete gene deletions, which appear to result from recombination between members of a low-copy repeat family (CRI-232 is the prototype) that flank the gene. RU1 and RU2 are two VNTR elements found within each of these family members. RU1 consists of 30 bp repeating units and its length shows minimal variation among individuals. The RU2 element consists of repeating sequences which are highly asymmetric, with about 90% purines and no C`s on one strand, and range from 0.6 kb to over 23 kb among different individuals. We conducted a study to determine if the RU1 or RU2 elements can promote recombination in an in vivo test system. We inserted these elements adjacent to the neo gene in each of two pSV2neo derivatives, one of which has a deletion in the 5{prime} portion of the neo gene and the other having a deletion in the 3{prime} portion. These plasmids were combined and used to transfect EJ cells. Survival of cells in G418 indicates restoration of a functional neo gene by recombination between two deletion constructs. Thus counting G418 resistant colonies gives a quantitative measure of the enhancement of recombination by the inserted VNTR elements. The results showed no effect on recombination by the inserted RU1 element (compared to the insertion of a nonspecific sequence), while the RU2 element stimulated recombination by 3.5-fold (P<0.01). A separate set of constructs placed RU1 or RU2 within the intron of an exon trapping vector. Following tranfection of cells, recombination events were monitored by a PCR assay that detected the approximation of primer binding sites (as a result of recombination). These studies showed that, as in the first set of experiments, the highly variable RU2 element is capable of stimulating somatic recombination in mammalian cells.

  3. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism.

    Science.gov (United States)

    Furuya, Toshiki; Nakao, Tomomi; Kino, Kuniki

    2015-10-01

    Mycobacteria such as Mycobacterium smegmatis strain mc(2)155 and Mycobacterium goodii strain 12523 are able to grow on acetone and use it as a source of carbon and energy. We previously demonstrated by gene deletion analysis that the mimABCD gene cluster, which encodes a binuclear iron monooxygenase, plays an essential role in acetone metabolism in these mycobacteria. In the present study, we determined the catalytic function of MimABCD in acetone metabolism. Whole-cell assays were performed using Escherichia coli cells expressing the MimABCD complex. When the recombinant E. coli cells were incubated with acetone, a product was detected by gas chromatography (GC) analysis. Based on the retention time and the gas chromatography-mass spectrometry (GC-MS) spectrum, the reaction product was identified as acetol (hydroxyacetone). The recombinant E. coli cells produced 1.02 mM of acetol from acetone within 24 h. Furthermore, we demonstrated that MimABCD also was able to convert methylethylketone (2-butanone) to 1-hydroxy-2-butanone. Although it has long been known that microorganisms such as mycobacteria metabolize acetone via acetol, this study provides the first biochemical evidence for the existence of a microbial enzyme that catalyses the conversion of acetone to acetol. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination.

    NARCIS (Netherlands)

    D.F.R. Muris; O.Y. Bezzubova (Olga); J-M. Buerstedde; K. Vreeken; A.S. Balajee; C.J. Osgood; C. Troelstra (Christine); J.H.J. Hoeijmakers (Jan); K. Ostermann; H. Schmidt (Henning); A.T. Natarajan; J.C.J. Eeken; P.H.M. Lohmann (Paul); A. Pastink (Albert)

    1994-01-01

    textabstractThe RAD52 gene of Saccharomyces cerevisiae is required for recombinational repair of double-strand breaks. Using degenerate oligonucleotides based on conserved amino acid sequences of RAD52 and rad22, its counterpart from Schizosaccharomyces pombe, RAD52 homologs from man and mouse were

  5. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    Science.gov (United States)

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  6. Recombinant vectors construction for cellobiohydrolase encoding gene constitutive expression

    Directory of Open Access Journals (Sweden)

    Leontina GURGU

    2012-12-01

    Full Text Available Cellobiohydrolases (EC 3.2.1.91 are important exo enzymes involved in cellulose hydrolysis alongside endoglucanases (EC 3.2.1.4 and β-glucosidases (EC 3.2.1.21. Heterologous cellobiohydrolase gene expression under constitutive promoter control using Saccharomyces cerevisiae as host system is of great importance for a successful SSF process. From this point of view, the main objective of the work was to use Yeplac181 expression vector as a recipient for cellobiohdrolase - cbhB encoding gene expression under the control of the actin promoter, in Saccharomyces cerevisiae. Two hybridvectors, YEplac-Actp and YEplac-Actp-CbhB, were generated usingEscherichia coli XLI Blue for the cloning experiments. Constitutive cbhB gene expression was checked by proteine gel electrophoresis (SDS-PAGE after insertion of these constructs into Saccharomyces cerevisiae.

  7. Problem-Solving Test: Conditional Gene Targeting Using the Cre/loxP Recombination System

    Science.gov (United States)

    Szeberényi, József

    2013-01-01

    Terms to be familiar with before you start to solve the test: gene targeting, knock-out mutation, bacteriophage, complementary base-pairing, homologous recombination, deletion, transgenic organisms, promoter, polyadenylation element, transgene, DNA replication, RNA polymerase, Shine-Dalgarno sequence, restriction endonuclease, polymerase chain…

  8. [Prokaryotic expression of recombinant prochymosin gene and its antiserum preparation].

    Science.gov (United States)

    Li, Xin-ping; Liu, Huan-huan; Pu, Yan; Zhang, Fu-chun; Li, Yi-jie

    2012-07-01

    To optimize the prochymosin (pCHY) gene codons and express the gene in Escherichia coli (E.coli), and to prepare its antiserum and detect chymosin protein specifically. According to codon usage bias of E.coli, prochymosin gene sequence was synthesized based on the conserved sequences of prochymosin gene from bovine, lamb and camel, and then cloned into the plasmid pET-30a and pcDNA3-AAT-COMP-C3d3 (pcD-ACC), respectively. pET-30a-pCHY was expressed, as the detected antigen, in E.coli BL21(DE3) after IPTG induction. RT-PCR was used to detect prochymosin mRNA expression in liver from the mice injected pcDNA3-AAT-COMP-pCHY-C3d3(pACCC) by hydrodynamics-based transfection method. To prepare the antiserum of prochymosin, pACCC and GST-pCHY proteins were used to immunize New Zealand rabbits in accordance with DNA prime-protein boost strategy. Antibody levels were tested by ELISA. Western blotting showed the molecular weight of His-pCHY protein was about 55 000, similar to the expected molecular size. ELISA demonstrated that the titer level of prochymosin antiserum was high. Based on the codon optimization, we have obtained high-titer prochymosin antiserum through DNA vaccine vector pcD-ACC combined with DNA prime-protein boost strategy, similar to that by protein vaccine.

  9. The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression

    Science.gov (United States)

    Baker, Katie; Bayer, Micha; Cook, Nicola; Dreißig, Steven; Dhillon, Taniya; Russell, Joanne; Hedley, Pete E; Morris, Jenny; Ramsay, Luke; Colas, Isabelle; Waugh, Robbie; Steffenson, Brian; Milne, Iain; Stephen, Gordon; Marshall, David; Flavell, Andrew J

    2014-01-01

    The low-recombining pericentromeric region of the barley genome contains roughly a quarter of the genes of the species, embedded in low-recombining DNA that is rich in repeats and repressive chromatin signatures. We have investigated the effects of pericentromeric region residency upon the expression, diversity and evolution of these genes. We observe no significant difference in average transcript level or developmental RNA specificity between the barley pericentromeric region and the rest of the genome. In contrast, all of the evolutionary parameters studied here show evidence of compromised gene evolution in this region. First, genes within the pericentromeric region of wild barley show reduced diversity and significantly weakened purifying selection compared with the rest of the genome. Second, gene duplicates (ohnolog pairs) derived from the cereal whole-genome duplication event ca. 60MYa have been completely eliminated from the barley pericentromeric region. Third, local gene duplication in the pericentromeric region is reduced by 29% relative to the rest of the genome. Thus, the pericentromeric region of barley is a permissive environment for gene expression but has restricted gene evolution in a sizeable fraction of barley's genes. PMID:24947331

  10. Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila.

    Directory of Open Access Journals (Sweden)

    J Roman Arguello

    2006-05-01

    Full Text Available The formation of chimeric gene structures provides important routes by which novel proteins and functions are introduced into genomes. Signatures of these events have been identified in organisms from wide phylogenic distributions. However, the ability to characterize the early phases of these evolutionary processes has been difficult due to the ancient age of the genes or to the limitations of strictly computational approaches. While examples involving retrotransposition exist, our understanding of chimeric genes originating via illegitimate recombination is limited to speculations based on ancient genes or transfection experiments. Here we report a case of a young chimeric gene that has originated by illegitimate recombination in Drosophila. This gene was created within the last 2-3 million years, prior to the speciation of Drosophila simulans, Drosophila sechellia, and Drosophila mauritiana. The duplication, which involved the Bällchen gene on Chromosome 3R, was partial, removing substantial 3' coding sequence. Subsequent to the duplication onto the X chromosome, intergenic sequence was recruited into the protein-coding region creating a chimeric peptide with approximately 33 new amino acid residues. In addition, a novel intron-containing 5' UTR and novel 3' UTR evolved. We further found that this new X-linked gene has evolved testes-specific expression. Following speciation of the D. simulans complex, this novel gene evolved lineage-specifically with evidence for positive selection acting along the D. simulans branch.

  11. IMGT/GeneInfo: enhancing V(D)J recombination database accessibility

    Science.gov (United States)

    Baum, Thierry-Pascal; Pasqual, Nicolas; Thuderoz, Florence; Hierle, Vivien; Chaume, Denys; Lefranc, Marie-Paule; Jouvin-Marche, Evelyne; Marche, Patrice-Noël; Demongeot, Jacques

    2004-01-01

    IMGT/GeneInfo is a user-friendly online information system that provides information on data resulting from the complex mechanisms of immunoglobulin (IG) and T cell receptor (TR) V(D)J recombinations. For the first time, it is possible to visualize all the rearrangement parameters on a single page. IMGT/GeneInfo is part of the international ImMunoGeneTics information system® (IMGT), a high-quality integrated knowledge resource specializing in IG, TR, major histocompatibility complex (MHC), and related proteins of the immune system of human and other vertebrate species. The IMGT/GeneInfo system was developed by the TIMC and ICH laboratories (with the collaboration of LIGM), and is the first example of an external system being incorporated into IMGT. In this paper, we report the first part of this work. IMGT/GeneInfo_TR deals with the human and mouse TRA/TRD and TRB loci of the TR. Data handling and visualization are complementary to the current data and tools in IMGT, and will subsequently allow the modelling of V(D)J gene use, and thus, to predict non-standard recombination profiles which may eventually be found in conditions such as leukaemias or lymphomas. Access to IMGT/GeneInfo is free and can be found at http://imgt.cines.fr/GeneInfo. PMID:14681357

  12. Recombinant adenovirus-mediated gene transfer suppresses experimental arthritis

    Directory of Open Access Journals (Sweden)

    E. Quattrocchi

    2011-09-01

    Full Text Available Collagen Induced Arthritis (CIA is a widely studied animal model to develop and test novel therapeutic approaches for treating Rheumatoid Arthritis (RA in humans. Soluble Cytotoxic T-Lymphocyte Antigen 4 (CTLA4-Ig, which binds B7 molecule on antigen presenting cells and blocks CD28 mediated T-lymphocyte activation, has been shown to ameliorate experimental autoimmune diseases such as lupus, diabetes and CIA. Objective of our research was to investigate in vivo the effectiveness of blocking the B7/CD28 T-lymphocyte co-stimulatory pathway, utilizing a gene transfer technology, as a therapeutic strategy against CIA. Replication-deficient adenoviruses encoding a chimeric CTLA4-Ig fusion protein, or β-galactosidase as control, have been injected intravenously once at arthritis onset. Disease activity has been monitored by the assessment of clinical score, paw thickness and type II collagen (CII specific cellular and humoral immune responses for 21 days. The adenovirally delivered CTLA4-Ig fusion protein at a dose of 2×108 pfu suppressed established CIA, whereas the control β-galactosidase did not significantly affect the disease course. CII-specific lymphocyte proliferation, IFNg production and anti-CII antibodies were significantly reduced by CTLA4-Ig treatment. Our results demonstrate that blockade of the B7/CD28 co-stimulatory pathway by adenovirus-mediated CTLA4-Ig gene transfer is effective in treating established CIA suggesting its potential in treating RA.

  13. Desaturation reactions catalyzed by soluble methane monooxygenase.

    Science.gov (United States)

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  14. IMGT/GeneInfo: enhancing V(D)J recombination database accessibility

    OpenAIRE

    Baum, Thierry-Pascal; Pasqual, Nicolas; Thuderoz, Florence; Hierle, Vivien; Chaume, Denys; Lefranc, Marie-Paule; Jouvin-Marche, Evelyne; Marche, Patrice-Noël; Demongeot, Jacques

    2004-01-01

    IMGT/GeneInfo is a user-friendly online information system that provides information on data resulting from the complex mechanisms of immunoglobulin (IG) and T cell receptor (TR) V(D)J recombinations. For the first time, it is possible to visualize all the rearrangement parameters on a single page. IMGT/GeneInfo is part of the international ImMunoGeneTics information system® (IMGT), a high-quality integrated knowledge resource specializing in IG, TR, major histocompatibility complex (MHC), an...

  15. Reconstitution of active mycobacterial binuclear iron monooxygenase complex in Escherichia coli.

    Science.gov (United States)

    Furuya, Toshiki; Hayashi, Mika; Kino, Kuniki

    2013-10-01

    Bacterial binuclear iron monooxygenases play numerous physiological roles in oxidative metabolism. Monooxygenases of this type found in actinomycetes also catalyze various useful reactions and have attracted much attention as oxidation biocatalysts. However, difficulties in expressing these multicomponent monooxygenases in heterologous hosts, particularly in Escherichia coli, have hampered the development of engineered oxidation biocatalysts. Here, we describe a strategy to functionally express the mycobacterial binuclear iron monooxygenase MimABCD in Escherichia coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the mimABCD gene expression in E. coli revealed that the oxygenase components MimA and MimC were insoluble. Furthermore, although the reductase MimB was expressed at a low level in the soluble fraction of E. coli cells, a band corresponding to the coupling protein MimD was not evident. This situation rendered the transformed E. coli cells inactive. We found that the following factors are important for functional expression of MimABCD in E. coli: coexpression of the specific chaperonin MimG, which caused MimA and MimC to be soluble in E. coli cells, and the optimization of the mimD nucleotide sequence, which led to efficient expression of this gene product. These two remedies enabled this multicomponent monooxygenase to be actively expressed in E. coli. The strategy described here should be generally applicable to the E. coli expression of other actinomycetous binuclear iron monooxygenases and related enzymes and will accelerate the development of engineered oxidation biocatalysts for industrial processes.

  16. Gene targeting using homologous recombination in embryonic stem cells: The future for behavior genetics?

    Directory of Open Access Journals (Sweden)

    Robert eGerlai

    2016-04-01

    Full Text Available Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior.

  17. Study of recombinant proteins derived from Ser-2 gene of Bombyx mori

    OpenAIRE

    STAŠKOVÁ, Tereza

    2012-01-01

    Four different variants of recombinant proteins derived from Bombyx mori Ser-2 gene were expressed in bacteria. The ability of these proteins to coat hydrofobic surfaces and to support growth of various types of adherent cells in vitro were examined. It was shown that these proteins support cell adhesion and proliferation, and could be used as coating agents to realize surfaces suitable for growth of vertebrate and insect cells.

  18. Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds

    International Nuclear Information System (INIS)

    Zhang Xiaowei; Moore, Jeremy N.; Newsted, John L.; Hecker, Markus; Zwiernik, Matthew J.; Jones, Paul D.; Bursian, Steven J.

    2009-01-01

    As part of an ongoing effort to understand aryl hydrocarbon receptor (AhR) mediated toxicity in mink, cDNAs encoding for CYP1A1 and the CYP1A2 mixed function monooxygenases were cloned and characterized. In addition, the effects of selected dibenzofurans on the expression of these genes and the presence of their respective proteins (P4501A) were investigated, and then correlated with the catalytic activities of these proteins as measured by ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) activities. The predicted protein sequences for CYP1A1 and CYP1A2 comprise 517 and 512 amino acid residues, respectively. The phylogenetic analysis of the mink CYP1As with protein sequences of other mammals revealed high sequence homology with sea otter, seals and the dog, with amino acid identities ranging from 89 to 95% for CYP1A1 and 81 to 93% for CYP1A2. Since exposure to both 2,3,7,8-Tetrachlorodibenzofuran (TCDF) and 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) resulted in dose-dependent increases of CYP1A1 mRNA, CYP1A2 mRNA and CYP1A protein levels an underlying AhR-mediated mechanism is suggested. The up-regulation of CYP1A mRNA in liver was more consistent to the sum adipose TEQ concentration than to the liver TEQ concentration in minks treated with TCDF or PeCDF. The result suggested that the hepatic-sequestered fraction of PeCDF was biologically inactive to the induction of CYP1A1 and CYP1A2

  19. Plasmid transfer by conjugation as a possible route of horizontal gene transfer and recombination in Xylella fastidiosa

    Science.gov (United States)

    Horizontal gene transfer is an important component of evolution and adaptation of bacterial species. Xylella fastidiosa has the ability to incorporate exogenous DNA into its genome by homologous recombination at relatively high rates. This genetic recombination is believed to play a role in adaptati...

  20. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    Science.gov (United States)

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  1. Preparation of a recombinant adenoviral encoding human NIS gene and its specific expression in cardiomyocytes

    International Nuclear Information System (INIS)

    Wang Lihua; Zhang Miao; Guo Rui; Shi Shuo; Li Biao

    2012-01-01

    Objective: To construct a recombinant adenovirus vector containing the human NIS gene with the myosin light chain-2(MLC-2v) gene as the promoter and evaluate its specific expression and feasibility as a reporter gene in cardiomyocytes. Methods: MLC-2v promoter and NIS were subcloned into an adenovirus shuttle vector, and forwarded by homologous recombination in the bacteria BJ5183 containing AdEasy-1 plasmid. Positive recombinant adenovirus vector was selected, packaged and amplified in the HEK293 cells to obtain recombinant adenovirus Ad-MLC-NIS. Ad-cytomegalovirus (CMV)-NIS with cytomegalovirus as the promoter, Ad-MLC without NIS and Ad-NIS without promoter were constructed as the controls. Cardiomyocytes and non-cardiomyocytes were then infected by the adenovirus. The protein expression was tested by Western blot analysis. The function and features of NIS protein were evaluated by dynamic iodide uptake and NaClO 4 iodine uptake inhibition test in vitro. The viability and proliferation of cardiomyocytes after adenovirus transfection and radioiodine incubation were checked by trypan blue staining. Results: Recombinant NIS adenovirus was successfully constructed. Western blot analysis showed that the NIS protein was highly expressed in cardiomyocytes transfected with Ad-MLC-NIS, and all cells transfected with Ad-CMV-NIS. However, in non-cardiomyocytes transfected with Ad-MLC-NIS, little NIS protein was detected. Dynamic iodine uptake tests showed that the peaks of iodide uptake of the three different cell lines (H9C2, A549, U87 cell) transfected with Ad-MLC-NIS were 5844.0, 833.6 and 846.0 counts · min -1 , respectively. The iodide uptake function of H9C2 was inhibited by NaClO 4 . There was almost no change in cell viability and proliferation when the MOI was 100. Conclusions: Ad-MLC-NIS allows myocardial specific expression of an external gene, and the cardiomyocytes with NIS expression are capable of iodine uptake. Further research of NIS as a reporter gene in

  2. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure.

    Science.gov (United States)

    Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K

    2017-04-01

    There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.

  3. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Derek L Lindstrom

    2011-03-01

    Full Text Available Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array. As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.

  4. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ajimura, M.; Lee, S.H.; Ogawa, H.

    1993-01-01

    Mutants defective in meiotic recombination were isolated from a disomic haploid strain of Saccharomyces cerevisiae by examining recombination within the leu2 and his4 heteroalleles located on chromosome III. The mutants were classified into two new complementation groups (MRE2 and MRE11) and eight previously identified groups, which include SPO11, HOP1, REC114, MRE4/MEK1 and genes in the RAD52 epistasis group. All of the mutants, in which the mutations in the new complementation groups are homozygous and diploid, can undergo premeiotic DNA synthesis and produce spores. The spores are, however, not viable. The mre2 and mre11 mutants produce viable spores in a spo13 background, in which meiosis I is bypassed, suggesting that these mutants are blocked at an early step in meiotic recombination. The mre2 mutant does not exhibit any unusual phenotype during mitosis and it is, thus, considered to have a mutation in a meiosis-specific gene. By contrast, the mre11 mutant is sensitive to damage to DNA by methyl methanesulfonate and exhibits a hyperrecombination phenotype in mitosis. Among six alleles of HOP1 that were isolated, an unusual pattern of intragenic complementation was observed

  5. The construction and identification of hypoxia-regulated recombinant plasmid with reporter gene hNIS

    International Nuclear Information System (INIS)

    Hu Qunchao; Wu Jinchang; Zhou Jundong; Gu Ke

    2011-01-01

    Objective: To construct pShuttle-5 × HRE-CMV-NIS recombinant plasmid regulated by hypoxia-responsive element, which can possibly by used to detect the expression of hypoxia induced factor-α (HIF-1α) gene under hypoxia condition. Methods: Artificially synthesize the nucleotide sequences of five copies of hypoxia response elements (HREs) were cloned into pGL3-promoter vector to construct pGL3-promoter-5 × HRE vector. Human sodium/iodide symporter (hNIS) gene cDNA was amplified from human genome by RT-PCR, and subcloned into pGL3-promoter-5 × HRE vector then was sequenced. After treated with CoCl 2 as hypoxia mimic, HEK293 cells were transfected with recombinant plasmid with hNIS gene, while cells treated with DMSO as the control. Meanwhile, pcDNA3.1-HIF-1α and recombinant hNIS gene vectors were transfected into HEK293 cells at the ratio of 3 to 1, while co-transfection with pcDNA3.1 and pShuttle-NIS vectors cells were taken as the control. NIS mRNA expression was analyzed by qRT-PCR while function of NIS protein was tested by 99m TcO 4 - -uptake. Results: The sequence data of hNIS gene in recombinant plasmid were in accordance with those reported in the literatures. Compared with control groups, HEK293 cells co-transfected with both pShuttle-5 × HRE-CMV-NIS and HIF-1α gene vectors and CoCl 2 -treated after pShuttle-NIS transfecting presented higher mRNA expressions of NIS and 99m TcO 4 - uptake (P<0.01). Conclusion: HIF-1α can be bound to and activate pShuttle-5 × HRE-CMV-NIS in cells to accumulate radioactive nuclide 99m TcO 4 - and this technique is potential for detection of expression and activity of HIF-1α, the indicator of cell hypoxia. (authors)

  6. Regulation of Recombination between gtfB/gtfC Genes in Streptococcus mutans by Recombinase A

    Directory of Open Access Journals (Sweden)

    Satoko Inagaki

    2013-01-01

    Full Text Available Streptococcus mutans produces 3 types of glucosyltransferases (GTFs, whose cooperative action is essential for cellular adhesion. The recombinase A (RecA protein is required for homologous recombination. In our previous study, we isolated several strains with a smooth colony morphology and low GTF activity, characteristics speculated to be derived from the GTF fusions. The purpose of the present study was to investigate the mechanism of those fusions. S. mutans strain MT8148 was grown in the presence of recombinant RecA (rRecA protein, after which smooth colonies were isolated. The biological functions and sequences of the gtfB and gtfC genes of this as well as other clinical strains were determined. The sucrose-dependent adherence rates of those strains were reduced as compared to that of MT8148. Determination of the sequences of the gtfB and gtfC genes showed that an approximately 3500 bp region was deleted from the area between them. Furthermore, expression of the recA gene was elevated in those strains as compared to MT8148. These results suggest that RecA has an important role in fusions of gtfB and gtfC genes, leading to alteration of colony morphology and reduction in sucrose-dependent adhesion.

  7. Structural organization of glycophorin A and B genes: Glycophorin B gene evolved by homologous recombination at Alu repeat sequences

    International Nuclear Information System (INIS)

    Kudo, Shinichi; Fukuda, Minoru

    1989-01-01

    Glycophorins A (GPA) and B (GPB) are two major sialoglycoproteins of the human erythrocyte membrane. Here the authors present a comparison of the genomic structures of GPA and GPB developed by analyzing DNA clones isolated from a K562 genomic library. Nucleotide sequences of exon-intron junctions and 5' and 3' flanking sequences revealed that the GPA and GPB genes consist of 7 and 5 exons, respectively, and both genes have >95% identical sequence from the 5' flanking region to the region ∼ 1 kilobase downstream from the exon encoding the transmembrane regions. In this homologous part of the genes, GPB lacks one exon due to a point mutation at the 5' splicing site of the third intron, which inactivates the 5' cleavage event of splicing and leads to ligation of the second to the fourth exon. Following these very homologous sequences, the genomic sequences for GPA and GPB diverge significantly and no homology can be detected in their 3' end sequences. The analysis of the Alu sequences and their flanking direct repeat sequences suggest that an ancestral genomic structure has been maintained in the GPA gene, whereas the GPB gene has arisen from the acquisition of 3' sequences different from those of the GPA gene by homologous recombination at the Alu repeats during or after gene duplication

  8. Exploratory study of mechanical kinematic innovation design based on gene recombination operation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yixiong; Gao, Yicong; Tan, Jianrong [Zhejiang University, Hangzhou (China); Hagiwara, Ichiro [Tokyo Institute of Technology, Tokyo (Korea, Republic of)

    2013-03-15

    This paper analyzes the influencing factor of motion output of the inspired mechanism under the premise that the motion input is invariant. These factors are respectively expressed as kinematic pair chromosome number, kinematic pair feature gene and distance relationship vector gene by virtue of several concepts and principles in genetics, and then they are encoded. Mechanism chromosome model is established, which is constituted by mechanism chromosome relationship graph and mechanism chromosome matrix. Three kinematic pair chromosome gene recombination operations on mechanism chromosome model (dominance, translocation and metastasis), are proposed by using meiosis and chromosome variance in genetics for reference. Finally the paper takes shaper as the original mechanism and acquires its inspired mechanism, which proves the convenience and practicality of the methods.

  9. Exploratory study of mechanical kinematic innovation design based on gene recombination operation

    International Nuclear Information System (INIS)

    Feng, Yixiong; Gao, Yicong; Tan, Jianrong; Hagiwara, Ichiro

    2013-01-01

    This paper analyzes the influencing factor of motion output of the inspired mechanism under the premise that the motion input is invariant. These factors are respectively expressed as kinematic pair chromosome number, kinematic pair feature gene and distance relationship vector gene by virtue of several concepts and principles in genetics, and then they are encoded. Mechanism chromosome model is established, which is constituted by mechanism chromosome relationship graph and mechanism chromosome matrix. Three kinematic pair chromosome gene recombination operations on mechanism chromosome model (dominance, translocation and metastasis), are proposed by using meiosis and chromosome variance in genetics for reference. Finally the paper takes shaper as the original mechanism and acquires its inspired mechanism, which proves the convenience and practicality of the methods.

  10. Construction and characterization of recombinant flaviviruses bearing insertions between E and NS1 genes

    Directory of Open Access Journals (Sweden)

    Kubelka Claire F

    2007-10-01

    Full Text Available Abstract Background The yellow fever virus, a member of the genus Flavivirus, is an arthropod-borne pathogen causing severe disease in humans. The attenuated yellow fever 17D virus strain has been used for human vaccination for 70 years and has several characteristics that are desirable for the development of new, live attenuated vaccines. We described here a methodology to construct a viable, and immunogenic recombinant yellow fever 17D virus expressing a green fluorescent protein variant (EGFP. This approach took into account the presence of functional motifs and amino acid sequence conservation flanking the E and NS1 intergenic region to duplicate and fuse them to the exogenous gene and thereby allow the correct processing of the viral polyprotein precursor. Results YF 17D EGFP recombinant virus was grew in Vero cells and reached a peak titer of approximately 6.45 ± 0.4 log10 PFU/mL at 96 hours post-infection. Immunoprecipitation and confocal laser scanning microscopy demonstrated the expression of the EGFP, which was retained in the endoplasmic reticulum and not secreted from infected cells. The association with the ER compartment did not interfere with YF assembly, since the recombinant virus was fully competent to replicate and exit the cell. This virus was genetically stable up to the tenth serial passage in Vero cells. The recombinant virus was capable to elicit a neutralizing antibody response to YF and antibodies to EGFP as evidenced by an ELISA test. The applicability of this cloning strategy to clone gene foreign sequences in other flavivirus genomes was demonstrated by the construction of a chimeric recombinant YF 17D/DEN4 virus. Conclusion This system is likely to be useful for a broader live attenuated YF 17D virus-based vaccine development for human diseases. Moreover, insertion of foreign genes into the flavivirus genome may also allow in vivo studies on flavivirus cell and tissue tropism as well as cellular processes related

  11. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    Directory of Open Access Journals (Sweden)

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  12. Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes.

    Science.gov (United States)

    Ponnazhagan, S; Weigel, K A; Raikwar, S P; Mukherjee, P; Yoder, M C; Srivastava, A

    1998-06-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562-566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111-1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited and

  13. Recombinant Human Parvovirus B19 Vectors: Erythroid Cell-Specific Delivery and Expression of Transduced Genes

    Science.gov (United States)

    Ponnazhagan, Selvarangan; Weigel, Kirsten A.; Raikwar, Sudhanshu P.; Mukherjee, Pinku; Yoder, Mervin C.; Srivastava, Arun

    1998-01-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562–566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111–1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited

  14. [Immune Response of Recombinant Pseudorabies Virus rPRV-VP2 Expressing VP2 Gene of Porcine Parvovirus in Mice].

    Science.gov (United States)

    Fu, Pengfei; Pan, Xinlong; Han, Qiao; Yang, Xingwu; Zhu, Qianlei; Guo, Xiaoqing; Zhang, Yu; Chen, Hongying

    2016-03-01

    In order to develop a combined live vaccine that will be used to prevent against porcine parvovirus (PPV) and Pseudorabies virus (PRV) infection, the VP2 gene of PPV was inserted into the transfer vector plasmid pG to produce the recombinant plasmid pGVP2. The plasmid pGVP2 and the genome of PRV HB98 attenuated vaccine were transfected by using lipofectamine into swine testis cells for the homologous recombination. The recombinant virus rPRV-VP2 was purified by selection of green fluorescence plaques for five cycles. 6-week-old female Kunming mice were immunized intramuscularly with attenuated PRV parent HB98 strain, commercial inactivated vaccine against PPV, recombinant virus, DMEM culture solution. The injections were repeated with an equivalent dose after 2 weeks in all of the groups, and then challenged with the virulent PRV NY strain at 7 weeks after the first immunization. The recombinant virus rPRV-VP2 was successfully generated, and the recombinant virus could effectively elicite anti-PPV and PRV antibody and significant cellular immune response as indicated by anti-PPV ELISA and HI, PRV-neutralizing assay and flow cytometry. The challenge assay indicated that recombinant virus could protect the mice against the virulent PRV challenge. These results demonstrated that the recombinant virus can be a candidate recombinant vaccine strain for the prevention of PRV and PPV.

  15. Cloning of the Repertoire of Individual Plasmodium falciparum var Genes Using Transformation Associated Recombination (TAR)

    Science.gov (United States)

    Schmid, Christoph D.; Bühlmann, Tobias; Louis, Edward J.; Beck, Hans-Peter

    2011-01-01

    One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and antigenic properties of infected erythrocytes, to escape the immune defense and to establish chronic infections. We have developed an efficient method for isolating VAR genes from telomeric and other genome locations by adapting transformation-associated recombination (TAR) cloning, which can then be analyzed and sequenced. For this purpose, three plasmids each containing a homologous sequence representing the upstream regions of the group A, B, and C var genes and a sequence homologous to the conserved acidic terminal segment (ATS) of var genes were generated. Co-transfection with P. falciparum strain ITG2F6 genomic DNA in yeast cells yielded 200 TAR clones. The relative frequencies of clones from each group were not biased. Clones were screened by PCR, as well as Southern blotting, which revealed clones missed by PCR due to sequence mismatches with the primers. Selected clones were transformed into E. coli and further analyzed by RFLP and end sequencing. Physical analysis of 36 clones revealed 27 distinct types potentially representing 50% of the var gene repertoire. Three clones were selected for sequencing and assembled into single var gene containing contigs. This study demonstrates that it is possible to rapidly obtain the repertoire of var genes from P. falciparum within a single set of cloning experiments. This technique can be applied to individual isolates which will provide a detailed picture of the diversity of var genes in the field. This is a powerful tool to overcome the obstacles with cloning and assembly of multi-gene families by simultaneously cloning each member. PMID:21408186

  16. Overproduction and partial purification of the Norrie disease gene product, norrin, from a recombinant baculovirus.

    Science.gov (United States)

    Shastry, Barkur S; Trese, Michael T

    2003-12-05

    Abnormal vascularization of the peripheral retina and retinal detachment are common clinical characteristics of Norrie disease (ND), familial exudative vitreoretinopathy, Coats' disease, and retinopathy of prematurity. Although little is known about the molecular basis of these diseases, studies have shown that all of these diseases are associated with mutations in the ND gene. In spite of this, little is known about norrin, its molecular mechanism of action, and its functional relationship with the development of abnormal retinal vasculature. To obtain a large quantity of norrin for structural and functional studies, we have overproduced it in insect cells. For this purpose, a cDNA fragment (869 bp) was isolated from a human retinal cDNA library by amplification and was cloned into an expression vector. The purified plasmid was co-transfected with wild-type linearized Bac-N-Blue DNA into S. frugiperda Sf21 insect cells. The recombinant virus plaques were purified and clones were selected based on the level of recombinant protein expressed in Sf21 cells infected with a purified recombinant virus. From these, a high-titer stock was generated and subsequently used to prepare a fused protein on a large scale. The protein was partially purified by the process of immobilized metal affinity chromatography and the use of ion exchange chromatography

  17. Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

    Directory of Open Access Journals (Sweden)

    In Sun Hwang

    2016-06-01

    Full Text Available Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1 , which is associated with fumonisin B1 biosynthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi.

  18. Finding trans-regulatory genes and protein complexes modulating meiotic recombination hotspots of human, mouse and yeast.

    Science.gov (United States)

    Wu, Min; Kwoh, Chee-Keong; Li, Xiaoli; Zheng, Jie

    2014-09-11

    The regulatory mechanism of recombination is one of the most fundamental problems in genomics, with wide applications in genome wide association studies (GWAS), birth-defect diseases, molecular evolution, cancer research, etc. Recombination events cluster into short genomic regions called "recombination hotspots". Recently, a zinc finger protein PRDM9 was reported to regulate recombination hotspots in human and mouse genomes. In addition, a 13-mer motif contained in the binding sites of PRDM9 is found to be enriched in human hotspots. However, this 13-mer motif only covers a fraction of hotspots, indicating that PRDM9 is not the only regulator of recombination hotspots. Therefore, the challenge of discovering other regulators of recombination hotspots becomes significant. Furthermore, recombination is a complex process. Hence, multiple proteins acting as machinery, rather than individual proteins, are more likely to carry out this process in a precise and stable manner. Therefore, the extension of the prediction of individual trans-regulators to protein complexes is also highly desired. In this paper, we introduce a pipeline to identify genes and protein complexes associated with recombination hotspots. First, we prioritize proteins associated with hotspots based on their preference of binding to hotspots and coldspots. Second, using the above identified genes as seeds, we apply the Random Walk with Restart algorithm (RWR) to propagate their influences to other proteins in protein-protein interaction (PPI) networks. Hence, many proteins without DNA-binding information will also be assigned a score to implicate their roles in recombination hotspots. Third, we construct sub-PPI networks induced by top genes ranked by RWR for various species (e.g., yeast, human and mouse) and detect protein complexes in those sub-PPI networks. The GO term analysis show that our prioritizing methods and the RWR algorithm are capable of identifying novel genes associated with

  19. Segregation of genes from donor strain during the production of recombinant congenic strains.

    Science.gov (United States)

    van Zutphen, L F; Den Bieman, M; Lankhorst, A; Demant, P

    1991-07-01

    Recombinant congenic strains (RCS) constitute a set of inbred strains which are designed to dissect the genetic control of multigenic traits, such as tumour susceptibility or disease resistance. Each RCS contains a small fraction of the genome of a common donor strain, while the majority of genes stem from a common background strain. We tested at two stages of the inbreeding process in 20 RCS, derived from BALB/cHeA and STS/A, to see whether alleles from the STS/A donor strain are distributed over the RCS in a ratio as would theoretically be expected. Four marker genes (Pep-3; Pgm-1; Gpi-1 and Es-3) located at 4 different chromosomes were selected and the allelic distribution was tested after 3-4 and after 12 generations of inbreeding. The data obtained do not significantly deviate from the expected pattern, thus supporting the validity of the concept of RCS.

  20. Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis.

    Science.gov (United States)

    Wang, Yi; Chen, Zhenmin; Zhao, Ruili; Jin, Tingting; Zhang, Xiaoming; Chen, Xiangdong

    2014-08-31

    Bacillus subtilis is widely used in agriculture and industrial biotechnology; however, cell autolysis significantly decreases its yield in liquid cultures. Numerous factors mediate the lysis of B. subtilis, such as cannibalism factors, prophages, and peptidoglycan (PG) hydrolases. The aim of this work was to use molecular genetic techniques to develop a new strategy to prevent cell lysis and enhance biomass as well as the production of recombinant proteins. Five genes or genetic elements representing three different functional categories were studied as follows: lytC encoding PG hydrolases, the prophage genes xpf and yqxG-yqxH-cwlA (yGlA), and skfA and sdpC that encode cannibalism factors. Cell lysis was reduced and biomass was enhanced by deleting individually skfA, sdpC, xpf, and lytC. We constructed the multiple deletion mutant LM2531 (skfA sdpC lytC xpf) and found that after 4 h of culture, its biomass yield was significantly increased compared with that of prototypical B. subtilis 168 (wild-type) strain and that 15% and 92% of the cells were lysed in cultures of LM2531 and wild-type, respectively. Moreover, two expression vectors were constructed for producing recombinant proteins (β-galactosidase and nattokinase) under the control of the P43 promoter. Cultures of LM2531 and wild-type transformants produced 13741 U/ml and 7991 U/ml of intracellular β-galactosidase, respectively (1.72-fold increase). Further, the level of secreted nattokinase produced by strain LM2531 increased by 2.6-fold compared with wild-type (5226 IU/ml vs. 2028 IU/ml, respectively). Our novel, systematic multigene deletion approach designed to inhibit cell lysis significantly increased the biomass yield and the production of recombinant proteins by B. subtilis. These findings show promise for guiding efforts to manipulate the genomes of other B. subtilis strains that are used for industrial purposes.

  1. The joint effects of background selection and genetic recombination on local gene genealogies.

    Science.gov (United States)

    Zeng, Kai; Charlesworth, Brian

    2011-09-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data.

  2. Analysis of TCRAD gene recombination: radio-induct rearrangement and signal joint structure

    International Nuclear Information System (INIS)

    Touvrey, C.

    2005-09-01

    We have shown that irradiation of pre-TCR-deficient CD3ε -/- mice restores thymocyte differentiation, by a p53-dependent and by a p53-independent pathway. Events normally associated during normal thymocyte development are dissociated in response to radiation exposure. Both of these pathways require LAT expression. Therefore, radiation exposure activates pre-TCR-like signals. TCRA gene rearrangement is induced following radiation exposure. The signal joints resulting from TCRA gene rearrangement have the same structure than those found in wild type mice. All signal joint analyzed in un-manipulated wild type mice do exhibit junctional diversity. This diversity results mainly from TdT activity. We present evidences that proteins involved in DNA repair and genomic stability participated in SJ formation. We propose that signal joint diversity is not an aberrant process but is a key feature of V(D)J recombination. All our work increases our understanding of molecular events associated with V(D)J recombination. (author)

  3. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages

    KAUST Repository

    Phelan, Jody E.

    2016-02-29

    Background Approximately 10 % of the Mycobacterium tuberculosis genome is made up of two families of genes that are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified by their highly conserved N-terminal domains that incorporate proline-glutamate (PE) and proline-proline-glutamate (PPE) signature motifs. They are hypothesised to be important virulence factors involved with host-pathogen interactions, but their high genetic variability and complexity of analysis means they are typically disregarded in genome studies. Results To elucidate the structure of these genes, 518 genomes from a diverse international collection of clinical isolates were de novo assembled. A further 21 reference M. tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified, notably pe_pgrs3 and pe_pgrs17. Evidence of positive selection was revealed in 65 pe/ppe genes, including epitopes potentially binding to major histocompatibility complex molecules. Conclusions This, the first comprehensive study of the pe and ppe genes, provides important insight into M. tuberculosis diversity and has significant implications for vaccine development.

  4. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus.

    Science.gov (United States)

    Flannery, J G; Zolotukhin, S; Vaquero, M I; LaVail, M M; Muzyczka, N; Hauswirth, W W

    1997-06-24

    We describe a general approach for achieving efficient and cell type-specific expression of exogenous genes in photoreceptor cells of the mammalian retina. Recombinant adeno-associated virus (rAAV) vectors were used to transfer the bacterial lacZ gene or a synthetic green fluorescent protein gene (gfp) to mouse or rat retinas after injection into the subretinal space. Using a proximal murine rod opsin promoter (+86 to -385) to drive expression, reporter gene product was found exclusively in photoreceptors, not in any other retinal cell type or in the adjacent retinal pigment epithelium. GFP-expressing photoreceptors typically encompassed 10-20% of the total retinal area after a single 2-microl injection. Photoreceptors were transduced with nearly 100% efficiency in the region directly surrounding the injection site. We estimate approximately 2.5 million photoreceptors were transduced as a result of the single subretinal inoculation. This level of gene transfer and expression suggests the feasibility of genetic therapy for retinal disease. The gfp-containing rAAV stock was substantially free of both adenovirus and wild-type AAV, as judged by plaque assay and infectious center assay, respectively. Thus, highly purified, helper virus-free rAAV vectors can achieve high-frequency tissue-specific transduction of terminally differentiated, postmitotic photoreceptor cells.

  5. Recombination between Homeologous Chromosomes in Lager Yeasts leads to Loss of Function of the Hybrid GPH1 Gene.

    OpenAIRE

    BOND, URSULA

    2009-01-01

    PUBLISHED Yeasts used in the production of lagers contain complex allopolyploid genomes, resulting from the fusion of two different yeast species closely related to Saccharomyces cerevisiae and Saccharomyces bayanus. Recombination between the homoeologous chromosomes has generated a number of hybrid chromosomes. These recombination events provide potential for adaptive evolution through the loss or gain of gene function. We have examined the genotypic and phenotypic effects of one of the c...

  6. Terbinafine Resistance Mediated by Salicylate 1-Monooxygenase in Aspergillus nidulans

    Science.gov (United States)

    Graminha, Marcia A. S.; Rocha, Eleusa M. F.; Prade, Rolf A.; Martinez-Rossi, Nilce M.

    2004-01-01

    Resistance to antifungal agents is a recurring and growing problem among patients with systemic fungal infections. UV-induced Aspergillus nidulans mutants resistant to terbinafine have been identified, and we report here the characterization of one such gene. A sib-selected, 6.6-kb genomic DNA fragment encodes a salicylate 1-monooxygenase (salA), and a fatty acid synthase subunit (fasC) confers terbinafine resistance upon transformation of a sensitive strain. Subfragments carrying salA but not fasC confer terbinafine resistance. salA is present as a single-copy gene on chromosome VI and encodes a protein of 473 amino acids that is homologous to salicylate 1-monooxygenase, a well-characterized naphthalene-degrading enzyme in bacteria. salA transcript accumulation analysis showed terbinafine-dependent induction in the wild type and the UV-induced mutant Terb7, as well as overexpression in a strain containing the salA subgenomic DNA fragment, probably due to the multicopy effect caused by the transformation event. Additional naphthalene degradation enzyme-coding genes are present in fungal genomes, suggesting that resistance could follow degradation of the naphthalene ring contained in terbinafine. PMID:15328121

  7. Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.

    Science.gov (United States)

    Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

    2014-03-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Bacterial expression of human kynurenine 3-monooxygenase: Solubility, activity, purification☆

    Science.gov (United States)

    Wilson, K.; Mole, D.J.; Binnie, M.; Homer, N.Z.M.; Zheng, X.; Yard, B.A.; Iredale, J.P.; Auer, M.; Webster, S.P.

    2014-01-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington’s disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. PMID:24316190

  9. The effects of recombination, mutation and selection on the evolution of the Rp1 resistance genes in grasses.

    Science.gov (United States)

    Jouet, Agathe; McMullan, Mark; van Oosterhout, Cock

    2015-06-01

    Plant immune genes, or resistance genes, are involved in a co-evolutionary arms race with a diverse range of pathogens. In agronomically important grasses, such R genes have been extensively studied because of their role in pathogen resistance and in the breeding of resistant cultivars. In this study, we evaluate the importance of recombination, mutation and selection on the evolution of the R gene complex Rp1 of Sorghum, Triticum, Brachypodium, Oryza and Zea. Analyses show that recombination is widespread, and we detected 73 independent instances of sequence exchange, involving on average 1567 of 4692 nucleotides analysed (33.4%). We were able to date 24 interspecific recombination events and found that four occurred postspeciation, which suggests that genetic introgression took place between different grass species. Other interspecific events seemed to have been maintained over long evolutionary time, suggesting the presence of balancing selection. Significant positive selection (i.e. a relative excess of nonsynonymous substitutions (dN /dS >1)) was detected in 17-95 codons (0.42-2.02%). Recombination was significantly associated with areas with high levels of polymorphism but not with an elevated dN /dS ratio. Finally, phylogenetic analyses show that recombination results in a general overestimation of the divergence time (mean = 14.3%) and an alteration of the gene tree topology if the tree is not calibrated. Given that the statistical power to detect recombination is determined by the level of polymorphism of the amplicon as well as the number of sequences analysed, it is likely that many studies have underestimated the importance of recombination relative to the mutation rate. © 2015 John Wiley & Sons Ltd.

  10. BF integrase genes of HIV-1 circulating in São Paulo, Brazil, with a recurrent recombination region.

    Directory of Open Access Journals (Sweden)

    Atila Iamarino

    Full Text Available Although some studies have shown diversity in HIV integrase (IN genes, none has focused particularly on the gene evolving in epidemics in the context of recombination. The IN gene in 157 HIV-1 integrase inhibitor-naïve patients from the São Paulo State, Brazil, were sequenced tallying 128 of subtype B (23 of which were found in non-B genomes, 17 of subtype F (8 of which were found in recombinant genomes, 11 integrases were BF recombinants, and 1 from subtype C. Crucially, we found that 4 BF recombinant viruses shared a recurrent recombination breakpoint region between positions 4900 and 4924 (relative to the HXB2 that includes 2 gRNA loops, where the RT may stutter. Since these recombinants had independent phylogenetic origin, we argue that these results suggest a possible recombination hotspot not observed so far in BF CRF in particular, or in any other HIV-1 CRF in general. Additionally, 40% of the drug-naïve and 45% of the drug-treated patients had at least 1 raltegravir (RAL or elvitegravir (EVG resistance-associated amino acid change, but no major resistance mutations were found, in line with other studies. Importantly, V151I was the most common minor resistance mutation among B, F, and BF IN genes. Most codon sites of the IN genes had higher rates of synonymous substitutions (dS indicative of a strong negative selection. Nevertheless, several codon sites mainly in the subtype B were found under positive selection. Consequently, we observed a higher genetic diversity in the B portions of the mosaics, possibly due to the more recent introduction of subtype F on top of an ongoing subtype B epidemics and a fast spread of subtype F alleles among the B population.

  11. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  12. Gelatin nanoparticles enhance delivery of hepatitis C virus recombinant NS2 gene.

    Science.gov (United States)

    Sabet, Salwa; George, Marina A; El-Shorbagy, Haidan M; Bassiony, Heba; Farroh, Khaled Y; Youssef, Tareq; Salaheldin, Taher A

    2017-01-01

    Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV.

  13. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. [Construction of a recombinant HVT virus expressing the HA gene of avian influenza virus H5N1 via Rde/ET recombination system].

    Science.gov (United States)

    Lan, Desong; Shi, Xingming; Wang, Yunfeng; Liu, Changjun; Wang, Mei; Cui, Hongyu; Tian, Guobin; Li, Jisong; Tong, Guangzhi

    2009-01-01

    In recent years,manipulation of large herpesvirus genomes has been facilitated by using bacterial artificial chromosome (BAC) vectors. We have previously reported the construction of the BAC clones (HVT BACs) of herpesvirus of turkey (HVT). With these BAC clones in hand,we manipulated the genome of HVT by utilizing Red/ET recombination system, and developed a biologically safe live vaccine based on the HVT BACs. In this two-step approach, we first transformed the plasmid pRedET into the DH10B competent cells that carried the HVT BACs,and added inducer L-arabinose into the cells. We prepared the cells into competent cells and electroporated the linear rpsL-neo counter-selection/selection cassette flanked by the 50 bp long homology arms into the cells. So the functional cassette was inserted into the U(S)2 locus. Only colonies carrying the modified BAC would survive Kanamycin selection on the agar plates. The successful integration of the rpsL-neo cassette was monitored by PCR and Streptomycin selection, for the insertion of rpsL-neo cassette cells will become Streptomycin sensitive. Secondly, in the same way, we replaced the rpsL-neo cassette with the hemagglutinin (HA) gene of (HPAIV) A/Goose/ Guangdong/1/96(H5N1) flanked by the same homology arms. Only colonies which lost the rpsL-neo cassette will grow on Streptomycin containing plates. Finally, we obtained many colonies of which the HA gene of the AIV was inserted into the U(S)2 locus to be modified of HVT. And we reconstituted one recombinant virus from transfecting one of these BAC clones DNA into chick embryo fibroblasts (CEFs). We achieved one rescued recombinant virus which designated as rHVT-HA3. The H5 subtype HA gene expression in this recombinant virus rHVT-HA3 was confirmed by immunofluorescence assay.

  15. Restricted expression of recombination activating gene (RAG-1) in mouse lymphoid tissues

    International Nuclear Information System (INIS)

    Yamamoto, Akihito; Fujinaga, Hiroyuki; Hamatani, Kiyohiro; Atsuta, Mitsuru.

    1993-03-01

    In an attempt to determine the distribution of recombinase activity in the mouse thymus, spleen, and lymph nodes, we used the in situ hybridization method to examine the expression of the recombination activating genes RAG-1 and RAG-2. Expression of RAG-1 was found in most cortical thymocytes but not in the majority of medullary thymocytes. Although hybridization signals of RAG-2 were not as intense as those of RAG-1, the localization of RAG-2 transcripts was similar to that of RAG-1. In the spleen, expression of RAG-1 was found only in limited cells near the splenic sinus, and the majority of the cells within the follicle were negative for RAG-1 transcript. In nude mice, RAG-1-expressing cells were detected in the same regions, which suggests that in situ hybridization signals of RAG-1 in the spleen are due to the cells of B-cell origin. In the lymph nodes, expression of RAG-1 was found only in the medullary region. Expression of RAG-2 transcript in the spleen and the lymph nodes, if any, was too faint to allow determination of the specific localization. These results suggest that most of the cortical thymocytes and some cells in the spleen are capable of rearranging T-cell receptor genes and immunoglobulin genes, respectively, but the possible involvement of the RAG-1 transcript in RAG-1-positive cells of the spleen and the lymph nodes in functions other than the rearrangement of genes could not be ruled out. (author)

  16. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  17. Absence of interference in association with gene conversion in Sordaria fimicola, and presence of interference in association with ordinary recombination.

    Science.gov (United States)

    Kitani, Y

    1978-07-01

    From the analysis of large samples of gene conversion asci in the g locus of Sordaria fimicola, it was found that neither the conversion event itself nor conversion-associated recombination of flanking markers cause either chiasma or chromatid interference with crossing over in a neighboring interval. The presence of more than one kind of crossover event, one causing interference the other not, is considered. The existence of two kinds of gene loci, one of single-cistron composition and the other of multiple-cistron composition, is discussed in relation to reciprocal recombination within a locus.

  18. Construction of a recombinant viral vector containing part of the nucleocapsid protein gene of newcastle disease virus

    Energy Technology Data Exchange (ETDEWEB)

    Bader, D.E.

    1995-09-01

    This report describes the procedures used to clone a 673 base pair gene fragment of the major nucleocapsid protein gene of Newcastle disease virus into a viral vector molecule for the purpose of maintaining a stable, long-term, renewable source of this target sequence for gene probe studies. The gene fragment was prepared by reverse-transcription polymerase chain reaction of Newcastle disease virus RNA and was cloned into the viral DNA vector Ml3mp18 RF to produce a recombinant DNA molecule. The cloned fragment was shown to be present in the recombinant clones based on (i) clonal selection on indicator plates; (ii) restriction enzyme analysis; (iii) gene probe analysis and (iv) nested PCR amplification.

  19. A Simplified Method for Gene Knockout and Direct Screening of Recombinant Clones for Application in Paenibacillus polymyxa.

    Directory of Open Access Journals (Sweden)

    Seong-Bin Kim

    Full Text Available Paenibacillus polymyxa is a bacterium widely used in agriculture, industry, and environmental remediation because it has multiple functions including nitrogen fixation and produces various biologically active compounds. Among these compounds are the antibiotics polymyxins, and the bacterium is currently being reassessed for medical application. However, a lack of genetic tools for manipulation of P. polymyxa has limited our understanding of the biosynthesis of these compounds.To facilitate an understanding of the genetic determinants of the bacterium, we have developed a system for marker exchange mutagenesis directly on competent cells of P. polymyxa under conditions where homologous recombination is enhanced by denaturation of the suicide plasmid DNA. To test this system, we targeted P. polymyxa α-and β-amylase genes for disruption. Chloramphenicol or erythromycin resistance genes were inserted into the suicide plasmid pGEM7Z-f+ (Promega. To mediate homologous recombination and replacement of the targeted genes with the antibiotic resistance genes nucleotide sequences of the α-and β-amylase genes were cloned into the plasmid flanking the antibiotic resistance genes.We have created a simple system for targeted gene deletion in P. polymyxa E681. We propose that P. polymyxa isogenic mutants could be developed using this system of marker exchange mutagenesis. α-and β-amylase genes provide a useful tool for direct recombinant screening in P. polymyxa.

  20. Analysis of human reticulocyte genes reveals altered erythropoiesis: potential use to detect recombinant human erythropoietin doping.

    Science.gov (United States)

    Varlet-Marie, Emmanuelle; Audran, Michel; Lejeune, Mireille; Bonafoux, Béatrice; Sicart, Marie-Therese; Marti, Jacques; Piquemal, David; Commes, Thérèse

    2004-08-01

    Enhancement of oxygen delivery to tissues is associated with improved sporting performance. One way of enhancing oxygen delivery is to take recombinant human erythropoietin (rHuEpo), which is an unethical and potentially dangerous practice. However, detection of the use of rHuEpo remains difficult in situations such as: i) several days after the end of treatment ii) when a treatment with low doses is conducted iii) if the rHuEpo effect is increased by other substances. In an attempt to detect rHuEpo abuse, we selected erythroid gene markers from a SAGE library and analyzed the effects of rHuEpo administration on expression of the HBB, FTL and OAZ genes. Ten athletes were assigned to the rHuEpo or placebo group. The rHuEpo group received subcutaneous injections of rHuEpo (50 UI/kg three times a week, 4 weeks; 20 UI/kg three times a week, 2 weeks). HBB, FTL and OAZ gene profiles were monitored by real time-polymerase chain reaction (PCR) quantification during and for 3 weeks after drug administration. The global analysis of these targeted genes detected in whole blood samples showed a characteristic profile of subjects misusing rHuEpo with a increase above the threshold levels. The individual analysis of OAZ mRNA seemed indicative of rHuEpo treatment. The performance-enhancing effect of rHuEpo treatment is greater than the duration of hematologic changes associated with rHuEpo misuse. Although direct electrophoretic methods to detect rHuEpo have been developed, recombinant isoforms of rHuEpo are not detectable some days after the last subcutaneous injection. To overcome these limitations indirect OFF models have been developed. Our data suggest that, in the near future, it will be possible to consolidate results achievable with the OFF models by analyzing selected erythroid gene markers as a supplement to indirect methods.

  1. Mapping genes by meiotic and UV-induced mitotic recombination in Coprinus cinereus

    International Nuclear Information System (INIS)

    Amirkhanian, J.D.; Cowan, J.W.

    1985-01-01

    Three morphological mutants in Coprinus cinereus—one spontaneous (den-2) and two chemically induced (zigand sta)—were assigned to linkage groups and utilized in meiotic and mitotic mapping. Mutants den-2 and zig belong to linkage group III, den-2 being close to the centromere and about 20 map units (mu) from zig. The mutant sta in linkage group ‘G’ is at a distance of about 37 mu from ade-3. Mitotic mapping confirmed the gene order in linkage group III and provided evidence that trp-2 in linkage group ‘G’ was between the centromere and ade-3. These morphological mutants are compact in colony growth and therefore suited to high-density plating. The rarity of spontaneously occurring mitotic segregants suggests that diploids of Coprinus cinereus, heterozygous for morphoiogical markers in repuision, could serve as useful test systems for rapid screening of chemical mutagen/carcinogens via mitotic recombination studies

  2. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing.

    Directory of Open Access Journals (Sweden)

    Olivier J Becherel

    2013-04-01

    Full Text Available Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2, plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI. Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops, and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

  3. Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination

    International Nuclear Information System (INIS)

    Mudgett, J.S.; MacInnes, M.A.

    1990-01-01

    The complete human nucleotide exicision repair gene ERCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal

  4. Molecular Evolution at a Meiosis Gene Mediates Species Differences in the Rate and Patterning of Recombination.

    Science.gov (United States)

    Brand, Cara L; Cattani, M Victoria; Kingan, Sarah B; Landeen, Emily L; Presgraves, Daven C

    2018-04-23

    Crossing over between homologous chromosomes during meiosis repairs programmed DNA double-strand breaks, ensures proper segregation at meiosis I [1], shapes the genomic distribution of nucleotide variability in populations, and enhances the efficacy of natural selection among genetically linked sites [2]. Between closely related Drosophila species, large differences exist in the rate and chromosomal distribution of crossing over. Little, however, is known about the molecular genetic changes or population genetic forces that mediate evolved differences in recombination between species [3, 4]. Here, we show that a meiosis gene with a history of rapid evolution acts as a trans-acting modifier of species differences in crossing over. In transgenic flies, the dicistronic gene, mei-217/mei-218, recapitulates a large part of the species differences in the rate and chromosomal distribution of crossing over. These phenotypic differences appear to result from changes in protein sequence not gene expression. Our population genetics analyses show that the protein-coding sequence of mei-218, but not mei-217, has a history of recurrent positive natural selection. By modulating the intensity of centromeric and telomeric suppression of crossing over, evolution at mei-217/-218 has incidentally shaped gross differences in the chromosomal distribution of nucleotide variability between species. We speculate that recurrent bouts of adaptive evolution at mei-217/-218 might reflect a history of coevolution with selfish genetic elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Radiosensitization effect of recombinant adenoviral-mediated PUMA gene on pancreatic carcinoma cells

    International Nuclear Information System (INIS)

    Zhu Dongming; Zhang Kejun; Li Dechun; Zhu Xuefeng; Yang Yong

    2009-01-01

    Objective: To study the effect of PUMA gene mediated by recombinant adenovirus vector combined with radiation on the pancreatic carcinoma. Methods: The PANC-1 cells were infected with Ad- PUMA (MOI=10, 50 and 100, respectively) for 48 h. The expression of PUMA mRNA and protein was detected by RT-PCR and Western blot, respectively. PANC-1 cells were divided into 4 groups: control group, transfection group, irradiation group and combined treatment group. The cell growth inhibition rate and apoptotic rate of PANC-1 cells were assessed by MTT assay and flow cytometry. Human pancreatic carcinomas were transplanted subcutaneously in nude mice, which were randomized into 4 groups: control group, transfection group, irradiation group and combined treatment group. Tumor growth rate and apoptotic index at different time points were recorded in 35 days. Results: The expression of PUMA mRNA and protein was increased with the increase of MOI of Ad-PUMA, which was does-dependant (MOI=10, mRNA=0.46± 0.02, protein=0.75± 0.09; MOI=50, mRNA=1.12±0.09, protein=1.01±0.18; MOI=100, mRNA=1.50±0.08, protein= 1.80±0.15; P 3 , (39.5±9.23)mm 3 , (33.6±10.3)mm 3 and (52.0±11.43)mm 3 , respectively, P<0.05]. And the apoptotic index was increased in the same manner (AI=0.43±0.05, 0.29±0.10, 0.24±0.05 and 0.00±0.00, respectively, P<0.05). Conclusions: Recombinant adenoviral-mediated PUMA gene combined with irradiation could increase the cell-killing effect on pancreatic carcinoma. It is better than that of either one kind of therapy. (authors)

  6. Construction of C35 gene bait recombinants and T47D cell cDNA library.

    Science.gov (United States)

    Yin, Kun; Xu, Chao; Zhao, Gui-Hua; Liu, Ye; Xiao, Ting; Zhu, Song; Yan, Ge

    2017-11-20

    C35 is a novel tumor biomarker associated with metastasis progression. To investigate the interaction factors of C35 in its high expressed breast cancer cell lines, we constructed bait recombinant plasmids of C35 gene and T47D cell cDNA library for yeast two-hybrid screening. Full length C35 sequences were subcloned using RT-PCR from cDNA template extracted from T47D cells. Based on functional domain analysis, the full-length C35 1-348bp was also truncated into two fragments C351-153bp and C35154-348bp to avoid auto-activation. The three kinds of C35 genes were successfully amplified and inserted into pGBKT7 to construct bait recombinant plasmids pGBKT7-C351-348bp, pGBKT7-C351-153bp and pGBKT7-C35154-348bp, then transformed into Y187 yeast cells by the lithium acetate method. Auto-activation and toxicity of C35 baits were detected using nutritional deficient medium and X-α-Gal assays. The T47D cell ds cDNA was generated by SMART TM technology and the library was constructed using in vivo recombination-mediated cloning in the AH109 yeast strain using a pGADT7-Rec plasmid. The transformed Y187/pGBKT7-C351-348bp line was intensively inhibited while the truncated Y187/pGBKT7-C35 lines had no auto-activation and toxicity in yeast cells. The titer of established cDNA library was 2 × 10 7 pfu/mL with high transformation efficiency of 1.4 × 10 6 , and the insert size of ds cDNA was distributed homogeneously between 0.5-2.0 kb. Our research generated a T47D cell cDNA library with high titer, and the constructed two C35 "baits" contained a respective functional immunoreceptor tyrosine based activation motif (ITAM) and the conserved last four amino acids Cys-Ile-Leu-Val (CILV) motif, and therefore laid a foundation for screening the C35 interaction factors in a BC cell line.

  7. Production of Polyclonal Antiobies to a Recombinant Potato Mop-top Virus Non-structural Triple Gene Block Protein l

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Filigarová, Marie; Pečenková, Tamara

    2006-01-01

    Roč. 154, - (2006), s. 422-427 ISSN 0931-1785 R&D Projects: GA ČR GA522/04/1329 Institutional research plan: CEZ:AV0Z50380511 Keywords : Potato mop-top virus * recombinant protein * triple gene block * polyclonal antibodies Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.817, year: 2006

  8. Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase

    CSIR Research Space (South Africa)

    James, ER

    2012-10-01

    Full Text Available Microbiology and Biotechnology October 2012/ Vol. 96, No.2 Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase ER James a,c & WH van Zyl b & PJ van Zyl c & JF Görgens..., Pretoria 0001, South Africa Abstract This study demonstrates the potential of Aspergillus niger as a candidate expression system for virus- like particle production using gene fusion. Hepatitis B surface antigen (HBsAg) production, targeted...

  9. Analysis of two lysozyme genes and antimicrobial functions of their recombinant proteins in Asian seabass.

    Directory of Open Access Journals (Sweden)

    Gui Hong Fu

    Full Text Available Lysozymes are important proteins of the innate immune system for the defense against bacterial infection. We cloned and analyzed chicken-type (c-type and goose-type (g-type lysozymes from Asian seabass (Lates calcarifer. The deduced amino acid sequence of the c-type lysozyme contained 144 residues and possessed typical structure residues, conserved catalytic residues (Glu(50 and Asp(67 and a "GSTDYGIFQINS" motif. The deduced g-type lysozyme contained 187 residues and possessed a goose egg white lysozyme (GEWL domain containing three conserved catalytic residues (Glu(71, Asp(84, Asp(95 essential for catalytic activity. Real time quantitative PCR (qRT-PCR revealed that the two lysozyme genes were constitutively expressed in all the examined tissues. The c-type lysozyme was most abundant in liver, while the g-type lysozyme was predominantly expressed in intestine and weakly expressed in muscle. The c-type and g-type transcripts were up-regulated in the kidney, spleen and liver in response to a challenge with Vibrio harveyi. The up-regulation of the c-type lysozyme was much stronger than that of the g-type lysozyme in kidney and spleen. The recombinant proteins of the c-type and g-type lysozymes showed lytic activities against the bacterial pathogens Vibrio harveyi and Photobacterium damselae in a dosage-dependent manner. We identified single nucleotide polymorphisms (SNPs in the two lysozyme genes. There were significant associations of these polymorphisms with resistance to the big belly disease. These results suggest that the c- and g-type genes play an important role in resistance to bacterial pathogens in fish. The SNP markers in the two genes associated with the resistance to bacterial pathogens may facilitate the selection of Asian seabass resistant to bacterial diseases.

  10. Impact of recombination on polymorphism of genes encoding Kunitz-type protease inhibitors in the genus Solanum.

    Science.gov (United States)

    Speranskaya, Anna S; Krinitsina, Anastasia A; Kudryavtseva, Anna V; Poltronieri, Palmiro; Santino, Angelo; Oparina, Nina Y; Dmitriev, Alexey A; Belenikin, Maxim S; Guseva, Marina A; Shevelev, Alexei B

    2012-08-01

    The group of Kunitz-type protease inhibitors (KPI) from potato is encoded by a polymorphic family of multiple allelic and non-allelic genes. The previous explanations of the KPI variability were based on the hypothesis of random mutagenesis as a key factor of KPI polymorphism. KPI-A genes from the genomes of Solanum tuberosum cv. Istrinskii and the wild species Solanum palustre were amplified by PCR with subsequent cloning in plasmids. True KPI sequences were derived from comparison of the cloned copies. "Hot spots" of recombination in KPI genes were independently identified by DnaSP 4.0 and TOPALi v2.5 software. The KPI-A sequence from potato cv. Istrinskii was found to be 100% identical to the gene from Solanum nigrum. This fact illustrates a high degree of similarity of KPI genes in the genus Solanum. Pairwise comparison of KPI A and B genes unambiguously showed a non-uniform extent of polymorphism at different nt positions. Moreover, the occurrence of substitutions was not random along the strand. Taken together, these facts contradict the traditional hypothesis of random mutagenesis as a principal source of KPI gene polymorphism. The experimentally found mosaic structure of KPI genes in both plants studied is consistent with the hypothesis suggesting recombination of ancestral genes. The same mechanism was proposed earlier for other resistance-conferring genes in the nightshade family (Solanaceae). Based on the data obtained, we searched for potential motifs of site-specific binding with plant DNA recombinases. During this work, we analyzed the sequencing data reported by the Potato Genome Sequencing Consortium (PGSC), 2011 and found considerable inconsistence of their data concerning the number, location, and orientation of KPI genes of groups A and B. The key role of recombination rather than random point mutagenesis in KPI polymorphism was demonstrated for the first time. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Genealogy-based methods for inference of historical recombination and gene flow and their application in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jenkins, Paul A; Song, Yun S; Brem, Rachel B

    2012-01-01

    Genetic exchange between isolated populations, or introgression between species, serves as a key source of novel genetic material on which natural selection can act. While detecting historical gene flow from DNA sequence data is of much interest, many existing methods can be limited by requirements for deep population genomic sampling. In this paper, we develop a scalable genealogy-based method to detect candidate signatures of gene flow into a given population when the source of the alleles is unknown. Our method does not require sequenced samples from the source population, provided that the alleles have not reached fixation in the sampled recipient population. The method utilizes recent advances in algorithms for the efficient reconstruction of ancestral recombination graphs, which encode genealogical histories of DNA sequence data at each site, and is capable of detecting the signatures of gene flow whose footprints are of length up to single genes. Further, we employ a theoretical framework based on coalescent theory to test for statistical significance of certain recombination patterns consistent with gene flow from divergent sources. Implementing these methods for application to whole-genome sequences of environmental yeast isolates, we illustrate the power of our approach to highlight loci with unusual recombination histories. By developing innovative theory and methods to analyze signatures of gene flow from population sequence data, our work establishes a foundation for the continued study of introgression and its evolutionary relevance.

  12. A set of vectors for introduction of antibiotic resistance genes by in vitro Cre-mediated recombination

    Directory of Open Access Journals (Sweden)

    Vassetzky Yegor S

    2008-12-01

    Full Text Available Abstract Background Introduction of new antibiotic resistance genes in the plasmids of interest is a frequent task in molecular cloning practice. Classical approaches involving digestion with restriction endonucleases and ligation are time-consuming. Findings We have created a set of insertion vectors (pINS carrying genes that provide resistance to various antibiotics (puromycin, blasticidin and G418 and containing a loxP site. Each vector (pINS-Puro, pINS-Blast or pINS-Neo contains either a chloramphenicol or a kanamycin resistance gene and is unable to replicate in most E. coli strains as it contains a conditional R6Kγ replication origin. Introduction of the antibiotic resistance genes into the vector of interest is achieved by Cre-mediated recombination between the replication-incompetent pINS and a replication-competent target vector. The recombination mix is then transformed into E. coli and selected by the resistance marker (kanamycin or chloramphenicol present in pINS, which allows to recover the recombinant plasmids with 100% efficiency. Conclusion Here we propose a simple strategy that allows to introduce various antibiotic-resistance genes into any plasmid containing a replication origin, an ampicillin resistance gene and a loxP site.

  13. Differential gene expression in human granulosa cells from recombinant FSH versus human menopausal gonadotropin ovarian stimulation protocols

    Directory of Open Access Journals (Sweden)

    Bietz Mandi G

    2010-03-01

    Full Text Available Abstract Background The study was designed to test the hypothesis that granulosa cell (GC gene expression response differs between recombinant FSH and human menopausal gonadotropin (hMG stimulation regimens. Methods Females Results After exclusions, 1736 genes exhibited differential expression between groups. Over 400 were categorized as signal transduction genes, ~180 as transcriptional regulators, and ~175 as enzymes/metabolic genes. Expression of selected genes was confirmed by RT-PCR. Differentially expressed genes included A kinase anchor protein 11 (AKAP11, bone morphogenetic protein receptor II (BMPR2, epidermal growth factor (EGF, insulin-like growth factor binding protein (IGFBP-4, IGFBP-5, and hypoxia-inducible factor (HIF-1 alpha. Conclusions Results suggest that major differences exist in the mechanism by which pure FSH alone versus FSH/LH regulate gene expression in preovulatory GC that could impact oocyte maturity and developmental competence.

  14. Local Chromatin Features Including PU.1 and IKAROS Binding and H3K4 Methylation Shape the Repertoire of Immunoglobulin Kappa Genes Chosen for V(DJ Recombination

    Directory of Open Access Journals (Sweden)

    Louise S. Matheson

    2017-11-01

    Full Text Available V(DJ recombination is essential for the generation of diverse antigen receptor (AgR repertoires. In B cells, immunoglobulin kappa (Igκ light chain recombination follows immunoglobulin heavy chain (Igh recombination. We recently developed the DNA-based VDJ-seq assay for the unbiased quantitation of Igh VH and DH repertoires. Integration of VDJ-seq data with genome-wide datasets revealed that two chromatin states at the recombination signal sequence (RSS of VH genes are highly predictive of recombination in mouse pro-B cells. It is unknown whether local chromatin states contribute to Vκ gene choice during Igκ recombination. Here we adapt VDJ-seq to profile the Igκ VκJκ repertoire and present a comprehensive readout in mouse pre-B cells, revealing highly variable Vκ gene usage. Integration with genome-wide datasets for histone modifications, DNase hypersensitivity, transcription factor binding and germline transcription identified PU.1 binding at the RSS, which was unimportant for Igh, as highly predictive of whether a Vκ gene will recombine or not, suggesting that it plays a binary, all-or-nothing role, priming genes for recombination. Thereafter, the frequency with which these genes recombine was shaped both by the presence and level of enrichment of several other chromatin features, including H3K4 methylation and IKAROS binding. Moreover, in contrast to the Igh locus, the chromatin landscape of the promoter, as well as of the RSS, contributes to Vκ gene recombination. Thus, multiple facets of local chromatin features explain much of the variation in Vκ gene usage. Together, these findings reveal shared and divergent roles for epigenetic features and transcription factors in AgR V(DJ recombination and provide avenues for further investigation of chromatin signatures that may underpin V(DJ-mediated chromosomal translocations.

  15. Genetic analysis of a novel human adenovirus with a serologically unique hexon and a recombinant fiber gene.

    Directory of Open Access Journals (Sweden)

    Elizabeth B Liu

    Full Text Available In February of 1996 a human adenovirus (formerly known as Ad-Cor-96-487 was isolated from the stool of an AIDS patient who presented with severe chronic diarrhea. To characterize this apparently novel pathogen of potential public health significance, the complete genome of this adenovirus was sequenced to elucidate its origin. Bioinformatic and phylogenetic analyses of this genome demonstrate that this virus, heretofore referred to as HAdV-D58, contains a novel hexon gene as well as a recombinant fiber gene. In addition, serological analysis demonstrated that HAdV-D58 has a different neutralization profile than all previously characterized HAdVs. Bootscan analysis of the HAdV-D58 fiber gene strongly suggests one recombination event.

  16. The role of germline promoters and I exons in cytokine-induced gene-specific class switch recombination.

    Science.gov (United States)

    Dunnick, Wesley A; Shi, Jian; Holden, Victoria; Fontaine, Clinton; Collins, John T

    2011-01-01

    Germline transcription precedes class switch recombination (CSR). The promoter regions and I exons of these germline transcripts include binding sites for activation- and cytokine-induced transcription factors, and the promoter regions/I exons are essential for CSR. Therefore, it is a strong hypothesis that the promoter/I exons regions are responsible for much of cytokine-regulated, gene-specific CSR. We tested this hypothesis by swapping the germline promoter and I exons for the murine γ1 and γ2a H chain genes in a transgene of the entire H chain C-region locus. We found that the promoter/I exon for γ1 germline transcripts can direct robust IL-4-induced recombination to the γ2a gene. In contrast, the promoter/I exon for the γ2a germline transcripts works poorly in the context of the γ1 H chain gene, resulting in expression of γ1 H chains that is level. Nevertheless, the small amount of recombination to the chimeric γ1 gene is induced by IFN-γ. These results suggest that cytokine regulation of CSR, but not the magnitude of CSR, is regulated by the promoter/I exons.

  17. Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression.

    Science.gov (United States)

    Connallon, Tim; Clark, Andrew G

    2010-12-01

    Sex-biased genes--genes that are differentially expressed within males and females--are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. Although sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  18. IMGT/GeneInfo: T cell receptor gamma TRG and delta TRD genes in database give access to all TR potential V(DJ recombinations

    Directory of Open Access Journals (Sweden)

    Jouvin-Marche Evelyne

    2006-04-01

    Full Text Available Abstract Background Adaptative immune repertoire diversity in vertebrate species is generated by recombination of variable (V, diversity (D and joining (J genes in the immunoglobulin (IG loci of B lymphocytes and in the T cell receptor (TR loci of T lymphocytes. These V-J and V-D-J gene rearrangements at the DNA level involve recombination signal sequences (RSS. Whereas many data exist, they are scattered in non specialized resources with different nomenclatures (eg. flat files and are difficult to extract. Description IMGT/GeneInfo is an online information system that provides, through a user-friendly interface, exhaustive information resulting from the complex mechanisms of T cell receptor V-J and V-D-J recombinations. T cells comprise two populations which express the αβ and γδ TR, respectively. The first version of the system dealt with the Homo sapiens and Mus musculus TRA and TRB loci whose gene rearrangements allow the synthesis of the αβ TR chains. In this paper, we present the second version of IMGT/GeneInfo where we complete the database for the Homo sapiens and Mus musculus TRG and TRD loci along with the introduction of a quality control procedure for existing and new data. We also include new functionalities to the four loci analysis, giving, to date, a very informative tool which allows to work on V(DJ genes of all TR loci in both human and mouse species. IMGT/GeneInfo provides more than 59,000 rearrangement combinations with a full gene description which is freely available at http://imgt.cines.fr/GeneInfo. Conclusion IMGT/GeneInfo allows all TR information sequences to be in the same spot, and are now available within two computer-mouse clicks. This is useful for biologists and bioinformaticians for the study of T lymphocyte V(DJ gene rearrangements and their applications in immune response analysis.

  19. IMGT/GeneInfo: T cell receptor gamma TRG and delta TRD genes in database give access to all TR potential V(D)J recombinations

    Science.gov (United States)

    Baum, Thierry-Pascal; Hierle, Vivien; Pasqual, Nicolas; Bellahcene, Fatena; Chaume, Denys; Lefranc, Marie-Paule; Jouvin-Marche, Evelyne; Marche, Patrice Noël; Demongeot, Jacques

    2006-01-01

    Background Adaptative immune repertoire diversity in vertebrate species is generated by recombination of variable (V), diversity (D) and joining (J) genes in the immunoglobulin (IG) loci of B lymphocytes and in the T cell receptor (TR) loci of T lymphocytes. These V-J and V-D-J gene rearrangements at the DNA level involve recombination signal sequences (RSS). Whereas many data exist, they are scattered in non specialized resources with different nomenclatures (eg. flat files) and are difficult to extract. Description IMGT/GeneInfo is an online information system that provides, through a user-friendly interface, exhaustive information resulting from the complex mechanisms of T cell receptor V-J and V-D-J recombinations. T cells comprise two populations which express the αβ and γδ TR, respectively. The first version of the system dealt with the Homo sapiens and Mus musculus TRA and TRB loci whose gene rearrangements allow the synthesis of the αβ TR chains. In this paper, we present the second version of IMGT/GeneInfo where we complete the database for the Homo sapiens and Mus musculus TRG and TRD loci along with the introduction of a quality control procedure for existing and new data. We also include new functionalities to the four loci analysis, giving, to date, a very informative tool which allows to work on V(D)J genes of all TR loci in both human and mouse species. IMGT/GeneInfo provides more than 59,000 rearrangement combinations with a full gene description which is freely available at . Conclusion IMGT/GeneInfo allows all TR information sequences to be in the same spot, and are now available within two computer-mouse clicks. This is useful for biologists and bioinformaticians for the study of T lymphocyte V(D)J gene rearrangements and their applications in immune response analysis. PMID:16640788

  20. Induction of genetic recombination in the lambda bacteriophage by ultraviolet irradiation of the Escherichia Coli cells. III. Role of the ruvA and recN genes

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1987-05-01

    The objective of this work is to determine the paper of the genes ruvA and recN in the stimulation of the recombination of Lambda for UV irradiation of Escherichia Coli, taking into account that both genes are inducible, they belong to the group of genes that participate in the SOS response and that a deficiency in its expression reduces the capacity to repair and recombiner the DNA. (Author)

  1. Mitochondrial genetics X: Effects of UV irradiation on transmission and recombination of mitochondrial genes in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Dujon, B.; Kruszewska, A.; Slonimski, P.P.; Bolotin-Fukuhara, M.; Coen, D.; Deutsch, J.; Netter, P.; Weill, L.

    1975-01-01

    UV irradiation has been applied either to one parent prior to crossing or to newly formed zygotes. The effects of UV have been studied on the transmission of mitochondrial alleles at the loci conferring resistance to antibiotic and the frequency of recombinants between various combinations of alleles at these loci. The effects of UV depend on the nature of the cross i.e. homosexual (ω + x ω + or ω - x ω - ) or heterosexual (ω + x ω - ). In all cases UV irradiation of one of the parents diminishes the transmission of the mitochondrial alleles originated from the irradiated parent. In homosexual crosses the decrease of transmission is the same for alleles at all the loci. In heterosexual crosses, when the ω + parent is irradiated, there is a differential decrease of transmission depending on the distance of the resistance locus relative to the ω locus. In heterosexual crosses irradiation of the ω + parent increases the frequency of recombinants while irradiation of the ω - parent slightly decreases it. In homosexual crosses the frequency of recombinants diminishes when a high UV dose is applied to one of the parents. No or only minor modifications of the polarity of recombination are observed. Irradiation of newly formed zygotes has no or minor effects on the transmission of alleles and recombinant frequencies. All these effects can be interpreted in terms of a general model for recombination of mitochondrial genes. UV irradiation of one of the parents leads to a modification of the input fraction in favor of the non irradiated parent. As a consequence of this modification the output of alleles and the frequency of recombinants are changed. A good quantitative agreement between the predictions calculated on the basis of the model and the experimental data is found. Relationships between the molecular events responsible for the modifications of input and the production of rho - primary clones by UV are discussed. (orig./MG) [de

  2. Effect of mutagens, chemotherapeutic agents and defects in DNA repair genes on recombination in F' partial diploid Escherichia coli

    International Nuclear Information System (INIS)

    Norin, A.J.; Goldschmidt, E.P.

    1979-01-01

    The ability of mutagenic agents, nonmutagenic substances and defects in DNA repair to alter the genotype of F' partial diploid (F30) Escherichia coli was determined. The frequency of auxotrophic mutants and histidine requiring (His - ) haploid colonies was increased by mutagen treatment but Hfr colonies were not detected in F30 E. coli even with specific selection techniques. Genotype changes due to nonreciprocal recombination were determined by measuring the frequency of His - homogenotes, eg. F' hisC780, hisI + /hisC780, hisI + , arising from a His + heterogenote, F' hisC780 hisI + /hisC + , his1903. At least 75% of the recombinants were homozygous for histidine alleles which were present on the F' plasmid (exogenote) of the parental hetergenote rather than for histidine alleles on the chromosome. Mutagens, chemotherapeutic agents which block DNA synthesis and a defective DNA polymerase I gene, polA1, were found to increase the frequency of nonreciprocal recombination. A defect in the ability to excise thymine dimers, uvrC34, did not increase spontaneous nonreciprocal recombination. However, UV irradiation but not methyl methanesulfonate (MMS) induced greater recombination in this excision-repair defective mutant than in DNA-repair-proficient strains. (Auth.)

  3. Precision control of recombinant gene transcription for CHO cell synthetic biology.

    Science.gov (United States)

    Brown, Adam J; James, David C

    2016-01-01

    The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology. Copyright © 2015. Published by Elsevier Inc.

  4. A Biallelic Mutation in the Homologous Recombination Repair Gene SPIDR Is Associated With Human Gonadal Dysgenesis.

    Science.gov (United States)

    Smirin-Yosef, Pola; Zuckerman-Levin, Nehama; Tzur, Shay; Granot, Yaron; Cohen, Lior; Sachsenweger, Juliane; Borck, Guntram; Lagovsky, Irina; Salmon-Divon, Mali; Wiesmüller, Lisa; Basel-Vanagaite, Lina

    2017-02-01

    Primary ovarian insufficiency (POI) is caused by ovarian follicle depletion or follicle dysfunction, characterized by amenorrhea with elevated gonadotropin levels. The disorder presents as absence of normal progression of puberty. To elucidate the cause of ovarian dysfunction in a family with POI. We performed whole-exome sequencing in 2 affected individuals. To evaluate whether DNA double-strand break (DSB) repair activities are altered in biallelic mutation carriers, we applied an enhanced green fluorescent protein-based assay for the detection of specific DSB repair pathways in blood-derived cells. Diagnoses were made at the Pediatric Endocrine Clinic, Clalit Health Services, Sharon-Shomron District, Israel. Genetic counseling and sample collection were performed at the Pediatric Genetics Unit, Schneider Children's Medical Center Israel, Petah Tikva, Israel. Two sisters born to consanguineous parents of Israeli Muslim Arab ancestry presented with a lack of normal progression of puberty, high gonadotropin levels, and hypoplastic or absent ovaries on ultrasound. Blood samples for DNA extraction were obtained from all family members. Exome analysis to elucidate the cause of POI in 2 affected sisters. Analysis revealed a stop-gain homozygous mutation in the SPIDR gene (KIAA0146) c.839G>A, p.W280*. This mutation altered SPIDR activity in homologous recombination, resulting in the accumulation of 53BP1-labeled DSBs postionizing radiation and γH2AX-labeled damage during unperturbed growth. SPIDR is important for ovarian function in humans. A biallelic mutation in this gene may be associated with ovarian dysgenesis in cases of autosomal recessive inheritance. Copyright © 2017 by the Endocrine Society

  5. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  6. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Kishor Duwadi

    Full Text Available Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal-based systems. The main technical challenge during this process is to produce sufficient levels of recombinant proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of human therapeutic interleukin (IL-10 produced in transgenic tobacco leaves was found to be below the critical level, and may be due to degradation by tobacco proteases. Here, we identified a total of 60 putative cysteine protease genes (CysP in tobacco. Based on their predicted expression in leaf tissue, 10 candidate CysPs (CysP1-CysP10 were selected for further characterization. The effect of CysP gene silencing on IL-10 accumulation was examined in tobacco. It was found that the recombinant protein yield in tobacco could be increased by silencing CysP6. Transient expression of CysP6 silencing construct also showed an increase in IL-10 accumulation in comparison to the control. Moreover, CysP6 localizes to the endoplasmic reticulum (ER, suggesting that ER may be the site of IL-10 degradation. Overall results suggest that CysP6 is important in determining the yield of recombinant IL-10 in tobacco leaves.

  7. Indirect Enzyme-Linked Immunosorbent Assay for Detection of Immunoglobulin G Reactive with a Recombinant Protein Expressed from the Gene Encoding the 116-Kilodalton Protein of Mycoplasma pneumoniae

    OpenAIRE

    Duffy, Michael F.; Whithear, Kevin G.; Noormohammadi, Amir H.; Markham, Philip F.; Catton, Michael; Leydon, Jennie; Browning, Glenn F.

    1999-01-01

    Serology remains the method of choice for laboratory diagnosis of Mycoplasma pneumoniae infection. Currently available serological tests employ complex cellular fractions of M. pneumoniae as antigen. To improve the specificity of M. pneumoniae diagnosis, a recombinant protein was assessed as a serodiagnostic reagent. A panel of recombinant proteins were expressed from a cloned M. pneumoniae gene that encodes a 116-kDa surface protein antigen. The recombinant proteins were assessed for reactiv...

  8. Construction of occluded recombinant baculoviruses containing the full-length cry1Ab and cry1Ac genes from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    B.M. Ribeiro

    1998-06-01

    Full Text Available The administration of baculoviruses to insects for bioassay purposes is carried out, in most cases, by contamination of food surfaces with a known amount of occlusion bodies (OBs. Since per os infection is the natural route of infection, occluded recombinant viruses containing crystal protein genes (cry1Ab and cry1Ac from Bacillus thuringiensis were constructed for comparison with the baculovirus prototype Autographa californica nucleopolyhedrovirus (AcNPV. The transfer vector pAcUW2B was used for construction of occluded recombinant viruses. The transfer vector containing the crystal protein genes was cotransfected with linearized DNA from a non-occluded recombinant virus. The isolation of recombinant viruses was greatly facilitated by the reduction of background "wild type" virus and the increased proportion of recombinant viruses. Since the recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve the pathogenicity of the recombinant viruses when compared with the wild type AcNPV, and in order to compare expression levels of the full-length crystal proteins produced by non-occluded and occluded recombinant viruses the full-length cry1Ab and cry1Ac genes were chosen for construction of occluded recombinant viruses. The recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve its pathogenicity but the size of the larvae infected with the recombinant viruses was significantly smaller than that of larvae infected with the wild type virus.

  9. [Clinical characteristics of human recombination activating gene 1 mutations in 8 immunodeficiency patients with diverse phenotypes].

    Science.gov (United States)

    Yu, G; Wang, W J; Liu, D R; Tao, Z F; Hui, X Y; Hou, J; Sun, J Q; Wang, X C

    2018-03-02

    Objective: To investigate the clinical characteristics of 8 immunodeficiency cases caused by human recombination activating gene 1 (RAG1) mutations, and to explore the relationship among genotypes, clinical manifestations and immunophenotypes. Methods: Clinical data were collected and analyzed from patients with RAG1 mutations who visited the Department of Clinical Immunology, Children's Hospital of Fudan University between October 2013 and June 2017. The data included clinical manifestations, immunophenotypes and genotypes. Results: A total of 8 patients were diagnosed with RAG1 deficiency (6 boys and 2 girls). The minimum age of onset was 2 months, and the maximum age was 4 months. The minimum age of diagnosis was 2 months, and the maximum age was 13 years. Four patients had a family history of infant death due to severe infections. Two cases were born to the same consanguineous parents. All cases had recurrent infections, including involvement of respiratory tract (8 cases), digestive tract (6 cases), urinary tract (1 case), and central nervous system (1 case). The pathogens of infection included bacteria, viruses and fungi. Rotavirus was found in 3 cases, cytomegalovirus (CMV) in 5 cases, bacillus Calmette-Guérin adverse reaction in 2 cases (1 of whom had a positive acid-fast smear from lymph node puncture fluid), fungal infection in 3 cases. One case had multiple nodular space-occupying lesions in lungs and abdominal cavity complicated with multiple bone destruction. The peripheral blood lymphocyte counts of all patients ranged between 0.1 ×10(9)/L and 3.3×10(9)/L (median, 0.65×10(9)/L). Eosinophilia was found in 3 cases (range, (0.48-1.69) ×10(9)/L). The patients were classified according to immunophenotype as severe combined immunodeficiency phenotype (4 cases), leaky severe combined immunodeficiency (2 cases), Omenn syndrome (1 case) and combined immunodeficiency (1 case) . Decreased serum IgG levels were found in 3 cases, increased serum IgM levels in

  10. Potential for drug interactions mediated by polymorphic flavin-containing monooxygenase 3 in human livers.

    Science.gov (United States)

    Shimizu, Makiko; Shiraishi, Arisa; Sato, Ayumi; Nagashima, Satomi; Yamazaki, Hiroshi

    2015-02-01

    Human flavin-containing monooxygenase 3 (FMO3) in the liver catalyzes a variety of oxygenations of nitrogen- and sulfur-containing medicines and xenobiotic substances. Because of growing interest in drug interactions mediated by polymorphic FMO3, benzydamine N-oxygenation by human FMO3 was investigated as a model reaction. Among the 41 compounds tested, trimethylamine, methimazole, itopride, and tozasertib (50 μM) suppressed benzydamine N-oxygenation at a substrate concentration of 50 μM by approximately 50% after co-incubation. Suppression of N-oxygenation of benzydamine, trimethylamine, itopride, and tozasertib and S-oxygenation of methimazole and sulindac sulfide after co-incubation with the other five of these six substrates was compared using FMO3 proteins recombinantly expressed in bacterial membranes. Apparent competitive inhibition by methimazole (0-50 μM) of sulindac sulfide S-oxygenation was observed with FMO3 proteins. Sulindac sulfide S-oxygenation activity of Arg205Cys variant FMO3 protein was likely to be suppressed more by methimazole than wild-type or Val257Met variant FMO3 protein was. These results suggest that genetic polymorphism in the human FMO3 gene may lead to changes of drug interactions for N- or S-oxygenations of xenobiotics and endogenous substances and that a probe battery system of benzydamine N-oxygenation and sulindac sulfide S-oxygenation activities is recommended to clarify the drug interactions mediated by FMO3. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  11. Flavin-containing monooxygenase 3 (FMO3) role in busulphan metabolic pathway

    Science.gov (United States)

    Terelius, Ylva; Abedi-Valugerdi, Manuchehr; Naughton, Seán; Saghafian, Maryam; Moshfegh, Ali; Mattsson, Jonas; Potácová, Zuzana; Hassan, Moustapha

    2017-01-01

    Busulphan (Bu) is an alkylating agent used in the conditioning regimen prior to hematopoietic stem cell transplantation (HSCT). Bu is extensively metabolized in the liver via conjugations with glutathione to form the intermediate metabolite (sulfonium ion) which subsequently is degraded to tetrahydrothiophene (THT). THT was reported to be oxidized forming THT-1-oxide that is further oxidized to sulfolane and finally 3-hydroxysulfolane. However, the underlying mechanisms for the formation of these metabolites remain poorly understood. In the present study, we performed in vitro and in vivo investigations to elucidate the involvement of flavin-containing monooxygenase-3 (FMO3) and cytochrome P450 enzymes (CYPs) in Bu metabolic pathway. Rapid clearance of THT was observed when incubated with human liver microsomes. Furthermore, among different recombinant microsomal enzymes, the highest intrinsic clearance for THT was obtained via FMO3 followed by several CYPs including 2B6, 2C8, 2C9, 2C19, 2E1 and 3A4. In Bu- or THT-treated mice, inhibition of FMO3 by phenylthiourea significantly suppressed the clearance of both Bu and THT. Moreover, the simultaneous administration of a high dose of THT (200μmol/kg) to Bu-treated mice reduced the clearance of Bu. Consistently, in patients undergoing HSCT, repeated administration of Bu resulted in a significant up-regulation of FMO3 and glutathione-S-transfrase -1 (GSTA1) genes. Finally, in a Bu-treated patient, additional treatment with voriconazole (an antimycotic drug known as an FMO3-substrate) significantly altered the Bu clearance. In conclusion, we demonstrate for the first time that FMO3 along with CYPs contribute a major part in busulphan metabolic pathway and certainly can affect its kinetics. The present results have high clinical impact. Furthermore, these findings might be important for reducing the treatment-related toxicity of Bu, through avoiding interaction with other concomitant used drugs during conditioning and

  12. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    International Nuclear Information System (INIS)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M.

    2007-01-01

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli β-galactosidase induced durable β-gal-specific IgG and CD8 + T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes

  13. Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme

    DEFF Research Database (Denmark)

    de Rond, Tristan; Stow, Parker; Eigl, Ian

    2017-01-01

    Prodiginines, which are tripyrrole alkaloids displaying a wide array of bioactivities, occur as linear and cyclic congeners. Identification of an unclustered biosynthetic gene led to the discovery of the enzyme responsible for catalyzing the regiospecific C–H activation and cyclization of prodigi...... of prodigiosin to cycloprodigiosin in Pseudoalteromonas rubra. This enzyme is related to alkylglycerol monooxygenase and unrelated to RedG, the Rieske oxygenase that produces cyclized prodiginines in Streptomyces, implying convergent evolution....

  14. Construction of PR39 recombinant AAV under control of the HRE promoter and the effect of recombinant AAV on gene therapy of ischemic heart disease.

    Science.gov (United States)

    Sun, Lijun; Hao, Yuewen; Nie, Xiaowei; Zhang, Xuexin; Yang, Guangxiao; Wang, Quanying

    2012-11-01

    The objective of this study was to investigate the effect of the PR39 recombinant adeno-associated virus (AAV) controlled by the hypoxia-responsive element (HRE) on gene therapy of ischemic heart disease. The minimal HRE was artificially synthesized and the AAV vector controlled by HRE was introduced with NT4-TAT-His-PR39 to investigate the expression of AAV-PR39 in hypoxic vascular endothelial cells (VEC) of human umbilical vein (CRL-1730 cell line) and the angiogenesis-promoting effect in pigs with acute myocardial infraction (AMI). The minimal HRE/CMV was designed and artificially synthesized using the PCR method and cloned with the T vector cloning method. The pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV plasmid was constructed. Using the calcium phosphate precipitation method, HEK-293 cells were co-transfected with three plasmids to produce the recombinant virus. An equal volume of pSS-HRE-CMV-NT4-6His-PR39-PolyAAAV and enterovirus (EV, blank virus) was transfected into CRL-1730 cell lines, respectively. The immunohistochemical method was used to assay the expression of 6xHis in CRL-1730 cell lines and the expression of PR39 under hypoxia. Eighteen AMI miniature pigs were randomized into the experimental group (HRE-AAV-PR39 group), control group 1 (physical saline group) and control group 2 (EV group). The area of ischemia was assessed with conventional MRI and myocardium perfusion MRI. Pigs were sacrificed at preset time-points to obtain samples of ischemic myocardium. Morphological and pathological data were collected. According to data in the literature and databases, the minimal HRE was designed and synthesized with the PCR method. A large number of HREs were connected to modified pSSHGAAV (pSSV9int-/XbaI) vector followed by insertion of the NT4-6His-PR39 gene segment and, thus, the recombinant plasmid pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV was successfully constructed. The expression of 6xHis in CRL-1730 cells under the regulation of HRE was assayed using the

  15. Bacteriophage T4 gene 32 participates in excision repair as well as recombinational repair of UV damages

    International Nuclear Information System (INIS)

    Mosig, G.

    1985-01-01

    Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA- hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wild-type T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins

  16. Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class I genes.

    Science.gov (United States)

    Zeng, Qian-Qian; He, Ke; Sun, Dan-Dan; Ma, Mei-Ying; Ge, Yun-Fa; Fang, Sheng-Guo; Wan, Qiu-Hong

    2016-02-18

    The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic

  17. [Construction of the eukaryotic recombinant vector and expression of the outer membrane protein LipL32 gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying

    2008-02-01

    To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.

  18. Homologous recombination in hybridoma cells: heavy chain chimeric antibody produced by gene targeting.

    OpenAIRE

    Fell, H P; Yarnold, S; Hellström, I; Hellström, K E; Folger, K R

    1989-01-01

    We demonstrate that murine myeloma cells can efficiently mediate homologous recombination. The murine myeloma cell line J558L was shown to appropriately recombine two transfected DNA molecules in approximately 30% of cells that received and integrated intact copies of both molecules. This activity was then exploited to direct major reconstructions of an endogenous locus within a hybridoma cell line. Production of antigen-specific chimeric heavy chain was achieved by targeting the human IgG1 h...

  19. Putative recombination events and evolutionary history of five economically important viruses of fruit trees based on coat protein-encoding gene sequence analysis.

    Science.gov (United States)

    Boulila, Moncef

    2010-06-01

    To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.

  20. Alteration of a recombinant protein N-glycan structure in silkworms by partial suppression of N-acetylglucosaminidase gene expression.

    Science.gov (United States)

    Kato, Tatsuya; Kikuta, Kotaro; Kanematsu, Ayumi; Kondo, Sachiko; Yagi, Hirokazu; Kato, Koichi; Park, Enoch Y

    2017-09-01

    To synthesize complex type N-glycans in silkworms, shRNAs against the fused lobe from Bombyx mori (BmFDL), which codes N-acetylglucosaminidase (GlcNAcase) in the Golgi, was expressed by recombinant B. mori nucleopolyhedrovirus (BmNPV) in silkworm larvae. Expression was under the control of the actin promoter of B. mori or the U6-2 and i.e.-2 promoters from Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV). The reduction of specific GlcNAcase activity was observed in Bm5 cells and silkworm larvae using the U6-2 promoter. In silkworm larvae, the partial suppression of BmFDL gene expression was observed. When shRNA against BmFDL was expressed under the control of U6-2 promoter, the Man 3 GlcNAc(Fuc)GlcNAc structure appeared in a main N-glycans of recombinant human IgG. These results suggested that the control of BmFDL expression by its shRNA in silkworms caused the modification of its N-glycan synthetic pathway, which may lead to the alteration of N-glycans in the expressed recombinant proteins. Suppression of BmFDL gene expression by shRNA is not sufficient to synthesize complex N-glycans in silkworm larvae but can modify the N-glycan synthetic pathway.

  1. Microbial flavoprotein monooxygenases as mimics of mammalian flavin-containing monooxygenases for the enantioselective preparation of drug metabolites

    NARCIS (Netherlands)

    Gul, Turan; Krzek, Marzena; Permentier, Hjalmar; Fraaije, Marco; Bischoff, Rainer

    2016-01-01

    Mammalian flavin-containing monooxygenases are difficult to obtain and study while they play a major role in detoxifying various xenobiotics. In order to provide alternative biocatalytic tools to generate FMO-derived drug metabolites, a collection of microbial flavoprotein monooxygenases,

  2. Structural basis of kynurenine 3-monooxygenase inhibition.

    Science.gov (United States)

    Amaral, Marta; Levy, Colin; Heyes, Derren J; Lafite, Pierre; Outeiro, Tiago F; Giorgini, Flaviano; Leys, David; Scrutton, Nigel S

    2013-04-18

    Inhibition of kynurenine 3-monooxygenase (KMO), an enzyme in the eukaryotic tryptophan catabolic pathway (that is, kynurenine pathway), leads to amelioration of Huntington's-disease-relevant phenotypes in yeast, fruitfly and mouse models, as well as in a mouse model of Alzheimer's disease. KMO is a flavin adenine dinucleotide (FAD)-dependent monooxygenase and is located in the outer mitochondrial membrane where it converts l-kynurenine to 3-hydroxykynurenine. Perturbations in the levels of kynurenine pathway metabolites have been linked to the pathogenesis of a spectrum of brain disorders, as well as cancer and several peripheral inflammatory conditions. Despite the importance of KMO as a target for neurodegenerative disease, the molecular basis of KMO inhibition by available lead compounds has remained unknown. Here we report the first crystal structure of Saccharomyces cerevisiae KMO, in the free form and in complex with the tight-binding inhibitor UPF 648. UPF 648 binds close to the FAD cofactor and perturbs the local active-site structure, preventing productive binding of the substrate l-kynurenine. Functional assays and targeted mutagenesis reveal that the active-site architecture and UPF 648 binding are essentially identical in human KMO, validating the yeast KMO-UPF 648 structure as a template for structure-based drug design. This will inform the search for new KMO inhibitors that are able to cross the blood-brain barrier in targeted therapies against neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's diseases.

  3. Origin of the CMS gene locus in rapeseed cybrid mitochondria: active and inactive recombination produces the complex CMS gene region in the mitochondrial genomes of Brassicaceae.

    Science.gov (United States)

    Oshima, Masao; Kikuchi, Rie; Imamura, Jun; Handa, Hirokazu

    2010-01-01

    CMS (cytoplasmic male sterile) rapeseed is produced by asymmetrical somatic cell fusion between the Brassica napus cv. Westar and the Raphanus sativus Kosena CMS line (Kosena radish). The CMS rapeseed contains a CMS gene, orf125, which is derived from Kosena radish. Our sequence analyses revealed that the orf125 region in CMS rapeseed originated from recombination between the orf125/orfB region and the nad1C/ccmFN1 region by way of a 63 bp repeat. A precise sequence comparison among the related sequences in CMS rapeseed, Kosena radish and normal rapeseed showed that the orf125 region in CMS rapeseed consisted of the Kosena orf125/orfB region and the rapeseed nad1C/ccmFN1 region, even though Kosena radish had both the orf125/orfB region and the nad1C/ccmFN1 region in its mitochondrial genome. We also identified three tandem repeat sequences in the regions surrounding orf125, including a 63 bp repeat, which were involved in several recombination events. Interestingly, differences in the recombination activity for each repeat sequence were observed, even though these sequences were located adjacent to each other in the mitochondrial genome. We report results indicating that recombination events within the mitochondrial genomes are regulated at the level of specific repeat sequences depending on the cellular environment.

  4. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes.

    Science.gov (United States)

    van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O

    1992-01-01

    Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671

  5. Role of the DNA Mismatch Repair Gene MutS4 in Driving the Evolution of Mycobacterium yongonense Type I via Homologous Recombination.

    Science.gov (United States)

    Kim, Byoung-Jun; Kim, Bo-Ram; Kook, Yoon-Hoh; Kim, Bum-Joon

    2017-01-01

    We recently showed that Mycobacterium yongonense could be divided into two genotypes: Type I, in which the rpoB gene has been transferred from Mycobacterium parascrofulaceum , and Type II, in which the rpoB gene has not been transferred. Comparative genome analysis of three M. yongonense Type I, two M. yongonense Type II and M. parascrofulaceum type strains were performed in this study to gain insight into gene transfer from M. parascrofulaceum into M. yongonense Type I strains. We found two genome regions transferred from M. parascrofulaceum : one contained 3 consecutive genes, including the rpoBC operon, and the other contained 57 consecutive genes that had been transferred into M. yongonense Type I genomes via homologous recombination. Further comparison between the M. yongonense Type I and II genomes revealed that Type I, but not Type II has a distinct DNA mismatch repair gene ( MutS4 subfamily) that was possibly transferred via non-homologous recombination from other actinomycetes. We hypothesized that it could facilitate homologous recombination from the M. parascrofulaceum to the M. yongonense Type I genomes. We therefore generated recombinant Mycobacterium smegmatis containing a MutS4 operon of M. yongonense . We found that the M. tuberculosis rpoB fragment with a rifampin resistance-conferring mutation was more frequently inserted into recombinant M. smegmatis than the wild type, suggesting that MutS4 is a driving force in the gene transfer from M. parascrofulaceum to M. yongonense Type I strains via homologous recombination. In conclusion, our data indicated that MutS4 in M. yongonense Type I genomes may drive gene transfer from M. parascrofulaceum via homologous recombination, resulting in division of M. yongonense into two genotypes, Type I and II.

  6. Role of the DNA Mismatch Repair Gene MutS4 in Driving the Evolution of Mycobacterium yongonense Type I via Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Byoung-Jun Kim

    2017-12-01

    Full Text Available We recently showed that Mycobacterium yongonense could be divided into two genotypes: Type I, in which the rpoB gene has been transferred from Mycobacterium parascrofulaceum, and Type II, in which the rpoB gene has not been transferred. Comparative genome analysis of three M. yongonense Type I, two M. yongonense Type II and M. parascrofulaceum type strains were performed in this study to gain insight into gene transfer from M. parascrofulaceum into M. yongonense Type I strains. We found two genome regions transferred from M. parascrofulaceum: one contained 3 consecutive genes, including the rpoBC operon, and the other contained 57 consecutive genes that had been transferred into M. yongonense Type I genomes via homologous recombination. Further comparison between the M. yongonense Type I and II genomes revealed that Type I, but not Type II has a distinct DNA mismatch repair gene (MutS4 subfamily that was possibly transferred via non-homologous recombination from other actinomycetes. We hypothesized that it could facilitate homologous recombination from the M. parascrofulaceum to the M. yongonense Type I genomes. We therefore generated recombinant Mycobacterium smegmatis containing a MutS4 operon of M. yongonense. We found that the M. tuberculosis rpoB fragment with a rifampin resistance-conferring mutation was more frequently inserted into recombinant M. smegmatis than the wild type, suggesting that MutS4 is a driving force in the gene transfer from M. parascrofulaceum to M. yongonense Type I strains via homologous recombination. In conclusion, our data indicated that MutS4 in M. yongonense Type I genomes may drive gene transfer from M. parascrofulaceum via homologous recombination, resulting in division of M. yongonense into two genotypes, Type I and II.

  7. Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: Imitation of a real cargo.

    Science.gov (United States)

    Majidi, Asia; Nikkhah, Maryam; Sadeghian, Faranak; Hosseinkhani, Saman

    2016-10-01

    In last decades great efforts have been devoted to the study of development of recombinant peptide based vectors that consist of biological motifs with potential applications in gene therapy. Recombinant Biomimetic Chimeric Vectors (rBCVs) are biopolymeric nanocarriers that are designed to mimic viral features to overcome the cellular obstacles in gene transferring pathway into cell nucleus. In this research, we designed and genetically engineered three novel rBCVs with similar sequences that differed in motifs arrangement and motif abundance: MPG-2H1, 2TMPG-2H1 and 2RMPG-2H1. The MPG as a famous amphipathic cell penetrating peptide is the main segment of these constructs which was studied for the first time in association with truncated histone H1 DNA condensing motif. Through the performance of several physicochemical and biological assays, the rBCVs were remarkably examined regarding transfection efficiency. The main objective of this study is focused on the importance of motif design in transfection efficiency of rBCVs on one hand, and the assessment of correlation between structural features and functionality of motifs on the other hand. The results revealed that all three kinds of rBCVs/pDNA nanoparticles with average sizes of 200nm could overwhelm the cellular obstacles associated with gene transfer, and lead to efficient gene delivery. Furthermore, no significant toxicity was perceived and efficient endosome disruptive activity was obtained. It is noteworthy to say among three mentioned constructs 2RMPG-2H1 showed the highest transfection efficiency. Overall the peptide based vectors hold great promise as a nontoxic and effective gene carrier in vitro and in vivo, besides the rational design possibility as the most vital advantages over the other non-viral gene delivery vectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.

    Science.gov (United States)

    Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, V Venkata

    2018-03-28

    Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Despite of producing high protein titers, various cellular and process level bottlenecks hinders the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Meiotic homoeologous recombination-based alien gene introgression in the genomics era of wheat

    Science.gov (United States)

    Wheat (Triticum spp.) has a narrow genetic basis due to its allopolyploid origin. However, wheat has numerous wild relatives usable for expanding genetic variability of its genome through meiotic homoeologous recombination. Traditionally, laborious cytological analyses have been employed to detect h...

  10. Immunogenicity of recombinant Lactobacillus plantarum NC8 expressing goose parvovirus VP2 gene in BALB/c mice.

    Science.gov (United States)

    Liu, Yu-Ying; Yang, Wen-Tao; Shi, Shao-Hua; Li, Ya-Jie; Zhao, Liang; Shi, Chun-Wei; Zhou, Fang-Yu; Jiang, Yan-Long; Hu, Jing-Tao; Gu, Wei; Yang, Gui-Lian; Wang, Chun-Feng

    2017-06-30

    Goose parvovirus (GPV) continues to be a threat to goose farms and has significant economic effects on the production of geese. Current commercially available vaccines only rarely prevent GPV infection. In our study, Lactobacillus (L.) plantarum NC8 was selected as a vector to express the VP2 gene of GPV, and recombinant L. plantarum pSIP409-VP2/NC8 was successfully constructed. The molecular weight of the expressed recombinant protein was approximately 70 kDa. Mice were immunized with a 2 × 10 9 colony-forming unit/200 μL dose of the recombinant L. plantarum strain, and the ratios and numbers of CD11c + , CD3 + CD4 + , CD3 + CD8 + , and interferon gamma- and tumor necrosis factor alpha-expressing spleen lymphocytes in the pSIP409-VP2/NC8 group were higher than those in the control groups. In addition, we assessed the capacity of L. plantarum SIP409-VP2/NC8 to induce secretory IgA production. We conclude that administered pSIP409-VP2/NC8 leads to relatively extensive cellular responses. This study provides information on GPV infection and offers a clear framework of options available for GPV control strategies.

  11. Construction of a recombinant eukaryotic human ZHX1 gene expression plasmid and the role of ZHX1 in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Jianping; Liu, Dejie; Liang, Xiaohong; Gao, Lifen; Yue, Xuetian; Yang, Yang; Ma, Chunhong; Liu, Jun

    2013-11-01

    The zinc-fingers and homeoboxes protein 1 (ZHX1) consists of 873 amino acid residues, is localized in the cell nucleus and appears to act as a transcriptional repressor. Previous studies have shown that ZHX1 interacts with nuclear factor Y subunit α (NF-YA), DNA methyltransferases (DNMT) 3B and ZHX2, all of which are involved in tumorigenesis. However, the exact role of ZHX1 in tumorigenesis remains unknown. The aim of the current study was to construct a recombinant eukaryotic expression plasmid containing the human ZHX1 (hZHX1) gene and to investigate the biological activities of ZHX1 in hepatocellular carcinoma (HCC). Reverse transcription-polymerase chain reaction (RT‑PCR) was used to amplify the N- and C-terminal fragments (ZHX1‑N and ZHX1‑C, respectively) of the hZHX1 gene. The two PCR fragments were cloned into the pEASY-T1 vector and subcloned into the pcDNA3 plasmid to generate a recombinant pcDNA3‑ZHX1 plasmid. Following identification by enzyme digestion and DNA sequencing, the recombinant pcDNA3‑ZHX1 plasmid was transfected into SMMC-7721 cells. The level of ZHX1 expression was detected by RT-PCR and western blot analysis. Cell growth curve assays were used to evaluate the effect of ZHX1 on cell proliferation. Moreover, the differential expression of ZHX1 between cancer and adjacent cirrhotic liver tissue was investigated by quantitative PCR (qPCR). Enzyme digestion and DNA sequencing confirmed the successful construction of the recombinant plasmid, pcDNA3‑ZHX1. qPCR and western blot analysis demonstrated that ZHX1 was efficiently expressed in SMMC-7721 cells and overexpression of ZHX1 may inhibit the proliferation of SMMC-7721 cells. In addition, reduced ZHX1 expression is widespread among cancer tissues from HCC patients. In conclusion, a recombinant eukaryotic expression plasmid, pcDNA3‑ZHX1, was successfully constructed. In addition, the current results indicate that a low expression of ZHX1 may be responsible for hepatocarcinogenesis.

  12. Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria.

    Science.gov (United States)

    Korstanje, Ron; Deutsch, Konstantin; Bolanos-Palmieri, Patricia; Hanke, Nils; Schroder, Patricia; Staggs, Lynne; Bräsen, Jan H; Roberts, Ian S D; Sheehan, Susan; Savage, Holly; Haller, Hermann; Schiffer, Mario

    2016-11-01

    Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes. Copyright © 2016 by the American Society of Nephrology.

  13. Repression of the DCL2 and DCL4 genes in Nicotiana benthamiana plants for the transient expression of recombinant proteins.

    Science.gov (United States)

    Matsuo, Kouki; Matsumura, Takeshi

    2017-08-01

    The production of recombinant proteins in plants has many advantages, including safety and reduced costs. However, this technology still faces several issues, including low levels of production. The repression of RNA silencing seems to be particularly important for improving recombinant protein production because RNA silencing effectively degrades transgene-derived mRNAs in plant cells. Therefore, to overcome this, we used RNA interference technology to develop DCL2- and DCL4-repressed transgenic Nicotiana benthamiana plants (ΔD2, ΔD4, and ΔD2ΔD4 plants), which had much lower levels of NbDCL2 and/or NbDCL4 mRNAs than wild-type plants. A transient gene expression assay showed that the ΔD2ΔD4 plants accumulated larger amounts of green fluorescent protein (GFP) and human acidic fibroblast growth factor (aFGF) than ΔD2, ΔD4, and wild-type plants. Furthermore, the levels of GFP and aFGF mRNAs were also higher in ΔD2ΔD4 plants than in ΔD2, ΔD4, and wild-type plants. These findings demonstrate that ΔD2ΔD4 plants express larger amounts of recombinant proteins than wild-type plants, and so would be useful for recombinant protein production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Recombinant Newcastle disease virus (NDV) with inserted gene coding for GM-CSF as a new vector for cancer immunogene therapy

    NARCIS (Netherlands)

    Janke, M.; Peeters, B.P.H.; Leeuw, de O.S.; Moormann, R.J.M.; Arnold, A.; Fournier, P.; Schirrmacher, V.

    2007-01-01

    This is the first report describing recombinant (rec) Newcastle disease virus (NDV) as vector for gene therapy of cancer. The gene encoding granulocyte/macrophage colony-stimulating factor (GM-CSF) was inserted as an additional transcription unit at two different positions into the NDV genome. The

  15. Genetic Variant in Flavin-Containing Monooxygenase 3 Alters Lipid Metabolism in Laying Hens in a Diet-Specific Manner

    OpenAIRE

    Wang, Jing; Long, Cheng; Zhang, Haijun; Zhang, Yanan; Wang, Hao; Yue, Hongyuan; Wang, Xiaocui; Wu, Shugeng; Qi, Guanghai

    2016-01-01

    Genetic variant T329S in flavin-containing monooxygenase 3 (FMO3) impairs trimethylamine (TMA) metabolism in birds. The TMA metabolism that under complex genetic and dietary regulation, closely linked to cardiovascular disease risk. We determined whether the genetic defects in TMA metabolism may change other metabolic traits in birds, determined whether the genetic effects depend on diets, and to identify genes or gene pathways that underlie the metabolic alteration induced by genetic and die...

  16. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene combined with radiation therapy on human lymphoma cells lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wan Jianmei; Wang Yongqing; Wu Jinchang

    2008-01-01

    This paper analyzes the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Human lymphoma cell lines were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTF. The cell cycle and apoptosis were detected by flow cytometry, and the p53 protein expression was detected by Western blotting. The results showed that extrinsic p53 gene have expressed to some degree, but not at high level. The role of inhibition and radiation sensitivity of rAd-p53 was not significant to human lymphoma cell lines. (authors)

  17. [Construction and prokaryotic expression of recombinant gene EGFRvIII HBcAg and immunogenicity analysis of the fusion protein].

    Science.gov (United States)

    Duan, Xiao-yi; Wang, Jian-sheng; Guo, You-min; Han, Jun-li; Wang, Quan-ying; Yang, Guang-xiao

    2007-01-01

    To construct recombinant prokaryotic expression plasmid pET28a(+)/c-PEP-3-c and evaluate the immunogenicity of the fusion protein. cDNA fragment encoding PEP-3 was obtained from pGEM-T Easy/PEP-3 and inserted into recombinant plasmid pGEMEX/HBcAg. Then it was subcloned in prokaryotic expression vector and transformed into E.coli BL21(DE3). The fusion protein was expressed by inducing IPTG and purified by Ni(2+)-NTA affinity chromatography. BALB/c mice were immunized with fusion protein and the antibody titre was determined by indirect ELISA. The recombinant gene was confirmed to be correct by restriction enzyme digestion and DNA sequencing. After prokaryotic expression, fusion protein existed in sediment and accounted for 56% of all bacterial lysate. The purified product accounted for 92% of all protein and its concentration was 8 g/L. The antibody titre in blood serum reached 1:16 000 after the fourth immunization and reached 1:2.56x10(5) after the sixth immunization. The titre of anti-PEP-3 antibody reached 1:1.28x10(5) and the titre of anti-HBcAg antibody was less than 1:4x10(3). Fusion gene PEP-3-HBcAg is highly expressed in E.coli BL21. The expressed fusion protein can induce neutralizing antibody with high titer and specificity, which lays a foundation for the study of genetically engineering vaccine for malignant tumors with the high expression of EGFRvIII.

  18. Supplementary Material for: Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Approximately 10 % of the Mycobacterium tuberculosis genome is made up of two families of genes that are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified by their highly conserved N-terminal domains that incorporate proline-glutamate (PE) and proline-proline-glutamate (PPE) signature motifs. They are hypothesised to be important virulence factors involved with host-pathogen interactions, but their high genetic variability and complexity of analysis means they are typically disregarded in genome studies. Results To elucidate the structure of these genes, 518 genomes from a diverse international collection of clinical isolates were de novo assembled. A further 21 reference M. tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified, notably pe_pgrs3 and pe_pgrs17. Evidence of positive selection was revealed in 65 pe/ppe genes, including epitopes potentially binding to major histocompatibility complex molecules. Conclusions This, the first comprehensive study of the pe and ppe genes, provides important insight into M. tuberculosis diversity and has significant implications for vaccine development.

  19. Toward exascale production of recombinant adeno-associated virus for gene transfer applications.

    Science.gov (United States)

    Cecchini, S; Negrete, A; Kotin, R M

    2008-06-01

    To gain acceptance as a medical treatment, adeno-associated virus (AAV) vectors require a scalable and economical production method. Recent developments indicate that recombinant AAV (rAAV) production in insect cells is compatible with current good manufacturing practice production on an industrial scale. This platform can fully support development of rAAV therapeutics from tissue culture to small animal models, to large animal models, to toxicology studies, to Phase I clinical trials and beyond. Efforts to characterize, optimize and develop insect cell-based rAAV production have culminated in successful bioreactor-scale production of rAAV, with total yields potentially capable of approaching the exa-(10(18)) scale. These advances in large-scale AAV production will allow us to address specific catastrophic, intractable human diseases such as Duchenne muscular dystrophy, for which large amounts of recombinant vector are essential for successful outcome.

  20. MVA recombinants expressing the fusion and hemagglutinin genes of PPRV protects goats against virulent challenge.

    Science.gov (United States)

    Chandran, Dev; Reddy, Kolli Bhaktavatsala; Vijayan, Shahana Pallichera; Sugumar, Parthasarthy; Rani, Gudavalli Sudha; Kumar, Ponsekaran Santha; Rajendra, Lingala; Srinivasan, Villuppanoor Alwar

    2010-09-01

    Peste des Petits Ruminants (PPR) is a highly contagious animal disease caused by the Peste des Petits Ruminants virus (PPRV) belonging to the genus morbillivirus and family Paramyxoviridae. The disease results in high morbidity and mortality in goats, sheep and in some small wild ruminants. The presence of large number of small ruminants reared in endemic areas makes PPR a notorious disease threatening the livelihood of poor farmers. Conventional vaccination using a live, attenuated vaccine gives adequate protection but cannot be used in case of eradication of the disease due to difficulty in differentiation of infected animals from the vaccinated ones.In the present study, we constructed two recombinant viruses using attenuated Modified Vaccinia virus Ankara virus (MVA) namely MVA-F and MVA-H expressing the full length PPRV fusion (F) and hemagglutinin (H) glycoproteins, respectively. Goats were vaccinated intramuscularly with 105 plaque forming units (PFU) each of the recombinant viruses and a live attenuated vaccine (RAKSHA PPR) and challenged 4 months later with PPRV challenge virus (10(3) goat LD(50)). All goats were completely protected from the clinical disease. This study gave an indication that mass vaccination of small ruminants with either of the above or both recombinant inexpensive virus vaccines could help in possible eradication of PPRV from endemic countries like India and subsequent seromonitoring of the disease for differentiation of infected animals from vaccinated ones.

  1. Cytochrome P450 monooxygenases and insecticide resistance in insects.

    OpenAIRE

    Bergé, J B; Feyereisen, R; Amichot, M

    1998-01-01

    Cytochrome P450 monooxygenases are involved in many cases of resistance of insects to insecticides. Resistance has long been associated with an increase in monooxygenase activities and with an increase in cytochrome P450 content. However, this increase does not always account for all of the resistance. In Drosophila melanogaster, we have shown that the overproduction of cytochrome P450 can be lost by the fly without a corresponding complete loss of resistance. These results prompted the seque...

  2. Regulated expression of genes inserted at the human chromosomal β-globin locus by homologous recombination

    International Nuclear Information System (INIS)

    Nandi, A.K.; Roginski, R.S.; Gregg, R.G.; Smithies, O.; Skoultchi, A.I.

    1988-01-01

    The authors have examined the effect of the site of integration on the expression of cloned genes introduced into cultured erythroid cells. Smithies et al. reported the targeted integration of DNA into the human β-globin locus on chromosome 11 in a mouse erythroleukemia-human cell hybrid. These hybrid cells can undergo erythroid differentiation leading to greatly increased mouse and human β-globin synthesis. By transfection of these hybrid cells with a plasmid carrying a modified human β-globin gene and a foreign gene composed of the coding sequence of the bacterial neomycin-resistance gene linked to simian virus 40 transcription signals (SVneo), cells were obtained in which the two genes are integrated at the β-globin locus on human chromosome 11 or at random sites. When they examined the response of the integrated genes to cell differentation, they found that the genes inserted at the β-globin locus were induced during differentiation, whereas randomly positioned copies were not induced. Even the foreign SVneo gene was inducible when it had been integrated at the β-globin locus. The results show that genes introduced at the β-globin locus acquire some of the regulatory properties of globin genes during erythroid differentiation

  3. Immune responses to recombinants of the South African vaccine strain of lumpy skin disease virus generated by using thymidine kinase gene insertion.

    Science.gov (United States)

    Wallace, David B; Viljoen, Gerrit J

    2005-04-27

    The South African vaccine strain of lumpy skin disease virus (type SA-Neethling) is currently being developed as a vector for recombinant vaccines of economically important livestock diseases throughout Africa. In this study, the feasibility of using the viral thymidine kinase gene as the site of insertion was investigated and recombinant viruses were evaluated in animal trials. Two separate recombinants were generated and selected for homogeneity expressing either the structural glycoprotein gene of bovine ephemeral fever virus (BEFV) or the two structural glycoprotein genes of Rift Valley fever virus (RVFV). Both recombinants incorporate the enhanced green fluorescent protein (EGFP) as a visual marker and the Escherichia coli guanine phosphoribosyl transferase (gpt) gene for dominant positive selection. The LSDV-RVFV recombinant construct (rLSDV-RVFV) protected mice against virulent RVFV challenge. In a small-scale BEFV-challenge cattle trial the rLSDV-BEFV construct failed to fully protect the cattle against virulent challenge, although both a humoral and cellular BEFV-specific immune response was elicited.

  4. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector.

    Science.gov (United States)

    Paiboonsukwong, Kittiphong; Ohbayashi, Fumi; Shiiba, Haruka; Aizawa, Emi; Yamashita, Takayuki; Mitani, Kohnosuke

    2009-11-01

    Adeno-associated virus (AAV) vectors have been shown to correct a variety of mutations in human cells by homologous recombination (HR) at high rates, which can overcome insertional mutagenesis and transgene silencing, two of the major hurdles in conventional gene addition therapy of inherited diseases. We examined an ability of AAV vectors to repair a mutation in human hematopoietic cells by HR. We infected a human B-lymphoblastoid cell line (BCL) derived from a normal subject with an AAV, which disrupts the hypoxanthine phosphoribosyl transferase1 (HPRT1) locus, to measure the frequency of AAV-mediated HR in BCL cells. We subsequently constructed an AAV vector encoding the normal sequences from the Fanconi anemia group A (FANCA) locus to correct a mutation in the gene in BCL derived from a FANCA patient. Under optimal conditions, approximately 50% of BCL cells were transduced with an AAV serotype 2 (AAV-2) vector. In FANCA BCL cells, up to 0.016% of infected cells were gene-corrected by HR. AAV-mediated restoration of normal genotypic and phenotypic characteristics in FANCA-mutant cells was confirmed at the DNA, protein and functional levels. The results obtained in the present study indicate that AAV vectors may be applicable for gene correction therapy of inherited hematopoietic disorders.

  5. Immotile cilia syndrome: A recombinant family at HLA-linked gene locus

    Energy Technology Data Exchange (ETDEWEB)

    Gasparini, P.; Grifa, A.; Oggiano, N.; Fabbrizzi, E.; Giorgi, P.L. [Univsita di Ancona (Israel)

    1994-02-15

    The immotile-cilia syndrome (ICS) is an autosomal recessive trait of congenital dismobility or even complete immobility of cilia in the ciliated epithelia (MIM 244400). Recurrent upper respiratory infections in early childhood are the most common clinical findings. Recently a disease locus was mapped by sib pair analysis in two unrelated families on 6p tightly linked to HLA class II loci, such as DR and DQ. In order to confirm this assignment and to test the presence of possible heterogeneity, the authors analyzed several ICS families utilizing DNA makers of HLA class II region. Here they report the identification of a recombinant family at this locus. 3 refs., 1 fig.

  6. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes.

    Science.gov (United States)

    Scriber, Jon Mark

    2013-12-24

    Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become

  7. Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum.

    Science.gov (United States)

    Guo, Yaqiong; Tang, Kevin; Rowe, Lori A; Li, Na; Roellig, Dawn M; Knipe, Kristine; Frace, Michael; Yang, Chunfu; Feng, Yaoyu; Xiao, Lihua

    2015-04-18

    Cryptosporidium hominis is a dominant species for human cryptosporidiosis. Within the species, IbA10G2 is the most virulent subtype responsible for all C. hominis-associated outbreaks in Europe and Australia, and is a dominant outbreak subtype in the United States. In recent yearsIaA28R4 is becoming a major new subtype in the United States. In this study, we sequenced the genomes of two field specimens from each of the two subtypes and conducted a comparative genomic analysis of the obtained sequences with those from the only fully sequenced Cryptosporidium parvum genome. Altogether, 8.59-9.05 Mb of Cryptosporidium sequences in 45-767 assembled contigs were obtained from the four specimens, representing 94.36-99.47% coverage of the expected genome. These genomes had complete synteny in gene organization and 96.86-97.0% and 99.72-99.83% nucleotide sequence similarities to the published genomes of C. parvum and C. hominis, respectively. Several major insertions and deletions were seen between C. hominis and C. parvum genomes, involving mostly members of multicopy gene families near telomeres. The four C. hominis genomes were highly similar to each other and divergent from the reference IaA25R3 genome in some highly polymorphic regions. Major sequence differences among the four specimens sequenced in this study were in the 5' and 3' ends of chromosome 6 and the gp60 region, largely the result of genetic recombination. The sequence similarity among specimens of the two dominant outbreak subtypes and genetic recombination in chromosome 6, especially around the putative virulence determinant gp60 region, suggest that genetic recombination plays a potential role in the emergence of hyper-transmissible C. hominis subtypes. The high sequence conservation between C. parvum and C. hominis genomes and significant differences in copy numbers of MEDLE family secreted proteins and insulinase-like proteases indicate that telomeric gene duplications could potentially contribute to

  8. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome

    NARCIS (Netherlands)

    Albers, Sonja-Verena; Driessen, Arnold J.M.

    2008-01-01

    The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during

  9. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome

    OpenAIRE

    Albers, Sonja-Verena; Driessen, Arnold J. M.

    2008-01-01

    The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. ac...

  10. Phytomonitoring and phytoremediation of agrochemicals and related compounds based on recombinant cytochrome P450s and aryl hydrocarbon receptors (AhRs).

    Science.gov (United States)

    Shimazu, Sayuri; Inui, Hideyuki; Ohkawa, Hideo

    2011-04-13

    Molecular mechanisms of metabolism and modes of actions of agrochemicals and related compounds are important for understanding selective toxicity, biodegradability, and monitoring of biological effects on nontarget organisms. It is well-known that in mammals, cytochrome P450 (P450 or CYP) monooxygenases metabolize lipophilic foreign compounds. These P450 species are inducible, and both CYP1A1 and CYP1A2 are induced by aryl hydrocarbon receptor (AhR) combined with a ligand. Gene engineering of P450 and NADPH cytochrome P450 oxidoreductase (P450 reductase) was established for bioconversion. Also, gene modification of AhRs was developed for recombinant AhR-mediated β-glucronidase (GUS) reporter assay of AhR ligands. Recombinant P450 genes were transformed into plants for phytoremediation, and recombinant AhR-mediated GUS reporter gene expression systems were each transformed into plants for phytomonitoring. Transgenic rice plants carrying CYP2B6 metabolized the herbicide metolachlor and remarkably reduced the residues in the plants and soils under paddy field conditions. Transgenic Arabidopsis plants carrying recombinant guinea pig (g) AhR-mediated GUS reporter genes detected PCB126 at the level of 10 ng/g soils in the presence of biosurfactants MEL-B. Both phytomonitoring and phytoremediation plants were each evaluated from the standpoint of practical uses.

  11. Failure to induce a DNA repair gene, RAD54, in Saccharomyces cerevisiae does not affect DNA repair or recombination phenotypes

    International Nuclear Information System (INIS)

    Cole, G.M.; Mortimer, R.K.

    1989-01-01

    The Saccharomyces cerevisiae RAD54 gene is transcriptionally regulated by a broad spectrum of DNA-damaging agents. Induction of RAD54 by DNA-damaging agents is under positive control. Sequences responsible for DNA damage induction (the DRS element) lie within a 29-base-pair region from -99 to -70 from the most proximal transcription start site. This inducible promoter element is functionally separable from a poly(dA-dT) region immediately downstream which is required for constitutive expression. Deletions which eliminate induction of RAD54 transcription by DNA damage but do not affect constitutive expression have no effect on growth or survival of noninducible strains relative to wild-type strains in the presence of DNA-damaging agents. The DRS element is also not required for homothallic mating type switching, transcriptional induction of RAD54 during meiosis, meiotic recombination, or spontaneous or X-ray-induced mitotic recombination. We find no phenotype for a lack of induction of RAD54 message via the damage-inducible DRS, which raises significant questions about the physiology of DNA damage induction in S. cerevisiae

  12. [Construction of eukaryotic recombinant vector and expression in COS7 cell of LipL32-HlyX fusion gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying

    2009-04-01

    This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.

  13. Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats

    International Nuclear Information System (INIS)

    Yang, Hyun Suk; Park, Seong-Wook; Lee, Heuiran; Kim, Sung Jin; Lee, Won Woo; Yang, You-Jung; Moon, Dae Hyuk

    2004-01-01

    We evaluated the feasibility of non-invasive imaging of recombinant adenovirus-mediated human sodium-iodide symporter (hNIS) gene expression by 99m TcO 4 - scintigraphy in skeletal muscle of rats. Replication-defective recombinant adenovirus encoding hNIS gene [Rad-CMV-hNIS 5 x 10 7 , 2 x 10 8 or 1 x 10 9 plaque forming units (pfu)] or β-galactosidase gene (Rad-CMV-LacZ 1 x 10 9 pfu) was injected into the right biceps femoris muscle of rats (n=5-6 for each group). Three days after gene transfer, scintigraphy was performed using a gamma camera 30 min after injection of 99m TcO 4 - (1.85 MBq). An additional two rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS underwent 99m TcO 4 - scintigraphy with sodium perchlorate. After the imaging studies, rats were sacrificed for assessment of the biodistribution of 99m TcO 4 - and measurement of hNIS mRNA expression. In all the rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS, hNIS expression was successfully imaged by 99m TcO 4 - scintigraphy, while rats injected with Rad-CMV-LacZ or lower doses of Rad-CMV-hNIS failed to show uptake. The biodistribution studies indicated that a significantly different amount of 99m TcO 4 - was retained in the liver (p 9 pfu of Rad-CMV-hNIS. The muscular hNIS mRNA level quantified by real-time reverse transcription-polymerase chain reaction was significantly higher in rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS (p 9 pfu of Rad-CMV-hNIS were specifically inhibited by sodium perchlorate. This study illustrated that 99m TcO 4 - scintigraphy can monitor Rad-CMV-hNIS-mediated gene expression in skeletal muscle of rats, non-invasively and quantitatively. (orig.)

  14. Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Suk; Park, Seong-Wook [Department of Internal Medicine (Cardiology), Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, 138-736, Seoul (Korea); Lee, Heuiran; Kim, Sung Jin [Department of Microbiology, University of Ulsan College of Medicine, Seoul (Korea); Lee, Won Woo [Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam (Korea); Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea); Yang, You-Jung; Moon, Dae Hyuk [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea)

    2004-09-01

    We evaluated the feasibility of non-invasive imaging of recombinant adenovirus-mediated human sodium-iodide symporter (hNIS) gene expression by {sup 99m}TcO{sub 4}{sup -} scintigraphy in skeletal muscle of rats. Replication-defective recombinant adenovirus encoding hNIS gene [Rad-CMV-hNIS 5 x 10{sup 7}, 2 x 10{sup 8} or 1 x 10{sup 9} plaque forming units (pfu)] or {beta}-galactosidase gene (Rad-CMV-LacZ 1 x 10{sup 9} pfu) was injected into the right biceps femoris muscle of rats (n=5-6 for each group). Three days after gene transfer, scintigraphy was performed using a gamma camera 30 min after injection of {sup 99m}TcO{sub 4}{sup -} (1.85 MBq). An additional two rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS underwent {sup 99m}TcO{sub 4}{sup -} scintigraphy with sodium perchlorate. After the imaging studies, rats were sacrificed for assessment of the biodistribution of {sup 99m}TcO{sub 4}{sup -} and measurement of hNIS mRNA expression. In all the rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS, hNIS expression was successfully imaged by {sup 99m}TcO{sub 4}{sup -} scintigraphy, while rats injected with Rad-CMV-LacZ or lower doses of Rad-CMV-hNIS failed to show uptake. The biodistribution studies indicated that a significantly different amount of {sup 99m}TcO{sub 4}{sup -} was retained in the liver (p<0.001) and the right muscle (p<0.05), with the highest uptake in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS. The muscular hNIS mRNA level quantified by real-time reverse transcription-polymerase chain reaction was significantly higher in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS (p<0.05), with a positive correlation with the imaging counts (r=0.810, p<0.05) and the biodistribution (r=0.847, p<0.001). Hot spots in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS were specifically inhibited by sodium perchlorate. This study illustrated that {sup 99m}TcO{sub 4}{sup -} scintigraphy can monitor Rad-CMV-hNIS-mediated gene expression in

  15. Adaptive and Behavioral Changes in Kynurenine 3-Monooxygenase Knockout Mice: Relevance to Psychotic Disorders.

    Science.gov (United States)

    Erhardt, Sophie; Pocivavsek, Ana; Repici, Mariaelena; Liu, Xi-Cong; Imbeault, Sophie; Maddison, Daniel C; Thomas, Marian A R; Smalley, Joshua L; Larsson, Markus K; Muchowski, Paul J; Giorgini, Flaviano; Schwarcz, Robert

    2017-11-15

    Kynurenine 3-monooxygenase converts kynurenine to 3-hydroxykynurenine, and its inhibition shunts the kynurenine pathway-which is implicated as dysfunctional in various psychiatric disorders-toward enhanced synthesis of kynurenic acid, an antagonist of both α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors. Possibly as a result of reduced kynurenine 3-monooxygenase activity, elevated central nervous system levels of kynurenic acid have been found in patients with psychotic disorders, including schizophrenia. In the present study, we investigated adaptive-and possibly regulatory-changes in mice with a targeted deletion of Kmo (Kmo -/- ) and characterized the kynurenine 3-monooxygenase-deficient mice using six behavioral assays relevant for the study of schizophrenia. Genome-wide differential gene expression analyses in the cerebral cortex and cerebellum of these mice identified a network of schizophrenia- and psychosis-related genes, with more pronounced alterations in cerebellar tissue. Kynurenic acid levels were also increased in these brain regions in Kmo -/- mice, with significantly higher levels in the cerebellum than in the cerebrum. Kmo -/- mice exhibited impairments in contextual memory and spent less time than did controls interacting with an unfamiliar mouse in a social interaction paradigm. The mutant animals displayed increased anxiety-like behavior in the elevated plus maze and in a light/dark box. After a D-amphetamine challenge (5 mg/kg, intraperitoneal), Kmo -/- mice showed potentiated horizontal activity in the open field paradigm. Taken together, these results demonstrate that the elimination of Kmo in mice is associated with multiple gene and functional alterations that appear to duplicate aspects of the psychopathology of several neuropsychiatric disorders. Copyright © 2016. Published by Elsevier Inc.

  16. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome

    Directory of Open Access Journals (Sweden)

    Sonja-Verena Albers

    2008-01-01

    Full Text Available The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. acidocaldarius and derivatives of S. solfataricus 98/2. Here we describe an optimization of the method for integration of exogenous DNA into S. solfataricus PBL 2025, an S. solfataricus 98/2 derivative, based on lactose auxotrophy that now allows for routine gene inactivation.

  17. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome.

    Science.gov (United States)

    Albers, Sonja-Verena; Driessen, Arnold J M

    2008-12-01

    The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. acidocaldarius and derivatives of S. solfataricus 98/2. Here we describe an optimization of the method for integration of exogenous DNA into S. solfataricus PBL 2025, an S. solfataricus 98/2 derivative, based on lactose auxotrophy that now allows for routine gene inactivation.

  18. Canada continues use prohibition of gene recombination cattle somatotropin; Kanada wa idenshikumikaegyu seicho horumon no shiyo kinshi wo keizoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-05

    Canada continued use prohibition of gene recombination cattle somatotropin (BST) which stimulated milk increased production of this company in spite of request of Monsanto Co.. The cow that BST was administered is based on the report of veterinary surgeon that causes reproductive function and lowering in the life, dysbasia and increase in the mastitis on this. From the research report that BST causes thyroid gland cyst of the male rat in U.S.A., consumer organization and environment group petition FDA for the elimination of BST from the U.S.A. market. In the meantime, Monsanto Co. in the report which Canada adopted, chemical structure is different, and it reports that it uses BST of other company in which dosing method and dosing frequency differ and disregards the report of Cornell university in which the life of the cow administered more and more does not lower BST. (translated by NEDO)

  19. Multiplex PCR assay for detection of recombinant genes encoding fatty acid desaturases fused with lichenase reporter protein in GM plants.

    Science.gov (United States)

    Berdichevets, Iryna N; Shimshilashvili, Hristina R; Gerasymenko, Iryna M; Sindarovska, Yana R; Sheludko, Yuriy V; Goldenkova-Pavlova, Irina V

    2010-07-01

    Thermostable lichenase encoded by licB gene of Clostridium thermocellum can be used as a reporter protein in plant, bacterial, yeast, and mammalian cells. It has important advantages of high sensitivity and specificity in qualitative and quantitative assays. Deletion variants of LicB (e.g., LicBM3) retain its enzymatic activity and thermostability and can be expressed in translational fusion with target proteins without compromising with their properties. Fusion with the lichenase reporter is especially convenient for the heterologous expression of proteins whose analysis is difficult or compromised by host enzyme activities, as it is in case of fatty acid desaturases occurring in all groups of organisms. Recombinant desaturase-lichenase genes can be used for creating genetically modified (GM) plants with improved chill tolerance. Development of an analytical method for detection of fused desaturase-lichenase transgenes is necessary both for production of GM plants and for their certification. Here, we report a multiplex polymerase chain reaction method for detection of desA and desC desaturase genes of cyanobacteria Synechocystis sp. PCC6803 and Synechococcus vulcanus, respectively, fused to licBM3 reporter in GM plants.

  20. Recombinant lactoferrin (Lf) of Vechur cow, the critical breed of Bos indicus and the Lf gene variants.

    Science.gov (United States)

    Anisha, Shashidharan; Bhasker, Salini; Mohankumar, Chinnamma

    2012-03-01

    Vechur cow, categorized as a critically maintained breed by the FAO, is a unique breed of Bos indicus due to its extremely small size, less fodder intake, adaptability, easy domestication and traditional medicinal property of the milk. Lactoferrin (Lf) is an iron-binding glycoprotein that is found predominantly in the milk of mammals. The full coding region of Lf gene of Vechur cow was cloned, sequenced and expressed in a prokaryotic system. Antibacterial activity of the recombinant Lf showed suppression of bacterial growth. To the best of our knowledge this is the first time that the full coding region of Lf gene of B. indicus Vechur breed is sequenced, successfully expressed in a prokaryotic system and characterized. Comparative analysis of Lf gene sequence of five Vechur cows with B. taurus revealed 15 SNPs in the exon region associated with 11 amino acid substitutions. The amino acid arginine was noticed as a pronounced substitution and the tertiary structure analysis of the BLfV protein confirmed the positions of arginine in the β sheet region, random coil and helix region 1. Based on the recent reports on the nutritional therapies of arginine supplementation for wound healing and for cardiovascular diseases, the higher level of arginine in the lactoferrin protein of Vechur cow milk provides enormous scope for further therapeutic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Gene sequencing, cloning, and expression of the recombinant L- Asparaginase of Pseudomonas aeruginosa SN4 strain in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-dalfard

    2016-03-01

    Full Text Available Introduction: L- asparaginase is in an excessive demand in medical applications and in food treating industries, the request for this therapeutic enzyme is growing several folds every year. Materials and methods: In this study, a L- asparaginase gene from Pseudomonas aeruginosa strain SN4 was sequenced and cloned in E. coli. Primers were designed based on L- asparaginase from P. aeruginosa DSM 50071, which show high similarity to SN4 strain, according to 16S rRNA sequence. The L- asparaginase gene was exposed to restriction digestion with NdeI and XhoI enzymes and then ligated into pET21a plasmid. The ligated sample was transformed into competent E. coli (DE3 pLysS DH5a cells, according to CaCl2 method. The transformed E. coli cells were grown into LB agar plate containing 100 µg/ml ampicillin, IPTG (1 mM. Results: Recombinant L- asparaginase from E. coli BL21 induced after 9 h of incubation and showed high L- asparaginase activity about 93.4 IU/ml. Recombinant L- asparaginase sequencing and alignments showed that the presumed amino acid sequence composed of 350 amino acid residues showed high similarity with P. aeruginosa L- asparaginases about 99%. The results also indicated that SN4 L- asparaginase has the catalytic residues and conserve region similar to other L- asparaginases. Discussion and conclusion: This is the first report on cloning and expression of P. aeruginosa L- asparaginases in Escherichia coli. These results indicated a potent source of L- asparaginase for in vitro and in vivio anticancer consideration. 

  2. Ins1 Cre knock-in mice for beta cell-specific gene recombination

    OpenAIRE

    Thorens Bernard; Tarussio David; Maestro Miguel Angel; Maestro Miguel Angel; Rovira Meritxell; Rovira Meritxell; Heikkilä Eija; Ferrer Jorge; Ferrer Jorge; Ferrer Jorge

    2013-01-01

    Aims/hypothesis Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cel...

  3. Combination of targeting gene-viro therapy with recombinant Fowl-pox viruses with HN and VP3 genes on mouse osteosarcoma.

    Science.gov (United States)

    Zhang, Z-Y; Wang, L-Q; Fu, C-F; Li, X; Cui, Z-L; Zhang, J-Y; Xue, S-H; Sun, N; Xu, F

    2013-03-01

    Osteosarcoma is an aggressive cancerous neoplasm arising from primitive transformed cells of mesenchymal origin that exhibit osteoblastic differentiation and produce malignant osteoid. With the rapid development of tumor molecular biology, gene and viral therapy, a highly promising strategy for the treatment, has shown some therapeutic effects. To study the strategy of cooperative cancer gene therapy, previously, we explored the antitumor effects of recombinant Fowl-pox viruses (FPVs) with both HN (hemagglutinin-neuramidinase) and VP3 genes on mouse osteosarcoma. We constructed vFV-HN, vFV-VP3 and vFV-HN-VP3 inserting CAV VP3 gene, NDV HN gene into fowlpox virus. S180 osteosarcoma were transfected with Recombinant Fowl-pox viruses (FPVs). These cell lines stably expressing tagged proteins were selected by culturing in medium containing puromycin (2 µg/ml) and confirmed by immunoblotting and immunostaining. S180 osteosarcoma model with BALB/c mice and nude mice were established and the vFPV viruses as control, vFV-HN, vFV-VP3, vFV-HN-VP3 were injected into the tumor directly. The rate of tumor growth, tumor suppression and the sialic acid levels in serum were examined and the tumor tissues were analyzed by the method of immunohistochemistry. Flow cytometric analysis was performed using a FACSCalibur flow cytometer. A total of 100,000 events were analyzed for each sample and the experiment was repeated at least twice. Our data indicated that vFV-HN, vFV-VP3 and vFV-HN-VP3 all had growth inhibition effects, the inhibition rate of vFV-HN-VP3 group was 51.7%, which was higher than that of vFV-HN, vFV-VP3 group and control group (p genes into mouse osteosarcoma cancer cells can cause cell a specificity anti-tumor immune activity, suppress tumor growth, and increase the survival rate of the tumor within host.

  4. Construction and growth properties of bovine herpesvirus type 5 recombinants defective in the glycoprotein E or thymidine kinase gene or both

    Directory of Open Access Journals (Sweden)

    M.C.S. Brum

    2010-02-01

    Full Text Available Bovine herpesvirus type 5 (BoHV-5 is an important pathogen of cattle in South America. We describe here the construction and characterization of deletion mutants defective in the glycoprotein E (gE or thymidine kinase (TK gene or both (gE/TK from a highly neurovirulent and well-characterized Brazilian BoHV-5 strain (SV507/99. A gE-deleted recombinant virus (BoHV-5 gE∆ was first generated in which the entire gE open reading frame was replaced with a chimeric green fluorescent protein gene. A TK-deleted recombinant virus (BoHV-5 TK∆ was then generated in which most of the TK open reading frame sequences were deleted and replaced with a chimeric β-galactosidase gene. Subsequently, using the BoHV-5 gE∆ virus as backbone, a double gene-deleted (TK plus gE BoHV-5 recombinant (BoHV-5 gE/TK∆ was generated. The deletion of the gE and TK genes was confirmed by immunoblotting and PCR, respectively. In Madin Darby bovine kidney (MDBK cells, the mutants lacking gE (BoHV-5 gE∆ and TK + gE (BoHV-5 gE/TK∆ produced small plaques while the TK-deleted BoHV-5 produced wild-type-sized plaques. The growth kinetics and virus yields in MDBK cells for all three recombinants (BoHV-5 gE∆, BoHV-5 TK∆ and BoHV-5 gE/TK∆ were similar to those of the parental virus. It is our belief that the dual gene-deleted recombinant (BoHV-5 gE/TK∆ produced on the background of a highly neurovirulent Brazilian BoHV-5 strain may have potential application in a vaccine against BoHV-5.

  5. A novel methanotroph in the genus Methylomonas that contains a distinct clade of soluble methane monooxygenase.

    Science.gov (United States)

    Nguyen, Ngoc-Loi; Yu, Woon-Jong; Yang, Hye-Young; Kim, Jong-Geol; Jung, Man-Young; Park, Soo-Je; Roh, Seong-Woon; Rhee, Sung-Keun

    2017-10-01

    Aerobic methane oxidation is a key process in the global carbon cycle that acts as a major sink of methane. In this study, we describe a novel methanotroph designated EMGL16-1 that was isolated from a freshwater lake using the floating filter culture technique. Based on a phylogenetic analysis of 16S rRNA gene sequences, the isolate was found to be closely related to the genus Methylomonas in the family Methylococcaceae of the class Gammaproteobacteria with 94.2-97.4% 16S rRNA gene similarity to Methylomonas type strains. Comparison of chemotaxonomic and physiological properties further suggested that strain EMGL16-1 was taxonomically distinct from other species in the genus Methylomonas. The isolate was versatile in utilizing nitrogen sources such as molecular nitrogen, nitrate, nitrite, urea, and ammonium. The genes coding for subunit of the particulate form methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), and methanol dehydrogenase (mxaF) were detected in strain EMGL16-1. Phylogenetic analysis of mmoX indicated that mmoX of strain EMGL16-1 is distinct from those of other strains in the genus Methylomonas. This isolate probably represents a novel species in the genus. Our study provides new insights into the diversity of species in the genus Methylomonas and their environmental adaptations.

  6. Serodiagnosis of Leishmania donovani infections: assessment of enzyme-linked immunosorbent assays using recombinant L. donovani gene B protein (GBP) and a peptide sequence of L. donovani GBP

    DEFF Research Database (Denmark)

    Jensen, A T; Gasim, S; Moller, T

    1999-01-01

    The repetitive sequence of Leishmania major gene B protein (GBP) has previously been shown to be a useful tool in the diagnosis of cutaneous leishmaniasis (CL). Here, we have assessed enzyme-linked immunosorbent assays (ELISAs) using recombinant L. donovani GBP (rGBP) and a peptide sequence of L...... for malaria but free of leishmaniasis was negative in both assays....

  7. Improved antifungal activity of barley derived chitinase I gene that overexpress a 32 kDa recombinant chitinase in Escherichia coli host

    Directory of Open Access Journals (Sweden)

    Nida Toufiq

    Full Text Available Abstract Agricultural crops suffer many diseases, including fungal and bacterial infections, causing significant yield losses. The identification and characterisation of pathogenesis-related protein genes, such as chitinases, can lead to reduction in pathogen growth, thereby increasing tolerance against fungal pathogens. In the present study, the chitinase I gene was isolated from the genomic DNA of Barley (Hordeum vulgare L. cultivar, Haider-93. The isolated DNA was used as template for the amplification of the ∼935 bp full-length chitinase I gene. Based on the sequence of the amplified gene fragment, class I barley chitinase shares 93% amino acid sequence homology with class II wheat chitinase. Interestingly, barley class I chitinase and class II chitinase do not share sequence homology. Furthermore, the amplified fragment was expressed in Escherichia coli Rosetta strain under the control of T7 promoter in pET 30a vector. Recombinant chitinase protein of 35 kDa exhibited highest expression at 0.5 mM concentration of IPTG. Expressed recombinant protein of 35 kDa was purified to homogeneity with affinity chromatography. Following purification, a Western blot assay for recombinant chitinase protein measuring 35 kDa was developed with His-tag specific antibodies. The purified recombinant chitinase protein was demonstrated to inhibit significantly the important phytopathogenic fungi Alternaria solani, Fusarium spp, Rhizoctonia solani and Verticillium dahliae compared to the control at concentrations of 80 µg and 200 µg.

  8. Split dose recovery studies using homologous recombination deficient gene knockout chicken B lymphocyte cells

    International Nuclear Information System (INIS)

    Rao, B.S.S.; Tano, Kaori; Utsumi, Hiroshi; Takeda, Shunichi

    2007-01-01

    To understand the role of proteins involved in double strand breaks (DSB) repair modulating sublethal damage (SLD) recovery, chicken B lymphoma (DT 40) cell lines either proficient or deficient in RAD52, XRCC2, XRCC3, RAD51C and RAD51D were subjected to fractionated irradiation and their survival curves charted. Survival curves of both WT DT40 and RAD52 -/- cells had a big shoulder while all the other cells exhibited small shoulders. However, at the higher doses of radiation, RAD51C -/- cells displayed hypersensitivity comparable to the data obtained for the homologous recombination deficient RAD54 -/- cells. Repair of SLD was measured as an increase in survival after a split dose irradiation with an interval of incubation between the radiation doses. All the cell lines (parental DT40 and genetic knockout cell lines viz., RAD52 -/- , XRCC2 -/- XRCC3 -/- RAD51C -/- and RAD51D -/- ) used in this study demonstrated a typical split-dose recovery capacity with a specific peak, which varied depending on the cell type. The maximum survival of WT DT40 and RAD52 -/- was reached at about 1-2 hours after the first dose of radiation and then decreased to a minimum thereafter (5 h). The increase in the survival peaked once again by about 8 hours. The survival trends observed in XRCC2 -/- , XRCC3 -/- , RAD51C -/- and RAD51D -/- knockout cells were also similar, except for the difference in the initial delay of a peak survival for RAD51D -/- and lower survival ratios. The second phase of increase in the survival in these cell lines was much slower in XRCC2 -/- , XRCC3 -/- , RAD51C -/- nd RAD51D -/- and further delayed when compared with that of RAD52 -/- and parental DT40 cells suggesting a dependence on their cell cycle kinetics. This study demonstrates that the participation of RAD52, XRCC2, XRCC3, RAD51C and RAD51D in the DSB repair via homologous recombination is of less importance in comparison to RAD54, as RAD54 deficient cells demonstrated complete absence of SLD recovery

  9. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Science.gov (United States)

    Mestre, Olga; Luo, Tao; Dos Vultos, Tiago; Kremer, Kristin; Murray, Alan; Namouchi, Amine; Jackson, Céline; Rauzier, Jean; Bifani, Pablo; Warren, Rob; Rasolofo, Voahangy; Mei, Jian; Gao, Qian; Gicquel, Brigitte

    2011-01-20

    The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R) genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes. A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs). A recent Beijing genotype (Bmyc10), which included 60% of strains from distinct parts of the world, appeared to be predominant. We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  10. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Directory of Open Access Journals (Sweden)

    Olga Mestre

    2011-01-01

    Full Text Available The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes.A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs. A recent Beijing genotype (Bmyc10, which included 60% of strains from distinct parts of the world, appeared to be predominant.We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  11. BLM helicase suppresses recombination at G-quadruplex motifs in transcribed genes

    NARCIS (Netherlands)

    van Wietmarschen, Niek; Merzouk, Sarra; Halsema, Nancy; Spierings, Diana C J; Guryev, Victor; Lansdorp, Peter M

    2018-01-01

    Bloom syndrome is a cancer predisposition disorder caused by mutations in the BLM helicase gene. Cells from persons with Bloom syndrome exhibit striking genomic instability characterized by excessive sister chromatid exchange events (SCEs). We applied single-cell DNA template strand sequencing

  12. Recombinant AAV8-mediated intrastriatal gene delivery of CDNF protects rats against methamphetamine neurotoxicity

    Science.gov (United States)

    Wang, Lizheng; Wang, Zixuan; Xu, Xiaoyu; Zhu, Rui; Bi, Jinpeng; Liu, Wenmo; Feng, Xinyao; Wu, Hui; Zhang, Haihong; Wu, Jiaxin; Kong, Wei; Yu, Bin; Yu, Xianghui

    2017-01-01

    Methamphetamine (METH) exerts significant neurotoxicity in experimental animals and humans when taken at high doses or abused chronically. Long-term abusers have decreased dopamine levels, and they are more likely to develop Parkinson's disease (PD). To date, few medications are available to treat the METH-induced damage of neurons. Glial cell line-derived neurotrophic factor (GDNF) has been previously shown to reduce the dopamine-depleting effects of neurotoxic doses of METH. However, the effect of cerebral dopamine neurotrophic factor (CDNF), which has been reported to be more specific and efficient than GDNF in protecting dopaminergic neurons against 6-OHDA toxicity, in attenuating METH neurotoxicity has not been determined. Thus, the present study aimed to evaluate the neuroprotective effect of CDNF against METH-induced damage to the dopaminergic system in vitro and in vivo. In vitro, CDNF protein increased the survival rate and reduced the tyrosine hydroxylase (TH) loss of METH-treated PC12 cells. In vivo, METH was administered to rats following human CDNF overexpression mediated by the recombinant adeno-associated virus. Results demonstrated that CDNF overexpression in the brain could attenuate the METH-induced dopamine and TH loss in the striatum but could not lower METH-induced hyperthermia. PMID:28553166

  13. Homologous Recombination DNA Repair Genes Play a Critical Role in Reprogramming to a Pluripotent State

    Directory of Open Access Journals (Sweden)

    Federico González

    2013-03-01

    Full Text Available Induced pluripotent stem cells (iPSCs hold great promise for personalized regenerative medicine. However, recent studies show that iPSC lines carry genetic abnormalities, suggesting that reprogramming may be mutagenic. Here, we show that the ectopic expression of reprogramming factors increases the level of phosphorylated histone H2AX, one of the earliest cellular responses to DNA double-strand breaks (DSBs. Additional mechanistic studies uncover a direct role of the homologous recombination (HR pathway, a pathway essential for error-free repair of DNA DSBs, in reprogramming. This role is independent of the use of integrative or nonintegrative methods in introducing reprogramming factors, despite the latter being considered a safer approach that circumvents genetic modifications. Finally, deletion of the tumor suppressor p53 rescues the reprogramming phenotype in HR-deficient cells primarily through the restoration of reprogramming-dependent defects in cell proliferation and apoptosis. These mechanistic insights have important implications for the design of safer approaches to creating iPSCs.

  14. Cloning of a Recombinant Plasmid Encoding Thiol-Specific Antioxidant Antigen (TSA) Gene of Leishmania majorand Expression in the Chinese Hamster Ovary Cell Line.

    Science.gov (United States)

    Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi

    2012-01-01

    TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.

  15. Enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell with different p53 status

    International Nuclear Information System (INIS)

    Pang Dequan; Wang Peiguo; Wang Ping; Zhang Weiming

    2008-01-01

    Objective: To investigate the enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell lines(A549 and GLC-82) with different p53 status in vitro. Methods: Two human lung adenocarcinoma cell lines of A549 and GLC-82 were examined on their difference in p53 status with immunohistochemistry stain and PCR-SSCP technique. Expand Ad-wtp53 was transfected into tumor cells. Clonogenic assays were performed to evaluate the inhibition effect on cell growth and the degree of sensitization to irradiation. Apoptosis and cell cycle changes were determined using the flow cytometry assay. Results: The A549 cell line presented positive P53 expression while GLC-82 negative. GLC-82 bore mutant p53 on the exon 7. The wtp53 gene could be efficiently expressed in the two cell lines and greatly inhibit the cell growth. Its efficiency didn't depend on the intrinsic p53 genetic status. After irradiation, its function of inducing G 1 arrest and apoptosis on GLC-82 cell line was much stronger than the A549 cell line. In both the A549 and GLC-82 cell lines, the combination of Ad-p53 plus radiation resulted in more apoptosis than the others. There was no significant difference between two groups. Conclusions: Ad-p53 can depress the tumor growth and enhance the radiosensitivity of human lung adenocarcinoma cells. And this effect is independent of endogenous p53 status. (authors)

  16. Loss of the homologous recombination gene rad51 leads to Fanconi anemia-like symptoms in zebrafish.

    Science.gov (United States)

    Botthof, Jan Gregor; Bielczyk-Maczyńska, Ewa; Ferreira, Lauren; Cvejic, Ana

    2017-05-30

    RAD51 is an indispensable homologous recombination protein, necessary for strand invasion and crossing over. It has recently been designated as a Fanconi anemia (FA) gene, following the discovery of two patients carrying dominant-negative mutations. FA is a hereditary DNA-repair disorder characterized by various congenital abnormalities, progressive bone marrow failure, and cancer predisposition. In this report, we describe a viable vertebrate model of RAD51 loss. Zebrafish rad51 loss-of-function mutants developed key features of FA, including hypocellular kidney marrow, sensitivity to cross-linking agents, and decreased size. We show that some of these symptoms stem from both decreased proliferation and increased apoptosis of embryonic hematopoietic stem and progenitor cells. Comutation of p53 was able to rescue the hematopoietic defects seen in the single mutants, but led to tumor development. We further demonstrate that prolonged inflammatory stress can exacerbate the hematological impairment, leading to an additional decrease in kidney marrow cell numbers. These findings strengthen the assignment of RAD51 as a Fanconi gene and provide more evidence for the notion that aberrant p53 signaling during embryogenesis leads to the hematological defects seen later in life in FA. Further research on this zebrafish FA model will lead to a deeper understanding of the molecular basis of bone marrow failure in FA and the cellular role of RAD51.

  17. Functional Cloning and Expression of the Schizophyllum commune Glucuronoyl Esterase Gene and Characterization of the Recombinant Enzyme

    Science.gov (United States)

    Wong, Dominic W. S.; Chan, Victor J.; McCormack, Amanda A.; Hirsch, Ján; Biely, Peter

    2012-01-01

    The gene encoding Schizophyllum commune glucuronoyl esterase was identified in the scaffold 17 of the genome, containing two introns of 50 bp and 48 bp, with a transcript sequence of 1179 bp. The gene was synthesized and cloned into Pichia pastoris expression vector pGAPZα to achieve constitutive expression and secretion of the recombinant enzyme in soluble active form. The purified protein was 53 kD with glycosylation and had an acidic pI of 3.7. Activity analysis on several uronic acids and their derivatives suggests that the enzyme recognized only esters of 4-O-methyl-D-glucuronic acid derivatives, even with a 4-nitrophenyl aglycon but did not hydrolyze the ester of D-galacturonic acid. The kinetic values were K m 0.25 mM, V max 16.3 μM·min−1, and k cat 9.27 s−1 with 4-nitrophenyl 2-O-(methyl 4-O-methyl-α-D-glucopyranosyluronate)-β-D-xylopyranoside as the substrate. PMID:22844600

  18. Whole-gene analysis of two groups of hepatitis B virus C/D inter-genotype recombinant strains isolated in Tibet, China.

    Directory of Open Access Journals (Sweden)

    Tiezhu Liu

    Full Text Available Tibet is a highly hepatitis B virus (HBV endemic area. Two types of C/D recombinant HBV are commonly isolated in Tibet and have been previously described. In an effort to better understand the molecular characteristic of these C/D recombinant strains from Tibet, we undertook a multistage random sampling project to collect HBsAg positive samples. Molecular epidemiological and bio-informational technologies were used to analyze the characteristics of the sequences found in this study. There were 60 samples enrolled in the survey, and we obtained 19 whole-genome sequences. 19 samples were all C/D recombinant, and could be divided into two sub-types named C/D1 and C/D2 according to the differences in the location of the recombinant breakpoint. The recombination breakpoint of the 10 strains belonging to the C/D1 sub-type was located at nt750, while the 9 stains belonging to C/D2 had their recombination break point at nt1530. According to whole-genome sequence analysis, the 19 identified strains belong to genotype C, but the nucleotide distance was more than 5% between the 19 strains and sub-genotypes C1 to C15. The distance between C/D1with C2 was 5.8±2.1%, while the distance between C/D2 with C2 was 6.4±2.1%. The parental strain was most likely sub-genotype C2. C/D1 strains were all collected in the middle and northern areas of Tibet including Lhasa, Linzhi and Ali, while C/D2 was predominant in Shannan in southern Tibet. This indicates that the two recombinant genotypes are regionally distributed in Tibet. These results provide important information for the study of special HBV recombination events, gene features, virus evolution, and the control and prevention policy of HBV in Tibet.

  19. Novel recombinant human lactoferrin: differential activation of oxidative stress related gene expression.

    Science.gov (United States)

    Kruzel, Marian L; Actor, Jeffrey K; Zimecki, Michał; Wise, Jasen; Płoszaj, Paulina; Mirza, Shaper; Kruzel, Mark; Hwang, Shen-An; Ba, Xueqing; Boldogh, Istvan

    2013-12-01

    Lactoferrin, an iron-binding protein found in high concentrations in mammalian exocrine secretions, is an important component of the host defense system. It is also a major protein of the secondary granules of neutrophils from which is released upon activation. Due to its potential clinical utility, recombinant human lactoferrin (rhLF) has been produced in various eukaryotic expression systems; however, none of these are fully compatible with humans. Most of the biopharmaceuticals approved by the FDA for use in humans are produced in mammalian expression systems. The Chinese hamster ovary cells (CHO) have become the system of choice for proteins that require post-translational modifications, such as glycoproteins. The aim of this study was to scale-up expression and purification of rhLF in a CHO expression system, verify its glycan primary structure, and assess its biological properties in cell culture models. A stable CHO cell line producing >200mg/L of rhLF was developed and established. rhLF was purified by a single-step cation-exchange chromatography procedure. The highly homogenous rhLF has a molecular weight of approximately 80 kDa. MALDI-TOF mass spectrometric analysis revealed N-linked, partially sialylated glycans at two glycosylation sites, typical for human milk LF. This novel rhLF showed a protective effect against oxidative stress in a similar manner to its natural counterpart. In addition, rhLF revealed a modulatory effect on cellular redox via upregulation of key antioxidant enzymes. These data imply that the CHO-derived rhLF is fully compatible with the native molecule, thus it has promise for human therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Local Chromatin Features Including PU.1 and IKAROS Binding and H3K4 Methylation Shape the Repertoire of Immunoglobulin Kappa Genes Chosen for V(D)J Recombination.

    Science.gov (United States)

    Matheson, Louise S; Bolland, Daniel J; Chovanec, Peter; Krueger, Felix; Andrews, Simon; Koohy, Hashem; Corcoran, Anne E

    2017-01-01

    V(D)J recombination is essential for the generation of diverse antigen receptor (AgR) repertoires. In B cells, immunoglobulin kappa ( Igκ ) light chain recombination follows immunoglobulin heavy chain ( Igh ) recombination. We recently developed the DNA-based VDJ-seq assay for the unbiased quantitation of Igh VH and DH repertoires. Integration of VDJ-seq data with genome-wide datasets revealed that two chromatin states at the recombination signal sequence (RSS) of VH genes are highly predictive of recombination in mouse pro-B cells. It is unknown whether local chromatin states contribute to Vκ gene choice during Igκ recombination. Here we adapt VDJ-seq to profile the Igκ VκJκ repertoire and present a comprehensive readout in mouse pre-B cells, revealing highly variable Vκ gene usage. Integration with genome-wide datasets for histone modifications, DNase hypersensitivity, transcription factor binding and germline transcription identified PU.1 binding at the RSS, which was unimportant for Igh , as highly predictive of whether a Vκ gene will recombine or not, suggesting that it plays a binary, all-or-nothing role, priming genes for recombination. Thereafter, the frequency with which these genes recombine was shaped both by the presence and level of enrichment of several other chromatin features, including H3K4 methylation and IKAROS binding. Moreover, in contrast to the Igh locus, the chromatin landscape of the promoter, as well as of the RSS, contributes to Vκ gene recombination. Thus, multiple facets of local chromatin features explain much of the variation in Vκ gene usage. Together, these findings reveal shared and divergent roles for epigenetic features and transcription factors in AgR V(D)J recombination and provide avenues for further investigation of chromatin signatures that may underpin V(D)J-mediated chromosomal translocations.

  1. Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo

    Science.gov (United States)

    White, JD; Thesier, DM; Swain, JBD; Katz, MG; Tomasulo, C; Henderson, A; Wang, L; Yarnall, C; Fargnoli, A; Sumaroka, M; Isidro, A; Petrov, M; Holt, D; Nolen-Walston, R; Koch, WJ; Stedman, HH; Rabinowitz, J; Bridges, CR

    2013-01-01

    We use a novel technique that allows for closed recirculation of vector genomes in the cardiac circulation using cardiopulmonary bypass, referred to here as molecular cardiac surgery with recirculating delivery (MCARD). We demonstrate that this platform technology is highly efficient in isolating the heart from the systemic circulation in vivo. Using MCARD, we compare the relative efficacy of single-stranded (ss) adeno-associated virus (AAV)6, ssAAV9 and self-complimentary (sc)AAV6-encoding enhanced green fluorescent protein, driven by the constitutive cytomegalovirus promoter to transduce the ovine myocardium in situ. MCARD allows for the unprecedented delivery of up to 48 green fluorescent protein genome copies per cell globally in the sheep left ventricular (LV) myocardium. We demonstrate that scAAV6-mediated MCARD delivery results in global, cardiac-specific LV gene expression in the ovine heart and provides for considerably more robust and cardiac-specific gene delivery than other available delivery techniques such as intramuscular injection or intracoronary injection; thus, representing a potential, clinically translatable platform for heart failure gene therapy. PMID:21228882

  2. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes.

    Science.gov (United States)

    Bissa, Massimiliano; Forlani, Greta; Zanotto, Carlo; Tosi, Giovanna; De Giuli Morghen, Carlo; Accolla, Roberto S; Radaelli, Antonia

    2018-01-01

    A complete eradication of an HIV infection has never been achieved by vaccination and the search for new immunogens that can induce long-lasting protective responses is ongoing. Avipoxvirus recombinants are host-restricted for replication to avian species and they do not have the undesired side effects induced by vaccinia recombinants. In particular, Fowlpox (FP) recombinants can express transgenes over long periods and can induce protective immunity in mammals, mainly due to CD4-dependent CD8+ T cells. In this context, the class II transactivator (CIITA) has a pivotal role in triggering the adaptive immune response through induction of the expression of class-II major histocompatibility complex molecule (MHC-II), that can present antigens to CD4+ T helper cells. Here, we report on construction of novel FPgp and FPenv recombinants that express the highly immunogenic SIV Gag-pro and Env structural antigens. Several FP-based recombinants, with single or dual genes, were also developed that express CIITA, driven from H6 or SP promoters. These recombinants were used to infect CEF and Vero cells in vitro and determine transgene expression, which was evaluated by real-time PCR and Western blotting. Subcellular localisation of the different proteins was evaluated by confocal microscopy, whereas HLA-DR or MHC-II expression was measured by flow cytometry. Fowlpox recombinants were also used to infect syngeneic T/SA tumour cells, then injected into Balb/c mice to elicit MHC-II immune response and define the presentation of the SIV transgene products in the presence or absence of FPCIITA. Antibodies to Env were measured by ELISA. Our data show that the H6 promoter was more efficient than SP to drive CIITA expression and that CIITA can enhance the levels of the gag/pro and env gene products only when infection is performed by FP single recombinants. Also, CIITA expression is higher when carried by FP single recombinants than when combined with FPgp or FPenv constructs and can

  3. Genetic polymorphisms in homologous recombination repair genes in healthy Slovenian population and their influence on DNA damage

    International Nuclear Information System (INIS)

    Goricar, Katja; Erculj, Nina; Zadel, Maja; Dolzan, Vita

    2012-01-01

    Homologous recombination (HR) repair is an important mechanism involved in repairing double-strand breaks in DNA and for maintaining genomic stability. Polymorphisms in genes coding for enzymes involved in this pathway may influence the capacity for DNA repair. The aim of this study was to select tag single nucleotide polymorphisms (SNPs) in specific genes involved in HR repair, to determine their allele frequencies in a healthy Slovenian population and their influence on DNA damage detected with comet assay. In total 373 individuals were genotyped for nine tag SNPs in three genes: XRCC3 722C>T, XRCC3 -316A>G, RAD51 -98G>C, RAD51 -61G>T, RAD51 1522T>G, NBS1 553G>C, NBS1 1197A>G, NBS1 37117C>T and NBS1 3474A>C using competitive allele-specific amplification (KASPar assay). Comet assay was performed in a subgroup of 26 individuals to determine the influence of selected SNPs on DNA damage. We observed that age significantly affected genotype frequencies distribution of XRCC3 -316A>G (P = 0.039) in healthy male blood donors. XRCC3 722C>T (P = 0.005), RAD51 -61G>T (P = 0.023) and NBS1 553G>C (P = 0.008) had a statistically significant influence on DNA damage. XRCC3 722C>T, RAD51 -61G>T and NBS1 553G>C polymorphisms significantly affect the repair of damaged DNA and may be of clinical importance as they are common in Slovenian population

  4. Transcriptional control of the isoeugenol monooxygenase of Pseudomonas nitroreducens Jin1 in Escherichia coli.

    Science.gov (United States)

    Ryu, Ji-Young; Seo, Jiyoung; Ahn, Joong-Hoon; Sadowsky, Michael J; Hur, Hor-Gil

    2012-01-01

    Vanillin is one of the most valuable compounds in the flavoring and fragrance industries, and many attempts to produce natural vanillin have been made in recent years. Isoeugenol monooxygenase (Iem) converts the phenylpropanoid compound isoeugenol to vanillin. In Pseudomonas nitroreducens Jin1, the positive regulatory protein IemR is divergently expressed from Iem, and the promoter region is located between the genes. In this study, we investigated the transcriptional regulation of iem in Escherichia coli. We focused on inducers and regulatory protein IemR. Transcription of iem was found to be dependent on the amounts of isoeugenol and IemR. Isoeugenol was found to be the best inducer of iem, followed by trans-anethole, which induced iem to 58% of the transcription level observed for isoeugenol. Overproduction of IemR in E. coli significantly increased the transcription of iem, up to 96-fold, even in the absence of isoeugenol, as compared to basally expressed IemR. Results of this study indicate that the transcription of iem iss dependent on the type of inducers and on IemR. They should contribute to the development of bioengineering strategies for increased production of vanillin through high-level expression of the isoeugenol monooxygenase gene in microorganisms.

  5. [Cloning of VH and VL Gene of Human anti-IL1RAP McAb and Construction of Recombinant Chimeric Receptor].

    Science.gov (United States)

    Yin, Ling-Ling; Ruan, Su-Hong; Tian, Yu; Zhao, Kai; Xu, Kai Lin

    2015-10-01

    To clone the variable region genes of human anti-IL1RAP (IL-1 receptor accessory protein) monoclonal antibodies (McAb) and to construct IL1RAP chimeric antigen receptors (CARs). The VH and VL DNA of IL1RAP single chain antibodies were amplified by RACE and overlap extension PCR from total RNA extracted from 3H6E10 and 10D8A7 hybridoma and ligated into specific IL1RAP single-chain variable fragments (scFv). CD8α transmembrane domain, CD137 intracellular domain, TCR ζ chain, human CD8α signal peptide and scFv-anti-IL1RAP were cloned into plasmid LV-lac. Recombinant lentiviruses were generated by co-transfection of recombinant plasmid LV-lac, pMD2. G, and psPAX2 helper vectors into 293FT packing cells. The VH and VL genes of 2 human anti-IL1RAP McAb were acquired. The 3H6E10 VH and VL genes consisted of 402 bp and 393 bp encoding 134 and 131 aminoacid residues, respectively; 10D8A7 VH and VL genes consisted of 423 bp and 381 bp encoding 141 and 127 amine acid residues, respectively. Recombinant expression vertors LV-3H6E10 scFv-ICD and LV-10D8A7 scFv-ICD (ICD: CD8α transmembrane domain-CD137 intracellular domain-TCR ζ chain) were constructed. The target fragments were demonstrated by sequencing analysis. Recombinant plasmids were transfected into 293FT cells and lentiviral particles were acquired. Human anti-IL1RAP recombinant receptors are constructed successfully and lay a good foundation for the construction of IL1RAP-CAR killer T cell vaccine.

  6. Expressions of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase genes are stimulated by recombinant platelet-derived growth factor isomers

    International Nuclear Information System (INIS)

    Roth, M.; Emmons, L.R.; Perruchoud, A.; Block, L.H.

    1991-01-01

    The plausible role that platelet-derived growth factor (PDGF) has in the localized pathophysiological changes that occur in the arterial wall during development of atherosclerotic lesions led the authors to investigate the influence of recombinant (r)PDGF isomers -AA, -AB, and -BB on the expression of low density lipoprotein receptor (LDL-R) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG0CoA) reductase [(S)-mevalonate:NAD + oxidoreductase (CoA-acylating), EC 1.1.1.88] genes. In addition, they clarified the role of protein kinase C (PKC) in expression of the two genes in human skin fibroblasts and vascular smooth muscle cells. The various rPDGF isoforms are distinct in their ability to activate transcription of both genes: (i) both rPDGF-AA and -BB stimulate transcription of the LDL-R gene; in contrast, rPDGF-BB but not -AA, activates transcription of the HMG-CoA reductase gene; (ii) all recombinant isoforms of PDGF activate transcription of the c-fos gene; (iii) while rPDGF-dependent transcription of the lDL-R gene occurs independently of PKC, transcription of the HMG-CoA reductase gene appears to involve the action of that enzyme

  7. Biocatalytic synthesis of flavones and hydroxyl-small molecules by recombinant Escherichia coli cells expressing the cyanobacterial CYP110E1 gene

    Directory of Open Access Journals (Sweden)

    Makino Takuya

    2012-07-01

    Full Text Available Abstract Background Cyanobacteria possess several cytochrome P450s, but very little is known about their catalytic functions. CYP110 genes unique to cyanaobacteria are widely distributed in heterocyst-forming cyanobacteria including nitrogen-fixing genera Nostoc and Anabaena. We screened the biocatalytic functions of all P450s from three cyanobacterial strains of genus Nostoc or Anabaena using a series of small molecules that contain flavonoids, sesquiterpenes, low-molecular-weight drugs, and other aromatic compounds. Results Escherichia coli cells carrying each P450 gene that was inserted into the pRED vector, containing the RhFRed reductase domain sequence from Rhodococcus sp. NCIMB 9784 P450RhF (CYP116B2, were co-cultured with substrates and products were identified when bioconversion reactions proceeded. Consequently, CYP110E1 of Nostoc sp. strain PCC 7120, located in close proximity to the first branch point in the phylogenetic tree of the CYP110 family, was found to be promiscuous for the substrate range mediating the biotransformation of various small molecules. Naringenin and (hydroxyl flavanones were respectively converted to apigenin and (hydroxyl flavones, by functioning as a flavone synthase. Such an activity is reported for the first time in prokaryotic P450s. Additionally, CYP110E1 biotransformed the notable sesquiterpene zerumbone, anti-inflammatory drugs ibuprofen and flurbiprofen (methylester forms, and some aryl compounds such as 1-methoxy and 1-ethoxy naphthalene to produce hydroxylated compounds that are difficult to synthesize chemically, including novel compounds. Conclusion We elucidated that the CYP110E1 gene, C-terminally fused to the P450RhF RhFRed reductase domain sequence, is functionally expressed in E. coli to synthesize a robust monooxygenase, which shows promiscuous substrate specificity (affinity for various small molecules, allowing the biosynthesis of not only flavones (from flavanones but also a variety of

  8. Effect of genomic location on horizontal transfer of a recombinant gene cassette between Pseudomonas strains in the rhizosphere and spermosphere of barley seedlings

    DEFF Research Database (Denmark)

    Sengelov, G.; Kristensen, K. J.; Sørensen, Anders Morten Hay

    2001-01-01

    , horizontal transfer of a recombinant gene cassette inserted into the chromosome of a Pseudomonas strutzeri strain, into a mobilizable plasmid (pAGM42), and into a conjugative plasmid (pKJK5) isolated from barley rhizosphere was investigated. Horizontal transfer efficiencies of the gene cassette inserted...... efficiencies were up to 4.36 x 10(-3) transconjugants/(donors x recipients)(1/2). Transfer of chromosomal encoded genes could not be detected in the microcosms by conjugation or transformation. However, transformation did occur by using the same bacterial strains under laboratory conditions. The rhizosphere...

  9. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

    Science.gov (United States)

    Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G

    2017-09-01

    Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.

  10. PhAP protease from Pseudoalteromonas haloplanktis TAC125: Gene cloning, recombinant production in E. coli and enzyme characterization

    Science.gov (United States)

    de Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M. L.

    2010-08-01

    Cold-adapted proteases have been found to be the dominant activity throughout the cold marine environment, indicating their importance in bacterial acquisition of nitrogen-rich complex organic compounds. However, few extracellular proteases from marine organisms have been characterized so far, and the mechanisms that enable their activity in situ are still largely unknown. Aside from their ecological importance and use as model enzyme for structure/function investigations, cold-active proteolytic enzymes offer great potential for biotechnological applications. Our studies on cold adapted proteases were performed on exo-enzyme produced by the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. By applying a proteomic approach, we identified several proteolytic activities from its culture supernatant. PhAP protease was selected for further investigations. The encoding gene was cloned and the protein was recombinantly produced in E. coli cells. The homogeneous product was biochemically characterised and it turned out that the enzyme is a Zn-dependent aminopeptidase, with an activity dependence from assay temperature typical of psychrophilic enzymes.

  11. Height outcome of the recombinant human growth hormone treatment in patients with SHOX gene haploinsufficiency: a meta-analysis.

    Science.gov (United States)

    Massart, Francesco; Bizzi, Martina; Baggiani, Angelo; Miccoli, Mario

    2013-04-01

    Patients with mutations or deletions of the SHOX gene present variable growth impairment, with or without mesomelic skeletal dysplasia. If untreated, short patients with SHOX haplodeficiency (SHOXD) remain short into adulthood. Although recombinant human growth hormone (rhGH) treatment improves short-term linear growth, there are episodic data on the final height of treated SHOXD subjects. After a thorough search of the published literature for pertinent studies, we undertook a meta-analysis evaluation of the efficacy and safety of rhGH treatment in SHOXD patients. In SHOXD patients, administration of rhGH progressively improved the height deficit from baseline to 24 months, although the major catch-up growth was detected after 12 months. The rhGH-induced growth appeared constant until final height. Our meta-analysis suggested rhGH therapy improves height outcome of SHOXD patients, though future studies using carefully titrated rhGH protocols are needed. Original submitted 29 October 2012; Revision submitted 22 February 2013.

  12. Identification of a Baeyer-Villiger monooxygenase sequence motif

    NARCIS (Netherlands)

    Fraaije, MW; Kamerbeek, NM; van Berkel, WJH; Janssen, DB; Kamerbeek, Nanne M.; Berkel, Willem J.H. van

    2002-01-01

    Baeyer-Villiger monooxygenases (BVMOs) form a distinct class of flavoproteins that catalyze the insertion of an oxygen atom in a C-C bond using dioxygen and NAD(P)H. Using newly characterized BVMO sequences, we have uncovered a BVMO-identifying sequence motif: FXGXXXRXXXW(P/D). Studies with

  13. Discovery of Baeyer-Villiger monooxygenases from photosynthetic eukaryotes

    NARCIS (Netherlands)

    Beneventi, Elisa; Niero, Mattia; Motterle, Riccardo; Fraaije, Marco; Bergantino, Elisabetta

    2013-01-01

    Baeyer-Villiger monooxygenases are attractive "green" catalysts able to produce chiral esters or lactones starting from ketones. They can act as natural equivalents of peroxyacids that are the catalysts classically used in the organic synthesis reactions, consisting in the cleavage of C-C bonds with

  14. Synthesis of methyl propanoate by Baeyer-Villiger monooxygenases

    NARCIS (Netherlands)

    van Beek, Hugo L.; Winter, Remko T.; Eastham, Graham R.; Fraaije, Marco W.

    2014-01-01

    Methyl propanoate is an important precursor for polymethyl methacrylates. The use of a Baeyer-Villiger monooxygenase (BVMO) to produce this compound was investigated. Several BVMOs were identified that produce the chemically non-preferred product methyl propanoate in addition to the normal product

  15. Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the arctiids (lepidoptera.

    Directory of Open Access Journals (Sweden)

    Sven Sehlmeyer

    2010-05-01

    Full Text Available Insects experience a wide array of chemical pressures from plant allelochemicals and pesticides and have developed several effective counterstrategies to cope with such toxins. Among these, cytochrome P450 monooxygenases are crucial in plant-insect interactions. Flavin-dependent monooxygenases (FMOs seem not to play a central role in xenobiotic detoxification in insects, in contrast to mammals. However, the previously identified senecionine N-oxygenase of the arctiid moth Tyria jacobaeae (Lepidoptera indicates that FMOs have been recruited during the adaptation of this insect to plants that accumulate toxic pyrrolizidine alkaloids. Identification of related FMO-like sequences of various arctiids and other Lepidoptera and their combination with expressed sequence tag (EST data and sequences emerging from the Bombyx mori genome project show that FMOs in Lepidoptera form a gene family with three members (FMO1 to FMO3. Phylogenetic analyses suggest that FMO3 is only distantly related to lepidopteran FMO1 and FMO2 that originated from a more recent gene duplication event. Within the FMO1 gene cluster, an additional gene duplication early in the arctiid lineage provided the basis for the evolution of the highly specific biochemical, physiological, and behavioral adaptations of these butterflies to pyrrolizidine-alkaloid-producing plants. The genes encoding pyrrolizidine-alkaloid-N-oxygenizing enzymes (PNOs are transcribed in the fat body and the head of the larvae. An N-terminal signal peptide mediates the transport of the soluble proteins into the hemolymph where PNOs efficiently convert pro-toxic pyrrolizidine alkaloids into their non-toxic N-oxide derivatives. Heterologous expression of a PNO of the generalist arctiid Grammia geneura produced an N-oxygenizing enzyme that shows noticeably expanded substrate specificity compared with the related enzyme of the specialist Tyria jacobaeae. The data about the evolution of FMOs within lepidopteran insects

  16. Regulation of cytochrome P-450 monooxygenases in the mouse

    International Nuclear Information System (INIS)

    Kelley, M.F.

    1986-01-01

    Recently, the compound 1,4-bis[2-(3,4-dichloropyridyloxy)] benzene (TCPOBOP) has been identified as a highly potent phenobabital-like agonist in mice. This finding has led to the suggestion that a receptor-mediated process may govern the induction of cytochrome P-450 monooxygenases by phenobarbital and phenobarbital-like agonists. This dissertation examines: (1) the effects of structural alterations of the TCPOBOP molecule on enzyme induction activity, (2) the induction response to phenobarbital and TCPOBOP among inbred mouse strains, (3) the spectrum of monooxygenase activities induced by phenobarbital and TCPOBOP compared to 3-methylcholanthrene, isosafrole and pregnenolone 16α-carbonitrile (PCN) and (4) the binding of [ 3 H] TCPOBOP in hepatic cytosol. Changes in the structure of the pyridyloxy or benzene rings markedly affect enzyme induction activity and provide additional indirect evidence for a receptor-mediated response. An evaluation of monooxygenase induction by TCPOBOP for 27 inbred mouse strains and by phenobarbital for 15 inbred mouse strains failed to identify a strain which was completely nonresponsive to these compounds, although several strains exhibited decreased responsiveness for select monooxygenase reactions. TCPOBOP, PCN and phenobarbital were all found to significantly increase the rate of hydroxylation of testosterone at the 2α-, 6β- and 15β- positions but only TCPOBOP and phenobarbital dramatically increased the rate of pentoxyresorufin O-dealkylation. The results demonstrates that TCPOBOP most closely resembles phenobarbital in its mode of monooxygenase induction in mice. Sucrose density gradient analysis of [ 3 H] TCPOBOP-hepatic cytosol incubations failed to identify specific, saturable binding of [ 3 H] TCPOBOP to cytosolic marcomolecular elements

  17. Live recombinant BHV/BRSV vaccine

    NARCIS (Netherlands)

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the

  18. Pam (Peptidylglycine α-amidating monooxygenase) heterozygosity alters brain copper handling with region specificity

    Science.gov (United States)

    Gaier, Eric D; Miller, Megan B; Ralle, Martina; Aryal, Dipendra; Wetsel, William C; Mains, Richard E; Eipper, Betty A

    2013-01-01

    Copper (Cu), an essential trace element present throughout the mammalian nervous system, is crucial for normal synaptic function. Neuronal handling of Cu is poorly understood. We studied the localization and expression of Atp7a, the major intracellular Cu transporter in the brain, and its relation to peptidylglycine α-amidating monooxygenase (PAM), an essential cuproenzyme and regulator of Cu homeostasis in neuroendocrine cells. Based on biochemical fractionation and immunostaining of dissociated neurons, Atp7a was enriched in postsynaptic vesicular fractions. Cu followed a similar pattern, with ~20% of total Cu in synaptosomes. A mouse model heterozygous for the Pam gene (PAM+/−) is selectively Cu deficient in the amygdala. As in cortex and hippocampus, Atp7a and PAM expression overlap in the amygdala, with highest expression in interneurons. Messenger RNA levels of Atox-1 and Atp7a, which deliver Cu to the secretory pathway, were reduced in the amygdala but not the hippocampus in PAM+/− mice, along with GABAB receptor mRNA levels. Consistent with Cu deficiency, dopamine β-monooxygenase function was impaired as evidenced by elevated dopamine metabolites in the amygdala, but not the hippocampus, of PAM+/− mice. These alterations in Cu delivery to the secretory pathway in the PAM+/− amygdala may contribute to the physiological and behavioral deficits observed. PMID:24032518

  19. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Pawel Domagala

    Full Text Available This study sought to assess the prevalence of common germline mutations in several genes engaged in the repair of DNA double-strand break by homologous recombination in patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers. Tumors deficient in this type of DNA damage repair are known to be especially sensitive to DNA cross-linking agents (e.g., platinum drugs and to poly(ADP-ribose polymerase (PARP inhibitors.Genetic testing was performed for 36 common germline mutations in genes engaged in the repair of DNA by homologous recombination, i.e., BRCA1, BRCA2, CHEK2, NBN, ATM, PALB2, BARD1, and RAD51D, in 202 consecutive patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers.Thirty five (22.2% of 158 patients in the triple-negative group carried mutations in genes involved in DNA repair by homologous recombination, while 10 (22.7% of the 44 patients in the hereditary non-triple-negative group carried such mutations. Mutations in BRCA1 were most frequent in patients with triple-negative breast cancer (18.4%, and mutations in CHEK2 were most frequent in patients with hereditary non-triple-negative breast cancers (15.9%. In addition, in the triple-negative group, mutations in CHEK2, NBN, and ATM (3.8% combined were found, while mutations in BRCA1, NBN, and PALB2 (6.8% combined were identified in the hereditary non-triple-negative group.Identifying mutations in genes engaged in DNA damage repair by homologous recombination other than BRCA1/2 can substantially increase the proportion of patients with triple-negative breast cancer and hereditary non-triple-negative breast cancer who may be eligible for therapy using PARP inhibitors and platinum drugs.

  20. Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic.

    Science.gov (United States)

    Yoshimoto, Naoko; Onuma, Misato; Mizuno, Shinya; Sugino, Yuka; Nakabayashi, Ryo; Imai, Shinsuke; Tsuneyoshi, Tadamitsu; Sumi, Shin-ichiro; Saito, Kazuki

    2015-09-01

    S-Alk(en)yl-l-cysteine sulfoxides are cysteine-derived secondary metabolites highly accumulated in the genus Allium. Despite pharmaceutical importance, the enzymes that contribute to the biosynthesis of S-alk-(en)yl-l-cysteine sulfoxides in Allium plants remain largely unknown. Here, we report the identification of a flavin-containing monooxygenase, AsFMO1, in garlic (Allium sativum), which is responsible for the S-oxygenation reaction in the biosynthesis of S-allyl-l-cysteine sulfoxide (alliin). Recombinant AsFMO1 protein catalyzed the stereoselective S-oxygenation of S-allyl-l-cysteine to nearly exclusively yield (RC SS )-S-allylcysteine sulfoxide, which has identical stereochemistry to the major natural form of alliin in garlic. The S-oxygenation reaction catalyzed by AsFMO1 was dependent on the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and flavin adenine dinucleotide (FAD), consistent with other known flavin-containing monooxygenases. AsFMO1 preferred S-allyl-l-cysteine to γ-glutamyl-S-allyl-l-cysteine as the S-oxygenation substrate, suggesting that in garlic, the S-oxygenation of alliin biosynthetic intermediates primarily occurs after deglutamylation. The transient expression of green fluorescent protein (GFP) fusion proteins indicated that AsFMO1 is localized in the cytosol. AsFMO1 mRNA was accumulated in storage leaves of pre-emergent nearly sprouting bulbs, and in various tissues of sprouted bulbs with green foliage leaves. Taken together, our results suggest that AsFMO1 functions as an S-allyl-l-cysteine S-oxygenase, and contributes to the production of alliin both through the conversion of stored γ-glutamyl-S-allyl-l-cysteine to alliin in storage leaves during sprouting and through the de novo biosynthesis of alliin in green foliage leaves. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  1. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome.

    Science.gov (United States)

    Lemaire, Benny; Van Cauwenberghe, Jannick; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Muasya, A Muthama

    2015-11-01

    The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization

    Energy Technology Data Exchange (ETDEWEB)

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca [Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa (Italy); Caligo, Maria Adelaide [Section of Genetic Oncology, University Hospital and University of Pisa, via Roma 57, 56125 Pisa (Italy); Galli, Alvaro, E-mail: alvaro.galli@ifc.cnr.it [Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa (Italy)

    2015-04-15

    Highlights: • The human poly (ADP-ribose) polymerase 1 (PARP-1) gene affects growth and UV-induced homologous recombination in yeast. • PARP-1 chemical inhibition impacts yeast growth and UV-induced recombination. • A genome-wide screen identifies 99 yeast genes that suppress the growth defect inferred by PARP-1. • Bioinformatics analysis identifies 41 human orthologues that may have a role in PARP-1 intracellular localization. • The findings suggest that PARP-1 nuclear localization may affect the response to PARP inhibitors in cancer therapy. - Abstract: The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the

  3. Local Chromatin Features Including PU.1 and IKAROS Binding and H3K4 Methylation Shape the Repertoire of Immunoglobulin Kappa Genes Chosen for V(D)J Recombination

    OpenAIRE

    Louise S. Matheson; Daniel J. Bolland; Peter Chovanec; Felix Krueger; Simon Andrews; Hashem Koohy; Anne E. Corcoran

    2017-01-01

    V(D)J recombination is essential for the generation of diverse antigen receptor (AgR) repertoires. In B cells, immunoglobulin kappa (Igκ) light chain recombination follows immunoglobulin heavy chain (Igh) recombination. We recently developed the DNA-based VDJ-seq assay for the unbiased quantitation of Igh VH and DH repertoires. Integration of VDJ-seq data with genome-wide datasets revealed that two chromatin states at the recombination signal sequence (RSS) of VH genes are highly predictive o...

  4. Recombinant Programming

    OpenAIRE

    Pawlak , Renaud; Cuesta , Carlos; Younessi , Houman

    2004-01-01

    This research report presents a promising new approach to computation called Recombinant Programming. The novelty of our approach is that it separates the program into two layers of computation: the recombination and the interpretation layer. The recombination layer takes sequences as inputs and allows the programmer to recombine these sequences through the definition of cohesive code units called extensions. The output of such recombination is a mesh that can be used by the interpretation la...

  5. REC46 gene of Saccharomyces cerevisiae controls mitotic chromosomal stability, recombination and sporulation: cell-type and life cycle stage specific expression of the rec46-1 mutation

    International Nuclear Information System (INIS)

    Maleas, D.T.; Bjornstad, K.A.; Holbrook, L.L.; Esposito, M.S.

    1986-01-01

    Studies of chromosomal recombination during mitosis and meiosis of Saccharomyces cerevisiae have demonstrated that recombination at these two distinct stages of the yeast life cycle proceeds by mechanisms that appear similar but involve discrete mitosis-specific and meiosis-specific properties. UV radiation induced REC mutants are being employed as a genetic tool to identify the partial reactions comprising recombination and the involvement of individual REC gene products in mitotic and meiotic recombination. The sequence of molecular events that results in genetic recombination in eukaryotes is presently ill-defined. Genetic characterization of REC gene mutants and biochemical analyses of them for discrete defects in DNA metabolic proteins and enzymes (in collaboration with the laboratory of Junko Hosoda) are beginning to remedy this gap in the authors knowledge. This report summarizes the genetic properties of the rec46-1 mutation

  6. Recombinant HAP Phytase of the Thermophilic Mold Sporotrichum thermophile: Expression of the Codon-Optimized Phytase Gene in Pichia pastoris and Applications.

    Science.gov (United States)

    Ranjan, Bibhuti; Satyanarayana, T

    2016-02-01

    The codon-optimized phytase gene of the thermophilic mold Sporotrichum thermophile (St-Phy) was expressed in Pichia pastoris. The recombinant P. pastoris harboring the phytase gene (rSt-Phy) yielded a high titer of extracellular phytase (480 ± 23 U/mL) on induction with methanol. The recombinant phytase production was ~40-fold higher than that of the native fungal strain. The purified recombinant phytase (rSt-Phy) has the molecular mass of 70 kDa on SDS-PAGE, with K m and V max (calcium phytate), k cat and k cat/K m values of 0.147 mM and 183 nmol/mg s, 1.3 × 10(3)/s and 8.84 × 10(6)/M s, respectively. Mg(2+) and Ba(2+) display a slight stimulatory effect, while other cations tested exert inhibitory action on phytase. The enzyme is inhibited by chaotropic agents (guanidinium hydrochloride, potassium iodide, and urea), Woodward's reagent K and 2,3-bunatedione, but resistant to both pepsin and trypsin. The rSt-Phy is useful in the dephytinization of broiler feeds efficiently in simulated gut conditions of chick leading to the liberation of soluble inorganic phosphate with concomitant mitigation in antinutrient effects of phytates. The addition of vanadate makes it a potential candidate for generating haloperoxidase, which has several applications.

  7. Pharmacokinetics of gene recombined angiogenesis inhibitor Kringle 5 in vivo using 131I specific markers and SPECT/CT

    Directory of Open Access Journals (Sweden)

    Ge Yan

    2016-10-01

    Full Text Available The previous pharmacokinetic methods can be only limited to drug analysis in vitro, which provide less information on the distribution and metabolismof drugs, and limit the interpretation and assessment of pharmacokinetics, the determination of metabolic principles, and evaluation of treatment effect. The objective of the study was to investigate the pharmacokinetic characteristics of gene recombination angiogenesis inhibitor Kringle 5 in vivo. The SPECT/CT and specific 131I-Kringle 5 marked by Iodogen method were both applied to explore the pharmacokinetic characteristics of 131I-Kringle 5 in vivo, and to investigate the dynamic distributions of 131I-Kringle 5 in target organs. Labeling recombinant angiogenesis inhibitor Kringle 5 using 131I with longer half-life and imaging in vivo using SPECT instead of PET, could overcome the limitations of previous methods. When the doses of 131I-Kringle 5 were 10.0, 7.5 and 5.0 g/kg, respectively, the two-compartment open models can be determined within all the metabolic process in vivo. There were no significant differences in t1/2α, t1/2β, apparent volume of distribution and CL between those three levels. The ratio of AUC(0~∞ among three different groups of 10.0, 7.5 and 5.0 g/kg was 2.56:1.44:1.0, which was close to the ratio (2:1.5:1.0. It could be clear that in the range of 5.0–10.0 g/kg, Kringle 5 was characterized by the first-order pharmacokinetics. Approximately 30 min after 131I-Kringle 5 was injected, 131I-Kringle 5 could be observed to concentrate in the heart, kidneys, liver and other organs by means of planar imaging and tomography. After 1 h of being injected, more radionuclide retained in the bladder, but not in intestinal. It could be concluded that 131I-Kringle 5 is mainly excreted through the kidneys. About 2 h after the injection of 131I-Kringle 5, the radionuclide in the heart, kidneys, liver and other organs was gradually reduced, while more radionuclide was concentrated

  8. Cloning of the nptII gene of Escherichia coli and construction of a recombinant strain harboring functional recA and nptII antibiotic resistance.

    Science.gov (United States)

    Ghanem, S

    2011-01-01

    In an attempt to clone the ORF of the nptII gene of Escherichia coli K12 (ATCC 10798), two degenerate primers were designed based on the nptII sequence of its Tn5 transposon. The nptII ORF was placed under the control of the E. coli hybrid trc promoter, in the pKK388-1 vector, transformed into E. coli DH5α ΔrecA (recombinant, deficient strain). Transferred cells were tested for ampicillin, tetracycline, kanamycin, neomycin, geneticin, paromomycin, penicillin, and UV resistance. The neomycin phosphotransferase gene of E. coli was cloned successfully and conferred kanamycin, neomycin, geneticin, and paromomycin resistance to recombinant DH5α; this did not inhibit insertion of additional antibiotic resistance against ampicillin and tetracycline, meaning the trc promoter can express two different genes carried by two different plasmids harbored in the same cell. This resistance conferral process could be considered as an emulation of horizontal gene transfer occurring in nature and would be a useful tool for understanding mechanisms of evolution of multidrug-resistant strains.

  9. Successful recombinant production of Allochromatium vinosum cytochrome c' requires coexpression of cmm genes in heme-rich Escherichia coli JCB712

    International Nuclear Information System (INIS)

    Evers, Toon H.; Merkx, Maarten

    2005-01-01

    Cytochrome c' from the purple photosynthetic bacterium Allochromatium vinosum (CCP) displays a unique, reversible dimer-to-monomer transition upon binding of NO, CO, and CN - . This small, four helix bundle protein represents an attractive model for the study of other heme protein biosensors, provided a recombinant expression system is available. Here we report the development of an efficient expression system for CCP that makes use of a maltose binding protein fusion strategy to enhance periplasmic expression and allow easy purification by affinity chromatography. Coexpression of cytochrome c maturase genes and the use of a heme-rich Escherichia coli strain were found to be necessary to obtain reasonable yields of cytochrome c'. Characterization using circular dichroism, UV-vis spectroscopy, and size-exclusion chromatography confirms the native-like properties of the recombinant protein, including its ligand-induced monomerization

  10. Homoeologous Recombination of the V1r1-V1r2 Gene Cluster of Pheromone Receptors in an Allotetraploid Lineage of Teleosts

    Directory of Open Access Journals (Sweden)

    Lei Zhong

    2017-11-01

    Full Text Available In contrast to other olfactory receptor families that exhibit frequent lineage-specific expansions, the vomeronasal type 1 receptor (V1R family exhibits a canonical six-member repertoire in teleosts. V1r1 and V1r2 are present in no more than one copy in all examined teleosts, including salmons, which are ancient polyploids, implying strict evolutionary constraints. However, recent polyploids have not been examined. Here, we identified a young allotetraploid lineage of weatherfishes and investigated their V1r1-V1r2 cluster. We found a novel pattern that the parental V1r1-V1r2 clusters had recombined in the tetraploid genome and that the recombinant was nearly fixed in the tetraploid population. Subsequent analyses suggested strong selective pressure, for both a new combination of paralogs and homogeneity among gene duplicates, acting on the V1r1-V1r2 pair.

  11. Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls

    DEFF Research Database (Denmark)

    Holtze, Maria; Saetre, Peter; Engberg, Göran

    2012-01-01

    on the activity of kynurenine 3-monooxygenase (KMO), the enzyme converting kynurenine to 3-hydroxykynurenine. Methods: We analyzed the association between KMO gene polymorphisms and CSF concentrations of KYNA in patients with schizophrenia and healthy controls. Fifteen single nucleotide polymorphisms (SNPs) were...... selected covering KMO and were analyzed in UNPHASED. Results: We included 17 patients with schizophrenia and 33 controls in our study. We found an association between a KMO SNP (rs1053230), encoding an amino acid change of potential importance for substrate interaction, and CSF concentrations of KYNA....... Limitations: Given the limited sample size, the results are tentative until replication. Conclusion: Our results suggest that the nonsynonymous KMO SNP rs1053230 influences CSF concentrations of KYNA....

  12. Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls.

    Science.gov (United States)

    Holtze, Maria; Saetre, Peter; Engberg, Göran; Schwieler, Lilly; Werge, Thomas; Andreassen, Ole A; Hall, Håkan; Terenius, Lars; Agartz, Ingrid; Jönsson, Erik G; Schalling, Martin; Erhardt, Sophie

    2012-01-01

    Patients with schizophrenia show increased brain and cerebrospinal fluid (CSF) concentrations of the endogenous N-methyl-D-aspartate receptor antagonist kynurenic acid (KYNA). This compound is an end-metabolite of the kynurenine pathway, and its formation indirectly depends on the activity of kynurenine 3-monooxygenase (KMO), the enzyme converting kynurenine to 3-hydroxykynurenine. We analyzed the association between KMO gene polymorphisms and CSF concentrations of KYNA in patients with schizophrenia and healthy controls. Fifteen single nucleotide polymorphisms (SNPs) were selected covering KMO and were analyzed in UNPHASED. We included 17 patients with schizophrenia and 33 controls in our study. We found an association between a KMO SNP (rs1053230), encoding an amino acid change of potential importance for substrate interaction, and CSF concentrations of KYNA. Given the limited sample size, the results are tentative until replication. Our results suggest that the nonsynonymous KMO SNP rs1053230 influences CSF concentrations of KYNA.

  13. Independent recruitment of a flavin-dependent monooxygenase for safe accumulation of sequestered pyrrolizidine alkaloids in grasshoppers and moths.

    Directory of Open Access Journals (Sweden)

    Linzhu Wang

    Full Text Available Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide, enabling the insects to avoid high concentrations of toxic pyrrolizidine alkaloids in the hemolymph. We have identified a pyrrolizidine alkaloid N-oxygenase, which is a flavin-dependent monooxygenase, of the grasshopper Zonocerus variegatus. After heterologous expression in E. coli, this enzyme shows high specificity for pyrrolizidine alkaloids of various structural types and for the tropane alkaloid atropine as substrates, a property that has been described previously for a pyrrolizidine alkaloid N-oxygenase of the arctiid moth Grammia geneura. Phylogenetic analyses of insect flavin-dependent monooxygenase sequences suggest that independent gene duplication events preceded the establishment of this specific enzyme in the lineages of the grasshoppers and of arctiid moths. Two further flavin-dependent monooxygenase sequences have been identified from Z. variegatus sharing amino acid identities of approximately 78% to the pyrrolizidine alkaloid N-oxygenase. After heterologous expression, both enzymes are also able to catalyze the N-oxygenation of pyrrolizidine alkaloids, albeit with a 400-fold lower specific activity. With respect to the high sequence identity between the three Z. variegatus sequences this ability to N-oxygenize pyrrolizidine alkaloids is interpreted as a relict of a former bifunctional ancestor gene of which one of the gene copies optimized this activity for the specific adaptation to pyrrolizidine alkaloid containing food plants.

  14. Independent recruitment of a flavin-dependent monooxygenase for safe accumulation of sequestered pyrrolizidine alkaloids in grasshoppers and moths.

    Science.gov (United States)

    Wang, Linzhu; Beuerle, Till; Timbilla, James; Ober, Dietrich

    2012-01-01

    Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide, enabling the insects to avoid high concentrations of toxic pyrrolizidine alkaloids in the hemolymph. We have identified a pyrrolizidine alkaloid N-oxygenase, which is a flavin-dependent monooxygenase, of the grasshopper Zonocerus variegatus. After heterologous expression in E. coli, this enzyme shows high specificity for pyrrolizidine alkaloids of various structural types and for the tropane alkaloid atropine as substrates, a property that has been described previously for a pyrrolizidine alkaloid N-oxygenase of the arctiid moth Grammia geneura. Phylogenetic analyses of insect flavin-dependent monooxygenase sequences suggest that independent gene duplication events preceded the establishment of this specific enzyme in the lineages of the grasshoppers and of arctiid moths. Two further flavin-dependent monooxygenase sequences have been identified from Z. variegatus sharing amino acid identities of approximately 78% to the pyrrolizidine alkaloid N-oxygenase. After heterologous expression, both enzymes are also able to catalyze the N-oxygenation of pyrrolizidine alkaloids, albeit with a 400-fold lower specific activity. With respect to the high sequence identity between the three Z. variegatus sequences this ability to N-oxygenize pyrrolizidine alkaloids is interpreted as a relict of a former bifunctional ancestor gene of which one of the gene copies optimized this activity for the specific adaptation to pyrrolizidine alkaloid containing food plants.

  15. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Aryal, Uma K.; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D.; Magnuson, Jon K.; Adney, William S.; Beckham, Gregg T.; Brunecky, Roman; Himmel, Michael E.; Decker, Stephen R.; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E.

    2013-12-01

    ALG3 is a Family 58 glycosyltransferase enzyme involved in early N-linked glycan synthesis. Here, we investigated the effect of the alg3 gene disruption on growth, development, metabolism, and protein secretion in Aspergillus niger. The alg3 gene deletion resulted in a significant reduction of growth on complete (CM) and potato dextrose agar (PDA) media and a substantial reduction of spore production on CM. It also delayed spore germination in the liquid cultures of both CM and PDA media, but led to a significant accumulation of red pigment on both CM and liquid modified minimal medium (MM) supplemented with yeast extract. The relative abundance of 55 proteins of the total 190 proteins identified in the secretome was significantly different as a result of alg3 gene deletion. Comparison of a Trichoderma reesei cellobiohydrolase (Cel7A) heterologously expressed in A. niger parental and Δalg3 strains showed that the recombinant Cel7A expressed in the mutant background was smaller in size than that from the parental strains. This study suggests that ALG3 is critical for growth and development, pigment production, and protein secretion in A. niger. Functional analysis of recombinant Cel7A with aberrant glycosylation demonstrates the feasibility of this alternative approach to evaluate the role of N-linked glycosylation in glycoprotein secretion and function.

  16. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat.

    Science.gov (United States)

    Liu, Wenxuan; Koo, Dal-Hoe; Xia, Qing; Li, Chunxin; Bai, Fuqiang; Song, Yuli; Friebe, Bernd; Gill, Bikram S

    2017-04-01

    Pm57, a novel resistant gene against powdery mildew, was transferred into common wheat from Ae. searsi and further mapped to 2S s #1L at an interval of FL0.75 to FL0.87. Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici, is one of the most severe foliar diseases of wheat causing reduction in grain yield and quality. Host plant resistance is the most effective and environmentally safe approach to control this disease. Tests of a set of Chinese Spring-Ae. searsii (S s S s , 2n = 2x = 14) Feldman & Kislev ex K. Hammer disomic addition lines with a mixed isolate of the powdery mildew fungus identified a novel resistance gene(s), designed as Pm57, which was located on chromosome 2S s #1. Here, we report the development of ten wheat-Ae. searsii recombinants. The wheat chromosomes involved in five of these recombinants were identified by FISH and SSR marker analysis and three of them were resistant to powdery mildew. Pm57 was further mapped to the long arm of chromosome 2S s #1 at a fraction length interval of FL 0.75 to FL 0.87. The recombinant stocks T2BS.2BL-2S s #1L 89-346 (TA5108) with distal 2S s #1L segments of 28% and 89(5)69 (TA5109) with 33% may be useful in wheat improvement. The PCR marker X2L4g9p4/HaeIII was validated to specifically identify the Ae. searsii 2S s #1L segment harboring Pm57 in T2BS.2BL-2S s #1L against 16 wheat varieties and advanced breeding lines, and the development of more user-friendly KASP markers is underway.

  17. Development, evaluation, and laboratory validation of immunoassays for the diagnosis of equine infectious anemia (EIA) using recombinant protein produced from a synthetic p26 gene of EIA virus.

    Science.gov (United States)

    Singha, Harisankar; Goyal, Sachin K; Malik, Praveen; Khurana, Sandip K; Singh, Raj K

    2013-12-01

    Equine infectious anemia (EIA)-a retroviral disease caused by equine infectious anemia virus (EIAV)-is a chronic, debilitating disease of horses, mules, and donkeys. EIAV infection has been reported worldwide and is recognized as pathogen of significant economic importance to the horse industry. This disease falls under regulatory control program in many countries including India. Control of EIA is based on identification of inapparent carriers by detection of antibodies to EIAV in serologic tests and "Stamping Out" policy. The current internationally accepted test for diagnosis of EIA is the agar gel immune-diffusion test (AGID), which detects antibodies to the major gag gene (p26) product. The objective of this study was to develop recombinant p26 based in-house immunoassays [enzyme linked immunosorbent assays (ELISA), and AGID] for EIA diagnosis. The synthetic p26 gene of EIAV was expressed in Escherichia coli and diagnostic potential of recombinant p26 protein were evaluated in ELISA and AGID on 7,150 and 1,200 equine serum samples, respectively, and compared with commercial standard AGID kit. The relative sensitivity and specificity of the newly developed ELISA were 100 and 98.6 %, respectively. Whereas, relative sensitivity and specificity of the newly developed AGID were in complete agreement in respect to commercial AGID kit. Here, we have reported the validation of an ELISA and AGID on large number of equine serum samples using recombinant p26 protein produced from synthetic gene which does not require handling of pathogenic EIAV. Since the indigenously developed reagents would be economical than commercial diagnostic kit, the rp26 based-immunoassays could be adopted for the sero-diagnosis and control of EIA in India.

  18. Induction of genetic recombination in the lambda bacteriophage by ultraviolet irradiation of the Escherichia Coli cells. III. Role of the ruvA and recN genes; Induccion de recombinacion genetica en el bacteriofago lambda por irradiacion ultravioleta de las celulas de Escherichia Coli. III. Papel de los genes ruvA and recN

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1987-05-15

    The objective of this work is to determine the paper of the genes ruvA and recN in the stimulation of the recombination of Lambda for UV irradiation of Escherichia Coli, taking into account that both genes are inducible, they belong to the group of genes that participate in the SOS response and that a deficiency in its expression reduces the capacity to repair and recombiner the DNA. (Author)

  19. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus

    DEFF Research Database (Denmark)

    Torres-Rosell, Jordi; Sunjevaric, Ivana; De Piccoli, Giacomo

    2007-01-01

    at an extranucleolar site. The nucleolar exclusion of Rad52 recombination foci entails Mre11 and Smc5-Smc6 complexes and depends on Rad52 SUMO (small ubiquitin-related modifier) modification. Remarkably, mutations that abrogate these activities result in the formation of Rad52 foci within the nucleolus and cause r...

  20. The complete genome sequence of human adenovirus 84, a highly recombinant new Human mastadenovirus D type with a unique fiber gene.

    Science.gov (United States)

    Kaján, Győző L; Kajon, Adriana E; Pinto, Alexis Castillo; Bartha, Dániel; Arnberg, Niklas

    2017-10-15

    A novel human adenovirus was isolated from a pediatric case of acute respiratory disease in Panama City, Panama in 2011. The clinical isolate was initially identified as an intertypic recombinant based on hexon and fiber gene sequencing. Based on the analysis of its complete genome sequence, the novel complex recombinant Human mastadenovirus D (HAdV-D) strain was classified into a new HAdV type: HAdV-84, and it was designated Adenovirus D human/PAN/P309886/2011/84[P43H17F84]. HAdV-D types possess usually an ocular or gastrointestinal tropism, and respiratory association is scarcely reported. The virus has a novel fiber type, most closely related to, but still clearly distant from that of HAdV-36. The predicted fiber is hypothesised to bind sialic acid with lower affinity compared to HAdV-37. Bioinformatic analysis of the complete genomic sequence of HAdV-84 revealed multiple homologous recombination events and provided deeper insight into HAdV evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. nuvA, an Aspergillus nidulans gene involved in DNA repair and recombination, is a homologue of Saccharomyces cerevisiae RAD18 and Neurospora crassa uvs-2.

    Science.gov (United States)

    Iwanejko, L; Cotton, C; Jones, G; Tomsett, B; Strike, P

    1996-03-01

    A 40 kb genomic clone and 2.3 kb EcoRI subclone that rescued the DNA repair and recombination defects of the Aspergillus nidulans nuvA11 mutant were isolated and the subclone sequenced. The subclone hybridized to a cosmid in a chromosome-specific library confirming the assignment of nuvA to linkage group IV and indicating its closeness to bimD. Amplification by PCR clarified the relative positions of nuvA and bimD. A region identified within the subclone, encoding a C3HC4 zinc finger motif, was used as a probe to retrieve a cDNA clone. Sequencing of this clone showed that the nuvA gene has an ORF of 1329 bp with two introns of 51 bp and 60 bp. Expression of nuvA appears to be extremely low. The putative NUVA polypeptide has two zinc finger motifs, a molecular mass of 48906 Da and has 39% identity with the Neurospora crassa uvs-2 and 25% identity with the Saccharomyces cerevisiae RAD18 translation products. Although mutations in nuvA, uvs-2 and RAD18 produce similar phenotypes, only the nuvA11 mutation affects meiotic recombination. A role for nuvA in both DNA repair and genetic recombination is proposed.

  2. Characterization of opaque2 modifier QTLs and candidate genes in recombinant inbred lines derived from the K0326Y quality protein maize inbred

    KAUST Repository

    Holding, David R.

    2010-11-13

    Quality protein maize (QPM) is a high lysine-containing corn that is based on genetic modification of the opaque2 (o2) mutant. In QPM, modifier genes convert the starchy endosperm of o2 to the vitreous phenotype of wild type maize. There are multiple, unlinked o2 modifier loci (Opm) in QPM and their nature and mode of action are unknown. We previously identified seven Opm QTLs and characterized 16 genes that are differentially up-regulated at a significant level in K0326Y QPM, compared to the starchy endosperm mutant W64Ao2. In order to further characterize these Opm QTLs and the genes up-regulated in K0326Y QPM, we created a population of 314 recombinant inbred lines (RILs) from a cross between K0326Y QPM and W64Ao2. The RILs were characterized for three traits associated with endosperm texture: vitreousness, density and hardness. Genetic linkage analysis of the RIL population confirmed three of the previously identified QTLs associated with o2 endosperm modification in K0326Y QPM. Many of the genes up-regulated in K0326Y QPM showed substantially higher levels of expression in vitreous compared with opaque RILs. These included genes associated with the upstream regulation of the ethylene response pathway, and a gene encoding a regulatory subunit of pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase, an adaptive enzyme of the glycolytic pathway. © 2010 Springer-Verlag.

  3. Non-virulence of a recombinant shrimp nidovirus is associated with its non structural gene sequence and not a large structural gene deletion

    International Nuclear Information System (INIS)

    Gangnonngiw, Warachin; Anantasomboon, Gun; Sang-oum, Wiwat; Sriurairatana, Siriporn; Sritunyalucksana, Kallaya; Flegel, Timothy W.

    2009-01-01

    RT-PCR using a commercial kit for yellow head virus (YHV) detection in growth-retarded shrimp yielded an unusual 777 bp amplicon instead of expected amplicons of 277 bp for YHV type-1 (YHV-1) or 406 bp for YHV type-2 (YHV-2). Cloning and sequencing (GenBank (EU170438)) revealed approximately 80% identity to non-structural (NS) ORF1b sequences of both YHV-1 (GenBank (AA083987)) and YHV-2 (GenBank (AF227196)), indicating an atypical YHV type (A-YHV) phylogenetically equidistant from both types. An RT-PCR test specifically designed for A-YHV revealed that it was uncommon and that its occurrence in shrimp culture ponds did not correlate with growth retardation or mortality. By immunohistochemistry with YHV-specific monoclonal antibodies, the A-YHV gave positive reactions for envelope protein gp64 and capsid protein p20, but not for envelope protein gp116, even though gp116 and gp64 originate from a polyprotein of ORF3. Lack of gp116 immunoreactivity correlated with a large ORF3 deletion (GenBank (EU123854)) in the region of the protein targeted by an MAb against gp116. Transmission electron microscopy of A-YHV-infected shrimp revealed only unenveloped pre-virions. During manuscript revision, information received revealed that typing of YHV isolates based on sequences of ORF1b and ORF3 had yielded several geographical types, including one virulent type (YHV-1b) with an ORF3 deletion sequence that matched the sequence of A-YHV. Using these sequences and an additional A-YHV sequence ( (EU853170)) from the ORF1b typing region, A-YHV potentially represents a recombinant between type 1b and type 5. SDS-PAGE and Western blot analysis revealed that type 1b produced a gp116 deletion protein that did not bind with the MAb or polyclonal Ab to normal gp116. Overall, the information suggested that lack of A-YHV virulence was associated with the NS gene sequence linked to ORF1b rather than the deletion in ORF3

  4. A magnetic bead-based ligand binding assay to facilitate human kynurenine 3-monooxygenase drug discovery.

    Science.gov (United States)

    Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P

    2015-02-01

    Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. © 2014 Society for Laboratory Automation and Screening.

  5. Reconstitution of β-carotene hydroxylase activity of thermostable CYP175A1 monooxygenase

    International Nuclear Information System (INIS)

    Momoi, Kyoko; Hofmann, Ute; Schmid, Rolf D.; Urlacher, Vlada B.

    2006-01-01

    CYP175A1 is a thermostable P450 Monooxygenase from Thermus thermophilus HB27, demonstrating in vivo activity towards β-carotene. Activity of CYP175A1 was reconstituted in vitro using artificial electron transport proteins. First results were obtained in the mixture with a crude Escherichia coli cell extract at 37 o C. In this system, β-carotene was hydroxylated to β-cryptoxanthin. The result indicated the presence of electron transport enzymes among the E. coli proteins, which are suitable for CYP175A1. However, upon in vitro reconstitution of CYP175A1 activity with purified recombinant flavodoxin and flavodoxin reductase from E. coli, only very low β-cryptoxanthin production was observed. Remarkably, with another artificial electron transport system, putidaredoxin and putidaredoxin reductase from Pseudomonas putida, purified CYP175A1 enzyme hydroxylated β-carotene at 3- and also 3'-positions, resulting in β-cryptoxanthin and zeaxanthin. Under the optimal reaction conditions, the turnover rate of the enzyme reached 0.23 nmol β-cryptoxanthin produced per nmol P450 per min

  6. A bovine herpesvirus 5 recombinant defective in the thymidine kinase (TK gene and a double mutant lacking TK and the glycoprotein E gene are fully attenuated for rabbits

    Directory of Open Access Journals (Sweden)

    S.C. Silva

    2010-02-01

    Full Text Available Bovine herpesvirus 5 (BoHV-5, the agent of herpetic meningoencephalitis in cattle, is an important pathogen of cattle in South America and several efforts have been made to produce safer and more effective vaccines. In the present study, we investigated in rabbits the virulence of three recombinant viruses constructed from a neurovirulent Brazilian BoHV-5 strain (SV507/99. The recombinants are defective in glycoprotein E (BoHV-5gEΔ, thymidine kinase (BoHV-5TKΔ and both proteins (BoHV-5gEΔTKΔ. Rabbits inoculated with the parental virus (N = 8 developed neurological disease and died or were euthanized in extremis between days 7 and 13 post-infection (pi. Infectivity was detected in several areas of their brains. Three of 8 rabbits inoculated with the recombinant BoHV-5gEΔ developed neurological signs between days 10 and 15 pi and were also euthanized. A more restricted virus distribution was detected in the brain of these animals. Rabbits inoculated with the recombinants BoHV-5TKΔ (N = 8 or BoHV-5gEΔTKΔ (N = 8 remained healthy throughout the experiment in spite of variable levels of virus replication in the nose. Dexamethasone (Dx administration to rabbits inoculated with the three recombinants at day 42 pi did not result in viral reactivation, as demonstrated by absence of virus shedding and/or increase in virus neutralizing titers. Nevertheless, viral DNA was detected in the trigeminal ganglia or olfactory bulbs of all animals at day 28 post-Dx, demonstrating they were latently infected. These results show that recombinants BoHV-5TKΔ and BoHV-5gEΔTKΔ are attenuated for rabbits and constitute potential vaccine candidates upon the confirmation of this phenotype in cattle.

  7. Expression, purification and characterization of human Dopamine ß-monooxygenase

    DEFF Research Database (Denmark)

    Vendelboe, Trine Vammen

    catalytic domains called ascorbate dependent type IImonooxygenase domains and a C-terminal dimerization domain. DBM is related to peptidylglycine a-hydroxylating monooxygenase (PHM). They are 28 % identical over approximately 300 amino scids (AA) which corresponds to the catalytic domains. This is, among...... residue 47-596 in each chain, was hereafter manually built. The structure reveals the first structural insights into the DOMON domain and the C-terminal dimerization domain and it shows two different conformations of the catalytic domains. An open conformation, that resembles the structures known from PHM...

  8. A recombinant Anticarsia gemmatalis MNPV harboring chiA and v-cath genes from Choristoneura fumiferana defective NPV induce host liquefaction and increased insecticidal activity.

    Directory of Open Access Journals (Sweden)

    Anabele Azevedo Lima

    Full Text Available One of the interesting features of Anticarsia gemmatalis multiple nucleopolyhedrovirus isolate 2D (AgMNPV-2D genome is the absence of chitinase (chiA and cathepsin (v-cath genes. This characteristic may be responsible for the lack of liquefaction and melanization in A. gemmatalis larvae killed by AgMNPV-2D infection. This study aimed to test the hypothesis that CHIA and V-CATH proteins from Choristonera fumiferana DEF multiple nucleopolyhedrovirus (CfDEFNPV are able to liquefy and melanize the cuticle of A. gemmatalis larvae infected by a recombinant AgMNPV containing chiA and v-cath genes inserted in its genome. A fragment from the CfDefNPV genome containing chiA and v-cath genes was inserted into the genome of AgMNPV-2D. The recombinant virus (vAgp2100Cf.chiA/v-cath was purified and used to infect insect cells and larvae. Transcripts of v-cath and chiA genes were detected along the infection of insect cells by qRT-PCR, from early to late phases of infection. The analysis of A. gemmatalis larvae killed by vAgp2100Cf.chiA/v-cath infection confirmed the hypothesis proposed. The vAgp2100Cf.chiA/v-cath showed higher insecticidal activity against third instar A. gemmatalis larvae when compared to AgMNPV-2D. The mean time to death was also lower for the vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D at 10 days post infection. Occlusion body production was higher in A. gemmatalis larvae infected with vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D. Enzyme assays showed higher chitinase and cysteine protease activities in insect cells and insects infected with vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D. The introduction of chiA and v-cath genes into the genome of AgMNPV improves its insecticidal activity against A. gemmatalis larvae and this recombinant virus could be used as an alternative to the wild type virus to control this important insect pest.

  9. Effects of L-arabinose efflux on λ Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis.

    Science.gov (United States)

    Liao, Shi-Wei; Lee, Jen-Jie; Ptak, Christopher P; Wu, Ying-Chen; Hsuan, Shih-Ling; Kuo, Chih-Jung; Chen, Ter-Hsin

    2018-03-01

    In this study, six swine-derived multiple-antimicrobial-resistant (MAR) strains of Salmonella Choleraesuis (S. Choleraesuis) were demonstrated to possess higher efflux pump activity than the wild-type (WT). L-Arabinose, a common inducer for gene expression, modulated S. Choleraesuis efflux pump activity in a dose-dependent manner. At low L-arabinose concentrations, increasing L-arabinose led to a corresponding increase in fluorophore efflux, while at higher L-arabinose concentrations, increasing L-arabinose decreased fluorophore efflux activity. The WT S. Choleraesuis that lacks TolC (ΔtolC), an efflux protein associated with bacterial antibiotic resistance and virulence, was demonstrated to possess a significantly reduced ability to extrude L-arabinose. Further, due to the rapid export of L-arabinose, an efficient method for recombination-mediated gene knockout, the L-arabinose-inducible bacteriophage λ Red recombinase system, has a reduced recombination frequency (~ 12.5%) in clinically isolated MAR Salmonella strains. An increased recombination frequency (up to 60%) can be achieved using a higher concentration of L-arabinose (fivefold) for genetic manipulation and functional analysis for MAR Salmonella using the λ Red system. The study suggests that L-arabinose serves not only as an inducer of the TolC-dependent efflux system but also acts as a competitive substrate of the efflux system. In addition, understanding the TolC-dependent efflux of L-arabinose should facilitate the optimization of L-arabinose induction in strains with high efflux activity.

  10. FY 2000 Project of developing international standards for supporting new industries. Standardization of systems for detecting gene recombination products; 2000 nendo shinki sangyo shiengata kokusai hyojunka kaihatsu jigyo seika hokokusho. Idenshi kumikae seihin kenshutsu system no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the studies on the basic conditions for gene recombination products, and methods of determining content of the purchased gene recombination products in agricultural products, conducted to promote the standardization of the gene recombination product detection systems. Soybean is taken up as the gene recombination product to be studied, in which the samples containing the gene recombination product at 5, 0.5, 0.1 and 0% are prepared, and qualitatively analyzed by the DNA extraction and PCR method. No band is detected. For the quantitative examination by the real-time PCR method, the SYBRGeen, Taqman and hybridization probe methods are used to study the PCR conditions. The sample DNA extracted by the DNA Extraction kit for GMO Detection Ver.2 from the sample containing the RoundupReady{sup TM} soybean is quantitatively analyzed by the real-time PCR method for GMO content, which has produced the results for promotion of the standardization. (NEDO)

  11. Intron loss from the NADH dehydrogenase subunit 4 gene of lettuce mitochondrial DNA: evidence for homologous recombination of a cDNA intermediate.

    Science.gov (United States)

    Geiss, K T; Abbas, G M; Makaroff, C A

    1994-04-01

    The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.

  12. Recombinant AAV-mediated HSVtk gene transfer with direct intratumoral injections and Tet-On regulation for implanted human breast cancer

    International Nuclear Information System (INIS)

    Zi-Bo, LI; Zhao-Jun, ZENG; Qian, CHEN; Sai-Qun, LUO; Wei-Xin, HU

    2006-01-01

    HSVtk/ganciclovir (GCV) gene therapy has been extensively studied in tumors and relies largely on the gene expression of HSVtk. Most studies, however, have failed to demonstrate any significant benefit of a controlled gene expression strategy in cancer treatment. The Tet-On system is commonly used to regulate gene expression following Dox induction. We have evaluated the antitumor effect of HSVtk/ganciclovir gene therapy under Tet-On regulation by means of adeno-associated virus-2 (AAV-2)-mediated HSVtk gene transfer with direct intratumoral injections in mice bearing breast cancer tumors. Recombinant adeno-associated virus-2 (rAAV) was constructed and transduced into MCF-7 cell line. GCV treatment to the rAAV infected MCF-7 cells was performed by MTT assay under the doxycycline (Dox) induction or without Dox induction at a vp (viral particle) number of ≥10 4 /cell. The virus was administered intratumorally to nude mice that had also received GCV intraperitoneally. The antitumor effects were evaluated by measuring tumor regression and histological analysis. We have demonstrated that GCV treatment to the infected MCF-7 cells under the Dox induction was of more inhibited effects than those without Dox induction at ≥10 4 vp/cell. In ex vivo experiments, tumor growth of BALB/C nude mice breast cancer was retarded after rAAV-2/HSVtk/Tet-On was injected into the tumors under the Dox induction. Infiltrating cells were also observed in tumors after Dox induction followed by GCV treatment and cells were profoundly damaged. The expression of HSVtk gene in MCF-7 cells and BALB/C nude mice tumors was up-regulated by Tet-On under Dox induction with reverse transcription-PCR (RT-PCR) analysis. The antitumor effect of rAAV-mediated HSVtk/GCV gene therapy under the Dox induction with direct intratumoral injections may be a useful treatment for breast cancer and other solid tumors

  13. RoMo: An efficient strategy for functional mosaic analysis via stochastic Cre recombination and gene targeting in the ROSA26 locus.

    Science.gov (United States)

    Movahedi, Kiavash; Wiegmann, Robert; De Vlaminck, Karen; Van Ginderachter, Jo A; Nikolaev, Viacheslav O

    2018-07-01

    Functional mosaic analysis allows for the direct comparison of mutant cells with differentially marked control cells in the same organism. While this offers a powerful approach for elucidating the role of specific genes or signalling pathways in cell populations of interest, genetic strategies for generating functional mosaicism remain challenging. We describe a novel and streamlined approach for functional mosaic analysis, which combines stochastic Cre/lox recombination with gene targeting in the ROSA26 locus. With the RoMo strategy a cell population of interest is randomly split into a cyan fluorescent and red fluorescent subset, of which the latter overexpresses a chosen transgene. To integrate this approach into high-throughput gene targeting initiatives, we developed a procedure that utilizes Gateway cloning for the generation of new targeting vectors. RoMo can be used for gain-of-function experiments or for altering signaling pathways in a mosaic fashion. To demonstrate this, we developed RoMo-dnGs mice, in which Cre-recombined red fluorescent cells co-express a dominant-negative Gs protein. RoMo-dnGs mice allowed us to inhibit G protein-coupled receptor activation in a fraction of cells, which could then be directly compared to differentially marked control cells in the same animal. We demonstrate how RoMo-dnGs mice can be used to obtain mosaicism in the brain and in peripheral organs for various cell types. RoMo offers an efficient new approach for functional mosaic analysis that extends the current toolbox and may reveal important new insights into in vivo gene function. © 2018 Wiley Periodicals, Inc.

  14. Generation and biological assessment of recombinant avian metapneumovirus subgroup C (aMPV-C) viruses containing different length of the G gene.

    Science.gov (United States)

    Yu, Qingzhong; Estevez, Carlos; Song, Minxun; Kapczynski, Darrell; Zsak, Laszlo

    2010-02-01

    Genetic variation in length of the G gene among different avian metapneumovirus subgroup C (aMPV-C) isolates has been reported. However, its biological significance in virus replication, pathogenicity and immunity is unknown. In this study, we developed a reverse genetics system for aMPV-C and generated two Colorado (CO) strain-based recombinant viruses containing either the full-length G gene derived from a Canadian goose isolate or a C-terminally truncated G gene of the CO strain. The truncated short G (sG) gene encoded 252 amino acids (aa), which is 333 aa shorter than the full-length G (585 aa). The biological properties of these two recombinant G variants were assessed in Vero cells and in specific-pathogen-free (SPF) turkeys. In Vero cells, the short G variant displayed a similar level of growth dynamics and virus titers as the parental aMPV-CO strain, whereas the full-length G variant replicated less efficiently than the sG variant during the first 72 h post-infection. Both of the G variants induced typical cytopathic effects (CPE) that were indistinguishable from those seen with the parental aMPV-CO infection. In SPF turkeys, both of the G variants were attenuated and caused little or no disease signs, but the full-length G variant appeared to grow more readily in tracheal tissue than the sG variant during the first 5 days post-infection. Both G variants were immunogenic and induced a slightly different level of antibody response. These results demonstrated that the large portion (333 aa) of the extracellular domain of the viral attachment protein is not essential for virus viability in vitro and in vivo, but may play a role in enhancing virus attachment specificity and immunity in a natural host. (c) 2009 Elsevier B.V. All rights reserved.

  15. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Flitter, S.J.; Mcintyre, Mhairi

    2004-01-01

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different...... shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall....

  16. Cloning and expression of the sucrose phosphorylase gene in Bacillus subtilis and synthesis of kojibiose using the recombinant enzyme.

    Science.gov (United States)

    Wang, Miaomiao; Wu, Jing; Wu, Dan

    2018-02-15

    Kojibiose as a prebiotic and inhibitor of α-glucosidase exhibits potential for a wide range of applications in the food and medicine fields; however, large-scale separation and extraction of kojibiose from nature is difficult. Sucrose phosphorylase (SPase) can be used for the production of kojibiose, and currently, SPase is only heterologously expressed in E. coli, making it unsuitable for use in the food industry. However, Bacillus subtilis is generally considered to be a safe organism potentially useful for SPase expression. Here, for the first time, we heterologously expressed Bifidobacterium adolescentis SPase in a food-grade B. subtilis strain. The results showed that SPase was efficiently secreted into the extracellular medium in the absence of a signal peptide. After culturing the recombinant strain in a 3-L bioreactor, crude SPase yield and activity reached 7.5 g/L and 5.3 U/mL, respectively, the highest levels reported to date. The optimal reaction conditions for kojibiose synthesis catalyzed by recombinant SPase were as follows: 0.5 M sucrose, 0.5 M glucose, 0.02 U enzyme /mg all_substrates , pH 7.0, 50 °C, and 30 h. Furthermore, the substrate-conversion rate reached 40.01%, with kojibiose accounting for 104.45 g/L and selectivity for kojibiose production at 97%. Here, we successfully expressed SPase in B. subtilis in the absence of a signal peptide and demonstrated its secretion into the extracellular medium. Our results indicated high levels of recombinant enzyme expression, with a substrate-conversion rate of 40.01%. These results provide a basis for large-scale preparation of kojibiose by the recombinant SPase.

  17. Transformation of tobacco cpDNA with fusion E7GGG/GUS gene and homologous recombination mediated elimination of the marker gene

    Czech Academy of Sciences Publication Activity Database

    Bříza, Jindřich; Vlasák, Josef; Ryba, Š.; Ludvíková, V.; Niedermeierová, Hana

    2013-01-01

    Roč. 27, č. 2 (2013), s. 3644-3648 ISSN 1310-2818 R&D Projects: GA AV ČR IAA500960903 Institutional support: RVO:60077344 Keywords : E7GGG oncogene * chloroplast transformation * marker-free plant * homologous recombination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.379, year: 2013

  18. [Effect of topical application of a recombinant adenovirus carrying promyelocytic leukemia gene in a psoriasis-like mouse model].

    Science.gov (United States)

    Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian

    2013-03-01

    To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.

  19. Generation and CRISPR/Cas9 editing of transformed progenitor B cells as a pseudo-physiological system to study DNA repair gene function in V(D)J recombination.

    Science.gov (United States)

    Lenden Hasse, Hélène; Lescale, Chloé; Bianchi, Joy J; Yu, Wei; Bedora-Faure, Marie; Deriano, Ludovic

    2017-12-01

    Antigen receptor gene assembly is accomplished in developing lymphocytes by the V(D)J recombination reaction, which can be separated into two steps: DNA cleavage by the recombination-activating gene (RAG) nuclease and joining of DNA double strand breaks (DSBs) by components of the nonhomologous end joining (NHEJ) pathway. Deficiencies for NHEJ factors can result in immunodeficiency and a propensity to accumulate genomic instability, thus highlighting the importance of identifying all players in this process and deciphering their functions. Bcl2 transgenic v-Abl kinase-transformed pro-B cells provide a pseudo-physiological cellular system to study V(D)J recombination. Treatment of v-Abl/Bcl2 pro-B cells with the Abl kinase inhibitor Imatinib leads to G1 cell cycle arrest, the rapid induction of Rag1/2 gene expression and V(D)J recombination. In this system, the Bcl2 transgene alleviates Imatinib-induced apoptosis enabling the analysis of induced V(D)J recombination. Although powerful, the use of mouse models carrying the Bcl2 transgene for the generation of v-Abl pro-B cell lines is time and money consuming. Here, we describe a method for generating v-Abl/Bcl2 pro-B cell lines from wild type mice and for performing gene knock-out using episomal CRISPR/Cas9 targeting vectors. Using this approach, we generated distinct NHEJ-deficient pro-B cell lines and quantified V(D)J recombination levels in these cells. Furthermore, this methodology can be adapted to generate pro-B cell lines deficient for any gene suspected to play a role in V(D)J recombination, and more generally DSB repair. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines.

    Science.gov (United States)

    Pacchioni, Sole Maria; Bissa, Massimiliano; Zanotto, Carlo; Morghen, Carlo De Giuli; Illiano, Elena; Radaelli, Antonia

    2013-04-11

    The traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most effective control and new vectors have been developed to generate recombinant vaccines against smallpox that induce the same immunogenicity as the traditional one. As protective antibodies are mainly directed against the surface proteins of the two infectious forms of vaccinia, the intracellular mature virions and the extracellular virions, combined proteins from these viral forms can be used to better elicit a complete and protective immunity. Four novel viral recombinants were constructed based on the fowlpox genetic background, which independently express the vaccinia virus L1 and A27 proteins present on the mature virions, and the A33 and B5 proteins present on the extracellular virions. The correct expression of the transgenes was determined by RT-PCR, Western blotting, and immunofluorescence. Using immunoprecipitation and Western blotting, the ability of the proteins expressed by the four novel FPL1R, FPA27L, FPA33R and FPB5R recombinants to be recognized by VV-specific hyperimmune mouse sera was demonstrated. By neutralisation assays, recombinant virus particles released by infected chick embryo fibroblasts were shown not be recognised by hyperimmune sera. This thus demonstrates that the L1R, A27L, A33R and B5R gene products are not inserted into the new viral progeny. Fowlpox virus replicates only in avian species, but it is permissive for entry and transgene expression in mammalian cells, while being immunologically non-cross-reactive with vaccinia virus. These recombinants might

  1. Evolutionary recruitment of a flavin-dependent monooxygenase for stabilization of sequestered pyrrolizidine alkaloids in arctiids.

    Science.gov (United States)

    Langel, Dorothee; Ober, Dietrich

    2011-09-01

    Pyrrolizidine alkaloids are secondary metabolites that are produced by certain plants as a chemical defense against herbivores. They represent a promising system to study the evolution of pathways in plant secondary metabolism. Recently, a specific gene of this pathway has been shown to have originated by duplication of a gene involved in primary metabolism followed by diversification and optimization for its specific function in the defense machinery of these plants. Furthermore, pyrrolizidine alkaloids are one of the best-studied examples of a plant defense system that has been recruited by several insect lineages for their own chemical defense. In each case, this recruitment requires sophisticated mechanisms of adaptations, e.g., efficient excretion, transport, suppression of toxification, or detoxification. In this review, we briefly summarize detoxification mechanism known for pyrrolizidine alkaloids and focus on pyrrolizidine alkaloid N-oxidation as one of the mechanisms allowing insects to accumulate the sequestered toxins in an inactivated protoxic form. Recent research into the evolution of pyrrolizidine alkaloid N-oxygenases of adapted arctiid moths (Lepidoptera) has shown that this enzyme originated by the duplication of a gene encoding a flavin-dependent monooxygenase of unknown function early in the arctiid lineage. The available data suggest several similarities in the molecular evolution of this adaptation strategy of insects to the mechanisms described previously for the evolution of the respective pathway in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids

    Directory of Open Access Journals (Sweden)

    Tetsushi Sakuma

    2015-10-01

    Full Text Available Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc gene, in Chinese hamster ovary (CHO cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins.

  3. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering.

    Science.gov (United States)

    Gawin, Agnieszka; Valla, Svein; Brautaset, Trygve

    2017-07-01

    The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low- and high-level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose-dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β-lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5' untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids.

    Science.gov (United States)

    Sakuma, Tetsushi; Takenaga, Mitsumasa; Kawabe, Yoshinori; Nakamura, Takahiro; Kamihira, Masamichi; Yamamoto, Takashi

    2015-10-09

    Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome) vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc) gene, in Chinese hamster ovary (CHO) cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins.

  5. Deletion of C7L and K1L genes leads to significantly decreased virulence of recombinant vaccinia virus TianTan.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available The vaccinia virus TianTan (VTT has been modified as an HIV vaccine vector in China and has shown excellent performance in immunogenicity and safety. However, its adverse effects in immunosuppressed individuals warrant the search for a safer vector in the following clinic trails. In this study, we deleted the C7L and K1L genes of VTT and constructed six recombinant vaccinia strains VTT△C7L, VTT△K1L, VTT△C7LK1L, VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag. The pathogenicity and immunogenicity of these recombinants were evaluated in mouse and rabbit models. Comparing to parental VTT, VTT△C7L and VTT△K1L showed significantly decreased replication capability in CEF, Vero, BHK-21 and HeLa cell lines. In particular, replication of VTT△C7LK1L decreased more than 10-fold in all four cell lines. The virulence of all these mutants were decreased in BALB/c mouse and rabbit models; VTT△C7LK1L once again showed the greatest attenuation, having resulted in no evident damage in mice and erythema of only 0.4 cm diameter in rabbits, compared to 1.48 cm for VTT. VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag elicited as strong cellular and humoral responses against HIV genes as did VTKgpe, while humoral immune response against the vaccinia itself was reduced by 4-8-fold. These data show that deletion of C7L and K1L genes leads to significantly decreased virulence without compromising animal host immunogenicity, and may thus be key to creating a more safe and effective HIV vaccine vector.

  6. Experimental study on the effects of recombinant adenoviral-mediated mI{kappa}B{alpha} gene combined with irradiation on the treatment of hepatocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kejun, Zhang; Dechun, Li; Dongming, Zhu [The First Affiliated Hospital to Suzhou Univ., Suzhou (China); Caixia, Song

    2007-10-15

    Objective: To explore the effect of recombinant adenovirus vector mediated mutant I{kappa}B{alpha} (mI{kappa}B{alpha}) combined with radiation on the hepatocarcinoma. Methods: Limited dilution method was used to test the virus titer in 293 cells. The HCC9204 cells were infected with MOI 10,20,30 and 50 for 48 h, respectively. The expression of p65 and mI{kappa}B{alpha} protein was analyzed by Western blot. Transfected HCC9204 cells and controls were treated with 4 Gy {gamma} rays. The inhibition rate of HCC9204 cells was examined by MTT. Rat models of HCC9204 was constructed. AdmI{kappa}B{alpha} plasmids were injected into tumor tissue and the tumors were administered with 6 Gy {gamma} irradiation 48 hours later. Tumor growth at different time points was recorded during 28 days. Results: The titer of AdmI{kappa}B{alpha} is 1.252 x 10{sup 9} pfu/ml. The expression of mI{kappa}B{alpha} protein was increased with titer of AdmI{kappa}B{alpha}, and p65 protein began to decrease when MOI was 10, and reached the lowest when MOI was 50, they were all dose-dependent. The proliferation of HCC9204 cell lines were suppressed, as was more significant combined with radiation, and the effect was in a viral dose-dependent manner. From days 7 to 28 after AdmI{kappa}B{alpha} gene and radiotherapy, the tumor growth was significantly slower than after irradiation or gene therapy alone. Conclusions: Recombinant adenoviral-mediated mI{kappa}B{alpha} gene, combined with irradiation, can increase the cell-killing effect. It is better than that of either one alone. (authors)

  7. Experimental study on the effects of recombinant adenoviral-mediated mIκBα gene combined with irradiation on the treatment of hepatocarcinoma

    International Nuclear Information System (INIS)

    Zhang Kejun; Li Dechun; Zhu Dongming; Song Caixia

    2007-01-01

    Objective: To explore the effect of recombinant adenovirus vector mediated mutant IκBα (mIκBα) combined with radiation on the hepatocarcinoma. Methods: Limited dilution method was used to test the virus titer in 293 cells. The HCC9204 cells were infected with MOI 10,20,30 and 50 for 48 h, respectively. The expression of p65 and mIκBα protein was analyzed by Western blot. Transfected HCC9204 cells and controls were treated with 4 Gy γ rays. The inhibition rate of HCC9204 cells was examined by MTT. Rat models of HCC9204 was constructed. AdmIκBα plasmids were injected into tumor tissue and the tumors were administered with 6 Gy γ irradiation 48 hours later. Tumor growth at different time points was recorded during 28 days. Results: The titer of AdmIκBΑ is 1.252 x 10 9 pfu/ml. The expression of mIκBα protein was increased with titer of AdmIκBα, and p65 protein began to decrease when MOI was 10, and reached the lowest when MOI was 50, they were all dose-dependent. The proliferation of HCC9204 cell lines were suppressed, as was more significant combined with radiation, and the effect was in a viral dose-dependent manner. From days 7 to 28 after AdmIκBα gene and radiotherapy, the tumor growth was significantly slower than after irradiation or gene therapy alone. Conclusions: Recombinant adenoviral-mediated mIκBα gene, combined with irradiation, can increase the cell-killing effect. It is better than that of either one alone. (authors)

  8. Protective vaccination with a recombinant fragment of Clostridium botulinum neurotoxin serotype A expressed from a synthetic gene in Escherichia coli.

    OpenAIRE

    Clayton, M A; Clayton, J M; Brown, D R; Middlebrook, J L

    1995-01-01

    A completely synthetic gene encoding fragment C, a approximately 50-kDa fragment, of botulinum neurotoxin serotype A was constructed from oligonucleotides. The gene was expressed in Escherichia coli, and full-sized product was produced as judged by Western blot (immunoblot) analysis. Crude extracts of E. coli expressing the gene were used to vaccinate mice and evaluate their survival against challenge with active toxin. Mice given three subcutaneous vaccinations were protected against an intr...

  9. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes

    Directory of Open Access Journals (Sweden)

    Jon Mark Scriber

    2013-12-01

    Full Text Available Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including “invasive species” in various ecosystems as they may become disrupted in different ways by rapid climate change. “Invasive genes” (into new species and populations need to be recognized for their positive creative potential and addressed in conservation programs. “Genetic rescue” via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae with their long-term historical data base (phylogeographical diversity changes and recent (3-decade climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced “reshuffling” (recombinations of species composition, genotypes

  10. Expression of the phycoerythrin gene of Gracilaria lemaneiformis (Rhodophyta) in E. coli and evaluation of the bioactivity of recombinant PE

    Science.gov (United States)

    Wen, Ruobing; Sui, Zhenghong; Zhang, Xuecheng; Zhang, Shuang; Qin, Song

    2007-10-01

    Phycoerythrin (PE) is one of the most important proteins involved in light capturing during photosynthesis in red algae. Its potential biological activities had gained wide concerns. In the present study, tumor cytotoxic and hydroxyl radical assay were preformed to detect the bioactivity of recombinant PE. Recombinant plasmids pGEX-PE and pBGL were transformed into E. coli BL21 to make two recombinant strains BEX (pGEX-PE) and BGL (pBGL). PE expressing in BEX (pGEX-PE) was validated by SDS-PAGE and Western blotting analysis. SDS-PAGE analysis indicated that the PE-GST fusion protein was mostly inclusion bodies. Specific expression of PE was confirmed by Western blotting analysis. The recombinant E. coli BEX (pGEX-PE) cells were collected and sonicated. The supernatants were reserved for the tumor cytotoxic experiments. The result of tumor cytotoxic assay indicated that the supernatants containing PE had the activity of inhibiting the growth of Hela cells and with the increase of protein concentration, the inhibiting rate increased from 37.31% to 63.26%, which showed significant difference from the control. Hydroxyl radical scavenging effect was tested with supernatants of BEX (pGEX-PE) and BGL (pBGL) cell lysates treated with sonication and heating. For the sonication samples, the scavenging rates of the supernatants of BEX (pGEX-PE) and BGL (pBGL) cell lysates were significantly higher than the negative control BL21(pGEX-4T) ( Pprotein content. For the heating samples, except for the 0.2 mg mL-1 BGL (pBGL) products, the scavenging effects of the supernatants of BEX (pGEX-PE) and BGL (pBGL) cell lysates were stronger than that of negative control BL21(pGEX-4T). However, the effect intensity was not positively correlated with the increase of the protein concentration. Though a partially decreased hydroxyl radical scavenging activity was led by heating, the biological activity was still retained and conspicuous. This research showed that phycoerythrin protein

  11. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    Science.gov (United States)

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  13. Identification of a key recombinant which assigns the incomplete congenital stationary night blindness gene proximal to MAOB

    NARCIS (Netherlands)

    Bergen, A. A.; Kestelyn, P.; Leys, M.; Meire, F.

    1994-01-01

    The gene for complete congenital stationary night blindness (CSNB1) has been assigned to the Xp11.3 region. However, little evidence has been provided for the assignment of the incomplete congenital stationary night blindness gene (CSNB2). Here we present the clinical and molecular data from a CSNB2

  14. BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism.

    Science.gov (United States)

    Lv, Wentang; Du, Ba; Shangguan, Xinxin; Zhao, Yan; Pan, Yufang; Zhu, Lili; He, Yuqing; He, Guangcun

    2014-08-11

    Brown planthopper (BPH, Nilaparvata lugens Stål), is the most destructive phloem-feeding insect pest of rice (Oryza sativa). The BPH-resistance gene BPH15 has been proved to be effective in controlling the pest and widely applied in rice breeding programs. Nevertheless, molecular mechanism of the resistance remain unclear. In this study, we narrowed down the position of BPH15 on chromosome 4 and investigated the transcriptome of BPH15 rice after BPH attacked. We analyzed 13,000 BC2F2 plants of cross between susceptible rice TN1 and the recombinant inbred line RI93 that carrying the BPH15 gene from original resistant donor B5. BPH15 was mapped to a 0.0269 cM region on chromosome 4, which is 210-kb in the reference genome of Nipponbare. Sequencing bacterial artificial chromosome (BAC) clones that span the BPH15 region revealed that the physical size of BPH15 region in resistant rice B5 is 580-kb, much bigger than the corresponding region in the reference genome of Nipponbare. There were 87 predicted genes in the BPH15 region in resistant rice. The expression profiles of predicted genes were analyzed. Four jacalin-related lectin proteins genes and one LRR protein gene were found constitutively expressed in resistant parent and considered the candidate genes of BPH15. The transcriptomes of resistant BPH15 introgression line and the susceptible recipient line were analyzed using high-throughput RNA sequencing. In total, 2,914 differentially expressed genes (DEGs) were identified. BPH-responsive transcript profiles were distinct between resistant and susceptible plants and between the early stage (6 h after infestation, HAI) and late stage (48 HAI). The key defense mechanism was related to jasmonate signaling, ethylene signaling, receptor kinase, MAPK cascades, Ca(2+) signaling, PR genes, transcription factors, and protein posttranslational modifications. Our work combined BAC and RNA sequencing to identify candidate genes of BPH15 and revealed the resistance mechanism

  15. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis

    Science.gov (United States)

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL. PMID:26197085

  16. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Mehdi Shahbazi

    Full Text Available Canine Visceral Leishmaniasis (CVL is a major veterinary and public health problem caused by Leishmania infantum (L. infantum in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  17. Construction of a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen and mouse 4-1BBL genes and its effect on dendritic cells

    Directory of Open Access Journals (Sweden)

    Xiaodong Weng

    2011-03-01

    Full Text Available Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12 in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA. Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4% and CD86 (80.13 ± 2.81%] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL and IL-12 (249.57 ± 12.51 pg/mL production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05 than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018, indicating that this recombinant adenovirus can effectively enhance the activity of DCs.

  18. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Paspaliari, Dafni Katerina; Loose, Jennifer S. M.; Larsen, Marianne Halberg

    2015-01-01

    Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and ChiB) and a ......Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and Chi...... but different product profiles depending on the substrate. In LPMO-chitinase synergy experiments, CBP21 is able to boost the activity of both ChiA and ChiB more than LmLPMO10. Product analysis of the synergy assays revealed that the chitinases were unable to efficiently hydrolyse the LPMO products...... (chitooligosaccharide aldonic acids) with a degree of polymerization below four (ChiA and SmChiC) or three (ChiB). Gene transcription and protein expression analysis showed that LmLPMO10 is neither highly transcribed, nor abundantly secreted during the growth of L. monocytogenes in a chitin-containing medium...

  19. Genetic variation and recombination of RdRp and HSP 70h genes of Citrus tristeza virus isolates from orange trees showing symptoms of citrus sudden death disease

    Directory of Open Access Journals (Sweden)

    Pappas Georgios J

    2008-01-01

    Full Text Available Abstract Background Citrus sudden death (CSD, a disease that rapidly kills orange trees, is an emerging threat to the Brazilian citrus industry. Although the causal agent of CSD has not been definitively determined, based on the disease's distribution and symptomatology it is suspected that the agent may be a new strain of Citrus tristeza virus (CTV. CTV genetic variation was therefore assessed in two Brazilian orange trees displaying CSD symptoms and a third with more conventional CTV symptoms. Results A total of 286 RNA-dependent-RNA polymerase (RdRp and 284 heat shock protein 70 homolog (HSP70h gene fragments were determined for CTV variants infecting the three trees. It was discovered that, despite differences in symptomatology, the trees were all apparently coinfected with similar populations of divergent CTV variants. While mixed CTV infections are common, the genetic distance between the most divergent population members observed (24.1% for RdRp and 11.0% for HSP70h was far greater than that in previously described mixed infections. Recombinants of five distinct RdRp lineages and three distinct HSP70h lineages were easily detectable but respectively accounted for only 5.9 and 11.9% of the RdRp and HSP70h gene fragments analysed and there was no evidence of an association between particular recombinant mosaics and CSD. Also, comparisons of CTV population structures indicated that the two most similar CTV populations were those of one of the trees with CSD and the tree without CSD. Conclusion We suggest that if CTV is the causal agent of CSD, it is most likely a subtle feature of population structures within mixed infections and not merely the presence (or absence of a single CTV variant within these populations that triggers the disease.

  20. Assessment of toxicity and biodistribution of recombinant AAV8 vector–mediated immunomodulatory gene therapy in mice with Pompe disease

    Directory of Open Access Journals (Sweden)

    Gensheng Wang

    2014-01-01

    Full Text Available A preclinical safety study was conducted to evaluate the short- and long-term toxicity of a recombinant adeno-associated virus serotype 8 (AAV2/8 vector that has been developed as an immune-modulatory adjunctive therapy to recombinant human acid α-glucosidase (rhGAA, Myozyme enzyme replacement treatment (ERT for patients with Pompe disease (AAV2/8-LSPhGAApA. The AAV2/8-LSPhGAApA vector at 1.6 × 1013 vector particles/kg, after intravenous injection, did not cause significant short- or long-term toxicity. Recruitment of CD4+ (but not CD8+ lymphocytes to the liver was elevated in the vector-dosed male animals at study day (SD 15, and in group 8 animals at SD 113, in comparison to their respective control animals. Administration of the vector, either prior to or after the one ERT injection, uniformly prevented the hypersensitivity induced by subsequent ERT in males, but not always in female animals. The vector genome was sustained in all tissues through 16-week postdosing, except for in blood with a similar tissue tropism between males and females. Administration of the vector alone, or combined with the ERT, was effective in producing significantly increased GAA activity and consequently decreased glycogen accumulation in multiple tissues, and the urine biomarker, Glc4, was significantly reduced. The efficacy of the vector (or with ERT was better in males than in females, as demonstrated both by the number of tissues showing significantly effective responses and the extent of response in a given tissue. Given the lack of toxicity for AAV2/8LSPhGAApA, further consideration of clinical translation is warranted in Pompe disease.

  1. Selection against recombinant hybrids maintains reproductive isolation in hybridizing Populus species despite F1 fertility and recurrent gene flow.

    Science.gov (United States)

    Christe, Camille; Stölting, Kai N; Bresadola, Luisa; Fussi, Barbara; Heinze, Berthold; Wegmann, Daniel; Lexer, Christian

    2016-06-01

    Natural hybrid zones have proven to be precious tools for understanding the origin and maintenance of reproductive isolation (RI) and therefore species. Most available genomic studies of hybrid zones using whole- or partial-genome resequencing approaches have focused on comparisons of the parental source populations involved in genome admixture, rather than exploring fine-scale patterns of chromosomal ancestry across the full admixture gradient present between hybridizing species. We have studied three well-known European 'replicate' hybrid zones of Populus alba and P. tremula, two widespread, ecologically divergent forest trees, using up to 432 505 single-nucleotide polymorphisms (SNPs) from restriction site-associated DNA (RAD) sequencing. Estimates of fine-scale chromosomal ancestry, genomic divergence and differentiation across all 19 poplar chromosomes revealed strikingly contrasting results, including an unexpected preponderance of F1 hybrids in the centre of genomic clines on the one hand, and genomically localized, spatially variable shared variants consistent with ancient introgression between the parental species on the other. Genetic ancestry had a significant effect on survivorship of hybrid seedlings in a common garden trial, pointing to selection against early-generation recombinants. Our results indicate a role for selection against recombinant genotypes in maintaining RI in the face of apparent F1 fertility, consistent with the intragenomic 'coadaptation' model of barriers to introgression upon secondary contact. Whole-genome resequencing of hybridizing populations will clarify the roles of specific genetic pathways in RI between these model forest trees and may reveal which loci are affected most strongly by its cyclic breakdown. © 2016 John Wiley & Sons Ltd.

  2. Flavin-containing monooxygenases in plants: looking beyond detox.

    Science.gov (United States)

    Schlaich, Nikolaus L

    2007-09-01

    Flavin-containing monooxygenases (FMOs) are known in bacteria, yeast and mammals where they catalyze the transfer of one atom of molecular O(2) to low molecular weight substrates. The predominant physiological function of animal FMOs appears to be detoxification of a vast spectrum of xenobiotics but until recently very little was known about the function of FMOs in plants. In the last two to three years, genetic and biochemical characterization has shown that plant FMOs can catalyze specific steps in the biosynthesis of auxin or in the metabolism of glucosinolates, and, furthermore, have a role in pathogen defence. Thus, plant FMOs hint that further FMO functions might be identified also in non-plant organisms and could stimulate novel research in this area.

  3. Kynurenine-3-monooxygenase: a review of structure, mechanism, and inhibitors.

    Science.gov (United States)

    Smith, Jason R; Jamie, Joanne F; Guillemin, Gilles J

    2016-02-01

    Kynurenine monooxygenase (KMO) is an enzyme of the kynurenine (Kyn) pathway (KP), which is the major catabolic route of tryptophan. Kyn represents a branch point of the KP, being converted into the neurotoxin 3-hydroxykynurenine via KMO, neuroprotectant kynurenic acid, and anthranilic acid. As a result of this branch point, KMO is an attractive drug target for several neurodegenerative and/or neuroinflammatory diseases, especially Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases. Although a neurological target, administration of KMO inhibitors in the periphery has demonstrated promising pharmacological results. In light of a recent crystal structure release and reports of preclinical candidates, here we provide a concise yet comprehensive update on the current state of research into the enzymology of KMO and related drug discovery efforts, highlighting areas where further work is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Co-ordinate expression of glycine betaine synthesis genes linked by the FMDV 2A region in a single open reading frame in Pichia pastoris.

    Science.gov (United States)

    Wang, Sanhong; Yao, Quanhong; Tao, Jianmin; Qiao, Yushan; Zhang, Zhen

    2007-12-01

    The genes encoding the two enzymes choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) of glycine betaine synthesis in Suaeda salsa were cloned and fused with the 2A region of foot-and-mouth disease virus in a single open reading frame. The fused genes were placed under the control of the alcohol oxidase (AOX1) promoter in pPIC3B and transformed into P. pastoris GS115. The expression of the fused genes in P. pastoris and the ability of recombinant yeasts to tolerate environmental stresses were studied. The results showed that induced with 0.5% methanol for 96 h, the maximal activities of CMO and BADH in the tested recombinant yeasts were 45- and 44-fold higher than those in the control yeast transformed empty vector only, respectively; the content of glycine betaine in the recombinant yeasts was 28- to 35-fold higher than that in the control. The fused genes linked by 2A region of foot-and-mouth disease virus were expressed in P. pastoris successfully and the polyprotein was 'cleaved' to each functional protein. The yeasts transformed the fused genes, which were more resistant to salt, methanol, and high temperature stresses than the control as result of glycine betaine synthesis genes introduced.

  5. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  6. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Noushin Saljoughian

    Full Text Available Visceral leishmaniasis (VL is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L. tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB(-CTE as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB(-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB(-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL.

  7. Phylogenetic analysis of Mycobacterium massiliense strains having recombinant rpoB gene laterally transferred from Mycobacterium abscessus.

    Science.gov (United States)

    Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Shim, Tae-Sun; Kook, Yoon-Hoh; Kim, Bum-Joon

    2017-01-01

    Recent multi locus sequence typing (MLST) and genome based studies indicate that lateral gene transfer (LGT) events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas), we applied rpoB typing (711 bp) to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp). The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60) genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46), showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41) PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated.

  8. Phylogenetic analysis of Mycobacterium massiliense strains having recombinant rpoB gene laterally transferred from Mycobacterium abscessus.

    Directory of Open Access Journals (Sweden)

    Byoung-Jun Kim

    Full Text Available Recent multi locus sequence typing (MLST and genome based studies indicate that lateral gene transfer (LGT events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas, we applied rpoB typing (711 bp to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp. The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60 genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46, showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41 PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated.

  9. Functionally undefined gene, yggE, alleviates oxidative stress generated by monoamine oxidase in recombinant Escherichia coli.

    Science.gov (United States)

    Ojima, Yoshihiro; Kawase, Daisuke; Nishioka, Motomu; Taya, Masahito

    2009-01-01

    Real-time PCR analysis showed that yggE gene was about two and three times up-regulated in Escherichia coli cells exposed to UVA irradiation and thermal elevation, respectively, suggesting that this gene is responsive to physiological stress. The yggE gene was introduced into E. coli BL21 cells, together with a monoamine oxidase (MAO) gene as a model source for oxidative stress generation. The distribution of independently isolated transformants (two dozen isolates) was examined in terms of MAO activity and cell vitality. In the case of control strain expressing MAO alone, the largest number of transformants existed in the low range of MAO activity less than 2 units mg(-1) and the number significantly decreased at increased MAO activity. On the other hand, the distribution of MAO/YggE-coexpressing transformants shifted to higher MAO activity with frequent appearance in the activity range of 4-8 units mg(-1). The yggE gene product therefore has a possible function for alleviating the stress generated in the cells.

  10. Immunoglobulin Heavy Chain Variable Region and Major Histocompatibility Region Genes Are Linked to Induced Graves' Disease in Females From Two Very Large Families of Recombinant Inbred Mice

    Science.gov (United States)

    Aliesky, Holly; Banuelos, Bianca; Magana, Jessica; Williams, Robert W.; Rapoport, Basil

    2014-01-01

    Graves' hyperthyroidism is caused by antibodies to the TSH receptor (TSHR) that mimic thyroid stimulation by TSH. Stimulating TSHR antibodies and hyperthyroidism can be induced by immunizing mice with adenovirus expressing the human TSHR A-subunit. Prior analysis of induced Graves' disease in small families of recombinant inbred (RI) female mice demonstrated strong genetic control but did not resolve trait loci for TSHR antibodies or elevated serum T4. We investigated the genetic basis for induced Graves' disease in female mice of two large RI families and combined data with earlier findings to provide phenotypes for 178 genotypes. TSHR antibodies measured by inhibition of TSH binding to its receptor were highly significantly linked in the BXD set to the major histocompatibility region (chromosome 17), consistent with observations in 3 other RI families. In the LXS family, we detected linkage between T4 levels after TSHR-adenovirus immunization and the Ig heavy chain variable region (Igvh, chromosome 12). This observation is a key finding because components of the antigen binding region of Igs determine antibody specificity and have been previously linked to induced thyroid-stimulating antibodies. Data from the LXS family provide the first evidence in mice of a direct link between induced hyperthyroidism and Igvh genes. A role for major histocompatibility genes has now been established for genetic susceptibility to Graves' disease in both humans and mice. Future studies using arrays incorporating variation in the complex human Ig gene locus will be necessary to determine whether Igvh genes are also linked to Graves' disease in humans. PMID:25051451

  11. Acetylcholinesterase of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene identification, expression, and biochemical properties of recombinant proteins

    Science.gov (United States)

    Rhipicephalus (Boophilus) microplus (Bm) ticks are vectors of bovine babesiosis and anaplasmosis. Tick resistance to organophosphate (OP) acaricide involves acetylcholinesterase (AChE) insensitivity to OP and metabolic detoxification. Sequencing and in vitro expression of Bm genes encoding AChE allo...

  12. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene identification, expression and biochemical properties of recombinant proteins

    Science.gov (United States)

    Rhipicephalus (Boophilus) microplus (Bm) is a vector of bovine babesiosis and anaplasmosis. Tick resistance to organophosphate (OP) acaricide involves acetylcholinesterase (AChE) insensitivity to OP and metabolic detoxification. In vitro expression of Bm genes encoding AChE allowed biochemical chara...

  13. Exploring the potential of the glycerol-3-phosphate dehydrogenase 2 (GPD2) promoter for recombinant gene expression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Knudsen, Jan Dines; Johanson, Ted; Eliasson Lantz, Anna

    2015-01-01

    A control point for keeping redox homeostasis in Saccharomyces cerevisiae during fermentative growth is the dynamic regulation of transcription for the glycerol-3-phosphate dehydrogenase 2 (GPD2) gene. In this study, the possibility to steer the activity of the GPD2 promoter was investigated by p...

  14. Supplementary Material for: Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages

    KAUST Repository

    Phelan, Jody; Coll, Francesc; Bergval, Indra; Anthony, Richard; Warren, Rob; Sampson, Samantha; Pittius, Nicolaas Gey van; Glynn, Judith; Crampin, Amelia; Alves, Adriana; Bessa, Theolis; Campino, Susana; Dheda, Keertan; Grandjean, Louis; Hasan, Rumina; Hasan, Zahra; Miranda, Anabela; Moore, David; Panaiotov, Stefan; Perdigao, Joao; Portugal, Isabel; Sheen, Patricia; Sousa, Erivelton de Oliveira; Streicher, Elizabeth; Helden, Paul van; Viveiros, Miguel; Hibberd, Martin; Pain, Arnab; McNerney, Ruth; Clark, Taane

    2016-01-01

    Abstract Background Approximately 10 % of the Mycobacterium tuberculosis genome is made up of two families of genes that are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified

  15. MHC class IIB Exon 2 Polymorphism in the Grey Partridge (Perdix perdix) is shaped by selection, recombination and gene conversion

    Czech Academy of Sciences Publication Activity Database

    Promerová, Marta; Králová, Tereza; Bryjová, Anna; Albrecht, Tomáš; Bryja, Josef

    2013-01-01

    Roč. 8, č. 7 (2013), e69135 E-ISSN 1932-6203 R&D Projects: GA ČR GA206/08/1281 Institutional support: RVO:68081766 Keywords : major histocompatibility complex (MHC) * snipe Gallinago-media * Class-I genes * minimal-essential-MHC Subject RIV: EG - Zoology Impact factor: 3.534, year: 2013

  16. Generation of recombinant avian metapneumovirus subgroup C (aMPV-C) viruses containing different length of the G gene.

    Science.gov (United States)

    Genetic variation in length of the G gene among different avian metapneumovirus subgroup C isolates has been reported. However, its biological significance in virus replication, pathogenicity and immunity is unknown. In this study, we developed a reverse genetics system for avian metapneumovirus C a...

  17. A novel system for constructing a recombinant highly-attenuated vaccinia virus strain (LC16m8) expressing foreign genes and its application for the generation of LC16m8-based vaccines against herpes simplex virus 2.

    Science.gov (United States)

    Omura, Natsumi; Yoshikawa, Tomoki; Fujii, Hikaru; Shibamura, Miho; Inagaki, Takuya; Kato, Hirofumi; Egawa, Kazutaka; Harada, Shizuko; Yamada, Souichi; Takeyama, Haruko; Saijo, Masayuki

    2018-04-27

    A novel system was developed for generating a highly-attenuated vaccinia virus LC16m8 (m8, third generation smallpox vaccine) that expresses foreign genes. The innovations in this system are its excisable selection marker, specificity of the integration site of a gene of interest, and easy identification of clones with the fluorescent signal. Using this system, recombinant m8s, which expressed either herpes simplex virus 2 (HSV-2) glycoprotein B (gB)-, gD-, or both gB and gD (gB+gD) were developed, and their efficacy was evaluated. First, the induction of a specific IgG against these HSV-2 glycoproteins in mice infected with each of these recombinant m8s was confirmed with an immunofluorescence assay. Next, mice pre-infected with each of the recombinant m8s were infected with HSV-2 at the lethal dose to examine the vaccine efficacy. The fatality rate in mice pre-infected with either of the recombinant gB+gD- or gD-expressing m8s significantly decreased in comparison with that of the control. The survival rate in both male and female mice pre-infected with either of the recombinant gB+gD- and gD-expressing m8s increased to 100 % and 60 %, respectively, while most of the control mice died. In summary, this new system might be applicable for generating a novel m8-based vaccine.

  18. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S

    1995-01-01

    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were used...... for absorption of the Fab phages. Soluble Fab fragments produced from the cloned material showed identical performance to the parental antibody in agglutination assays. Gel filtration confirmed that the Fab fragment consists of a kappa-Fd heterodimer. The successful use of intact cells for selection of specific...... Fab phages demonstrates that it is possible to by-pass purification of the antigen of interest. Comparison with published germline sequences demonstrated that the immunoglobulin coding regions had the highest homology to the VH 1.9III and V kappa Hum kappa v325 germline genes, respectively....

  19. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain.

    Science.gov (United States)

    Bissa, Massimiliano; Pacchioni, Sole Maria; Zanotto, Carlo; De Giuli Morghen, Carlo; Illiano, Elena; Granucci, Francesca; Zanoni, Ivan; Broggi, Achille; Radaelli, Antonia

    2013-12-26

    The first-generation smallpox vaccine was based on live vaccinia virus (VV) and it successfully eradicated the disease worldwide. Therefore, it was not administered any more after 1980, as smallpox no longer existed as a natural infection. However, emerging threats by terrorist organisations has prompted new programmes for second-generation vaccine development based on attenuated VV strains, which have been shown to cause rare but serious adverse events in immunocompromised patients. Considering the closely related animal poxviruses that might also be used as bioweapons, and the increasing number of unvaccinated young people and AIDS-affected immunocompromised subjects, a safer and more effective smallpox vaccine is still required. New avipoxvirus-based vectors should improve the safety of conventional vaccines, and protect from newly emerging zoonotic orthopoxvirus diseases and from the threat of deliberate release of variola or monkeypox virus in a bioterrorist attack. In this study, DNA and fowlpox recombinants expressing the L1R, A27L, A33R and B5R genes were constructed and evaluated in a pre-clinical trial in mouse, following six prime/boost immunisation regimens, to compare their immunogenicity and protective efficacy against a challenge with the lethal VV IHD-J strain. Although higher numbers of VV-specific IFNγ-producing T lymphocytes were observed in the protected mice, the cytotoxic T-lymphocyte response and the presence of neutralising antibodies did not always correlate with protection. In spite of previous successful results in mice, rabbits and monkeys, where SIV/HIV transgenes were expressed by the fowlpox vector, the immune response elicited by these recombinants was low, and most of the mice were not protected. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Gene conversion at the gray locus of Sordaria fimicola: fit of the experimental data to a hybrid DNA model of recombination.

    Science.gov (United States)

    Kalogeropoulos, A; Thuriaux, P

    1985-03-01

    A hybrid DNA (hDNA) model of recombination has been algebraically formulated, which allows the prediction of frequencies of postmeiotic segregation and conversion of a given allele and their probability of being associated with a crossing over. The model considered is essentially the "Aviemore model." In contrast to some other interpretations of recombination, it states that gene conversion can only result from the repair of heteroduplex hDNA, with postmeiotic segregation resulting from unrepaired heteroduplexes. The model also postulates that crossing over always occurs distally to the initiation site of the hDNA. Eleven types of conversion and postmeiotic segregation with or without associated crossover were considered. Their theoretical frequencies are given by 11 linear equations with ten variables, four describing heteroduplex repair, four giving the probability of hDNA formation and its topological properties and two giving the probability that crossing over occurs at the left or right of the converting allele. Using the experimental data of Kitani and coworkers on conversion at the six best studied gray alleles of Sordaria fimicola, we found that the model considered fit the data at a P level above or very close (allele h4) to the 5% level of sampling error provided that the hDNA is partly asymmetric. The best fitting solutions are such that the hDNA has an equal probability of being formed on either chromatid or, alternatively, that both DNA strands have the same probability of acting as the invading strand during hDNA formation. The two mismatches corresponding to a given allele are repaired with different efficiencies. Optimal solutions are found if one allows for repair to be more efficient on the asymmetric hDNA than on the symmetric one. In the case of allele g1, our data imply that the direction of repair is nonrandom with respect to the strand on which it occurs.

  1. Cloning and Expression of Phytase appA Gene from Shigella sp. CD2 in Pichia pastoris and Comparison of Properties with Recombinant Enzyme Expressed in E. coli.

    Directory of Open Access Journals (Sweden)

    Moushree Pal Roy

    Full Text Available The phytase gene appAS was isolated from Shigella sp. CD2 genomic library. The 3.8 kb DNA fragment contained 1299 bp open reading frame encoding 432 amino acid protein (AppAS with 22 amino acid signal peptide at N-terminal and three sites of N-glycosylation. AppAS contained the active site RHGXRXP and HDTN sequence motifs, which are conserved among histidine acid phosphatases. It showed maximum identity with phytase AppA of Escherichia coli and Citrobacter braakii. The appAS was expressed in Pichia pastoris and E. coli to produce recombinant phytase rAppAP and rAppAE, respectively. Purified glycosylated rAppAP and nonglycosylated rAppAE had specific activity of 967 and 2982 U mg(-1, respectively. Both had pH optima of 5.5 and temperature optima of 60°C. Compared with rAppAE, rAppAP was 13 and 17% less active at pH 3.5 and 7.5 and 11 and 18% less active at temperature 37 and 50°C, respectively; however, it was more active at higher incubation temperatures. Thermotolerance of rAppAP was 33% greater at 60°C and 24% greater at 70°C, when compared with rAppAE. Both the recombinant enzymes showed high specificity to phytate and resistance to trypsin. To our knowledge, this is the first report on cloning and expression of phytase from Shigella sp.

  2. Cloning and Expression of Phytase appA Gene from Shigella sp. CD2 in Pichia pastoris and Comparison of Properties with Recombinant Enzyme Expressed in E. coli.

    Science.gov (United States)

    Pal Roy, Moushree; Mazumdar, Deepika; Dutta, Subhabrata; Saha, Shyama Prasad; Ghosh, Shilpi

    2016-01-01

    The phytase gene appAS was isolated from Shigella sp. CD2 genomic library. The 3.8 kb DNA fragment contained 1299 bp open reading frame encoding 432 amino acid protein (AppAS) with 22 amino acid signal peptide at N-terminal and three sites of N-glycosylation. AppAS contained the active site RHGXRXP and HDTN sequence motifs, which are conserved among histidine acid phosphatases. It showed maximum identity with phytase AppA of Escherichia coli and Citrobacter braakii. The appAS was expressed in Pichia pastoris and E. coli to produce recombinant phytase rAppAP and rAppAE, respectively. Purified glycosylated rAppAP and nonglycosylated rAppAE had specific activity of 967 and 2982 U mg(-1), respectively. Both had pH optima of 5.5 and temperature optima of 60°C. Compared with rAppAE, rAppAP was 13 and 17% less active at pH 3.5 and 7.5 and 11 and 18% less active at temperature 37 and 50°C, respectively; however, it was more active at higher incubation temperatures. Thermotolerance of rAppAP was 33% greater at 60°C and 24% greater at 70°C, when compared with rAppAE. Both the recombinant enzymes showed high specificity to phytate and resistance to trypsin. To our knowledge, this is the first report on cloning and expression of phytase from Shigella sp.

  3. Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors

    International Nuclear Information System (INIS)

    Wang, Changdong; Ma, Yongping; Hu, Qiongwen; Xie, Tingting; Wu, Jiayan; Zeng, Fan; Song, Fangzhou

    2016-01-01

    Directly targeting therapeutic suicide gene to a solid tumor is a hopeful approach for cancer gene therapy. Treatment of a solid tumor by an effective vector for a suicide gene remains a challenge. Given the lack of effective treatments, we constructed a bifidobacterial recombinant thymidine kinase (BF-rTK) -ganciclovir (GCV) targeting system (BKV) to meet this requirement and to explore antitumor mechanisms. Bifidobacterium (BF) or BF-rTK was injected intratumorally with or without ganciclovir in a human colo320 intestinal xenograft tumor model. The tumor tissues were analyzed using apoptosis antibody arrays, real time PCR and western blot. The colo320 cell was analyzed by the gene silencing method. Autophagy and necroptosis were also detected in colo320 cell. Meanwhile, three human digestive system xenograft tumor models (colorectal cancer colo320, gastric cancer MKN-45 and liver cancer SSMC-7721) and a breast cancer (MDA-MB-231) model were employed to validate the universality of BF-rTK + GCV in solid tumor gene therapy. The survival rate was evaluated in three human cancer models after the BF-rTK + GCV intratumor treatment. The analysis of inflammatory markers (TNF-α) in tumor indicated that BF-rTK + GCV significantly inhibited TNF-α expression. The results suggested that BF-rTK + GCV induced tumor apoptosis without autophagy and necroptosis occurrence. The apoptosis was transduced by multiple signaling pathways mediated by FasL and TNFR2 and mainly activated the mitochondrial control of apoptosis via Bid and Bim, which was rescued by silencing Bid or/and Bim. However, BF + GCV only induced apoptosis via Fas/FasL signal pathway accompanied with increased P53 expression. We further found that BF-rTK + GCV inhibited the expression of the inflammatory maker of TNF-α. However, BF-rTK + GCV did not result in necroptosis and autophagy. BF-rTK + GCV induced tumor apoptosis mediated by FasL and TNFR2 through the mitochondrial control of apoptosis via Bid and Bim

  4. Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum.

    Science.gov (United States)

    Hussain, Razak; Kumari, Indu; Sharma, Shikha; Ahmed, Mushtaq; Khan, Tabreiz Ahmad; Akhter, Yusuf

    2017-12-01

    Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein-ligand and protein-heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.

  5. Recombination Events Involving the atp9 Gene Are Associated with Male Sterility of CMS PET2 in Sunflower.

    Science.gov (United States)

    Reddemann, Antje; Horn, Renate

    2018-03-11

    Cytoplasmic male sterility (CMS) systems represent ideal mutants to study the role of mitochondria in pollen development. In sunflower, CMS PET2 also has the potential to become an alternative CMS source for commercial sunflower hybrid breeding. CMS PET2 originates from an interspecific cross of H. petiolaris and H. annuus as CMS PET1, but results in a different CMS mechanism. Southern analyses revealed differences for atp6 , atp9 and cob between CMS PET2, CMS PET1 and the male-fertile line HA89. A second identical copy of atp6 was present on an additional CMS PET2-specific fragment. In addition, the atp9 gene was duplicated. However, this duplication was followed by an insertion of 271 bp of unknown origin in the 5' coding region of the atp9 gene in CMS PET2, which led to the creation of two unique open reading frames orf288 and orf231 . The first 53 bp of orf288 are identical to the 5' end of atp9 . Orf231 consists apart from the first 3 bp, being part of the 271-bp-insertion, of the last 228 bp of atp9 . These CMS PET2-specific orfs are co-transcribed. All 11 editing sites of the atp9 gene present in orf231 are fully edited. The anther-specific reduction of the co-transcript in fertility-restored hybrids supports the involvement in male-sterility based on CMS PET2.

  6. Recombination Events Involving the atp9 Gene Are Associated with Male Sterility of CMS PET2 in Sunflower

    Directory of Open Access Journals (Sweden)

    Antje Reddemann

    2018-03-01

    Full Text Available Cytoplasmic male sterility (CMS systems represent ideal mutants to study the role of mitochondria in pollen development. In sunflower, CMS PET2 also has the potential to become an alternative CMS source for commercial sunflower hybrid breeding. CMS PET2 originates from an interspecific cross of H. petiolaris and H. annuus as CMS PET1, but results in a different CMS mechanism. Southern analyses revealed differences for atp6, atp9 and cob between CMS PET2, CMS PET1 and the male-fertile line HA89. A second identical copy of atp6 was present on an additional CMS PET2-specific fragment. In addition, the atp9 gene was duplicated. However, this duplication was followed by an insertion of 271 bp of unknown origin in the 5′ coding region of the atp9 gene in CMS PET2, which led to the creation of two unique open reading frames orf288 and orf231. The first 53 bp of orf288 are identical to the 5′ end of atp9. Orf231 consists apart from the first 3 bp, being part of the 271-bp-insertion, of the last 228 bp of atp9. These CMS PET2-specific orfs are co-transcribed. All 11 editing sites of the atp9 gene present in orf231 are fully edited. The anther-specific reduction of the co-transcript in fertility-restored hybrids supports the involvement in male-sterility based on CMS PET2.

  7. Intravenous Administration Is an Effective and Safe Route for Cancer Gene Therapy Using the Bifidobacterium-Mediated Recombinant HSV-1 Thymidine Kinase and Ganciclovir

    Directory of Open Access Journals (Sweden)

    Huicong Zhou

    2016-06-01

    Full Text Available The herpes simplex virus thymidine kinase/ganciclovir (HSV TK/GCV system is one of the best studied cancer suicide gene therapy systems. Our previous study showed that caspase 3 expression was upregulated and bladder tumor growth was significantly reduced in rats treated with a combination of Bifidobacterium (BF and HSV TK/GCV (BF-rTK/GCV. However, it was raised whether the BF-mediated recombinant thymidine kinase combined with ganciclovir (BF-rTK/GCV was safe to administer via venous for cancer gene therapy. To answer this question, the antitumor effects of BF-rTK/GCV were mainly evaluated in a xenograft nude mouse model bearing MKN-45 gastric tumor cells. The immune response, including analysis of cytokine profiles, was analyzed to evaluate the safety of intramuscular and intravenous injection of BF-rTK in BALB/c mice. The results suggested that gastric tumor growth was significantly inhibited in vivo by BF-rTK/GCV. However, the BF-rTK/GCV had no effect on mouse body weight, indicating that the treatment was safe for the host. The results of cytokine profile analysis indicated that intravenous injection of a low dose of BF-rTK resulted in a weaker cytokine response than that obtained with intramuscular injection. Furthermore, immunohistochemical analysis showed that intravenous administration did not affect the expression of immune-associated TLR2 and TLR4. Finally, the BF-rTK/GCV inhibited vascular endothelial growth factor (VEGF expression in mouse model, which is helpful for inhibiting of tumor angiogenesis. That meant intravenous administration of BF-rTK/GCV was an effective and safe way for cancer gene therapy.

  8. Kynurenine 3-Monooxygenase: An Influential Mediator of Neuropathology.

    Science.gov (United States)

    Parrott, Jennifer M; O'Connor, Jason C

    2015-01-01

    Mounting evidence demonstrates that kynurenine metabolism may play an important pathogenic role in the development of multiple neurological and neuropsychiatric disorders. The kynurenine pathway consists of two functionally distinct branches that generate both neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of these branches, kynurenine 3-monooxygenase (KMO), is predominantly expressed in microglia and has emerged as a pivotal point of metabolic regulation. KMO substrate and expression levels are upregulated by pro-inflammatory cytokines and altered by functional genetic mutations. Increased KMO metabolism results in the formation of metabolites that activate glutamate receptors and elevate oxidative stress, while recent evidence has revealed neurodevelopmental consequences of reduced KMO activity. Together, the evidence suggests that KMO is positioned at a critical metabolic junction to influence the development or trajectory of a myriad of neurological diseases. Understanding the mechanism(s) by which alterations in KMO activity are able to impair neuronal function, and viability will enhance our knowledge of related disease pathology and provide insight into novel therapeutic opportunities. This review will discuss the influence of KMO on brain kynurenine metabolism and the current understanding of molecular mechanisms by which altered KMO activity may contribute to neurodevelopment, neurodegenerative, and neuropsychiatric diseases.

  9. Kynurenine 3-monooxygenase: an influential mediator of neuropathology

    Directory of Open Access Journals (Sweden)

    Jennifer M Parrott

    2015-08-01

    Full Text Available Mounting evidence demonstrates that kynurenine metabolism may play an important pathogenic role in the development of multiple neurological and neuropsychiatric disorders. The kynurenine pathway consists of two functionally distinct branches that generate both neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of these branches, kynurenine 3-monooxygenase (KMO, is predominantly expressed in microglia and has emerged as a pivotal point of metabolic regulation. KMO substrate and expression levels are up-regulated by pro-inflammatory cytokines and altered by functional genetic mutations. Increased KMO metabolism results in the formation of metabolites that activate glutamate receptors and elevate oxidative stress, while recent evidence has revealed neurodevelopmental consequences of reduced KMO activity. Together, the evidence suggests that KMO is positioned at a critical metabolic junction to influence the development or trajectory of a myriad of neurological diseases. Understanding the mechanism(s by which alterations in KMO activity are able to impair neuronal function and viability will enhance our knowledge of related disease pathology and provide insight into novel therapeutic opportunities. This review will discuss the influence of KMO on brain kynurenine metabolism and the current understanding of molecular mechanisms by which altered KMO activity may contribute to neurodevelopment, neurodegenerative and neuropsychiatric diseases.

  10. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration

    Science.gov (United States)

    Zwilling, Daniel; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Guidetti, Paolo; Wu, Hui-Qiu; Lee, Jason; Truong, Jennifer; Andrews-Zwilling, Yaisa; Hsieh, Eric W.; Louie, Jamie Y.; Wu, Tiffany; Scearce-Levie, Kimberly; Patrick, Christina; Adame, Anthony; Giorgini, Flaviano; Moussaoui, Saliha; Laue, Grit; Rassoulpour, Arash; Flik, Gunnar; Huang, Yadong; Muchowski, Joseph M.; Masliah, Eliezer; Schwarcz, Robert; Muchowski, Paul J.

    2011-01-01

    SUMMARY Metabolites in the kynurenine pathway of tryptophan degradation are thought to play an important role in neurodegenerative disorders such as Alzheimer’s disease and Huntington’s disease. Metabolites that cause glutamate receptor-mediated excitotoxicity and free radical formation are elevated in the blood and vulnerable brain regions in these diseases, while levels of the neuroprotective metabolite kynurenic acid are often decreased. Here we describe the synthesis and characterization of JM6, a novel small-molecule pro-drug inhibitor of kynurenine 3-monooxygenase (KMO). JM6 raises kynurenic acid and reduces extracellular glutamate in the brain after chronic oral administration by inhibiting KMO in blood. In a transgenic mouse model of Alzheimer’s disease, JM6 prevented spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extended life span, prevented synaptic loss, and decreased microglial activation in a mouse model of Huntington’s disease. These findings support a critical link between blood cells and neurodegeneration that is mediated by KMO and the kynurenine pathway. PMID:21640374

  11. Substrate and inhibitor specificity of kynurenine monooxygenase from Cytophaga hutchinsonii.

    Science.gov (United States)

    Phillips, Robert S; Anderson, Andrew D; Gentry, Harvey G; Güner, Osman F; Bowen, J Phillip

    2017-04-15

    Kynurenine monooxygenase (KMO) is a potential drug target for treatment of neurodegenerative disorders such as Huntington's and Alzheimer's diseases. We have evaluated substituted kynurenines as substrates or inhibitors of KMO from Cytophaga hutchinsonii. Kynurenines substituted with a halogen at the 5-position are excellent substrates, with values of k cat and k cat /K m comparable to or higher than kynurenine. However, kynurenines substituted in the 3-position are competitive inhibitors, with K I values lower than the K m for kynurenine. Bromination also enhances inhibition, and 3,5-dibromokynurenine is a potent competitive inhibitor with a K I value of 1.5μM. A pharmacophore model of KMO was developed, and predicted that 3,4-dichlorohippuric acid would be an inhibitor. The K I for this compound was found to be 34μM, thus validating the pharmacophore model. We are using these results and our model to design more potent inhibitors of KMO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Spectrum Recombination.

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  13. Determination of the human cytochrome P450 monooxygenase catalyzing the enantioselective oxidation of 2,2',3,5',6-pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183).

    Science.gov (United States)

    Nagayoshi, Haruna; Kakimoto, Kensaku; Konishi, Yoshimasa; Kajimura, Keiji; Nakano, Takeshi

    2017-10-17

    2,2',3,5',6-Pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183) possess axial chirality and form the aS and aR enantiomers. The enantiomers of these congeners have been reported to accumulate in the human body enantioselectively via unknown mechanisms. In this study, we determined the cytochrome P450 (CYP) monooxygenase responsible for the enantioselective oxidization of PCB 95 and PCB 183, using a recombinant human CYP monooxygenase. We evaluated 13 CYP monooxygenases, namely CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP4F2, and aromatase (CYP19), and revealed that CYP2A6 preferably oxidizes aS-PCB 95 enantioselectively; however, it did not oxidize PCB 183. The enantiomer composition was elevated from 0.5 (racemate) to 0.54. In addition, following incubation with CYP2A6, the enantiomer fraction (EF) of PCB 95 demonstrated a time-dependent increase.

  14. Dual-In/Out strategy for genes integration into bacterial chromosome: a novel approach to step-by-step construction of plasmid-less marker-less recombinant E. coli strains with predesigned genome structure

    Directory of Open Access Journals (Sweden)

    Biryukova Irina V

    2008-08-01

    Full Text Available Abstract Background The development of modern producer strains with metabolically engineered pathways poses special problems that often require manipulating many genes and expressing them individually at different levels or under separate regulatory controls. The construction of plasmid-less marker-less strains has many advantages for the further practical exploitation of these bacteria in industry. Such producer strains are usually constructed by sequential chromosome modifications including deletions and integration of genetic material. For these purposes complex methods based on in vitro and in vivo recombination processes have been developed. Results Here, we describe the new scheme of insertion of the foreign DNA for step-by-step construction of plasmid-less marker-less recombinant E. coli strains with chromosome structure designed in advance. This strategy, entitled as Dual-In/Out, based on the initial Red-driven insertion of artificial φ80-attB sites into desired points of the chromosome followed by two site-specific recombination processes: first, the φ80 system is used for integration of the recombinant DNA based on selective marker-carrier conditionally-replicated plasmid with φ80-attP-site, and second, the λ system is used for excision of inserted vector part, including the plasmid ori-replication and the marker, flanked by λ-attL/R-sites. Conclusion The developed Dual-In/Out strategy is a rather straightforward, but convenient combination of previously developed recombination methods: phages site-specific and general Red/ET-mediated. This new approach allows us to detail the design of future recombinant marker-less strains, carrying, in particular, rather large artificial insertions that could be difficult to introduce by usually used PCR-based Recombineering procedure. The developed strategy is simple and could be particularly useful for construction of strains for the biotechnological industry.

  15. Effects of nuclear mutations for recombination and repair functions and of caffeine on mitochondrial recombination

    International Nuclear Information System (INIS)

    Fraenkel, A.H.M.

    1974-01-01

    Studies of both prokaryotic and eukaryotic organisms indicate that pathways governing repair of damage to nuclear DNA caused by x-ray or ultraviolet irradiation overlap with those controlling recombination. Fourteen nuclear mutants of Saccharomyces cerevisiae were tested in order to determine whether these mutant genes affected mitochondrial recombination. None of the mutations studied significantly affected mitochondrial recombination. The nuclear recombination and repair pathways studied do not overlap with the nuclear pathway which controls recombination of mitochondrial DNA. A second set of experiments was designed to test the effect of caffeine on both nuclear and mitochondrial recombination in Saccharomyces cerevisiae. (U.S.)

  16. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    Science.gov (United States)

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-03-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate

  17. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on the growth and radiotherapeutic sensitivity of human lymphoma cell lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wang Yongqing; Wu Jinchang

    2008-01-01

    Objective: To explore the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Methods: Human lymphoma cell lines Raji and Daudi were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTT. The p53 protein expression was detected by Western blotting, and p53 mRNA was detected by BT-PCB. Results: The MTT results showed that the inhibitory effect and radiosensitivity enhancement of rAd-p53 on human lymphoma cell lines were not obvious [Raji: (27.5±4.1)%; Daudi: (28.1±1.6)%]. The results of Western blotting and BT-PCB showed that extrinsic p53 protein and p53 mRNA were expressed to some degree, but not at high-level. In addition, the results didn't demonstrate obvious radiosensitivity enhancement. Conclusions: The role of inhibition and radiosensitivity enhancement of rAd-p53 was not significant on human lymphoma cell lines. (authors)

  18. Optimization of a multi-gene HIV-1 recombinant subtype CRF02AG DNA vaccine for expression of multiple immunogenic forms

    International Nuclear Information System (INIS)

    Ellenberger, Dennis; Li Bin; Smith, James; Yi Hong; Folks, Thomas; Robinson, Harriet; Butera, Salvatore

    2004-01-01

    We developed an AIDS vaccine for Western and West-Central Africa based on a DNA plasmid vector expressing HIV-1 recombinant subtype CRF02 A G gag, pol, and env genes. To optimize the production of noninfectious HIV-like particles (VLPs) and potentially improve the effectiveness of the vaccine, we generated four potential vaccine constructs: the parental (IC2) and three modifications (IC25, IC48, and IC90) containing mutations within the HIV protease. While the parental construct IC2 expressed aggregates of Gag proteins, the IC25 construct resulted in the production of immature VLPs (the core comprises unprocessed Pr 55Gag ). The remaining two constructs (IC48 and IC90) produced mature VLPs (the core comprises processed capsid p24) in addition to immature VLPs and aggregates of Gag proteins. VLPs incorporated significant levels of mature gp120 envelope glycoprotein. Importantly, the mature VLPs were fusion competent and entered coreceptor-specific target cells. The production of multiple antigenic forms, including fusion-competent VLPs, by candidate DNA vaccine constructs may provide immunologic advantages for induction of protective cellular and humoral responses against HIV-1 proteins

  19. Transformation of tobacco plant (Nicotiana tabacum L. with the recombinant hepatitis B virus genes 35SHBsAg and 35SHBsAgER

    Directory of Open Access Journals (Sweden)

    Juliana Martins Ribeiro

    2010-03-01

    Full Text Available The recombinant surface antigen of hepatitis B virus (HBsAg, purified from transgenic plants, proved to be efficient when utilized for raising anti-HB antibodies for the prevention of hepatitis B. Because of the important role of the HBsAg antigen in hepatitis B prevention, the coding sequence of HBsAg antigen, with or without the addition of the carboxi-terminus sequence for protein retention in the endoplasmatic reticulum, was linked to cauliflower mosaic virus 35S promoter, tobacco mosaic virus leader sequence Ω, and the transcription terminator sequence. The aim of this work was to clone the chimeric gene 35SHBsAgER in the plant expression vector pGPTV/Kan/Asc. The resulting plasmid, called pG35SHBsAgER, and another plasmid produced previously in our laboratory called pG35SHBsAg, were transferred to Agrobacterium tumefaciens, and tobacco leaves, of the SR1 cultivar were used as explants for genetic transformation. Twenty-one fully regenerated plants were obtained (10 for the pG35SHBsAg construction and 11 for the pG35SHBsAgER construction. The genomic DNA of all plants was analyzed by PCR, and the presence of the transgene was confirmed in all plants.

  20. Cloning, characterization and expression of OsFMO(t) in rice encoding a flavin monooxygenase.

    Science.gov (United States)

    Yi, Jicai; Liu, Lanna; Cao, Youpei; Li, Jiazuo; Mei, Mantong

    2013-12-01

    Flavin monooxygenases (FMO) play a key role in tryptophan (Trp)-dependent indole-acetic acid (IAA) biosynthesis in plants and regulate plant growth and development. In this study, the full-length genomic DNA and cDNA of OsFMO(t), a FMO gene that was originally identified from a rolled-leaf mutant in rice, was isolated and cloned from wild type of the rolled-leaf mutant. OsFMO(t) was found to have four exons and three introns, and encode a protein with 422 amino acid residues that contains two basic conserved motifs, with a 'GxGxxG' characteristic structure. OsFMO(t) showed high amino acid sequence identity with FMO proteins from other plants, in particular with YUCCA from Arabidopsis, FLOOZY from Petunia, and OsYUCCA1 from rice. Our phylogenetic analysis showed that OsFMO(t) and the homologous FMO proteins belong to the same clade in the evolutionary tree. Overexpression of OsFMO(t) in transformed rice calli produced IAA-excessive phenotypes that showed browning and lethal effects when exogenous auxins such as naphthylacetic acid (NAA) were added to the medium. These results suggested that the OsFMO(t) protein is involved in IAA biosynthesis in rice and its overexpression could lead to the malformation of calli. Spatio-temporal expression analysis using RT-PCR and histochemical analysis for GUS activity revealed that expression of OsFMO(t) was totally absent in the rolled-leaf mutant. However, in the wild type variety, this gene was expressed at different levels temporally and spatially, with the highest expression observed in tissues with fast growth and cell division such as shoot apexes, tender leaves and root tips. Our results demonstrated that IAA biosynthesis regulated by OsFMO(t) is likely localized and might play an essential role in shaping local IAA concentrations which, in turn, is critical for regulating normal growth and development in rice.

  1. [Construction and expression of recombinant Mycobacterium bovis BCG with the ompA-like membrane protein gene Loa22 of Leptospira interrogans serovar].

    Science.gov (United States)

    Li, Dao-kun; Bao, Lang; Zhang, Ying; Sun, Zhan

    2010-03-01

    To study the immunity of Loa22 from Leptospira interrogans serovar Lai strain 56601 by expressing its protein in BCG. Amplified the mature peptide of Loa22 gene from the genome of of Leptospira interrogans serovar Lai strain 56601 and constructed recombinant plasmid rpMV36l-1oa22 with the E. coli-BCG integrating shuttle plasmid pMV361 and the Loa22 mature peptide gene. The rpMV36l-1oa22 plasmid was transformed into BCG by electroporation. The rBCG bearing rpMV36l-1oa22 was induced by high temperature of 45 degrees C and expressed protein was identified by SDS-PAGE and Western Blotting. Fifth 6-week-old BALB/c mice were randomly divided into five groups, which were inoculated intraperitoneally two times at 0-day and 21-day with BCG, rBCG-pMV361, rI3CG-1oa22, Loa22 and killed whole-leptospires respectively. All animals were dislocated from cervical vertebra on the 14Ih day after the last immunization. The proliferative reaction of splenic lymphocyte in tuitro were tested by XTT. The rpMV36l-1oa22 plasmid was constructed successfully and transformed into BCG. The rBCG expressed a 19 X io specifical protein identified by SDS-PAGE and Western Blotting. The splenic lymphocyte proliferate activity (SI) in rBCG-ioa22 group in intro was significantly higher than those in BCG group and rBCG-pMV361 group. We explored the expressing feasibility of Loa22 in Mycobacterium bovis BCG. may therefore make further researches on the induction of protective immunity against human and animal leptospirosis.

  2. The extent and importance of intragenic recombination

    Directory of Open Access Journals (Sweden)

    de Silva Eric

    2004-11-01

    Full Text Available Abstract We have studied the recombination rate behaviour of a set of 140 genes which were investigated for their potential importance in inflammatory disease. Each gene was extensively sequenced in 24 individuals of African descent and 23 individuals of European descent, and the recombination process was studied separately in the two population samples. The results obtained from the two populations were highly correlated, suggesting that demographic bias does not affect our population genetic estimation procedure. We found evidence that levels of recombination correlate with levels of nucleotide diversity. High marker density allowed us to study recombination rate variation on a very fine spatial scale. We found that about 40 per cent of genes showed evidence of uniform recombination, while approximately 12 per cent of genes carried distinct signatures of recombination hotspots. On studying the locations of these hotspots, we found that they are not always confined to introns but can also stretch across exons. An investigation of the protein products of these genes suggested that recombination hotspots can sometimes separate exons belonging to different protein domains; however, this occurs much less frequently than might be expected based on evolutionary studies into the origins of recombination. This suggests that evolutionary analysis of the recombination process is greatly aided by considering nucleotide sequences and protein products jointly.

  3. Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy.

    Directory of Open Access Journals (Sweden)

    Ming Yin

    Full Text Available The repair of DNA double-strand breaks (DSBs is the major mechanism to maintain genomic stability in response to irradiation. We hypothesized that genetic polymorphisms in DSB repair genes may affect clinical outcomes among non-small cell lung cancer (NSCLC patients treated with definitive radio(chemotherapy. We genotyped six potentially functional single nucleotide polymorphisms (SNPs (i.e., RAD51 -135G>C/rs1801320 and -172G>T/rs1801321, XRCC2 4234G>C/rs3218384 and R188H/rs3218536 G>A, XRCC3 T241M/rs861539 and NBN E185Q/rs1805794 and estimated their associations with overall survival (OS and radiation pneumonitis (RP in 228 NSCLC patients. We found a predictive role of RAD51 -135G>C SNP in RP development (adjusted hazard ratio [HR] = 0.52, 95% confidence interval [CI], 0.31-0.86, P = 0.010 for CG/CC vs. GG. We also found that RAD51 -135G>C and XRCC2 R188H SNPs were independent prognostic factors for overall survival (adjusted HR = 1.70, 95% CI, 1.14-2.62, P = 0.009 for CG/CC vs. GG; and adjusted HR = 1.70; 95% CI, 1.02-2.85, P = 0.043 for AG vs. GG, respectively and that the SNP-survival association was most pronounced in the presence of RP. Our study suggests that HR genetic polymorphisms, particularly RAD51 -135G>C, may influence overall survival and radiation pneumonitis in NSCLC patients treated with definitive radio(chemotherapy. Large studies are needed to confirm our findings.

  4. Discovery and industrial applications of lytic polysaccharide mono-oxygenases.

    Science.gov (United States)

    Johansen, Katja S

    2016-02-01

    The recent discovery of copper-dependent lytic polysaccharide mono-oxygenases (LPMOs) has opened up a vast area of research covering several fields of application. The biotech company Novozymes A/S holds patents on the use of these enzymes for the conversion of steam-pre-treated plant residues such as straw to free sugars. These patents predate the correct classification of LPMOs and the striking synergistic effect of fungal LPMOs when combined with canonical cellulases was discovered when fractions of fungal secretomes were evaluated in industrially relevant enzyme performance assays. Today, LPMOs are a central component in the Cellic CTec enzyme products which are used in several large-scale plants for the industrial production of lignocellulosic ethanol. LPMOs are characterized by an N-terminal histidine residue which, together with an internal histidine and a tyrosine residue, co-ordinates a single copper atom in a so-called histidine brace. The mechanism by which oxygen binds to the reduced copper atom has been reported and the general mechanism of copper-oxygen-mediated activation of carbon is being investigated in the light of these discoveries. LPMOs are widespread in both the fungal and the bacterial kingdoms, although the range of action of these enzymes remains to be elucidated. However, based on the high abundance of LPMOs expressed by microbes involved in the decomposition of organic matter, the importance of LPMOs in the natural carbon-cycle is predicted to be significant. In addition, it has been suggested that LPMOs play a role in the pathology of infectious diseases such as cholera and to thus be relevant in the field of medicine. © 2016 Authors; published by Portland Press Limited.

  5. Targeted Deletion of Kynurenine 3-Monooxygenase in Mice

    Science.gov (United States)

    Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Thomas, Marian A. R.; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J.

    2013-01-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo−/− mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo−/− mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo−/− mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD+, did not differ between Kmo−/− and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo−/− mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo−/− mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease. PMID:24189070

  6. Monooxygenase activitity in Aedes aegypti population in Tembalang subdistrict, Semarang city

    Directory of Open Access Journals (Sweden)

    Dyah Widiastuti

    2015-06-01

    Full Text Available Dengue Haemorrhagic Fever (DHF is a major health problem in Tembalang sub district, Semarang City. Fogging with insecticide applications was done frequently as an effort to control Dengue vectors. The use of insecticides from the same class in a long time can lead to resistance in mosquitos’ population. The research aimed to observe the activity of monooxygenases in Aedes aegypti populations in Tembalang Subdistrict, Semarang. The study was conducted during February-November 2014 with a cross-sectional design in 10 villages in Tembalang Subdistirict, Semarang City. Field strains of Ae. aegypti eggs were collected using ovitraps. The collected eggs were grown under standard condition to adult mosquitoes. Mosquitos’ homogenate were stored at -85C and used for biochemical assays. The results showed there was increased monooxygenases activity in Ae. aegypti populations. Resistance to synthetic pyrethroid insecticide in Ae. aegypti mosquitoes population in Tembalang Subdistrict might be caused by the mechanism of detoxification enzymes in particular monooxygenases

  7. Identification of a novel gene cluster in the upstream region of the S-layer gene sbpA involved in cell wall metabolism of Lysinibacillus sphaericus CCM 2177 and characterization of the recombinantly produced autolysin and pyruvyl transferase.

    Science.gov (United States)

    Pleschberger, Magdalena; Hildner, Florian; Rünzler, Dominik; Gelbmann, Nicola; Mayer, Harald F; Sleytr, Uwe B; Egelseer, Eva M

    2013-05-01

    The S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 assembles into a square (p4) lattice structure and recognizes a pyruvylated secondary cell wall polymer (SCWP) as the proper anchoring structure to the rigid cell wall layer. Sequencing of 8,004 bp in the 5'-upstream region of the S-layer gene sbpA led to five ORFs-encoding proteins involved in cell wall metabolism. After cloning and heterologous expression of ORF1 and ORF5 in Escherichia coli, the recombinant autolysin rAbpA and the recombinant pyruvyl transferase rCsaB were isolated, purified, and correct folding was confirmed by circular dichroism. Although rAbpA encoded by ORF1 showed amidase activity, it could attack whole cells of Ly. sphaericus CCM 2177 only after complete extraction of the S-layer lattice. Despite the presence of three S-layer-homology motifs on the N-terminal part, rAbpA did not show detectable affinity to peptidoglycan-containing sacculi, nor to isolated SCWP. As the molecular mass of the autolysin lies above the molecular exclusion limit of the S-layer, AbpA is obviously trapped within the rigid cell wall layer by the isoporous protein lattice. Immunogold-labeling of ultrathin-sectioned whole cells of Ly. sphaericus CCM 2177 with a polyclonal rabbit antiserum raised against rCsaB encoded by ORF5, and cell fractionation experiments demonstrated that the pyruvyl transferase was located in the cytoplasm, but not associated with cell envelope components including the plasma membrane. In enzymatic assays, rCsaB clearly showed pyruvyl transferase activity. By using RT-PCR, specific transcripts for each ORF could be detected. Cotranscription could be confirmed for ORF2 and ORF3.

  8. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots.

    Science.gov (United States)

    Stukenbrock, Eva H; Dutheil, Julien Y

    2018-03-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. Copyright © 2018 Stukenbrock and Dutheil.

  9. Peripheral kynurenine-3-monooxygenase deficiency as a potential risk factor for metabolic syndrome in schizophrenia patients.

    Science.gov (United States)

    Oxenkrug, Gregory; van der Hart, Marieke; Roeser, Julien; Summergrad, Paul

    2017-01-01

    Increased predisposition of schizophrenia patients (SP) to development of obesity and insulin resistance suggested common signaling pathway between metabolic syndrome (MetS) and schizophrenia. Deficiency of kynurenine-3-monooxygenase (KMO), enzyme catalyzing formation of 3-hydroxykynurenine (3-HK) from kynurenine (Kyn), a tryptophan (Trp) metabolite, might contribute to development of MetS as suggested by non-expression of KMO genes in human fat tissue and elevated serum concentrations of Kyn and its metabolites, kynurenic (KYNA) and anthranilic (ANA) acids, in diabetic patients and Zucker fatty rats (ZFR). Markers of KMO deficiency: decreased 3-HK and elevated Kyn, KYNA and ANA, were observed in brains and spinal fluids of SP, and in brains and serum of experimental animals with genetically- or pharmacologically-induced KMO deficiency. However, elevated concentrations of ANA and decreased 3-HK were reported in serum of SP without concurrent increase of Kyn and KYNA. Present study aimed to re-assess serum Kyn metabolites (HPLC-MS) in a sub-group of SP with elevated KYNA. We found increased Kyn concentrations (by 30%) and Kyn:Trp ratio (by 20%) in serum of SP with elevated KYNA concentrations (by 40%). Obtained results and our previous data suggest that peripheral KMO deficiency might be manifested by, at least, two different patterns: elevated ANA with decreased 3-HK; and elevated KYNA and KYN. The latter pattern was previously described in type 2 diabetes patients and might underline increased predisposition of SP to development of MetS. Assessment of peripheral KMO deficiency might identify SP predisposed to MetS. Attenuation of the consequences of peripheral KMO deficiency might be a new target for prevention/treatment of obesity and diabetes in SP.

  10. Loss of Resistance to Angiotensin II-Induced Hypertension in the Jackson Laboratory Recombination-Activating Gene Null Mouse on the C57BL/6J Background.

    Science.gov (United States)

    Ji, Hong; Pai, Amrita V; West, Crystal A; Wu, Xie; Speth, Robert C; Sandberg, Kathryn

    2017-06-01

    Resistance to angiotensin II (Ang II)-induced hypertension in T-cell-deficient male mice with a targeted mutation in the recombination-activating gene-1 ( Rag1 ) on the C57BL/6J background (B6. Rag1 -/- -M), which was reported by 5 independent laboratories including ours before 2015, has been lost. In mice purchased from Jackson Laboratory in 2015 and 2016, the time course and magnitude increase in mean arterial pressure induced by 2 weeks of Ang II infusion at 490 ng/kg per minute was identical between B6. Rag1 -/- -M and male wild-type littermates. Moreover, there were no differences in the time course or magnitude increase in mean arterial pressure at the lowest dose of Ang II (200 ng/kg per minute) that increased mean arterial pressure. This loss in Ang II resistance is independent of T cells. Angiotensin type 1-receptor binding was 1.4-fold higher in glomeruli isolated from recently purchased B6. Rag1 -/- -M suggesting an increase in renal angiotensin type 1-receptor activity masks the blood pressure protection afforded by the lack of T cells. The phenotypic change in B6. Rag1 -/- -M has implications for investigators using this strain to study mechanisms of T-cell modulation of Ang II-dependent blood pressure control. These findings also serve as a reminder that the universal drive for genetic variation occurs in all animals including inbred mouse strains and that spontaneous mutations leading to phenotypic change can compromise experimental reproducibility over time and place. Finally, these observations illustrate the importance of including experimental details about the location and time period over which animals are bred in publications involving animal studies to promote rigor and reproducibility in the scientific literature. © 2017 American Heart Association, Inc.

  11. Improvement of the Immunogenicity of Porcine Circovirus Type 2 DNA Vaccine by Recombinant ORF2 Gene and CpG Motifs.

    Science.gov (United States)

    Li, Jun; Shi, Jian-Li; Wu, Xiao-Yan; Fu, Fang; Yu, Jiang; Yuan, Xiao-Yuan; Peng, Zhe; Cong, Xiao-Yan; Xu, Shao-Jian; Sun, Wen-Bo; Cheng, Kai-Hui; Du, Yi-Jun; Wu, Jia-Qiang; Wang, Jin-Bao; Huang, Bao-Hua

    2015-06-01

    Nowadays, adjuvant is still important for boosting immunity and improving resistance in animals. In order to boost the immunity of porcine circovirus type 2 (PCV2) DNA vaccine, CpG motifs were inserted. In this study, the dose-effect was studied, and the immunity of PCV2 DNA vaccines by recombinant open reading frame 2 (ORF2) gene and CpG motifs was evaluated. Three-week-old Changbai piglets were inoculated intramuscularly with 200 μg, 400 μg, and 800 μg DNA vaccines containing 14 and 18 CpG motifs, respectively. Average gain and rectum temperature were recorded everyday during the experiments. Blood was collected from the piglets after vaccination to detect the changes of specific antibodies, interleukin-2, and immune cells every week. Tissues were collected for histopathology and polymerase chain reaction. The results indicated that compared to those of the control piglets, all concentrations of two DNA vaccines could induce PCV2-specific antibodies. A cellular immunity test showed that PCV2-specific lymphocytes proliferated the number of TH, TC, and CD3+ positive T-cells raised in the blood of DNA vaccine immune groups. There was no distinct pathological damage and viremia occurring in pigs that were inoculated with DNA vaccines, but there was some minor pathological damage in the control group. The results demonstrated that CpG motifs as an adjuvant could boost the humoral and cellular immunity of pigs to PCV2, especially in terms of cellular immunity. Comparing two DNA vaccines that were constructed, the one containing 18 CpG motifs was more effective. This is the first report that CpG motifs as an adjuvant insert to the PCV2 DNA vaccine could boost immunity.

  12. Transient Co-Expression of Post-Transcriptional Gene Silencing Suppressors for Increased in Planta Expression of a Recombinant Anthrax Receptor Fusion Protein

    Directory of Open Access Journals (Sweden)

    Kittipong Rattanaporn

    2011-08-01

    Full Text Available Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin, CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA domain of human capillary morphogenesis 2 (CMG2, an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG. We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS: p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI, with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  13. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein.

    Science.gov (United States)

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M; McDonald, Karen A

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  14. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis.

    Science.gov (United States)

    Shi, Feng; Jiang, Junjun; Li, Yongfu; Li, Youxin; Xie, Yilong

    2013-11-01

    γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1-gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of L-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L⁻¹, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L⁻¹ after 84-h cultivation. Under optimal urea supplementation, L-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L⁻¹ after 120-h flask cultivation and 26.32 g L⁻¹ after 60-h fed-batch fermentation. The conversion ratio of L-glutamate to GABA reached 0.60-0.74 mol mol⁻¹. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated L-glutamate.

  15. Substitutions in PBP3 confer resistance to both ampicillin and extended-spectrum cephalosporins in Haemophilus parainfluenzae as revealed by site-directed mutagenesis and gene recombinants

    DEFF Research Database (Denmark)

    Wienholtz, Nanna H; Ciechanowski, Aynur Barut; Nørskov-Lauritsen, Niels

    2017-01-01

    using site-directed mutagenesis. Recombinants were also generated using PCR-amplified ftsI from clinical strains encoding multiple amino acid substitutions. MICs of ampicillin, cefuroxime, cefotaxime and ceftriaxone were determined using Etest ® . Results: Transformation of a susceptible strain with fts...... for recombinants were lower than those for the donor strains. Using site-directed mutagenesis, no single substitution conferred resistance to the tested β-lactams, although V511A increased the MIC of cefuroxime to the intermediate category for intravenous administration. Recombinants encoding N526K...

  16. Molecular requirements for radiation-activated recombination

    International Nuclear Information System (INIS)

    Stevens, Craig W.; Zeng Ming; Stamato, Thomas; Cerniglia, George

    1997-01-01

    Purpose/Objective: The major stumbling block to successful gene therapy today is poor gene transfer. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. We further hypothesized that known DNA-damage-repair proteins might also be important in radiation-activated recombination. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human (A549 and 39F) and rodent (NIH/3T3) cell lines. Continuous low dose rate and multiple radiation fractions were also tested. Nuclear extracts were made and the effect of irradiation on inter-plasmid recombination/ligation determined. Multiple DNA damage-repair deficient cell lines were tested for radiation-activated recombination. Results: A significant radiation dose-dependent improvement in stable plasmid transfection (by as much as 1300 fold) is demonstrated in neoplastic and primary cells. An improvement in transient plasmid transfection is also seen, with as much as 85% of cells transiently expressing b-galactosidase (20-50 fold improvement). Stable transfection is only improved for linearized or nicked plasmids. Cells have improved gene transfer for at least 96 hours after irradiation. Both fractionated and continuous low dose rate irradiation are effective at improving stable gene transfer in mammalian cells, thus making relatively high radiation dose delivery clinically feasible. Inter-plasmid recombination is radiation dose dependent in nuclear extract assays, and the type of overhang (3', 5' or blunt end) significantly affects recombination efficiency and the type of product. The most common end-joining activity involves filling-in of the overhang followed by blunt end ligation. Adenovirus is a linear, double stranded DNA virus. We demonstrate that adenoviral infection efficiency is increased by irradiation. The duration of transgene expression is lengthened because the virus integrates with high efficiency (∼10

  17. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  18. HYPER RECOMBINATION1 of the THO/TREX complex plays a role in controlling transcription of the REVERSION-TO-ETHYLENE SENSITIVITY1 gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Congyao Xu

    2015-02-01

    Full Text Available Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1 represses ethylene hormone responses by promoting ethylene receptor ETHYLENE RESPONSE1 (ETR1 signaling, which negatively regulates ethylene responses. To investigate the regulation of RTE1, we performed a genetic screening for mutations that suppress ethylene insensitivity conferred by RTE1 overexpression in Arabidopsis. We isolated HYPER RECOMBINATION1 (HPR1, which is required for RTE1 overexpressor (RTE1ox ethylene insensitivity at the seedling but not adult stage. HPR1 is a component of the THO complex, which, with other proteins, forms the TRanscription EXport (TREX complex. In yeast, Drosophila, and humans, the THO/TREX complex is involved in transcription elongation and nucleocytoplasmic RNA export, but its role in plants is to be fully determined. We investigated how HPR1 is involved in RTE1ox ethylene insensitivity in Arabidopsis. The hpr1-5 mutation may affect nucleocytoplasmic mRNA export, as revealed by in vivo hybridization of fluorescein-labeled oligo(dT45 with unidentified mRNA in the nucleus. The hpr1-5 mutation reduced the total and nuclear RTE1 transcript levels to a similar extent, and RTE1 transcript reduction rate was not affected by hpr1-5 with cordycepin treatment, which prematurely terminates transcription. The defect in the THO-interacting TEX1 protein of TREX but not the mRNA export factor SAC3B also reduced the total and nuclear RTE1 levels. SERINE-ARGININE-RICH (SR proteins are involved mRNA splicing, and we found that SR protein SR33 co-localized with HPR1 in nuclear speckles, which agreed with the association of human TREX with the splicing machinery. We reveal a role for HPR1 in RTE1 expression during transcription elongation and less likely during export. Gene expression involved in ethylene signaling suppression was not reduced by the hpr1-5 mutation, which indicates selectivity of HPR1 for RTE1 expression affecting the consequent ethylene response. Thus

  19. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance.

    Science.gov (United States)

    Liu, Simu; Bartnikas, Lisa M; Volko, Sigrid M; Ausubel, Frederick M; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  20. Mutation of the glucosinolate biosynthesis enzyme cytochrome P450 83A1 monooxygenase increases camalexin accumulation and powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Simu eLiu

    2016-03-01

    Full Text Available Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1, which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  1. Intrastrain heterogeneity of the mgpB gene in Mycoplasma genitalium is extensive in vitro and in vivo and suggests that variation is generated via recombination with repetitive chromosomal sequences.

    Science.gov (United States)

    Iverson-Cabral, Stefanie L; Astete, Sabina G; Cohen, Craig R; Rocha, Eduardo P C; Totten, Patricia A

    2006-07-01

    Mycoplasma genitalium is associated with reproductive tract disease in women and may persist in the lower genital tract for months, potentially increasing the risk of upper tract infection and transmission to uninfected partners. Despite its exceptionally small genome (580 kb), approximately 4% is composed of repeated elements known as MgPar sequences (MgPa repeats) based on their homology to the mgpB gene that encodes the immunodominant MgPa adhesin protein. The presence of these MgPar sequences, as well as mgpB variability between M. genitalium strains, suggests that mgpB and MgPar sequences recombine to produce variant MgPa proteins. To examine the extent and generation of diversity within single strains of the organism, we examined mgpB variation within M. genitalium strain G-37 and observed sequence heterogeneity that could be explained by recombination between the mgpB expression site and putative donor MgPar sequences. Similarly, we analyzed mgpB sequences from cervical specimens from a persistently infected woman (21 months) and identified 17 different mgpB variants within a single infecting M. genitalium strain, confirming that mgpB heterogeneity occurs over the course of a natural infection. These observations support the hypothesis that recombination occurs between the mgpB gene and MgPar sequences and that the resulting antigenically distinct MgPa variants may contribute to immune evasion and persistence of infection.

  2. Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase

    NARCIS (Netherlands)

    Rioz-Martinez, Ana; Kopacz, Malgorzata; de Gonzalo, Gonzalo; Pazmino, Daniel E. Torres; Gotor, Vicente; Fraaije, Marco W.

    2011-01-01

    A bacterial flavin-containing monooxygenase (FMO), fused to phosphite dehydrogenase, has been used to explore its biocatalytic potential. The bifunctional biocatalyst could be expressed in high amounts in Escherichia coli and was able to oxidize indole and indole derivatives into a variety of indigo

  3. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  4. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases.

    Science.gov (United States)

    Qi, Jun; Kizjakina, Karina; Robinson, Reeder; Tolani, Karishma; Sobrado, Pablo

    2012-06-01

    N-Hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and bacteria. NMOs catalyze the hydroxylation of sine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington's and Alzheimer's diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin-dependent monooxygenases. Fluorescently labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a K(d) value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with K(d) values of 2.1 ± 0.2 and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we show that this assay can be used to identify inhibitors of NMOs. A Z' factor of 0.77 was calculated, and we show that the assay exhibits good tolerance to temperature, incubation time, and dimethyl sulfoxide concentration. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Polycyclic Ketone Monooxygenase from the Thermophilic Fungus Thermothelomyces thermophila : A Structurally Distinct Biocatalyst for Bulky Substrates

    NARCIS (Netherlands)

    Fürst, Maximilian J L J; Savino, Simone; Dudek, Hanna M; Gómez Castellanos, J Rúben; Gutiérrez de Souza, Cora; Rovida, Stefano; Fraaije, Marco W; Mattevi, Andrea

    2017-01-01

    Regio- and stereoselective Baeyer-Villiger oxidations are difficult to achieve by classical chemical means, particularly when large, functionalized molecules are to be converted. Biocatalysis using flavin-containing Baeyer-Villiger monooxygenases (BVMOs) is a well-established tool to address these

  6. Exploring the Substrate Scope of Baeyer–Villiger Monooxygenases with Branched Lactones as Entry towards Polyesters

    NARCIS (Netherlands)

    Delgove, Marie; Fürst, Maximilian; Fraaije, Marco; Bernaerts, Katrien; de Wildeman, Stefaan

    2018-01-01

    Baeyer–Villiger monooxygenases (BVMOs) are biocatalysts that are able to convert cyclic ketones into lactones by the insertion of oxygen. The aim of this study was to explore the substrate scope of several BVMOs with (biobased) cyclic ketones as precursors for the synthesis of branched polyesters.

  7. Exploring the substrate scope of Baeyer-Villiger monooxygenases with branched lactones as entry towards polyesters

    NARCIS (Netherlands)

    Delgove, Marie; Fürst, Maximilian; Fraaije, Marco; Bernaerts, Katrien; De Wildeman, Stefaan M A

    2018-01-01

    Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts able to convert cyclic ketones to lactones by the insertion of oxygen. The aim of this study was to explore the substrate scope of several BVMOs with (biobased) cyclic ketones as precursors for the synthesis of branched polyesters.The product

  8. Coupled reactions by coupled enzymes : alcohol to lactone cascade with alcohol dehydrogenase-cyclohexanone monooxygenase fusions

    NARCIS (Netherlands)

    Aalbers, Friso S; Fraaije, Marco W

    2017-01-01

    The combination of redox enzymes for redox-neutral cascade reactions has received increasing appreciation. An example is the combination of an alcohol dehydrogenase (ADH) with a cyclohexanone monooxygenase (CHMO). The ADH can use NADP(+) to oxidize cyclohexanol to form cyclohexanone and NADPH. Both

  9. Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry

    DEFF Research Database (Denmark)

    Westereng, Bjørge; Arntzen, Magnus Ø.; Wittrup Agger, Jane

    2017-01-01

    Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the num...

  10. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger.

    Science.gov (United States)

    Dai, Ziyu; Aryal, Uma K; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D; Magnuson, Jon K; Adney, William S; Beckham, Gregg T; Brunecky, Roman; Himmel, Michael E; Decker, Stephen R; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E

    2013-12-01

    Dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl α-1,3-mannosyltransferase (also known as "asparagine-linked glycosylation 3", or ALG3) is involved in early N-linked glycan synthesis and thus is essential for formation of N-linked protein glycosylation. In this study, we examined the effects of alg3 gene deletion (alg3Δ) on growth, development, pigment production, protein secretion and recombinant Trichoderma reesei cellobiohydrolase (rCel7A) expressed in Aspergillus niger. The alg3Δ delayed spore germination in liquid cultures of complete medium (CM), potato dextrose (PD), minimal medium (MM) and CM with addition of cAMP (CM+cAMP), and resulted in significant reduction of hyphal growth on CM, potato dextrose agar (PDA), and CM+cAMP and spore production on CM. The alg3Δ also led to a significant accumulation of red pigment on both liquid and solid CM cultures. The relative abundances of 54 of the total 215 proteins identified in the secretome were significantly altered as a result of alg3Δ, 63% of which were secreted at higher levels in alg3Δ strain than the parent. The rCel7A expressed in the alg3Δ mutant was smaller in size than that expressed in both wild-type and parental strains, but still larger than T. reesei Cel7A. The circular dichroism (CD)-melt scans indicated that change in glycosylation of rCel7A does not appear to impact the secondary structure or folding. Enzyme assays of Cel7A and rCel7A on nanocrystalline cellulose and bleached kraft pulp demonstrated that the rCel7As have improved activities on hydrolyzing the nanocrystalline cellulose. Overall, the results suggest that alg3 is critical for growth, sporulation, pigment production, and protein secretion in A. niger, and demonstrate the feasibility of this alternative approach to evaluate the roles of N-linked glycosylation in glycoprotein secretion and function. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Construction of retroviral recombinant containing human tissue ...

    African Journals Online (AJOL)

    USER

    2010-03-29

    Mar 29, 2010 ... Recombinant retroviral vector containing human tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) gene was ..... heavy metal ions, the protein could be express in an .... involves adhesion, degradation and movement. To.

  12. Production and characterization of PHA from recombinant E. coli harbouring phaC1 gene of indigenous Pseudomonas sp. LDC-5 using molasses

    Directory of Open Access Journals (Sweden)

    V Saranya

    2011-09-01

    Full Text Available Polyhydroxyalkanoates (PHA are biodegradable and biocompatible green thermoplastics, synthesized by wide variety of bacteria as an intracellular carbon and energy storage intermediate. They are used as an alternative to nonrenewable petroleum derived plastics. The current interest in these biopolyesters is stimulated by the search for cost-effective capitalized production. This paper attempts to achieve maximized production rate from recombinant system using inexpensive substrate. Molasses from agro-industrial waste was used to produce PHA from recombinant E.coli in batch culture. PHA yield in molasses (3.06g/L ± 0.05-75.5% was higher than that of sucrose (2.5g/L ± 0.05 - 65.1%. Properties of the polymer produced from molasses and sucrose were analyzed by DSC, TGA, DTA, GC/MS, TLC and optical rotation studies. The findings suggested that molasses enhanced PHA production in recombinant E.coli.

  13. Live recombinant BHV/BRSV vaccine

    OpenAIRE

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the protection of cattle against both Bovine herpesvirus infection and against Bovine Respiratory Syncytium virus infection. Also the invention relates to methods for the preparation of such live attenuated r...

  14. Cre-/IoxP-Mediated Recombination between the SIL and SCL Genes Leads to a Block in T-Cell Development at the CD4-CD8- to CD4+CD8+ Transition

    Directory of Open Access Journals (Sweden)

    Yue Cheng

    2007-04-01

    Full Text Available In the most common form of stem cell leukemia (SCL gene rearrangement, an interstitial deletion of 82 kb brings SCL under the control of regulatory elements that normally govern expression of the ubiquitously expressed SCL interrupting locus (SIL gene, which is located directly upstream of SCL. To investigate the effect of this fusion in a mouse model, a bacterial artificial chromosome (BAC clone containing both human SIL and SCL genes was isolated, and IoxP sites were inserted into intron 1 of both the SIL and SCL genes, corresponding to the sites at which recombination occurs in human T-cell acute lymphocytic leukemia patients. This BAC clone was used to generate transgenic SILIoxloxSCL mice. These transgenic mice were subsequently bred to Lck-Cre mice that express the Cre recombinase specifically in the thymus. The BAC transgene was recombined between the two IoxP sites in over 50% of the thymocytes from SILIoxloxSCL/Cre double-transgenic mice, bringing the SCL gene under the direct control of SIL regulatory elements. Aberrant SCL gene expression in the thymus was verified by reverse transcription- polymerase chain reaction. Using FACS analysis, we found that mice carrying both SILIoxloxSCL and Cre transgenes have increased CD4-/CD8- thymocytes compared with transgenenegative mice. In the spleen, these transgenic mice show a marked reduction in the number of mature CD4+ or CD8+ cells. These results demonstrate that conditional activation of SCL under control of SIL regulatory elements can impair normal T-cell development.

  15. Determination of recombination in Mycoplasma hominis

    DEFF Research Database (Denmark)

    Jacobsen, Iben Søgaard; Boesen, Thomas; Mygind, Tina

    2002-01-01

    disequilibrium and distance between the segregating sites, by the homoplasy ratio (H ratio), and by compatibility matrices. The gap gene showed well-supported evidence for high levels of recombination, whereas recombination was less frequent and not significant within the other genes. The analysis revealed......B-hitL, excinuclease ABC subunit A (uvrA) and glyceraldehyde-3-phosphate dehydrogenase (gap) genes. The level of variability of these M. hominis genes was low compared with the housekeeping genes from Helicobacter pylori and Neisseria meningitidis, but only few M. hominis isolates had identical sequences in all genes...... intergenic and intragenic recombination in M. hominis and this may explain the high intraspecies variability. The results obtained in the present study may be of importance for future population studies of Mycoplasma species....

  16. Exceptionally high levels of recombination across the honey bee genome.

    Science.gov (United States)

    Beye, Martin; Gattermeier, Irene; Hasselmann, Martin; Gempe, Tanja; Schioett, Morten; Baines, John F; Schlipalius, David; Mougel, Florence; Emore, Christine; Rueppell, Olav; Sirviö, Anu; Guzmán-Novoa, Ernesto; Hunt, Greg; Solignac, Michel; Page, Robert E

    2006-11-01

    The first draft of the honey bee genome sequence and improved genetic maps are utilized to analyze a genome displaying 10 times higher levels of recombination (19 cM/Mb) than previously analyzed genomes of higher eukaryotes. The exceptionally high recombination rate is distributed genome-wide, but varies by two orders of magnitude. Analysis of chromosome, sequence, and gene parameters with respect to recombination showed that local recombination rate is associated with distance to the telomere, GC content, and the number of simple repeats as described for low-recombining genomes. Recombination rate does not decrease with chromosome size. On average 5.7 recombination events per chromosome pair per meiosis are found in the honey bee genome. This contrasts with a wide range of taxa that have a uniform recombination frequency of about 1.6 per chromosome pair. The excess of recombination activity does not support a mechanistic role of recombination in stabilizing pairs of homologous chromosome during chromosome pairing. Recombination rate is associated with gene size, suggesting that introns are larger in regions of low recombination and may improve the efficacy of selection in these regions. Very few transposons and no retrotransposons are present in the high-recombining genome. We propose evolutionary explanations for the exceptionally high genome-wide recombination rate.

  17. Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells

    Directory of Open Access Journals (Sweden)

    Selander Martin

    2007-02-01

    Full Text Available Abstract Background Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells. Results We show that infection of human neuroblastoma SHSY-5Y and liver C3A cells with recombinant adenovirus results in the activation of Akt in a dose dependent manner. In addition, this activation makes treated cells unresponsive to insulin stimulation as determined by an apparent lack of differential phosphorylation of Akt on serine-473. Our data further indicate that the use of recombinant baculovirus does not increase the phosphorylation of Akt in SHSY-5Y and C3A cells. Moreover, following infection with baculovirus, SHSY-5Y and C3A cells respond to insulin by means of phosphorylation of Akt on serine-473 in the same manner as uninfected cells. Conclusion Widely-used adenovirus vectors for gene delivery cause a state of

  18. Induction of homologous recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  19. Production of recombinant Ig molecules from antigen-selected single B cells and restricted usage of Ig-gene segments by anti-D antibodies

    NARCIS (Netherlands)

    Dohmen, Serge E.; Mulder, Arend; Verhagen, Onno J. H. M.; Eijsink, Chantal; Franke-van Dijk, Marry E. I.; van der Schoot, C. Ellen

    2005-01-01

    The Ig-genes of the heavy chains in anti-D-specific hybridomas and Fab/scFv-fragments selected from phage-display libraries are restricted to a group of closely related genes (IGHV3s genes). We analyzed the Ig-gene repertoire in anti-D-specific B cells of two hyperimmunized donors using a completely

  20. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants.

    Science.gov (United States)

    Fujiuchi, Naomichi; Matsuda, Ryo; Matoba, Nobuyuki; Fujiwara, Kazuhiro

    2017-08-01

    Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM -1 ) and recombinant protein productivity per unit area-time (g m -2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m -2 than at a low plant density of 100 plants m -2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Production of Polyclonal Antibodies to the Recombinant Potato virus M (PVM) Non-structural Triple Gene Block Protein 1 and Coat Protein

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Plchová, Helena; Hoffmeisterová, Hana; Dědič, P.

    2012-01-01

    Roč. 160, č. 5 (2012), s. 251-254 ISSN 0931-1785 R&D Projects: GA MŠk 1M06030 Institutional research plan: CEZ:AV0Z50380511 Keywords : Potato virus M * recombinant protein * coat protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.000, year: 2012

  2. Differences in gene expression of granulosa cells from women undergoing controlled ovarian hyperstimulation with either recombinant follicle-stimulating hormone or highly purified human menopausal gonadotropin

    DEFF Research Database (Denmark)

    Grøndahl, Marie Louise; Borup, Rehannah; Lee, Young Bae

    2009-01-01

    randomized study. SETTING: University-based facilities for clinical services and research. PATIENT(S): Thirty women undergoing treatment with vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI). INTERVENTION(S): Patients were randomly allocated to receive recombinant FSH or human (hMG) COH...

  3. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    KAUST Repository

    Fornander, Louise H; Frykholm, Karolin; Reymer, Anna; Renodon-Corniè re, Axelle; Takahashi, Masayuki; Nordé n, Bengt

    2012-01-01

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated

  4. Comparison of the protective efficacy of recombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs,, influence of different promoters on gene expression and on protection

    NARCIS (Netherlands)

    Hooft, van B.J.L.; Wind, de N.; Wensvoort, G.; Kimman, T.G.; Gielkens, A.L.J.; Moormann, R.J.M.

    1996-01-01

    The glycoprotein E (gE) locus in the genome of pseudorabies virus (PRV) was used as an insertion site for the expression of glycoprotein E1 of classical swine fever virus (CSFV). Transcription of E1 in the recombinants M401, M402 or M403 was regulated by the gD promoter of PRV, the immediate early

  5. A cytochrome P450 monooxygenase commonly used for negative selection in transgenic plants causes growth anomalies by disrupting brassinosteroid signaling

    Directory of Open Access Journals (Sweden)

    Manivasagam Sindhu

    2011-04-01

    Full Text Available Abstract Background Cytochrome P450 monooxygenases form a large superfamily of enzymes that catalyze diverse reactions. The P450SU1 gene from the soil bacteria Streptomyces griseolus encodes CYP105A1 which acts on various substrates including sulfonylurea herbicides, vitamin D, coumarins, and based on the work presented here, brassinosteroids. P450SU1 is used as a negative-selection marker in plants because CYP105A1 converts the relatively benign sulfonyl urea pro-herbicide R7402 into a highly phytotoxic product. Consistent with its use for negative selection, transgenic Arabidopsis plants were generated with P450SU1 situated between recognition sequences for FLP recombinase from yeast to select for recombinase-mediated excision. However, unexpected and prominent developmental aberrations resembling those described for mutants defective in brassinosteroid signaling were observed in many of the lines. Results The phenotypes of the most affected lines included severe stunting, leaf curling, darkened leaves characteristic of anthocyanin accumulation, delayed transition to flowering, low pollen and seed yields, and delayed senescence. Phenotype severity correlated with P450SU1 transcript abundance, but not with transcript abundance of other experimental genes, strongly implicating CYP105A1 as responsible for the defects. Germination and seedling growth of transgenic and control lines in the presence and absence of 24-epibrassinolide indicated that CYP105A1 disrupts brassinosteroid signaling, most likely by inactivating brassinosteroids. Conclusions Despite prior use of this gene as a genetic tool, deleterious growth in the absence of R7402 has not been elaborated. We show that this gene can cause aberrant growth by disrupting brassinosteroid signaling and affecting homeostasis.

  6. Multiple barriers to recombination between divergent HIV-1 variants revealed by a dual-marker recombination assay

    DEFF Research Database (Denmark)

    Nikolaitchik, Olga A; Galli, Andrea; Moore, Michael D

    2011-01-01

    Recombination is a major force for generating human immunodeficiency virus type 1 (HIV-1) diversity and produces numerous recombinants circulating in the human population. We previously established a cell-based system using green fluorescent protein gene (gfp) as a reporter to study the mechanisms...... of HIV-1 recombination. We now report an improved system capable of detecting recombination using authentic viral sequences. Frameshift mutations were introduced into the gag gene so that parental viruses do not express full-length Gag; however, recombination can generate a progeny virus that expresses...

  7. Advances in directed monooxygenase evolution : from diversity generation and flow cytometry screening to tailor-made monooxygenases

    OpenAIRE

    Ruff, Anna Joëlle

    2012-01-01

    Directed Evolution became a powerful tool for proteins engineers to generate tailor-made biocatalyst. Directed protein evolution consist of the following three consecutive main steps, which are performed in iterative cycles; Step 1 the gene diversity generation, Step 2 the screening for improved variants and Step 3 the isolation of gene encoding for improved proteins. In this thesis, methodological advancements in the two key steps of the directed evolution, the diversity generation (SeSaM me...

  8. Catalytic mechanism of phenylacetone monooxygenases for non-native linear substrates.

    Science.gov (United States)

    Carvalho, Alexandra T P; Dourado, Daniel F A R; Skvortsov, Timofey; de Abreu, Miguel; Ferguson, Lyndsey J; Quinn, Derek J; Moody, Thomas S; Huang, Meilan

    2017-10-11

    Phenylacetone monooxygenase (PAMO) is the most stable and thermo-tolerant member of the Baeyer-Villiger monooxygenase family, and therefore it is an ideal candidate for the synthesis of industrially relevant compounds. However, its limited substrate scope has largely limited its industrial applications. In the present work, we provide, for the first time, the catalytic mechanism of PAMO for the native substrate phenylacetone as well as for a linear non-native substrate 2-octanone, using molecular dynamics simulations, quantum mechanics and quantum mechanics/molecular mechanics calculations. We provide a theoretical basis for the preference of the enzyme for the native aromatic substrate over non-native linear substrates. Our study provides fundamental atomic-level insights that can be employed in the rational engineering of PAMO for wide applications in industrial biocatalysis, in particular, in the biotransformation of long-chain aliphatic oils into potential biodiesels.

  9. Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth.

    Science.gov (United States)

    Martín Del Campo, Julia S; Vogelaar, Nancy; Tolani, Karishma; Kizjakina, Karina; Harich, Kim; Sobrado, Pablo

    2016-11-18

    Aspergillus fumigatus is an opportunistic fungal pathogen and the most common causative agent of fatal invasive mycoses. The flavin-dependent monooxygenase siderophore A (SidA) catalyzes the oxygen and NADPH dependent hydroxylation of l-ornithine (l-Orn) to N 5 -l-hydroxyornithine in the biosynthetic pathway of hydroxamate-containing siderophores in A. fumigatus. Deletion of the gene that codes for SidA has shown that it is essential in establishing infection in mice models. Here, a fluorescence polarization high-throughput assay was used to screen a 2320 compound library for inhibitors of SidA. Celastrol, a natural quinone methide, was identified as a noncompetitive inhibitor of SidA with a MIC value of 2 μM. Docking experiments suggest that celastrol binds across the NADPH and l-Orn pocket. Celastrol prevents A. fumigatus growth in blood agar. The addition of purified ferric-siderophore abolished the inhibitory effect of celastrol. Thus, celastrol inhibits A. fumigatus growth by blocking siderophore biosynthesis through SidA inhibiton.

  10. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Heterologous Expression of the ema1 Cytochrome P450 Monooxygenase

    Science.gov (United States)

    Molnár, István; Hill, D. Steven; Zirkle, Ross; Hammer, Philip E.; Gross, Frank; Buckel, Thomas G.; Jungmann, Volker; Pachlatko, Johannes Paul; Ligon, James M.

    2005-01-01

    The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1. PMID:16269733

  11. Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback.

    Science.gov (United States)

    Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J

    2016-04-14

    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress.

  12. Conversion of chlorinated propanes by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase

    OpenAIRE

    Bosma, T.; Janssen, D.B.

    1998-01-01

    Chlorinated propanes are important pollutants that may show persistent behaviour in the environment. The biotransformation of 1-chloropropane, 1,2-dichloropropane, 1,3-dichloropropane and 1,2,3-trichloropropane was studied using resting cell suspensions of Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. The transformation followed first-order kinetics. The rate constants were in the order 1-chloropropane > 1,3-dichloropropane > 1,2-dichloropropane > 1,2,3-trichloropr...

  13. Rogue athletes and recombinant DNA technology: challenges for doping control.

    Science.gov (United States)

    Azzazy, Hassan M E; Mansour, Mai M H

    2007-10-01

    The quest for athletic excellence holds no limit for some athletes, and the advances in recombinant DNA technology have handed these athletes the ultimate doping weapons: recombinant proteins and gene doping. Some detection methods are now available for several recombinant proteins that are commercially available as pharmaceuticals and being abused by dopers. However, researchers are struggling to come up with efficient detection methods in preparation for the imminent threat of gene doping, expected in the 2008 Olympics. This Forum article presents the main detection strategies for recombinant proteins and the forthcoming detection strategies for gene doping as well as the prime analytical challenges facing them.

  14. Biased hypermutation occurred frequently in a gene inserted into the IC323 recombinant measles virus during its persistence in the brains of nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Sanae [Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 (Japan); Department of Pediatrics, Graduate School of Medicine, Osaka City University, Osaka (Japan); Ayata, Minoru, E-mail: maverick@med.osaka-cu.ac.jp [Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 (Japan); Takeuchi, Kaoru [Laboratory of Environmental Microbiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Ibaraki (Japan); Takeda, Makoto [Department of Virology 3, National Institute of Infectious Diseases, Tokyo (Japan); Shintaku, Haruo [Department of Pediatrics, Graduate School of Medicine, Osaka City University, Osaka (Japan); Ogura, Hisashi [Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 (Japan)

    2014-08-15

    Measles virus (MV) is the causative agent of measles and its neurological complications, subacute sclerosing panencephalitis (SSPE) and measles inclusion body encephalitis (MIBE). Biased hypermutation in the M gene is a characteristic feature of SSPE and MIBE. To determine whether the M gene is the preferred target of hypermutation, an additional transcriptional unit containing a humanized Renilla reniformis green fluorescent protein (hrGFP) gene was introduced into the IC323 MV genome, and nude mice were inoculated intracerebrally with the virus. Biased hypermutation occurred in the M gene and also in the hrGFP gene when it was inserted between the leader and the N gene, but not between the H and L gene. These results indicate that biased hypermutation is usually found in a gene whose function is not essential for viral proliferation in the brain and that the location of a gene in the MV genome can affect its mutational frequency. - Highlights: • Wild-type MV can cause persistent infections in nude mice. • Biased hypermutation occurred in the M gene. • Biased hypermutation occurred in an inessential gene inserted between the leader and the N gene.

  15. Biased hypermutation occurred frequently in a gene inserted into the IC323 recombinant measles virus during its persistence in the brains of nude mice

    International Nuclear Information System (INIS)

    Otani, Sanae; Ayata, Minoru; Takeuchi, Kaoru; Takeda, Makoto; Shintaku, Haruo; Ogura, Hisashi

    2014-01-01

    Measles virus (MV) is the causative agent of measles and its neurological complications, subacute sclerosing panencephalitis (SSPE) and measles inclusion body encephalitis (MIBE). Biased hypermutation in the M gene is a characteristic feature of SSPE and MIBE. To determine whether the M gene is the preferred target of hypermutation, an additional transcriptional unit containing a humanized Renilla reniformis green fluorescent protein (hrGFP) gene was introduced into the IC323 MV genome, and nude mice were inoculated intracerebrally with the virus. Biased hypermutation occurred in the M gene and also in the hrGFP gene when it was inserted between the leader and the N gene, but not between the H and L gene. These results indicate that biased hypermutation is usually found in a gene whose function is not essential for viral proliferation in the brain and that the location of a gene in the MV genome can affect its mutational frequency. - Highlights: • Wild-type MV can cause persistent infections in nude mice. • Biased hypermutation occurred in the M gene. • Biased hypermutation occurred in an inessential gene inserted between the leader and the N gene

  16. Experimental and in silico modelling analyses of the gene expression pathway for recombinant antibody and by-product production in NS0 cell lines.

    Science.gov (United States)

    Mead, Emma J; Chiverton, Lesley M; Spurgeon, Sarah K; Martin, Elaine B; Montague, Gary A; Smales, C Mark; von der Haar, Tobias

    2012-01-01

    Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway.

  17. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer–Villiger monooxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Isupov, Michail N.; Schröder, Ewald; Gibson, Robert P.; Beecher, Jean; Donadio, Giuliana; Saneei, Vahid; Dcunha, Stephlina A.; McGhie, Emma J.; Sayer, Christopher; Davenport, Colin F. [University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom); Lau, Peter C. [National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 (Canada); Hasegawa, Yoshie; Iwaki, Hiroaki [Kansai University (Japan); Kadow, Maria; Balke, Kathleen; Bornscheuer, Uwe T. [Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany); Bourenkov, Gleb [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg (Germany); Littlechild, Jennifer A., E-mail: j.a.littlechild@exeter.ac.uk [University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom)

    2015-10-31

    The first crystal structure of a type II Baeyer–Villiger monooxygenase reveals a different ring orientation of its FMN cofactor compared with other related bacterial luciferase-family enzymes. The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer–Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.

  18. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer–Villiger monooxygenase

    International Nuclear Information System (INIS)

    Isupov, Michail N.; Schröder, Ewald; Gibson, Robert P.; Beecher, Jean; Donadio, Giuliana; Saneei, Vahid; Dcunha, Stephlina A.; McGhie, Emma J.; Sayer, Christopher; Davenport, Colin F.; Lau, Peter C.; Hasegawa, Yoshie; Iwaki, Hiroaki; Kadow, Maria; Balke, Kathleen; Bornscheuer, Uwe T.; Bourenkov, Gleb; Littlechild, Jennifer A.

    2015-01-01

    The first crystal structure of a type II Baeyer–Villiger monooxygenase reveals a different ring orientation of its FMN cofactor compared with other related bacterial luciferase-family enzymes. The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer–Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily

  19. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice.

    Science.gov (United States)

    Luo, Anding; Qian, Qian; Yin, Hengfu; Liu, Xiaoqiang; Yin, Changxi; Lan, Ying; Tang, Jiuyou; Tang, Zuoshun; Cao, Shouyun; Wang, Xiujie; Xia, Kai; Fu, Xiangdong; Luo, Da; Chu, Chengcai

    2006-02-01

    Elongation of rice internodes is one of the most important agronomic traits, which determines the plant height and underlies the grain yield. It has been shown that the elongation of internodes is under genetic control, and various factors are implicated in the process. Here, we report a detailed characterization of an elongated uppermost internode1 (eui1) mutant, which has been used in hybrid rice breeding. In the eui1-2 mutant, the cell lengths in the uppermost internodes are significantly longer than that of wild type and thus give rise to the elongated uppermost internode. It was found that the level of active gibberellin was elevated in the mutant, whereas its growth in response to gibberellin is similar to that of the wild type, suggesting that the higher level accumulation of gibberellin in the eui1 mutant causes the abnormal elongation of the uppermost internode. Consistently, the expression levels of several genes which encode gibberellin biosynthesis enzymes were altered. We cloned the EUI1 gene, which encodes a putative cytochrome P450 monooxygenase, by map-based cloning and found that EUI1 was weakly expressed in most tissues, but preferentially in young panicles. To confirm its function, transgenic experiments with different constructs of EUI1 were conducted. Overexpression of EUI1 gave rise to the gibberellin-deficient-like phenotypes, which could be partially reversed by supplementation with gibberellin. Furthermore, apart from the alteration of expression levels of the gibberellin biosynthesis genes, accumulation of SLR1 protein was found in the overexpressing transgenic plants, indicating that the expression level of EUI1 is implicated in both gibberellin-mediated SLR1 destruction and a feedback regulation in gibberellin biosynthesis. Therefore, we proposed that EUI1 plays a negative role in gibberellin-mediated regulation of cell elongation in the uppermost internode of rice.

  20. [Construction and expression of a recombinant adenovirus with LZP3].

    Science.gov (United States)

    Chen, Bang-dang; Zhang, Fu-chun; Sun, Mei-yu; Li, Yi-jie; Ma, Zheng-hai

    2007-08-01

    To explore a new immunocontraceptive vaccine and construct an attenuated recombinant adenoviral vaccine against Lagurus lagurus zona pellucida 3(LZP3). LZP3 gene was subcloned into the shuttle vector pShuttle-CMV, and then a two-step transformation procedure was employed to construct a recombinant adenoviral plasmid with LZP3, which was digested with Pac I and transfected into HEK293 cells to package recombinant adenovirus particles. Finally, HeLa cells were infected by the recombinant adenovirus. LZP3 gene was detected from the recombinant virus by PCR, and its transcription and expression were analyzed by RT-PCR and Western blot. Recombinant adenovirus vector pAd-LZP3 with LZP3 gene was constructed by homologous recombination in E.coli, and a recombinant adenovirus was obtained by transfecting HEK293 cells with pAd-LZP3. PCR test indicated that LZP3 gene was successfully integrated into the adenoviral genome, and the titer of the recombinant adenovirus reached 1.2x10(10) pfu/L. The transcription and expression of LZP3 gene in the infected HeLa cells were confirmed by RT-PCR and Western blot. The recombinant adenovirus RAd-LZP3 can be successfully expressed in the infected HeLa cells, which lays the foundation for further researches into immunizing animals with RAd-LZP3.

  1. Replacement of glycoprotein B gene in the Herpes simplex virus type 1 strain ANGpath DNA that originating from non-pathogenic strain KOS reduces the pathogenicity of recombinant virus

    International Nuclear Information System (INIS)

    Kostal, M.; Bacik, I.; Rajcani, J.; Kaerner, H.C.

    1994-01-01

    Herpes simplex virus type-1 (HSV-1) strain ANGpath and its recombinants, in which the 8.1 kbp BamHI G restriction fragment (0.345-0.399) containing the glycoprotein B (gB path ) gene (UL27) or its sub-fragments-coding either for cytoplasmic or surface domain of gB-had been replaced with the corresponding fragments from non-pathogenic KOS virus DNA (gB KOS ), were tested for their pathogenicity for DBA/2 mice and rabbits. The recombinant ANGpath/B6 KOS prepared by transferring the 2.7 kbp SstI-SstI sub-fragment (0.351-0.368) of the BamHI G KOS fragment still had the original sequence of ANGpath DNA coding for the syn 3 marker in the cytoplasmic domain of gB and was pathogenic for mice as well as for rabbits. Virological and immuno-histological studies in DBA/2 mice infected with the latter pathogenic recombinant and with ANGpath showed the presence of infectious virus and viral antigen at inoculation site (epidermis, subcutaneous connective tissue and striated muscle in the area of right lip), in homo-lateral trigeminal nerve and ganglion, brain stem, midbrain, thalamic and hypothalamic nuclei. In contrast, non-pathogenic recombinants ANGpath/syn + B6 KOS (prepared by transferring the whole BamHI G KOS fragment) and ANGpath/syn +KOS (prepared by transferring the 0.8 kbp BamHI-SstI sub-fragment of the BamHI G KOS fragment) showed limited hematogenous and neural spread, but no evidence of replication in CNS; thus, their behaviour resembled that of the wild type strain KOS. The recombinant ANGpath/syn +KOS , which was not pathogenic for mice, still remained pathogenic for rabbits, a phenomenon indicating the presence of an additional locus in the gB molecule participating on virulence. Sequencing the 1478 bp SstI-SstI sub-fragment of the BamHI G path fragment (nt 53,348 - 54,826 of UL segment) showed the presence of at least 3 mutations as compared to the KOS sequence, from which the change of cytosine at nt 54,2251 altered the codon for arginine to that histidine

  2. Genetic recombination at the human RH locus: A family study of the red-cell Evans phenotype reveals a transfer of exons 2-6 from the RHD to the RHCE gene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.H.; Chen, Y.; Reid, M. [Lindsley F. Kimball Research Inst., New York, NY (United States); Ghosh, S.

    1996-10-01

    The human RH locus appears to consist of two structural genes, D and CE, which map on the short arm p34-36 of chromosome 1 and specify a most complex system of blood-group genetic polymorphisms. Here we describe a family study of the Evans (also known as {open_quotes}D..{open_quotes}) phenotype, a codominant trait associated with both qualitative and quantitative changes in D-antigen expression. A cataract-causing mutation was also inherited in this family and was apparently cotransmitted with Evans, suggesting a chromosomal linkage of these two otherwise unrelated traits. Southern blot analysis and allele-specific PCR showed the linkage of Evans with a SphI RFLP marker and the presence of a hybrid gene in the RH locus. To delineate the pattern of gene expression, the composition and structure of Rh-polypeptide transcripts were characterized by reverse transcriptase-PCR and nucleotide sequencing. This resulted in the identification of a novel Rh transcript expressed only in the Evans-positive erythroid cells. Sequence analysis showed that the transcript maintained a normal open reading frame but occurred as a CE-D-CE composite in which exons 2-6 of the CE gene were replaced by the homologous counterpart of the D gene. This hybrid gene was predicted to encode a CE-D-CE fusion protein whose surface expression correlates with the Evans phenotype. The mode and consequence of such a recombination event suggest the occurrence, in the RH locus, of a segmental DNA transfer via the mechanism of gene conversion. 31 refs., 6 figs., 1 tab.

  3. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essen......During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes....... Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between...... types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis....

  4. BIOTECHNOLOGY OF RECOMBINANT HORMONES IN DOPING

    Directory of Open Access Journals (Sweden)

    Biljana Vitošević

    2011-09-01

    Full Text Available Recombinant DNA technology has allowed rapid progress in creating biosynthetic gene products for the treatment of many diseases. In this way it can produce large amounts of hormone, which is intended for the treatment of many pathological conditions. Recombinant hormones that are commonly used are insulin, growth hormone and erythropoietin. Precisely because of the availability of these recombinant hormones, it started their abuse by athletes. Experiments in animal models confirmed the potential effects of some of these hormones in increasing physical abilities, which attracted the attention of athletes who push the limits of their competitive capability by such manipulation. The risks of the use of recombinant hormones in doping include serious consequences for the health of athletes. Methods of detection of endogenous hormones from recombined based on the use of a monoclonal antibodies, capillary zone electrophoresis and protein biomarkers

  5. Effects of UV radiation on genetic recombination

    International Nuclear Information System (INIS)

    Vlahovic, K.; Zahradka, D.; Petranovic, M.; Petranovic, D.

    1996-01-01

    We have used the model consisting of Escherichia coli cells and l phage to study the effects of UV radiation on genetic recombination. We found two radiation induced processes that reduce or inhibit genetic recombination. One such process leads to the inability of prophage to excise itself from the irradiated bacterial chromosome by the site-specific recombination. The other process was shown to inhibit a type of general recombination by which the prophage transfers one of its genetic markers to the infecting homologous phage. Loss of the prophage ability to take part in both site-specific and general recombination was shown to develop in recB + but not in recB cells. From this we infer that the loss of prophage recombinogenicity in irradiated cells is a consequence of one process in which RecBCD enzyme (the product of recB, recC and recD genes) plays an essential role. (author)

  6. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Jørgensen, Claus Bøttcher; Cirera, Susanna

    2007-01-01

    -microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine phosphoribosyltransferase I (HPRT I), ribosomal protein L4 (RPL4), succinate dehydrogenase complex subunit A (SDHA), TATA box binding protein (TPB) and tyrosine 3-monooxygenase/tryptophan 5......-monooxygenase activation protein zeta polypeptide (YWHAZ). The stability of these reference genes in different pig tissues was investigated using the geNorm application. The range of expression stability in the genes analysed was (from the most stable to the least stable): ACTB/RPL4, TBP, HPRT, HMBS, YWHAZ...

  7. Genome-wide recombination rate variation in a recombination map of cotton.

    Science.gov (United States)

    Shen, Chao; Li, Ximei; Zhang, Ruiting; Lin, Zhongxu

    2017-01-01

    Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species' genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton.

  8. Genetic variants of the kynurenine-3-monooxygenase and postpartum depressive symptoms after cesarean section in Chinese women.

    Science.gov (United States)

    Wang, Sai-Ying; Duan, Kai-Ming; Tan, Xiao-Fang; Yin, Ji-Ye; Mao, Xiao-Yuan; Zheng, Wei; Wang, Chun-Yan; Yang, Mi; Peng, Cheng; Zhou, Hong-Hao; Liu, Zhao-Qian

    2017-06-01

    New conceptualizations of depression have emphasized the role of the kynurenine pathway (KP) in the pathogenesis of postpartum depressive symptoms (PDS). Kynurenine 3-monooxygenase (KMO) is a rate-limiting enzyme of the KP, where it catalyzes the conversion of kynurenine (KYN) to 3-hydroxykynurenine (3-HK). Previous work indicates that KMO is closely linked to the pathophysiology of depressive disorders. The purpose of this study is to investigate whether variations in the KMO gene affect PDS development after cesarean section. A total of 710 Chinese women receiving cesarean section were enrolled in this study. PDS was determined by an Edinburgh Postnatal Depression Scale (EPDS) score ≥13. Subsequently, 24 women with PDS and 48 matched women without PDS were randomly selected for investigation of perinatal serum concentrations of KYN, 3-HK and the 3-HK/KYN ratio. The 3-HK/KYN ratio indicates the activity of KMO. In addition, 6 single nucleotide polymorphisms of the KMO gene were examined. Following this genotyping, 36 puerperant women carrying the KMO rs1053230 AG genotype and 72 matched puerperant women carrying the KMO rs1053230 GG genotype were selected for comparisons of KYN, 3-HK and 3-HK/KYN ratio levels. The results show the incidence of PDS in the Chinese population to be 7.3%, with PDS characterized by increased serum 3-HK concentration and 3-HK/KYN ratio, versus matched postpartum women without PDS (PKMO rs1053230 are significantly associated with the incidence of PDS (PKMO rs1053230 AG genotype are significantly higher than those in matched postpartum women carrying the KMO rs1053230 GG genotype. The presented data highlight the contribution of alterations in the KP to the pathogenesis of postpartum depression. Heightened KMO activity, including as arising from KMO rs1053230 G/A genetic variations, are indicated as one possible mechanism driving the biological underpinnings of PDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Prenatal diagnosis of the fragile X syndrome : loss of mutation owing to a double recombinant or gene conversion event at the FMR1 locus

    NARCIS (Netherlands)

    Losekoot, M; Hoogendoorn, E; Olmer, R; Jansen, CCAM; Oosterwijk, JC; vandenOuweland, AMW; Halley, DJJ; Warren, ST; Willemsen, R; Oostra, BA; Bakker, E

    1997-01-01

    The fragile X syndrome, an X linked mental retardation syndrome, is caused by an expanded CGG repeat in the first exon of the FMR1 gene. In patients with an expanded repeat the FMR1 promoter is methylated and, consequently, the gene is silenced and no FMR1 protein (FMRP) is produced, thus leading to

  10. Lytic Polysaccharide Monooxygenases - Studies of Fungal Secretomes and Enzyme Properties

    DEFF Research Database (Denmark)

    Nekiunaite, Laura

    degradation, were also identified upstream the LPMO genes, providing evidence for a co-regulatory mechanism of LPMOs and amylolytic hydrolases. The second part of the PhD thesis is focused on understanding the binding properties of LPMOs to starch and starch mimic substrate. It was shown that LPMOs possessing...... to different substrates at the protein level. It could help to design better enzyme cocktails that increase efficiency of biomass degradation. The secretomes of A. nidulans revealed differences in growth and secretion of enzymes, depending on the type and properties of starches. A common characteristic...... conversion as they produce a wide diversity of degrading enzymes. In the first part of this PhD thesis, the secretomes of the well-known fungus Aspergillus nidulans grown on cereal and legume starches were analyzed. Secretomics is a powerful tool to unravel secretion patterns of fungi and their response...

  11. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  12. Genome-wide recombination dynamics are associated with phenotypic variation in maize.

    Science.gov (United States)

    Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing

    2016-05-01

    Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Photoionization and Recombination

    Science.gov (United States)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  14. Genotyping of flavin-containing mono-oxygenase 3 (FMO3) gene by ...

    African Journals Online (AJOL)

    63.40%) of the 306 samples were genotyped using MAMA-PCR and 42 (13.72%) of the 306 samples were genotyped by both of PCR-RFLP and MAMA-PCR and genotyping data were validated by DNA sequencing. The results show that the ...

  15. Studies on whole cell fluorescence-based screening for epoxide hydrolases and Baeyer-Villiger monooxygenases

    International Nuclear Information System (INIS)

    Bicalho, Beatriz; Chen, Lu S.; Marsaioli, Anita J.; Grognux, Johann; Reymond, Jean-Louis

    2004-01-01

    Biocatalysis reactions were performed on microtiter plates (200 μL) aiming at the utilization of fluorogenic substrates (100 μmol L -1 ) for rapid whole cell screening for epoxide hydrolases (EHs) and Baeyer-Villiger monooxygenases (BVMOs). A final protocol was achieved for EHs, with 3 new enzymatic sources being detected (Agrobacterium tumefaciens, Pichia stipitis, Trichosporom cutaneum). The fluorogenic assay for BVMO did not work as expected. However, an approach to possible variables involved (aeration; pH) provided the first detection of a BVMO activity in T. cutaneum. (author)

  16. Assessing and Modulating Kynurenine Pathway Dynamics in Huntington's Disease: Focus on Kynurenine 3-Monooxygenase.

    Science.gov (United States)

    Sathyasaikumar, Korrapati V; Breda, Carlo; Schwarcz, Robert; Giorgini, Flaviano

    2018-01-01

    The link between disturbances in kynurenine pathway (KP) metabolism and Huntington's disease (HD) pathogenesis has been explored for a number of years. Several novel genetic and pharmacological tools have recently been developed to modulate key regulatory steps in the KP such as the reaction catalyzed by the enzyme kynurenine 3-monooxygenase (KMO). This insight has offered new options for exploring the mechanistic link between this metabolic pathway and HD, and provided novel opportunities for the development of candidate drug-like compounds. Here, we present an overview of the field, focusing on some novel approaches for interrogating the pathway experimentally.

  17. Activation of р-450-depended monooxygenases changing immunotoxicity of phosphoroorganic compounds due to their metabolism character

    Directory of Open Access Journals (Sweden)

    P.F. Zabrodsky

    2010-03-01

    Full Text Available It was established that the application of the monooxygenase system inductors (MSI of phenobarbital and benzonal up to acute poisoning of animals by trichlorfom in a dose of 1,0 LD50, metabolized in the organism till production of compounds with higher toxicity caused its immunotoxic properties increase. The experiment was carried out on outbred white rats. the acute dimethyldichlorvinylphosphate (1,0 LD50 poisoning, biotransformation of which proceeded with formation of less-toxic and non-toxic compounds after MSI introduction, caused its decrease of suppression influence on immunity system indices

  18. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes

    Science.gov (United States)

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was fo...

  19. Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance.

    Science.gov (United States)

    Yu, Da Young; Noh, Soo Min; Lee, Gyun Min

    2016-08-10

    To investigate the feasibility of glutamine synthetase (GS)-mediated gene amplification in HEK293 cells for the high-level stable production of therapeutic proteins, HEK293E cells were transfected by the GS expression vector containing antibody genes and were selected at various methionine sulfoximine (MSX) concentrations in 96-well plates. For a comparison, CHOK1 cells were transfected by the same GS expression vector and selected at various MSX concentrations. Unlike CHOK1 cells, HEK293E cells producing high levels of antibodies were not selected at all. For HEK293E cells, the number of wells with the cell pool did not decrease with an increase in the concentration of MSX up to 500μM MSX. A q-RT-PCR analysis confirmed that the antibody genes in the HEK293E cells, unlike the CHOK1 cells, were not amplified after increasing the MSX concentration. It was found that the GS activity in HEK293E cells was much higher than that in CHOK1 cells (PMSX and therefore hampers GS-mediated gene amplification by MSX. Thus, in order to apply the GS-mediated gene amplification system to HEK293 cells, the endogenous GS expression level in HEK293 cells needs to be minimized by knock-out or down-regulation methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Species Differences in the Oxidative Desulfurization of a Thiouracil-Based Irreversible Myeloperoxidase Inactivator by Flavin-Containing Monooxygenase Enzymes.

    Science.gov (United States)

    Eng, Heather; Sharma, Raman; Wolford, Angela; Di, Li; Ruggeri, Roger B; Buckbinder, Leonard; Conn, Edward L; Dalvie, Deepak K; Kalgutkar, Amit S

    2016-08-01

    N1-Substituted-6-arylthiouracils, represented by compound 1 [6-(2,4-dimethoxyphenyl)-1-(2-hydroxyethyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one], are a novel class of selective irreversible inhibitors of human myeloperoxidase. The present account is a summary of our in vitro studies on the facile oxidative desulfurization in compound 1 to a cyclic ether metabolite M1 [5-(2,4-dimethoxyphenyl)-2,3-dihydro-7H-oxazolo[3,2-a]pyrimidin-7-one] in NADPH-supplemented rats (t1/2 [half-life = mean ± S.D.] = 8.6 ± 0.4 minutes) and dog liver microsomes (t1/2 = 11.2 ± 0.4 minutes), but not in human liver microsomes (t1/2 > 120 minutes). The in vitro metabolic instability also manifested in moderate-to-high plasma clearances of the parent compound in rats and dogs with significant concentrations of M1 detected in circulation. Mild heat deactivation of liver microsomes or coincubation with the flavin-containing monooxygenase (FMO) inhibitor imipramine significantly diminished M1 formation. In contrast, oxidative metabolism of compound 1 to M1 was not inhibited by the pan cytochrome P450 inactivator 1-aminobenzotriazole. Incubations with recombinant FMO isoforms (FMO1, FMO3, and FMO5) revealed that FMO1 principally catalyzed the conversion of compound 1 to M1. FMO1 is not expressed in adult human liver, which rationalizes the species difference in oxidative desulfurization. Oxidation by FMO1 followed Michaelis-Menten kinetics with Michaelis-Menten constant, maximum rate of oxidative desulfurization, and intrinsic clearance values of 209 μM, 20.4 nmol/min/mg protein, and 82.7 μl/min/mg protein, respectively. Addition of excess glutathione essentially eliminated the conversion of compound 1 to M1 in NADPH-supplemented rat and dog liver microsomes, which suggests that the initial FMO1-mediated S-oxygenation of compound 1 yields a sulfenic acid intermediate capable of redox cycling to the parent compound in a glutathione-dependent fashion or undergoing further oxidation to a more

  1. Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa.

    Science.gov (United States)

    Dunfield, Peter F; Belova, Svetlana E; Vorob'ev, Alexey V; Cornish, Sabrina L; Dedysh, Svetlana N

    2010-11-01

    An aerobic, methanotrophic bacterium, designated KYG(T), was isolated from a forest soil in Germany. Cells of strain KYG(T) were Gram-negative, non-motile, slightly curved rods that multiplied by binary fission and produced yellow colonies. The cells contained intracellular granules of poly-β-hydroxybutyrate at each cell pole, a particulate methane monooxygenase (pMMO) and stacks of intracytoplasmic membranes (ICMs) packed in parallel along one side of the cell envelope. Strain KYG(T) grew at pH 5.2-7.2 and 2-33 °C and could fix atmospheric nitrogen under reduced oxygen tension. The major cellular fatty acid was C(18 : 1)ω7c (81.5 %) and the DNA G+C content was 61.4 mol%. Strain KYG(T) belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and was most closely related to the obligate methanotroph Methylocapsa acidiphila B2(T) (98.1 % 16S rRNA gene sequence similarity and 84.7 % pmoA sequence similarity). Unlike Methylocapsa acidiphila B2(T), which grows only on methane and methanol, strain KYG(T) was able to grow facultatively on acetate. Facultative acetate utilization is a characteristic of the methanotrophs of the genus Methylocella, but the genus Methylocella does not produce pMMO or ICMs. Strain KYG(T) differed from Methylocapsa acidiphila B2(T) on the basis of substrate utilization pattern, pigmentation, pH range, cell ultrastructure and efficiency of dinitrogen fixation. Therefore, we propose a novel species, Methylocapsa aurea sp. nov., to accommodate this bacterium. The type strain is KYG(T) (=DSM 22158(T) =VKM B-2544(T)).

  2. Single administration of recombinant IL-6 restores the gene expression of lipogenic enzymes in liver of fasting IL-6-deficient mice

    DEFF Research Database (Denmark)

    Gavito, A L; Cabello, R; Suarez, J

    2016-01-01

    BACKGROUND AND PURPOSE: Lipogenesis is intimately controlled by hormones and cytokines as well as nutritional conditions. IL-6 participates in the regulation of fatty acid metabolism in the liver. We investigated the role of IL-6 in mediating fasting/re-feeding changes in the expression of hepatic...... lipogenic enzymes. EXPERIMENTAL APPROACH: Gene and protein expression of lipogenic enzymes were examined in livers of wild-type (WT) and IL-6-deficient (IL-6(-/-) ) mice during fasting and re-feeding conditions. Effects of exogenous IL-6 administration on gene expression of these enzymes were evaluated...

  3. Cloning and characterization of two duplicated interleukin-17A/F2 genes in common carp (Cyprinus carpio L.): Transcripts expression and bioactivity of recombinant IL-17A/F2.

    Science.gov (United States)

    Li, Hongxia; Yu, Juhua; Li, Jianlin; Tang, Yongkai; Yu, Fan; Zhou, Jie; Yu, Wenjuan

    2016-04-01

    Interleukin-17 (IL-17) plays an important role in inflammation and host defense in mammals. In this study, we identified two duplicated IL-17A/F2 genes in the common carp (Cyprinus carpio) (ccIL-17A/F2a and ccIL-17A/F2b), putative encoded proteins contain 140 amino acids (aa) with conserved IL-17 family motifs. Expression analysis revealed high constitutive expression of ccIL-17A/F2s in mucosal tissues, including gill, skin and intestine, their expression could be induced by Aeromonas hydrophila, suggesting a potential role in mucosal immunity. Recombinant ccIL-17A/F2a protein (rccIL-17A/F2a) produced in Escherichia coli could induce the expression of proinflammatory cytokines (IL-1β) and the antimicrobial peptides S100A1, S100A10a and S100A10b in the primary kidney in a dose- and time-dependent manner. Above findings suggest that ccIL-17A/F2 plays an important role in both proinflammatory and innate immunity. Two duplicated ccIL-17A/F2s showed different expression level with ccIL-17A/F2a higher than b, comparison of two 5' regulatory regions indicated the length from anticipated promoter to transcriptional start site (TSS) and putative transcription factor binding site (TFBS) were different. Promoter activity of ccIL-17A/F2a was 2.5 times of ccIL-17A/F2b which consistent with expression results of two genes. These suggest mutations in 5'regulatory region contributed to the differentiation of duplicated genes. To our knowledge, this is the first report to analyze 5'regulatory region of piscine IL-17 family genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Efficient bacterial expression of recombinant potato mop-top virus non-structural triple gene block protein 1 modified by progressive deletion of its N-terminus

    Czech Academy of Sciences Publication Activity Database

    Pečenková, Tamara; Filigarová, Marie; Čeřovská, Noemi

    2005-01-01

    Roč. 41, - (2005), s. 128-135 ISSN 1046-5928 R&D Projects: GA ČR GA522/04/1329 Institutional research plan: CEZ:AV0Z50380511 Keywords : Protein expression * Potato mop-top virus * Triple gene block Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.553, year: 2005

  5. Biological assessment of recombinant avian metapneumovirus subgroup C (aMPV-C) viruses containing different length of the G gene in cultured cells and SPF turkeys.

    Science.gov (United States)

    Genetic variation in length of the glycoprotein (G) gene among different avian metapneumovirus subgroup C (aMPV-C) isolates has been reported. However, its biological significance in virus replication and pathogenicity is unknown. In this study, we generated two Colorado (CO) strain-based recombinan...

  6. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    KAUST Repository

    Fornander, Louise H

    2012-02-22

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.

  7. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.

    Science.gov (United States)

    Könitzer, Jennifer D; Müller, Markus M; Leparc, Germán; Pauers, Martin; Bechmann, Jan; Schulz, Patrick; Schaub, Jochen; Enenkel, Barbara; Hildebrandt, Tobias; Hampel, Martin; Tolstrup, Anne B

    2015-09-01

    Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Recombination of cluster ions

    Science.gov (United States)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  9. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci analysis in a Flint × Flint maize recombinant inbred line population

    Directory of Open Access Journals (Sweden)

    Wenzel Gerhard

    2007-01-01

    Full Text Available Abstract Background Cell-wall digestibility is the major target for improving the feeding value of forage maize. An understanding of the molecular basis for cell-wall digestibility is crucial towards breeding of highly digestible maize. Results 865 candidate ESTs for cell-wall digestibility were selected according to the analysis of expression profiles in 1 three sets of brown-midrib isogenic lines in the genetic background of inbreds 1332 (1332 and 1332 bm3, 5361 (5361 and 5361 bm3, and F2 (F2, F2 bm1, F2 bm2, and F2 bm3, 2 the contrasting extreme lines of FD (Flint × Dent, AS08 × AS 06, DD1 (Dent × Dent, AS11 × AS09, and DD2 (Dent × Dent, AS29 × AS30 mapping populations, and 3 two contrasting isogenic inbreds, AS20 and AS21. Out of those, 439 ESTs were assembled on our "Forage Quality Array", a small microarray specific for cell wall digestibility related experiments. Transcript profiles of 40 lines of a Flint × Flint population were monitored using the Forage Quality Array, which were contrasting for cell wall digestibility. Using t-tests (p Conclusion 102 candidate genes for cell-wall digestibility were validated by genetical genomics approach. Although the cDNA array highlights gene types (the tested gene and any close family members, trans-acting factors or metabolic bottlenecks seem to play the major role in controlling heritable variation of gene expression related to cell-wall digestibility, since no in silico mapped ESTs were in the same location as their own eQTL. Transcriptional variation was generally found to be oligogenic rather than monogenic inherited due to only 26% ESTs detected a single eQTL in the present study. One eQTL hotspot was co-localized with cell wall digestibility related QTL cluster on bins 3.05, implying that in this case the gene(s underlying QTL and eQTL are identical. As the field of genetical genomics develops, it is expected to significantly improve our knowledge about complex traits, such as cell

  10. Detection and characterization of recombinant DNA expressing vip3A-type insecticidal gene in GMOs--standard single, multiplex and construct-specific PCR assays.

    Science.gov (United States)

    Singh, Chandra K; Ojha, Abhishek; Bhatanagar, Raj K; Kachru, Devendra N

    2008-01-01

    Vegetative insecticidal protein (Vip), a unique class of insecticidal protein, is now part of transgenic plants for conferring resistance against lepidopteron pests. In order to address the imminent regulatory need for detection and labeling of vip3A carrying genetically modified (GM) products, we have developed a standard single PCR and a multiplex PCR assay. As far as we are aware, this is the first report on PCR-based detection of a vip3A-type gene (vip-s) in transgenic cotton and tobacco. Our assay involves amplification of a 284-bp region of the vip-s gene. This assay can possibly detect as many as 20 natural wild-type isolates bearing a vip3A-like gene and two synthetic genes of vip3A in transgenic plants. The limit of detection as established by our assay for GM trait (vip-s) is 0.1%. Spiking with nontarget DNA originating from diverse plant sources had no inhibitory effect on vip-s detection. Since autoclaving of vip-s bearing GM leaf samples showed no deterioration/interference in detection efficacy, the assay seems to be suitable for processed food products as well. The vip-s amplicon identity was reconfirmed by restriction endonuclease assay. The primer set for vip-s was equally effective in a multiplex PCR assay format (duplex, triplex and quadruplex), used in conjunction with the primer sets for the npt-II selectable marker gene, Cauliflower mosaic virus 35S promoter and nopaline synthetase terminator, enabling concurrent detection of the transgene, regulatory sequences and marker gene. Further, the entire transgene construct was amplified using the forward primer of the promoter and the reverse primer of the terminator. The resultant amplicon served as a template for nested PCR to confirm the construct integrity. The method is suitable for screening any vip3A-carrying GM plant and food. The availability of a reliable PCR assay method prior to commercial release of vip3A-based transgenic crops and food would facilitate rapid and efficient regulatory

  11. Nuclease-mediated double-strand break (DSB) enhancement of small fragment homologous recombination (SFHR) gene modification in human-induced pluripotent stem cells (hiPSCs).

    Science.gov (United States)

    Sargent, R Geoffrey; Suzuki, Shingo; Gruenert, Dieter C

    2014-01-01

    Recent developments in methods to specifically modify genomic DNA using sequence-specific endonucleases and donor DNA have opened the door to a new therapeutic paradigm for cell and gene therapy of inherited diseases. Sequence-specific endonucleases, in particular transcription activator-like (TAL) effector nucleases (TALENs), have been coupled with polynucleotide small/short DNA fragments (SDFs) to correct the most common mutation in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, a 3-base-pair deletion at codon 508 (delF508), in induced pluripotent stem (iPS) cells. The studies presented here describe the generation of candidate TALENs and their co-transfection with wild-type (wt) CFTR-SDFs into CF-iPS cells homozygous for the delF508 mutation. Using an allele-specific PCR (AS-PCR)-based cyclic enrichment protocol, clonal populations of corrected CF-iPS cells were isolated and expanded.

  12. [Therapeutic effect of a novel recombinant vaccine encoding chicken collagen type II procollagen gene on collagen-induced arthritis in rat].

    Science.gov (United States)

    Song, Xin-qiang; Luo, Yuan; Wang, Dan; Liu, Shu-guang; Liu, Jin-feng; Yuan, Fang; Xue, Hong; Liu, Nan; Liang, Fei; Sun, Yu-ying; Xi, Yong-zhi

    2006-08-08

    To investigate the therapeutic effect of gene vaccine encoding chicken collagen type II (CC II) on collagen-induced arthritis (CIA) comprehensively. Three groups (CIA) were given a single intravenous injection of plasmid pcDNA-CCOL2A1 (20 microg/kg, 200 microg/kg, 400 microg/kg) respectively and one group (CIA) was injected 200 microg/kg pcDNA3.1 as a control. The effect of gene vaccine (pcDNA-CCOL2A1) was evaluated according to the arthritis score, radiological and histological examinations. The severity of arthritis of CIA rats which were administered 200 microg/kg pcDNA-CCOL2A1 was significantly reduced from the fifth day. According to the radiological and histological examinations, the articular cartilage as well as subchondral bone trabeculae are similar to those of the normal groups, so the bone and articular cartilage structure were protected after treatment with 200 microg/kg pcDNA-CCOL2A1 with a little synovial hyperplasia. The therapeutic effect of 200 microg/kg pcDNA-CCOL2A1 group has significant difference in comparison with that of the pcDNA3.1 group (P 0.05). The new gene vaccine pcDNA-CCOL2A1 has significant therapeutic effect on CIA rats, and the treatment may therefore be an effective strategy for RA patient clinically.

  13. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  14. Construction and characterization of a recombinant invertebrate iridovirus.

    Science.gov (United States)

    Ozgen, Arzu; Muratoglu, Hacer; Demirbag, Zihni; Vlak, Just M; van Oers, Monique M; Nalcacioglu, Remziye

    2014-08-30

    Chilo iridescent virus (CIV), officially named Insect iridescent virus 6 (IIV6), is the type species of the genus Iridovirus (family Iridoviridae). In this paper we constructed a recombinant CIV, encoding the green fluorescent protein (GFP). This recombinant can be used to investigate viral replication dynamics. We showed that homologous recombination is a valid method to make CIV gene knockouts and to insert foreign genes. The CIV 157L gene, putatively encoding a non-functional inhibitor of apoptosis (IAP), was chosen as target for foreign gene insertion. The gfp open reading frame preceded by the viral mcp promoter was inserted into the 157L locus by homologous recombination in Anthonomus grandis BRL-AG-3A cells. Recombinant virus (rCIV-Δ157L-gfp) was purified by successive rounds of plaque purification. All plaques produced by the purified recombinant virus emitted green fluorescence due to the presence of GFP. One-step growth curves for recombinant and wild-type CIV were similar and the recombinant was fully infectious in vivo. Hence, CIV157L can be inactivated without altering the replication kinetics of the virus. Consequently, the CIV 157L locus can be used as a site for insertion of foreign DNA, e.g. to modify viral properties for insect biocontrol. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Draft Genome Sequence of Methyloferula stellata AR4, an Obligate Methanotroph Possessing Only a Soluble Methane Monooxygenase.

    Science.gov (United States)

    Dedysh, Svetlana N; Naumoff, Daniil G; Vorobev, Alexey V; Kyrpides, Nikos; Woyke, Tanja; Shapiro, Nicole; Crombie, Andrew T; Murrell, J Colin; Kalyuzhnaya, Marina G; Smirnova, Angela V; Dunfield, Peter F

    2015-03-05

    Methyloferula stellata AR4 is an aerobic acidophilic methanotroph, which, in contrast to most known methanotrophs but similar to Methylocella spp., possesses only a soluble methane monooxygenase. However, it differs from Methylocella spp. by its inability to grow on multicarbon substrates. Here, we report the draft genome sequence of this bacterium. Copyright © 2015 Dedysh et al.

  16. Draft Genome Sequence of Methyloferula stellata AR4, an Obligate Methanotroph Possessing Only a Soluble Methane Monooxygenase

    OpenAIRE

    Dedysh, Svetlana N.; Naumoff, Daniil G.; Vorobev, Alexey V.; Kyrpides, Nikos; Woyke, Tanja; Shapiro, Nicole; Crombie, Andrew T.; Murrell, J. Colin; Kalyuzhnaya, Marina G.; Smirnova, Angela V.; Dunfield, Peter F.

    2015-01-01

    Methyloferula stellata AR4 is an aerobic acidophilic methanotroph, which, in contrast to most known methanotrophs but similar to Methylocella spp., possesses only a soluble methane monooxygenase. However, it differs from Methylocella spp. by its inability to grow on multicarbon substrates. Here, we report the draft genome sequence of this bacterium.

  17. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene

    NARCIS (Netherlands)

    Cankar, K.; van Houwelingen, A.; Bosch, H.J.; Sonke, T.; Bouwmeester, H.; Beekwilder, J.P.

    2011-01-01

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene

  18. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Pierce, Brian; Wittrup Agger, Jane; Wichmann, Jesper

    2017-01-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of ...

  19. Joint Functions of Protein Residues and NADP(H) in Oxygen Activation by Flavin-containing Monooxygenase

    NARCIS (Netherlands)

    Orru, Roberto; Torres Pazmino, Daniel; Fraaije, Marco W.; Mattevi, Andrea

    2010-01-01

    The reactivity of flavoenzymes with dioxygen is at the heart of a number of biochemical reactions with far reaching implications for cell physiology and pathology. Flavin-containing monooxygenases are an attractive model system to study flavin-mediated oxygenation. In these enzymes, the NADP(H)

  20. Optimizing the Targeting of Mouse Parvovirus 1 to Murine Melanoma Selects for Recombinant Genomes and Novel Mutations in the Viral Capsid Gene

    Directory of Open Access Journals (Sweden)

    Matthew Marr

    2018-01-01

    Full Text Available Combining virus-enhanced immunogenicity with direct delivery of immunomodulatory molecules would represent a novel treatment modality for melanoma, and would require development of new viral vectors capable of targeting melanoma cells preferentially. Here we explore the use of rodent protoparvoviruses targeting cells of the murine melanoma model B16F10. An uncloned stock of mouse parvovirus 1 (MPV1 showed some efficacy, which was substantially enhanced following serial passage in the target cell. Molecular cloning of the genes of both starter and selected virus pools revealed considerable sequence diversity. Chimera analysis mapped the majority of the improved infectivity to the product of the major coat protein gene, VP2, in which linked blocks of amino acid changes and one or other of two apparently spontaneous mutations were selected. Intragenic chimeras showed that these represented separable components, both contributing to enhanced infection. Comparison of biochemical parameters of infection by clonal viruses indicated that the enhancement due to changes in VP2 operates after the virus has bound to the cell surface and penetrated into the cell. Construction of an in silico homology model for MPV1 allowed placement of these changes within the capsid shell, and revealed aspects of the capsid involved in infection initiation that had not been previously recognized.

  1. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Science.gov (United States)

    Nuytens, Kim; Tuand, Krizia; Fu, Quili; Stijnen, Pieter; Pruniau, Vincent; Meulemans, Sandra; Vankelecom, Hugo; Creemers, John W M

    2014-01-01

    Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  2. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Directory of Open Access Journals (Sweden)

    Kim Nuytens

    Full Text Available Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  3. Cultivating Insect Cells To Produce Recombinant Proteins

    Science.gov (United States)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  4. A copper-methionine interaction controls the pH-dependent activation of peptidylglycine monooxygenase.

    Science.gov (United States)

    Bauman, Andrew T; Broers, Brenda A; Kline, Chelsey D; Blackburn, Ninian J

    2011-12-20

    The pH dependence of native peptidylglycine monooxygenase (PHM) and its M314H variant has been studied in detail. For wild-type (WT) PHM, the intensity of the Cu-S interaction visible in the Cu(I) extended X-ray absorption fine structure (EXAFS) data is inversely proportional to catalytic activity over the pH range of 3-8. A previous model based on more limited data was interpreted in terms of two protein conformations involving an inactive Met-on form and an active flexible Met-off form [Bauman, A. T., et al. (2006) Biochemistry 45, 11140-11150] that derived its catalytic activity from the ability to couple into vibrational modes critical for proton tunneling. The new studies comparing the WT and M314H variant have led to the evolution of this model, in which the Met-on form has been found to be derived from coordination of an additional Met residue, rather than a more rigid conformer of M314 as previously proposed. The catalytic activity of the mutant decreased by 96% because of effects on both k(cat) and K(M), but it displayed the same activity-pH profile with a maximum around pH 6. At pH 8, the reduced Cu(I) form gave spectra that could be simulated by replacement of the Cu(M) Cu-S(Met) interaction with a Cu-N/O interaction, but the data did not unambiguously assign the ligand to the imidazole side chain of H314. At pH 3.5, the EXAFS still showed the presence of a strong Cu-S interaction, establishing that the Met-on form observed at low pH in WT cannot be due to a strengthening of the Cu(M)-methionine interaction but must arise from a different Cu-S interaction. Therefore, lowering the pH causes a conformational change at one of the Cu centers that brings a new S donor residue into a favorable orientation for coordination to copper and generates an inactive form. Cys coordination is unlikely because all Cys residues in PHM are engaged in disulfide cross-links. Sequence comparison with the PHM homologues tyramine β-monooxygenase and dopamine β-monooxygenase

  5. Status of Resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to Neonicotinoids in Iran and Detoxification by Cytochrome P450-Dependent Monooxygenases.

    Science.gov (United States)

    Basij, M; Talebi, K; Ghadamyari, M; Hosseininaveh, V; Salami, S A

    2017-02-01

    Nine Bemisia tabaci (Gennadius) populations were collected from different regions of Iran. In all nine populations, only one biotype (B biotype) was detected. Susceptibilities of these populations to imidacloprid and acetamiprid were assayed. The lethal concentration 50 values (LC 50 ) for different populations showed a significant discrepancy in the susceptibility of B. tabaci to imidacloprid (3.76 to 772.06 mg l -1 ) and acetamiprid (4.96 to 865 mg l -1 ). The resistance ratio of the populations ranged from 9.72 to 205.20 for imidacloprid and 6.38 to 174.57 for acetamiprid. The synergistic effects of piperonylbutoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) were evaluated for the susceptible (RF) and resistant (JR) populations for the determination of the involvement of cytochrome P450-dependent monooxygenase and carboxylesterase, respectively, in their resistance mechanisms. The results showed that PBO overcame the resistance of the JR population to both imidacloprid and acetamiprid, with synergistic ratios of 72.7 and 106.9, respectively. Carboxylesterase, glutathione S-transferase and cytochrome P450-dependent monooxygenase were studied biochemically, for the purpose of measuring the activity of the metabolizing enzymes in order to determine which enzymes are directly involved in neonicotinoid resistance. There was an increase in the activity of cytochrome P450-dependent monooxygenase up to 17-fold in the resistant JR population (RR = 205.20). The most plausible activity of cytochrome P450-dependent monooxygenase correlated with the resistances of imidacloprid and acetamiprid, and this suggests that cytochrome P450-dependent monooxygenase is the only enzyme system responsible for neonicotinoid resistance in the nine populations of B. tabaci.

  6. Retroviral Vectors for Analysis of Viral Mutagenesis and Recombination

    Directory of Open Access Journals (Sweden)

    Jonathan M.O. Rawson

    2014-09-01

    Full Text Available Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.

  7. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells.

    Science.gov (United States)

    Li, Xiaoxiang; Wang, Xiaoli; Xiong, Shaoling; Zhang, Jing; Cai, Litao; Yang, Yanyan

    2007-10-01

    A recombinant baculovirus, rv-egfp-NK, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP), was used to express nattokinase (NK), a fibrinolytic enzyme, in Spodoptera frugiperda (SF-9) cells. The recombinant protein also included a histidine tag for purification using Ni(2+) resins. The recombinant NK, approximately 30 kDa, retained fibrinolytic activity (60 U/ml). The integration of the EGFP expression cassette in the Bac-to-Bac system is thus an effective method for the expression and purification of recombinant NK protein in Spodoptera frugiperda insect cells.

  8. ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in RiceW⃞

    Science.gov (United States)

    Zhu, Yongyou; Nomura, Takahito; Xu, Yonghan; Zhang, Yingying; Peng, Yu; Mao, Bizeng; Hanada, Atsushi; Zhou, Haicheng; Wang, Renxiao; Li, Peijin; Zhu, Xudong; Mander, Lewis N.; Kamiya, Yuji; Yamaguchi, Shinjiro; He, Zuhua

    2006-01-01

    The recessive tall rice (Oryza sativa) mutant elongated uppermost internode (eui) is morphologically normal until its final internode elongates drastically at the heading stage. The stage-specific developmental effect of the eui mutation has been used in the breeding of hybrid rice to improve the performance of heading in male sterile cultivars. We found that the eui mutant accumulated exceptionally large amounts of biologically active gibberellins (GAs) in the uppermost internode. Map-based cloning revealed that the Eui gene encodes a previously uncharacterized cytochrome P450 monooxygenase, CYP714D1. Using heterologous expression in yeast, we found that EUI catalyzed 16α,17-epoxidation of non-13-hydroxylated GAs. Consistent with the tall and dwarfed phenotypes of the eui mutant and Eui-overexpressing transgenic plants, respectively, 16α,17-epoxidation reduced the biological activity of GA4 in rice, demonstrating that EUI functions as a GA-deactivating enzyme. Expression of Eui appeared tightly regulated during plant development, in agreement with the stage-specific eui phenotypes. These results indicate the existence of an unrecognized pathway for GA deactivation by EUI during the growth of wild-type internodes. The identification of Eui as a GA catabolism gene provides additional evidence that the GA metabolism pathway is a useful target for increasing the agronomic value of crops. PMID:16399803

  9. Mitigating Mitochondrial Genome Erosion Without Recombination.

    Science.gov (United States)

    Radzvilavicius, Arunas L; Kokko, Hanna; Christie, Joshua R

    2017-11-01

    Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random s