WorldWideScience

Sample records for monooxygenase bacterial amoa

  1. Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase.

    Science.gov (United States)

    Chen, Yin; Patel, Nisha A; Crombie, Andrew; Scrivens, James H; Murrell, J Colin

    2011-10-25

    Flavin-containing monooxygenases (FMOs) are one of the most important monooxygenase systems in Eukaryotes and have many important physiological functions. FMOs have also been found in bacteria; however, their physiological function is not known. Here, we report the identification and characterization of trimethylamine (TMA) monooxygenase, termed Tmm, from Methylocella silvestris, using a combination of proteomic, biochemical, and genetic approaches. This bacterial FMO contains the FMO sequence motif (FXGXXXHXXXF/Y) and typical flavin adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-binding domains. The enzyme was highly expressed in TMA-grown M. silvestris and absent during growth on methanol. The gene, tmm, was expressed in Escherichia coli, and the purified recombinant protein had high Tmm activity. Mutagenesis of this gene abolished the ability of M. silvestris to grow on TMA as a sole carbon and energy source. Close homologs of tmm occur in many Alphaproteobacteria, in particular Rhodobacteraceae (marine Roseobacter clade, MRC) and the marine SAR11 clade (Pelagibacter ubique). We show that the ability of MRC to use TMA as a sole carbon and/or nitrogen source is directly linked to the presence of tmm in the genomes, and purified Tmm of MRC and SAR11 from recombinant E. coli showed Tmm activities. The tmm gene is highly abundant in the metagenomes of the Global Ocean Sampling expedition, and we estimate that 20% of the bacteria in the surface ocean contain tmm. Taken together, our results suggest that Tmm, a bacterial FMO, plays an important yet overlooked role in the global carbon and nitrogen cycles.

  2. Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.

    Science.gov (United States)

    Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

    2014-03-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Bacterial expression of human kynurenine 3-monooxygenase: Solubility, activity, purification☆

    Science.gov (United States)

    Wilson, K.; Mole, D.J.; Binnie, M.; Homer, N.Z.M.; Zheng, X.; Yard, B.A.; Iredale, J.P.; Auer, M.; Webster, S.P.

    2014-01-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington’s disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. PMID:24316190

  4. Abundance and activity of 16S rRNA, amoA and nifH bacterial genes during assisted phytostabilization of mine tailings

    Science.gov (United States)

    Nelson, Karis N.; Neilson, Julia W.; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings. PMID:25495940

  5. Abundance and Activity of 16S rRNA, AmoA and NifH Bacterial Genes During Assisted Phytostabilization of Mine Tailings.

    Science.gov (United States)

    Nelson, Karis N; Neilson, Julia W; Root, Robert A; Chorover, Jon; Maier, Raina M

    2015-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings.

  6. Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase

    NARCIS (Netherlands)

    Rioz-Martinez, Ana; Kopacz, Malgorzata; de Gonzalo, Gonzalo; Pazmino, Daniel E. Torres; Gotor, Vicente; Fraaije, Marco W.

    2011-01-01

    A bacterial flavin-containing monooxygenase (FMO), fused to phosphite dehydrogenase, has been used to explore its biocatalytic potential. The bifunctional biocatalyst could be expressed in high amounts in Escherichia coli and was able to oxidize indole and indole derivatives into a variety of indigo

  7. Comparison among amoA Primers Suited for Quantification and Diversity Analyses of Ammonia-Oxidizing Bacteria in Soil

    Science.gov (United States)

    Shimomura, Yumi; Morimoto, Sho; Hoshino, Yuko Takada; Uchida, Yoshitaka; Akiyama, Hiroko; Hayatsu, Masahito

    2012-01-01

    Ammonia monooxygenase subunit A gene (amoA) is frequently used as a functional gene marker for diversity analysis of ammonia-oxidizing bacteria (AOB). To select a suitable amoA primer for real-time PCR and PCR-denaturing gradient gel electrophoresis (DGGE), three reverse primers (degenerate primer amoA-2R; non-degenerate primers amoA-2R-GG and amoA-2IR) were examined. No significant differences were observed among the three primers in terms of quantitative values of amoA from environmental samples using real-time PCR. We found that PCR-DGGE analysis with the amoA-2IR primer gave the best results in this studied soil. These results indicate that amoA-2IR is a suitable primer for community analysis of AOB in the environment. PMID:22075625

  8. The abundance of functional genes, cbbL, nifH, amoA and apsA, and bacterial community structure of intertidal soil from Arabian Sea.

    Science.gov (United States)

    Keshri, Jitendra; Yousuf, Basit; Mishra, Avinash; Jha, Bhavanath

    2015-06-01

    The Gulf of Cambay is a trumpet-shaped inlet of the Arabian Sea, located along the west coast of India and confronts a high tidal range with strong water currents. The region belongs to a semi-arid zone and saline alkaline intertidal soils are considered biologically extreme. The selected four soil types (S1-S4) were affected by salinity, alkalinity and sodicity. Soil salinity ranged from 20 to 126 dS/m, soil pH 8.6-10.0 with high sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP). Abundance of the key functional genes like cbbL, nifH, amoA and apsA involved in biogeochemical cycling were targeted using qPCR, which varied from (2.36 ± 0.03) × 10(4) to (2.87 ± 0.26) × 10(8), (1.18 ± 0.28) × 10(6) to (1.01 ± 0.26) × 10(9), (1.41 ± 0.21) × 10(6) to (1.29 ± 0.05) × 10(8) and (8.47 ± 0.23) × 10(4) to (1.73 ± 0.01) × 10(6) per gram dry weight, respectively. The microbial community structure revealed that soils S1 and S3 were dominated by phylum Firmicutes whereas S4 and S2 showed an abundance of Proteobacterial clones. These soils also represented Bacteroidetes, Chloroflexi, Actinobacteria, Planctomycetes and Acidobacteria clones. Molecular phylogeny showed a significant variation in the bacterial community distribution among the intertidal soil types. A high number of novel taxonomic units were observed which makes the intertidal zone a unique reservoir of unidentified bacterial taxa that may be explored further. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Global occurrence of archaeal amoA genes in terrestrial hot springs.

    Science.gov (United States)

    Zhang, Chuanlun L; Ye, Qi; Huang, Zhiyong; Li, Wenjun; Chen, Jinquan; Song, Zhaoqi; Zhao, Weidong; Bagwell, Christopher; Inskeep, William P; Ross, Christian; Gao, Lei; Wiegel, Juergen; Romanek, Christopher S; Shock, Everett L; Hedlund, Brian P

    2008-10-01

    Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86 degrees C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were

  10. Global Occurrence of Archaeal amoA Genes in Terrestrial Hot Springs▿

    Science.gov (United States)

    Zhang, Chuanlun L.; Ye, Qi; Huang, Zhiyong; Li, WenJun; Chen, Jinquan; Song, Zhaoqi; Zhao, Weidong; Bagwell, Christopher; Inskeep, William P.; Ross, Christian; Gao, Lei; Wiegel, Juergen; Romanek, Christopher S.; Shock, Everett L.; Hedlund, Brian P.

    2008-01-01

    Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86°C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were

  11. A first insight into the occurrence and expression of functional amoA and accA genes of autotrophic and ammonia-oxidizing bathypelagic Crenarchaeota of Tyrrhenian Sea

    Science.gov (United States)

    Yakimov, Michail M.; Cono, Violetta La; Denaro, Renata

    2009-05-01

    The autotrophic and ammonia-oxidizing crenarchaeal assemblage at offshore site located in the deep Mediterranean (Tyrrhenian Sea, depth 3000 m) water was studied by PCR amplification of the key functional genes involved in energy (ammonia mono-oxygenase alpha subunit, amoA) and central metabolism (acetyl-CoA carboxylase alpha subunit, accA). Using two recently annotated genomes of marine crenarchaeons, an initial set of primers targeting archaeal accA-like genes was designed. Approximately 300 clones were analyzed, of which 100% of amoA library and almost 70% of accA library were unambiguously related to the corresponding genes from marine Crenarchaeota. Even though the acetyl-CoA carboxylase is phylogenetically not well conserved and the remaining clones were affiliated to various bacterial acetyl-CoA/propionyl-CoA carboxylase genes, the pool of archaeal sequences was applied for development of quantitative PCR analysis of accA-like distribution using TaqMan ® methodolgy. The archaeal accA gene fragments, together with alignable gene fragments from the Sargasso Sea and North Pacific Subtropical Gyre (ALOHA Station) metagenome databases, were analyzed by multiple sequence alignment. Two accA-like sequences, found in ALOHA Station at the depth of 4000 m, formed a deeply branched clade with 64% of all archaeal Tyrrhenian clones. No close relatives for residual 36% of clones, except of those recovered from Eastern Mediterranean, was found, suggesting the existence of a specific lineage of the crenarchaeal accA genes in deep Mediterranean water. Alignment of Mediterranean amoA sequences defined four cosmopolitan phylotypes of Crenarchaeota putative ammonia mono-oxygenase subunit A gene occurring in the water sample from the 3000 m depth. Without exception all phylotypes fell into Deep Marine Group I cluster that contain the vast majority of known sequences recovered from global deep-sea environment. Remarkably, three phylotypes accounted for 91% of all Mediterranean

  12. Niche specificity of ammonia-oxidizing archaeal and bacterial communities in a freshwater wetland receiving municipal wastewater in Daqing, Northeast China.

    Science.gov (United States)

    Lee, Kwok-Ho; Wang, Yong-Feng; Li, Hui; Gu, Ji-Dong

    2014-12-01

    Ecophysiological differences between ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) enable them to adapt to different niches in complex freshwater wetland ecosystems. The community characters of AOA and AOB in the different niches in a freshwater wetland receiving municipal wastewater, as well as the physicochemical parameters of sediment/soil samples, were investigated in this study. AOA community structures varied and separated from each other among four different niches. Wetland vegetation including aquatic macrophytes and terrestrial plants affected the AOA community composition but less for AOB, whereas sediment depths might contribute to the AOB community shift. The diversity of AOA communities was higher than that of AOB across all four niches. Archaeal and bacterial amoA genes (encoding for the alpha-subunit of ammonia monooxygenases) were most diverse in the dry-land niche, indicating O2 availability might favor ammonia oxidation. The majority of AOA amoA sequences belonged to the Soil/sediment Cluster B in the freshwater wetland ecosystems, while the dominant AOB amoA sequences were affiliated with Nitrosospira-like cluster. In the Nitrosospira-like cluster, AOB amoA gene sequences affiliated with the uncultured ammonia-oxidizing beta-proteobacteria constituted the largest portion (99%). Moreover, independent methods for phylogenetic tree analysis supported high parsimony bootstrap values. As a consequence, it is proposed that Nitrosospira-like amoA gene sequences recovered in this study represent a potentially novel cluster, grouping with the sequences from Gulf of Mexico deposited in the public databases.

  13. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Characterization of Biocatalytically Active Bacterial Strains and of Cytochrome P450 Monooxygenase Enzymes and Their Genes

    Science.gov (United States)

    Jungmann, Volker; Molnár, István; Hammer, Philip E.; Hill, D. Steven; Zirkle, Ross; Buckel, Thomas G.; Buckel, Dagmar; Ligon, James M.; Pachlatko, J. Paul

    2005-01-01

    4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined. PMID:16269732

  14. Inhibition of bacterial ammonia oxidation by organohydrazines in soil microcosms

    Directory of Open Access Journals (Sweden)

    Yucheng eWu

    2012-01-01

    Full Text Available Hydroxylamine oxidation by hydroxylamine oxidoreductase (HAO is a key step for energy-yielding in support of the growth of ammonia-oxidizing bacteria (AOB. Organohydrazines have been shown to inactivate HAO from Nitrosomonas europaea, and may serve as selective inhibitors to differentiate bacterial from archaeal ammonia oxidation due to the absence of bacterial HAO gene homologue in known ammonia-oxidizing archaea (AOA. In this study, the effects of three organohydrazines on activity, abundance and composition of AOB and AOA were evaluated in soil microcosms. The results indicate that phenylhydrazine and methylhydrazine at the concentration of 100 mol per gram dry weight soil completely suppressed the activity of soil nitrification. DGGE fingerprinting and sequencing analysis of bacterial ammonia monooxygenase subunit A gene (amoA clearly demonstrated that nitrification activity change is well paralleled with the growth of Nitrosomonas europaea-like AOB in soil microcosms. No significant correlation between AOA community structure and nitrification activity was observed among all treatments during the incubation period, although incomplete inhibition of nitrification activity occurred in 2-hydroxyethylhydrazine-amended soil microcosms. These findings show that the HAO-targeted organohydrazines can effectively inhibit bacterial nitrification in soil, and the mechanism of organohydrazine affecting AOA remains unclear.

  15. amoA Gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not Archaea dominate N cycling in the Colne Estuary, United Kingdom.

    Science.gov (United States)

    Li, Jialin; Nedwell, David B; Beddow, Jessica; Dumbrell, Alex J; McKew, Boyd A; Thorpe, Emma L; Whitby, Corinne

    2015-01-01

    Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw](-1) day(-1) in June, increasing to 37.4 μmol N gdw(-1) day(-1) in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw(-1) day(-1) in June, increasing to 11.7 μmol N gdw(-1) day(-1) in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. [Abundances of ammonia-oxidizing archaeal accA and amoA genes in response to NO2 - and NO3 - of hot springs in Yunnan province].

    Science.gov (United States)

    Song, Zhaoqi; Wang, Li; Zhou, Enmin; Wang, Fengping; Xiao, Xiang; Zhang, Chuanlun; Li, Wenjun

    2014-12-04

    Yunnan hot springs have highly diverseammonia-oxidizing archaea (AOA), which are autotrophic and can fix CO2 using the 3-hydroxypropionate/ 4-hydroxybutyrate (HP/HD) pathway. In this study, we investigated the abundances of prokaryotic 16S rRNA gene and archaeal accA and amoA genes in the sediments of hot springs of Yunnan Province, and analysed the correlations between the above gene abundances and environmental factors. We selected the sediments of twenty representative hot springs, and detected the gene abundances by quantitative polymerase chain reaction (qPCR). The principal component analysis (PCA) and the Mantel test in the R software package were performed for the correlations of gene abundance and environmental variables. The bacterial and archaeal 16S rRNA gene abundances were from 6.6 x 10(7) to 4.19 x 10(11) and from 1.27 x 10(6) to 1.51 x 10(11) copies/g sediment, respectively; Archaeal accA and amoA genes were from 8.89 x 10(3) to 6.49 x 10(5) and from 7.64 x 10(3) to 4.36 x 10(5) copies/g sediment, respectively. The results of mantel test showed that accA gene was significantly (R = 0.98, P < 0.001) correlated with amoA gene; Both of them also were correlated significantly with NO2- and NO3 -, but not with pH. The abundances of bacterial and archaeal 16S rRNA genes and the ratio between them varied significantly among Yunnan hot springs. The archaealaccA and amoA genes showed significant correlation with each other, validating our previous finding that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  17. Pesticide side effects in an agricultural soil ecosystem as measured by amoA expression quantification and bacterial diversity changes

    DEFF Research Database (Denmark)

    Feld, Louise; Hjort Hjelmsø, Mathis; Schostag, Morten

    2015-01-01

    , but only transiently. The bacterial and archaeal amoA transcripts were both sensitive bioindicators of pesticide side effects. Additionally, the numbers of bacterial amoA transcripts correlated with nitrate production in N-amended microcosms. Dazomet reduced the total bacterial numbers by one log unit...

  18. Archaea Dominate the Ammonia-Oxidizing Community in the Rhizosphere of the Freshwater Macrophyte Littorella uniflora

    DEFF Research Database (Denmark)

    Herrmann, Martina; Saunders, Aaron M.; Schramm, Andreas

    2008-01-01

    Archaeal and bacterial ammonia monooxygenase genes (amoA) had similar low relative abundances in freshwater sediment. In the rhizosphere of the submersed macrophyte Littorella uniflora, archaeal amoA was 500- to >8,000-fold enriched compared to bacterial amoA, suggesting that the enhanced nitrifi...

  19. Lyophilization conditions for the storage of monooxygenases

    NARCIS (Netherlands)

    van Beek, Hugo L.; Beyer, Nina; Janssen, Dick B.; Fraaije, Marco W.

    2015-01-01

    Cyclohexanone monooxygenase (CHMO) was used as a model enzyme to find suitable freeze-drying conditions for long-term storage of an isolated monooxygenase. CHMO is a Baeyer-Villiger monooxygenase (BVMO) known for its ability to catalyze a large number of oxidation reactions. With a focus on

  20. Distribution of the octopamine receptor AmOA1 in the honey bee brain.

    Directory of Open Access Journals (Sweden)

    Irina Sinakevitch

    2011-01-01

    Full Text Available Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor subtypes and how each subtype may contribute to different behaviors. One honey bee (Apis mellifera octopamine receptor, AmOA1, was recently cloned and characterized. Here we continue to characterize the AmOA1 receptor by investigating its distribution in the honey bee brain. We used two independent antibodies produced against two distinct peptides in the carboxyl-terminus to study the distribution of the AmOA1 receptor in the honey bee brain. We found that both anti-AmOA1 antibodies revealed labeling of cell body clusters throughout the brain and within the following brain neuropils: the antennal lobes; the calyces, pedunculus, vertical (alpha, gamma and medial (beta lobes of the mushroom body; the optic lobes; the subesophageal ganglion; and the central complex. Double immunofluorescence staining using anti-GABA and anti-AmOA1 receptor antibodies revealed that a population of inhibitory GABAergic local interneurons in the antennal lobes express the AmOA1 receptor in the cell bodies, axons and their endings in the glomeruli. In the mushroom bodies, AmOA1 receptors are expressed in a subpopulation of inhibitory GABAergic feedback neurons that ends in the visual (outer half of basal ring and collar regions and olfactory (lip and inner basal ring region calyx neuropils, as well as in the collar and lip zones of the vertical and medial lobes. The data suggest that one effect of octopamine via AmOA1 in the antennal lobe and mushroom body is to modulate inhibitory neurons.

  1. Reconstitution of active mycobacterial binuclear iron monooxygenase complex in Escherichia coli.

    Science.gov (United States)

    Furuya, Toshiki; Hayashi, Mika; Kino, Kuniki

    2013-10-01

    Bacterial binuclear iron monooxygenases play numerous physiological roles in oxidative metabolism. Monooxygenases of this type found in actinomycetes also catalyze various useful reactions and have attracted much attention as oxidation biocatalysts. However, difficulties in expressing these multicomponent monooxygenases in heterologous hosts, particularly in Escherichia coli, have hampered the development of engineered oxidation biocatalysts. Here, we describe a strategy to functionally express the mycobacterial binuclear iron monooxygenase MimABCD in Escherichia coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the mimABCD gene expression in E. coli revealed that the oxygenase components MimA and MimC were insoluble. Furthermore, although the reductase MimB was expressed at a low level in the soluble fraction of E. coli cells, a band corresponding to the coupling protein MimD was not evident. This situation rendered the transformed E. coli cells inactive. We found that the following factors are important for functional expression of MimABCD in E. coli: coexpression of the specific chaperonin MimG, which caused MimA and MimC to be soluble in E. coli cells, and the optimization of the mimD nucleotide sequence, which led to efficient expression of this gene product. These two remedies enabled this multicomponent monooxygenase to be actively expressed in E. coli. The strategy described here should be generally applicable to the E. coli expression of other actinomycetous binuclear iron monooxygenases and related enzymes and will accelerate the development of engineered oxidation biocatalysts for industrial processes.

  2. Unliganded and substrate bound structures of the cellooligosaccharide active lytic polysaccharide monooxygenase LsAA9A at low pH

    DEFF Research Database (Denmark)

    Frandsen, Kristian Erik Høpfner; Poulsen, Jens-Christian Navarro; Tandrup, Tobias

    2017-01-01

    Lytic polysaccharide monooxygenases (LPMOs) have been found to be key components in microbial (bacterial and fungal) degradation of biomass. They are copper metalloenzymes that degrade polysaccharides oxidatively and act in synergy with glycoside hydrolases. Recently crystallographic studies...

  3. The Origin and Evolution of Baeyer-Villiger Monooxygenases (BVMOs: An Ancestral Family of Flavin Monooxygenases.

    Directory of Open Access Journals (Sweden)

    Maria Laura Mascotti

    Full Text Available The Baeyer-Villiger Monooxygenases (BVMOs are enzymes belonging to the "Class B" of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga and Haptophyta (Emiliania huxleyi for the first time. Furthermore, a search for other "Class B" monooxygenases (flavoprotein monooxygenases--FMOs--and N-hydroxylating monooxygenases--NMOs was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all "Class B" monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes.

  4. The Origin and Evolution of Baeyer—Villiger Monooxygenases (BVMOs): An Ancestral Family of Flavin Monooxygenases

    Science.gov (United States)

    Mascotti, Maria Laura; Lapadula, Walter Jesús; Juri Ayub, Maximiliano

    2015-01-01

    The Baeyer—Villiger Monooxygenases (BVMOs) are enzymes belonging to the “Class B” of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga) and Haptophyta (Emiliania huxleyi) for the first time. Furthermore, a search for other “Class B” monooxygenases (flavoprotein monooxygenases –FMOs – and N-hydroxylating monooxygenases – NMOs) was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all “Class B” monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA) and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes. PMID:26161776

  5. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer–Villiger monooxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Isupov, Michail N.; Schröder, Ewald; Gibson, Robert P.; Beecher, Jean; Donadio, Giuliana; Saneei, Vahid; Dcunha, Stephlina A.; McGhie, Emma J.; Sayer, Christopher; Davenport, Colin F. [University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom); Lau, Peter C. [National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 (Canada); Hasegawa, Yoshie; Iwaki, Hiroaki [Kansai University (Japan); Kadow, Maria; Balke, Kathleen; Bornscheuer, Uwe T. [Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany); Bourenkov, Gleb [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg (Germany); Littlechild, Jennifer A., E-mail: j.a.littlechild@exeter.ac.uk [University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom)

    2015-10-31

    The first crystal structure of a type II Baeyer–Villiger monooxygenase reveals a different ring orientation of its FMN cofactor compared with other related bacterial luciferase-family enzymes. The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer–Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.

  6. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer–Villiger monooxygenase

    International Nuclear Information System (INIS)

    Isupov, Michail N.; Schröder, Ewald; Gibson, Robert P.; Beecher, Jean; Donadio, Giuliana; Saneei, Vahid; Dcunha, Stephlina A.; McGhie, Emma J.; Sayer, Christopher; Davenport, Colin F.; Lau, Peter C.; Hasegawa, Yoshie; Iwaki, Hiroaki; Kadow, Maria; Balke, Kathleen; Bornscheuer, Uwe T.; Bourenkov, Gleb; Littlechild, Jennifer A.

    2015-01-01

    The first crystal structure of a type II Baeyer–Villiger monooxygenase reveals a different ring orientation of its FMN cofactor compared with other related bacterial luciferase-family enzymes. The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer–Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily

  7. Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis.

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2008-08-01

    Denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA, aprA, and amoA genes demonstrated that a phylogenetically diverse and complex microbial community was associated with the Caribbean deep-water sponge Polymastia cf. corticata Ridley and Dendy, 1887. From the 38 archaeal and bacterial 16S rRNA phylotypes identified, 53% branched into the sponge-specific, monophyletic sequence clusters determined by previous studies (considering predominantly shallow-water sponge species), whereas 26% appeared to be P. cf. corticata specifically associated microorganisms ("specialists"); 21% of the phylotypes were confirmed to represent seawater- and sediment-derived proteobacterial species ("contaminants") acquired by filtration processes from the host environment. Consistently, the aprA and amoA gene-based analyses indicated the presence of environmentally derived sulfur- and ammonia-oxidizers besides putative sponge-specific sulfur-oxidizing Gammaproteobacteria and Alphaproteobacteria and a sulfate-reducing archaeon. A sponge-specific, endosymbiotic sulfur cycle as described for marine oligochaetes is proposed to be also present in P. cf. corticata. Overall, the results of this work support the recent studies that demonstrated the sponge species specificity of the associated microbial community while the biogeography of the host collection site has only a minor influence on the composition. In P. cf. corticata, the specificity of the sponge-microbe associations is even extended to the spatial distribution of the microorganisms within the sponge body; distinct bacterial populations were associated with the different tissue sections, papillae, outer and inner cortex, and choanosome. The local distribution of a phylotype within P. cf. corticata correlated with its (1) phylogenetic affiliation, (2) classification as sponge-specific or nonspecifically associated microorganism, and (3) potential ecological role in the host sponge.

  8. Microbial flavoprotein monooxygenases as mimics of mammalian flavin-containing monooxygenases for the enantioselective preparation of drug metabolites

    NARCIS (Netherlands)

    Gul, Turan; Krzek, Marzena; Permentier, Hjalmar; Fraaije, Marco; Bischoff, Rainer

    2016-01-01

    Mammalian flavin-containing monooxygenases are difficult to obtain and study while they play a major role in detoxifying various xenobiotics. In order to provide alternative biocatalytic tools to generate FMO-derived drug metabolites, a collection of microbial flavoprotein monooxygenases,

  9. Structural basis of kynurenine 3-monooxygenase inhibition.

    Science.gov (United States)

    Amaral, Marta; Levy, Colin; Heyes, Derren J; Lafite, Pierre; Outeiro, Tiago F; Giorgini, Flaviano; Leys, David; Scrutton, Nigel S

    2013-04-18

    Inhibition of kynurenine 3-monooxygenase (KMO), an enzyme in the eukaryotic tryptophan catabolic pathway (that is, kynurenine pathway), leads to amelioration of Huntington's-disease-relevant phenotypes in yeast, fruitfly and mouse models, as well as in a mouse model of Alzheimer's disease. KMO is a flavin adenine dinucleotide (FAD)-dependent monooxygenase and is located in the outer mitochondrial membrane where it converts l-kynurenine to 3-hydroxykynurenine. Perturbations in the levels of kynurenine pathway metabolites have been linked to the pathogenesis of a spectrum of brain disorders, as well as cancer and several peripheral inflammatory conditions. Despite the importance of KMO as a target for neurodegenerative disease, the molecular basis of KMO inhibition by available lead compounds has remained unknown. Here we report the first crystal structure of Saccharomyces cerevisiae KMO, in the free form and in complex with the tight-binding inhibitor UPF 648. UPF 648 binds close to the FAD cofactor and perturbs the local active-site structure, preventing productive binding of the substrate l-kynurenine. Functional assays and targeted mutagenesis reveal that the active-site architecture and UPF 648 binding are essentially identical in human KMO, validating the yeast KMO-UPF 648 structure as a template for structure-based drug design. This will inform the search for new KMO inhibitors that are able to cross the blood-brain barrier in targeted therapies against neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's diseases.

  10. Apis mellifera octopamine receptor 1 (AmOA1 expression in antennal lobe networks of the honey bee (Apis mellifera and fruit fly (Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Irina T Sinakevitch

    2013-10-01

    Full Text Available Octopamine (OA underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011. These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor. Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs, uni- and multi-glomerular projection neurons (uPNs, and mPNs and local interneurons in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT, and lateral protocerebral lobe by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the lateral protocerebral lobe. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with local interneurons. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species.

  11. Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster)

    Science.gov (United States)

    Sinakevitch, Irina T.; Smith, Adrian N.; Locatelli, Fernando; Huerta, Ramon; Bazhenov, Maxim; Smith, Brian H.

    2013-01-01

    Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species. PMID:24187534

  12. Cytochrome P450 monooxygenases and insecticide resistance in insects.

    OpenAIRE

    Bergé, J B; Feyereisen, R; Amichot, M

    1998-01-01

    Cytochrome P450 monooxygenases are involved in many cases of resistance of insects to insecticides. Resistance has long been associated with an increase in monooxygenase activities and with an increase in cytochrome P450 content. However, this increase does not always account for all of the resistance. In Drosophila melanogaster, we have shown that the overproduction of cytochrome P450 can be lost by the fly without a corresponding complete loss of resistance. These results prompted the seque...

  13. Discovery and industrial applications of lytic polysaccharide mono-oxygenases.

    Science.gov (United States)

    Johansen, Katja S

    2016-02-01

    The recent discovery of copper-dependent lytic polysaccharide mono-oxygenases (LPMOs) has opened up a vast area of research covering several fields of application. The biotech company Novozymes A/S holds patents on the use of these enzymes for the conversion of steam-pre-treated plant residues such as straw to free sugars. These patents predate the correct classification of LPMOs and the striking synergistic effect of fungal LPMOs when combined with canonical cellulases was discovered when fractions of fungal secretomes were evaluated in industrially relevant enzyme performance assays. Today, LPMOs are a central component in the Cellic CTec enzyme products which are used in several large-scale plants for the industrial production of lignocellulosic ethanol. LPMOs are characterized by an N-terminal histidine residue which, together with an internal histidine and a tyrosine residue, co-ordinates a single copper atom in a so-called histidine brace. The mechanism by which oxygen binds to the reduced copper atom has been reported and the general mechanism of copper-oxygen-mediated activation of carbon is being investigated in the light of these discoveries. LPMOs are widespread in both the fungal and the bacterial kingdoms, although the range of action of these enzymes remains to be elucidated. However, based on the high abundance of LPMOs expressed by microbes involved in the decomposition of organic matter, the importance of LPMOs in the natural carbon-cycle is predicted to be significant. In addition, it has been suggested that LPMOs play a role in the pathology of infectious diseases such as cholera and to thus be relevant in the field of medicine. © 2016 Authors; published by Portland Press Limited.

  14. Desaturation reactions catalyzed by soluble methane monooxygenase.

    Science.gov (United States)

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  15. Escherichia coli Overexpressing a Baeyer-Villiger Monooxygenase from Acinetobacter radioresistens Becomes Resistant to Imipenem.

    Science.gov (United States)

    Minerdi, Daniela; Zgrablic, Ivan; Castrignanò, Silvia; Catucci, Gianluca; Medana, Claudio; Terlizzi, Maria Elena; Gribaudo, Giorgio; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Antimicrobial resistance is a global issue currently resulting in the deaths of hundreds of thousands of people a year worldwide. Data present in the literature illustrate the emergence of many bacterial species that display resistance to known antibiotics; Acinetobacter spp. are a good example of this. We report here that Acinetobacter radioresistens has a Baeyer-Villiger monooxygenase (Ar-BVMO) with 100% amino acid sequence identity to the ethionamide monooxygenase of multidrug-resistant (MDR) Acinetobacter baumannii. Both enzymes are only distantly phylogenetically related to other canonical bacterial BVMO proteins. Ar-BVMO not only is capable of oxidizing two anticancer drugs metabolized by human FMO3, danusertib and tozasertib, but also can oxidize other synthetic drugs, such as imipenem. The latter is a member of the carbapenems, a clinically important antibiotic family used in the treatment of MDR bacterial infections. Susceptibility tests performed by the Kirby-Bauer disk diffusion method demonstrate that imipenem-sensitive Escherichia coli BL21 cells overexpressing Ar-BVMO become resistant to this antibiotic. An agar disk diffusion assay proved that when imipenem reacts with Ar-BVMO, it loses its antibiotic property. Moreover, an NADPH consumption assay with the purified Ar-BVMO demonstrates that this antibiotic is indeed a substrate, and its product is identified by liquid chromatography-mass spectrometry to be a Baeyer-Villiger (BV) oxidation product of the carbonyl moiety of the β-lactam ring. This is the first report of an antibiotic-inactivating BVMO enzyme that, while mediating its usual BV oxidation, also operates by an unprecedented mechanism of carbapenem resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.; Yeager, Chris; Hyman, Michael R.; Löffler, F. E.

    2016-01-29

    Nitrosomonas europaeais an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4+-dependent O2uptake byN. europaeaby 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and

  17. Identification of a Baeyer-Villiger monooxygenase sequence motif

    NARCIS (Netherlands)

    Fraaije, MW; Kamerbeek, NM; van Berkel, WJH; Janssen, DB; Kamerbeek, Nanne M.; Berkel, Willem J.H. van

    2002-01-01

    Baeyer-Villiger monooxygenases (BVMOs) form a distinct class of flavoproteins that catalyze the insertion of an oxygen atom in a C-C bond using dioxygen and NAD(P)H. Using newly characterized BVMO sequences, we have uncovered a BVMO-identifying sequence motif: FXGXXXRXXXW(P/D). Studies with

  18. Discovery of Baeyer-Villiger monooxygenases from photosynthetic eukaryotes

    NARCIS (Netherlands)

    Beneventi, Elisa; Niero, Mattia; Motterle, Riccardo; Fraaije, Marco; Bergantino, Elisabetta

    2013-01-01

    Baeyer-Villiger monooxygenases are attractive "green" catalysts able to produce chiral esters or lactones starting from ketones. They can act as natural equivalents of peroxyacids that are the catalysts classically used in the organic synthesis reactions, consisting in the cleavage of C-C bonds with

  19. Synthesis of methyl propanoate by Baeyer-Villiger monooxygenases

    NARCIS (Netherlands)

    van Beek, Hugo L.; Winter, Remko T.; Eastham, Graham R.; Fraaije, Marco W.

    2014-01-01

    Methyl propanoate is an important precursor for polymethyl methacrylates. The use of a Baeyer-Villiger monooxygenase (BVMO) to produce this compound was investigated. Several BVMOs were identified that produce the chemically non-preferred product methyl propanoate in addition to the normal product

  20. Regulation of cytochrome P-450 monooxygenases in the mouse

    International Nuclear Information System (INIS)

    Kelley, M.F.

    1986-01-01

    Recently, the compound 1,4-bis[2-(3,4-dichloropyridyloxy)] benzene (TCPOBOP) has been identified as a highly potent phenobabital-like agonist in mice. This finding has led to the suggestion that a receptor-mediated process may govern the induction of cytochrome P-450 monooxygenases by phenobarbital and phenobarbital-like agonists. This dissertation examines: (1) the effects of structural alterations of the TCPOBOP molecule on enzyme induction activity, (2) the induction response to phenobarbital and TCPOBOP among inbred mouse strains, (3) the spectrum of monooxygenase activities induced by phenobarbital and TCPOBOP compared to 3-methylcholanthrene, isosafrole and pregnenolone 16α-carbonitrile (PCN) and (4) the binding of [ 3 H] TCPOBOP in hepatic cytosol. Changes in the structure of the pyridyloxy or benzene rings markedly affect enzyme induction activity and provide additional indirect evidence for a receptor-mediated response. An evaluation of monooxygenase induction by TCPOBOP for 27 inbred mouse strains and by phenobarbital for 15 inbred mouse strains failed to identify a strain which was completely nonresponsive to these compounds, although several strains exhibited decreased responsiveness for select monooxygenase reactions. TCPOBOP, PCN and phenobarbital were all found to significantly increase the rate of hydroxylation of testosterone at the 2α-, 6β- and 15β- positions but only TCPOBOP and phenobarbital dramatically increased the rate of pentoxyresorufin O-dealkylation. The results demonstrates that TCPOBOP most closely resembles phenobarbital in its mode of monooxygenase induction in mice. Sucrose density gradient analysis of [ 3 H] TCPOBOP-hepatic cytosol incubations failed to identify specific, saturable binding of [ 3 H] TCPOBOP to cytosolic marcomolecular elements

  1. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    Science.gov (United States)

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Expression, purification and characterization of human Dopamine ß-monooxygenase

    DEFF Research Database (Denmark)

    Vendelboe, Trine Vammen

    catalytic domains called ascorbate dependent type IImonooxygenase domains and a C-terminal dimerization domain. DBM is related to peptidylglycine a-hydroxylating monooxygenase (PHM). They are 28 % identical over approximately 300 amino scids (AA) which corresponds to the catalytic domains. This is, among...... residue 47-596 in each chain, was hereafter manually built. The structure reveals the first structural insights into the DOMON domain and the C-terminal dimerization domain and it shows two different conformations of the catalytic domains. An open conformation, that resembles the structures known from PHM...

  3. Terbinafine Resistance Mediated by Salicylate 1-Monooxygenase in Aspergillus nidulans

    Science.gov (United States)

    Graminha, Marcia A. S.; Rocha, Eleusa M. F.; Prade, Rolf A.; Martinez-Rossi, Nilce M.

    2004-01-01

    Resistance to antifungal agents is a recurring and growing problem among patients with systemic fungal infections. UV-induced Aspergillus nidulans mutants resistant to terbinafine have been identified, and we report here the characterization of one such gene. A sib-selected, 6.6-kb genomic DNA fragment encodes a salicylate 1-monooxygenase (salA), and a fatty acid synthase subunit (fasC) confers terbinafine resistance upon transformation of a sensitive strain. Subfragments carrying salA but not fasC confer terbinafine resistance. salA is present as a single-copy gene on chromosome VI and encodes a protein of 473 amino acids that is homologous to salicylate 1-monooxygenase, a well-characterized naphthalene-degrading enzyme in bacteria. salA transcript accumulation analysis showed terbinafine-dependent induction in the wild type and the UV-induced mutant Terb7, as well as overexpression in a strain containing the salA subgenomic DNA fragment, probably due to the multicopy effect caused by the transformation event. Additional naphthalene degradation enzyme-coding genes are present in fungal genomes, suggesting that resistance could follow degradation of the naphthalene ring contained in terbinafine. PMID:15328121

  4. Abundance and activity of 16S rRNA, amoA and nifH bacterial genes during assisted phytostabilization of mine tailings

    OpenAIRE

    Nelson, Karis N.; Neilson, Julia W.; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2015-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nif...

  5. Flavin-containing monooxygenases in plants: looking beyond detox.

    Science.gov (United States)

    Schlaich, Nikolaus L

    2007-09-01

    Flavin-containing monooxygenases (FMOs) are known in bacteria, yeast and mammals where they catalyze the transfer of one atom of molecular O(2) to low molecular weight substrates. The predominant physiological function of animal FMOs appears to be detoxification of a vast spectrum of xenobiotics but until recently very little was known about the function of FMOs in plants. In the last two to three years, genetic and biochemical characterization has shown that plant FMOs can catalyze specific steps in the biosynthesis of auxin or in the metabolism of glucosinolates, and, furthermore, have a role in pathogen defence. Thus, plant FMOs hint that further FMO functions might be identified also in non-plant organisms and could stimulate novel research in this area.

  6. [Association of kynurenine-3-monooxygenase gene with schizophrenia].

    Science.gov (United States)

    Golimbet, V E; Lezheiko, T V; Alfimova, M V; Abramova, L I; Kondrat'ev, N V

    2014-06-01

    Neurotoxic products produced during tryptophan metabolism via the kynurenine pathway could be involved in schizophrenia pathogenesis. It has been shown that kynurenine-3-monooxygenase (KMO) is indirectly involved in these products' formation. KMO polymorphic loci rs2275163 (C/T) and rs1053230 (A/G) were examined in 187 schizophrenia patients and 229 healthy subjects. A genetic combination of allele T and genotype GG was observed more often in a patient group compared with healthy controls (p = 0.003, OR 2.0 (95% CI 1.2-2.9). In the latter group, this combination was associated with schizophrenia endophenotype (p = 0.04), which manifested in a higher expression of schizotypal personality traits assessed using the MMPI test.

  7. Kynurenine-3-monooxygenase: a review of structure, mechanism, and inhibitors.

    Science.gov (United States)

    Smith, Jason R; Jamie, Joanne F; Guillemin, Gilles J

    2016-02-01

    Kynurenine monooxygenase (KMO) is an enzyme of the kynurenine (Kyn) pathway (KP), which is the major catabolic route of tryptophan. Kyn represents a branch point of the KP, being converted into the neurotoxin 3-hydroxykynurenine via KMO, neuroprotectant kynurenic acid, and anthranilic acid. As a result of this branch point, KMO is an attractive drug target for several neurodegenerative and/or neuroinflammatory diseases, especially Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases. Although a neurological target, administration of KMO inhibitors in the periphery has demonstrated promising pharmacological results. In light of a recent crystal structure release and reports of preclinical candidates, here we provide a concise yet comprehensive update on the current state of research into the enzymology of KMO and related drug discovery efforts, highlighting areas where further work is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms

    Science.gov (United States)

    Hope Wilkinson, Katheryn; Strait, Jacqueline M.; Hozalski, Raymond M.; Sadowksy, Michael J.; Hamilton, Matthew J.

    2015-01-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; <0.07%) and no ammonia-oxidizing Archaea were detected in the profiles. Quantitative PCR of amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB. PMID:26209671

  9. Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake.

    Science.gov (United States)

    Wang, Yu; Zhu, Guibing; Ye, Lei; Feng, Xiaojuan; Op den Camp, Huub J M; Yin, Chengqing

    2012-01-01

    The spatial distribution and diversity of archaeal and bacterial ammonia oxidizers (AOA and AOB) were evaluated targeting amoA genes in the gradient of a littoral buffer zone which has been identified as a hot spot for N cycling. Here we found high spatial heterogeneity in the nitrification rate and abundance of ammonia oxidizers in the five sampling sites. The bacterial amoA gene was numerically dominant in most of the surface soil but decreased dramatically in deep layers. Higher nitrification potentials were detected in two sites near the land/water interface at 4.4-6.1 microg NO(2-)-N/(g dry weight soil x hr), while only 1.0-1.7 microg NO(2-)-N/(g dry weight soil x hr) was measured at other sites. The potential nitrification rates were proportional to the amoA gene abundance for AOB, but with no significant correlation with AOA. The NH4+ concentration was the most determinative parameter for the abundance of AOB and potential nitrification rates in this study. Higher richness in the surface layer was found in the analysis of biodiversity. Phylogenetic analysis revealed that most of the bacterial amoA sequences in surface soil were affiliated with the genus of Nitrosopira while the archaeal sequences were almost equally affiliated with Candidatus 'Nitrososphaera gargensis' and Candidatus 'Nitrosocaldus yellowstonii'. The spatial distribution of AOA and AOB indicated that bacteria may play a more important role in nitrification in the littoral buffer zone of a N-rich lake.

  10. Potential for drug interactions mediated by polymorphic flavin-containing monooxygenase 3 in human livers.

    Science.gov (United States)

    Shimizu, Makiko; Shiraishi, Arisa; Sato, Ayumi; Nagashima, Satomi; Yamazaki, Hiroshi

    2015-02-01

    Human flavin-containing monooxygenase 3 (FMO3) in the liver catalyzes a variety of oxygenations of nitrogen- and sulfur-containing medicines and xenobiotic substances. Because of growing interest in drug interactions mediated by polymorphic FMO3, benzydamine N-oxygenation by human FMO3 was investigated as a model reaction. Among the 41 compounds tested, trimethylamine, methimazole, itopride, and tozasertib (50 μM) suppressed benzydamine N-oxygenation at a substrate concentration of 50 μM by approximately 50% after co-incubation. Suppression of N-oxygenation of benzydamine, trimethylamine, itopride, and tozasertib and S-oxygenation of methimazole and sulindac sulfide after co-incubation with the other five of these six substrates was compared using FMO3 proteins recombinantly expressed in bacterial membranes. Apparent competitive inhibition by methimazole (0-50 μM) of sulindac sulfide S-oxygenation was observed with FMO3 proteins. Sulindac sulfide S-oxygenation activity of Arg205Cys variant FMO3 protein was likely to be suppressed more by methimazole than wild-type or Val257Met variant FMO3 protein was. These results suggest that genetic polymorphism in the human FMO3 gene may lead to changes of drug interactions for N- or S-oxygenations of xenobiotics and endogenous substances and that a probe battery system of benzydamine N-oxygenation and sulindac sulfide S-oxygenation activities is recommended to clarify the drug interactions mediated by FMO3. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  11. Kynurenine 3-Monooxygenase: An Influential Mediator of Neuropathology.

    Science.gov (United States)

    Parrott, Jennifer M; O'Connor, Jason C

    2015-01-01

    Mounting evidence demonstrates that kynurenine metabolism may play an important pathogenic role in the development of multiple neurological and neuropsychiatric disorders. The kynurenine pathway consists of two functionally distinct branches that generate both neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of these branches, kynurenine 3-monooxygenase (KMO), is predominantly expressed in microglia and has emerged as a pivotal point of metabolic regulation. KMO substrate and expression levels are upregulated by pro-inflammatory cytokines and altered by functional genetic mutations. Increased KMO metabolism results in the formation of metabolites that activate glutamate receptors and elevate oxidative stress, while recent evidence has revealed neurodevelopmental consequences of reduced KMO activity. Together, the evidence suggests that KMO is positioned at a critical metabolic junction to influence the development or trajectory of a myriad of neurological diseases. Understanding the mechanism(s) by which alterations in KMO activity are able to impair neuronal function, and viability will enhance our knowledge of related disease pathology and provide insight into novel therapeutic opportunities. This review will discuss the influence of KMO on brain kynurenine metabolism and the current understanding of molecular mechanisms by which altered KMO activity may contribute to neurodevelopment, neurodegenerative, and neuropsychiatric diseases.

  12. Kynurenine 3-monooxygenase: an influential mediator of neuropathology

    Directory of Open Access Journals (Sweden)

    Jennifer M Parrott

    2015-08-01

    Full Text Available Mounting evidence demonstrates that kynurenine metabolism may play an important pathogenic role in the development of multiple neurological and neuropsychiatric disorders. The kynurenine pathway consists of two functionally distinct branches that generate both neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of these branches, kynurenine 3-monooxygenase (KMO, is predominantly expressed in microglia and has emerged as a pivotal point of metabolic regulation. KMO substrate and expression levels are up-regulated by pro-inflammatory cytokines and altered by functional genetic mutations. Increased KMO metabolism results in the formation of metabolites that activate glutamate receptors and elevate oxidative stress, while recent evidence has revealed neurodevelopmental consequences of reduced KMO activity. Together, the evidence suggests that KMO is positioned at a critical metabolic junction to influence the development or trajectory of a myriad of neurological diseases. Understanding the mechanism(s by which alterations in KMO activity are able to impair neuronal function and viability will enhance our knowledge of related disease pathology and provide insight into novel therapeutic opportunities. This review will discuss the influence of KMO on brain kynurenine metabolism and the current understanding of molecular mechanisms by which altered KMO activity may contribute to neurodevelopment, neurodegenerative and neuropsychiatric diseases.

  13. Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria.

    Science.gov (United States)

    Korstanje, Ron; Deutsch, Konstantin; Bolanos-Palmieri, Patricia; Hanke, Nils; Schroder, Patricia; Staggs, Lynne; Bräsen, Jan H; Roberts, Ian S D; Sheehan, Susan; Savage, Holly; Haller, Hermann; Schiffer, Mario

    2016-11-01

    Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes. Copyright © 2016 by the American Society of Nephrology.

  14. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration

    Science.gov (United States)

    Zwilling, Daniel; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Guidetti, Paolo; Wu, Hui-Qiu; Lee, Jason; Truong, Jennifer; Andrews-Zwilling, Yaisa; Hsieh, Eric W.; Louie, Jamie Y.; Wu, Tiffany; Scearce-Levie, Kimberly; Patrick, Christina; Adame, Anthony; Giorgini, Flaviano; Moussaoui, Saliha; Laue, Grit; Rassoulpour, Arash; Flik, Gunnar; Huang, Yadong; Muchowski, Joseph M.; Masliah, Eliezer; Schwarcz, Robert; Muchowski, Paul J.

    2011-01-01

    SUMMARY Metabolites in the kynurenine pathway of tryptophan degradation are thought to play an important role in neurodegenerative disorders such as Alzheimer’s disease and Huntington’s disease. Metabolites that cause glutamate receptor-mediated excitotoxicity and free radical formation are elevated in the blood and vulnerable brain regions in these diseases, while levels of the neuroprotective metabolite kynurenic acid are often decreased. Here we describe the synthesis and characterization of JM6, a novel small-molecule pro-drug inhibitor of kynurenine 3-monooxygenase (KMO). JM6 raises kynurenic acid and reduces extracellular glutamate in the brain after chronic oral administration by inhibiting KMO in blood. In a transgenic mouse model of Alzheimer’s disease, JM6 prevented spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extended life span, prevented synaptic loss, and decreased microglial activation in a mouse model of Huntington’s disease. These findings support a critical link between blood cells and neurodegeneration that is mediated by KMO and the kynurenine pathway. PMID:21640374

  15. Substrate and inhibitor specificity of kynurenine monooxygenase from Cytophaga hutchinsonii.

    Science.gov (United States)

    Phillips, Robert S; Anderson, Andrew D; Gentry, Harvey G; Güner, Osman F; Bowen, J Phillip

    2017-04-15

    Kynurenine monooxygenase (KMO) is a potential drug target for treatment of neurodegenerative disorders such as Huntington's and Alzheimer's diseases. We have evaluated substituted kynurenines as substrates or inhibitors of KMO from Cytophaga hutchinsonii. Kynurenines substituted with a halogen at the 5-position are excellent substrates, with values of k cat and k cat /K m comparable to or higher than kynurenine. However, kynurenines substituted in the 3-position are competitive inhibitors, with K I values lower than the K m for kynurenine. Bromination also enhances inhibition, and 3,5-dibromokynurenine is a potent competitive inhibitor with a K I value of 1.5μM. A pharmacophore model of KMO was developed, and predicted that 3,4-dichlorohippuric acid would be an inhibitor. The K I for this compound was found to be 34μM, thus validating the pharmacophore model. We are using these results and our model to design more potent inhibitors of KMO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Targeted Deletion of Kynurenine 3-Monooxygenase in Mice

    Science.gov (United States)

    Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Thomas, Marian A. R.; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J.

    2013-01-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo−/− mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo−/− mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo−/− mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD+, did not differ between Kmo−/− and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo−/− mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo−/− mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease. PMID:24189070

  17. Monooxygenase activitity in Aedes aegypti population in Tembalang subdistrict, Semarang city

    Directory of Open Access Journals (Sweden)

    Dyah Widiastuti

    2015-06-01

    Full Text Available Dengue Haemorrhagic Fever (DHF is a major health problem in Tembalang sub district, Semarang City. Fogging with insecticide applications was done frequently as an effort to control Dengue vectors. The use of insecticides from the same class in a long time can lead to resistance in mosquitos’ population. The research aimed to observe the activity of monooxygenases in Aedes aegypti populations in Tembalang Subdistrict, Semarang. The study was conducted during February-November 2014 with a cross-sectional design in 10 villages in Tembalang Subdistirict, Semarang City. Field strains of Ae. aegypti eggs were collected using ovitraps. The collected eggs were grown under standard condition to adult mosquitoes. Mosquitos’ homogenate were stored at -85C and used for biochemical assays. The results showed there was increased monooxygenases activity in Ae. aegypti populations. Resistance to synthetic pyrethroid insecticide in Ae. aegypti mosquitoes population in Tembalang Subdistrict might be caused by the mechanism of detoxification enzymes in particular monooxygenases

  18. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca

    NARCIS (Netherlands)

    Schallmey, Anett; den Besten, Gijs; Teune, Ite G. P.; Kembaren, Roga F.; Janssen, Dick B.

    Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic soil bacterium Thermobifida fusca. The

  19. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  20. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    Science.gov (United States)

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  1. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases.

    Science.gov (United States)

    Qi, Jun; Kizjakina, Karina; Robinson, Reeder; Tolani, Karishma; Sobrado, Pablo

    2012-06-01

    N-Hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and bacteria. NMOs catalyze the hydroxylation of sine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington's and Alzheimer's diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin-dependent monooxygenases. Fluorescently labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a K(d) value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with K(d) values of 2.1 ± 0.2 and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we show that this assay can be used to identify inhibitors of NMOs. A Z' factor of 0.77 was calculated, and we show that the assay exhibits good tolerance to temperature, incubation time, and dimethyl sulfoxide concentration. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Polycyclic Ketone Monooxygenase from the Thermophilic Fungus Thermothelomyces thermophila : A Structurally Distinct Biocatalyst for Bulky Substrates

    NARCIS (Netherlands)

    Fürst, Maximilian J L J; Savino, Simone; Dudek, Hanna M; Gómez Castellanos, J Rúben; Gutiérrez de Souza, Cora; Rovida, Stefano; Fraaije, Marco W; Mattevi, Andrea

    2017-01-01

    Regio- and stereoselective Baeyer-Villiger oxidations are difficult to achieve by classical chemical means, particularly when large, functionalized molecules are to be converted. Biocatalysis using flavin-containing Baeyer-Villiger monooxygenases (BVMOs) is a well-established tool to address these

  3. Exploring the Substrate Scope of Baeyer–Villiger Monooxygenases with Branched Lactones as Entry towards Polyesters

    NARCIS (Netherlands)

    Delgove, Marie; Fürst, Maximilian; Fraaije, Marco; Bernaerts, Katrien; de Wildeman, Stefaan

    2018-01-01

    Baeyer–Villiger monooxygenases (BVMOs) are biocatalysts that are able to convert cyclic ketones into lactones by the insertion of oxygen. The aim of this study was to explore the substrate scope of several BVMOs with (biobased) cyclic ketones as precursors for the synthesis of branched polyesters.

  4. Exploring the substrate scope of Baeyer-Villiger monooxygenases with branched lactones as entry towards polyesters

    NARCIS (Netherlands)

    Delgove, Marie; Fürst, Maximilian; Fraaije, Marco; Bernaerts, Katrien; De Wildeman, Stefaan M A

    2018-01-01

    Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts able to convert cyclic ketones to lactones by the insertion of oxygen. The aim of this study was to explore the substrate scope of several BVMOs with (biobased) cyclic ketones as precursors for the synthesis of branched polyesters.The product

  5. Coupled reactions by coupled enzymes : alcohol to lactone cascade with alcohol dehydrogenase-cyclohexanone monooxygenase fusions

    NARCIS (Netherlands)

    Aalbers, Friso S; Fraaije, Marco W

    2017-01-01

    The combination of redox enzymes for redox-neutral cascade reactions has received increasing appreciation. An example is the combination of an alcohol dehydrogenase (ADH) with a cyclohexanone monooxygenase (CHMO). The ADH can use NADP(+) to oxidize cyclohexanol to form cyclohexanone and NADPH. Both

  6. Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry

    DEFF Research Database (Denmark)

    Westereng, Bjørge; Arntzen, Magnus Ø.; Wittrup Agger, Jane

    2017-01-01

    Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the num...

  7. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  8. Catalytic mechanism of phenylacetone monooxygenases for non-native linear substrates.

    Science.gov (United States)

    Carvalho, Alexandra T P; Dourado, Daniel F A R; Skvortsov, Timofey; de Abreu, Miguel; Ferguson, Lyndsey J; Quinn, Derek J; Moody, Thomas S; Huang, Meilan

    2017-10-11

    Phenylacetone monooxygenase (PAMO) is the most stable and thermo-tolerant member of the Baeyer-Villiger monooxygenase family, and therefore it is an ideal candidate for the synthesis of industrially relevant compounds. However, its limited substrate scope has largely limited its industrial applications. In the present work, we provide, for the first time, the catalytic mechanism of PAMO for the native substrate phenylacetone as well as for a linear non-native substrate 2-octanone, using molecular dynamics simulations, quantum mechanics and quantum mechanics/molecular mechanics calculations. We provide a theoretical basis for the preference of the enzyme for the native aromatic substrate over non-native linear substrates. Our study provides fundamental atomic-level insights that can be employed in the rational engineering of PAMO for wide applications in industrial biocatalysis, in particular, in the biotransformation of long-chain aliphatic oils into potential biodiesels.

  9. Conversion of chlorinated propanes by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase

    OpenAIRE

    Bosma, T.; Janssen, D.B.

    1998-01-01

    Chlorinated propanes are important pollutants that may show persistent behaviour in the environment. The biotransformation of 1-chloropropane, 1,2-dichloropropane, 1,3-dichloropropane and 1,2,3-trichloropropane was studied using resting cell suspensions of Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. The transformation followed first-order kinetics. The rate constants were in the order 1-chloropropane > 1,3-dichloropropane > 1,2-dichloropropane > 1,2,3-trichloropr...

  10. Differential Transcriptional Activation of Genes Encoding Soluble Methane Monooxygenase in a Facultative Versus an Obligate Methanotroph

    OpenAIRE

    Angela V. Smirnova; Peter F. Dunfield

    2018-01-01

    Methanotrophs are a specialized group of bacteria that can utilize methane (CH4) as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO), of either a soluble, cytoplasmic type (sMMO), or a particulate, membrane-bound type (pMMO). Methylocella silvestris BL2 and Methyloferula stellata AR4 are closely related methanotroph species that oxidize methane via sMMO only. However, Methyloferula stellata is an obligate methanotroph, while Methylocella silv...

  11. Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme

    DEFF Research Database (Denmark)

    de Rond, Tristan; Stow, Parker; Eigl, Ian

    2017-01-01

    Prodiginines, which are tripyrrole alkaloids displaying a wide array of bioactivities, occur as linear and cyclic congeners. Identification of an unclustered biosynthetic gene led to the discovery of the enzyme responsible for catalyzing the regiospecific C–H activation and cyclization of prodigi...... of prodigiosin to cycloprodigiosin in Pseudoalteromonas rubra. This enzyme is related to alkylglycerol monooxygenase and unrelated to RedG, the Rieske oxygenase that produces cyclized prodiginines in Streptomyces, implying convergent evolution....

  12. Effects of submerged macrophytes on the abundance and community composition of ammonia-oxidizing prokaryotes in a eutrophic lake.

    Science.gov (United States)

    Zhao, Da-yong; Luo, Juan; Zeng, Jin; Wang, Meng; Yan, Wen-ming; Huang, Rui; Wu, Qinglong L

    2014-01-01

    Abundances and community compositions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in unvegetated sediment and the rhizosphere sediments of three submerged macrophytes (Ceratophyllum demersum, Vallisneria spinulosa, and Potamogeton crispus) were investigated in a large, eutrophic freshwater lake, Lake Taihu. Abundances of archaeal ammonia monooxygenase alpha-subunit (amoA) gene (from 6.56 × 10(6) copies to 1.06 × 10(7) copies per gram of dry sediment) were higher than those of bacterial amoA (from 6.13 × 10(5) to 3.21 × 10(6) copies per gram of dry sediment) in all samples. Submerged macrophytes exhibited no significant effect on the abundance and diversity of archaeal amoA gene. C. demersum and V. spinulosa increased the abundance and diversity of bacterial amoA gene in their rhizosphere sediment. However, the diversity of bacterial amoA gene in the rhizosphere sediments of P. crispus was decreased. The data obtained in this study would be helpful to elucidate the roles of submerged macrophytes involved in the nitrogen cycling of eutrophic lake ecosystems.

  13. Adaptive and Behavioral Changes in Kynurenine 3-Monooxygenase Knockout Mice: Relevance to Psychotic Disorders.

    Science.gov (United States)

    Erhardt, Sophie; Pocivavsek, Ana; Repici, Mariaelena; Liu, Xi-Cong; Imbeault, Sophie; Maddison, Daniel C; Thomas, Marian A R; Smalley, Joshua L; Larsson, Markus K; Muchowski, Paul J; Giorgini, Flaviano; Schwarcz, Robert

    2017-11-15

    Kynurenine 3-monooxygenase converts kynurenine to 3-hydroxykynurenine, and its inhibition shunts the kynurenine pathway-which is implicated as dysfunctional in various psychiatric disorders-toward enhanced synthesis of kynurenic acid, an antagonist of both α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors. Possibly as a result of reduced kynurenine 3-monooxygenase activity, elevated central nervous system levels of kynurenic acid have been found in patients with psychotic disorders, including schizophrenia. In the present study, we investigated adaptive-and possibly regulatory-changes in mice with a targeted deletion of Kmo (Kmo -/- ) and characterized the kynurenine 3-monooxygenase-deficient mice using six behavioral assays relevant for the study of schizophrenia. Genome-wide differential gene expression analyses in the cerebral cortex and cerebellum of these mice identified a network of schizophrenia- and psychosis-related genes, with more pronounced alterations in cerebellar tissue. Kynurenic acid levels were also increased in these brain regions in Kmo -/- mice, with significantly higher levels in the cerebellum than in the cerebrum. Kmo -/- mice exhibited impairments in contextual memory and spent less time than did controls interacting with an unfamiliar mouse in a social interaction paradigm. The mutant animals displayed increased anxiety-like behavior in the elevated plus maze and in a light/dark box. After a D-amphetamine challenge (5 mg/kg, intraperitoneal), Kmo -/- mice showed potentiated horizontal activity in the open field paradigm. Taken together, these results demonstrate that the elimination of Kmo in mice is associated with multiple gene and functional alterations that appear to duplicate aspects of the psychopathology of several neuropsychiatric disorders. Copyright © 2016. Published by Elsevier Inc.

  14. Studies on whole cell fluorescence-based screening for epoxide hydrolases and Baeyer-Villiger monooxygenases

    International Nuclear Information System (INIS)

    Bicalho, Beatriz; Chen, Lu S.; Marsaioli, Anita J.; Grognux, Johann; Reymond, Jean-Louis

    2004-01-01

    Biocatalysis reactions were performed on microtiter plates (200 μL) aiming at the utilization of fluorogenic substrates (100 μmol L -1 ) for rapid whole cell screening for epoxide hydrolases (EHs) and Baeyer-Villiger monooxygenases (BVMOs). A final protocol was achieved for EHs, with 3 new enzymatic sources being detected (Agrobacterium tumefaciens, Pichia stipitis, Trichosporom cutaneum). The fluorogenic assay for BVMO did not work as expected. However, an approach to possible variables involved (aeration; pH) provided the first detection of a BVMO activity in T. cutaneum. (author)

  15. Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida.

    Science.gov (United States)

    Yamada, Mamoru; Okada, Yukiyoshi; Yoshida, Toyokazu; Nagasawa, Toru

    2008-04-01

    The isoeugenol monooxygenase gene of Pseudomonas putida IE27 was inserted into an expression vector, pET21a, under the control of the T7 promoter. The recombinant plasmid was introduced into Escherichia coli BL21(DE3) cells, containing no vanillin-degrading activity. The transformed E. coli BL21(DE3) cells produced 28.3 g vanillin/l from 230 mM isoeugenol, with a molar conversion yield of 81% at 20 degrees C after 6 h. In the reaction system, no accumulation of undesired by-products, such as vanillic acid or acetaldehyde, was observed.

  16. Assessing and Modulating Kynurenine Pathway Dynamics in Huntington's Disease: Focus on Kynurenine 3-Monooxygenase.

    Science.gov (United States)

    Sathyasaikumar, Korrapati V; Breda, Carlo; Schwarcz, Robert; Giorgini, Flaviano

    2018-01-01

    The link between disturbances in kynurenine pathway (KP) metabolism and Huntington's disease (HD) pathogenesis has been explored for a number of years. Several novel genetic and pharmacological tools have recently been developed to modulate key regulatory steps in the KP such as the reaction catalyzed by the enzyme kynurenine 3-monooxygenase (KMO). This insight has offered new options for exploring the mechanistic link between this metabolic pathway and HD, and provided novel opportunities for the development of candidate drug-like compounds. Here, we present an overview of the field, focusing on some novel approaches for interrogating the pathway experimentally.

  17. Activation of р-450-depended monooxygenases changing immunotoxicity of phosphoroorganic compounds due to their metabolism character

    Directory of Open Access Journals (Sweden)

    P.F. Zabrodsky

    2010-03-01

    Full Text Available It was established that the application of the monooxygenase system inductors (MSI of phenobarbital and benzonal up to acute poisoning of animals by trichlorfom in a dose of 1,0 LD50, metabolized in the organism till production of compounds with higher toxicity caused its immunotoxic properties increase. The experiment was carried out on outbred white rats. the acute dimethyldichlorvinylphosphate (1,0 LD50 poisoning, biotransformation of which proceeded with formation of less-toxic and non-toxic compounds after MSI introduction, caused its decrease of suppression influence on immunity system indices

  18. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes

    Science.gov (United States)

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was fo...

  19. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough

    Science.gov (United States)

    Wang, Long; Yu, Min; Liu, Yan; Liu, Jiwen; Wu, Yonghua; Li, Li; Liu, Jihua; Wang, Min; Zhang, Xiao-Hua

    2018-04-01

    As an ideal place to study back-arc basins and hydrothermal eco-system, Okinawa Trough has attracted the interests of scientists for decades. However, there are still no in-depth studies targeting the bacterial community of the seafloor sediments and hydrothermal deposits in Okinawa Trough. In the present study, we reported the bacterial community of the surface deposits of a newly found hydrothermal field in the southern Okinawa Trough, and the horizontal and vertical variation of bacterial communities in the sediments of the northern Okinawa Trough. The hydrothermal deposits had a relatively high 16S rRNA gene abundance but low bacterial richness and diversity. Epsilonproteobacteria and Bacteroidetes were predominant in hydrothermal deposits whereas Deltaproteobacteria, Gammaproteobacteria and Chloroflexi were abundant across all samples. The bacterial distribution in the seafloor of Okinawa Trough was significantly correlated to the content of total nitrogen, and had consistent relationship with total carbon. Gradual changes of sulfur-oxidizing bacteria were found with the distance away from hydrothermal fields, while the hydrothermal activity did not influence the distribution of the major clades of sulfate-reducing bacteria. Higher abundance of the sulfur cycle related genes (aprA and dsrB), and lower abundance of the bacterial ammonia-oxidizing related gene (amoA) were quantified in hydrothermal deposits. In addition, the present study also compared the inter-field variation of Epsilonproteobacteria among multi-types of hydrothermal vents, revealing that the proportion and diversity of this clade were quite various.

  20. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  1. Transcriptional control of the isoeugenol monooxygenase of Pseudomonas nitroreducens Jin1 in Escherichia coli.

    Science.gov (United States)

    Ryu, Ji-Young; Seo, Jiyoung; Ahn, Joong-Hoon; Sadowsky, Michael J; Hur, Hor-Gil

    2012-01-01

    Vanillin is one of the most valuable compounds in the flavoring and fragrance industries, and many attempts to produce natural vanillin have been made in recent years. Isoeugenol monooxygenase (Iem) converts the phenylpropanoid compound isoeugenol to vanillin. In Pseudomonas nitroreducens Jin1, the positive regulatory protein IemR is divergently expressed from Iem, and the promoter region is located between the genes. In this study, we investigated the transcriptional regulation of iem in Escherichia coli. We focused on inducers and regulatory protein IemR. Transcription of iem was found to be dependent on the amounts of isoeugenol and IemR. Isoeugenol was found to be the best inducer of iem, followed by trans-anethole, which induced iem to 58% of the transcription level observed for isoeugenol. Overproduction of IemR in E. coli significantly increased the transcription of iem, up to 96-fold, even in the absence of isoeugenol, as compared to basally expressed IemR. Results of this study indicate that the transcription of iem iss dependent on the type of inducers and on IemR. They should contribute to the development of bioengineering strategies for increased production of vanillin through high-level expression of the isoeugenol monooxygenase gene in microorganisms.

  2. A novel methanotroph in the genus Methylomonas that contains a distinct clade of soluble methane monooxygenase.

    Science.gov (United States)

    Nguyen, Ngoc-Loi; Yu, Woon-Jong; Yang, Hye-Young; Kim, Jong-Geol; Jung, Man-Young; Park, Soo-Je; Roh, Seong-Woon; Rhee, Sung-Keun

    2017-10-01

    Aerobic methane oxidation is a key process in the global carbon cycle that acts as a major sink of methane. In this study, we describe a novel methanotroph designated EMGL16-1 that was isolated from a freshwater lake using the floating filter culture technique. Based on a phylogenetic analysis of 16S rRNA gene sequences, the isolate was found to be closely related to the genus Methylomonas in the family Methylococcaceae of the class Gammaproteobacteria with 94.2-97.4% 16S rRNA gene similarity to Methylomonas type strains. Comparison of chemotaxonomic and physiological properties further suggested that strain EMGL16-1 was taxonomically distinct from other species in the genus Methylomonas. The isolate was versatile in utilizing nitrogen sources such as molecular nitrogen, nitrate, nitrite, urea, and ammonium. The genes coding for subunit of the particulate form methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), and methanol dehydrogenase (mxaF) were detected in strain EMGL16-1. Phylogenetic analysis of mmoX indicated that mmoX of strain EMGL16-1 is distinct from those of other strains in the genus Methylomonas. This isolate probably represents a novel species in the genus. Our study provides new insights into the diversity of species in the genus Methylomonas and their environmental adaptations.

  3. Pam (Peptidylglycine α-amidating monooxygenase) heterozygosity alters brain copper handling with region specificity

    Science.gov (United States)

    Gaier, Eric D; Miller, Megan B; Ralle, Martina; Aryal, Dipendra; Wetsel, William C; Mains, Richard E; Eipper, Betty A

    2013-01-01

    Copper (Cu), an essential trace element present throughout the mammalian nervous system, is crucial for normal synaptic function. Neuronal handling of Cu is poorly understood. We studied the localization and expression of Atp7a, the major intracellular Cu transporter in the brain, and its relation to peptidylglycine α-amidating monooxygenase (PAM), an essential cuproenzyme and regulator of Cu homeostasis in neuroendocrine cells. Based on biochemical fractionation and immunostaining of dissociated neurons, Atp7a was enriched in postsynaptic vesicular fractions. Cu followed a similar pattern, with ~20% of total Cu in synaptosomes. A mouse model heterozygous for the Pam gene (PAM+/−) is selectively Cu deficient in the amygdala. As in cortex and hippocampus, Atp7a and PAM expression overlap in the amygdala, with highest expression in interneurons. Messenger RNA levels of Atox-1 and Atp7a, which deliver Cu to the secretory pathway, were reduced in the amygdala but not the hippocampus in PAM+/− mice, along with GABAB receptor mRNA levels. Consistent with Cu deficiency, dopamine β-monooxygenase function was impaired as evidenced by elevated dopamine metabolites in the amygdala, but not the hippocampus, of PAM+/− mice. These alterations in Cu delivery to the secretory pathway in the PAM+/− amygdala may contribute to the physiological and behavioral deficits observed. PMID:24032518

  4. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  5. MPN- and Real-Time-Based PCR Methods for the Quantification of Alkane Monooxygenase Homologous Genes (alkB) in Environmental Samples

    Science.gov (United States)

    Pérez-de-Mora, Alfredo; Schulz, Stephan; Schloter, Michael

    Hydrocarbons are major contaminants of soil ecosystems as a result of uncontrolled oil spills and wastes disposal into the environment. Ecological risk assessment and remediation of affected sites is often constrained due to lack of suitable prognostic and diagnostic tools that provide information of abiotic-biotic interactions occurring between contaminants and biological targets. Therefore, the identification and quantification of genes involved in the degradation of hydrocarbons may play a crucial role for evaluating the natural attenuation potential of contaminated sites and the development of successful bioremediation strategies. Besides other gene clusters, the alk operon has been identified as a major player for alkane degradation in different soils. An oxygenase gene (alkB) codes for the initial step of the degradation of aliphatic alkanes under aerobic conditions. In this work, we present an MPN- and a real-time PCR method for the quantification of the bacterial gene alkB (coding for rubredoxin-dependent alkane monooxygenase) in environmental samples. Both approaches enable a rapid culture-independent screening of the alkB gene in the environment, which can be used to assess the intrinsic natural attenuation potential of a site or to follow up the on-going progress of bioremediation assays.

  6. Draft Genome Sequence of Methyloferula stellata AR4, an Obligate Methanotroph Possessing Only a Soluble Methane Monooxygenase.

    Science.gov (United States)

    Dedysh, Svetlana N; Naumoff, Daniil G; Vorobev, Alexey V; Kyrpides, Nikos; Woyke, Tanja; Shapiro, Nicole; Crombie, Andrew T; Murrell, J Colin; Kalyuzhnaya, Marina G; Smirnova, Angela V; Dunfield, Peter F

    2015-03-05

    Methyloferula stellata AR4 is an aerobic acidophilic methanotroph, which, in contrast to most known methanotrophs but similar to Methylocella spp., possesses only a soluble methane monooxygenase. However, it differs from Methylocella spp. by its inability to grow on multicarbon substrates. Here, we report the draft genome sequence of this bacterium. Copyright © 2015 Dedysh et al.

  7. Draft Genome Sequence of Methyloferula stellata AR4, an Obligate Methanotroph Possessing Only a Soluble Methane Monooxygenase

    OpenAIRE

    Dedysh, Svetlana N.; Naumoff, Daniil G.; Vorobev, Alexey V.; Kyrpides, Nikos; Woyke, Tanja; Shapiro, Nicole; Crombie, Andrew T.; Murrell, J. Colin; Kalyuzhnaya, Marina G.; Smirnova, Angela V.; Dunfield, Peter F.

    2015-01-01

    Methyloferula stellata AR4 is an aerobic acidophilic methanotroph, which, in contrast to most known methanotrophs but similar to Methylocella spp., possesses only a soluble methane monooxygenase. However, it differs from Methylocella spp. by its inability to grow on multicarbon substrates. Here, we report the draft genome sequence of this bacterium.

  8. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene

    NARCIS (Netherlands)

    Cankar, K.; van Houwelingen, A.; Bosch, H.J.; Sonke, T.; Bouwmeester, H.; Beekwilder, J.P.

    2011-01-01

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene

  9. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Pierce, Brian; Wittrup Agger, Jane; Wichmann, Jesper

    2017-01-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of ...

  10. Joint Functions of Protein Residues and NADP(H) in Oxygen Activation by Flavin-containing Monooxygenase

    NARCIS (Netherlands)

    Orru, Roberto; Torres Pazmino, Daniel; Fraaije, Marco W.; Mattevi, Andrea

    2010-01-01

    The reactivity of flavoenzymes with dioxygen is at the heart of a number of biochemical reactions with far reaching implications for cell physiology and pathology. Flavin-containing monooxygenases are an attractive model system to study flavin-mediated oxygenation. In these enzymes, the NADP(H)

  11. A copper-methionine interaction controls the pH-dependent activation of peptidylglycine monooxygenase.

    Science.gov (United States)

    Bauman, Andrew T; Broers, Brenda A; Kline, Chelsey D; Blackburn, Ninian J

    2011-12-20

    The pH dependence of native peptidylglycine monooxygenase (PHM) and its M314H variant has been studied in detail. For wild-type (WT) PHM, the intensity of the Cu-S interaction visible in the Cu(I) extended X-ray absorption fine structure (EXAFS) data is inversely proportional to catalytic activity over the pH range of 3-8. A previous model based on more limited data was interpreted in terms of two protein conformations involving an inactive Met-on form and an active flexible Met-off form [Bauman, A. T., et al. (2006) Biochemistry 45, 11140-11150] that derived its catalytic activity from the ability to couple into vibrational modes critical for proton tunneling. The new studies comparing the WT and M314H variant have led to the evolution of this model, in which the Met-on form has been found to be derived from coordination of an additional Met residue, rather than a more rigid conformer of M314 as previously proposed. The catalytic activity of the mutant decreased by 96% because of effects on both k(cat) and K(M), but it displayed the same activity-pH profile with a maximum around pH 6. At pH 8, the reduced Cu(I) form gave spectra that could be simulated by replacement of the Cu(M) Cu-S(Met) interaction with a Cu-N/O interaction, but the data did not unambiguously assign the ligand to the imidazole side chain of H314. At pH 3.5, the EXAFS still showed the presence of a strong Cu-S interaction, establishing that the Met-on form observed at low pH in WT cannot be due to a strengthening of the Cu(M)-methionine interaction but must arise from a different Cu-S interaction. Therefore, lowering the pH causes a conformational change at one of the Cu centers that brings a new S donor residue into a favorable orientation for coordination to copper and generates an inactive form. Cys coordination is unlikely because all Cys residues in PHM are engaged in disulfide cross-links. Sequence comparison with the PHM homologues tyramine β-monooxygenase and dopamine β-monooxygenase

  12. Status of Resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to Neonicotinoids in Iran and Detoxification by Cytochrome P450-Dependent Monooxygenases.

    Science.gov (United States)

    Basij, M; Talebi, K; Ghadamyari, M; Hosseininaveh, V; Salami, S A

    2017-02-01

    Nine Bemisia tabaci (Gennadius) populations were collected from different regions of Iran. In all nine populations, only one biotype (B biotype) was detected. Susceptibilities of these populations to imidacloprid and acetamiprid were assayed. The lethal concentration 50 values (LC 50 ) for different populations showed a significant discrepancy in the susceptibility of B. tabaci to imidacloprid (3.76 to 772.06 mg l -1 ) and acetamiprid (4.96 to 865 mg l -1 ). The resistance ratio of the populations ranged from 9.72 to 205.20 for imidacloprid and 6.38 to 174.57 for acetamiprid. The synergistic effects of piperonylbutoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) were evaluated for the susceptible (RF) and resistant (JR) populations for the determination of the involvement of cytochrome P450-dependent monooxygenase and carboxylesterase, respectively, in their resistance mechanisms. The results showed that PBO overcame the resistance of the JR population to both imidacloprid and acetamiprid, with synergistic ratios of 72.7 and 106.9, respectively. Carboxylesterase, glutathione S-transferase and cytochrome P450-dependent monooxygenase were studied biochemically, for the purpose of measuring the activity of the metabolizing enzymes in order to determine which enzymes are directly involved in neonicotinoid resistance. There was an increase in the activity of cytochrome P450-dependent monooxygenase up to 17-fold in the resistant JR population (RR = 205.20). The most plausible activity of cytochrome P450-dependent monooxygenase correlated with the resistances of imidacloprid and acetamiprid, and this suggests that cytochrome P450-dependent monooxygenase is the only enzyme system responsible for neonicotinoid resistance in the nine populations of B. tabaci.

  13. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  14. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment.

  15. Structural and mechanistic basis of differentiated inhibitors of the acute pancreatitis target kynurenine-3-monooxygenase

    Science.gov (United States)

    Hutchinson, Jonathan P.; Rowland, Paul; Taylor, Mark R. D.; Christodoulou, Erica M.; Haslam, Carl; Hobbs, Clare I.; Holmes, Duncan S.; Homes, Paul; Liddle, John; Mole, Damian J.; Uings, Iain; Walker, Ann L.; Webster, Scott P.; Mowat, Christopher G.; Chung, Chun-Wa

    2017-06-01

    Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design.

  16. Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls

    DEFF Research Database (Denmark)

    Holtze, Maria; Saetre, Peter; Engberg, Göran

    2012-01-01

    on the activity of kynurenine 3-monooxygenase (KMO), the enzyme converting kynurenine to 3-hydroxykynurenine. Methods: We analyzed the association between KMO gene polymorphisms and CSF concentrations of KYNA in patients with schizophrenia and healthy controls. Fifteen single nucleotide polymorphisms (SNPs) were...... selected covering KMO and were analyzed in UNPHASED. Results: We included 17 patients with schizophrenia and 33 controls in our study. We found an association between a KMO SNP (rs1053230), encoding an amino acid change of potential importance for substrate interaction, and CSF concentrations of KYNA....... Limitations: Given the limited sample size, the results are tentative until replication. Conclusion: Our results suggest that the nonsynonymous KMO SNP rs1053230 influences CSF concentrations of KYNA....

  17. Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls.

    Science.gov (United States)

    Holtze, Maria; Saetre, Peter; Engberg, Göran; Schwieler, Lilly; Werge, Thomas; Andreassen, Ole A; Hall, Håkan; Terenius, Lars; Agartz, Ingrid; Jönsson, Erik G; Schalling, Martin; Erhardt, Sophie

    2012-01-01

    Patients with schizophrenia show increased brain and cerebrospinal fluid (CSF) concentrations of the endogenous N-methyl-D-aspartate receptor antagonist kynurenic acid (KYNA). This compound is an end-metabolite of the kynurenine pathway, and its formation indirectly depends on the activity of kynurenine 3-monooxygenase (KMO), the enzyme converting kynurenine to 3-hydroxykynurenine. We analyzed the association between KMO gene polymorphisms and CSF concentrations of KYNA in patients with schizophrenia and healthy controls. Fifteen single nucleotide polymorphisms (SNPs) were selected covering KMO and were analyzed in UNPHASED. We included 17 patients with schizophrenia and 33 controls in our study. We found an association between a KMO SNP (rs1053230), encoding an amino acid change of potential importance for substrate interaction, and CSF concentrations of KYNA. Given the limited sample size, the results are tentative until replication. Our results suggest that the nonsynonymous KMO SNP rs1053230 influences CSF concentrations of KYNA.

  18. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    DEFF Research Database (Denmark)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate......-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin...... ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together...

  19. Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies

    International Nuclear Information System (INIS)

    Roccatano, Danilo

    2015-01-01

    The monooxygenase P450 BM-3 is a NADPH-dependent fatty acid hydroxylase enzyme isolated from soil bacterium Bacillus megaterium. As a pivotal member of cytochrome P450 superfamily, it has been intensely studied for the comprehension of structure–dynamics–function relationships in this class of enzymes. In addition, due to its peculiar properties, it is also a promising enzyme for biochemical and biomedical applications. However, despite the efforts, the full understanding of the enzyme structure and dynamics is not yet achieved. Computational studies, particularly molecular dynamics (MD) simulations, have importantly contributed to this endeavor by providing new insights at an atomic level regarding the correlations between structure, dynamics, and function of the protein. This topical review summarizes computational studies based on MD simulations of the cytochrome P450 BM-3 and gives an outlook on future directions. (topical review)

  20. FAD C(4a)-hydroxide stabilized in a naturally fused styrene monooxygenase

    Science.gov (United States)

    Schlömann, Michael; van Berkel, Willem J.H.; Gassner, George T.

    2013-01-01

    StyA2B represents a new class of styrene monooxygenases that integrates flavin-reductase and styrene-epoxidase activities into a single polypeptide. This naturally-occurring fusion protein offers new avenues for studying and engineering biotechnologically relevant enantioselective biochemical epoxidation reactions. Stopped-flow kinetic studies of StyA2B reported here identify reaction intermediates similar to those reported for the separate reductase and epoxidase components of related two-component systems. Our studies identify substrate epoxidation and elimination of water from the FAD C(4a)-hydroxide as rate-limiting steps in the styrene epoxidation reaction. Efforts directed at accelerating these reaction steps are expected to greatly increase catalytic efficiency and the value of StyA2B as biocatalyst. PMID:24157359

  1. Source of Nitrous Oxide Emissions during the Cow Manure Composting Process as Revealed by Isotopomer Analysis of and amoA Abundance in Betaproteobacterial Ammonia-Oxidizing Bacteria▿ †

    Science.gov (United States)

    Maeda, Koki; Toyoda, Sakae; Shimojima, Ryosuke; Osada, Takashi; Hanajima, Dai; Morioka, Riki; Yoshida, Naohiro

    2010-01-01

    A molecular analysis of betaproteobacterial ammonia oxidizers and a N2O isotopomer analysis were conducted to study the sources of N2O emissions during the cow manure composting process. Much NO2−-N and NO3−-N and the Nitrosomonas europaea-like amoA gene were detected at the surface, especially at the top of the composting pile, suggesting that these ammonia-oxidizing bacteria (AOB) significantly contribute to the nitrification which occurs at the surface layer of compost piles. However, the 15N site preference within the asymmetric N2O molecule (SP = δ15Nα − δ15Nβ, where 15Nα and 15Nβ represent the 15N/14N ratios at the center and end sites of the nitrogen atoms, respectively) indicated that the source of N2O emissions just after the compost was turned originated mainly from the denitrification process. Based on these results, the reduction of accumulated NO2−-N or NO3−-N after turning was identified as the main source of N2O emissions. The site preference and bulk δ15N results also indicate that the rate of N2O reduction was relatively low, and an increased value for the site preference indicates that the nitrification which occurred mainly in the surface layer of the pile partially contributed to N2O emissions between the turnings. PMID:20048060

  2. Inactivation of Toluene 2-Monooxygenase in Burkholderia cepacia G4 by Alkynes

    Science.gov (United States)

    Yeager, Chris M.; Bottomley, Peter J.; Arp, Daniel J.; Hyman, Michael R.

    1999-01-01

    High concentrations of acetylene (10 to 50% [vol/vol] gas phase) were required to inhibit the growth of Burkholderia cepacia G4 on toluene, while 1% (vol/vol) (gas phase) propyne or 1-butyne completely inhibited growth. Low concentrations of longer-chain alkynes (C5 to C10) were also effective inhibitors of toluene-dependent growth, and 2- and 3-alkynes were more potent inhibitors than their 1-alkyne counterparts. Exposure of toluene-grown B. cepacia G4 to alkynes resulted in the irreversible loss of toluene- and o-cresol-dependent O2 uptake activities, while acetate- and 3-methylcatechol-dependent O2 uptake activities were unaffected. Toluene-dependent O2 uptake decreased upon the addition of 1-butyne in a concentration- and time-dependent manner. The loss of activity followed first-order kinetics, with apparent rate constants ranging from 0.25 min−1 to 2.45 min−1. Increasing concentrations of toluene afforded protection from the inhibitory effects of 1-butyne. Furthermore, oxygen, supplied as H2O2, was required for inhibition by 1-butyne. These results suggest that alkynes are specific, mechanism-based inactivators of toluene 2-monooxygenase in B. cepacia G4, although the simplest alkyne, acetylene, was relatively ineffective compared to longer alkynes. Alkene analogs of acetylene and propyne—ethylene and propylene—were not inactivators of toluene 2-monooxygenase activity in B. cepacia G4 but were oxidized to their respective epoxides, with apparent Ks and Vmax values of 39.7 μM and 112.3 nmol min−1 mg of protein−1 for ethylene and 32.3 μM and 89.2 nmol min−1 mg of protein−1 for propylene. PMID:9925593

  3. Influence of kynurenine 3-monooxygenase (KMO) gene polymorphism on cognitive function in schizophrenia✰,✰✰

    Science.gov (United States)

    Wonodi, Ikwunga; McMahon, Robert P.; Krishna, Nithin; Mitchell, Braxton D.; Liu, Judy; Glassman, Matthew; Hong, L. Elliot; Gold, James M.

    2015-01-01

    Background Cognitive deficits compromise quality of life and productivity for individuals with schizophrenia and have no effective treatments. Preclinical data point to the kynurenine pathway of tryptophan metabolism as a potential target for pro-cognitive drug development. We have previously demonstrated association of a kynurenine 3-monooxygenase (KMO) gene variant with reduced KMO gene expression in postmortem schizophrenia cortex, and neurocognitive endophenotypic deficits in a clinical sample. KMO encodes kynurenine 3-monooxygenase (KMO), the rate-limiting microglial enzyme of cortical kynurenine metabolism. Aberration of the KMO gene might be the proximal cause of impaired cortical kynurenine metabolism observed in schizophrenia. However, the relationship between KMO variation and cognitive function in schizophrenia is unknown. This study examined the effects of the KMO rs2275163C>T C (risk) allele on cognitive function in schizophrenia. Methods We examined the association of KMO polymorphisms with general neuropsychological performance and P50 gating in a sample of 150 schizophrenia and 95 healthy controls. Results Consistent with our original report, the KMO rs2275163C>T C (risk) allele was associated with deficits in general neuropsychological performance, and this effect was more marked in schizophrenia compared with controls. Additionally, the C (Arg452) allele of the missense rs1053230C>T variant (KMO Arg452Cys) showed a trend effect on cognitive function. Neither variant affected P50 gating. Conclusions These data suggest that KMO variation influences a range of cognitive domains known to predict functional outcome. Extensive molecular characterization of this gene would elucidate its role in cognitive function with implications for vertical integration with basic discovery. PMID:25464917

  4. Influence of kynurenine 3-monooxygenase (KMO) gene polymorphism on cognitive function in schizophrenia.

    Science.gov (United States)

    Wonodi, Ikwunga; McMahon, Robert P; Krishna, Nithin; Mitchell, Braxton D; Liu, Judy; Glassman, Matthew; Hong, L Elliot; Gold, James M

    2014-12-01

    Cognitive deficits compromise quality of life and productivity for individuals with schizophrenia and have no effective treatments. Preclinical data point to the kynurenine pathway of tryptophan metabolism as a potential target for pro-cognitive drug development. We have previously demonstrated association of a kynurenine 3-monooxygenase (KMO) gene variant with reduced KMO gene expression in postmortem schizophrenia cortex, and neurocognitive endophenotypic deficits in a clinical sample. KMO encodes kynurenine 3-monooxygenase (KMO), the rate-limiting microglial enzyme of cortical kynurenine metabolism. Aberration of the KMO gene might be the proximal cause of impaired cortical kynurenine metabolism observed in schizophrenia. However, the relationship between KMO variation and cognitive function in schizophrenia is unknown. This study examined the effects of the KMO rs2275163C>T C (risk) allele on cognitive function in schizophrenia. We examined the association of KMO polymorphisms with general neuropsychological performance and P50 gating in a sample of 150 schizophrenia and 95 healthy controls. Consistent with our original report, the KMO rs2275163C>T C (risk) allele was associated with deficits in general neuropsychological performance, and this effect was more marked in schizophrenia compared with controls. Additionally, the C (Arg452) allele of the missense rs1053230C>T variant (KMO Arg452Cys) showed a trend effect on cognitive function. Neither variant affected P50 gating. These data suggest that KMO variation influences a range of cognitive domains known to predict functional outcome. Extensive molecular characterization of this gene would elucidate its role in cognitive function with implications for vertical integration with basic discovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048.

    Science.gov (United States)

    Gao, Jingjing; Yao, Licheng; Xia, Tingting; Liao, Xuebin; Zhu, Deyu; Xiang, Ye

    2018-04-01

    The human kynurenine 3-monooxygenase (hKMO) is a potential therapeutic target for neurodegenerative and neurologic disorders. Inhibition of KMO by Ro 61-8048, a potent, selective, and the most widely used inhibitor of KMO, was shown effective in various models of neurodegenerative or neurologic disorders. However, the molecular basis of hKMO inhibition by Ro 61-8048 is not clearly understood. Here, we report biochemistry studies on hKMO and crystal structures of an hKMO homolog, pfKMO from Pseudomonas fluorescens, in complex with the substrate l-kynurenine and Ro 61-8048. We found that the C-terminal ∼110 aa are essential for the enzymatic activity of hKMO and the homologous C-terminal region of pfKMO folds into a distinct, all-α-helical domain, which associates with the N-terminal catalytic domain to form a unique tunnel in proximity to the substrate-binding pocket. The tunnel binds the Ro 61-8048 molecule, which fills most of the tunnel, and Ro 61-8048 is hydrogen bonded with several completely conserved residues, including an essential catalytic residue. Modification of Ro 61-8048 and biochemical studies of the modified Ro 61-8048 derivatives suggested that Ro 61-8048 inhibits the enzyme in an allosteric manner by affecting the conformation of the essential catalytic residue and by blocking entry of the substrate or product release. The unique binding sites distinguish Ro 61-8048 as a noncompetitive and highly selective inhibitor from other competitive inhibitors, which should facilitate further optimization of Ro 61-8048 and the development of new inhibitory drugs to hKMO.-Gao, J., Yao, L., Xia, T., Liao, X., Zhu, D., Xiang, Y. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048.

  6. Homology modeling and protein engineering of alkane monooxygenase in Burkholderia thailandensis MSMB121: in silico insights.

    Science.gov (United States)

    Jain, Chakresh Kumar; Gupta, Money; Prasad, Yamuna; Wadhwa, Gulshan; Sharma, Sanjeev Kumar

    2014-07-01

    The degradation of hydrocarbons plays an important role in the eco-balancing of petroleum products, pesticides and other toxic products in the environment. The degradation of hydrocarbons by microbes such as Geobacillus thermodenitrificans, Burkhulderia, Gordonia sp. and Acinetobacter sp. has been studied intensively in the literature. The present study focused on the in silico protein engineering of alkane monooxygenase (ladA)-a protein involved in the alkane degradation pathway. We demonstrated the improvement in substrate binding energy with engineered ladA in Burkholderia thailandensis MSMB121. We identified an ortholog of ladA monooxygenase found in B. thailandensis MSMB121, and showed it to be an enzyme involved in an alkane degradation pathway studied extensively in Geobacillus thermodenitrificans. Homology modeling of the three-dimensional structure of ladA was performed with a crystal structure (protein databank ID: 3B9N) as a template in MODELLER 9v11, and further validated using PROCHECK, VERIFY-3D and WHATIF tools. Specific amino acids were substituted in the region corresponding to amino acids 305-370 of ladA protein, resulting in an enhancement of binding energy in different alkane chain molecules as compared to wild protein structures in the docking experiments. The substrate binding energy with the protein was calculated using Vina (Implemented in VEGAZZ). Molecular dynamics simulations were performed to study the dynamics of different alkane chain molecules inside the binding pockets of wild and mutated ladA. Here, we hypothesize an improvement in binding energies and accessibility of substrates towards engineered ladA enzyme, which could be further facilitated for wet laboratory-based experiments for validation of the alkane degradation pathway in this organism.

  7. Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available The widely used insecticide beta-cypermethrin has become a public concern because of its environmental contamination and toxic effects on mammals. In this study, a novel beta-cypermethrin degrading enzyme designated as CMO was purified to apparent homogeneity from a Streptomyces sp. isolate capable of utilizing beta-cypermethrin as a growth substrate. The native enzyme showed a monomeric structure with a molecular mass of 41 kDa and pI of 5.4. The enzyme exhibited the maximal activity at pH 7.5 and 30°C. It was fairly stable in the pH range from 6.5-8.5 and at temperatures below 10°C. The enzyme activity was significantly stimulated by Fe(2+, but strongly inhibited by Ag(+, Al(3+, and Cu(2+. The enzyme catalyzed the degradation of beta-cypermethrin to form five products via hydroxylation and diaryl cleavage. A novel beta-cypermethrin detoxification pathway was proposed based on analysis of these products. The purified enzyme was identified as a monooxygenase by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis (MALDI-TOF-MS and N-terminal protein sequencing. Given that all the characterized pyrethroid-degrading enzymes are the members of hydrolase family, CMO represents the first pyrethroid-degrading monooxygenase identified from environmental microorganisms. Taken together, our findings depict a novel pyrethroid degradation mechanism and indicate that the purified enzyme may be a promising candidate for detoxification of beta-cypermethrin and environmental protection.

  8. Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic.

    Science.gov (United States)

    Yoshimoto, Naoko; Onuma, Misato; Mizuno, Shinya; Sugino, Yuka; Nakabayashi, Ryo; Imai, Shinsuke; Tsuneyoshi, Tadamitsu; Sumi, Shin-ichiro; Saito, Kazuki

    2015-09-01

    S-Alk(en)yl-l-cysteine sulfoxides are cysteine-derived secondary metabolites highly accumulated in the genus Allium. Despite pharmaceutical importance, the enzymes that contribute to the biosynthesis of S-alk-(en)yl-l-cysteine sulfoxides in Allium plants remain largely unknown. Here, we report the identification of a flavin-containing monooxygenase, AsFMO1, in garlic (Allium sativum), which is responsible for the S-oxygenation reaction in the biosynthesis of S-allyl-l-cysteine sulfoxide (alliin). Recombinant AsFMO1 protein catalyzed the stereoselective S-oxygenation of S-allyl-l-cysteine to nearly exclusively yield (RC SS )-S-allylcysteine sulfoxide, which has identical stereochemistry to the major natural form of alliin in garlic. The S-oxygenation reaction catalyzed by AsFMO1 was dependent on the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and flavin adenine dinucleotide (FAD), consistent with other known flavin-containing monooxygenases. AsFMO1 preferred S-allyl-l-cysteine to γ-glutamyl-S-allyl-l-cysteine as the S-oxygenation substrate, suggesting that in garlic, the S-oxygenation of alliin biosynthetic intermediates primarily occurs after deglutamylation. The transient expression of green fluorescent protein (GFP) fusion proteins indicated that AsFMO1 is localized in the cytosol. AsFMO1 mRNA was accumulated in storage leaves of pre-emergent nearly sprouting bulbs, and in various tissues of sprouted bulbs with green foliage leaves. Taken together, our results suggest that AsFMO1 functions as an S-allyl-l-cysteine S-oxygenase, and contributes to the production of alliin both through the conversion of stored γ-glutamyl-S-allyl-l-cysteine to alliin in storage leaves during sprouting and through the de novo biosynthesis of alliin in green foliage leaves. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  9. Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the arctiids (lepidoptera.

    Directory of Open Access Journals (Sweden)

    Sven Sehlmeyer

    2010-05-01

    Full Text Available Insects experience a wide array of chemical pressures from plant allelochemicals and pesticides and have developed several effective counterstrategies to cope with such toxins. Among these, cytochrome P450 monooxygenases are crucial in plant-insect interactions. Flavin-dependent monooxygenases (FMOs seem not to play a central role in xenobiotic detoxification in insects, in contrast to mammals. However, the previously identified senecionine N-oxygenase of the arctiid moth Tyria jacobaeae (Lepidoptera indicates that FMOs have been recruited during the adaptation of this insect to plants that accumulate toxic pyrrolizidine alkaloids. Identification of related FMO-like sequences of various arctiids and other Lepidoptera and their combination with expressed sequence tag (EST data and sequences emerging from the Bombyx mori genome project show that FMOs in Lepidoptera form a gene family with three members (FMO1 to FMO3. Phylogenetic analyses suggest that FMO3 is only distantly related to lepidopteran FMO1 and FMO2 that originated from a more recent gene duplication event. Within the FMO1 gene cluster, an additional gene duplication early in the arctiid lineage provided the basis for the evolution of the highly specific biochemical, physiological, and behavioral adaptations of these butterflies to pyrrolizidine-alkaloid-producing plants. The genes encoding pyrrolizidine-alkaloid-N-oxygenizing enzymes (PNOs are transcribed in the fat body and the head of the larvae. An N-terminal signal peptide mediates the transport of the soluble proteins into the hemolymph where PNOs efficiently convert pro-toxic pyrrolizidine alkaloids into their non-toxic N-oxide derivatives. Heterologous expression of a PNO of the generalist arctiid Grammia geneura produced an N-oxygenizing enzyme that shows noticeably expanded substrate specificity compared with the related enzyme of the specialist Tyria jacobaeae. The data about the evolution of FMOs within lepidopteran insects

  10. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  11. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  12. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  13. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  14. A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase

    NARCIS (Netherlands)

    Loose, Jennifer S. M.; Forsberg, Zarah; Fraaije, Marco W.; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav

    2014-01-01

    The discovery of the copper-dependent lytic polysaccharide monooxygenases (LPMOs) has revealed new territory for chemical and biochemical analysis. These unique mononuclear copper enzymes are abundant, suggesting functional diversity beyond their established roles in the depolymerization of biomass

  15. Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China.

    Directory of Open Access Journals (Sweden)

    Yaohui Bai

    Full Text Available Bacteria play an important role in the decomposition and cycling of a variety of compounds in freshwater aquatic environments, particularly nutrient-rich eutrophic lakes. A unique Chinese eutrophic lake--Dianchi--was selected for study because it has two separate and distinct basins, Caohai with higher organic carbon levels and Waihai with lower organic carbon levels. Sediment bacterial communities were studied in the two basins using samples collected in each season from June 2010 to March 2011. Barcoded pyrosequencing based on the 16 S rRNA gene found that certain common phyla, Proteobacteria, Bacteroidetes, Firmicutes and Chloroflexi, were dominant in the sediments from both basins. However, from the class to genus level, the dominant bacterial groups found in the sediments were distinct between the two basins. Correlation analysis revealed that, among the environmental parameters examined, total organic carbon (TOC accounted for the greatest proportion of variability in bacterial community. Interestingly, study results suggest that increasing allochthonous organic carbon could enhance bacterial diversity and biomass in the sediment. In addition, analysis of function genes (amoA and nosZ demonstrated that ammonia-oxidizing bacteria (AOB were dominant in sediments, with 99% belonging to Nitrosomonas. Denitrifying bacteria were comparatively diverse and were associated with some cultivatable bacteria.

  16. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China.

    Science.gov (United States)

    Wang, Jing; Dong, Hailiang; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    The relative gene expression of hydrazine oxidoreductase encoding gene (hzo) for anaerobic ammonium oxidizing bacteria (anammox) and ammonia monooxygenase encoding gene (amoA) for both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in Sanjiang Plain soybean and rice paddy soils of Northeast China was investigated by using real-time reverse-transcriptional quantitative PCR. Metabolically active populations of anammox, AOA, and AOB in rice paddy soils were evident by the presence and successful quantification of hzo mRNA and amoA mRNA genes. The expression ratio of amoA gene for both AOA and AOB varied between soybean soils and different rice paddy soils while the expression of hzo gene for anammox was detectable only in rice paddy soils by showing a diverse relative expression ratio in each soil sample. Gene expression of both archaeal and bacterial amoA genes in rice paddy soils differed among the three sampling depths, but that of hzo was not. Both archaeal and bacterial amoA genes showed an increase trend of expression level with continuation of rice paddy cultivation, but the low expression ratio of hzo gene indicated a relatively small contribution of anammox in overall removal of inorganic nitrogen through N2 even under anoxic and high nitrogen input in agriculture. Bacterial amoA gene from two soybean fields and three rice paddy fields were also analyzed for community composition by denaturing gradient gel electrophoresis fingerprint. Community shift was observed between soybean and paddy fields and within each of them. The consistent occurrence of three bands 5, 6, and 7 in all samples showed their high adaptability for both arid cultivation and continuous rice paddy cultivation. Our data suggest that AOA and AOB are playing a more important role in nitrogen transformation in agricultural soils in oxic or anoxic environment and anammox bacteria may also contribute but in a less extent to N transformation in these agricultural soils

  17. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  18. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes

    DEFF Research Database (Denmark)

    Pierce, Brian; Wittrup Agger, Jane; Zhang, Zhenghong

    2017-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes capable of the oxidative breakdown of polysaccharides. They are of industrial interest due to their ability to enhance the enzymatic depolymerization of recalcitrant substrates by glycoside hydrolases. In this paper, twenty......-four lytic polysaccharide monooxygenases (LPMOs) expressed in Trichoderma reesei were evaluated for their ability to oxidize the complex polysaccharides in soybean spent flakes, an abundant and industrially relevant substrate. TrCel61A, a soy-polysaccharide-active AA9 LPMO from T. reesei, was used...... as a benchmark in this evaluation. In total, seven LPMOs demonstrated activity on pretreated soy spent flakes, with the products from enzymatic treatments evaluated using mass spectrometry and high performance anion exchange chromatography. The hydrolytic boosting effect of the top-performing enzymes...

  19. Integrating cell-free biosyntheses of heme prosthetic group and apoenzyme for the synthesis of functional P450 monooxygenase.

    Science.gov (United States)

    Kwon, Yong-Chan; Oh, In-Seok; Lee, Nahum; Lee, Kyung-Ho; Yoon, Yeo Joon; Lee, Eun Yeol; Kim, Byung-Gee; Kim, Dong-Myung

    2013-04-01

    Harnessing the isolated protein synthesis machinery, cell-free protein synthesis reproduces the cellular process of decoding genetic information in artificially controlled environments. More often than not, however, generation of functional proteins requires more than simple translation of genetic sequences. For instance, many of the industrially important enzymes require non-protein prosthetic groups for biological activity. Herein, we report the complete cell-free biogenesis of a heme prosthetic group and its integration with concurrent apoenzyme synthesis for the production of functional P450 monooxygenase. Step reactions required for the syntheses of apoenzyme and the prosthetic group have been designed so that these two separate pathways take place in the same reaction mixture, being insulated from each other. Combined pathways for the synthesis of functional P450 monooxygenase were then further integrated with in situ assay reactions to enable real-time measurement of enzymatic activity during its synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  20. Genetic Variant in Flavin-Containing Monooxygenase 3 Alters Lipid Metabolism in Laying Hens in a Diet-Specific Manner

    OpenAIRE

    Wang, Jing; Long, Cheng; Zhang, Haijun; Zhang, Yanan; Wang, Hao; Yue, Hongyuan; Wang, Xiaocui; Wu, Shugeng; Qi, Guanghai

    2016-01-01

    Genetic variant T329S in flavin-containing monooxygenase 3 (FMO3) impairs trimethylamine (TMA) metabolism in birds. The TMA metabolism that under complex genetic and dietary regulation, closely linked to cardiovascular disease risk. We determined whether the genetic defects in TMA metabolism may change other metabolic traits in birds, determined whether the genetic effects depend on diets, and to identify genes or gene pathways that underlie the metabolic alteration induced by genetic and die...

  1. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2010-07-01

    Full Text Available Abstract Background Plant cytochrome P450 monooxygenases (CYP mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS in the upstream region and three candidate polyadenylation (PolyA sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression

  2. Bacterial mitosis

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... act together to generate the force required for plasmid movement during segregation. ParR protein binds cooperatively to the centromeric parC DNA region, thereby forming a complex that interacts with the filament-forming actin-like ParM protein in an ATP-dependent manner, suggesting that plasmid...

  3. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    International Nuclear Information System (INIS)

    Andria, Verania; Reichenauer, Thomas G.; Sessitsch, Angela

    2009-01-01

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  4. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Andria, Verania [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Unit of Environmental Resources and Technologies, A-2444 Seibersdorf (Austria); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.a [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2009-12-15

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  5. Differential Transcriptional Activation of Genes Encoding Soluble Methane Monooxygenase in a Facultative Versus an Obligate Methanotroph.

    Science.gov (United States)

    Smirnova, Angela V; Dunfield, Peter F

    2018-03-06

    Methanotrophs are a specialized group of bacteria that can utilize methane (CH₄) as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO), of either a soluble, cytoplasmic type (sMMO), or a particulate, membrane-bound type (pMMO). Methylocella silvestris BL2 and Methyloferula stellata AR4 are closely related methanotroph species that oxidize methane via sMMO only. However, Methyloferula stellata is an obligate methanotroph, while Methylocella silvestris is a facultative methanotroph able to grow on several multicarbon substrates in addition to methane. We constructed transcriptional fusions of the mmo promoters of Methyloferula stellata and Methylocella silvestris to a promoterless gfp in order to compare their transcriptional regulation in response to different growth substrates, in the genetic background of both organisms. The following patterns were observed: (1) The mmo promoter of the facultative methanotroph Methylocella silvestris was either transcriptionally downregulated or repressed by any growth substrate other than methane in the genetic background of Methylocella silvetris ; (2) Growth on methane alone upregulated the mmo promoter of Methylocella silvetris in its native background but not in the obligate methanotroph Methyloferula stellata ; (3) The mmo promoter of Methyloferula stellata was constitutive in both organisms regardless of the growth substrate, but with much lower promoter activity than the mmo promoter of Methylocella silvetris . These results support a conclusion that a different mode of transcriptional regulation of sMMO contributes to the facultative lifestyle of Methylocella silvetris compared to the obligate methanotroph Methyloferula stellata .

  6. Differential Transcriptional Activation of Genes Encoding Soluble Methane Monooxygenase in a Facultative Versus an Obligate Methanotroph

    Directory of Open Access Journals (Sweden)

    Angela V. Smirnova

    2018-03-01

    Full Text Available Methanotrophs are a specialized group of bacteria that can utilize methane (CH4 as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO, of either a soluble, cytoplasmic type (sMMO, or a particulate, membrane-bound type (pMMO. Methylocella silvestris BL2 and Methyloferula stellata AR4 are closely related methanotroph species that oxidize methane via sMMO only. However, Methyloferula stellata is an obligate methanotroph, while Methylocella silvestris is a facultative methanotroph able to grow on several multicarbon substrates in addition to methane. We constructed transcriptional fusions of the mmo promoters of Methyloferula stellata and Methylocella silvestris to a promoterless gfp in order to compare their transcriptional regulation in response to different growth substrates, in the genetic background of both organisms. The following patterns were observed: (1 The mmo promoter of the facultative methanotroph Methylocella silvestris was either transcriptionally downregulated or repressed by any growth substrate other than methane in the genetic background of Methylocella silvetris; (2 Growth on methane alone upregulated the mmo promoter of Methylocella silvetris in its native background but not in the obligate methanotroph Methyloferula stellata; (3 The mmo promoter of Methyloferula stellata was constitutive in both organisms regardless of the growth substrate, but with much lower promoter activity than the mmo promoter of Methylocella silvetris. These results support a conclusion that a different mode of transcriptional regulation of sMMO contributes to the facultative lifestyle of Methylocella silvetris compared to the obligate methanotroph Methyloferula stellata.

  7. Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum.

    Science.gov (United States)

    Hussain, Razak; Kumari, Indu; Sharma, Shikha; Ahmed, Mushtaq; Khan, Tabreiz Ahmad; Akhter, Yusuf

    2017-12-01

    Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein-ligand and protein-heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.

  8. Structural Basis for Inhibitor-Induced Hydrogen Peroxide Production by Kynurenine 3-Monooxygenase.

    Science.gov (United States)

    Kim, Hyun Tae; Na, Byeong Kwan; Chung, Jiwoung; Kim, Sulhee; Kwon, Sool Ki; Cha, Hyunju; Son, Jonghyeon; Cho, Joong Myung; Hwang, Kwang Yeon

    2018-04-19

    Kynurenine 3-monooxygenase (KMO) inhibitors have been developed for the treatment of neurodegenerative disorders. The mechanisms of flavin reduction and hydrogen peroxide production by KMO inhibitors are unknown. Herein, we report the structure of human KMO and crystal structures of Saccharomyces cerevisiae (sc) and Pseudomonas fluorescens (pf) KMO with Ro 61-8048. Proton transfer in the hydrogen bond network triggers flavin reduction in p-hydroxybenzoate hydroxylase, but the mechanism triggering flavin reduction in KMO is different. Conformational changes via π-π interactions between the loop above the flavin and substrate or non-substrate effectors lead to disorder of the C-terminal α helix in scKMO and shifts of domain III in pfKMO, stimulating flavin reduction. Interestingly, Ro 61-8048 has two different binding modes. It acts as a competitive inhibitor in scKMO and as a non-substrate effector in pfKMO. These findings provide understanding of the catalytic cycle of KMO and insight for structure-based drug design of KMO inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    Science.gov (United States)

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie ZM; Baily, James E; Sharp, Matthew GF; Garden, O James; Hughes, Jeremy; Howie, Sarah EM; Holmes, Duncan S; Liddle, John; Iredale, John P

    2015-01-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness. PMID:26752518

  10. A magnetic bead-based ligand binding assay to facilitate human kynurenine 3-monooxygenase drug discovery.

    Science.gov (United States)

    Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P

    2015-02-01

    Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. © 2014 Society for Laboratory Automation and Screening.

  11. Absence of kynurenine 3-monooxygenase reduces mortality of acute viral myocarditis in mice.

    Science.gov (United States)

    Kubo, Hisako; Hoshi, Masato; Mouri, Akihiro; Tashita, Chieko; Yamamoto, Yasuko; Nabeshima, Toshitaka; Saito, Kuniaki

    2017-01-01

    Infection of the encephalomyocarditis virus (EMCV) in mice is an established model for viral myocarditis. Previously, we have demonstrated that indoleamine 2,3-dioxygenase (IDO), an L-tryptophan - kynurenine pathway (KP) enzyme, affects acute viral myocarditis. However, the roles of KP metabolites in EMCV infection remain unclear. Kynurenine 3-monooxygenase (KMO) is one of the key regulatory enzymes, which metabolizes kynurenine to 3-hydroxykynurenine in the KP. Therefore, we examined the role of KMO in acute viral infection by comparing between KMO -/- mice and KMO +/+ mice. KMO deficiency resulted in suppressed mortality after EMCV infection. The number of infiltrating cells and F4/80 + cells in KMO -/- mice was suppressed compared with those in KMO +/+ mice. KMO -/- mice showed significantly increased levels of serum KP metabolites, and induction of KMO expression upon EMCV infection was involved in its effect on mortality through EMCV suppression. Furthermore, KMO -/- mice showed significantly suppression of CCL2, CCL3 and CCL4 on day 2 and CXCL1 on day 4 after infection. These results suggest that increased KP metabolites reduced chemokine production, resulting in suppressed mortality upon KMO knockdown in EMCV infection. KP metabolites may thus provide an effective strategy for treating acute viral myocarditis. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  12. Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis.

    Science.gov (United States)

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie Z M; Baily, James E; Sharp, Matthew G F; Garden, O James; Hughes, Jeremy; Howie, Sarah E M; Holmes, Duncan S; Liddle, John; Iredale, John P

    2016-02-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population. There are no specific therapies available to protect individuals from AP-MODS. Here we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism, is central to the pathogenesis of AP-MODS. We created a mouse strain that is deficient for Kmo (encoding KMO) and that has a robust biochemical phenotype that protects against extrapancreatic tissue injury to the lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of the oxazolidinone GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in the levels of kynurenine pathway metabolites in vivo, and it afforded therapeutic protection against MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS, and they open up a new area for drug discovery in critical illness.

  13. Targeting kynurenine 3-monooxygenase (KMO): implications for therapy in Huntington's disease.

    Science.gov (United States)

    Thevandavakkam, Mathuravani A; Schwarcz, Robert; Muchowski, Paul J; Giorgini, Flaviano

    2010-12-01

    Huntington's disease (HD) is an adult onset neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein. Recent work has shown that perturbation of kynurenine pathway (KP) metabolism is a hallmark of HD pathology, and that changes in brain levels of KP metabolites may play a causative role in this disease. The KP contains three neuroactive metabolites, the neurotoxins 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN), and the neuroprotectant kynurenic acid (KYNA). In model systems in vitro and in vivo, 3-HK and QUIN have been shown to cause neurodegeneration via a combination of excitotoxic mechanisms and oxidative stress. Recent studies with HD patient samples and in HD model systems have supported the idea that a shift away from the synthesis of KYNA and towards the formation of 3-HK and QUIN may trigger the neuropathological features observed in HD. The enzyme kynurenine 3-monooxygenase (KMO) is located at a critical branching point in the KP such that inhibition of this enzyme by either pharmacological or genetic means shifts the flux in the pathway towards the formation of KYNA. This intervention ameliorates disease-relevant phenotypes in HD models. Here we review the work implicating the KP in HD pathology and discuss the potential of KMO as a therapeutic target for this disorder. As several neurodegenerative diseases exhibit alterations in KP metabolism, this concept has broader implications for the treatment of brain diseases.

  14. Reconstitution of β-carotene hydroxylase activity of thermostable CYP175A1 monooxygenase

    International Nuclear Information System (INIS)

    Momoi, Kyoko; Hofmann, Ute; Schmid, Rolf D.; Urlacher, Vlada B.

    2006-01-01

    CYP175A1 is a thermostable P450 Monooxygenase from Thermus thermophilus HB27, demonstrating in vivo activity towards β-carotene. Activity of CYP175A1 was reconstituted in vitro using artificial electron transport proteins. First results were obtained in the mixture with a crude Escherichia coli cell extract at 37 o C. In this system, β-carotene was hydroxylated to β-cryptoxanthin. The result indicated the presence of electron transport enzymes among the E. coli proteins, which are suitable for CYP175A1. However, upon in vitro reconstitution of CYP175A1 activity with purified recombinant flavodoxin and flavodoxin reductase from E. coli, only very low β-cryptoxanthin production was observed. Remarkably, with another artificial electron transport system, putidaredoxin and putidaredoxin reductase from Pseudomonas putida, purified CYP175A1 enzyme hydroxylated β-carotene at 3- and also 3'-positions, resulting in β-cryptoxanthin and zeaxanthin. Under the optimal reaction conditions, the turnover rate of the enzyme reached 0.23 nmol β-cryptoxanthin produced per nmol P450 per min

  15. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    Science.gov (United States)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K; Ejsing, Christer S; Carvalho, Pedro

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: http://dx.doi.org/10.7554/eLife.00953.001 PMID:23898401

  16. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism.

    Science.gov (United States)

    Furuya, Toshiki; Nakao, Tomomi; Kino, Kuniki

    2015-10-01

    Mycobacteria such as Mycobacterium smegmatis strain mc(2)155 and Mycobacterium goodii strain 12523 are able to grow on acetone and use it as a source of carbon and energy. We previously demonstrated by gene deletion analysis that the mimABCD gene cluster, which encodes a binuclear iron monooxygenase, plays an essential role in acetone metabolism in these mycobacteria. In the present study, we determined the catalytic function of MimABCD in acetone metabolism. Whole-cell assays were performed using Escherichia coli cells expressing the MimABCD complex. When the recombinant E. coli cells were incubated with acetone, a product was detected by gas chromatography (GC) analysis. Based on the retention time and the gas chromatography-mass spectrometry (GC-MS) spectrum, the reaction product was identified as acetol (hydroxyacetone). The recombinant E. coli cells produced 1.02 mM of acetol from acetone within 24 h. Furthermore, we demonstrated that MimABCD also was able to convert methylethylketone (2-butanone) to 1-hydroxy-2-butanone. Although it has long been known that microorganisms such as mycobacteria metabolize acetone via acetol, this study provides the first biochemical evidence for the existence of a microbial enzyme that catalyses the conversion of acetone to acetol. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. C. elegans flavin-containing monooxygenase-4 is essential for osmoregulation in hypotonic stress

    Directory of Open Access Journals (Sweden)

    Nisha Hirani

    2016-05-01

    Full Text Available Studies in Caenorhabditis elegans have revealed osmoregulatory systems engaged when worms experience hypertonic conditions, but less is known about measures employed when faced with hypotonic stress. Inactivation of fmo-4, which encodes flavin-containing monooxygenase-4, results in dramatic hypoosmotic hypersensitivity; worms are unable to prevent overwhelming water influx and swell rapidly, finally rupturing due to high internal hydrostatic pressure. fmo-4 is expressed prominently in hypodermis, duct and pore cells but is excluded from the excretory cell. Thus, FMO-4 plays a crucial osmoregulatory role by promoting clearance of excess water that enters during hypotonicity, perhaps by synthesizing an osmolyte that acts to establish an osmotic gradient from excretory cell to duct and pore cells. C. elegans FMO-4 contains a C-terminal extension conserved in all nematode FMO-4s. The coincidently numbered human FMO4 also contains an extended C-terminus with features similar to those of FMO-4. Although these shared sequence characteristics suggest potential orthology, human FMO4 was unable to rescue the fmo-4 osmoregulatory defect. Intriguingly, however, mammalian FMO4 is expressed predominantly in the kidney – an appropriate site if it too is, or once was, involved in osmoregulation.

  18. Evolutionary recruitment of a flavin-dependent monooxygenase for stabilization of sequestered pyrrolizidine alkaloids in arctiids.

    Science.gov (United States)

    Langel, Dorothee; Ober, Dietrich

    2011-09-01

    Pyrrolizidine alkaloids are secondary metabolites that are produced by certain plants as a chemical defense against herbivores. They represent a promising system to study the evolution of pathways in plant secondary metabolism. Recently, a specific gene of this pathway has been shown to have originated by duplication of a gene involved in primary metabolism followed by diversification and optimization for its specific function in the defense machinery of these plants. Furthermore, pyrrolizidine alkaloids are one of the best-studied examples of a plant defense system that has been recruited by several insect lineages for their own chemical defense. In each case, this recruitment requires sophisticated mechanisms of adaptations, e.g., efficient excretion, transport, suppression of toxification, or detoxification. In this review, we briefly summarize detoxification mechanism known for pyrrolizidine alkaloids and focus on pyrrolizidine alkaloid N-oxidation as one of the mechanisms allowing insects to accumulate the sequestered toxins in an inactivated protoxic form. Recent research into the evolution of pyrrolizidine alkaloid N-oxygenases of adapted arctiid moths (Lepidoptera) has shown that this enzyme originated by the duplication of a gene encoding a flavin-dependent monooxygenase of unknown function early in the arctiid lineage. The available data suggest several similarities in the molecular evolution of this adaptation strategy of insects to the mechanisms described previously for the evolution of the respective pathway in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    International Nuclear Information System (INIS)

    Rooney, D.C.; Kennedy, N.M.; Clipson, N.J.W.; Rooney, D.C.; Kennedy, N.M.; Gleeson, D.B.

    2010-01-01

    Agricultural improvement of semi natural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming) on ammonia-oxidising bacterial (AOB) communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaries and L. perenne) were planted in microcosms, and lime, nitrogen (NH 4 NO 3 ), or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP) of the amoA gene. AOB community structure was largely altered by NH 4 NO 3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure

  20. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific

    Science.gov (United States)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Oleynik, Sergey; Martens-Habbena, Willm; Devol, Allan H.; Ward, Bess B.

    2015-12-01

    Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.

  1. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    compounds these must first be undergo extracellular hydrolysis. Bacteria have a great diversity with respect to types of metabolism that far exceeds the metabolic repertoire of eukaryotic organisms. Bacteria play a fundamental role in the biosphere and certain key processes such as, for example......, the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  2. Bacterial Actins.

    Science.gov (United States)

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  3. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances.

    Science.gov (United States)

    Zhou, Xingang; Wang, Zhilin; Jia, Huiting; Li, Li; Wu, Fengzhi

    2018-01-01

    Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA) system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA , nirS , and nirK genes. Results showed that 1-2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity ( P < 0.05). Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile ( P < 0.001). At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria , Planctomycetes , and Cyanobacteria , the first cropping of JA with Actinobacteria , the second cropping of JA with Acidobacteria , Armatimonadetes , Gemmatimonadetes , and Proteobacteria . At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO terms

  4. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances

    Directory of Open Access Journals (Sweden)

    Xingang Zhou

    2018-04-01

    Full Text Available Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA, nirS, and nirK genes. Results showed that 1–2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity (P < 0.05. Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile (P < 0.001. At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria, Planctomycetes, and Cyanobacteria, the first cropping of JA with Actinobacteria, the second cropping of JA with Acidobacteria, Armatimonadetes, Gemmatimonadetes, and Proteobacteria. At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO

  5. Hepatic Flavin-Containing Monooxygenase 3 Enzyme Suppressed by Type 1 Allergy-Produced Nitric Oxide.

    Science.gov (United States)

    Tanino, Tadatoshi; Bando, Toru; Komada, Akira; Nojiri, Yukie; Okada, Yuna; Ueda, Yukari; Sakurai, Eiichi

    2017-11-01

    Flavin-containing monooxygenases (FMOs) are major mammalian non-cytochrome P450 oxidative enzymes. T helper 2 cell-activated allergic diseases produce excess levels of nitric oxide (NO) that modify the functions of proteins. However, it remains unclear whether allergy-induced NO affects the pharmacokinetics of drugs metabolized by FMOs. This study investigated alterations of hepatic microsomal FMO1 and FMO3 activities in type 1 allergic mice and further examined the interaction of FMO1 and FMO3 with allergy-induced NO. Imipramine (IMP; FMO1 substrate) N- oxidation activity was not altered in allergic mice with high serum NO and immunoglobulin E levels. At 7 days after primary sensitization (PS7) or secondary sensitization (SS7), benzydamine (BDZ; FMO1 and FMO3 substrate) N- oxygenation was significantly decreased to 70% of individual controls. The expression levels of FMO1 and FMO3 proteins were not significantly changed in the sensitized mice. Hepatic inducible NO synthase (iNOS) mRNA level increased 5-fold and 15-fold in PS7 and SS7 mice, respectively, and hepatic tumor necrosis factor- α levels were greatly enhanced. When a selective iNOS inhibitor was injected into allergic mice, serum NO levels and BDZ N- oxygenation activity returned to control levels. NO directly suppressed BDZ N- oxygenation, which was probably related to FMO3-dependent metabolism in comparison with IMP N- oxidation. In hepatic microsomes from PS7 and SS7 mice, the suppression of BDZ N- oxygenation was restored by ascorbate. Therefore, type 1 allergic mice had differentially suppressed FMO3-dependent BDZ N- oxygenation. The suppression of FMO3 metabolism related to reversible S- nitrosyl modifications of iNOS-derived NO. NO is expected to alter FMO3-metabolic capacity-limited drug pharmacokinetics in humans. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Flavin-containing monooxygenase S-oxygenation of a series of thioureas and thiones

    International Nuclear Information System (INIS)

    Henderson, Marilyn C.; Siddens, Lisbeth K.; Krueger, Sharon K.; Stevens, J. Fred; Kedzie, Karen; Fang, Wenkui K.; Heidelbaugh, Todd; Nguyen, Phong; Chow, Ken; Garst, Michael; Gil, Daniel; Williams, David E.

    2014-01-01

    Mammalian flavin-containing monooxygenase (FMO) is active towards many drugs with a heteroatom having the properties of a soft nucleophile. Thiocarbamides and thiones are S-oxygenated to the sulfenic acid which can either react with glutathione and initiate a redox-cycle or be oxygenated a second time to the unstable sulfinic acid. In this study, we utilized LC–MS/MS to demonstrate that the oxygenation by hFMO of the thioureas under test terminated at the sulfenic acid. With thiones, hFMO catalyzed the second reaction and the sulfinic acid rapidly lost sulfite to form the corresponding imidazole. Thioureas are often pulmonary toxicants in mammals and, as previously reported by our laboratory, are excellent substrates for hFMO2. This isoform is expressed at high levels in the lung of most mammals, including non-human primates. Genotyping to date indicates that individuals of African (up to 49%) or Hispanic (2–7%) ancestry have at least one allele for functional hFMO2 in lung, but not Caucasians nor Asians. In this study the major metabolite formed by hFMO2 with thioureas from Allergan, Inc. was the sulfenic acid that reacted with glutathione. The majority of thiones were poor substrates for hFMO3, the major form in adult human liver. However, hFMO1, the major isoform expressed in infant and neonatal liver and adult kidney and intestine, readily S-oxygenated thiones under test, with K m s ranging from 7 to 160 μM and turnover numbers of 30–40 min −1 . The product formed was identified by LC–MS/MS as the imidazole. The activities of the mouse and human FMO1 and FMO3 orthologs were in good agreement with the exception of some thiones for which activity was much greater with hFMO1 than mFMO1

  7. How pH Modulates the Reactivity and Selectivity of a Siderophore-Associated Flavin Monooxygenase

    Science.gov (United States)

    2015-01-01

    Flavin-containing monooxygenases (FMOs) catalyze the oxygenation of diverse organic molecules using O2, NADPH, and the flavin adenine dinucleotide (FAD) cofactor. The fungal FMO SidA initiates peptidic siderophore biosynthesis via the highly selective hydroxylation of l-ornithine, while the related amino acid l-lysine is a potent effector of reaction uncoupling to generate H2O2. We hypothesized that protonation states could critically influence both substrate-selective hydroxylation and H2O2 release, and therefore undertook a study of SidA’s pH-dependent reaction kinetics. Consistent with other FMOs that stabilize a C4a-OO(H) intermediate, SidA’s reductive half reaction is pH independent. The rate constant for the formation of the reactive C4a-OO(H) intermediate from reduced SidA and O2 is likewise independent of pH. However, the rate constants for C4a-OO(H) reactions, either to eliminate H2O2 or to hydroxylate l-Orn, were strongly pH-dependent and influenced by the nature of the bound amino acid. Solvent kinetic isotope effects of 6.6 ± 0.3 and 1.9 ± 0.2 were measured for the C4a-OOH/H2O2 conversion in the presence and absence of l-Lys, respectively. A model is proposed in which l-Lys accelerates H2O2 release via an acid–base mechanism and where side-chain position determines whether H2O2 or the hydroxylation product is observed. PMID:24490904

  8. Induction of liver monooxygenases by annatto and bixin in female rats

    Directory of Open Access Journals (Sweden)

    A.C.A.X. De-Oliveira

    2003-01-01

    Full Text Available Annatto or urucum is an orange-yellow dye obtained from Bixa orellana seeds. It has been used as a natural dye in a variety of food products, drugs and cosmetics, and also in Brazilian cuisine as a condiment ('colorau'. Bixin, a carotenoid devoid of provitamin A activity, is the main pigment found in annatto. Some carotenoids (canthaxanthin, astaxanthin and ß-Apo-8'-carotenal are known to be potent inducers of CYP1A1, a property not shared by others (ß-carotene, lycopene and lutein. Little is known, however, about the CYP1A1-inducing properties of bixin and annatto. The present study was performed to determine the effects of an annatto extract (28% bixin and bixin (95% pure on rat liver monooxygenases. Adult female Wistar rats were treated by gavage with daily doses of annatto (250 mg/kg body weight, which contains approximately 70 mg bixin/kg body weight, bixin (250 mg/kg body weight or the vehicle only (corn oil, 3.75 g/kg body weight for 5 consecutive days, or were not treated (untreated control. The activities of aniline-4-hydroxylase (A4H, ethoxycoumarin-O-deethylase (ECOD, ethoxy- (EROD, methoxy- (MROD, pentoxy- (PROD and benzyloxy- (BROD resorufin-O-dealkylases were measured in liver microsomes. Annatto (250 mg/kg containing 70 mg bixin/kg induced EROD (3.8x, MROD (4.2x, BROD (3.3x and PROD (2.4x. Bixin (250 mg/kg was a weaker inducer of EROD (2.7x, MROD (2.3x and BROD (1.9x and did not alter PROD, A4H or ECOD activities. These results suggest that constituents of the extract other than bixin play an important role in the induction of CYP1A and CYP2B observed with annatto food colorings.

  9. Kynurenine 3-monooxygenase is implicated in antidepressants-responsive depressive-like behaviors and monoaminergic dysfunctions.

    Science.gov (United States)

    Tashiro, Tomoyuki; Murakami, Yuki; Mouri, Akihiro; Imamura, Yukio; Nabeshima, Toshitaka; Yamamoto, Yasuko; Saito, Kuniaki

    2017-01-15

    l-Tryptophan (TRP) is metabolized via serotonin and kynurenine pathways (KP). Several studies have demonstrated that abnormality of both pathways is involved in the pathogenesis of major depressive disorder (MDD). Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the KP, has been suggested to play major roles in physiological and pathological events mediated by bioactive kynurenine metabolites. In this study, we investigated the role of KMO in the emotional and cognitive functions by using KMO knockout (KO) mice. We measured contents of TRP and monoamines and their metabolites in the serum and hippocampus of KMO KO mice. Further, we investigated whether antidepressants improved the depressive-like behaviors in KMO KO mice. KMO KO mice showed depressive-like behaviors such as decreased sucrose preference and increased immobility in the forced swimming test and high anxiety by decreased time spent in the center area of open field. But, there was no difference in spontaneous alternation in Y-maze test, counts of rearing or locomotor activity. Higher contents of TRP metabolites such as kynurenine (KYN), kynurenic acid (KA), anthranilic acid (AA), and 3-hydroxykynurenine (3-HK) in the serum and hippocampus and decreased serotonin turnover and higher content of normetanephrine (NM) in the hippocampus were observed in the KMO KO mice. Although both antidepressant attenuated increase of immobility, sertraline but not imipramine improved decrease of sucrose preference in the KMO KO mice. These findings suggested that KMO KO mice show antidepressants-responsive depressive-like behaviors and monoaminergic dysfunctions via abnormality of kynurenine metabolism with good validities as MDD model. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Pharmacological kynurenine 3-monooxygenase enzyme inhibition significantly reduces neuropathic pain in a rat model.

    Science.gov (United States)

    Rojewska, Ewelina; Piotrowska, Anna; Makuch, Wioletta; Przewlocka, Barbara; Mika, Joanna

    2016-03-01

    Recent studies have highlighted the involvement of the kynurenine pathway in the pathology of neurodegenerative diseases, but the role of this system in neuropathic pain requires further extensive research. Therefore, the aim of our study was to examine the role of kynurenine 3-monooxygenase (Kmo), an enzyme that is important in this pathway, in a rat model of neuropathy after chronic constriction injury (CCI) to the sciatic nerve. For the first time, we demonstrated that the injury-induced increase in the Kmo mRNA levels in the spinal cord and the dorsal root ganglia (DRG) was reduced by chronic administration of the microglial inhibitor minocycline and that this effect paralleled a decrease in the intensity of neuropathy. Further, minocycline administration alleviated the lipopolysaccharide (LPS)-induced upregulation of Kmo mRNA expression in microglial cell cultures. Moreover, we demonstrated that not only indirect inhibition of Kmo using minocycline but also direct inhibition using Kmo inhibitors (Ro61-6048 and JM6) decreased neuropathic pain intensity on the third and the seventh days after CCI. Chronic Ro61-6048 administration diminished the protein levels of IBA-1, IL-6, IL-1beta and NOS2 in the spinal cord and/or the DRG. Both Kmo inhibitors potentiated the analgesic properties of morphine. In summary, our data suggest that in neuropathic pain model, inhibiting Kmo function significantly reduces pain symptoms and enhances the effectiveness of morphine. The results of our studies show that the kynurenine pathway is an important mediator of neuropathic pain pathology and indicate that Kmo represents a novel pharmacological target for the treatment of neuropathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Kynurenine pathway metabolic balance influences microglia activity: Targeting kynurenine monooxygenase to dampen neuroinflammation.

    Science.gov (United States)

    Garrison, Allison M; Parrott, Jennifer M; Tuñon, Arnulfo; Delgado, Jennifer; Redus, Laney; O'Connor, Jason C

    2018-08-01

    Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP), and the generation of neuroactive kynurenine metabolites contributes to subsequent depressive-like behaviors. Microglia regulate KP balance by preferentially producing oxidative metabolites, including quinolinic acid. Research has focused on the interplay between cytokines and HPA axis-derived corticosteroids in regulating microglial activity and effects of KP metabolites directly on neurons; however, the potential role that KP metabolites have directly on microglial activity is unknown. Here, murine microglia were stimulated with lipopolysaccharide(LPS). After 6 h, mRNA expression of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α and inducible nitric oxide synthase(iNOS) was dose-dependently increased along with the rate-limiting enzymes for oxidative KP metabolism, indoleamine-2,3-dioxygenase(IDO)-1 and kynurenine 3-monooxygenase(KMO). By 24 h post-LPS, kynurenine and quinolinic acid in the media was elevated. Inhibiting KMO with Ro 61-8048 during LPS challenge attenuated extracellular nitrite accumulation and expression of KMO and TNF-α in response to LPS. Similarly, primary microglia isolated from KMO -/- mice exhibited a significantly reduced pro-inflammatory response to LPS compared to WT controls. To determine whether the substrate (kynurenine) or end product (quinolinic acid) of KMO-dependent metabolism modulates the LPS response, microglia were treated with increasing concentrations of L-kynurenine or quinolinic acid in combination with LPS or saline. Interestingly, quinolinic acid did not impact the microglial LPS response. However, L-kynurenine had dose-dependent inhibitory effect on the LPS response. These data are the first to show an anti-inflammatory effect of KMO inhibition on microglia during immune challenge and suggest that KP metabolic balance may play a direct role in regulating microglia activity. Published by Elsevier Ltd.

  12. Peripheral kynurenine-3-monooxygenase deficiency as a potential risk factor for metabolic syndrome in schizophrenia patients.

    Science.gov (United States)

    Oxenkrug, Gregory; van der Hart, Marieke; Roeser, Julien; Summergrad, Paul

    2017-01-01

    Increased predisposition of schizophrenia patients (SP) to development of obesity and insulin resistance suggested common signaling pathway between metabolic syndrome (MetS) and schizophrenia. Deficiency of kynurenine-3-monooxygenase (KMO), enzyme catalyzing formation of 3-hydroxykynurenine (3-HK) from kynurenine (Kyn), a tryptophan (Trp) metabolite, might contribute to development of MetS as suggested by non-expression of KMO genes in human fat tissue and elevated serum concentrations of Kyn and its metabolites, kynurenic (KYNA) and anthranilic (ANA) acids, in diabetic patients and Zucker fatty rats (ZFR). Markers of KMO deficiency: decreased 3-HK and elevated Kyn, KYNA and ANA, were observed in brains and spinal fluids of SP, and in brains and serum of experimental animals with genetically- or pharmacologically-induced KMO deficiency. However, elevated concentrations of ANA and decreased 3-HK were reported in serum of SP without concurrent increase of Kyn and KYNA. Present study aimed to re-assess serum Kyn metabolites (HPLC-MS) in a sub-group of SP with elevated KYNA. We found increased Kyn concentrations (by 30%) and Kyn:Trp ratio (by 20%) in serum of SP with elevated KYNA concentrations (by 40%). Obtained results and our previous data suggest that peripheral KMO deficiency might be manifested by, at least, two different patterns: elevated ANA with decreased 3-HK; and elevated KYNA and KYN. The latter pattern was previously described in type 2 diabetes patients and might underline increased predisposition of SP to development of MetS. Assessment of peripheral KMO deficiency might identify SP predisposed to MetS. Attenuation of the consequences of peripheral KMO deficiency might be a new target for prevention/treatment of obesity and diabetes in SP.

  13. Cloning, characterization and expression of OsFMO(t) in rice encoding a flavin monooxygenase.

    Science.gov (United States)

    Yi, Jicai; Liu, Lanna; Cao, Youpei; Li, Jiazuo; Mei, Mantong

    2013-12-01

    Flavin monooxygenases (FMO) play a key role in tryptophan (Trp)-dependent indole-acetic acid (IAA) biosynthesis in plants and regulate plant growth and development. In this study, the full-length genomic DNA and cDNA of OsFMO(t), a FMO gene that was originally identified from a rolled-leaf mutant in rice, was isolated and cloned from wild type of the rolled-leaf mutant. OsFMO(t) was found to have four exons and three introns, and encode a protein with 422 amino acid residues that contains two basic conserved motifs, with a 'GxGxxG' characteristic structure. OsFMO(t) showed high amino acid sequence identity with FMO proteins from other plants, in particular with YUCCA from Arabidopsis, FLOOZY from Petunia, and OsYUCCA1 from rice. Our phylogenetic analysis showed that OsFMO(t) and the homologous FMO proteins belong to the same clade in the evolutionary tree. Overexpression of OsFMO(t) in transformed rice calli produced IAA-excessive phenotypes that showed browning and lethal effects when exogenous auxins such as naphthylacetic acid (NAA) were added to the medium. These results suggested that the OsFMO(t) protein is involved in IAA biosynthesis in rice and its overexpression could lead to the malformation of calli. Spatio-temporal expression analysis using RT-PCR and histochemical analysis for GUS activity revealed that expression of OsFMO(t) was totally absent in the rolled-leaf mutant. However, in the wild type variety, this gene was expressed at different levels temporally and spatially, with the highest expression observed in tissues with fast growth and cell division such as shoot apexes, tender leaves and root tips. Our results demonstrated that IAA biosynthesis regulated by OsFMO(t) is likely localized and might play an essential role in shaping local IAA concentrations which, in turn, is critical for regulating normal growth and development in rice.

  14. Flavin-containing monooxygenase S-oxygenation of a series of thioureas and thiones

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Marilyn C.; Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331-7301 (United States); Krueger, Sharon K. [The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-7301 (United States); Stevens, J. Fred [The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-7301 (United States); College of Pharmacy, Oregon State University, Corvallis, OR 97331-7301 (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331-7301 (United States); Kedzie, Karen [Department of Biological Sciences, Allergan, Inc., Irvine, CA 92623-9534 (United States); Fang, Wenkui K.; Heidelbaugh, Todd; Nguyen, Phong; Chow, Ken; Garst, Michael [Department of Chemical Sciences, Allergan, Inc., Irvine, CA 92623-9534 (United States); Gil, Daniel [Department of Biological Sciences, Allergan, Inc., Irvine, CA 92623-9534 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331-7301 (United States); The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-7301 (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331-7301 (United States)

    2014-07-15

    Mammalian flavin-containing monooxygenase (FMO) is active towards many drugs with a heteroatom having the properties of a soft nucleophile. Thiocarbamides and thiones are S-oxygenated to the sulfenic acid which can either react with glutathione and initiate a redox-cycle or be oxygenated a second time to the unstable sulfinic acid. In this study, we utilized LC–MS/MS to demonstrate that the oxygenation by hFMO of the thioureas under test terminated at the sulfenic acid. With thiones, hFMO catalyzed the second reaction and the sulfinic acid rapidly lost sulfite to form the corresponding imidazole. Thioureas are often pulmonary toxicants in mammals and, as previously reported by our laboratory, are excellent substrates for hFMO2. This isoform is expressed at high levels in the lung of most mammals, including non-human primates. Genotyping to date indicates that individuals of African (up to 49%) or Hispanic (2–7%) ancestry have at least one allele for functional hFMO2 in lung, but not Caucasians nor Asians. In this study the major metabolite formed by hFMO2 with thioureas from Allergan, Inc. was the sulfenic acid that reacted with glutathione. The majority of thiones were poor substrates for hFMO3, the major form in adult human liver. However, hFMO1, the major isoform expressed in infant and neonatal liver and adult kidney and intestine, readily S-oxygenated thiones under test, with K{sub m}s ranging from 7 to 160 μM and turnover numbers of 30–40 min{sup −1}. The product formed was identified by LC–MS/MS as the imidazole. The activities of the mouse and human FMO1 and FMO3 orthologs were in good agreement with the exception of some thiones for which activity was much greater with hFMO1 than mFMO1.

  15. Characterization of alternate reductant binding and electron transfer in the dopamine β-monooxygenase reaction

    International Nuclear Information System (INIS)

    Stewart, L.C.; Klinman, J.P.

    1987-01-01

    The steady-state limiting kinetic parameters V/sub max/, V/K/sub DA/, and V/K/sub O 2 /, together with deuterium isotope effects on these parameters, have been determined for the dopamine β-monooxygenase (DβM) reaction in the presence of structurally distinct reductants. The results show the one-electron reductant ferrocyanide to be nearly as kinetically competent as the presumed in vivo reductant ascrobate. Further, a reductant system of ferricyanide plus substrate dopamine yields steady-state kinetic parameters and isotope effects very similar to those measured solely in the presence of ferrocyanide, indicating a role for catecholamine in the rapid recycling of oxidized ferrocyanide. Use of substrate dopamine as the sole reductant is found to lead to a highly unusual kinetic independence of oxygen concentration, as well as significantly reduced values of V/sub max/ and V/K/sub DA/, and the authors conclude that dopamine reduces enzymic copper in a rate-limiting step that is 40-fold slower than with ascorbate. The near-identical kinetic parameters measured in the presence of either ascorbate or ferrocyanide, together with markedly reduced rates with dopamine, are interpreted in terms of a binding site for reductant that is physically distinct from the substrate binding site. This view is supported by molecular modeling, which reveals ascorbate and ferrocyanide to possess an unexpected similarity in potential sites for interaction with enzymic residues. With regard to electron flux, identical values of V/K/sub O 2 / have been measured with [2,2- 2 H 2 ]dopamine as substrate both in the presence and in the absence of added ascorbate. This key result unambiguously rules out an entry of electrons to enzyme forms leading from the enzyme-dopamine complex to enzyme-bound product and, hence, reaction mechanisms involving a reductive activation of the putative Cu(II)-OOH prior to substrate hydroxylation

  16. N-terminus determines activity and specificity of styrene monooxygenase reductases.

    Science.gov (United States)

    Heine, Thomas; Scholtissek, Anika; Westphal, Adrie H; van Berkel, Willem J H; Tischler, Dirk

    2017-12-01

    Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH 2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s -1 , one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Flavin-containing monooxygenase 3 (FMO3) role in busulphan metabolic pathway

    Science.gov (United States)

    Terelius, Ylva; Abedi-Valugerdi, Manuchehr; Naughton, Seán; Saghafian, Maryam; Moshfegh, Ali; Mattsson, Jonas; Potácová, Zuzana; Hassan, Moustapha

    2017-01-01

    Busulphan (Bu) is an alkylating agent used in the conditioning regimen prior to hematopoietic stem cell transplantation (HSCT). Bu is extensively metabolized in the liver via conjugations with glutathione to form the intermediate metabolite (sulfonium ion) which subsequently is degraded to tetrahydrothiophene (THT). THT was reported to be oxidized forming THT-1-oxide that is further oxidized to sulfolane and finally 3-hydroxysulfolane. However, the underlying mechanisms for the formation of these metabolites remain poorly understood. In the present study, we performed in vitro and in vivo investigations to elucidate the involvement of flavin-containing monooxygenase-3 (FMO3) and cytochrome P450 enzymes (CYPs) in Bu metabolic pathway. Rapid clearance of THT was observed when incubated with human liver microsomes. Furthermore, among different recombinant microsomal enzymes, the highest intrinsic clearance for THT was obtained via FMO3 followed by several CYPs including 2B6, 2C8, 2C9, 2C19, 2E1 and 3A4. In Bu- or THT-treated mice, inhibition of FMO3 by phenylthiourea significantly suppressed the clearance of both Bu and THT. Moreover, the simultaneous administration of a high dose of THT (200μmol/kg) to Bu-treated mice reduced the clearance of Bu. Consistently, in patients undergoing HSCT, repeated administration of Bu resulted in a significant up-regulation of FMO3 and glutathione-S-transfrase -1 (GSTA1) genes. Finally, in a Bu-treated patient, additional treatment with voriconazole (an antimycotic drug known as an FMO3-substrate) significantly altered the Bu clearance. In conclusion, we demonstrate for the first time that FMO3 along with CYPs contribute a major part in busulphan metabolic pathway and certainly can affect its kinetics. The present results have high clinical impact. Furthermore, these findings might be important for reducing the treatment-related toxicity of Bu, through avoiding interaction with other concomitant used drugs during conditioning and

  18. Independent recruitment of a flavin-dependent monooxygenase for safe accumulation of sequestered pyrrolizidine alkaloids in grasshoppers and moths.

    Directory of Open Access Journals (Sweden)

    Linzhu Wang

    Full Text Available Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide, enabling the insects to avoid high concentrations of toxic pyrrolizidine alkaloids in the hemolymph. We have identified a pyrrolizidine alkaloid N-oxygenase, which is a flavin-dependent monooxygenase, of the grasshopper Zonocerus variegatus. After heterologous expression in E. coli, this enzyme shows high specificity for pyrrolizidine alkaloids of various structural types and for the tropane alkaloid atropine as substrates, a property that has been described previously for a pyrrolizidine alkaloid N-oxygenase of the arctiid moth Grammia geneura. Phylogenetic analyses of insect flavin-dependent monooxygenase sequences suggest that independent gene duplication events preceded the establishment of this specific enzyme in the lineages of the grasshoppers and of arctiid moths. Two further flavin-dependent monooxygenase sequences have been identified from Z. variegatus sharing amino acid identities of approximately 78% to the pyrrolizidine alkaloid N-oxygenase. After heterologous expression, both enzymes are also able to catalyze the N-oxygenation of pyrrolizidine alkaloids, albeit with a 400-fold lower specific activity. With respect to the high sequence identity between the three Z. variegatus sequences this ability to N-oxygenize pyrrolizidine alkaloids is interpreted as a relict of a former bifunctional ancestor gene of which one of the gene copies optimized this activity for the specific adaptation to pyrrolizidine alkaloid containing food plants.

  19. Identification of the intermediates of in vivo oxidation of 1 ,4-dioxane by monooxygenase-containing bacteria.

    Science.gov (United States)

    Mahendra, Shaily; Petzold, Christopher J; Baidoo, Edward E; Keasling, Jay D; Alvarez-Cohen, Lisa

    2007-11-01

    1,4-dioxane is a probable human carcinogen and an emerging water contaminant. Monooxygenase-expressing bacteria have been shown to degrade dioxane via growth-supporting as well as cometabolic mechanisms. In this study, the intermediates of dioxane degradation by monooxygenase-expressing bacteria were determined by triple quadrupole-mass spectrometry and Fourier transform ion cyclotron resonance-mass spectrometry. The major intermediates were identified as 2-hydroxyethoxyacetic acid (HEAA), ethylene glycol, glycolate, and oxalate. Studies with uniformly labeled 14C dioxane showed that over 50% of the dioxane was mineralized to CO2 by CB1190, while 5% became biomass-associated after 48 h. Volatile organic acids and non-volatiles, respectively, accounted for 20 and 11% of the radiolabeled carbon. Although strains cometabolizing dioxane exhibited limited transformation capacities, nearly half of the initial dioxane was recovered as CO2. On the basis of these analytical results, we propose a pathway for dioxane oxidation by monooxygenase-expressing cells in which dioxane is first converted to 2-hydroxy-1,4-dioxane, which is spontaneously oxidized to HEAA. During a second monooxygenation step, HEAA is further hydroxylated, resulting in a mixture of dihydroxyethoxyacetic acids with a hydroxyl group at the ortho or para position. After cleavage of the second ether bond, small organic molecules such as ethylene glycol, glycolate, glyoxalate, and oxalate are progressively formed, which are then mineralized to CO2 via common cellular metabolic pathways. Bioremediation of dioxane via this pathway is not expected to cause an accumulation of toxic compounds in the environment.

  20. Ligand complex structures of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 and its conformational change.

    Science.gov (United States)

    Im, Dohyun; Matsui, Daisuke; Arakawa, Takatoshi; Isobe, Kimiyasu; Asano, Yasuhisa; Fushinobu, Shinya

    2018-03-01

    l-Amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 (l-AAO/MOG) catalyzes both the oxidative deamination and oxidative decarboxylation of the α-group of l-Lys to produce a keto acid and amide, respectively. l-AAO/MOG exhibits limited specificity for l-amino acid substrates with a basic side chain. We previously determined its ligand-free crystal structure and identified a key residue for maintaining the dual activities. Here, we determined the structures of l-AAO/MOG complexed with l-Lys, l-ornithine, and l-Arg and revealed its substrate recognition. Asp238 is located at the ceiling of a long hydrophobic pocket and forms a strong interaction with the terminal, positively charged group of the substrates. A mutational analysis on the D238A mutant indicated that the interaction is critical for substrate binding but not for catalytic control between the oxidase/monooxygenase activities. The catalytic activities of the D238E mutant unexpectedly increased, while the D238F mutant exhibited altered substrate specificity to long hydrophobic substrates. In the ligand-free structure, there are two channels connecting the active site and solvent, and a short region located at the dimer interface is disordered. In the l-Lys complex structure, a loop region is displaced to plug the channels. Moreover, the disordered region in the ligand-free structure forms a short helix in the substrate complex structures and creates the second binding site for the substrate. It is assumed that the amino acid substrate enters the active site of l-AAO/MOG through this route. The atomic coordinates and structure factors (codes 5YB6, 5YB7, and 5YB8) have been deposited in the Protein Data Bank (http://wwpdb.org/). 1.4.3.2 (l-amino acid oxidase), 1.13.12.2 (lysine 2-monooxygenase).

  1. Independent recruitment of a flavin-dependent monooxygenase for safe accumulation of sequestered pyrrolizidine alkaloids in grasshoppers and moths.

    Science.gov (United States)

    Wang, Linzhu; Beuerle, Till; Timbilla, James; Ober, Dietrich

    2012-01-01

    Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide, enabling the insects to avoid high concentrations of toxic pyrrolizidine alkaloids in the hemolymph. We have identified a pyrrolizidine alkaloid N-oxygenase, which is a flavin-dependent monooxygenase, of the grasshopper Zonocerus variegatus. After heterologous expression in E. coli, this enzyme shows high specificity for pyrrolizidine alkaloids of various structural types and for the tropane alkaloid atropine as substrates, a property that has been described previously for a pyrrolizidine alkaloid N-oxygenase of the arctiid moth Grammia geneura. Phylogenetic analyses of insect flavin-dependent monooxygenase sequences suggest that independent gene duplication events preceded the establishment of this specific enzyme in the lineages of the grasshoppers and of arctiid moths. Two further flavin-dependent monooxygenase sequences have been identified from Z. variegatus sharing amino acid identities of approximately 78% to the pyrrolizidine alkaloid N-oxygenase. After heterologous expression, both enzymes are also able to catalyze the N-oxygenation of pyrrolizidine alkaloids, albeit with a 400-fold lower specific activity. With respect to the high sequence identity between the three Z. variegatus sequences this ability to N-oxygenize pyrrolizidine alkaloids is interpreted as a relict of a former bifunctional ancestor gene of which one of the gene copies optimized this activity for the specific adaptation to pyrrolizidine alkaloid containing food plants.

  2. Development of a Series of Kynurenine 3-Monooxygenase Inhibitors Leading to a Clinical Candidate for the Treatment of Acute Pancreatitis.

    Science.gov (United States)

    Walker, Ann L; Ancellin, Nicolas; Beaufils, Benjamin; Bergeal, Marylise; Binnie, Margaret; Bouillot, Anne; Clapham, David; Denis, Alexis; Haslam, Carl P; Holmes, Duncan S; Hutchinson, Jonathan P; Liddle, John; McBride, Andrew; Mirguet, Olivier; Mowat, Christopher G; Rowland, Paul; Tiberghien, Nathalie; Trottet, Lionel; Uings, Iain; Webster, Scott P; Zheng, Xiaozhong; Mole, Damian J

    2017-04-27

    Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington's disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development.

  3. Development of a series of aryl pyrimidine kynurenine monooxygenase inhibitors as potential therapeutic agents for the treatment of Huntington's disease.

    Science.gov (United States)

    Toledo-Sherman, Leticia M; Prime, Michael E; Mrzljak, Ladislav; Beconi, Maria G; Beresford, Alan; Brookfield, Frederick A; Brown, Christopher J; Cardaun, Isabell; Courtney, Stephen M; Dijkman, Ulrike; Hamelin-Flegg, Estelle; Johnson, Peter D; Kempf, Valerie; Lyons, Kathy; Matthews, Kimberly; Mitchell, William L; O'Connell, Catherine; Pena, Paula; Powell, Kendall; Rassoulpour, Arash; Reed, Laura; Reindl, Wolfgang; Selvaratnam, Suganathan; Friley, Weslyn Ward; Weddell, Derek A; Went, Naomi E; Wheelan, Patricia; Winkler, Christin; Winkler, Dirk; Wityak, John; Yarnold, Christopher J; Yates, Dawn; Munoz-Sanjuan, Ignacio; Dominguez, Celia

    2015-02-12

    We report on the development of a series of pyrimidine carboxylic acids that are potent and selective inhibitors of kynurenine monooxygenase and competitive for kynurenine. We describe the SAR for this novel series and report on their inhibition of KMO activity in biochemical and cellular assays and their selectivity against other kynurenine pathway enzymes. We describe the optimization process that led to the identification of a program lead compound with a suitable ADME/PK profile for therapeutic development. We demonstrate that systemic inhibition of KMO in vivo with this lead compound provides pharmacodynamic evidence for modulation of kynurenine pathway metabolites both in the periphery and in the central nervous system.

  4. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene

    OpenAIRE

    Cankar, K.; Houwelingen, van, A.M.M.L.; Bosch, H.J.; Sonke, Th.; Bouwmeester, H.J.; Beekwilder, M.J.

    2011-01-01

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-tr...

  5. LKM-1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P-450 monooxygenase.

    OpenAIRE

    Manns, M P; Griffin, K J; Sullivan, K F; Johnson, E F

    1991-01-01

    LKM-1 autoantibodies, which are associated with autoimmune chronic active hepatitis, recognize P450IID6, a cytochrome P-450 monooxygenase. The reactivities of 26 LKM-1 antisera were tested with a panel of deletion mutants of P450IID6 expressed in Escherichia coli. 22 sera recognize a 33-amino acid segment of P450IID6, and 11 of these recognize a shorter segment, DPAQPPRD. PAQPPR is also found in IE175 of herpes simplex virus type 1 (HSV-1). Antibodies for HSV-1 proteins were detected by ELISA...

  6. Differential Reactivity between Two Copper Sites in Peptidylglycine r-Hydroxylating Monooxygenase

    Energy Technology Data Exchange (ETDEWEB)

    E Chufan; S Prigge; X Siebert; B Eipper; R Mains; L Amzel

    2011-12-31

    Peptidylglycine {alpha}-hydroxylating monooxygenase (PHM) catalyzes the stereospecific hydroxylation of the C{alpha} of C-terminal glycine-extended peptides and proteins, the first step in the activation of many peptide hormones, growth factors, and neurotransmitters. The crystal structure of the enzyme revealed two nonequivalent Cu sites (Cu{sub M} and Cu{sub H}) separated by {approx}11 {angstrom}. In the resting state of the enzyme, Cu{sub M} is coordinated in a distorted tetrahedral geometry by one methionine, two histidines, and a water molecule. The coordination site of the water molecule is the position where external ligands bind. The Cu{sub H} has a planar T-shaped geometry with three histidines residues and a vacant position that could potentially be occupied by a fourth ligand. Although the catalytic mechanism of PHM and the role of the metals are still being debated, Cu{sub M} is identified as the metal involved in catalysis, while Cu{sub H} is associated with electron transfer. To further probe the role of the metals, we studied how small molecules such as nitrite (NO{sub 2}{sup -}), azide (N{sub 3}{sup -}), and carbon monoxide (CO) interact with the PHM copper ions. The crystal structure of an oxidized nitrite-soaked PHMcc, obtained by soaking for 20 h in mother liquor supplemented with 300 mM NaNO{sub 2}, shows that nitrite anion coordinates Cu{sub M} in an asymmetric bidentate fashion. Surprisingly, nitrite does not bind Cu{sub H}, despite the high concentration used in the experiments (nitrite/protein > 1000). Similarly, azide and carbon monoxide coordinate Cu{sub M} but not Cu{sub H} in the PHMcc crystal structures obtained by cocrystallization with 40 mM NaN{sub 3} and by soaking CO under 3 atm of pressure for 30 min. This lack of reactivity at the Cu{sub H} is also observed in the reduced form of the enzyme: CO binds Cu{sub M} but not Cu{sub H} in the structure of PHMcc obtained by exposure of a crystal to 3 atm CO for 15 min in the presence of 5

  7. Structure and Mechanism of Styrene Monooxygenase Reductase: New Insight into the FAD–Transfer Reaction†

    Science.gov (United States)

    Morrison, Eliot; Kantz, Auric; Gassner, George T.; Sazinsky, Matthew H.

    2013-01-01

    The two–component flavoprotein styrene monooxygenase (SMO) from Pseudomonas putida S12 catalyzes the NADH– and FAD–dependent epoxidation of styrene to styrene oxide. In this study we investigate the mechanism of flavin reduction and transfer from the reductase (SMOB) to epoxidase (NSMOA) component and report our findings in light of the 2.2–Å crystal structure of SMOB. Upon rapidly mixing with NADH, SMOB forms an NADH→FADox charge–transfer intermediate and catalyzes a hydride–transfer reaction from NADH to FAD, with a rate constant of 49.1 ± 1.4 s−1, in a step that is coupled to the rapid dissociation of NAD+. Electrochemical and equilibrium–binding studies indicate that NSMOA binds FADhq ~13–times more tightly than SMOB, which supports a vectoral transfer of FADhq from the reductase to the epoxidase. After binding to NSMOA, FADhq rapidly reacts with molecular oxygen to form a stable C(4a)–hydroperoxide intermediate. The half–life of apoSMOB generated in the FAD–transfer reaction is increased ~21–fold, supporting the model of a protein–protein interaction between apoSMOB and NSMOA with the peroxide intermediate. The mechanisms of FAD–dissociation and transport from SMOB to NSMOA were probed by monitoring the competitive reduction of cytochrome c in the presence and absence of pyridine nucleotides. Based on these studies, we propose a model in which reduced FAD binds to SMOB in equilibrium between an unreactive, sequestered state (S–state) and more reactive, transfer state (T–state). Dissociation of NAD+ after the hydride transfer–reaction transiently populates the T–state, promoting the transfer of FADhq to NSMOA. The binding of pyridine nucleotides to SMOB–FADhq shifts the FADhq–binding equilibrium from the T–state to the S–state. Additionally, the 2.2–Å crystal structure of SMOB–FADox reported in this work is discussed in light of the pyridine nucleotide–gated flavin–transfer and electron

  8. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes.

    Science.gov (United States)

    Pierce, Brian C; Agger, Jane Wittrup; Zhang, Zhenghong; Wichmann, Jesper; Meyer, Anne S

    2017-09-08

    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes capable of the oxidative breakdown of polysaccharides. They are of industrial interest due to their ability to enhance the enzymatic depolymerization of recalcitrant substrates by glycoside hydrolases. In this paper, twenty-four lytic polysaccharide monooxygenases (LPMOs) expressed in Trichoderma reesei were evaluated for their ability to oxidize the complex polysaccharides in soybean spent flakes, an abundant and industrially relevant substrate. TrCel61A, a soy-polysaccharide-active AA9 LPMO from T. reesei, was used as a benchmark in this evaluation. In total, seven LPMOs demonstrated activity on pretreated soy spent flakes, with the products from enzymatic treatments evaluated using mass spectrometry and high performance anion exchange chromatography. The hydrolytic boosting effect of the top-performing enzymes was evaluated in combination with endoglucanase and beta-glucosidase. Two enzymes (TrCel61A and Aspte6) showed the ability to release more than 36% of the pretreated soy spent flake glucose - a greater than 75% increase over the same treatment without LPMO addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1.

    Science.gov (United States)

    Ryu, Ji-Young; Seo, Jiyoung; Unno, Tatsuya; Ahn, Joong-Hoon; Yan, Tao; Sadowsky, Michael J; Hur, Hor-Gil

    2010-03-01

    The plant-derived phenylpropanoids eugenol and isoeugenol have been proposed as useful precursors for the production of natural vanillin. Genes involved in the metabolism of eugenol and isoeugenol were clustered in region of about a 30 kb of Pseudomonas nitroreducens Jin1. Two of the 23 ORFs in this region, ORFs 26 (iemR) and 27 (iem), were predicted to be involved in the conversion of isoeugenol to vanillin. The deduced amino acid sequence of isoeugenol monooxygenase (Iem) of strain Jin1 had 81.4% identity to isoeugenol monooxygenase from Pseudomonas putida IE27, which also transforms isoeugenol to vanillin. Iem was expressed in E. coli BL21(DE3) and was found to lead to isoeugenol to vanillin transformation. Deletion and cloning analyses indicated that the gene iemR, located upstream of iem, is required for expression of iem in the presence of isoeugenol, suggesting it to be the iem regulatory gene. Reverse transcription, real-time PCR analyses indicated that the genes involved in the metabolism of eugenol and isoeugenol were differently induced by isoeugenol, eugenol, and vanillin.

  10. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Paspaliari, Dafni Katerina; Loose, Jennifer S. M.; Larsen, Marianne Halberg

    2015-01-01

    Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and ChiB) and a ......Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and Chi...... but different product profiles depending on the substrate. In LPMO-chitinase synergy experiments, CBP21 is able to boost the activity of both ChiA and ChiB more than LmLPMO10. Product analysis of the synergy assays revealed that the chitinases were unable to efficiently hydrolyse the LPMO products...... (chitooligosaccharide aldonic acids) with a degree of polymerization below four (ChiA and SmChiC) or three (ChiB). Gene transcription and protein expression analysis showed that LmLPMO10 is neither highly transcribed, nor abundantly secreted during the growth of L. monocytogenes in a chitin-containing medium...

  11. EXPRESSION OF BRANCHIAL FLAVIN-CONTAINING MONOOXYGENASE IS DIRECTLY CORRELATED WITH SALINITY-INDUCED ALDICARB TOXICITY IN THE EURYHALINE FISH (ORYZIAS LATIPES). (R826109)

    Science.gov (United States)

    AbstractEarlier studies in our laboratory have demonstrated a reduction of flavin-containing monooxygenase (FMO) activity when salt-water adapted euryhaline fish were transferred to water of less salinity. Since FMOs have been shown to be responsible for the bioact...

  12. Daily fluctuation of hepatic P450 monooxygenase activities in male rats is controlled by the suprachiasmatic nucleus but remains unaffected by adrenal hormones.

    Science.gov (United States)

    Furukawa, T; Manabe, S; Watanabe, T; Sehata, S; Sharyo, S; Okada, T; Mori, Y

    1999-09-01

    Hepatic P450 monooxygenase activities, which strongly influence the efficacy and/or toxicity of drugs, are known to fluctuate daily. We also know that the P450 activities assessed by measurement of 7-alkoxycoumarin O-dealkylase (ACD) activities fluctuate daily, with apparently high values during the dark period in male rats. However, there is little knowledge about the factors that regulate daily fluctuation of P450 monooxygenase activities. In the present study using rats, we induced lesions in the suprachiasmatic nucleus (SCN) of the brain, the known site of the body's internal clock, and examined the effects on the daily fluctuation of the ACD activities to clarify the relationship between the SCN and the daily fluctuation of P450 monooxygenase activities. In addition, adrenalectomy was performed to re-evaluate the influence of adrenal hormones on the P450 activities. Our results indicated that daily fluctuations of the hepatic ACD activities were completely eliminated in the SCN-lesioned rats. However, the ACD activities in the adrenalectomized rats showed apparent daily fluctuations with high values during the dark period and low values during the light period. Therefore, this study demonstrated that the daily fluctuation of the hepatic P450 monooxygenase activities in male rats is controlled by the SCN but remains unaffected by the adrenal hormones.

  13. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase.

    Science.gov (United States)

    Pierce, Brian C; Agger, Jane Wittrup; Wichmann, Jesper; Meyer, Anne S

    2017-03-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of substrates, including both soy spent flake, a by-product of the soy food industry, and soy spent flake pretreated with sodium hydroxide. Products from enzymatic treatments were analyzed using mass spectrometry and high performance anion exchange chromatography. We demonstrate that TrCel61A is capable of oxidizing cellulose from both pretreated soy spent flake and phosphoric acid swollen cellulose, oxidizing at both the C1 and C4 positions. In addition, we show that the oxidative activity of TrCel61A displays a synergistic effect capable of boosting endoglucanase activity, and thereby substrate depolymerization of soy cellulose, by 27%. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Development of a Rapid Fluorescence-Based High-Throughput Screening Assay to Identify Novel Kynurenine 3-Monooxygenase Inhibitor Scaffolds.

    Science.gov (United States)

    Jacobs, K R; Guillemin, G J; Lovejoy, D B

    2018-02-01

    Kynurenine 3-monooxygenase (KMO) is a well-validated therapeutic target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Huntington's disease (HD). This work reports a facile fluorescence-based KMO assay optimized for high-throughput screening (HTS) that achieves a throughput approximately 20-fold higher than the fastest KMO assay currently reported. The screen was run with excellent performance (average Z' value of 0.80) from 110,000 compounds across 341 plates and exceeded all statistical parameters used to describe a robust HTS assay. A subset of molecules was selected for validation by ultra-high-performance liquid chromatography, resulting in the confirmation of a novel hit with an IC 50 comparable to that of the well-described KMO inhibitor Ro-61-8048. A medicinal chemistry program is currently underway to further develop our novel KMO inhibitor scaffolds.

  15. Mammalian peptidylglycine alpha-amidating monooxygenase (PAM) mRNA expression can be modulated by the La autoantigen

    DEFF Research Database (Denmark)

    Brenet, Fabienne; Dussault, Nadège; Borch, Jonas

    2005-01-01

    Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the COOH-terminal alpha-amidation of peptidylglycine substrates, yielding amidated products. We have previously reported a putative regulatory RNA binding protein (PAM mRNA-BP) that binds specifically to the 3' untranslated...... region (UTR) of PAM-mRNA. Here, the PAM mRNA-BP was isolated and revealed to be La protein using affinity purification onto a 3' UTR PAM RNA, followed by tandem mass spectrometry identification. We determined that the core binding sequence is approximately 15-nucleotides (nt) long and is located 471 nt...... downstream of the stop codon. Moreover, we identified the La autoantigen as a protein that specifically binds the 3' UTR of PAM mRNA in vivo and in vitro. Furthermore, La protein overexpression caused a nuclear retention of PAM mRNAs and resulted in the down-regulation of endogenous PAM activity. Most...

  16. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene.

    Science.gov (United States)

    Cankar, Katarina; van Houwelingen, Adèle; Bosch, Dirk; Sonke, Theo; Bouwmeester, Harro; Beekwilder, Jules

    2011-01-03

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-trien-12-oic acid, indicating its involvement in chicory sesquiterpene lactone biosynthesis. Likewise, amorpha-4,11-diene was converted to artemisinic acid. Surprisingly, the chicory P450 has a different regio-specificity on (+)-valencene compared to germacrene A and amorpha-4,11-diene. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Rebecca C. Schugar

    2017-06-01

    Full Text Available Emerging evidence suggests that microbes resident in the human intestine represent a key environmental factor contributing to obesity-associated disorders. Here, we demonstrate that the gut microbiota-initiated trimethylamine N-oxide (TMAO-generating pathway is linked to obesity and energy metabolism. In multiple clinical cohorts, systemic levels of TMAO were observed to strongly associate with type 2 diabetes. In addition, circulating TMAO levels were associated with obesity traits in the different inbred strains represented in the Hybrid Mouse Diversity Panel. Further, antisense oligonucleotide-mediated knockdown or genetic deletion of the TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3 conferred protection against obesity in mice. Complimentary mouse and human studies indicate a negative regulatory role for FMO3 in the beiging of white adipose tissue. Collectively, our studies reveal a link between the TMAO-producing enzyme FMO3 and obesity and the beiging of white adipose tissue.

  18. Characterization of the peptidylglycine α-amidating monooxygenase (PAM) from the venom ducts of neogastropods, Conus bullatus and Conus geographus.

    Science.gov (United States)

    Ul-Hasan, Sabah; Burgess, Daniel M; Gajewiak, Joanna; Li, Qing; Hu, Hao; Yandell, Mark; Olivera, Baldomero M; Bandyopadhyay, Pradip K

    2013-11-01

    Cone snails, genus Conus, are predatory marine snails that use venom to capture their prey. This venom contains a diverse array of peptide toxins, known as conotoxins, which undergo a diverse set of posttranslational modifications. Amidating enzymes modify peptides and proteins containing a C-terminal glycine residue, resulting in loss of the glycine residue and amidation of the preceding residue. A significant fraction of peptides present in the venom of cone snails contain C-terminal amidated residues, which are important for optimizing biological activity. This study describes the characterization of the amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM), present in the venom duct of cone snails, Conus bullatus and Conus geographus. PAM is known to carry out two functions, peptidyl α-hydroxylating monooxygenase (PHM) and peptidylamido-glycolate lyase (PAL). In some animals, such as Drosophila melanogaster, these two functions are present in separate polypeptides, working as individual enzymes. In other animals, such as mammals and in Aplysia californica, PAM activity resides in a single, bifunctional polypeptide. Using specific oligonucleotide primers and reverse transcription-polymerase chain reaction we have identified and cloned from the venom duct cDNA library, a cDNA with 49% homology to PAM from A. californica. We have determined that both the PHM and PAL activities are encoded in one mRNA polynucleotide in both C. bullatus and C. geographus. We have directly demonstrated enzymatic activity catalyzing the conversion of dansyl-YVG-COOH to dansyl-YV-NH2 in cloned cDNA expressed in Drosophila S2 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b.

    Science.gov (United States)

    Farhan Ul-Haque, Muhammad; Kalidass, Bhagyalakshmi; Vorobev, Alexey; Baral, Bipin S; DiSpirito, Alan A; Semrau, Jeremy D

    2015-04-01

    Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 μM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin "piracy" may be commonplace. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. VpStyA1/VpStyA2B of Variovorax paradoxus EPS: An Aryl Alkyl Sulfoxidase Rather than a Styrene Epoxidizing Monooxygenase

    Directory of Open Access Journals (Sweden)

    Dirk Tischler

    2018-04-01

    Full Text Available Herein we describe the first representative of an E2-type two-component styrene monooxygenase of proteobacteria. It comprises a single epoxidase protein (VpStyA1 and a two domain protein (VpStyA2B harboring an epoxidase (A2 and a FAD-reductase (B domain. It was annotated as VpStyA1/VpStyA2B of Variovorax paradoxus EPS. VpStyA2B serves mainly as NADH:FAD-oxidoreductase. A Km of 33.6 ± 4.0 µM for FAD and a kcat of 22.3 ± 1.1 s−1 were determined and resulted in a catalytic efficiency (kcat Km−1 of 0.64 s−1 μM−1. To investigate its NADH:FAD-oxidoreductase function the linker between A2- and B-domain (AREAV was mutated. One mutant (AAAAA showed 18.7-fold higher affinity for FAD (kcat Km−1 of 5.21 s−1 μM−1 while keeping wildtype NADH-affinity and -oxidation activity. Both components, VpStyA2B and VpStyA1, showed monooxygenase activity on styrene of 0.14 U mg−1 and 0.46 U mg−1, as well as on benzyl methyl sulfide of 1.62 U mg−1 and 3.11 U mg−1, respectively. The high sulfoxidase activity was the reason to test several thioanisole-like substrates in biotransformations. VpStyA1 showed high substrate conversions (up to 95% in 2 h and produced dominantly (S-enantiomeric sulfoxides of all tested substrates. The AAAAA-mutant showed a 1.6-fold increased monooxygenase activity. In comparison, the GQWCSQY-mutant did neither show monooxygenase nor efficient FAD-reductase activity. Hence, the linker between the two domains of VpStyA2B has effects on the reductase as well as on the monooxygenase performance. Overall, this monooxygenase represents a promising candidate for biocatalyst development and studying natural fusion proteins.

  1. Bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  2. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  3. A STRUCTURAL OVERVIEW OF GH61 PROTEINS – FUNGAL CELLULOSE DEGRADING POLYSACCHARIDE MONOOXYGENASES

    Directory of Open Access Journals (Sweden)

    Leila Lo Leggio

    2012-09-01

    Full Text Available Recent years have witnessed a spurt of activities in the elucidation of the molecular function of a class of proteins with great potential in biomass degradation. GH61 proteins are of fungal origin and were originally classified in family 61 of the glycoside hydrolases. From the beginning they were strongly suspected to be involved in cellulose degradation because of their expression profiles, despite very low detectable endoglucanase activities. A major breakthrough came from structure determination of the first members, establishing the presence of a divalent metal binding site and a similarity to bacterial proteins involved in chitin degradation. A second breakthrough came from the identification of cellulase boosting activity dependent on the integrity of the metal binding site. Finally very recently GH61 proteins were demonstrated to oxidatively cleave crystalline cellulose in a Cu and reductant dependant manner. This mini-review in particular focuses on the contribution that structure elucidation has made in the understanding of GH61 molecular function and reviews the currently known structures and the challenges remaining ahead for exploiting this new class of enzymes to the full.

  4. A structural overview of GH61 proteins – fungal cellulose degrading polysaccharide monooxygenases

    Directory of Open Access Journals (Sweden)

    Leila Lo Leggio

    2012-09-01

    Full Text Available Recent years have witnessed a spurt of activities in the elucidation of the molecular function of a class of proteins with great potential in biomass degradation. GH61 proteins are of fungal origin and were originally classified in family 61 of the glycoside hydrolases. From the beginning they were strongly suspected to be involved in cellulose degradation because of their expression profiles, despite very low detectable endoglucanase activities. A major breakthrough came from structure determination of the first members, establishing the presence of a divalent metal binding site and a similarity to bacterial proteins involved in chitin degradation. A second breakthrough came from the identification of cellulase boosting activity dependent on the integrity of the metal binding site. Finally very recently GH61 proteins were demonstrated to oxidatively cleave crystalline cellulose in a Cu and reductant dependant manner. This mini-review in particular focuses on the contribution that structure elucidation has made in the understanding of GH61 molecular function and reviews the currently known structures and the challenges remaining ahead for exploiting this new class of enzymes to the full.

  5. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  6. Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth.

    Science.gov (United States)

    Martín Del Campo, Julia S; Vogelaar, Nancy; Tolani, Karishma; Kizjakina, Karina; Harich, Kim; Sobrado, Pablo

    2016-11-18

    Aspergillus fumigatus is an opportunistic fungal pathogen and the most common causative agent of fatal invasive mycoses. The flavin-dependent monooxygenase siderophore A (SidA) catalyzes the oxygen and NADPH dependent hydroxylation of l-ornithine (l-Orn) to N 5 -l-hydroxyornithine in the biosynthetic pathway of hydroxamate-containing siderophores in A. fumigatus. Deletion of the gene that codes for SidA has shown that it is essential in establishing infection in mice models. Here, a fluorescence polarization high-throughput assay was used to screen a 2320 compound library for inhibitors of SidA. Celastrol, a natural quinone methide, was identified as a noncompetitive inhibitor of SidA with a MIC value of 2 μM. Docking experiments suggest that celastrol binds across the NADPH and l-Orn pocket. Celastrol prevents A. fumigatus growth in blood agar. The addition of purified ferric-siderophore abolished the inhibitory effect of celastrol. Thus, celastrol inhibits A. fumigatus growth by blocking siderophore biosynthesis through SidA inhibiton.

  7. Sparteine monooxygenase in brain and liver: Identified by the dopamine uptake blocker [3H]GBR-12935

    International Nuclear Information System (INIS)

    Kalow, W.; Tyndale, R.F.; Niznik, H.B.; Inaba, T.

    1990-01-01

    P450IID6 (human sparteine monooxygenase) metabolizes many drugs including neuroleptics, antidepressants, and beta-blockers. The P450IID6 exists in human, bovine, rat and canine brains, but in very low quantities causing methodological difficulties in its assessment. Work with [ 3 H]GBR-12935; 1-[2-(diphenylmethoxy) ethyl]-4-(3-phenyl propyl) piperazine has shown that it binds a neuronal/hepatic protein with high affinity (∼7nM) and a rank order of inhibitory potency suggesting that the binding protein is cytochrome P450IID6. The binding was used to predict that d-amphetamine and methamphetamine would interact with P450IID6. Inhibition studies indicated that these compounds were competitive inhibitors of P450IID6. Haloperidol (HAL) and it's metabolite hydroxy-haloperidol (RHAL) are both competitive inhibitors of P450IID6 activity and were found to inhibit [ 3 H]GBR-12935 binding. K i values of twelve compounds (known to interact with the DA transporter or P450IID6) for [ 3 H]GRB-12935 binding and P450IID6 activity. The techniques are now available for measurements of cytochrome P450IID6 in healthy and diseased brain/liver tissue using radio-receptor binding assay techniques with [ 3 H]GBR-12935

  8. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Heterologous Expression of the ema1 Cytochrome P450 Monooxygenase

    Science.gov (United States)

    Molnár, István; Hill, D. Steven; Zirkle, Ross; Hammer, Philip E.; Gross, Frank; Buckel, Thomas G.; Jungmann, Volker; Pachlatko, Johannes Paul; Ligon, James M.

    2005-01-01

    The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1. PMID:16269733

  9. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance.

    Science.gov (United States)

    Liu, Simu; Bartnikas, Lisa M; Volko, Sigrid M; Ausubel, Frederick M; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  10. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Lao, Shu-Hua; Huang, Xiao-Hui; Huang, Hai-Jian; Liu, Cheng-Wen; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2015-11-01

    The cytochrome P450 monooxygenase (P450) gene family is one of the most abundant eukaryotic gene families that encode detoxification enzymes. In this study, we identified an abundance of P450 gene repertoire through genome- and transcriptome-wide analysis in the brown planthopper (Nilaparvata lugens), the most destructive rice pest in Asia. Detailed gene information including the exon-intron organization, size, transcription orientation and distribution in the genome revealed that many P450 loci were closely situated on the same scaffold, indicating frequent occurrence of gene duplications. Insecticide-response expression profiling revealed that imidacloprid significantly increased NlCYP6CS1v2, NLCYP4CE1v2, NlCYP4DE1, NlCYP417A1v2 and NlCYP439A1 expression; while triazophos and deltamethrin notably enhanced NlCYP303A1 expression. Expression analysis at the developmental stage showed the egg-, nymph-, male- and female-specific expression patterns of N. lugens P450 genes. These novel findings will be helpful for clarifying the P450 functions in physiological processes including development, reproduction and insecticide resistance in this insect species. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    Science.gov (United States)

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  12. Monooxygenase system in Guerin’s carcinoma of rats under conditions of ω-3 polyunsaturated fatty acids administration

    Directory of Open Access Journals (Sweden)

    M. M. Marchenko

    2016-08-01

    Full Text Available The aim of the study was to determine the variations of function in components of monooxygenase system (MOS of rat Guerin’s carcinoma under ω-3 polyunsaturated fatty acids (PUFAs administration. The activity of Guerin’s carcinoma microsomal NADH-cytochrome b5 reductase, the content and the rate of cytochrome b5 oxidation-reduction, the content and the rate of cytochrome Р450 oxidation-reduction have been investigated in rats with tumor under conditions of ω-3 PUFAs administration. ω-3 PUFAs supplementation before and after transplantation of Guerin’s carcinoma resulted in the increase of NADH-cytochrome b5 reductase activity and decrease of cytochrome b5 level in the Guerin’s carcinoma microsomal fraction in the logarithmic phases of carcinogenesis as compared to the tumor-bearing rats. Increased activity of NADH-cytochrome b5 reductase facilitates higher electron flow in redox-chain of MOS. Under decreased cytochrome b5 levels the electrons are transferred to oxygen, which leads to heightened generation of superoxide (O2•- in comparison to control. It was shown, that the decrease of cytochrome P450 level in the Guerin’s carcinoma microsomal fraction in the logarithmic phases of oncogenesis under ω-3 PUFAs administration may be associated with its transition into an inactive form – cytochrome P420. This decrease in cytochrome P450 coincides with increased generation of superoxide by MOS oxygenase chain.

  13. Importance of kynurenine 3-monooxygenase for spontaneous firing and pharmacological responses of midbrain dopamine neurons: Relevance for schizophrenia.

    Science.gov (United States)

    Tufvesson-Alm, Maximilian; Schwieler, Lilly; Schwarcz, Robert; Goiny, Michel; Erhardt, Sophie; Engberg, Göran

    2018-06-05

    Kynurenine 3-monooxygenase (KMO) is an essential enzyme of the kynurenine pathway, converting kynurenine into 3-hydroxykynurenine. Inhibition of KMO increases kynurenine, resulting in elevated levels of kynurenic acid (KYNA), an endogenous N-methyl-d-aspartate and α*7-nicotinic receptor antagonist. The concentration of KYNA is elevated in the brain of patients with schizophrenia, possibly as a result of a reduced KMO activity. In the present study, using in vivo single cell recording techniques, we investigated the electrophysiological characteristics of ventral tegmental area dopamine (VTA DA) neurons and their response to antipsychotic drugs in a KMO knock-out (K/O) mouse model. KMO K/O mice exhibited a marked increase in spontaneous VTA DA neuron activity as compared to wild-type (WT) mice. Furthermore, VTA DA neurons showed clear-cut, yet qualitatively opposite, responses to the antipsychotic drugs haloperidol and clozapine in the two genotypes. The anti-inflammatory drug parecoxib successfully lowered the firing activity of VTA DA neurons in KMO K/O, but not in WT mice. Minocycline, an antibiotic and anti-inflammatory drug, produced no effect in this regard. Taken together, the present data further support the usefulness of KMO K/O mice for studying distinct aspects of the pathophysiology and pharmacological treatment of psychiatric disorders such as schizophrenia. Copyright © 2018. Published by Elsevier Ltd.

  14. Kynurenine 3-monooxygenase mediates inhibition of Th17 differentiation via catabolism of endogenous aryl hydrocarbon receptor ligands.

    Science.gov (United States)

    Stephens, Geoffrey L; Wang, Qun; Swerdlow, Bonnie; Bhat, Geetha; Kolbeck, Roland; Fung, Michael

    2013-07-01

    The aryl hydrocarbon receptor (AhR) is a key transcriptional regulator of Th17-cell differentiation. Although endogenous ligands have yet to be identified, evidence suggests that tryptophan metabolites can act as agonists for the AhR. Tryptophan metabolites are abundant in circulation, so we hypothesized that cell intrinsic factors might exist to regulate the exposure of Th17 cells to AhR-dependent activities. Here, we find that Th17 cells preferentially express kynurenine 3-monooxygenase (KMO), which is an enzyme involved in catabolism of the tryptophan metabolite kynurenine. KMO inhibition, either with a specific inhibitor or via siRNA-mediated silencing, markedly increased IL-17 production in vitro, whereas IFN-γ production by Th1 cells was unaffected. Inhibition of KMO significantly exacerbated disease in a Th17-driven model of autoimmune gastritis, suggesting that expression of KMO by Th17 cells serves to limit their continuous exposure to physiological levels of endogenous AhR ligands in vivo. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Targeted deletion of kynurenine 3-monooxygenase in mice: a new tool for studying kynurenine pathway metabolism in periphery and brain.

    Science.gov (United States)

    Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V; Notarangelo, Francesca M; Thomas, Marian A R; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J

    2013-12-20

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo(-/-) mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo(-/-) mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo(-/-) mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD(+), did not differ between Kmo(-/-) and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo(-/-) mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo(-/-) mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.

  16. Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback.

    Science.gov (United States)

    Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J

    2016-04-14

    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress.

  17. Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma.

    Science.gov (United States)

    Jin, Haojie; Zhang, Yurong; You, Haiyan; Tao, Xuemei; Wang, Cun; Jin, Guangzhi; Wang, Ning; Ruan, Haoyu; Gu, Dishui; Huo, Xisong; Cong, Wenming; Qin, Wenxin

    2015-06-23

    Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the kynurenine pathway of tryptophan degradation and plays a critical role in Huntington's and Alzheimer's diseases. This study aimed to examine the expression of KMO in human hepatocellular carcinoma (HCC) and investigate the relationship between its expression and prognosis of HCC patients. We first analyzed KMO expression in 120 paired HCC samples (HCC tissues vs matched adjacent non-cancerous liver tissues), and 205 clinical HCC specimens using immunohistochemistry (IHC). Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of HCC. The results of IHC analysis showed that KMO expression was significantly higher in HCC tissues than that in normal liver tissues (all p KMO was an independent prognostic factor for overall survival (OS) and time to recurrence (TTR) (both pKMO positively regulated proliferation, migration, and invasion of HCC cells. These results suggest that KMO exhibits tumor-promoting effects towards HCC and it may serve as a novel prognostic marker in HCC.

  18. Coenzyme Q Biosynthesis: Evidence for a Substrate Access Channel in the FAD-Dependent Monooxygenase Coq6.

    Directory of Open Access Journals (Sweden)

    Alexandre Ismail

    2016-01-01

    Full Text Available Coq6 is an enzyme involved in the biosynthesis of coenzyme Q, a polyisoprenylated benzoquinone lipid essential to the function of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, this putative flavin-dependent monooxygenase is proposed to hydroxylate the benzene ring of coenzyme Q (ubiquinone precursor at position C5. We show here through biochemical studies that Coq6 is a flavoprotein using FAD as a cofactor. Homology models of the Coq6-FAD complex are constructed and studied through molecular dynamics and substrate docking calculations of 3-hexaprenyl-4-hydroxyphenol (4-HP6, a bulky hydrophobic model substrate. We identify a putative access channel for Coq6 in a wild type model and propose in silico mutations positioned at its entrance capable of partially (G248R and L382E single mutations or completely (a G248R-L382E double-mutation blocking access to the channel for the substrate. Further in vivo assays support the computational predictions, thus explaining the decreased activities or inactivation of the mutated enzymes. This work provides the first detailed structural information of an important and highly conserved enzyme of ubiquinone biosynthesis.

  19. Mutation of the glucosinolate biosynthesis enzyme cytochrome P450 83A1 monooxygenase increases camalexin accumulation and powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Simu eLiu

    2016-03-01

    Full Text Available Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1, which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  20. Impact of redox-stratification on the diversity and distribution of bacterial communities in sandy reef sediments in a microcosm

    Institute of Scientific and Technical Information of China (English)

    GAO Zheng; WANG Xin; Angelos K. HANNIDES; Francis J. SANSONE; WANG Guangyi

    2011-01-01

    Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry.Although biogeochemical redox stratification has been well documented in marine sediments,its impact on microbial communities remains largely unknown.In this study,we applied denaturing gradient gel electrophoresis (DGGE) and clone library construction to investigate the diversity and stratification of bacterial communities in redox-stratified sandy reef sediments in a microcosm.A total of 88 Operational Taxonomic Units (OTU) were identified from 16S rRNA clone libraries constructed from sandy reef sediments in a laboratory microcosm.They were members of nine phyla and three candidate divisions,including Proteobacteria (Alpha-,Beta-,Gamma-,Delta-,and Epsilonproteobacteria),Actinobacteria,Acidobacteria,Bacteroidetes,Chloroflexi,Cyanobacteria,Firmicutes,Verrucomicrobia,Spirochaetes,and the candidate divisions WS3,SO31 and AO19.The vast majority of these phylotypes are related to clone sequences from other marine sediments,but OTUs of Epsilonproteobacteria and WS3 are reported for the first time from permeable marine sediments.Several other OTUs are potential new bacterial phylotypes because of their low similarity with reference sequences.Results from the 16S rRNA,gene clone sequence analyses suggested that bacterial communities exhibit clear stratification across large redox gradients in these sediments,with the highest diversity found in the anoxic layer (15-25 mm) and the least diversity in the suboxic layer (3-5 mm).Analysis of the nosZ,and amoA gene libraries also indicated the stratification of denitrifiers and nitrifiers,with their highest diversity being in the anoxic and oxic sediment layers,respectively.These results indicated that redox-stratification can affect the distribution of bacterial communities in sandy reef sediments.

  1. Postviral Complications: Bacterial Pneumonia.

    Science.gov (United States)

    Prasso, Jason E; Deng, Jane C

    2017-03-01

    Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies. Published by Elsevier Inc.

  2. Bacterial vaginosis - aftercare

    Science.gov (United States)

    Bacterial vaginosis (BV) is a type of vaginal infection. The vagina normally contains both healthy bacteria and unhealthy bacteria. BV occurs when more unhealthy bacteria grow than healthy bacteria. No one knows ...

  3. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  4. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  5. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    direct or indirect evidence of a compatible bacterial pathogen. Inflammation may be .... cardinal features (fever, confusion, headache and neck stiffness). .... specificity, inappropriate indications or poor sampling technique may diminish this ...

  6. High-throughput analysis of ammonia oxidiser community composition via a novel, amoA-based functional gene array.

    Directory of Open Access Journals (Sweden)

    Guy C J Abell

    Full Text Available Advances in microbial ecology research are more often than not limited by the capabilities of available methodologies. Aerobic autotrophic nitrification is one of the most important and well studied microbiological processes in terrestrial and aquatic ecosystems. We have developed and validated a microbial diagnostic microarray based on the ammonia-monooxygenase subunit A (amoA gene, enabling the in-depth analysis of the community structure of bacterial and archaeal ammonia oxidisers. The amoA microarray has been successfully applied to analyse nitrifier diversity in marine, estuarine, soil and wastewater treatment plant environments. The microarray has moderate costs for labour and consumables and enables the analysis of hundreds of environmental DNA or RNA samples per week per person. The array has been thoroughly validated with a range of individual and complex targets (amoA clones and environmental samples, respectively, combined with parallel analysis using traditional sequencing methods. The moderate cost and high throughput of the microarray makes it possible to adequately address broader questions of the ecology of microbial ammonia oxidation requiring high sample numbers and high resolution of the community composition.

  7. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice.

    Science.gov (United States)

    Luo, Anding; Qian, Qian; Yin, Hengfu; Liu, Xiaoqiang; Yin, Changxi; Lan, Ying; Tang, Jiuyou; Tang, Zuoshun; Cao, Shouyun; Wang, Xiujie; Xia, Kai; Fu, Xiangdong; Luo, Da; Chu, Chengcai

    2006-02-01

    Elongation of rice internodes is one of the most important agronomic traits, which determines the plant height and underlies the grain yield. It has been shown that the elongation of internodes is under genetic control, and various factors are implicated in the process. Here, we report a detailed characterization of an elongated uppermost internode1 (eui1) mutant, which has been used in hybrid rice breeding. In the eui1-2 mutant, the cell lengths in the uppermost internodes are significantly longer than that of wild type and thus give rise to the elongated uppermost internode. It was found that the level of active gibberellin was elevated in the mutant, whereas its growth in response to gibberellin is similar to that of the wild type, suggesting that the higher level accumulation of gibberellin in the eui1 mutant causes the abnormal elongation of the uppermost internode. Consistently, the expression levels of several genes which encode gibberellin biosynthesis enzymes were altered. We cloned the EUI1 gene, which encodes a putative cytochrome P450 monooxygenase, by map-based cloning and found that EUI1 was weakly expressed in most tissues, but preferentially in young panicles. To confirm its function, transgenic experiments with different constructs of EUI1 were conducted. Overexpression of EUI1 gave rise to the gibberellin-deficient-like phenotypes, which could be partially reversed by supplementation with gibberellin. Furthermore, apart from the alteration of expression levels of the gibberellin biosynthesis genes, accumulation of SLR1 protein was found in the overexpressing transgenic plants, indicating that the expression level of EUI1 is implicated in both gibberellin-mediated SLR1 destruction and a feedback regulation in gibberellin biosynthesis. Therefore, we proposed that EUI1 plays a negative role in gibberellin-mediated regulation of cell elongation in the uppermost internode of rice.

  8. Possible Peroxo State of the Dicopper Site of Particulate Methane Monooxygenase from Combined Quantum Mechanics and Molecular Mechanics Calculations.

    Science.gov (United States)

    Itoyama, Shuhei; Doitomi, Kazuki; Kamachi, Takashi; Shiota, Yoshihito; Yoshizawa, Kazunari

    2016-03-21

    Enzymatic methane hydroxylation is proposed to efficiently occur at the dinuclear copper site of particulate methane monooxygenase (pMMO), which is an integral membrane metalloenzyme in methanotrophic bacteria. The resting state and a possible peroxo state of the dicopper active site of pMMO are discussed by using combined quantum mechanics and molecular mechanics calculations on the basis of reported X-ray crystal structures of the resting state of pMMO by Rosenzweig and co-workers. The dicopper site has a unique structure, in which one copper is coordinated by two histidine imidazoles and another is chelated by a histidine imidazole and primary amine of an N-terminal histidine. The resting state of the dicopper site is assignable to the mixed-valent Cu(I)Cu(II) state from a computed Cu-Cu distance of 2.62 Å from calculations at the B3LYP-D/TZVP level of theory. A μ-η(2):η(2)-peroxo-Cu(II)2 structure similar to those of hemocyanin and tyrosinase is reasonably obtained by using the resting state structure and dioxygen. Computed Cu-Cu and O-O distances are 3.63 and 1.46 Å, respectively, in the open-shell singlet state. Structural features of the dicopper peroxo species of pMMO are compared with those of hemocyanin and tyrosinase and synthetic dicopper model compounds. Optical features of the μ-η(2):η(2)-peroxo-Cu(II)2 state are calculated and analyzed with TD-DFT calculations.

  9. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus.

    Science.gov (United States)

    Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs

    2015-02-01

    Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.

    Science.gov (United States)

    Robinson, Reeder; Franceschini, Stefano; Fedkenheuer, Michael; Rodriguez, Pedro J; Ellerbrock, Jacob; Romero, Elvira; Echandi, Maria Paulina; Martin Del Campo, Julia S; Sobrado, Pablo

    2014-04-01

    Siderophore A (SidA) is a flavin-dependent monooxygenase that catalyzes the NAD(P)H- and oxygen-dependent hydroxylation of ornithine in the biosynthesis of siderophores in Aspergillus fumigatus and is essential for virulence. SidA can utilize both NADPH or NADH for activity; however, the enzyme is selective for NADPH. Structural analysis shows that R279 interacts with the 2'-phosphate of NADPH. To probe the role of electrostatic interactions in coenzyme selectivity, R279 was mutated to both an alanine and a glutamate. The mutant proteins were active but highly uncoupled, oxidizing NADPH and producing hydrogen peroxide instead of hydroxylated ornithine. For wtSidA, the catalytic efficiency was 6-fold higher with NADPH as compared to NADH. For the R279A mutant the catalytic efficiency was the same with both coenyzmes, while for the R279E mutant the catalytic efficiency was 5-fold higher with NADH. The effects are mainly due to an increase in the KD values, as no major changes on the kcat or flavin reduction values were observed. Thus, the absence of a positive charge leads to no coenzyme selectivity while introduction of a negative charge leads to preference for NADH. Flavin fluorescence studies suggest altered interaction between the flavin and NADP⁺ in the mutant enzymes. The effects are caused by different binding modes of the coenzyme upon removal of the positive charge at position 279, as no major conformational changes were observed in the structure for R279A. The results indicate that the positive charge at position 279 is critical for tight binding of NADPH and efficient hydroxylation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa.

    Science.gov (United States)

    Dunfield, Peter F; Belova, Svetlana E; Vorob'ev, Alexey V; Cornish, Sabrina L; Dedysh, Svetlana N

    2010-11-01

    An aerobic, methanotrophic bacterium, designated KYG(T), was isolated from a forest soil in Germany. Cells of strain KYG(T) were Gram-negative, non-motile, slightly curved rods that multiplied by binary fission and produced yellow colonies. The cells contained intracellular granules of poly-β-hydroxybutyrate at each cell pole, a particulate methane monooxygenase (pMMO) and stacks of intracytoplasmic membranes (ICMs) packed in parallel along one side of the cell envelope. Strain KYG(T) grew at pH 5.2-7.2 and 2-33 °C and could fix atmospheric nitrogen under reduced oxygen tension. The major cellular fatty acid was C(18 : 1)ω7c (81.5 %) and the DNA G+C content was 61.4 mol%. Strain KYG(T) belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and was most closely related to the obligate methanotroph Methylocapsa acidiphila B2(T) (98.1 % 16S rRNA gene sequence similarity and 84.7 % pmoA sequence similarity). Unlike Methylocapsa acidiphila B2(T), which grows only on methane and methanol, strain KYG(T) was able to grow facultatively on acetate. Facultative acetate utilization is a characteristic of the methanotrophs of the genus Methylocella, but the genus Methylocella does not produce pMMO or ICMs. Strain KYG(T) differed from Methylocapsa acidiphila B2(T) on the basis of substrate utilization pattern, pigmentation, pH range, cell ultrastructure and efficiency of dinitrogen fixation. Therefore, we propose a novel species, Methylocapsa aurea sp. nov., to accommodate this bacterium. The type strain is KYG(T) (=DSM 22158(T) =VKM B-2544(T)).

  12. A cytochrome P450 monooxygenase commonly used for negative selection in transgenic plants causes growth anomalies by disrupting brassinosteroid signaling

    Directory of Open Access Journals (Sweden)

    Manivasagam Sindhu

    2011-04-01

    Full Text Available Abstract Background Cytochrome P450 monooxygenases form a large superfamily of enzymes that catalyze diverse reactions. The P450SU1 gene from the soil bacteria Streptomyces griseolus encodes CYP105A1 which acts on various substrates including sulfonylurea herbicides, vitamin D, coumarins, and based on the work presented here, brassinosteroids. P450SU1 is used as a negative-selection marker in plants because CYP105A1 converts the relatively benign sulfonyl urea pro-herbicide R7402 into a highly phytotoxic product. Consistent with its use for negative selection, transgenic Arabidopsis plants were generated with P450SU1 situated between recognition sequences for FLP recombinase from yeast to select for recombinase-mediated excision. However, unexpected and prominent developmental aberrations resembling those described for mutants defective in brassinosteroid signaling were observed in many of the lines. Results The phenotypes of the most affected lines included severe stunting, leaf curling, darkened leaves characteristic of anthocyanin accumulation, delayed transition to flowering, low pollen and seed yields, and delayed senescence. Phenotype severity correlated with P450SU1 transcript abundance, but not with transcript abundance of other experimental genes, strongly implicating CYP105A1 as responsible for the defects. Germination and seedling growth of transgenic and control lines in the presence and absence of 24-epibrassinolide indicated that CYP105A1 disrupts brassinosteroid signaling, most likely by inactivating brassinosteroids. Conclusions Despite prior use of this gene as a genetic tool, deleterious growth in the absence of R7402 has not been elaborated. We show that this gene can cause aberrant growth by disrupting brassinosteroid signaling and affecting homeostasis.

  13. An Investigation into the Prediction of in Vivo Clearance for a Range of Flavin-containing Monooxygenase Substrates.

    Science.gov (United States)

    Jones, Barry C; Srivastava, Abhishek; Colclough, Nicola; Wilson, Joanne; Reddy, Venkatesh Pilla; Amberntsson, Sara; Li, Danxi

    2017-10-01

    Flavin-containing monooxygenases (FMO) are metabolic enzymes mediating the oxygenation of nucleophilic atoms such as nitrogen, sulfur, phosphorus, and selenium. These enzymes share similar properties to the cytochrome P450 system but can be differentiated through heat inactivation and selective substrate inhibition by methimazole. This study investigated 10 compounds with varying degrees of FMO involvement to determine the nature of the correlation between human in vitro and in vivo unbound intrinsic clearance. To confirm and quantify the extent of FMO involvement six of the compounds were investigated in human liver microsomal (HLM) in vitro assays using heat inactivation and methimazole substrate inhibition. Under these conditions FMO contribution varied from 21% (imipramine) to 96% (itopride). Human hepatocyte and HLM intrinsic clearance (CL int ) data were scaled using standard methods to determine the predicted unbound intrinsic clearance (predicted CL int u ) for each compound. This was compared with observed unbound intrinsic clearance (observed CL int u ) values back calculated from human pharmacokinetic studies. A good correlation was observed between the predicted and observed CL int u using hepatocytes ( R 2 = 0.69), with 8 of the 10 compounds investigated within or close to a factor of 2. For HLM the in vitro-in vivo correlation was maintained ( R 2 = 0.84) but the accuracy was reduced with only 3 out of 10 compounds falling within, or close to, twofold. This study demonstrates that human hepatocytes and HLM can be used with standard scaling approaches to predict the human in vivo clearance for FMO substrates. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  14. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2018-05-01

    Full Text Available A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea. A novel pathogenicity-related gene BcKMO, which encodes kynurenine 3-monooxygenase (KMO, was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO-complementing mutant (BCG183/BcKMO were similar to those of the wild-type (WT strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/BcKMO. Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H2O2, and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP and mitogen-activated protein kinase (MAPK signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1, Pka2, PkaR, Bcg2, Bcg3, bmp1, and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea. Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea.

  15. Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes.

    Science.gov (United States)

    Wonodi, Ikwunga; Stine, O Colin; Sathyasaikumar, Korrapati V; Roberts, Rosalinda C; Mitchell, Braxton D; Hong, L Elliot; Kajii, Yasushi; Thaker, Gunvant K; Schwarcz, Robert

    2011-07-01

    Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan degradation, is an antagonist at N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors and modulates glutamate, dopamine, and acetylcholine signaling. Cortical kynurenic acid concentrations are elevated in the brain and cerebrospinal fluid of schizophrenia patients. The proximal cause may be an impairment of kynurenine 3-monooxygenase (KMO), a rate-limiting enzyme at the branching point of the kynurenine pathway. To examine KMO messenger RNA expression and KMO enzyme activity in postmortem tissue from the frontal eye field (FEF; Brodmann area 6) obtained from schizophrenia individuals compared with healthy control individuals and to explore the relationship between KMO single-nucleotide polymorphisms and schizophrenia oculomotor endophenotypes. Case-control postmortem and clinical study. Maryland Brain Collection, outpatient clinics. Postmortem specimens from schizophrenia patients (n = 32) and control donors (n = 32) and a clinical sample of schizophrenia patients (n = 248) and healthy controls (n = 228). Comparison of quantitative KMO messenger RNA expression and KMO enzyme activity in postmortem FEF tissue between schizophrenia patients and controls and association of KMO single-nucleotide polymorphisms with messenger RNA expression in postmortem FEF and schizophrenia and oculomotor endophenotypes (ie, smooth pursuit eye movements and oculomotor delayed response). In postmortem tissue, we found a significant and correlated reduction in KMO gene expression and KMO enzyme activity in the FEF in schizophrenia patients. In the clinical sample, KMO rs2275163 was not associated with a diagnosis of schizophrenia but showed modest effects on predictive pursuit and visuospatial working memory endophenotypes. Our results provide converging lines of evidence implicating reduced KMO activity in the etiopathophysiology of schizophrenia and related neurocognitive deficits.

  16. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea.

    Science.gov (United States)

    Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao

    2018-01-01

    A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea . A novel pathogenicity-related gene BcKMO , which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO -complementing mutant (BCG183/ BcKMO ) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/ BcKMO . Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H 2 O 2 , and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1 , Pka2 , PkaR , Bcg2 , Bcg3 , bmp1 , and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea . Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea .

  17. Genetic variants of the kynurenine-3-monooxygenase and postpartum depressive symptoms after cesarean section in Chinese women.

    Science.gov (United States)

    Wang, Sai-Ying; Duan, Kai-Ming; Tan, Xiao-Fang; Yin, Ji-Ye; Mao, Xiao-Yuan; Zheng, Wei; Wang, Chun-Yan; Yang, Mi; Peng, Cheng; Zhou, Hong-Hao; Liu, Zhao-Qian

    2017-06-01

    New conceptualizations of depression have emphasized the role of the kynurenine pathway (KP) in the pathogenesis of postpartum depressive symptoms (PDS). Kynurenine 3-monooxygenase (KMO) is a rate-limiting enzyme of the KP, where it catalyzes the conversion of kynurenine (KYN) to 3-hydroxykynurenine (3-HK). Previous work indicates that KMO is closely linked to the pathophysiology of depressive disorders. The purpose of this study is to investigate whether variations in the KMO gene affect PDS development after cesarean section. A total of 710 Chinese women receiving cesarean section were enrolled in this study. PDS was determined by an Edinburgh Postnatal Depression Scale (EPDS) score ≥13. Subsequently, 24 women with PDS and 48 matched women without PDS were randomly selected for investigation of perinatal serum concentrations of KYN, 3-HK and the 3-HK/KYN ratio. The 3-HK/KYN ratio indicates the activity of KMO. In addition, 6 single nucleotide polymorphisms of the KMO gene were examined. Following this genotyping, 36 puerperant women carrying the KMO rs1053230 AG genotype and 72 matched puerperant women carrying the KMO rs1053230 GG genotype were selected for comparisons of KYN, 3-HK and 3-HK/KYN ratio levels. The results show the incidence of PDS in the Chinese population to be 7.3%, with PDS characterized by increased serum 3-HK concentration and 3-HK/KYN ratio, versus matched postpartum women without PDS (PKMO rs1053230 are significantly associated with the incidence of PDS (PKMO rs1053230 AG genotype are significantly higher than those in matched postpartum women carrying the KMO rs1053230 GG genotype. The presented data highlight the contribution of alterations in the KP to the pathogenesis of postpartum depression. Heightened KMO activity, including as arising from KMO rs1053230 G/A genetic variations, are indicated as one possible mechanism driving the biological underpinnings of PDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. CD and MCD studies of the effects of component B variant binding on the biferrous active site of methane monooxygenase.

    Science.gov (United States)

    Mitić, Natasa; Schwartz, Jennifer K; Brazeau, Brian J; Lipscomb, John D; Solomon, Edward I

    2008-08-12

    The multicomponent soluble form of methane monooxygenase (sMMO) catalyzes the oxidation of methane through the activation of O 2 at a nonheme biferrous center in the hydroxylase component, MMOH. Reactivity is limited without binding of the sMMO effector protein, MMOB. Past studies show that mutations of specific MMOB surface residues cause large changes in the rates of individual steps in the MMOH reaction cycle. To define the structural and mechanistic bases for these observations, CD, MCD, and VTVH MCD spectroscopies coupled with ligand-field (LF) calculations are used to elucidate changes occurring near and at the MMOH biferrous cluster upon binding of MMOB and the MMOB variants. Perturbations to both the CD and MCD are observed upon binding wild-type MMOB and the MMOB variant that similarly increases O 2 reactivity. MMOB variants that do not greatly increase O 2 reactivity fail to cause one or both of these changes. LF calculations indicate that reorientation of the terminal glutamate on Fe2 reproduces the spectral perturbations in MCD. Although this structural change allows O 2 to bridge the diiron site and shifts the redox active orbitals for good overlap, it is not sufficient for enhanced O 2 reactivity of the enzyme. Binding of the T111Y-MMOB variant to MMOH induces the MCD, but not CD changes, and causes only a small increase in reactivity. Thus, both the geometric rearrangement at Fe2 (observed in MCD) coupled with a more global conformational change that may control O 2 access (probed by CD), induced by MMOB binding, are critical factors in the reactivity of sMMO.

  19. Development of LC/MS/MS, high-throughput enzymatic and cellular assays for the characterization of compounds that inhibit kynurenine monooxygenase (KMO).

    Science.gov (United States)

    Winkler, Dirk; Beconi, Maria; Toledo-Sherman, Leticia M; Prime, Michael; Ebneth, Andreas; Dominguez, Celia; Muñoz-Sanjuan, Ignacio

    2013-09-01

    Kynurenine monooxygenase (KMO) catalyzes the conversion of kynurenine to 3-hydroxykynurenine. Modulation of KMO activity has been implicated in several neurodegenerative diseases, including Huntington disease. Our goal is to develop potent and selective small-molecule KMO inhibitors with suitable pharmacokinetic characteristics for in vivo proof-of-concept studies and subsequent clinical development. We developed a comprehensive panel of biochemical and cell-based assays that use liquid chromatography/tandem mass spectrometry to quantify unlabeled kynurenine and 3-hydroxykynurenine. We describe assays to measure KMO inhibition in cell and tissue extracts, as well as cellular assays including heterologous cell lines and primary rat microglia and human peripheral blood mononuclear cells.

  20. First molecular modeling report on novel arylpyrimidine kynurenine monooxygenase inhibitors through multi-QSAR analysis against Huntington's disease: A proposal to chemists!

    Science.gov (United States)

    Amin, Sk Abdul; Adhikari, Nilanjan; Jha, Tarun; Gayen, Shovanlal

    2016-12-01

    Huntington's disease (HD) is caused by mutation of huntingtin protein (mHtt) leading to neuronal cell death. The mHtt induced toxicity can be rescued by inhibiting the kynurenine monooxygenase (KMO) enzyme. Therefore, KMO is a promising drug target to address the neurodegenerative disorders such as Huntington's diseases. Fiftysix arylpyrimidine KMO inhibitors are structurally explored through regression and classification based multi-QSAR modeling, pharmacophore mapping and molecular docking approaches. Moreover, ten new compounds are proposed and validated through the modeling that may be effective in accelerating Huntington's disease drug discovery efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Induction of monooxygenases and incorporation of radioactivity from 2-14C-lysine into hepatic microsomes of phenobarbital-treated rats fed a diet deficient in lysine, methionine, threonine and vitamine A, C and E

    International Nuclear Information System (INIS)

    Nurmagambetov, T.Zh.; Amirov, B.B.; Kuanysheva, T.K.; Sharmanov, T.Sh.

    1991-01-01

    The effect of diet on induction of monooxygenases and distribution of label from 2- 14 C-lysine in fractions of liver homogenate, muscle homogenate and blood of male rats treated with phenobarbital (80 mg/rg, three days) was studied. 2- 14 C-lysine was injected intraperitoneally 24 h before the first injection of phenobarbital. It was demonstrated that monooxygenase induction, increase of relative liver weight and incorporation of label from 2- 14 C-lysine into fractions of liver homogenate in phenobarbital-treated rats were more pronounced as compared with the similarly trated rats that were fed a balanced diet. The possibility of mobilization of deficient essential components to liver from other organs and tissues for maintenance of monooxygenase induction is discussed

  2. Induction of monooxygenases and incorporation of radioactivity from 2-14C-lysine into hepatic microsomes of phenobarbital-treated rats fed a diet deficient in lysine, methionine, threonine and vitamines A, C, E

    International Nuclear Information System (INIS)

    Nurmagambetov, T.Zh.; Amirov, B.B.; Kuanysheva, T.G.; Sharmanov, T.Sh.

    1992-01-01

    The effect of diet on induction of monooxygenases and distribution of radioactivity from 2- 14 C-lysine in fractions of liver homogenate, muscle homogenate and blood of male rats treated with phenobarbital was studied. 2- 14 C-lysin was injected intraperitoneally 24 h before the first injection of phenobarbital. It was demonstrated that monooxygenase induction, increase of relative liver weight and incorporation of radioactivity from 2- 14 C-lysine into fractions of liver homogenate in phenobarbital-treated rats fed diet deficient in lysine, methionine, threonine and vitamins A, C, E were more pronounced as compared with the similarly treated rats which were fed a balanced diet. The possibility of mobilization of deficient essencial components to liver from other organs and tissues for maintenance of monooxygenase induction iis discussed

  3. Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China.

    Science.gov (United States)

    Yun, Juanli; Ju, Yiwen; Deng, Yongcui; Zhang, Hongxun

    2014-08-01

    Permafrost wetlands are important methane emission sources and fragile ecosystems sensitive to climate change. Presently, there remains a lack of knowledge regarding bacterial communities, especially methanotrophs in vast areas of permafrost on the Tibetan Plateau in Northwest China and the Sanjiang Plain (SJ) in Northeast China. In this study, 16S rRNA-based quantitative PCR (qPCR) and 454 pyrosequencing were used to identify bacterial communities in soils sampled from a littoral wetland of Lake Namco on the Tibetan Plateau (NMC) and an alluvial wetland on the SJ. Additionally, methanotroph-specific primers targeting particulate methane monooxygenase subunit A gene (pmoA) were used for qPCR and pyrosequencing analysis of methanotrophic community structure in NMC soils. qPCR analysis revealed the presence of 10(10) 16S rRNA gene copies per gram of wet soil in both wetlands, with 10(8) pmoA copies per gram of wet soil in NMC. The two permafrost wetlands showed similar bacterial community compositions, which differed from those reported in other cold environments. Proteobacteria, Actinobacteria , and Chloroflexi were the most abundant phyla in both wetlands, whereas Acidobacteria was prevalent in the acidic wetland SJ only. These four phyla constituted more than 80 % of total bacterial community diversity in permafrost wetland soils, and Methylobacter of type I methanotrophs was overwhelmingly dominant in NMC soils. This study is the first major bacterial sequencing effort of permafrost in the NMC and SJ wetlands, which provides fundamental data for further studies of microbial function in extreme ecosystems under climate change scenarios.

  4. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  5. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  6. Nitrous oxide production and mRNA expression analysis of nitrifying and denitrifying bacterial genes under floodwater disappearance and fertilizer application.

    Science.gov (United States)

    Riya, Shohei; Takeuchi, Yuki; Zhou, Sheng; Terada, Akihiko; Hosomi, Masaaki

    2017-06-01

    A pulse of nitrous oxide (N 2 O) emission has been observed following the disappearance of floodwater by drainage. However, its mechanism is not well understood. We conducted a column study to clarify the mechanism for N 2 O production during floodwater disappearance by using a microsensor and determining the bacterial gene expression. An increase in N 2 O flux was observed following floodwater disappearance after the addition of NH 4 + , with a corresponding increase in the concentrations of NO 3 - and dissolved N 2 O in the oxic and anoxic soil layers, respectively. The transcription level of the bacterial amoA mRNA did not change, while that of nirK mRNA increased sharply after an hour of floodwater disappearance. An additional anoxic soil slurry experiment demonstrated that the addition of NO 3 - induced the expression of nirK gene and caused a concomitant increase in N 2 O production. These findings suggest that NO 3 - production in the oxic layers is important as it provides a substrate and induces the synthesis of denitrification enzymes in the anoxic layer during N 2 O production.

  7. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    Marji, S.

    2007-01-01

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  8. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management

    Energy Technology Data Exchange (ETDEWEB)

    Wessen, E.; Nyberg, K.; Jansson, J.K.; Hallin, S.

    2010-05-01

    Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) co-exist in soil, but their relative distribution may vary depending on the environmental conditions. Effects of changes in soil organic matter and nutrient content on the AOB and AOA are poorly understood. Our aim was to compare effects of long-term soil organic matter depletion and amendments with labile (straw) and more recalcitrant (peat) organic matter, with and without easily plant-available nitrogen, on the activities, abundances and community structures of AOB and AOA. Soil was sampled from a long-term field site in Sweden that was established in 1956. The potential ammonia oxidation rates, the AOB and AOA amoA gene abundances and the community structures of both groups based on T-RFLP of amoA genes were determined. Straw amendment during 50 years had not altered any of the measured soil parameters, while the addition of peat resulted in a significant increase of soil organic carbon as well as a decrease in pH. Nitrogen fertilization alone resulted in a small decrease in soil pH, organic carbon and total nitrogen, but an increase in primary production. Type and amount of organic matter had an impact on the AOB and AOA community structures and the AOA abundance. Our findings confirmed that AOA are abundant in soil, but showed that under certain conditions the AOB dominate, suggesting niche differentiation between the two groups at the field site. The large differences in potential rates between treatments correlated to the AOA community size, indicating that they were functionally more important in the nitrification process than the AOB. The AOA abundance was positively related to addition of labile organic carbon, which supports the idea that AOA could have alternative growth strategies using organic carbon. The AOB community size varied little in contrast to that of the AOA. This indicates that the bacterial ammonia oxidizers as a group have a greater ecophysiological diversity and

  9. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...

  10. Magnetic resonance studies on the copper site of dopamine β-monooxygenase in the presence of cyanide and azide anions

    International Nuclear Information System (INIS)

    Obata, A.; Tanaka, H.; Kawazura, H.

    1987-01-01

    In order to elucidate the coordination state of water molecules in the Cu(II) site of dopamine [(3,4-dihydroxyphenyl)ethylamine] β-monooxygenase, measurements of the paramagnetic 1 H nuclear magnetic relaxation rate of solvent water in the enzyme solution containing cyanide or azide as an exogenous ligand were carried out to obtain the values of intrinsic paramagnetic relaxation rate decrements R/sub p/ 1 and R/sub p/ 2 for the ligand-enzyme 1:1 and 2:1 complexes, respectively. R/sub p/ 1 (percent) values were 53 (pH 5.5) and 52 (pH 7.0) for cyanide and 38 (pH 5.5) and 32 (pH 7.0) for azide, while R/sub p/ 2 (percent) values were 98 (pH 5.5) and 96 (pH 7.0) for azide. Although no R/sub p/ 2 values for cyanide were obtained because of its reducing power at the Cu(II) site, the R/sub p/ 1 and R/sub p/ 2 values obtained above prove that the Cu(II) center has two coordinated water molecules that are exchangeable for exogenous ligands at either pH. Supporting evidence was provided by electron paramagnetic resonance (EPR) titration, in which the enzyme solution containing cyanide-enzyme (1:1) complex in an equal proportion to uncomplexed enzyme gave an observed paramagnetic relaxation rate decrement, R/sub p/, of 23%. Another characteristic of the R/sub p/ 1 and R/sub p/ 2 values was their invariability with respect to pH, indicating that the three-dimensional structure of the Cu(II) site is pH-invariant within the range examined. Binding constants of ligand to enzyme K/sub b/ 1 and K/sub b/ 2 for 1:1 and 2:1 complex formation, respectively, were also determined through an analysis of the R/sub p/ values; it was found that K/sub b/ 1 was larger than K/sub b/ 2 irrespective of pH. On the basis of these results, together with the axial-symmetric EPR parameters of the 1:1 complexes, a possible coordination geometry of the two water molecules in the Cu(II) site of the enzyme is suggested

  11. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    Directory of Open Access Journals (Sweden)

    Lehlohonolo Benedict Qhanya

    Full Text Available Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s, heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence. Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea, Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala, revealed the presence of numerous putative P450s ranging from 267 (A. mellea to 14 (M. osmundae. Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  12. HHM motif at the CuH-site of peptidylglycine monooxygenase is a pH-dependent conformational switch.

    Science.gov (United States)

    Kline, Chelsey D; Mayfield, Mary; Blackburn, Ninian J

    2013-04-16

    Peptidylglycine monooxygenase is a copper-containing enzyme that catalyzes the amidation of neuropeptides hormones, the first step of which is the conversion of a glycine-extended pro-peptide to its α-hydroxyglcine intermediate. The enzyme contains two mononuclear Cu centers termed CuM (ligated to imidazole nitrogens of H242, H244 and the thioether S of M314) and CuH (ligated to imidazole nitrogens of H107, H108, and H172) with a Cu-Cu separation of 11 Å. During catalysis, the M site binds oxygen and substrate, and the H site donates the second electron required for hydroxylation. The WT enzyme shows maximum catalytic activity at pH 5.8 and undergoes loss of activity at lower pHs due to a protonation event with a pKA of 4.6. Low pH also causes a unique structural transition in which a new S ligand coordinates to copper with an identical pKA, manifest by a large increase in Cu-S intensity in the X- ray absorption spectroscopy. In previous work (Bauman, A. T., Broers, B. A., Kline, C. D., and Blackburn, N. J. (2011) Biochemistry 50, 10819-10828), we tentatively assigned the new Cu-S interaction to binding of M109 to the H-site (part of an HHM conserved motif common to all but one member of the family). Here we follow up on these findings via studies on the catalytic activity, pH-activity profiles, and spectroscopic (electron paramagnetic resonance, XAS, and Fourier transform infrared) properties of a number of H-site variants, including H107A, H108A, H172A, and M109I. Our results establish that M109 is indeed the coordinating ligand and confirm the prediction that the low pH structural transition with associated loss of activity is abrogated when the M109 thioether is absent. The histidine mutants show more complex behavior, but the almost complete lack of activity in all three variants coupled with only minor differences in their spectroscopic properties suggests that unique structural elements at H are critical for functionality. The data suggest a more general

  13. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase.

    Science.gov (United States)

    Vorobev, Alexey V; Baani, Mohamed; Doronina, Nina V; Brady, Allyson L; Liesack, Werner; Dunfield, Peter F; Dedysh, Svetlana N

    2011-10-01

    Two strains of aerobic methanotrophic bacteria, AR4(T) and SOP9, were isolated from acidic (pH 3.8-4.0) Sphagnum peat bogs in Russia. Another phenotypically similar isolate, strain LAY, was obtained from an acidic (pH 4.0) forest soil in Germany. Cells of these strains were Gram-negative, non-pigmented, non-motile, thin rods that multiplied by irregular cell division and formed rosettes or amorphous cell conglomerates. Similar to Methylocella species, strains AR4(T), SOP9 and LAY possessed only a soluble form of methane monooxygenase (sMMO) and lacked intracytoplasmic membranes. Growth occurred only on methane and methanol; the latter was the preferred growth substrate. mRNA transcripts of sMMO were detectable in cells when either methane or both methane and methanol were available. Carbon was assimilated via the serine and ribulose-bisphosphate (RuBP) pathways; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strains AR4(T), SOP9 and LAY were moderately acidophilic, mesophilic organisms capable of growth between pH 3.5 and 7.2 (optimum pH 4.8-5.2) and at 4-33 °C (optimum 20-23 °C). The major cellular fatty acid was 18 : 1ω7c and the quinone was Q-10. The DNA G+C content was 55.6-57.5 mol%. The isolates belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and were most closely related to the sMMO-possessing methanotrophs of the genus Methylocella (96.4-97.0 % 16S rRNA gene sequence similarity), particulate MMO (pMMO)-possessing methanotrophs of the genus Methylocapsa (96.1-97.0 %), facultative methylotrophs of the genus Methylovirgula (96.1-96.3 %) and non-methanotrophic organotrophs of the genus Beijerinckia (96.5-97.0 %). Phenotypically, strains AR4(T), SOP9 and LAY were most similar to Methylocella species, but differed from members of this genus by cell morphology, greater tolerance of low pH, detectable activities of RuBP pathway enzymes and inability to grow on multicarbon compounds. Therefore, we propose a novel

  14. [Altered expressions of alkane monooxygenase and hypoxia inducible factor-1α expression in lung tissue of rat hypoxic pulmonary hypertension].

    Science.gov (United States)

    Deng, Hua-jun; Yuan, Ya-dong

    2013-10-29

    To explore the altered expressions of alkane monooxygenase (AlkB) and hypoxia-inducible factor-1α (HIF-1α) in a rat model of hypoxic pulmonary arterial hypertension. Twenty Wistar rats were divided randomly into normal control and hypoxia groups after 1-week adaptive feeding. Hypoxia group was raised in a homemade organic glass tank with a 24-h continuous supply of air and nitrogen atmospheric mixed gas. And the oxygen concentration of (10.0 ± 0.5)% was controlled by oxygen monitoring control system. The control group was maintained in room air. Both groups stayed in the same room with the same diet. After 8 weeks, the level of mean pulmonary pressure (mPAP) was measured by right-heart catheterization, right ventricular hypertrophy index (RVHI) calculated by the ratio of right ventricle to left ventricle plus septum and hypoxic pulmonary vascular remodeling (HPSR) observed under microscope. And the levels of AlkB and HIF-1α mRNA and protein in lungs were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot. At 8 weeks post-hypoxia, compared with the control group [11.0 ± 0.7 mm Hg (1 mm Hg = 0.133 kPa), 0.210 ± 0.035], the levels of mPAP and RVHI in hypoxia group (33.3 ± 1.3 mm Hg, 0.448 ± 0.013) increased significantly (both P < 0.05), the expressions of AlkB mRNA and protein in pulmonary tissue decreased significantly (0.338 ± 0.085 vs 0.688 ± 0.020, P < 0.01) (0.483 ± 0.052 vs 0.204 ± 0.010, P < 0.01), and the expressions of HIF-1α mRNA and protein increased significantly (0.790 ± 0.161 vs 0.422 ± 0.096, P < 0.01) (0.893 ± 0.080 vs 0.346 ± 0.008, P < 0.01). The down-regulation of AlkB in lung tissue may increase the activity of HIF-1 to participate in the occurrence and development of pulmonary hypertension.

  15. Species Differences in the Oxidative Desulfurization of a Thiouracil-Based Irreversible Myeloperoxidase Inactivator by Flavin-Containing Monooxygenase Enzymes.

    Science.gov (United States)

    Eng, Heather; Sharma, Raman; Wolford, Angela; Di, Li; Ruggeri, Roger B; Buckbinder, Leonard; Conn, Edward L; Dalvie, Deepak K; Kalgutkar, Amit S

    2016-08-01

    N1-Substituted-6-arylthiouracils, represented by compound 1 [6-(2,4-dimethoxyphenyl)-1-(2-hydroxyethyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one], are a novel class of selective irreversible inhibitors of human myeloperoxidase. The present account is a summary of our in vitro studies on the facile oxidative desulfurization in compound 1 to a cyclic ether metabolite M1 [5-(2,4-dimethoxyphenyl)-2,3-dihydro-7H-oxazolo[3,2-a]pyrimidin-7-one] in NADPH-supplemented rats (t1/2 [half-life = mean ± S.D.] = 8.6 ± 0.4 minutes) and dog liver microsomes (t1/2 = 11.2 ± 0.4 minutes), but not in human liver microsomes (t1/2 > 120 minutes). The in vitro metabolic instability also manifested in moderate-to-high plasma clearances of the parent compound in rats and dogs with significant concentrations of M1 detected in circulation. Mild heat deactivation of liver microsomes or coincubation with the flavin-containing monooxygenase (FMO) inhibitor imipramine significantly diminished M1 formation. In contrast, oxidative metabolism of compound 1 to M1 was not inhibited by the pan cytochrome P450 inactivator 1-aminobenzotriazole. Incubations with recombinant FMO isoforms (FMO1, FMO3, and FMO5) revealed that FMO1 principally catalyzed the conversion of compound 1 to M1. FMO1 is not expressed in adult human liver, which rationalizes the species difference in oxidative desulfurization. Oxidation by FMO1 followed Michaelis-Menten kinetics with Michaelis-Menten constant, maximum rate of oxidative desulfurization, and intrinsic clearance values of 209 μM, 20.4 nmol/min/mg protein, and 82.7 μl/min/mg protein, respectively. Addition of excess glutathione essentially eliminated the conversion of compound 1 to M1 in NADPH-supplemented rat and dog liver microsomes, which suggests that the initial FMO1-mediated S-oxygenation of compound 1 yields a sulfenic acid intermediate capable of redox cycling to the parent compound in a glutathione-dependent fashion or undergoing further oxidation to a more

  16. The lumenal loop M672-P707 of the Menkes protein (ATP7A) transfers copper to peptidylglycine monooxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Otoikhian, Adenike [Oregon Health & Sciences University; Barry, Amanda N. [Los Alamos National Laboratory; Mayfield, Mary [Oregon Health & Science University; Nilges, Mark [Illinois EPR Center; Huang, Yiping [Johns Hopkins University; Lutsenko, Svetlana [Johns Hopkins University; Blackburn, Ninian [Oregon Health & Science University

    2012-05-14

    Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper translocating ATPase (ATP7A or ATP7B) but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role of this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1, 15N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased towards 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met while at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump.

  17. Dual role of the carboxyl-terminal region of pig liver L-kynurenine 3-monooxygenase: mitochondrial-targeting signal and enzymatic activity.

    Science.gov (United States)

    Hirai, Kumiko; Kuroyanagi, Hidehito; Tatebayashi, Yoshitaka; Hayashi, Yoshitaka; Hirabayashi-Takahashi, Kanako; Saito, Kuniaki; Haga, Seiich; Uemura, Tomihiko; Izumi, Susumu

    2010-12-01

    l-kynurenine 3-monooxygenase (KMO) is an NAD(P)H-dependent flavin monooxygenase that catalyses the hydroxylation of l-kynurenine to 3-hydroxykynurenine, and is localized as an oligomer in the mitochondrial outer membrane. In the human brain, KMO may play an important role in the formation of two neurotoxins, 3-hydroxykynurenine and quinolinic acid, both of which provoke severe neurodegenerative diseases. In mosquitos, it plays a role in the formation both of eye pigment and of an exflagellation-inducing factor (xanthurenic acid). Here, we present evidence that the C-terminal region of pig liver KMO plays a dual role. First, it is required for the enzymatic activity. Second, it functions as a mitochondrial targeting signal as seen in monoamine oxidase B (MAO B) or outer membrane cytochrome b(5). The first role was shown by the comparison of the enzymatic activity of two mutants (C-terminally FLAG-tagged KMO and carboxyl-terminal truncation form, KMOΔC50) with that of the wild-type enzyme expressed in COS-7 cells. The second role was demonstrated with fluorescence microscopy by the comparison of the intracellular localization of the wild-type, three carboxyl-terminal truncated forms (ΔC20, ΔC30 and ΔC50), C-terminally FLAG-tagged wild-type and a mutant KMO, where two arginine residues, Arg461-Arg462, were replaced with Ser residues.

  18. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  19. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  20. Bacterial fingerprints across Europe

    NARCIS (Netherlands)

    Glasner, Corinna

    2014-01-01

    Bacterial pathogens, such as Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae (CPE), impose major threats to human health worldwide. Both have a ‘Jekyll & Hyde’ character, since they can be present as human commensals, but can also become harmful invasive pathogens especially

  1. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  2. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  3. Corticosteroids for Bacterial Keratitis

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  4. Bacterial infec tions in travellers

    African Journals Online (AJOL)

    namely bacterial causes of travellers' diarrhoea and skin infections, as well as .... Vaccination: protective efficacy against typhoid may be overcome by ingesting a high bacterial load. Vaccine ..... preparation such as cream sauce. Only after ...

  5. Structure of bacterial lipopolysaccharides.

    Science.gov (United States)

    Caroff, Martine; Karibian, Doris

    2003-11-14

    Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.

  6. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  7. Bacterial control of cyanobacteria

    CSIR Research Space (South Africa)

    Ndlela, Luyanda L

    2017-08-01

    Full Text Available of biological control appears to be direct contact. • Ndlela, L. L. et al. (2016) ‘An overview of cyanobacterial bloom occurrences and research in Africa over the last decade’, Harmful Algae, 60 • Gumbo, J.R. et al. (2010) The Isolation and identification... of Predatory Bacteria from a Microcystis algal Bloom.. African Journal of Biotechnology, 9. *Special acknowledgement goes to the National Research foundation for funding this presentation Bacterial control of cyanobacteria Luyanda...

  8. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  9. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  10. Effects of Lytic Polysaccharide Monooxygenase Oxidation on Cellulose Structure and Binding of Oxidized Cellulose Oligomers to Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Josh V.; Crowley, Michael F.; Beckham, Gregg T.; Payne, Christina M.

    2015-05-21

    In nature, polysaccharide glycosidic bonds are cleaved by hydrolytic enzymes for a vast array of biological functions. Recently, a new class of enzymes that utilize an oxidative mechanism to cleave glycosidic linkages was discovered; these enzymes are called lytic polysaccharide monooxygenases (LPMO). These oxidative enzymes are synergistic with cocktails of hydrolytic enzymes and are thought to act primarily on crystalline regions, in turn providing new sites of productive attachment and detachment for processive hydrolytic enzymes. In the case of cellulose, the homopolymer of ..beta..-1,4-d-glucose, enzymatic oxidation occurs at either the reducing end or the nonreducing end of glucose, depending on enzymatic specificity, and results in the generation of oxidized chemical substituents at polymer chain ends. LPMO oxidation of cellulose is thought to produce either a lactone at the reducing end of glucose that can spontaneously or enzymatically convert to aldonic acid or 4-keto-aldose at the nonreducing end that may further oxidize to a geminal diol. Here, we use molecular simulation to examine the effect of oxidation on the structure of crystalline cellulose. The simulations highlight variations in behaviors depending on the chemical identity of the oxidized species and its location within the cellulose fibril, as different oxidized species introduce steric effects that disrupt local crystallinity and in some cases reduce the work needed for polymer decrystallization. Reducing-end oxidations are easiest to decrystallize when located at the end of the fibril, whereas nonreducing end oxidations readily decrystallize from internal cleavage sites despite their lower solvent accessibility. The differential in decrystallization free energy suggests a molecular mechanism consistent with experimentally observed LPMO/cellobiohydrolase synergy. Additionally, the soluble oxidized cellobiose products released by hydrolytic cellulases may bind to the active sites of cellulases

  11. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, J.G.

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 [Angstrom]. The Fe-Fe distance was determined to be 3.4 [Angstrom]. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  12. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, Jane G. [Stanford Univ., CA (United States)

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 Å. The Fe-Fe distance was determined to be 3.4 Å. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  13. Induction of cytochrome P450-associated monooxygenases in northern leopard frogs, Rana pipiens, by 3,3',4,4',5-pentachlorobiphenyl

    Science.gov (United States)

    Huang, Y.-W.; Melancon, M.J.; Jung, R.E.; Karasov, W.H.

    1998-01-01

    Northern leopard frogs (Rana pipiens) were injected intraperitoneally either with a solution of polychlorinated biphenyl (PCB) 126 in corn oil at a concentration of 0.2, 0.7, 2.3 and 7.8 mg/kg body weight or with corn oil alone. Appropriate assay conditions with hepatic microsomes were determined for four cytochrome P450-associated monooxygenases: ethoxyresorufin-O-dealkylase (EROD), methoxy-ROD (MROD), benzyloxy-ROD (BROD) and pentoxy-ROD (PROD). One week after PCB administration, the specific activities of EROD, MROD, BROD and PROD were not elevated at doses ? 0.7 mg/kg (p > 0.05), but were significantly increased at doses ? 2.3 mg/kg compared to the control groups (p leopard frogs.

  14. Optimized formation of detergent micelles of beta-carotene and retinal production using recombinant human beta,beta-carotene 15,15'-monooxygenase.

    Science.gov (United States)

    Kim, Nam-Hee; Kim, Yeong-Su; Kim, Hye-Jung; Oh, Deok-Kun

    2008-01-01

    The formation of beta-carotene detergent micelles and their conversion into retinal by recombinant human beta,beta-carotene 15,15'-monooxygenase was optimized under aqueous conditions. Toluene was the most hydrophobic among the organic solvents tested; thus, it was used to dissolve beta-carotene, which is a hydrophobic compound. Tween 80 was selected as the detergent because it supported the highest level of retinal production among all of the detergents tested. The maximum production of retinal was achieved in detergent micelles containing 200 mg/L of beta-carotene and 2.4% (w/v) Tween 80. Under these conditions, the recombinant enzyme produced 97 mg/L of retinal after 16 h with a conversion yield of 48.5% (w/w). The amount of retinal produced, which is the highest ever reported, is a result of the ability of our system to dissolve large amounts of beta-carotene.

  15. Effects of Quinizarin and Five Synthesized Derivatives on Fifth Larval Instar Midgut Ecdysone 20-Monooxygenase Activity of the Tobacco Hornworm Manduca sexta

    Directory of Open Access Journals (Sweden)

    Christopher A. Drummond

    2014-01-01

    Full Text Available The plant allelochemical, quinizarin (1,4-dihydroxy-9,10-anthraquinone, and five anthraquinones that were synthesized from quinizarin, namely, 1,4-anthraquinone; 2-hydroxy-1,4-anthraquinone; 2-methoxy-1,4-anthraquinone; 9-hydroxy-1,4-anthraquinone; and 9-methoxy-1,4-anthraquinone, were assessed as to their effects on the essential, P450-dependent ecdysone 20-monooxygenase system of the insect model Manduca sexta (tobacco hornworm. This steroid hydroxylase converts the arthropod molting hormone, ecdysone, to the physiologically required 20-hydroxyecdysone form. M. sexta fifth larval instar midgut homogenates were incubated with increasing concentrations (10−8 to 10−3 M of each of the six anthraquinones followed by ecdysone 20-monooxygenase assessments using a radioenzymological assay. Four of the five anthraquinones exhibited I50’s of about 4×10-6 to 6×10-2 M. The most effective inhibitors were 2-methoxy-1,4-anthraquinone and 1,4-anthraquinone followed by 9-hydroxy-1,4 anthraquinone and 9-methoxy-1,4-anthraquinone. At lower concentrations the latter anthraquinone stimulated E20M activity. Quinizarin was less inhibitory and 2-hydroxy-1,4-anthraquinone was essentially without effect. Significantly, these studies make evident for the first time that anthraquinones can affect insect E20M activity, and thus insect endocrine regulation and development, and that a relationship between anthraquinone structure and effectiveness is apparent. These studies represent the first demonstrations of anthraquinones affecting any steroid hydroxylase system.

  16. Molecular dynamics analysis reveals structural insights into mechanism of nicotine N-demethylation catalyzed by tobacco cytochrome P450 mono-oxygenase.

    Directory of Open Access Journals (Sweden)

    Shan Wang

    Full Text Available CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys-trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase.

  17. Radiology of bacterial pneumonia

    International Nuclear Information System (INIS)

    Vilar, Jose; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-01-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings

  18. Radiology of bacterial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Jose E-mail: vilar_jlu@gva.es; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-08-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings.

  19. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments

    Directory of Open Access Journals (Sweden)

    Ashleigh R. Currie

    2017-08-01

    Full Text Available Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2 and elevated temperature (ambient +4°C on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA and bacterial nitrite reductase (nirS were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  20. Salix purpurea Stimulates the Expression of Specific Bacterial Xenobiotic Degradation Genes in a Soil Contaminated with Hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Antoine P Pagé

    Full Text Available The objectives of this study were to uncover Salix purpurea-microbe xenobiotic degradation systems that could be harnessed in rhizoremediation, and to identify microorganisms that are likely involved in these partnerships. To do so, we tested S. purpurea's ability to stimulate the expression of 10 marker microbial oxygenase genes in a soil contaminated with hydrocarbons. In what appeared to be a detoxification rhizosphere effect, transcripts encoding for alkane 1-monooxygenases, cytochrome P450 monooxygenases, laccase/polyphenol oxidases, and biphenyl 2,3-dioxygenase small subunits were significantly more abundant in the vicinity of the plant's roots than in bulk soil. This gene expression induction is consistent with willows' known rhizoremediation capabilities, and suggests the existence of S. purpurea-microbe systems that target many organic contaminants of interest (i.e. C4-C16 alkanes, fluoranthene, anthracene, benzo(apyrene, biphenyl, polychlorinated biphenyls. An enhanced expression of the 4 genes was also observed within the bacterial orders Actinomycetales, Rhodospirillales, Burkholderiales, Alteromonadales, Solirubrobacterales, Caulobacterales, and Rhizobiales, which suggest that members of these taxa are active participants in the exposed partnerships. Although the expression of the other 6 marker genes did not appear to be stimulated by the plant at the community level, signs of additional systems that rest on their expression by members of the orders Solirubrobacterales, Sphingomonadales, Actinomycetales, and Sphingobacteriales were observed. Our study presents the first transcriptomics-based identification of microbes whose xenobiotic degradation activity in soil appears stimulated by a plant. It paints a portrait that contrasts with the current views on these consortia's composition, and opens the door for the development of laboratory test models geared towards the identification of root exudate characteristics that limit the

  1. Bacterial polyhydroxyalkanoates: Still fabulous?

    Science.gov (United States)

    Możejko-Ciesielska, Justyna; Kiewisz, Robert

    2016-11-01

    Bacterial polyhydroxyalkanoates (PHA) are polyesters accumulated as carbon and energy storage materials under limited growth conditions in the presence of excess carbon sources. They have been developed as biomaterials with unique properties for the past many years being considered as a potential substitute for conventional non-degradable plastics. Due to the increasing concern towards global climate change, depleting petroleum resource and problems with an utilization of a growing number of synthetic plastics, PHAs have gained much more attention from industry and research. These environmentally friendly microbial polymers have great potential in biomedical, agricultural, and industrial applications. However, their production on a large scale is still limited. This paper describes the backgrounds of PHAs and discussed the current state of knowledge on the polyhydroxyalkanoates. Ability of bacteria to convert different carbon sources to PHAs, the opportunities and challenges of their introduction to global market as valuable renewable products have been also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Energetics of bacterial adhesion

    International Nuclear Information System (INIS)

    Loosdrecht, M.C.M. van; Zehnder, A.J.B.

    1990-01-01

    For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized. (author) 2 figs., 1 tab., 50 refs

  3. Biosensors of bacterial cells.

    Science.gov (United States)

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome.......Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the Par...

  5. Exploring bacterial lignin degradation.

    Science.gov (United States)

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits...... and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...

  7. Anaerobes in bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2003-01-01

    Full Text Available Four hundred high vaginal swabs were taken from patients attending gynaecology and obstetrics department of Govt. medical college, Amritsar. The patients were divided into four groups i.e. women in pregnancy (Group I, in labour/post partum (Group II, with abnormal vaginal discharge or bacterial vaginosis (Group III and asymptomatic women as control (Group IV. Anaerobic culture of vaginal swabs revealed that out of 400 cases, 212(53% were culture positive. Maximum isolation of anaerobes was in group III (84% followed by group II (56%, group I (36% and control group (15%. Gram positive anaerobes (69.2% out numbered gram negatives (30.8%. Among various isolates Peptostreptococcus spp. and Bacteroides spp. were predominant.

  8. Nitrosospira sp. Govern Nitrous Oxide Emissions in a Tropical Soil Amended With Residues of Bioenergy Crop

    Directory of Open Access Journals (Sweden)

    Késia S. Lourenço

    2018-04-01

    Full Text Available Organic vinasse, a residue produced during bioethanol production, increases nitrous oxide (N2O emissions when applied with inorganic nitrogen (N fertilizer in soil. The present study investigated the role of the ammonia-oxidizing bacteria (AOB community on the N2O emissions in soils amended with organic vinasse (CV: concentrated and V: non-concentrated plus inorganic N fertilizer. Soil samples and N2O emissions were evaluated at 11, 19, and 45 days after fertilizer application, and the bacterial and archaea gene (amoA encoding the ammonia monooxygenase enzyme, bacterial denitrifier (nirK, nirS, and nosZ genes and total bacteria were quantified by real time PCR. We also employed a deep amoA amplicon sequencing approach to evaluate the effect of treatment on the community structure and diversity of the soil AOB community. Both vinasse types applied with inorganic N application increased the total N2O emissions and the abundance of AOB. Nitrosospira sp. was the dominant AOB in the soil and was correlated with N2O emissions. However, the diversity and the community structure of AOB did not change with vinasse and inorganic N fertilizer amendment. The results highlight the importance of residues and fertilizer management in sustainable agriculture and can be used as a reference and an input tool to determine good management practices for organic fertilization.

  9. Bacterial meningitis in immunocompromised patients

    NARCIS (Netherlands)

    van Veen, K.E.B.

    2018-01-01

    Bacterial meningitis is an acute infection of the meninges, in The Netherlands most commonly caused by Streptococcus pneumoniae and Neisseria meningitides. Risk factors for acquiring bacterial meningitis include a decreased function of the immune system. The aim of this thesis was to study

  10. Bacteriële meningitis

    NARCIS (Netherlands)

    Brouwer, M. C.; van de Beek, D.

    2012-01-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria

  11. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  12. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  13. Determination of the human cytochrome P450 monooxygenase catalyzing the enantioselective oxidation of 2,2',3,5',6-pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183).

    Science.gov (United States)

    Nagayoshi, Haruna; Kakimoto, Kensaku; Konishi, Yoshimasa; Kajimura, Keiji; Nakano, Takeshi

    2017-10-17

    2,2',3,5',6-Pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183) possess axial chirality and form the aS and aR enantiomers. The enantiomers of these congeners have been reported to accumulate in the human body enantioselectively via unknown mechanisms. In this study, we determined the cytochrome P450 (CYP) monooxygenase responsible for the enantioselective oxidization of PCB 95 and PCB 183, using a recombinant human CYP monooxygenase. We evaluated 13 CYP monooxygenases, namely CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP4F2, and aromatase (CYP19), and revealed that CYP2A6 preferably oxidizes aS-PCB 95 enantioselectively; however, it did not oxidize PCB 183. The enantiomer composition was elevated from 0.5 (racemate) to 0.54. In addition, following incubation with CYP2A6, the enantiomer fraction (EF) of PCB 95 demonstrated a time-dependent increase.

  14. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  15. Evolution of Bacterial Suicide

    Science.gov (United States)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  16. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  17. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  18. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils.

    Science.gov (United States)

    Gill, Aman S; Lee, Angela; McGuire, Krista L

    2017-08-15

    New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a

  19. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.

    Science.gov (United States)

    Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung

    2015-05-01

    We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.

  20. ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in RiceW⃞

    Science.gov (United States)

    Zhu, Yongyou; Nomura, Takahito; Xu, Yonghan; Zhang, Yingying; Peng, Yu; Mao, Bizeng; Hanada, Atsushi; Zhou, Haicheng; Wang, Renxiao; Li, Peijin; Zhu, Xudong; Mander, Lewis N.; Kamiya, Yuji; Yamaguchi, Shinjiro; He, Zuhua

    2006-01-01

    The recessive tall rice (Oryza sativa) mutant elongated uppermost internode (eui) is morphologically normal until its final internode elongates drastically at the heading stage. The stage-specific developmental effect of the eui mutation has been used in the breeding of hybrid rice to improve the performance of heading in male sterile cultivars. We found that the eui mutant accumulated exceptionally large amounts of biologically active gibberellins (GAs) in the uppermost internode. Map-based cloning revealed that the Eui gene encodes a previously uncharacterized cytochrome P450 monooxygenase, CYP714D1. Using heterologous expression in yeast, we found that EUI catalyzed 16α,17-epoxidation of non-13-hydroxylated GAs. Consistent with the tall and dwarfed phenotypes of the eui mutant and Eui-overexpressing transgenic plants, respectively, 16α,17-epoxidation reduced the biological activity of GA4 in rice, demonstrating that EUI functions as a GA-deactivating enzyme. Expression of Eui appeared tightly regulated during plant development, in agreement with the stage-specific eui phenotypes. These results indicate the existence of an unrecognized pathway for GA deactivation by EUI during the growth of wild-type internodes. The identification of Eui as a GA catabolism gene provides additional evidence that the GA metabolism pathway is a useful target for increasing the agronomic value of crops. PMID:16399803

  1. Physical map location of the multicopy genes coding for ammonia monooxygenase and hydroxylamine oxidoreductase in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11.

    Science.gov (United States)

    Hirota, R; Yamagata, A; Kato, J; Kuroda, A; Ikeda, T; Takiguchi, N; Ohtake, H

    2000-02-01

    Pulsed-field gel electrophoresis of PmeI digests of the Nitrosomonas sp. strain ENI-11 chromosome produced four bands ranging from 1,200 to 480 kb in size. Southern hybridizations suggested that a 487-kb PmeI fragment contained two copies of the amoCAB genes, coding for ammonia monooxygenase (designated amoCAB(1) and amoCAB(2)), and three copies of the hao gene, coding for hydroxylamine oxidoreductase (hao(1), hao(2), and hao(3)). In this DNA fragment, amoCAB(1) and amoCAB(2) were about 390 kb apart, while hao(1), hao(2), and hao(3) were separated by at least about 100 kb from each other. Interestingly, hao(1) and hao(2) were located relatively close to amoCAB(1) and amoCAB(2), respectively. DNA sequence analysis revealed that hao(1) and hao(2) shared 160 identical nucleotides immediately upstream of each translation initiation codon. However, hao(3) showed only 30% nucleotide identity in the 160-bp corresponding region.

  2. Cytochrome P450 2C8 and flavin-containing monooxygenases are involved in the metabolism of tazarotenic acid in humans.

    Science.gov (United States)

    Attar, Mayssa; Dong, Dahai; Ling, Kah-Hiing John; Tang-Liu, Diane D-S

    2003-04-01

    Upon oral administration, tazarotene is rapidly converted to tazarotenic acid by esterases. The main circulating agent, tazarotenic acid is subsequently oxidized to the inactive sulfoxide metabolite. Therefore, alterations in the metabolic clearance of tazarotenic acid may have significant effects on its systemic exposure. The objective of this study was to identify the human liver microsomal enzymes responsible for the in vitro metabolism of tazarotenic acid. Tazarotenic acid was incubated with 1 mg/ml pooled human liver microsomes, in 100 mM potassium phosphate buffer (pH 7.4), at 37 degrees C, over a period of 30 min. The microsomal enzymes that may be involved in tazarotenic acid metabolism were identified through incubation with microsomes containing cDNA-expressed human microsomal isozymes. Chemical inhibition studies were then conducted to confirm the identity of the enzymes potentially involved in tazarotenic acid metabolism. Reversed-phase high performance liquid chromatography was used to quantify the sulfoxide metabolite, the major metabolite of tazarotenic acid. Upon incubation of tazarotenic acid with microsomes expressing CYP2C8, flavin-containing monooxygenase 1 (FMO1), or FMO3, marked formation of the sulfoxide metabolite was observed. The involvement of these isozymes in tazarotenic acid metabolism was further confirmed by inhibition of metabolite formation in pooled human liver microsomes by specific inhibitors of CYP2C8 or FMO. In conclusion, the in vitro metabolism of tazarotenic acid to its sulfoxide metabolite in human liver microsomes is mediated by CYP2C8 and FMO.

  3. Co-immobilization of cyclohexanone monooxygenase and glucose-6-phosphate dehydrogenase onto polyethylenimine-porous agarose polymeric composite using γ irradiation to use in biotechnological processes

    International Nuclear Information System (INIS)

    Atia, K.S.

    2005-01-01

    The co-immobilization of cyclohexanone monooxygenase (CHMO) and glucose-6-phosphate dehydrogenase (G6PDH) was optimized by completely coating, via covalent immobilization, the surface aldehyde groups of porous agarose (glyoxyl-agarose) with amine groups of polyethylenimine (PEI). The highest immobilization efficiency (∼87%) (activity of enzyme per amount of immobilized enzyme) was obtained with a CHMO/G6PDH ratio 2:1. The effects of different ratios of the support to the amount of enzymes (CHMO:G6PDH=2:1), the optimum incubation pH and the incubation time on the enzymatic activity of the enzymes were determined and found to be 5:1, 8.5 and 30 min, respectively. Subjecting the co-immobilized enzymes to doses of γ-radiation (5-100 kGy) resulted in complete loss in the activity of the free enzymes at a dose of 40 kGy, while the co-immobilized ones showed relatively high resistance to γ-radiation up to a dose of 50 kGy

  4. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants.

    Science.gov (United States)

    Rong Tan, Li; Chen Lu, Yi; Jing Zhang, Jing; Luo, Fang; Yang, Hong

    2015-09-01

    Plant cytochrome P450 monooxygenases constitute one of the largest families of protein genes involved in plant growth, development and acclimation to biotic and abiotic stresses. However, whether these genes respond to organic toxic compounds and their biological functions for detoxifying toxic compounds such as herbicides in rice are poorly understood. The present study identified 201 genes encoding cytochrome P450s from an atrazine-exposed rice transcriptome through high-throughput sequencing. Of these, 69 cytochrome P450 genes were validated by microarray and some of them were confirmed by real time PCR. Activities of NADPH-cytochrome P450 reductase (CPR) and p-nitroanisole O-demethylase (PNOD) related to toxicity were determined and significantly induced by atrazine exposure. To dissect the mechanism underlying atrazine modification and detoxification by P450, metabolites (or derivatives) of atrazine in plants were analyzed by ultra performance liquid chromatography mass spectrometry (UPLC/MS). Major metabolites comprised desmethylatrazine (DMA), desethylatrazine (DEA), desisopropylatrazine (DIA), hydroxyatrazine (HA), hydroxyethylatrazine (HEA) and hydroxyisopropylatrazine (HIA). All of them were chemically modified by P450s. Furthermore, two specific inhibitors of piperonyl butoxide (PBO) and malathion (MAL) were used to assess the correlation between the P450s activity and rice responses including accumulation of atrazine in tissues, shoot and root growth and detoxification. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    O; Dell, William B.; Swartz, Paul D.; Weiss, Kevin L.; Meilleur, Flora (ORNL); (NCSU)

    2017-01-19

    Lytic polysaccharide monooxygenases (LPMOs) are carbohydrate-disrupting enzymes secreted by bacteria and fungi that break glycosidic bondsviaan oxidative mechanism. Fungal LPMOs typically act on cellulose and can enhance the efficiency of cellulose-hydrolyzing enzymes that release soluble sugars for bioethanol production or other industrial uses. The enzyme PMO-2 fromNeurospora crassa(NcPMO-2) was heterologously expressed inPichia pastoristo facilitate crystallographic studies of the fungal LPMO mechanism. Diffraction resolution and crystal morphology were improved by expressingNcPMO-2 from a glycoengineered strain ofP. pastorisand by the use of crystal seeding methods, respectively. These improvements resulted in high-resolution (1.20 Å) X-ray diffraction data collection at 100 K and the production of a largeNcPMO-2 crystal suitable for room-temperature neutron diffraction data collection to 2.12 Å resolution.

  6. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Bass, C; Carvalho, R A; Oliphant, L; Puinean, A M; Field, L M; Nauen, R; Williamson, M S; Moores, G; Gorman, K

    2011-12-01

    The brown planthopper, Nilaparvata lugens, is an economically significant pest of rice throughout Asia and has evolved resistance to many insecticides including the neonicotinoid imidacloprid. The resistance of field populations of N. lugens to imidacloprid has been attributed to enhanced detoxification by cytochrome P450 monooxygenases (P450s), although, to date, the causative P450(s) has (have) not been identified. In the present study, biochemical assays using the model substrate 7-ethoxycoumarin showed enhanced P450 activity in several resistant N. lugens field strains when compared with a susceptible reference strain. Thirty three cDNA sequences encoding tentative unique P450s were identified from two recent sequencing projects and by degenerate PCR. The mRNA expression level of 32 of these was examined in susceptible, moderately resistant and highly resistant N. lugens strains using quantitative real-time PCR. A single P450 gene (CYP6ER1) was highly overexpressed in all resistant strains (up to 40-fold) and the level of expression observed in the different N. lugens strains was significantly correlated with the resistance phenotype. These results provide strong evidence for a role of CYP6ER1 in the resistance of N. lugens to imidacloprid. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  7. The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate.

    Science.gov (United States)

    Mushiroda, T; Douya, R; Takahara, E; Nagata, O

    2000-10-01

    The goals of the present study were to identify the enzyme responsible for metabolism of itopride hydrochloride (itopride) and to evaluate the likelihood of drug interaction involving itopride. In human liver microsomes, the involvement of flavin-containing monooxygenase in N-oxygenation, the major metabolic pathway of itopride, was indicated by the following results: inhibition by methimazole and thiourea, heat inactivation, and protection against heat inactivation by NADPH. When the effects of ketoconazole on the metabolism of itopride, cisapride, and mosapride citrate (mosapride) were examined using human liver microsomes, ketoconazole strongly inhibited the formation of the primary metabolites of cisapride and mosapride, but not itopride. Other cytochrome P450 (CYP) 3A4 inhibitors, cimetidine, erythromycin, and clarithromycin, also inhibited the metabolism of cisapride and mosapride. In an in vivo study, itopride (30 mg/kg), cisapride (1.5 mg/kg), or mosapride (3 mg/kg) was orally administered to male rats with or without oral pretreatment with ketoconazole (120 mg/kg) twice daily for 2 days. The ketoconazole pretreatment significantly increased the area under the serum concentration curve and the maximum serum concentration of cisapride and mosapride but had no significant effect on the pharmacokinetics of itopride. In addition, itopride did not inhibit five specific CYP-mediated reactions of human liver microsomes. These results suggest that itopride is unlikely to alter the pharmacokinetics of other concomitantly administered drugs.

  8. Diversity of alkane degrading bacteria associated with plants in a petroleum oil-contaminated environment and expression of alkane monooxygenase (alkB) genes

    Science.gov (United States)

    Andria, V.; Yousaf, S.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A.

    2009-04-01

    Among twenty-six different plant species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo), and the combination of both plants performed well in a petroleum oil contaminated soil. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Higher numbers of culturable, degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Our results indicated that alkB genes have spread through horizontal gene transfer, particularly in the Italian ryegrass rhizosphere, and suggested mobility of catabolic genes between Gram-negative and Gram-positive bacteria. We furthermore studied the colonization behaviour of selected hydrocarbon-degrading strains (comprising an endopyhte and a rhizosphere strain) as well as the expression of their alkane monooxygenase genes in association with Italian ryegrass. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.

  9. Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated monooxygenases by hematoporphyrin derivative in rats

    International Nuclear Information System (INIS)

    Das, M.; Dixit, R.; Mukhtar, H.; Bickers, D.R.

    1985-01-01

    The cytochrome P-450 in hepatic microsomes prepared from rats pretreated with hematoporphyrin derivative was shown to be rapidly destroyed in the presence of long-wave ultraviolet light. The photocatalytic destruction of the heme-protein was dependent on both the dose of ultraviolet light and of hematoporphyrin derivative administered to the animals. The destructive reaction was accompanied by increased formation of cytochrome P-420, loss of microsomal heme content, and diminished catalytic activity of cytochrome P-450-dependent monooxygenases such as aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The specificity of the effect on cytochrome P-450 was confirmed by the observation that other heme-containing moieties such as myoglobin and cytochrome c were not susceptible to photocatalytic destruction. The destruction of cytochrome P-450 was a photodynamic process requiring oxygen since quenchers of singlet oxygen, including 2,5-dimethylfuran, histidine, and beta-carotene, each substantially diminished the reaction. Scavengers of superoxide anion such as superoxide dismutase and of H 2 O 2 such as catalase did not protect against photodestruction of cytochrome P-450, whereas inhibitors of the hydroxyl radical, including benzoate, mannitol, and ethyl alcohol, did afford protection. These results indicate that lipid-rich microsomal membranes and the heme-protein cytochrome P-450 embedded therein are potential targets of injury in cells exposed to hematoporphyrin derivative photosensitization

  10. Structures of the Apo and FAD-bound forms of 2-hydroxybiphenyl 3-monooxygenase (HbpA) locate activity hotspots identified by using directed evolution.

    Science.gov (United States)

    Jensen, Chantel N; Mielke, Tamara; Farrugia, Joseph E; Frank, Annika; Man, Henry; Hart, Sam; Turkenburg, Johan P; Grogan, Gideon

    2015-04-13

    The FAD-dependent monooxygenase HbpA from Pseudomonas azelaica HBP1 catalyses the hydroxylation of 2-hydroxybiphenyl (2HBP) to 2,3-dihydroxybiphenyl (23DHBP). HbpA has been used extensively as a model for studying flavoprotein hydroxylases under process conditions, and has also been subjected to directed-evolution experiments that altered its catalytic properties. The structure of HbpA has been determined in its apo and FAD-complex forms to resolutions of 2.76 and 2.03 Å, respectively. Comparisons of the HbpA structure with those of homologues, in conjunction with a model of the reaction product in the active site, reveal His48 as the most likely acid/base residue to be involved in the hydroxylation mechanism. Mutation of His48 to Ala resulted in an inactive enzyme. The structures of HbpA also provide evidence that mutants achieved by directed evolution that altered activity are comparatively remote from the substrate-binding site. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Metabolism of methoxychlor by the P450-monooxygenase CYP6G1 involved in insecticide resistance of Drosophila melanogaster after expression in cell cultures of Nicotiana tabacum.

    Science.gov (United States)

    Joussen, Nicole; Schuphan, Ingolf; Schmidt, Burkhard

    2010-03-01

    Cytochrome P450 monooxygenase CYP6G1 of Drosophila melanogaster was heterologously expressed in a cell suspension culture of Nicotiana tabacum. This in vitro system was used to study the capability of CYP6G1 to metabolize the insecticide methoxychlor (=1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane, 1) against the background of endogenous enzymes of the corresponding non-transgenic culture. The Cyp6g1-transgenic cell culture metabolized 96% of applied methoxychlor (45.8 microg per assay) within 24 h by demethylation and hydroxylation mainly to trishydroxy and catechol methoxychlor (16 and 17%, resp.). About 34% of the metabolism and the distinct formation of trishydroxy and catechol methoxychlor were due to foreign enzyme CYP6G1. Furthermore, methoxychlor metabolism was inhibited by 43% after simultaneous addition of piperonyl butoxide (458 microg), whereas inhibition in the non-transgenic culture amounted to 92%. Additionally, the rate of glycosylation was reduced in both cultures. These results were supported by the inhibition of the metabolism of the insecticide imidacloprid (6; 20 microg, 24 h) in the Cyp6g1-transgenic culture by 82% in the presence of piperonyl butoxide (200 microg). Due to CYP6G1 being responsible for imidacloprid resistance of Drosophila or being involved in DDT resistance, it is likely that CYP6G1 conveys resistance to methoxychlor (1). Furthermore, treating Drosophila with piperonyl butoxide could weaken the observed resistance phenomena.

  12. Coupled effects of methane monooxygenase and nitrogen source on growth and poly-β-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b.

    Science.gov (United States)

    Zhang, Tingting; Zhou, Jiti; Wang, Xiaowei; Zhang, Yu

    2017-02-01

    The coupled effects of nitrogen source and methane monooxygenase (MMO) on the growth and poly-β-hydroxybutyrate (PHB) accumulation capacity of methanotrophs were explored. The ammonia-supplied methanotrophs expressing soluble MMO (sMMO) grew at the highest rate, while N 2 -fixing bacteria expressing particulate MMO (pMMO) grew at the lowest rate. Further study showed that more hydroxylamine and nitrite was formed by ammonia-supplied bacteria containing pMMO, which might cause their slightly lower growth rate. The highest PHB content (51.0%) was obtained under nitrogen-limiting conditions with the inoculation of nitrate-supplied bacteria containing pMMO. Ammonia-supplied bacteria also accumulated a higher content of PHB (45.2%) with the expression of pMMO, while N 2 -fixing bacteria containing pMMO only showed low PHB production capacity (32.1%). The maximal PHB contents of bacteria expressing sMMO were low, with no significant change under different nitrogen source conditions. The low MMO activity, low cell growth rate and low PHB production capacity of methanotrophs continuously cultivated with N 2 with the expression of pMMO were greatly improved in the cyclic NO 3 - N 2 cultivation regime, indicating that long-term deficiency of nitrogen sources was detrimental to the activity of methanotrophs expressing pMMO. Copyright © 2016. Published by Elsevier B.V.

  13. Neurological sequelae of bacterial meningitis

    NARCIS (Netherlands)

    Lucas, Marjolein J.; Brouwer, Matthijs C.; van de Beek, Diederik

    2016-01-01

    We reported on occurrence and impact of neurological sequelae after bacterial meningitis. We reviewed occurrence of neurological sequelae in children and adults after pneumococcal and meningococcal meningitis. Most frequently reported sequelae are focal neurological deficits, hearing loss, cognitive

  14. Bacterial tracheitis in Down's syndrome.

    OpenAIRE

    Cant, A J; Gibson, P J; West, R J

    1987-01-01

    Four children with Down's syndrome and bacterial tracheitis are described. In three the infection was due to Haemophilus influenza. In patients with Down's syndrome presenting with stridor tracheitis should be considered and appropriate treatment started.

  15. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  16. Bacterial flora of sturgeon fingerling

    International Nuclear Information System (INIS)

    Arani, A.S.; Mosahab, R.

    2008-01-01

    The study on microbial populations is a suitable tool to understand and apply control methods to improve the sanitary level of production in fish breeding and rearing centers, ensure health of sturgeon fingerlings at the time of their release into the rivers and also in the conversation and restoration of these valuable stocks in the Caspian Sea, Iran. A laboratory research based on Austin methods (Austin, B., Austin, D.A. 1993) was conducted for bacterial study on 3 sturgeon species naming A. persicus, A. stellatus and A. nudiventris during different growth stages. Bacterial flora of Acinetobacter, Moraxella, Aeromonas, Vibrio, Edwardsiella, Staphylococcus, Proteus, Yersinia, Pseudomonas and Plesiomonas were determined. The factors which may induce changes in bacterial populations during different stages of fife are the followings: quality of water in rearing ponds, different conditions for growth stages, suitable time for colonization of bacterial flora in rearing pond, water temperature increase in fingerlings size and feeding condition. (author)

  17. Bacterial translocation: impact of probiotics

    OpenAIRE

    Jeppsson, Bengt; Mangell, Peter; Adawi, Diya; Molin, Göran

    2004-01-01

    There is a considerable amount of data in humans showing that patients who cannot take in nutrients enterally have more organ failure in the intensive care unit, a less favourable prognosis, and a higher frequency of septicaemia, in particular involving bacterial species from the intestinal tract. However, there is little evidence that this is connected with translocation of bacterial species in humans. Animal data more uniformly imply the existence of such a connection. The main focus of thi...

  18. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L.; Caiut, Jose Mauricio A.

    2011-01-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  19. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  20. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  1. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains.

    Science.gov (United States)

    Sharp, Jonathan O; Wood, Thomas K; Alvarez-Cohen, Lisa

    2005-03-05

    The water contaminant N-nitrosodimethylamine (NDMA) is a probable human carcinogen whose appearance in the environment is related to the release of rocket fuel and to chlorine-based disinfection of water and wastewater. Although this compound has been shown to be biodegradable, there is minimal information about the organisms capable of this degradation, and little is understood of the mechanisms or biochemistry involved. This study shows that bacteria expressing monooxygenase enzymes functionally similar to those demonstrated to degrade NDMA in eukaryotes have the capability to degrade NDMA. Specifically, induction of the soluble methane monooxygenase (sMMO) expressed by Methylosinus trichosporium OB3b, the propane monooxygenase (PMO) enzyme of Mycobacterium vaccae JOB-5, and the toluene 4-monooxygenases found in Ralstonia pickettii PKO1 and Pseudomonas mendocina KR1 resulted in NDMA degradation by these strains. In each of these cases, brief exposure to acetylene gas, a suicide substrate for certain monooxygenases, inhibited the degradation of NDMA. Further, Escherichia coli TG1/pBS(Kan) containing recombinant plasmids derived from the toluene monooxygenases found in strains PKO1 and KR1 mimicked the behavior of the parent strains. In contrast, M. trichosporium OB3b expressing the particulate form of MMO, Burkholderia cepacia G4 expressing the toluene 2-monooxygenase, and Pseudomonas putida mt-2 expressing the toluene sidechain monooxygenase were not capable of NDMA degradation. In addition, bacteria expressing aromatic dioxygenases were not capable of NDMA degradation. Finally, Rhodococcus sp. RR1 exhibited the ability to degrade NDMA by an unidentified, constitutively expressed enzyme that, unlike the confirmed monooxygenases, was not inhibited by acetylene exposure. 2005 Wiley Periodicals, Inc.

  2. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    Science.gov (United States)

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  3. Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation.

    Science.gov (United States)

    Zhang, Yingying; Zhang, Baichen; Yan, Dawei; Dong, Weixin; Yang, Weibing; Li, Qun; Zeng, Longjun; Wang, Jianjun; Wang, Linyou; Hicks, Leslie M; He, Zuhua

    2011-07-01

    The rice gene ELONGATED UPPERMOST INTERNODE1 (EUI1) encodes a P450 monooxygenase that epoxidizes gibberellins (GAs) in a deactivation reaction. The Arabidopsis genome contains a tandemly duplicated gene pair ELA1 (CYP714A1) and ELA2 (CYP714A2) that encode EUI homologs. In this work, we dissected the functions of the two proteins. ELA1 and ELA2 exhibited overlapping yet distinct gene expression patterns. We showed that while single mutants of ELA1 or ELA2 exhibited no obvious morphological phenotype, simultaneous elimination of ELA1 and ELA2 expression in ELA1-RNAi/ela2 resulted in increased biomass and enlarged organs. By contrast, transgenic plants constitutively expressing either ELA1 or ELA2 were dwarfed, similar to those overexpressing the rice EUI gene. We also discovered that overexpression of ELA1 resulted in a severe dwarf phenotype, while overexpression of ELA2 gave rise to a breeding-favored semi-dwarf phenotype in rice. Consistent with the phenotypes, we found that the ELA1-RNAi/ela2 plants increased amounts of biologically active GAs that were decreased in the internodes of transgenic rice with ELA1 and ELA2 overexpression. In contrast, the precursor GA(12) slightly accumulated in the transgenic rice, and GA(19) highly accumulated in the ELA2 overexpression rice. Taken together, our study strongly suggests that the two Arabidopsis EUI homologs subtly regulate plant growth most likely through catalyzing deactivation of bioactive GAs similar to rice EUI. The two P450s may also function in early stages of the GA biosynthetic pathway. Our results also suggest that ELA2 could be an excellent tool for molecular breeding for high yield potential in cereal crops. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  4. The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion

    International Nuclear Information System (INIS)

    Leoni, Claudia; Buratti, Franca M.; Testai, Emanuela

    2008-01-01

    Although fenthion (FEN) is widely used as a broad spectrum insecticide on various crops in many countries, very scant data are available on its biotransformation in humans. In this study the in vitro human hepatic FEN biotransformation was characterized, identifying the relative contributions of cytochrome P450 (CYPs) and/or flavin-containing monooxygenase (FMOs) by using single c-DNA expressed human enzymes, human liver microsomes and cytosol and CYP/FMO-specific inhibitors. Two major metabolites, FEN-sulfoxide and FEN-oxon (FOX), are formed by some CYPs although at very different levels, depending on the relative CYP hepatic content. Formation of further oxidation products and the reduction of FEN-sulfoxide back to FEN by the cytosolic aldehyde oxidase enzyme were ruled out. Comparing intrinsic clearance values, FOX formation seemed to be favored and at low FEN concentrations CYP2B6 and 1A2 are mainly involved in its formation. At higher levels, a more widespread CYP involvement was evident, as in the case of FEN-sulfoxide, although a higher efficiency of CYP2C family was suggested. Hepatic FMOs were able to catalyze only sulfoxide formation, but at low FEN concentrations hepatic FEN sulfoxidation is predominantly P450-driven. Indeed, the contribution of the hepatic isoforms FMO 3 and FMO 5 was generally negligible, although at high FEN concentrations FMO's showed activities comparable to the active CYPs, accounting for up to 30% of total sulfoxidation. Recombinant FMO 1 showed the highest efficiency with respect to CYPs and the other FMOs, but it is not expressed in the adult human liver. This suggests that FMO 1 -catalysed sulfoxidation may represent the major extra-hepatic pathway of FEN biotransformation

  5. A histidine-rich linker region in peptidylglycine α-amidating monooxygenase has the properties of a pH sensor.

    Science.gov (United States)

    Vishwanatha, Kurutihalli; Bäck, Nils; Mains, Richard E; Eipper, Betty A

    2014-05-02

    Decreasing luminal pH is thought to play a role in the entry of newly synthesized and endocytosed membrane proteins into secretory granules. The two catalytic domains of peptidylglycine α-amidating monooxygenase (PAM), a type I integral membrane protein, catalyze the sequential reactions that convert peptidyl-Gly substrates into amidated products. We explored the hypothesis that a conserved His-rich cluster (His-Gly-His-His) in the linker region connecting its two catalytic domains senses pH and affects PAM trafficking by mutating these His residues to Ala (Ala-Gly-Ala-Ala; H3A). Purified recombinant wild-type and H3A linker peptides were examined using circular dichroism and tryptophan fluorescence; mutation of the His cluster largely eliminated its pH sensitivity. An enzymatically active PAM protein with the same mutations (PAM-1/H3A) was expressed in HEK293 cells and AtT-20 corticotrope tumor cells. Metabolic labeling followed by immunoprecipitation revealed more rapid loss of newly synthesized PAM-1/H3A than PAM-1; although release of newly synthesized monofunctional PHM/H3A was increased, release of soluble bifunctional PAM/H3A, a product of the endocytic pathway, was decreased. Surface biotinylation revealed rapid loss of PAM-1/H3A, with no detectable return of the mutant protein to secretory granules. Consistent with its altered endocytic trafficking, little PAM-1/H3A was subjected to regulated intramembrane proteolysis followed by release of a small nuclear-targeted cytosolic fragment. AtT-20 cells expressing PAM-1/H3A adopted the morphology of wild-type AtT-20 cells; secretory products no longer accumulated in the trans-Golgi network and secretory granule exocytosis was more responsive to secretagogue.

  6. Predicting the Metabolic Sites by Flavin-Containing Monooxygenase on Drug Molecules Using SVM Classification on Computed Quantum Mechanics and Circular Fingerprints Molecular Descriptors.

    Directory of Open Access Journals (Sweden)

    Chien-Wei Fu

    Full Text Available As an important enzyme in Phase I drug metabolism, the flavin-containing monooxygenase (FMO also metabolizes some xenobiotics with soft nucleophiles. The site of metabolism (SOM on a molecule is the site where the metabolic reaction is exerted by an enzyme. Accurate prediction of SOMs on drug molecules will assist the search for drug leads during the optimization process. Here, some quantum mechanics features such as the condensed Fukui function and attributes from circular fingerprints (called Molprint2D are computed and classified using the support vector machine (SVM for predicting some potential SOMs on a series of drugs that can be metabolized by FMO enzymes. The condensed Fukui function fA- representing the nucleophilicity of central atom A and the attributes from circular fingerprints accounting the influence of neighbors on the central atom. The total number of FMO substrates and non-substrates collected in the study is 85 and they are equally divided into the training and test sets with each carrying roughly the same number of potential SOMs. However, only N-oxidation and S-oxidation features were considered in the prediction since the available C-oxidation data was scarce. In the training process, the LibSVM package of WEKA package and the option of 10-fold cross validation are employed. The prediction performance on the test set evaluated by accuracy, Matthews correlation coefficient and area under ROC curve computed are 0.829, 0.659, and 0.877 respectively. This work reveals that the SVM model built can accurately predict the potential SOMs for drug molecules that are metabolizable by the FMO enzymes.

  7. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Directory of Open Access Journals (Sweden)

    Martina eCappelletti

    2015-05-01

    Full Text Available Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from butane metabolism. Two gene clusters, prmABCD and smoABCD – coding for soluble di-iron monooxgenases (SDIMOs involved in gaseous n-alkanes oxidation – were detected in the BCP1 genome. By means of reverse transcriptase-quantitative PCR (RT-qPCR analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids or during the cell growth on rich medium (Luria Bertani broth. The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane and/or liquid (n-hexane short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step.

  8. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Science.gov (United States)

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  9. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    Science.gov (United States)

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma?

    Science.gov (United States)

    Connor, Thomas J; Starr, Neasa; O'Sullivan, Joan B; Harkin, Andrew

    2008-08-15

    Inflammation-mediated dysregulation of the kynurenine pathway has been implicated as a contributor to a number of major brain disorders. Consequently, we examined the impact of a systemic inflammatory challenge on kynurenine pathway enzyme expression in rat brain. Indoleamine 2,3-dioxygenase (IDO) expression was induced in cortex and hippocampus following systemic lipopolysaccharide (LPS) administration. Whilst IDO expression was paralleled by increased circulating interferon (IFN)-gamma concentrations, IFN-gamma expression in the brain was only modestly altered following LPS administration. In contrast, induction of IDO was associated with increased central tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 expression. Similarly, in cultured glial cells LPS-induced IDO expression was accompanied by increased TNF-alpha and IL-6 expression, whereas IFN-gamma was not detectable. These findings indicate that IFN-gamma is not required for LPS-induced IDO expression in brain. A robust increase in kynurenine-3-monooxygenase (KMO) expression was observed in rat brain 24h post LPS, without any change in kynurenine aminotransferase II (KAT II) expression. In addition, we report that constitutive expression of KAT II is approximately 8-fold higher than KMO in cortex and 20-fold higher in hippocampus. Similarly, in glial cells constitutive expression of KAT II was approximately 16-fold higher than KMO, and expression of KMO but not KAT II was induced by LPS. These data are the first to demonstrate that a systemic inflammatory challenge stimulates KMO expression in brain; a situation that is likely to favour kynurenine metabolism in a neurotoxic direction. However, our observation that expression of KAT II is much higher than KMO in rat brain is likely to counteract potential neurotoxicity that could arise from KMO induction following an acute inflammation.

  11. Development of a Surface Plasmon Resonance Assay for the Characterization of Small-Molecule Binding Kinetics and Mechanism of Binding to Kynurenine 3-Monooxygenase.

    Science.gov (United States)

    Poda, Suresh B; Kobayashi, Masakazu; Nachane, Ruta; Menon, Veena; Gandhi, Adarsh S; Budac, David P; Li, Guiying; Campbell, Brian M; Tagmose, Lena

    2015-10-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway, was identified as a potential therapeutic target for treating neurodegenerative and psychiatric disorders. In this article, we describe a surface plasmon resonance (SPR) assay that delivers both kinetics and the mechanism of binding (MoB) data, enabling a detailed characterization of KMO inhibitors for the enzyme in real time. SPR assay development included optimization of the protein construct and the buffer conditions. The stability and inhibitor binding activity of the immobilized KMO were significantly improved when the experiments were performed at 10°C using a buffer containing 0.05% n-dodecyl-β-d-maltoside (DDM) as the detergent. The KD values of the known KMO inhibitors (UPF648 and RO61-8048) from the SPR assay were in good accordance with the biochemical LC/MS/MS assay. Also, the SPR assay was able to differentiate the binding kinetics (k(a) and k(d)) of the selected unknown KMO inhibitors. For example, the inhibitors that showed comparable IC50 values in the LC/MS/MS assay displayed differences in their residence time (τ = 1/k(d)) in the SPR assay. To better define the MoB of the inhibitors to KMO, an SPR-based competition assay was developed, which demonstrated that both UPF648 and RO61-8048 bound to the substrate-binding site. These results demonstrate the potential of the SPR assay for characterizing the affinity, the kinetics, and the MoB profiles of the KMO inhibitors.

  12. Use of isotope effects to characterize intermediates in mechanism-based inactivation of dopamine beta-monooxygenase by beta-chlorophenethylamine

    International Nuclear Information System (INIS)

    Bossard, M.J.; Klinman, J.P.

    1990-01-01

    A mechanism for beta-chlorophenethylamine inhibition of dopamine beta-monooxygenase has been postulated in which bound alpha-aminoacetophenone is generated followed by an intramolecular redox reaction to yield a ketone-derived radical cation as the inhibitory species. Based on the assumption that the ketone radical is the inhibitory intermediate, an analogous system was predicted and verified. In the present study, the role of alpha-aminoacetophenone as the proposed intermediate in the inactivation by beta-chlorophenethylamine was examined in greater detail. From the interdependence of tyramine and alpha-aminoacetophenone concentrations, ketone inactivation is concluded to occur at the substrate site as opposed to potential binding at the reductant-binding site. Using beta-[2-1H]- and beta-[2-2H]chlorophenethylamine, the magnitude of the deuterium isotope effect on inactivation under second-order conditions has been found to be identical to that observed under catalytic turnover, D(kappa inact/Ki) = D(kappa cat/Km) = 6-7. By contrast, the isotope effect on inactivation under conditions of substrate and oxygen saturation, D kappa inact = 2, is 3-fold smaller than that seen on catalytic turnover, D kappa cat = 6. This reduced isotope effect for inactivation is attributed to a normal isotope effect on substrate hydroxylation followed by an inverse isotope effect on the partitioning of the enol of alpha-aminoacetophenone between oxidation to a radical cation versus protonation to regenerate ketone. These findings are unusual in that two isotopically sensitive steps are present in the inactivation pathway whereas only one is observable in turnover

  13. Identification of the Regulator Gene Responsible for the Acetone-Responsive Expression of the Binuclear Iron Monooxygenase Gene Cluster in Mycobacteria ▿

    Science.gov (United States)

    Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847

  14. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

    Science.gov (United States)

    Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G

    2017-09-01

    Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.

  15. The peptidylglycine-α-amidating monooxygenase (PAM) gene rs13175330 A>G polymorphism is associated with hypertension in a Korean population.

    Science.gov (United States)

    Yoo, Hye Jin; Kim, Minjoo; Kim, Minkyung; Chae, Jey Sook; Lee, Sang-Hyun; Lee, Jong Ho

    2017-11-21

    Peptidylglycine-α-amidating monooxygenase (PAM) may play a role in the secretion of atrial natriuretic peptide (ANP), which is a hormone involved in the maintenance of blood pressure (BP). The objective of the present study was to determine whether PAM is a novel candidate gene for hypertension (HTN). A total of 2153 Korean participants with normotension and HTN were included. Genotype data were obtained using the Korean Chip. The rs13175330 polymorphism of the PAM gene was selected from the ten single nucleotide polymorphisms (SNPs) most strongly associated with BP. The presence of the G allele of the PAM rs13175330 A>G SNP was associated with a higher risk of HTN after adjustments for age, sex, BMI, smoking, and drinking [OR 1.607 (95% CI 1.220-2.116), p = 0.001]. The rs13175330 G allele carriers in the HTN group treated without antihypertensive therapy (HTN w/o therapy) had significantly higher systolic and diastolic BP than the AA carriers, whereas the G allele carriers in the HTN group treated with antihypertensive therapy (HTN w/ therapy) showed significantly higher diastolic BP. Furthermore, rs13175330 G allele carriers in the HTN w/o therapy group had significantly increased levels of insulin, insulin resistance, and oxidized low-density lipoprotein (LDL) and significantly decreased LDL-cholesterol levels and LDL particle sizes compared to the AA carriers. These results suggest that the PAM rs13175330 A>G SNP is a novel candidate gene for HTN in the Korean population. Additionally, the PAM rs13175330 G allele might be associated with insulin resistance and LDL atherogenicity in patients with HTN.

  16. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing [Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala Sweden; Kognole, Abhishek A. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington KY USA; Wu, Miao [Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala Sweden; Westereng, Bjørge [Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås Norway; Crowley, Michael F. [Biosciences Center, National Renewable Energy Laboratory, Golden CO USA; Kim, Seonah [Biosciences Center, National Renewable Energy Laboratory, Golden CO USA; Dimarogona, Maria [Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala Sweden; Department of Chemical Engineering, University of Patras, Greece; Payne, Christina M. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington KY USA; Directorate of Engineering, Division of Chemical, Bioengineering, Environmental, and Transport Systems, National Science Foundation, Alexandria VA USA; Sandgren, Mats [Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala Sweden

    2018-04-24

    Lytic polysaccharide monooxygenases (LPMOs) are a group of recently discovered enzymes that play important roles in the decomposition of recalcitrant polysaccharides. Here, we report the biochemical, structural, and computational characterization of an LPMO from the white-rot fungus Heterobasidion irregulare (HiLPMO9B). This enzyme oxidizes cellulose at the C1 carbon of glycosidic linkages. The crystal structure of HiLPMO9B was determined at 2.1 A resolution using X-ray crystallography. Unlike the majority of the currently available C1-specific LPMO structures, the HiLPMO9B structure contains an extended L2 loop, connecting ..beta..-strands ..beta..2 and ..beta..3 of the ..beta..-sandwich structure. Molecular dynamics (MD) simulations suggest roles for both aromatic and acidic residues in the substrate binding of HiLPMO9B, with the main contribution from the residues located on the extended region of the L2 loop (Tyr20) and the LC loop (Asp205, Tyr207, and Glu210). Asp205 and Glu210 were found to be involved in the hydrogen bonding with the hydroxyl group of the C6 carbon of glucose moieties directly or via a water molecule. Two different binding orientations were observed over the course of the MD simulations. In each orientation, the active-site copper of this LPMO preferentially skewed toward the pyranose C1 of the glycosidic linkage over the targeted glycosidic bond. This study provides additional insight into cellulose binding by C1-specific LPMOs, giving a molecular-level picture of active site substrate interactions.

  17. Human plasma metabolic profiles of benzydamine, a flavin-containing monooxygenase probe substrate, simulated with pharmacokinetic data from control and humanized-liver mice.

    Science.gov (United States)

    Yamazaki-Nishioka, Miho; Shimizu, Makiko; Suemizu, Hiroshi; Nishiwaki, Megumi; Mitsui, Marina; Yamazaki, Hiroshi

    2018-02-01

    1. Benzydamine is used clinically as a nonsteroidal anti-inflammatory drug in oral rinses and is employed in preclinical research as a flavin-containing monooxygenase (FMO) probe substrate. In this study, plasma concentrations of benzydamine and its primary N-oxide and N-demethylated metabolites were investigated in control TK-NOG mice, in humanized-liver mice, and in mice whose liver cells had been ablated with ganciclovir. 2. Following oral administration of benzydamine (10 mg/kg) in humanized-liver TK-NOG mice, plasma concentrations of benzydamine N-oxide were slightly higher than those of demethyl benzydamine. In contrast, in control and ganciclovir-treated TK-NOG mice, concentrations of demethyl benzydamine were slightly higher than those of benzydamine N-oxide. 3. Simulations of human plasma concentrations of benzydamine and its N-oxide were achieved using simplified physiologically based pharmacokinetic models based on data from control TK-NOG mice and from reported benzydamine concentrations after low-dose administration in humans. Estimated clearance rates based on data from humanized-liver and ganciclovir-treated TK-NOG mice were two orders magnitude high. 4. The pharmacokinetic profiles of benzydamine were different for control and humanized-liver TK-NOG mice. Humanized-liver mice are generally accepted human models; however, drug oxidation in mouse kidney might need to be considered when probe substrates undergo FMO-dependent drug oxidation in mouse liver and kidney.

  18. The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3.

    Science.gov (United States)

    Nikodinovic-Runic, Jasmina; Coulombel, Lydie; Francuski, Djordje; Sharma, Narain D; Boyd, Derek R; Ferrall, Rory Moore O; O'Connor, Kevin E

    2013-06-01

    Nine different sulfur-containing compounds were biotransformed to the corresponding sulfoxides by Escherichia coli Bl21(DE3) cells expressing styrene monooxygenase (SMO) from Pseudomonas putida CA-3. Thioanisole was consumed at 83.3 μmoles min(-1) g cell dry weight(-1) resulting mainly in the formation of R-thioanisole sulfoxide with an enantiomeric excess (ee) value of 45 %. The rate of 2-methyl-, 2-chloro- and 2-bromo-thioanisole consumption was 2-fold lower than that of thioanisole. Surprisingly, the 2-methylthioanisole sulfoxide product had the opposite (S) configuration to that of the other 2-substituted thioanisole derivatives and had a higher ee value (84 %). The rate of oxidation of 4-substituted thioanisoles was higher than the corresponding 2-substituted substrates but the ee values of the products were consistently lower (10-23 %). The rate of benzo[b]thiophene and 2-methylbenzo[b]thiophene sulfoxidation was approximately 10-fold lower than that of thioanisole. The ee value of the benzo[b]thiophene sulfoxide could not be determined as the product racemized rapidly. E. coli cells expressing an engineered SMO (SMOeng R3-11) oxidised 2-substituted thioanisoles between 1.8- and 2.8-fold faster compared to cells expressing the wild-type enzyme. SMOeng R3-11 oxidised benzo[b]thiophene and 2-methylbenzo[b]thiophene 10.1 and 5.6 times faster that the wild-type enzyme. The stereospecificity of the reaction catalysed by SMOeng was unchanged from that of the wild type. Using the X-ray crystal structure of the P. putida S12 SMO, it was evident that the entrance of substrates into the SMO active site is limited by the binding pocket bottleneck formed by the side chains of Val-211 and Asn-46 carboxyamide group.

  19. Abdominal radiation causes bacterial translocation

    International Nuclear Information System (INIS)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-01-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa

  20. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  1. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  2. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    KAUST Repository

    Bagchi, Samik

    2014-12-05

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  3. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    KAUST Repository

    Bagchi, Samik; Vlaeminck, Siegfried E.; Sauder, Laura A.; Mosquera, Mariela; Neufeld, Josh D.; Boon, Nico; Poulain, Alexandre

    2014-01-01

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  4. Community Composition and Transcriptional Activity of Ammonia-Oxidizing Prokaryotes of Seagrass Thalassia hemprichii in Coral Reef Ecosystems

    Directory of Open Access Journals (Sweden)

    Juan Ling

    2018-01-01

    Full Text Available Seagrasses in coral reef ecosystems play important ecological roles by enhancing coral reef resilience under ocean acidification. However, seagrass primary productivity is typically constrained by limited nitrogen availability. Ammonia oxidation is an important process conducted by ammonia-oxidizing archaea (AOA and bacteria (AOB, yet little information is available concerning the community structure and potential activity of seagrass AOA and AOB. Therefore, this study investigated the variations in the abundance, diversity and transcriptional activity of AOA and AOB at the DNA and transcript level from four sample types: the leaf, root, rhizosphere sediment and bulk sediment of seagrass Thalassia hemprichii in three coral reef ecosystems. DNA and complementary DNA (cDNA were used to prepare clone libraries and DNA and cDNA quantitative PCR (qPCR assays, targeting the ammonia monooxygenase-subunit (amoA genes as biomarkers. Our results indicated that the closest relatives of the obtained archaeal and bacterial amoA gene sequences recovered from DNA and cDNA libraries mainly originated from the marine environment. Moreover, all the obtained AOB sequences belong to the Nitrosomonadales cluster. Nearly all the AOA communities exhibited higher diversity than the AOB communities at the DNA level, but the qPCR data demonstrated that the abundances of AOB communities were higher than that of AOA communities based on both DNA and RNA transcripts. Collectively, most of the samples shared greater community composition similarity with samples from the same location rather than sample type. Furthermore, the abundance of archaeal amoA gene in rhizosphere sediments showed significant relationships with the ammonium concentration of sediments and the nitrogen content of plant tissue (leaf and root at the DNA level (P < 0.05. Conversely, no such relationships were found for the AOB communities. This work provides new insight into the nitrogen cycle

  5. Bacterial computing with engineered populations.

    Science.gov (United States)

    Amos, Martyn; Axmann, Ilka Maria; Blüthgen, Nils; de la Cruz, Fernando; Jaramillo, Alfonso; Rodriguez-Paton, Alfonso; Simmel, Friedrich

    2015-07-28

    We describe strategies for the construction of bacterial computing platforms by describing a number of results from the recently completed bacterial computing with engineered populations project. In general, the implementation of such systems requires a framework containing various components such as intracellular circuits, single cell input/output and cell-cell interfacing, as well as extensive analysis. In this overview paper, we describe our approach to each of these, and suggest possible areas for future research. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15'-monooxygenase.

    Directory of Open Access Journals (Sweden)

    Eamonn P Culligan

    Full Text Available The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.

  7. Community-acquired bacterial meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; Brouwer, Matthijs; Hasbun, Rodrigo; Koedel, Uwe; Whitney, Cynthia G.; Wijdicks, Eelco

    2016-01-01

    Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma

  8. Food irradiation and bacterial toxins

    International Nuclear Information System (INIS)

    Tranter, H.S.; Modi, N.K.; Hambleton, P.; Melling, J.; Rose, S.; Stringer, M.F.

    1987-01-01

    The authors' findings indicate that irradiation confers no advantage over heat processing in respect of bacterial toxins (clostridium botulinum, neurotoxin A and staphylococcal enterotoxin A). It follows that irradiation at doses less than the ACINF recommended upper limit of 10 kGy could not be used to improve the ambient temperature shelf life on non-acid foods. (author)

  9. How carotenoids protect bacterial photosynthesis.

    OpenAIRE

    Cogdell, R J; Howard, T D; Bittl, R; Schlodder, E; Geisenheimer, I; Lubitz, W

    2000-01-01

    The essential function of carotenoids in photosynthesis is to act as photoprotective agents, preventing chlorophylls and bacteriochlorophylls from sensitizing harmful photodestructive reactions in the presence of oxygen. Based upon recent structural studies on reaction centres and antenna complexes from purple photosynthetic bacteria, the detailed organization of the carotenoids is described. Then with specific reference to bacterial antenna complexes the details of the photoprotective role, ...

  10. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  11. bacterial flora and antibiotic sensitivity

    African Journals Online (AJOL)

    Purulent pelvic collections are common pathologies observed in contemporary gynaecological practice. They may originate from chronic pelvic inflammatory disease, from abortions or following normal deliveries. This study was designed to compare the bacterial flora in purulent pelvic collections obtained from HIV infected ...

  12. Prostatitis-bacterial - self-care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000395.htm Prostatitis - bacterial - self-care To use the sharing features ... enable JavaScript. You have been diagnosed with bacterial prostatitis . This is an infection of the prostate gland. ...

  13. Adjunctive Corticosteroids in Adults with Bacterial Meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; de Gans, Jan

    2005-01-01

    Bacterial meningitis is a complex disorder in which neurologic injury is caused, in part, by the causative organism and, in part, by the host's own inflammatory response. In studies of experimental bacterial meningitis, adjuvant treatment with corticosteroids, specifically dexamethasone, has

  14. Antimicrobial susceptibility in community-acquired bacterial ...

    African Journals Online (AJOL)

    Objectives: To determine the antimicrobial susceptibility patterns of Streptococcus pneumoniae and Haemophilus influenzae, two bacterial pathogens commonly associated with communityacquired pneumonia. Design: Cross-sectional study. Setting: Bacterial isolates were obtained from adults suspected to have ...

  15. Endocarditis in adults with bacterial meningitis

    NARCIS (Netherlands)

    Lucas, Marjolein J.; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2013-01-01

    Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with

  16. Bacterial cells with improved tolerance to polyamines

    DEFF Research Database (Denmark)

    2017-01-01

    Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds.......Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds....

  17. Bacterial cells with improved tolerance to polyols

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds.......The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds....

  18. Isolation and characterization of two new methanesulfonic acid-degrading bacterial isolates from a Portuguese soil sample.

    Science.gov (United States)

    De Marco, P; Murrell, J C; Bordalo, A A; Moradas-Ferreira, P

    2000-02-01

    Two novel bacterial strains that can utilize methanesulfonic acid as a source of carbon and energy were isolated from a soil sample collected in northern Portugal. Morphological, physiological, biochemical and molecular biological characterization of the two isolates indicate that strain P1 is a pink-pigmented facultative methylotroph belonging to the genus Methylobacterium, while strain P2 is a restricted methylotroph belonging to the genus Hyphomicrobium. Both strains are strictly aerobic, degrade methanesulfonate, and release small quantities of sulfite into the medium. Growth on methanesulfonate induces a specific polypeptide profile in each strain. This, together with the positive hybridization to a DNA probe that carries the msm genes of Methylosulfonomonas methylovora strain M2, strongly endorses the contention that a methanesulfonic acid monooxygenase related to that found in the previously known methanesulfonate-utilizing bacteria is present in strains P1 and P2. The isolation of bacteria containing conserved msm genes from diverse environments and geographical locations supports the hypothesis that a common enzyme may be globally responsible for the oxidation of methanesulfonate by natural methylotrophic communities.

  19. The Bacterial Sequential Markov Coalescent.

    Science.gov (United States)

    De Maio, Nicola; Wilson, Daniel J

    2017-05-01

    Bacteria can exchange and acquire new genetic material from other organisms directly and via the environment. This process, known as bacterial recombination, has a strong impact on the evolution of bacteria, for example, leading to the spread of antibiotic resistance across clades and species, and to the avoidance of clonal interference. Recombination hinders phylogenetic and transmission inference because it creates patterns of substitutions (homoplasies) inconsistent with the hypothesis of a single evolutionary tree. Bacterial recombination is typically modeled as statistically akin to gene conversion in eukaryotes, i.e. , using the coalescent with gene conversion (CGC). However, this model can be very computationally demanding as it needs to account for the correlations of evolutionary histories of even distant loci. So, with the increasing popularity of whole genome sequencing, the need has emerged for a faster approach to model and simulate bacterial genome evolution. We present a new model that approximates the coalescent with gene conversion: the bacterial sequential Markov coalescent (BSMC). Our approach is based on a similar idea to the sequential Markov coalescent (SMC)-an approximation of the coalescent with crossover recombination. However, bacterial recombination poses hurdles to a sequential Markov approximation, as it leads to strong correlations and linkage disequilibrium across very distant sites in the genome. Our BSMC overcomes these difficulties, and shows a considerable reduction in computational demand compared to the exact CGC, and very similar patterns in simulated data. We implemented our BSMC model within new simulation software FastSimBac. In addition to the decreased computational demand compared to previous bacterial genome evolution simulators, FastSimBac provides more general options for evolutionary scenarios, allowing population structure with migration, speciation, population size changes, and recombination hotspots. FastSimBac is

  20. Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Eom, Hyun-Jeong; Ahn, Jeong-Min; Kim, Younghun; Choi, Jinhee

    2013-01-01

    In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression of the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO 3 in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO 3 did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO 3 . These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO 3 . • HIF-1 and PMK-1 were needed for AgNPs- and AgNO 3 -induced fmo-2 gene expression. • PMK-1–HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO 3 did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal amount of silver mass contained

  1. Kynurenine 3-Monooxygenase Gene Associated With Nicotine Initiation and Addiction: Analysis of Novel Regulatory Features at 5′ and 3′-Regions

    Directory of Open Access Journals (Sweden)

    Hassan A. Aziz

    2018-06-01

    Full Text Available Tobacco smoking is widespread behavior in Qatar and worldwide and is considered one of the major preventable causes of ill health and death. Nicotine is part of tobacco smoke that causes numerous health risks and is incredibly addictive; it binds to the α7 nicotinic acetylcholine receptor (α7nAChR in the brain. Recent studies showed α7nAChR involvement in the initiation and addiction of smoking. Kynurenic acid (KA, a significant tryptophan metabolite, is an antagonist of α7nAChR. Inhibition of kynurenine 3-monooxygenase enzyme encoded by KMO enhances the KA levels. Modulating KMO gene expression could be a useful tactic for the treatment of tobacco initiation and dependence. Since KMO regulation is still poorly understood, we aimed to investigate the 5′ and 3′-regulatory factors of KMO gene to advance our knowledge to modulate KMO gene expression. In this study, bioinformatics methods were used to identify the regulatory sequences associated with expression of KMO. The displayed differential expression of KMO mRNA in the same tissue and different tissues suggested the specific usage of the KMO multiple alternative promoters. Eleven KMO alternative promoters identified at 5′-regulatory region contain TATA-Box, lack CpG Island (CGI and showed dinucleotide base-stacking energy values specific to transcription factor binding sites (TFBSs. The structural features of regulatory sequences can influence the transcription process and cell type-specific expression. The uncharacterized LOC105373233 locus coding for non-coding RNA (ncRNA located on the reverse strand in a convergent manner at the 3′-side of KMO locus. The two genes likely expressed by a promoter that lacks TATA-Box harbor CGI and two TFBSs linked to the bidirectional transcription, the NRF1, and ZNF14 motifs. We identified two types of microRNA (miR in the uncharacterized LOC105373233 ncRNA, which are like hsa-miR-5096 and hsa-miR-1285-3p and can target the miR recognition

  2. Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyun-Jeong; Ahn, Jeong-Min [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of); Kim, Younghun [Department of Chemical Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701 (Korea, Republic of); Choi, Jinhee, E-mail: jinhchoi@uos.ac.kr [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of)

    2013-07-15

    In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression of the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO{sub 3} in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO{sub 3} did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO{sub 3}. These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO{sub 3}. • HIF-1 and PMK-1 were needed for AgNPs- and AgNO{sub 3}-induced fmo-2 gene expression. • PMK-1–HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO{sub 3} did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal

  3. Detection of toxic effects of Cd{sup 2+} on different fish species via liver cytochrome P450-dependent monooxygenase activities and FTIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Henczova, Maria; Deer, Aranka Kiss [University of Szeged, Department of Biochemistry, P.O. Box 533, Szeged (Hungary); Komlosi, Viktoria [Chemical Research Center of the Hungarian Academy of Sciences, Department of Molecular Spectroscopy, P.O. Box 17, Budapest (Hungary); Mink, Janos [Chemical Research Center of the Hungarian Academy of Sciences, Department of Molecular Spectroscopy, P.O. Box 17, Budapest (Hungary); University of Veszprem, Faculty of Information Technology, Research Institute of Chemistry and Process Engineering; Analytical Chemistry Research Group of the Hungarian Academy of Sciences, P.O. Box 158, Veszprem (Hungary)

    2006-06-15

    The in vivo and in vitro effects of Cd{sup 2+} and the CYP1A inductor {beta}-naphthoflavone({beta}-NF) on the hepatic cytochrome P450 (Cyt 450) monooxygenases were studied in silver carp (Hypophthalmichtys molitrix V.), wels (Silurus glanis L.), and carp (Cyprinus carpio). In vivo treatment of carp with a high dose of Cd{sup 2+} (10 mg kg{sup -1}, for 3 days) caused a strong inhibition of 7-ethoxyresorufin-O-deethylase (EROD) and a lower inhibition of 7-ethoxycoumarin-O-deethylase (ECOD) activity. The low-dose cadmium treatment (2 mg kg{sup -1} Cd{sup 2+}, for 6+3 days) resulted in 4-fold increase in EROD and a 3-fold increase in ECOD activity. The combined treatment with Cd{sup 2+} and {beta}-NF in both cases led to a loss of EROD inducibility. The silver carp and wels were treated with 10 mg L{sup -1} Cd{sup 2+} for 72 h in water. The Cyt P450 content in the wels liver microsomes was increased significantly after treatment for 48 h, whereas there was only a slight, not significant increase in Cyt P450 content in the silver carp microsomes. While the Cd{sup 2+} treatment resulted in inhibition of the CYP1A isoenzymes (EROD and ECOD), the APND (aminopyrene-N-demethylase, CYP2B or CYP3A isoenzyme) activity was increased 3- to 4-fold in both fish species. In vitro experiments of the effect of Cd{sup 2+} led to a concentration-dependent inhibition in all three investigated fish species. The ECOD isoenzyme of silver carp was the most sensitive to Cd{sup 2+}. The lowest concentration of Cd{sup 2+} resulted in 50% inhibition. The APND isoenzyme was similarly sensitive to Cd{sup 2+} in all three investigated fish species. The most sensitive species was the wels, and the least sensitive were the carp isoenzyme. FTIR spectroscopy confirmed that cadmium caused damage to the protein structure. These results support the enzyme activity measurements measured in vivo and in vitro. (orig.)

  4. Bacterial reproductive pathogens of cats and dogs.

    Science.gov (United States)

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  5. Facile N-oxygenation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by the flavin-containing monooxygenase. A convenient synthesis of tritiated [methyl-3H]-4-phenyl-2,3-dihydropyridinium species

    International Nuclear Information System (INIS)

    Cashman, J.R.

    1988-01-01

    A rapid, efficient procedure useful for the radiosynthesis of [Me- 3 H]-MPDP+ ([methyl- 3 H]-4-phenyl-2,3-dihydropyridinium species) is described. Hog liver microsomes or the highly purified flavin-containing monooxygenase from hog liver quantitatively biotransforms [Me- 3 H]-MPTP to its corresponding radiolabeled N-oxide. For the small-scale synthesis required for radiolabeling procedures, this enzymatic process is superior to H 2 O 2 -mediated N-oxygenation of MPTP. In the presence of 0.5 mM NADPH, 4.5 mM n-octylamine, and 2 microCi [Me- 3 H]-MPTP, the only product detected in extracts from incubations performed with hog liver microsomes or purified hog liver flavin-containing monooxygenase is [Me- 3 H]-MPTP N-oxide. [Me- 3 H]-MPTP N-oxide is almost completely converted to [Me- 3 H]-MPDP+ by the action of trifluoroacetic anhydride. This procedure has the advantage of using a commercially available tritiated starting material, efficient transformations, and easily accomplished purification to afford a rapid synthesis of [Me- 3 H]-MPDP+

  6. Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge.

    Directory of Open Access Journals (Sweden)

    Reti Hai

    Full Text Available BACKGROUND: The increasing use of multiwalled carbon nanotubes (MWCNTs will inevitably lead to the exposure of wastewater treatment facilities. However, knowledge of the impacts of MWCNTs on wastewater nutrient removal and bacterial community structure in the activated sludge process is sparse. AIMS: To investigate the effects of MWCNTs on wastewater nutrient removal, and bacterial community structure in activated sludge. METHODS: Three triplicate sequencing batch reactors (SBR were exposed to wastewater which contained 0, 1, and 20 mg/L MWCNTs. MiSeq sequencing was used to investigate the bacterial community structures in activated sludge samples which were exposed to different concentrations of MWCNTs. RESULTS: Exposure to 1 and 20 mg/L MWCNTs had no acute (1 day impact on nutrient removal from wastewater. After long-term (180 days exposure to 1 mg/L MWCNTs, the average total nitrogen (TN removal efficiency was not significantly affected. TN removal efficiency decreased from 84.0% to 71.9% after long-term effects of 20 mg/L MWCNTs. After long-term exposure to 1 and 20 mg/L MWCNTs, the total phosphorus removal efficiencies decreased from 96.8% to 52.3% and from 98.2% to 34.0% respectively. Further study revealed that long-term exposure to 20 mg/L MWCNTs inhibited activities of ammonia monooxygenase and nitrite oxidoreductase. Long-term exposure to 1 and 20 mg/L MWCNTs both inhibited activities of exopolyphosphatase and polyphosphate kinase. MiSeq sequencing data indicated that 20 mg/L MWCNTs significantly decreased the diversity of bacterial community in activated sludge. Long-term exposure to 1 and 20 mg/L MWCNTs differentially decreased the abundance of nitrifying bacteria, especially ammonia-oxidizing bacteria. The abundance of PAOs was decreased after long-term exposure to 20 mg/L MWCNTs. The abundance of glycogen accumulating organisms (GAOs was increased after long-term exposure to 1 mg/L MWCNTs. CONCLUSION: MWCNTs have adverse effects on

  7. Bacterial cheating limits antibiotic resistance

    Science.gov (United States)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  8. Bacterial streamers in curved microchannels

    Science.gov (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2009-11-01

    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  9. Collective Functionality through Bacterial Individuality

    Science.gov (United States)

    Ackermann, Martin

    According to the conventional view, the properties of an organism are a product of nature and nurture - of its genes and the environment it lives in. Recent experiments with unicellular organisms have challenged this view: several molecular mechanisms generate phenotypic variation independently of environmental signals, leading to variation in clonal groups. My presentation will focus on the causes and consequences of this microbial individuality. Using examples from bacterial genetic model systems, I will first discuss different molecular and cellular mechanisms that give rise to bacterial individuality. Then, I will discuss the consequences of individuality, and focus on how phenotypic variation in clonal populations of bacteria can promote interactions between individuals, lead to the division of labor, and allow clonal groups of bacteria to cope with environmental uncertainty. Variation between individuals thus provides clonal groups with collective functionality.

  10. The bacterial sequential Markov coalescent

    OpenAIRE

    De Maio, N; Wilson, DJ

    2017-01-01

    Bacteria can exchange and acquire new genetic material from other organisms directly and via the environment. This process, known as bacterial recombination, has a strong impact on the evolution of bacteria, for example leading to the spread of antibiotic resistance across clades and species, and to the avoidance of clonal interference. Recombination hinders phylogenetic and transmission inference because it creates patterns of substitutions that are not consistent with the hypothesis of a si...

  11. Bacterial sex in dental plaque.

    Science.gov (United States)

    Olsen, Ingar; Tribble, Gena D; Fiehn, Nils-Erik; Wang, Bing-Yan

    2013-01-01

    Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  12. Bacterial sex in dental plaque

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2013-06-01

    Full Text Available Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  13. Polymorphism in Bacterial Flagella Suspensions

    Science.gov (United States)

    Schwenger, Walter J.

    Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.

  14. Bacterial biofilm and associated infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jamal

    2018-01-01

    Full Text Available Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living. Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.

  15. Bacterial Biofilms in Jones Tubes.

    Science.gov (United States)

    Ahn, Eric S; Hauck, Matthew J; Kirk Harris, Jonathan; Robertson, Charles E; Dailey, Roger A

    To investigate the presence and microbiology of bacterial biofilms on Jones tubes (JTs) by direct visualization with scanning electron microscopy and polymerase chain reaction (PCR) of representative JTs, and to correlate these findings with inflammation and/or infection related to the JT. In this study, prospective case series were performed. JTs were recovered from consecutive patients presenting to clinic for routine cleaning or recurrent irritation/infection. Four tubes were processed for scanning electron microscopy alone to visualize evidence of biofilms. Two tubes underwent PCR alone for bacterial quantification. One tube was divided in half and sent for scanning electron microscopy and PCR. Symptoms related to the JTs were recorded at the time of recovery. Seven tubes were obtained. Five underwent SEM, and 3 out of 5 showed evidence of biofilms (60%). Two of the 3 biofilms demonstrated cocci and the third revealed rods. Three tubes underwent PCR. The predominant bacteria identified were Pseudomonadales (39%), Pseudomonas (16%), and Staphylococcus (14%). Three of the 7 patients (43%) reported irritation and discharge at presentation. Two symptomatic patients, whose tubes were imaged only, revealed biofilms. The third symptomatic patient's tube underwent PCR only, showing predominantly Staphylococcus (56%) and Haemophilus (36%) species. Two of the 4 asymptomatic patients also showed biofilms. All symptomatic patients improved rapidly after tube exchange and steroid antibiotic drops. Bacterial biofilms were variably present on JTs, and did not always correlate with patients' symptoms. Nevertheless, routine JT cleaning is recommended to treat and possibly prevent inflammation caused by biofilms.

  16. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  17. Detergent-compatible bacterial amylases.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  18. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota

    NARCIS (Netherlands)

    Villanueva, Laura; Schouten, Stefan; Sinninghe Damsté, Jaap S.

    2015-01-01

    The distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGT) lipids synthesized by Thaumarchaeota has been shown to be temperature-dependent in world oceans. Depth-related differences in the ammonia monooxygenase (amoA) of Thaumarchaeota have led to the classification of 'shallow' and

  19. Communities of archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota.

    Science.gov (United States)

    Weidler, Gerhard W; Dornmayr-Pfaffenhuemer, Marion; Gerbl, Friedrich W; Heinen, Wolfgang; Stan-Lotter, Helga

    2007-01-01

    Scanning electron microscopy revealed great morphological diversity in biofilms from several largely unexplored subterranean thermal Alpine springs, which contain radium 226 and radon 222. A culture-independent molecular analysis of microbial communities on rocks and in the water of one spring, the "Franz-Josef-Quelle" in Bad Gastein, Austria, was performed. Four hundred fifteen clones were analyzed. One hundred thirty-two sequences were affiliated with 14 bacterial operational taxonomic units (OTUs) and 283 with four archaeal OTUs. Rarefaction analysis indicated a high diversity of bacterial sequences, while archaeal sequences were less diverse. The majority of the cloned archaeal 16S rRNA gene sequences belonged to the soil-freshwater-subsurface (1.1b) crenarchaeotic group; other representatives belonged to the freshwater-wastewater-soil (1.3b) group, except one clone, which was related to a group of uncultivated Euryarchaeota. These findings support recent reports that Crenarchaeota are not restricted to high-temperature environments. Most of the bacterial sequences were related to the Proteobacteria (alpha, beta, gamma, and delta), Bacteroidetes, and Planctomycetes. One OTU was allied with Nitrospina sp. (delta-Proteobacteria) and three others grouped with Nitrospira. Statistical analyses suggested high diversity based on 16S rRNA gene analyses; the rarefaction plot of archaeal clones showed a plateau. Since Crenarchaeota have been implicated recently in the nitrogen cycle, the spring environment was probed for the presence of the ammonia monooxygenase subunit A (amoA) gene. Sequences were obtained which were related to crenarchaeotic amoA genes from marine and soil habitats. The data suggested that nitrification processes are occurring in the subterranean environment and that ammonia may possibly be an energy source for the resident communities.

  20. Functional microdomains in bacterial membranes.

    Science.gov (United States)

    López, Daniel; Kolter, Roberto

    2010-09-01

    The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.

  1. Radiological aspects of bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.; Ewing, D.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    Clinical, radiological, and pathological data derived from an analysis of over 70 cases of bacterial lung abscess are presented. Etiologic agents and risk factors are presented. Key radiographic findings are discussed, and those that are most useful in differentiating bacterial lung abscess from cavitated carcinoma, infected cyst, and emphysema are emphasized. Radiographic aspects of the complications of bacterial lung abscess are illustrated, and radiological approaches to their therapy are discussed

  2. Bacterial, Fungal, Parasitic, and Viral Myositis

    OpenAIRE

    Crum-Cianflone, Nancy F.

    2008-01-01

    Infectious myositis may be caused by a broad range of bacterial, fungal, parasitic, and viral agents. Infectious myositis is overall uncommon given the relative resistance of the musculature to infection. For example, inciting events, including trauma, surgery, or the presence of foreign bodies or devitalized tissue, are often present in cases of bacterial myositis. Bacterial causes are categorized by clinical presentation, anatomic location, and causative organisms into the categories of pyo...

  3. Balance of bacterial species in the gut

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Balance of bacterial species in the gut. Protective. Lactobacillus species. Bifidobacterium species. Selected E. coli. Saccharomyces boulardii. Clostridium butyricum.

  4. Effect of PCB 126 on aryl hydrocarbon receptor 1 (AHR1) and AHR1 nuclear translocator 1 (ARNT1) mRNA expression and CYP1 monooxygenase activity in chicken (Gallus domesticus) ovarian follicles.

    Science.gov (United States)

    Wójcik, Dagmara; Antos, Piotr A; Katarzyńska, Dorota; Hrabia, Anna; Sechman, Andrzej

    2015-12-03

    The aim of the experiment was to study the in vitro effect of 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) on aryl hydrocarbon receptor (AHR1) and AHR1 nuclear translocator (ARNT1) mRNA expression and the activity of CYP1 family monooxygenases in chicken ovarian follicles. White (1-4 mm) and yellowish (4-8 mm) prehierarchical follicles as well as fragments of the theca and granulosa layers of the 3 largest preovulatory follicles (F3-F1) were incubated in a medium supplemented with 0 (control group), 1, 10 or 100 nM PCB 126. The incubation was carried out for 6 h or 24 h for determination of mRNA expression of AHR1 and ARNT1 genes (real-time qPCR) and CYP1 monooxygenase activity (EROD and MROD fluorometric assays), respectively. It was found that chicken ovarian follicles express mRNA of AHR1 and ARNT1 genes. A modulatory effect of PCB 126 on AHR1 and ARNT1 expression depended not only on the biphenyl concentration but also on the follicular layer and the maturational state of the follicle. EROD and MROD activities appeared predominantly in the granulosa layer of the yellow preovulatory follicles. PCB 126 induced these activities in a dose-dependent manner in all ovarian follicles. The obtained results suggest that ovarian follicles, especially the granulosa layer, are involved in the detoxification process of PCBs in the laying hen. Taking this finding into consideration it can be suggested that the granulosa layer of the yellow hierarchical follicles plays a key role in the protective mechanism which reduces the amount of transferred dioxin-like compounds into the yolk of the oocyte. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. STRUCTURAL ORGANIZATION OF BACTERIAL UREASES

    Directory of Open Access Journals (Sweden)

    Lisnyak YuV

    2016-09-01

    Full Text Available This brief review concerns the basic principles of structural organization of multi-subunit bacterial ureases and formation of their quaternary structure. Urease is a nickel-containing enzyme (urea amidohydrolase, ЕС 3.5.1.5 that catalyses the hydrolysis of urea to get ammonia and carbamate which then decomposes with water to get ammonia and carbon dioxide. Urease is produced by bacteria, fungi, yeast and plants. On the basis of similarities in amino acid sequences, ureases assumed to have a similar structure and conservative catalytic mechanism. Within past two decades bacterial ureases have gained much attention in research field as a virulence factor in human and animal infections. The first crystal structure of urease has been determined for that from Klebsiella aerogenes. The native enzyme consists of three subunits, UreA (α-chain, UreB (β-chain and UreC (γ-chain, and contains four structural domains: two in α-chain (α-domain 1 and α-domain-2, one in β- and one in γ-chain. These three chains form a T-shaped heterotrimer αβγ. Three αβγ heterotrimers form quaternary complex (αβγ3. In case of Helicobacter pilori, the analogous trimers of corresponding dimeric subunits (αβ3 form tetrameric structure ((αβ34 in which four trimers are situated at the vertexes of the regular triangle pyramid. Active center is located in α-domain 1 and contains two atoms of nickel coordinated by residues His134, His136, carboxylated Lys217, His 246, His272 and Asp360, as well as residues involved in binding (His219 and catalysis (His320. Active site is capped by a flap that controls substrate ingress to and product egress from the dinickel center. Urease requires accessory proteins (UreD, UreF, UreG and UreE for the correct assembly of their Ni-containing metallocenters. The accessory proteins UreD, UreF, and UreG sequentially bind to the apoprotein (UreABC3 to finally form (UreABC-UreDFG3 activation complex. UreE metallochaperone delivers

  6. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction

    NARCIS (Netherlands)

    Leveau, J.H.J.; Preston, G.M.

    2008-01-01

    This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive

  7. Microconductometric Detection of Bacterial Contamination

    Directory of Open Access Journals (Sweden)

    Sarra EL ICHI

    2014-05-01

    Full Text Available Several approaches can be used for the electrochemical detection of bacterial contamination. Their performance can be assessed by the ability to detect bacteria at very low concentrations within a short-time response. We have already demonstrated that a conductometric biosensor based on interdigitated thin-film electrodes is adapted to detect bacteria in clinical samples like serum and compatible with microfluidic fabrication. The type of interdigitated microelectrodes influences the performance of the biosensor. This was shown by the results obtained in this work. A magnetic-nanoparticles based immunosensor was designed using gold screen-printed electrodes. The immunosensor was able to specifically detect E. coli in the range of 1-103 CFU mL-1. The new transducer offered a larger active sensing surface with a lower cost and a robust material. Accuracy of the conductance value was enhanced by differential measurements. The immunosensor is compatible with a microfluidic system.

  8. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  9. Instability of expanding bacterial droplets.

    Science.gov (United States)

    Sokolov, Andrey; Rubio, Leonardo Dominguez; Brady, John F; Aranson, Igor S

    2018-04-03

    Suspensions of motile bacteria or synthetic microswimmers, termed active matter, manifest a remarkable propensity for self-organization, and formation of large-scale coherent structures. Most active matter research deals with almost homogeneous in space systems and little is known about the dynamics of strongly heterogeneous active matter. Here we report on experimental and theoretical studies on the expansion of highly concentrated bacterial droplets into an ambient bacteria-free fluid. The droplet is formed beneath a rapidly rotating solid macroscopic particle inserted in the suspension. We observe vigorous instability of the droplet reminiscent of a violent explosion. The phenomenon is explained in terms of continuum first-principle theory based on the swim pressure concept. Our findings provide insights into the dynamics of active matter with strong density gradients and significantly expand the scope of experimental and analytic tools for control and manipulation of active systems.

  10. The bacterial corrosion of concretes

    International Nuclear Information System (INIS)

    Tache, G.

    1998-01-01

    Concrete is a material very sensitive to aging effects and to permanent aggressions. It is an evolutive material in which internal hydration reactions and exchange reactions with the external medium are produced. Moreover, its characteristics tightly depends on factors which are bound to its formulation, to the appropriate choice of materials in which it is constituted, to their qualities and to the conditions of its use. Its aging depends then in a large extent of these different factors and of the adequation between its final characteristics and the solicitations in which it is submitted: physical, mechanical, thermal.. or environmental. This chapter deals particularly with the influence of the bacterial phenomena on concrete. Some recalls are at first given on the principles which govern the concrete durability. Then are approached the phenomena mechanisms. (O.M.)

  11. Bacterial Actins? An Evolutionary Perspective

    Science.gov (United States)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  12. Bacterial Ice Crystal Controlling Proteins

    Science.gov (United States)

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  13. Bacterial biofilms and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Liliana Caldas-Arias

    2015-04-01

    Full Text Available Biofilms give to bacteria micro-environmental benefits; confers protection against antimicrobials. Bacteria have antibiotic resistance by conventional and unusual mechanisms leading to delayed wound healing, to increase recurrent chronic infections and nosocomial contamination of medical devices. Objective: This narrative review aims to introduce the characteristics of Bacteria-biofilms, antimicrobial resistance mechanisms and potential alternatives for prevention and control of its formation. Methods: Search strategy was performed on records: PubMed / Medline, Lilacs, Redalyc; with suppliers such as EBSCO and thesaurus MeSH and DeCS. Conclusions: Knowledge and research performance of biofilm bacteria are relevant in the search of technology for detection and measuring sensitivity to antibiotics. The identification of Bacterial-biofilms needs no-traditional microbiological diagnosis.

  14. Musculoskeletal manifestations of bacterial endocarditis

    Directory of Open Access Journals (Sweden)

    Érika Bevilaqua Rangel

    2000-09-01

    Full Text Available CONTEXT: The incidence of staphylococcal infection has been increasing during the last 20 years. OBJECTIVE: Report a case of staphylococcal endocarditis preceded by musculoskeletal manifestations, which is a rare form of clinical presentation. DESIGN: Case report. CASE REPORT: A 45-year-old-man, without addictions and without known previous cardiopathy, was diagnosed as having definitive acute bacterial endocarditis due to Staphylococcus aureus. Its etiology was community-acquired, arising from a non-apparent primary focus. In addition, the musculoskeletal symptoms preceded the infective endocarditis (IE by about 1 month, which occurred together with other symptoms, e.g. mycotic aneurysms and petechiae. Later, the patient showed perforation of the mitral valve and moderate mitral insufficiency with clinical control.

  15. Bacterial successions in the Broiler Gastrointestinal tract

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Lawley, Blair; Tannock, Gerald

    2016-01-01

    diversity, data were pooled for downstream analysis. With increasing age, a clear succession of bacterial communities and an increased bacterial diversity was observed. Lactobacillaceae (mainly Lactobacillus) represented most of the Firmicutes at all ages and in all segments of the gut except the ceca...

  16. Neonatal Bacterial Meningitis And Dexamethasone Adjunctive ...

    African Journals Online (AJOL)

    Methodology: Babies admitted from1992 to 1995 in the Special Care Baby Unit of the University of Maiduguri Teaching Hospital, Maduguri, Nigeria, with bacterial meningitis were studied prospectively. Neonatal bacterial meningitis was confirmed if the cerebrospinal fluid (CSF) microbiological, chemical, immunological and ...

  17. Benthic bacterial diversity in submerged sinkhole ecosystems.

    Science.gov (United States)

    Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.

  18. Bacterial biofilms: prokaryotic adventures in multicellularity

    DEFF Research Database (Denmark)

    Webb, J.S.; Givskov, Michael Christian; Kjelleberg, S.

    2003-01-01

    The development of bacterial biofilms includes both the initial social behavior of undifferentiated cells, as well as cell death and differentiation in the mature biofilm, and displays several striking similarities with higher organisms. Recent advances in the field provide new insight...... into differentiation and cell death events in bacterial biofilm development and propose that biofilms have an unexpected level of multicellularity....

  19. neonatal bacterial meningitis in Cape Town children

    African Journals Online (AJOL)

    neonatal bacterial meningitis in Cape Town children. Bacterial meningitis is a major cause of childhood morbidity and mortality in South Africa. However, comprehensive regional or national epidemiological data, essential for rational public health interventions, are lacking. The purpose of this 1-year prospective study, from.

  20. C-reactive protein and bacterial meningitis

    DEFF Research Database (Denmark)

    Gerdes, Lars Ulrik; Jørgensen, P E; Nexø, E

    1998-01-01

    The aim of the study was to review published articles on the diagnostic accuracy of C-reactive protein (CRP) tests with cerebrospinal fluid and serum in diagnosing bacterial meningitis. The literature from 1980 and onwards was searched using the electronic databases of MEDLINE, and we used summary...... measured in serum, and 4 in which it had been measured in both cerebrospinal fluid and serum. The odds ratio for bacterial meningitis versus aseptic meningitis for a positive CRP test with cerebrospinal fluid was estimated at 241 (95% confidence interval [CI]: 59-980), and the central tendencies.......06-0.08, respectively, the post-test probability of not having bacterial meningitis given a negative test is very high (> or = 97%), in the range of a pre-test probability (prevalence of bacterial meningitis) from 10 to 30%, whereas the post-test probability of bacterial meningitis given a positive test is considerably...

  1. Oral bacterial DNA findings in pericardial fluid

    Directory of Open Access Journals (Sweden)

    Anne-Mari Louhelainen

    2014-11-01

    Full Text Available Background: We recently reported that large amounts of oral bacterial DNA can be found in thrombus aspirates of myocardial infarction patients. Some case reports describe bacterial findings in pericardial fluid, mostly done with conventional culturing and a few with PCR; in purulent pericarditis, nevertheless, bacterial PCR has not been used as a diagnostic method before. Objective: To find out whether bacterial DNA can be measured in the pericardial fluid and if it correlates with pathologic–anatomic findings linked to cardiovascular diseases. Methods: Twenty-two pericardial aspirates were collected aseptically prior to forensic autopsy at Tampere University Hospital during 2009–2010. Of the autopsies, 10 (45.5% were free of coronary artery disease (CAD, 7 (31.8% had mild and 5 (22.7% had severe CAD. Bacterial DNA amounts were determined using real-time quantitative PCR with specific primers and probes for all bacterial strains associated with endodontic disease (Streptococcus mitis group, Streptococcus anginosus group, Staphylococcus aureus/Staphylococcus epidermidis, Prevotella intermedia, Parvimonas micra and periodontal disease (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatus, and Dialister pneumosintes. Results: Of 22 cases, 14 (63.6% were positive for endodontic and 8 (36.4% for periodontal-disease-associated bacteria. Only one case was positive for bacterial culturing. There was a statistically significant association between the relative amount of bacterial DNA in the pericardial fluid and the severity of CAD (p=0.035. Conclusions: Oral bacterial DNA was detectable in pericardial fluid and an association between the severity of CAD and the total amount of bacterial DNA in pericardial fluid was found, suggesting that this kind of measurement might be useful for clinical purposes.

  2. Bacterial Biofilm Control by Perturbation of Bacterial Signaling Processes

    Directory of Open Access Journals (Sweden)

    Tim Holm Jakobsen

    2017-09-01

    Full Text Available The development of effective strategies to combat biofilm infections by means of either mechanical or chemical approaches could dramatically change today’s treatment procedures for the benefit of thousands of patients. Remarkably, considering the increased focus on biofilms in general, there has still not been invented and/or developed any simple, efficient and reliable methods with which to “chemically” eradicate biofilm infections. This underlines the resilience of infective agents present as biofilms and it further emphasizes the insufficiency of today’s approaches used to combat chronic infections. A potential method for biofilm dismantling is chemical interception of regulatory processes that are specifically involved in the biofilm mode of life. In particular, bacterial cell to cell signaling called “Quorum Sensing” together with intracellular signaling by bis-(3′-5′-cyclic-dimeric guanosine monophosphate (cyclic-di-GMP have gained a lot of attention over the last two decades. More recently, regulatory processes governed by two component regulatory systems and small non-coding RNAs have been increasingly investigated. Here, we review novel findings and potentials of using small molecules to target and modulate these regulatory processes in the bacterium Pseudomonas aeruginosa to decrease its pathogenic potential.

  3. Microbial community structure of relict niter-beds previously used for saltpeter production.

    Directory of Open Access Journals (Sweden)

    Takashi Narihiro

    Full Text Available From the 16th to the 18th centuries in Japan, saltpeter was produced using a biological niter-bed process and was formed under the floor of gassho-style houses in the historic villages of Shirakawa-go and Gokayama, which are classified as United Nations Educational, Scientific and Cultural Organization (UNESCO World Heritage Sites. The relict niter-beds are now conserved in the underfloor space of gassho-style houses, where they are isolated from destabilizing environmental factors and retain the ability to produce nitrate. However, little is known about the nitrifying microbes in such relict niter-bed ecosystems. In this study, the microbial community structures within nine relict niter-bed soils were investigated using 454 pyrotag analysis targeting the 16S rRNA gene and the bacterial and archaeal ammonia monooxygenase gene (amoA. The 16S rRNA gene pyrotag analysis showed that members of the phyla Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, and Planctomycetes were major microbial constituents, and principal coordinate analysis showed that the NO3-, Cl-, K+, and Na+ contents were potential determinants of the structures of entire microbial communities in relict niter-bed soils. The bacterial and archaeal amoA libraries indicated that members of the Nitrosospira-type ammonia-oxidizing bacteria (AOB and "Ca. Nitrososphaera"-type ammonia-oxidizing archaea (AOA, respectively, predominated in relict niter-bed soils. In addition, soil pH and organic carbon content were important factors for the ecological niche of AOB and AOA in relict niter-bed soil ecosystems.

  4. Bacterial carbon cycling in a subarctic fjord

    DEFF Research Database (Denmark)

    Middelboe, Mathias; Glud, Ronnie Nøhr; Sejr, M.K.

    2012-01-01

    of viruses on bacterial mortality (4–36% of cell production) and carbon cycling. Heterotrophic bacterial consumption was closely coupled with autochthonous BDOC production, and the majority of the primary production was consumed by pelagic bacteria at all seasons. The relatively low measured BGE emphasized......In this seasonal study, we examined the environmental controls and quantitative importance of bacterial carbon consumption in the water column and the sediment in the subarctic Kobbefjord, Greenland. Depth-integrated bacterial production in the photic zone varied from 5.0 ± 2.7 mg C m−2 d−1...... in February to 42 ± 28 mg C m−2 d−1 in May and 34 ± 7 mg C m−2 d−1 in September, corresponding to a bacterial production to primary production ratio of 0.34 ± 0.14, 0.07 ± 0.04, and 0.08 ± 0.06, respectively. Based on measured bacterial growth efficiencies (BGEs) of 0.09–0.10, pelagic bacterial carbon...

  5. Gut bacterial microbiota and obesity.

    Science.gov (United States)

    Million, M; Lagier, J-C; Yahav, D; Paul, M

    2013-04-01

    Although probiotics and antibiotics have been used for decades as growth promoters in animals, attention has only recently been drawn to the association between the gut microbiota composition, its manipulation, and obesity. Studies in mice have associated the phylum Firmicutes with obesity and the phylum Bacteroidetes with weight loss. Proposed mechanisms linking the microbiota to fat content and weight include differential effects of bacteria on the efficiency of energy extraction from the diet, and changes in host metabolism of absorbed calories. The independent effect of the microbiota on fat accumulation has been demonstrated in mice, where transplantation of microbiota from obese mice or mice fed western diets to lean or germ-free mice produced fat accumulation among recipients. The microbiota can be manipulated by prebiotics, probiotics, and antibiotics. Probiotics affect the microbiota directly by modulating its bacterial content, and indirectly through bacteriocins produced by the probiotic bacteria. Interestingly, certain probiotics are associated with weight gain both in animals and in humans. The effects are dependent on the probiotic strain, the host, and specific host characteristics, such as age and baseline nutritional status. Attention has recently been drawn to the association between antibiotic use and weight gain in children and adults. We herein review the studies describing the associations between the microbiota composition, its manipulation, and obesity. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  6. Asymptomatic Bacteriuria and Bacterial Interference.

    Science.gov (United States)

    Nicolle, Lindsay E

    2015-10-01

    Asymptomatic bacteriuria is very common. In healthy women, asymptomatic bacteriuria increases with age, from women age 80 years, but is uncommon in men until after age 50 years. Individuals with underlying genitourinary abnormalities, including indwelling devices, may also have a high frequency of asymptomatic bacteriuria, irrespective of age or gender. The prevalence is very high in residents of long-term-care facilities, from 25% to 50% of women and 15% to 40% of men. Escherichia coli is the most frequent organism isolated, but a wide variety of other organisms may occur. Bacteriuria may be transient or persist for a prolonged period. Pregnant women with asymptomatic bacteriuria identified in early pregnancy and who are untreated have a risk of pyelonephritis later in pregnancy of 20% to 30%. Bacteremia is frequent in bacteriuric subjects following mucosal trauma with bleeding, with 5% to 10% of patients developing severe sepsis or septic shock. These two groups with clear evidence of negative outcomes should be screened for bacteriuria and appropriately treated. Asymptomatic bacteriuria in other populations is benign and screening and treatment are not indicated. Antimicrobial treatment has no benefits but is associated with negative outcomes including reinfection with antimicrobial resistant organisms and a short-term increased frequency of symptomatic infection post-treatment. The observation of increased symptomatic infection post-treatment, however, has led to active investigation of bacterial interference as a strategy to prevent symptomatic episodes in selected high risk patients.

  7. Rheumatoid arthritis and bacterial infections

    Directory of Open Access Journals (Sweden)

    N L Prokopjeva

    2008-01-01

    Full Text Available To study features of bacterial infections course in pts with rheumatoid arthritis (RA and changes of laboratory measures after focus of infection sanation. Material and methods. 46 pts with definite rheumatoid arthritis were examined at the time of comorbid infection (Cl detection and after infection focus sanation. Bacteriological test with evaluation of flora sensitivity to antibiotics by disco-diffusion method was performed at baseline and after the course of antibacterial therapy to assess its efficacy. Hemogram, serum fibrinogen, rheumatoid factor, circulating immune complexes (CIC, C-reactive protein levels were assessed. Serum interleukin (IL 1(3, IL6 and neopterin concentrations were examined by immune-enzyme assay in a part of pts. Typical clinical features of Cl were present in only 28 (60,9% pts. 13 (28,3% pts had fever, 12 (26,0% — leukocytosis, 15 (32,6% — changes of leucocyte populations. Some laboratory measures (thrombocytes, fibrinogen, CIC, neopterin levels significantly decreased (p<0,05 after infection focus sanation without correction of disease modifying therapy. Cl quite often develop as asymptomatic processes most often in pts with high activity and can induce disturbances promoting appearance of endothelial dysfunction, atherothrombosis and reduction of life duration. So timely detection and proper sanation of infection focuses should be performed in pts with RA

  8. Collective decisions among bacterial viruses

    Science.gov (United States)

    Joh, Richard; Mileyko, Yuriy; Voit, Eberhard; Weitz, Joshua

    2010-03-01

    For many temperate bacteriophages, the decision of whether to kill hosts or enter a latent state depends on the multiplicity of infection. In this talk, I present a quantitative model of gene regulatory dynamics to describe how phages make collective decisions within host cells. Unlike most previous studies, the copy number of viral genomes is treated as a variable. In the absence of feedback loops, viral mRNA transcription is expected to be proportional to the viral copy number. However, when there are nonlinear feedback loops in viral gene regulation, our model shows that gene expression patterns are sensitive to changes in viral copy number and there can be a domain of copy number where the system becomes bistable. Hence, the viral copy number is a key control parameter determining host cell fates. This suggests that bacterial viruses can respond adaptively to changes in population dynamics, and can make alternative decisions as a bet-hedging strategy. Finally, I present a stochastic version of viral gene regulation and discuss speed-accuracy trade-offs in the context of cell fate determination by viruses.

  9. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  10. Bacterial leaching of uranium ores - a review

    International Nuclear Information System (INIS)

    Lowson, R.T.

    1975-11-01

    The bacterial leaching of uranium ores involves the bacterially catalysed oxidation of associated pyrite to sulphuric acid and Fe 3+ by autotrophic bacteria and the leaching of the uranium by the resulting acidic, oxidising solution. Industrial application has been limited to Thiobacillus thiooxidans and Thiobacillus ferrooxidans at pH 2 to 3, and examples of these are described. The bacterial catalysis can be improved with nutrients or prevented with poisons. The kinetics of leaching are controlled by the bed depth, particle size, percolation rate, mineralogy and temperature. Current work is aimed at quantitatively defining the parameters controlling the kinetics and extending the method to alkaline conditions with other autotrophic bacteria. (author)

  11. Spontaneous Bacterial Peritonitis in Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Dalip Gupta

    2013-11-01

    Full Text Available Hypothyroidism is an uncommon cause of ascites. Here we describe a case of a 75 year-old female patient with spontaneous bacterial peritonitis and subclinical hypothyroidism that resolved with thyroid replacement and antibiotic therapy respectively. Ascitic fluid analysis revealed a gram-positive bacterium on gram staining. A review of the literature revealed just one other reported case of myxoedema ascites with concomitant spontaneous bacterial peritonitis and no case has till been reported of spontaneous bacterial peritonitis in subclinical hypothyroidism.

  12. Composition of methane-oxidizing bacterial communities as a function of nutrient loading in the Florida everglades.

    Science.gov (United States)

    Chauhan, Ashvini; Pathak, Ashish; Ogram, Andrew

    2012-10-01

    Agricultural runoff of phosphorus (P) in the northern Florida Everglades has resulted in several ecosystem level changes, including shifts in the microbial ecology of carbon cycling, with significantly higher methane being produced in the nutrient-enriched soils. Little is, however, known of the structure and activities of methane-oxidizing bacteria (MOB) in these environments. To address this, 0 to 10 cm plant-associated soil cores were collected from nutrient-impacted (F1), transition (F4), and unimpacted (U3) areas, sectioned in 2-cm increments, and methane oxidation rates were measured. F1 soils consumed approximately two-fold higher methane than U3 soils; additionally, most probable numbers of methanotrophs were 4-log higher in F1 than U3 soils. Metabolically active MOB containing pmoA sequences were characterized by stable-isotope probing using 10 % (v/v) (13)CH(4). pmoA sequences, encoding the alpha subunit of methane monooxygenase and related to type I methanotrophs, were identified from both impacted and unimpacted soils. Additionally, impacted soils also harbored type II methanotrophs, which have been shown to exhibit preferences for high methane concentrations. Additionally, across all soils, novel pmoA-type sequences were also detected, indicating presence of MOB specific to the Everglades. Multivariate statistical analyses confirmed that eutrophic soils consisted of metabolically distinct MOB community that is likely driven by nutrient enrichment. This study enhances our understanding on the biological fate of methane being produced in productive wetland soils of the Florida Everglades and how nutrient-enrichment affects the composition of methanotroph bacterial communities.

  13. Bacterial food-borne zoonoses.

    Science.gov (United States)

    Thorns, C J

    2000-04-01

    In many countries of the world, bacterial food-borne zoonotic infections are the most common cause of human intestinal disease. Salmonella and Campylobacter account for over 90% of all reported cases of bacteria-related food poisoning world-wide. Poultry and poultry products have been incriminated in the majority of traceable food-borne illnesses caused by these bacteria, although all domestic livestock are reservoirs of infection. In contrast to the enzootic nature of most Salmonella and Campylobacter infections, Salmonella Enteritidis caused a pandemic in both poultry and humans during the latter half of the 20th Century. Salmonella Typhimurium and Campylobacter appear to be more ubiquitous in the environment, colonising a greater variety of hosts and environmental niches. Verocytotoxin-producing Escherichia coli O157 (VTEC O157) also emerged as a major food-borne zoonotic pathogen in the 1980s and 1990s. Although infection is relatively rare in humans, clinical disease is often severe, with a significant mortality rate among the young and elderly. The epidemiology of VTEC O157 is poorly understood, although ruminants, especially cattle and sheep, appear to be the major source of infection. The dissemination of S. Enteritidis along the food chain is fairly well understood, and control programmes have been developed to target key areas of poultry meat and egg production. Recent evidence indicates that these control programmes have been associated with an overall reduction of S. Enteritidis along the food chain. Unfortunately, existing controls do not appear to reduce the levels of Campylobacter and VTEC O157 infections. Future control strategies need to consider variations in the epidemiologies of food-borne zoonotic infections, and apply a quantitative risk analysis approach to ensure that the most cost-effective programmes are developed.

  14. Diagnosis and treatment of bacterial prostatitis.

    Science.gov (United States)

    Videčnik Zorman, Jerneja; Matičič, Mojca; Jeverica, Samo; Smrkolj, Tomaž

    2015-01-01

    Prostate inflammation is a common syndrome, especially in men under 50. It usually presents with voiding symptoms and pain in the genitourinary area, and sometimes as sexual dysfunction. Based on clinical and laboratory characteristics, prostatitis is classified as acute bacterial prostatitis, chronic bacterial prostatitis, chronic inflammatory and non-inflammatory prostatitis or chronic pelvic pain syndrome, and asymptomatic inflammatory prostatitis. Bacterial prostatitis is most often caused by infection with uropathogens, mainly Gram-negative bacilli, but Gram-positive and atypical microorganisms have also been identified as causative organisms of chronic prostatitis. According to reports by several authors, Chlamydia trachomatis and Trichomonas vaginalis are some of the most common pathogens, making chronic prostatitis a sexually transmitted disease. Diagnosis and treatment of acute and chronic bacterial prostatitis in particular can be challenging.

  15. Bacterial Clearance and Endocarditis in American Opossums

    Science.gov (United States)

    Musher, Daniel M.; Richie, Yvonne

    1974-01-01

    The American opossum is the only experimental animal that regularly develops bacterial endocarditis spontaneously. There was no relation between the ability of opossums to clear bacteria from the bloodstream and the subsequent development of endocarditis. PMID:4208530

  16. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  17. Bacterial pathogen manipulation of host membrane trafficking.

    Science.gov (United States)

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  18. Diagnostic challenges with acellular bacterial meningitis

    African Journals Online (AJOL)

    tests performed included a non-reactive HIV ELISA and syphilis serology. ... Despite our patient's reduced CSF glucose and raised protein, the inconsistent .... Suzuki W, et al. Cerebrospinal fluid/blood glucose ratio as an indicator for bacterial ...

  19. Proteomic Analysis of Bacterial Expression Profiles Following ...

    African Journals Online (AJOL)

    mass spectrometry (GC-MS) were performed to determine the phytochemicals in the active fraction. Results: Five differentially expressed bacterial proteins (four from Escherichia coli and one from Staphylococcus aureus), were identified via ...

  20. Heterotrophic bacterial populations in tropical sandy beaches

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; LokaBharathi, P.A.

    Distribution pattern of heterotrophic bacterial flora of three sandy beaches of the west coast of India was studied. The population in these beaches was microbiologically different. Population peaks of halotolerant and limnotolerant forms were...

  1. Identification and Characterization of Novel Biocontrol Bacterial

    Directory of Open Access Journals (Sweden)

    Young Cheol Kim

    2014-09-01

    Full Text Available Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera

  2. Bacteriuria and antimicrobial susceptibility pattern of bacterial ...

    African Journals Online (AJOL)

    Bacterial isolates and drug susceptibility patterns of urinary tract infection among ... Key words: Urinary tract infection, pregnant women, antimicrobial drug ..... and premature labour as well as adverse outcome for the unborn child (Raz, 2003).

  3. [Combination therapy of chronic bacterial prostatitis].

    Science.gov (United States)

    Khryanin, A A; Reshetnikov, O V

    2016-08-01

    The article discusses the possible etiological factors in the development of chronic bacterial prostatitis. The authors presented a comparative long-term analysis of morbidity from non-viral sexually transmitted infections (STIs) in Russia. Against the background of general decline in STIs incidence, a significant percentage of them is made up by urogenital trichomoniasis. The findings substantiated the advantages of combination therapy (ornidazole and ofloxacin) for bacterial urinary tract infections.

  4. Plant innate immunity against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Maeli eMelotto

    2014-08-01

    Full Text Available Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.

  5. Diazotrophic Bacterial Community of Degraded Pastures

    OpenAIRE

    João Tiago Correia Oliveira; Everthon Fernandes Figueredo; Williane Patrícia da Silva Diniz; Lucianne Ferreira Paes de Oliveira; Pedro Avelino Maia de Andrade; Fernando Dini Andreote; Júlia Kuklinsky-Sobral; Danúbia Ramos de Lima; Fernando José Freire

    2017-01-01

    Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN) of bacteria per gram ...

  6. Heme Synthesis and Acquisition in Bacterial Pathogens

    OpenAIRE

    Choby, Jacob E.; Skaar, Eric P.

    2016-01-01

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host source...

  7. Bacterial endophytes enhance competition by invasive plants.

    Science.gov (United States)

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  8. Endocarditis in adults with bacterial meningitis.

    Science.gov (United States)

    Lucas, Marjolein J; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2013-05-21

    Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with community-acquired bacterial meningitis in the Netherlands from 2006 to 2012. Endocarditis was identified in 24 of 1025 episodes (2%) of bacterial meningitis. Cultures yielded Streptococcus pneumoniae in 13 patients, Staphylococcus aureus in 8 patients, and Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus salivarius in 1 patient each. Clues leading to the diagnosis of endocarditis were cardiac murmurs, persistent or recurrent fever, a history of heart valve disease, and S aureus as the causative pathogen of bacterial meningitis. Treatment consisted of prolonged antibiotic therapy in all patients and surgical valve replacement in 10 patients (42%). Two patients were treated with oral anticoagulants, and both developed life-threatening intracerebral hemorrhage. Systemic (70%) and neurological (54%) complications occurred frequently, leading to a high proportion of patients with unfavorable outcome (63%). Seven of 24 patients (29%) with meningitis and endocarditis died. Endocarditis is an uncommon coexisting condition in bacterial meningitis but is associated with a high rate of unfavorable outcome.

  9. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    Science.gov (United States)

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  10. The epidemiology of bacterial meningitis in Kosovo.

    Science.gov (United States)

    Namani, Sadie A; Koci, Remzie A; Qehaja-Buçaj, Emine; Ajazaj-Berisha, Lindita; Mehmeti, Murat

    2014-07-14

    The purpose of this study was to present the epidemiologic features of bacterial meningitis in the developing country of Kosovo. Data were collected from active surveillance of bacterial meningitis cases treated at the University Clinical Center of Kosovo in the years 2000 (first post-war year) and 2010. Meningitis cases in 2000 compared with 2010 showed a 35.5% decline in incidence (from 4.8 to 3.1 cases per 100,000 population) and a decrease in the case fatality rate from 10% to 5%. In children, there was a lower mortality rate (5% versus 2%) and a lower incidence of neurological complications (13% versus 16%) as compared to adults (32% versus 10% and 16% versus 35%, respectively). Neisseria meningitidis was the most common pathogen of bacterial meningitis in both study periods. Bacterial meningitis was most prevalent in the pediatric population, and showed an increase in the median age, from three years in 2000 to seven years in 2010. A steady number of bacterial meningitis cases in adults throughout last decade (around 20 cases per year) was recorded. During the last decade, gradual changes have been observed in the epidemiology of bacterial meningitis that are unrelated to the introduction of new vaccines, but are partly due to the improvement of living conditions.

  11. The intrinsic resistome of bacterial pathogens.

    Science.gov (United States)

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  12. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Olivares Pacheco

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  13. Antibiotics promote aggregation within aquatic bacterial communities

    Directory of Open Access Journals (Sweden)

    Gianluca eCorno

    2014-07-01

    Full Text Available The release of antibiotics (AB into the environment poses several threats for human health due to potential development of ABresistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold.These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of

  14. Nest Material Shapes Eggs Bacterial Environment.

    Directory of Open Access Journals (Sweden)

    Cristina Ruiz-Castellano

    Full Text Available Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus of eggshells in nests of spotless starlings (Sturnus unicolor at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and

  15. Photoinactivation of major bacterial pathogens in aquaculture

    Directory of Open Access Journals (Sweden)

    Heyong Jin Roh

    2016-08-01

    Full Text Available Abstract Background Significant increases in the bacterial resistance to various antibiotics have been found in fish farms. Non-antibiotic therapies for infectious diseases in aquaculture are needed. In recent years, light-emitting diode technology has been applied to the inactivation of pathogens, especially those affecting humans. The purpose of this study was to assess the effect of blue light (wavelengths 405 and 465 nm on seven major bacterial pathogens that affect fish and shellfish important in aquaculture. Results We successfully demonstrate inactivation activity of a 405/465-nm LED on selected bacterial pathogens. Although some bacteria were not fully inactivated by the 465-nm light, the 405-nm light had a bactericidal effect against all seven pathogens, indicating that blue light can be effective without the addition of a photosensitizer. Photobacterium damselae, Vibrio anguillarum, and Edwardsiella tarda were the most susceptible to the 405-nm light (36.1, 41.2, and 68.4 J cm−2, respectively, produced one log reduction in the bacterial populations, whereas Streptococcus parauberis was the least susceptible (153.8 J cm−2 per one log reduction. In general, optical density (OD values indicated that higher bacterial densities were associated with lower inactivating efficacy, with the exception of P. damselae and Vibrio harveyi. In conclusion, growth of the bacterial fish and shellfish pathogens evaluated in this study was inactivated by exposure to either the 405- or 465-nm light. In addition, inactivation was dependent on exposure time. Conclusions This study presents that blue LED has potentially alternative therapy for treating fish and shellfish bacterial pathogens. It has great advantages in aspect of eco-friendly treating methods differed from antimicrobial methods.

  16. Nest Material Shapes Eggs Bacterial Environment.

    Science.gov (United States)

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically

  17. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.

    Science.gov (United States)

    Shirey, Carolyn; Badieyan, Somayesadat; Sobrado, Pablo

    2013-11-08

    SidA (siderophore A) is a flavin-dependent N-hydroxylating monooxygenase that is essential for virulence in Aspergillus fumigatus. SidA catalyzes the NADPH- and oxygen-dependent formation of N(5)-hydroxyornithine. In this reaction, NADPH reduces the flavin, and the resulting NADP(+) is the last product to be released. The presence of NADP(+) is essential for activity, as it is required for stabilization of the C4a-hydroperoxyflavin, which is the hydroxylating species. As part of our efforts to determine the molecular details of the role of NADP(H) in catalysis, we targeted Ser-257 for site-directed mutagenesis and performed extensive characterization of the S257A enzyme. Using a combination of steady-state and stopped-flow kinetic experiments, substrate analogs, and primary kinetic isotope effects, we show that the interaction between Ser-257 and NADP(H) is essential for stabilization of the C4a-hydroperoxyflavin. Molecular dynamics simulation results suggest that Ser-257 functions as a pivot point, allowing the nicotinamide of NADP(+) to slide into position for stabilization of the C4a-hydroperoxyflavin.

  18. Report on a survey in fiscal 1999. Direct oxidation of hydrocarbons by manifestation of functions of methane mono-oxygenase (MMO); 1999 nendo metamonookishinaze (MMO) no kino hatsugen ni yoru tanka suiso no chokusetsu sanka seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The metallic enzyme, methane mono-oxygenase (MMO) collected from methanotrophic bacteria, may perform a reaction that has a possibility to proceed direct conversion from methane to methanol under normal temperatures and pressures. However, its utilization of biological bacteria makes massive cultivation and handling difficult, not having realized its practical use. Therefore, research and development has been carried out on a process that can convert directly and selectively hydrocarbons including methane under normal temperatures and pressures, mimicking the excellent functions of MMO. To achieve the development, surveys and discussions were given on the following elementary researches: elucidation of the reaction mechanism in the activation point in microorganism enzymes; analysis of structures in microorganism MMO; creation of a technology to develop a bio-mimetic catalyst; improvement in selectivity of the bio-mimetic catalyst; and international joint research (basic analysis of the catalyst mechanism). As a result, technological problems in developing the mimetic catalyst were put into order, and guidelines and measures for specific catalyst designing are being proposed. Furthermore, a way was opened for international joint research with the complex synthesis research group in CNRS in France, and progress into the step of demonstrating and discussing the feasibility thereof is now ready. (NEDO)

  19. Autophagy and bacterial clearance: a not so clear picture

    OpenAIRE

    Mostowy, Serge

    2012-01-01

    Autophagy, an intracellular degradation process highly conserved from yeast to humans, is viewed as an important defence mechanism to clear intracellular bacteria. However, recent work has shown that autophagy may have different roles during different bacterial infections that restrict bacterial replication (antibacterial autophagy), act in cell autonomous signalling (non-bacterial autophagy) or support bacterial replication (pro-bacterial autophagy). This review will focus on newfound intera...

  20. The bacterial meningitis score to distinguish bacterial from aseptic meningitis in children from Sao Paulo, Brazil.

    Science.gov (United States)

    Mekitarian Filho, Eduardo; Horita, Sérgio Massaru; Gilio, Alfredo Elias; Alves, Anna Cláudia Dominguez; Nigrovic, Lise E

    2013-09-01

    In a retrospective cohort of 494 children with meningitis in Sao Paulo, Brazil, the Bacterial Meningitis Score identified all the children with bacterial meningitis (sensitivity 100%, 95% confidence interval: 92-100% and negative predictive value 100%, 95% confidence interval: 98-100%). Addition of cerebrospinal fluid lactate to the score did not improve clinical prediction rule performance.

  1. Acute Bacterial Prostatitis: Diagnosis and Management.

    Science.gov (United States)

    Coker, Timothy J; Dierfeldt, Daniel M

    2016-01-15

    Acute bacterial prostatitis is an acute infection of the prostate gland that causes pelvic pain and urinary tract symptoms, such as dysuria, urinary frequency, and urinary retention, and may lead to systemic symptoms, such as fevers, chills, nausea, emesis, and malaise. Although the true incidence is unknown, acute bacterial prostatitis is estimated to comprise approximately 10% of all cases of prostatitis. Most acute bacterial prostatitis infections are community acquired, but some occur after transurethral manipulation procedures, such as urethral catheterization and cystoscopy, or after transrectal prostate biopsy. The physical examination should include abdominal, genital, and digital rectal examination to assess for a tender, enlarged, or boggy prostate. Diagnosis is predominantly made based on history and physical examination, but may be aided by urinalysis. Urine cultures should be obtained in all patients who are suspected of having acute bacterial prostatitis to determine the responsible bacteria and its antibiotic sensitivity pattern. Additional laboratory studies can be obtained based on risk factors and severity of illness. Radiography is typically unnecessary. Most patients can be treated as outpatients with oral antibiotics and supportive measures. Hospitalization and broad-spectrum intravenous antibiotics should be considered in patients who are systemically ill, unable to voluntarily urinate, unable to tolerate oral intake, or have risk factors for antibiotic resistance. Typical antibiotic regimens include ceftriaxone and doxycycline, ciprofloxacin, and piperacillin/tazobactam. The risk of nosocomial bacterial prostatitis can be reduced by using antibiotics, such as ciprofloxacin, before transrectal prostate biopsy.

  2. Diazotrophic Bacterial Community of Degraded Pastures

    Directory of Open Access Journals (Sweden)

    João Tiago Correia Oliveira

    2017-01-01

    Full Text Available Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN of bacteria per gram of sample, in order to determine population density and calculate the Shannon-Weaver diversity index. The diversity of total diazotrophic bacterial community was determined by the technique of Denaturing Gradient Gel Electrophoresis (DGGE of the nifH gene, while the diversity of the culturable diazotrophic bacteria was determined by the Polymerase Chain Reaction (BOX-PCR technique. The increase in the degradation stage of the B. decumbens Stapf. pasture did not reduce the population density of the cultivated diazotrophic bacterial community, suggesting that the degradation at any degree of severity was highly harmful to the bacteria. The structure of the total diazotrophic bacterial community associated with B. decumbens Stapf. was altered by the pasture degradation stage, suggesting a high adaptive capacity of the bacteria to altered environments.

  3. Revisiting nitrification in the Eastern Tropical South Pacific: A focus on controls

    Science.gov (United States)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Warner, Mark J.; Devol, Allan H.; Ward, Bess B.

    2016-03-01

    Nitrification, the oxidation of ammonium (NH4+) to nitrite (NO2-) and to nitrate (NO3-), is a component of the nitrogen (N) cycle internal to the fixed N pool. In oxygen minimum zones (OMZs), which are hotspots for oceanic fixed N loss, nitrification plays a key role because it directly supplies substrates for denitrification and anaerobic ammonia oxidation (anammox), and may compete for substrates with these same processes. However, the control of oxygen and substrate concentrations on nitrification are not well understood. We performed onboard incubations with 15N-labeled substrates to measure rates of NH4+ and NO2- oxidation in the eastern tropical South Pacific (ETSP). The spatial and depth distributions of NH4+ and NO2- oxidation rates were primarily controlled by NH4+ and NO2- availability, oxygen concentration, and light. In the euphotic zone, nitrification was partially photoinhibited. In the anoxic layer, NH4+ oxidation was negligible or below detection, but high rates of NO2- oxidation were observed. NH4+ oxidation displayed extremely high affinity for both NH4+ and oxygen. The positive linear correlations between NH4+ oxidation rates and in situ NH4+ concentrations and ammonia monooxygenase subunit A (amoA) gene abundances in the upper oxycline indicate that the natural assemblage of ammonia oxidizers responds to in situNH4+ concentrations or supply by adjusting their population size, which determines the NH4+ oxidation potential. The depth distribution of archaeal and bacterial amoA gene abundances and N2O concentration, along with independently reported simultaneous direct N2O production rate measurements, suggests that AOA were predominantly responsible for NH4+ oxidation, which was a major source of N2O production at oxygen concentrations > 5 µM.

  4. Endolymphatic sac involvement in bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Brandt, Christian; Østergaard, Christian

    2015-01-01

    The commonest sequelae of bacterial meningitis are related to the inner ear. Little is known about the inner ear immune defense. Evidence suggests that the endolymphatic sac provides some protection against infection. A potential involvement of the endolymphatic sac in bacterial meningitis...... is largely unaccounted for, and thus the object of the present study. A well-established adult rat model of Streptococcus pneumoniae meningitis was employed. Thirty adult rats were inoculated intrathecally with Streptococcus pneumoniae and received no additional treatment. Six rats were sham...... days. Bacteria invaded the inner ear through the cochlear aquaduct. On days 5-6, the bacteria invaded the endolymphatic sac through the endolymphatic duct subsequent to invasion of the vestibular endolymphatic compartment. No evidence of direct bacterial invasion of the sac through the meninges...

  5. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  6. Interspecies chemical communication in bacterial development.

    Science.gov (United States)

    Straight, Paul D; Kolter, Roberto

    2009-01-01

    Our view of bacteria, from the earliest observations through the heyday of antibiotic discovery, has shifted dramatically. We recognize communities of bacteria as integral and functionally important components of diverse habitats, ranging from soil collectives to the human microbiome. To function as productive communities, bacteria coordinate metabolic functions, often requiring shifts in growth and development. The hallmark of cellular development, which we characterize as physiological change in response to environmental stimuli, is a defining feature of many bacterial interspecies interactions. Bacterial communities rely on chemical exchanges to provide the cues for developmental change. Traditional methods in microbiology focus on isolation and characterization of bacteria in monoculture, separating the organisms from the surroundings in which interspecies chemical communication has relevance. Developing multispecies experimental systems that incorporate knowledge of bacterial physiology and metabolism with insights from biodiversity and metagenomics shows great promise for understanding interspecies chemical communication in the microbial world.

  7. Determination of Bacterial Growth in Culture Media

    International Nuclear Information System (INIS)

    Elly Ellyna Rashid; Shariza Hanim Zainal Abidin; Mok, P.S.

    2015-01-01

    Bacteria is one of the important microorganism in our daily life. Bacteria provides human beings with products in the field of medical, industry, food, agriculture and others. Determination of bacteria growth is important so that we can enjoy the most benefit from it. Spread-plate method is one of the methods to obtain the bacterial counts. Agar plates, such as Nutrient Agar or Plate Count Agar are usually used for this purpose. Bacterial culture will be diluted first before being spread on the agar plate and incubated at specific temperature. The number of bacteria in colony-forming unit (CFU) will be counted the next day. The count will be used to determine the bacterial growth. (author)

  8. MIPS bacterial genomes functional annotation benchmark dataset.

    Science.gov (United States)

    Tetko, Igor V; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Fobo, Gisela; Ruepp, Andreas; Antonov, Alexey V; Surmeli, Dimitrij; Mewes, Hans-Wernen

    2005-05-15

    Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. BFAB is available at http://mips.gsf.de/proj/bfab

  9. Heme Synthesis and Acquisition in Bacterial Pathogens.

    Science.gov (United States)

    Choby, Jacob E; Skaar, Eric P

    2016-08-28

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Characterization of TEMPO-oxidized bacterial cellulose

    International Nuclear Information System (INIS)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A.; Barros, Matheus de O.; Morais, Joao P.S.; Borges, Maria de F.; Rosa, Morsyleide de F.

    2015-01-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  11. Bioremoval of heavy metals by bacterial biomass.

    Science.gov (United States)

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.

  12. Counterimmunoelectrophoresis in the diagnosis of bacterial meningitis

    DEFF Research Database (Denmark)

    Colding, H; Lind, I

    1977-01-01

    The aim of the present study was to investigate whether counterimmunoelectrophoresis (CIE) would facilitate the rapid, etiological diagnosis of bacterial meningitis when used in parallel with other routine methods in a medical bacteriological laboratory. Of 3,674 consecutive specimens of cerebros......The aim of the present study was to investigate whether counterimmunoelectrophoresis (CIE) would facilitate the rapid, etiological diagnosis of bacterial meningitis when used in parallel with other routine methods in a medical bacteriological laboratory. Of 3,674 consecutive specimens....../139) of the culture-negative specimens. CSF specimens from 21 patients with bacterial meningitis caused by other species were all negative in CIE, except four, three of which contained Escherichia coli antigen reacting with antiserum to N. meningitidis group B and one E. coli antigen reacting with antiserum to H...

  13. Bacterial flora of conjunctiva after death

    Directory of Open Access Journals (Sweden)

    Sagili Chandrasekhara Reddy

    2013-10-01

    Full Text Available AIM:To evaluate the frequency of bacterial flora of conjunctiva after death (cadaver eyes which will give information about the bacterial contamination of donor eyes, and the in-vitro sensitivity of isolated bacteria to the commonly used antibiotics in ophthalmic practice.METHODS: Conjunctival swabs were taken from the cadavers (motor vehicle accident deaths and patients who died in the hospital, within 6h after death, and sent for culture and sensitivity test. Conjunctival swabs, taken from the healthy conjunctiva of patients admitted for cataract surgery, were sent for culture and sensitivity as controls (eyes in those of living status. The bacterial isolates were tested against the commonly used antibiotics (chloramphenicol, gentamicin, ciprofloxacin in ophthalmology practice.RESULTS: Bacteria were isolated in 41 out of 100 conjunctival swabs (41%, taken from 50 cadavers (study group. Coagulase negative staphylococcus was the most common bacteria isolated (15%, followed by pseudomonas aeruginosa (5%. Gentamicin was effective against majority of the bacterial isolates (82%. Bacteria were isolated from 7 out of 100 conjunctival swabs taken as control group (eyes in living state. Coagulase negative staphylococcus was the most common organism (5% isolated in control group; the others were staphylococcus aureus (1% and beta hemolyticus streptococci (1%.CONCLUSION: Bacteria were isolated from 41% of the cadaver eyes. High percentage sensitivity of the bacterial isolates to gentamicin (82% supports the practice of thorough irrigation of the eyes with gentamicin solution before starting the procedure of enucleation followed by immersion of the enucleated eyeballs in gentamycin solution, to prevent the bacterial contamination.

  14. CT scan of bacterial and aseptic meningitis

    International Nuclear Information System (INIS)

    Takemoto, Kazumasa; Saiwai, Shigeo; Tamaoka, Koichi

    1983-01-01

    CT scans of the patients with aseptic and bacterial meningitis were reviewed and compared to previous reports. In aseptic meningitis, no abnormal CT findings were observed. In bacterial meningitis, CT findings were ventricular dilatation, subdural fluid collection, parenchymal low density, intracerebral hematoma and meningeal enhancement after contrast injection. Three patients among 48 suffered from status epileptics during the course of the illness. All of 3 patients developed parenchymal inhomogeneous low density and progressive ventricular dilatation which did not improve after ventricular peritoneal shunt surgery. We believe that these changes are most likely due to hypoxic hypoxemia during epileptic seizure and meningitis itself seems to play a little role. (author)

  15. Manipulation of host membranes by bacterial effectors.

    Science.gov (United States)

    Ham, Hyeilin; Sreelatha, Anju; Orth, Kim

    2011-07-18

    Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.

  16. Barriers to bacterial motility on unsaturated surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Smets, Barth F.

    2013-01-01

    Our knowledge of the spatial organization and spatial dynamics of microbial populations in soil at a scale close to that of the microorganisms is scarce. While passive dispersal via water ow or soil biota is probably a major dispersal route, it is reasonable to consider that active dispersal also...... and their isogenic mutants unable to express various type of motility we aimed to quantify the physical limits of bacterial motility. Our results demonstrate how hydration controls bacterial motility under unsaturated conditions. They can form the base of improved biodegradation models that include microbial...

  17. Impact of hydrodynamic stresses on bacterial flagella

    Science.gov (United States)

    Das, Debasish; Riley, Emily; Lauga, Eric

    2017-11-01

    The locomotion of bacteria powered by helical filaments, such as Escherichia coli, critically involves the generation of flows and hydrodynamic stresses which lead to forces and moments balanced by the moment applied by the bacterial rotary motor (which is embedded in the cell wall) and the deformation of the short flexible hook. In this talk we use numerical computations to accurately compute these hydrodynamic stresses, to show how they critically lead to fluid-structure instabilities at the whole-cell level, and enquire if they can be used to rationalise experimental measurements of bacterial motor torques. ERC Consolidator Grant.

  18. Carbon nanotubes as anti-bacterial agents.

    Science.gov (United States)

    Mocan, Teodora; Matea, Cristian T; Pop, Teodora; Mosteanu, Ofelia; Buzoianu, Anca Dana; Suciu, Soimita; Puia, Cosmin; Zdrehus, Claudiu; Iancu, Cornel; Mocan, Lucian

    2017-10-01

    Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.

  19. Molecular mechanisms of action of bacterial exotoxins.

    Science.gov (United States)

    Balfanz, J; Rautenberg, P; Ullmann, U

    1996-07-01

    Toxins are one of the inventive strategies that bacteria have developed in order to survive. As virulence factors, they play a major role in the pathogenesis of infectious diseases. Recent discoveries have once more highlighted the effectiveness of these precisely adjusted bacterial weapons. Furthermore, toxins have become an invaluable tool in the investigation of fundamental cell processes, including regulation of cellular functions by various G proteins, cytoskeletal dynamics and neural transmission. In this review, the bacterial toxins are presented in a rational classification based on the molecular mechanisms of action.

  20. Bacterial and parasitic diseases of parrots.

    Science.gov (United States)

    Doneley, Robert J T

    2009-09-01

    As wild-caught birds become increasingly rare in aviculture, there is a corresponding decline in the incidence of bacterial and parasitic problems and an increase in the recognition of the importance of maintaining health through better nutrition and husbandry. Nevertheless, the relatively close confines of captivity mean an increased pathogen load in the environment in which companion and aviary parrots live. This increased pathogen load leads to greater exposure of these birds to bacteria and parasites, and consequently a greater risk of infection and disease. This article discusses bacterial and parasitic infections in companion and aviary parrots. It includes the origins, pathogens, diagnosis, treatment, and some of the associated risk factors.

  1. Tuning bacterial hydrodynamics with magnetic fields

    Science.gov (United States)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  2. Enzymatic removal and disinfection of bacterial biofilms

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Falholt, Per; Gram, Lone

    1997-01-01

    -coated hydroxyapatite. The activity of enzymes against bacterial cells in biofilm was measured by fluorescence microscopy and an indirect conductance test in which evolution of carbon dioxide was measured. Glucose oxidase combined with lactoperoxidase was bactericidal against biofilm bacteria but did not remove...

  3. 156 ORIGINAL ARTICLE PREVALENCE OF BACTERIAL ...

    African Journals Online (AJOL)

    Dr Oboro VO

    reproductive age with a prevalence of 9-37%, depending on the .... 82 (100). 161 (100). BV, bacterial vaginosis: score of 7-10; I, intermediate: score of 4-6; N, normal: score of 0-3 .... based study of reproductive tract infections among ever ...

  4. Methacrylate hydrogels reinforced with bacterial cellulose

    Czech Academy of Sciences Publication Activity Database

    Hobzová, Radka; Dušková-Smrčková, Miroslava; Michálek, Jiří; Karpushkin, Evgeny; Gatenholm, P.

    2012-01-01

    Roč. 61, č. 7 (2012), s. 1193-1201 ISSN 0959-8103 R&D Projects: GA AV ČR KJB400500902 Institutional research plan: CEZ:AV0Z40500505 Keywords : bacterial cellulose * methacrylate hydrogel * composite Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.125, year: 2012

  5. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, J.; Jay, W.H.

    1998-01-01

    Full text: Pyritic ores (pyrite and arsenopyrite) containing gold concentrations in excess of 50g Au/t can be processed to recover the gold by the removal of the sulphur from the ore. This may be achieved by roasting (producing sulphur dioxide emissions), pressure oxidation (expensive and suitable for large high grade deposits), pressure leaching (still currently being developed) or bacterial oxidation. The bacterial oxidation process is a well known process in nature but has only recently come under investigation as a economically viable and relatively clean method of gold recovery from deep low grade sulphidic ores. Samples were obtained from the Wiluna Gold Mine in Western Australia consisting of the original ore, six successive bacterial reactors and the final products. Moessbauer experiments have been performed at room temperature, liquid nitrogen and liquid helium temperatures, and in applied magnetic fields. The main components of the iron phases which were present during the bacterial treatment were pyrite and arsenopyrite which were readily oxidised by the bacteria. Ferric sulfates and ferric arsenates were identified as by-products of the process with a small amount of the oxyhydroxide goethite. These results are in contrast to the similar study of the Fairview Mine in South Africa where principally Fe(II) species were observed

  6. Bacterial leaching of pyritic gold ores

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J. [Monash Univ., Clayton, VIC (Australia). Dept. of Physics; Jay, W.H. [Monash Univ., Clayton, VIC (Australia). Chemical Engineering Department

    1996-12-31

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. {sup 57}Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS{sub 2}, and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  7. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J.; Jay, W.H.

    1996-01-01

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. 57 Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS 2 , and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  8. Bacterial Acclimation Inside an Aqueous Battery.

    Science.gov (United States)

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  9. Molecular Characterization and Potential of Bacterial Species ...

    African Journals Online (AJOL)

    The 16S rRNA gene of total bacteria community and bacterial isolates were amplified by Polymerase Chain Reaction (PCR) using 16S rRNA primers. Total microbial community DNA amplicons were spliced into the PCR-TRAP Cloning Vector, used to transform competent cells of Escherichia coli and sequenced.

  10. Modeling bacterial contamination of fuel ethanol fermentation.

    Science.gov (United States)

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  11. Effect of vaccines on bacterial meningitis worldwide

    NARCIS (Netherlands)

    McIntyre, Peter B.; O'Brien, Katherine L.; Greenwood, Brian; van de Beek, Diederik

    2012-01-01

    Three bacteria-Haemophilus influenzae, Streptococcus pneumoniae, and Neisseria meningitidis-account for most acute bacterial meningitis. Measurement of the effect of protein-polysaccharide conjugate vaccines is most reliable for H influenzae meningitis because one serotype and one age group account

  12. Identification of the Bacterial Community Responsible for ...

    African Journals Online (AJOL)

    Identification of bacteria community responsible for decontaminating Eleme petrochemical industrial effluent using 16S PCR denaturing gradient gel electrophoresis (DGGE) was determined. Gene profiles were determined by extracting DNA from bacterial isolates and amplified by polymerase chain reaction (PCR) using ...

  13. Biosensors for Whole-Cell Bacterial Detection

    Science.gov (United States)

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  14. Increasing complexity of the bacterial cytoskeleton

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Löwe, Jan

    2005-01-01

    Bacteria contain cytoskeletal elements involved in major cellular processes including DNA segregation and cell morphogenesis and division. Distant bacterial homologues of tubulin (FtsZ) and actin (MreB and ParM) not only resemble their eukaryotic counterparts structurally but also show similar...

  15. Meningococcal Disease (Bacterial Meningitis) Vaccine and Pregnancy

    Science.gov (United States)

    Meningococcal Disease (Bacterial Meningitis) Vaccine In every pregnancy, a woman starts out with a 3-5% chance of having a baby with a ... advice from your health care provider. What is meningitis? Meningitis is an infection of the lining around ...

  16. Childhood bacterial meningitis in Mbarara Hospital, Uganda ...

    African Journals Online (AJOL)

    Background : The recommended antibiotic treatment of bacterial meningitis has come under scrutiny following frequent reports of in-vitro resistance by the common causative organisms to penicillin and chloramphenicol. Objective : The study recorded the causative organisms, antibiotic sensitivity patterns and outcome of ...

  17. Computed Tomography Study Of Complicated Bacterial Meningitis ...

    African Journals Online (AJOL)

    To monitor the structural intracranial complications of bacterial meningitis using computed tomography (CT) scan. Retrospective study of medical and radiological records of patients who underwent CT scan over a 4 year period. AUniversityTeachingHospital in a developing country. Thirty three patients with clinically and ...

  18. Respiratory bacterial infections in cystic fibrosis

    DEFF Research Database (Denmark)

    Ciofu, Oana; Hansen, Christine R; Høiby, Niels

    2013-01-01

    PURPOSE OF REVIEW: Bacterial respiratory infections are the main cause of morbidity and mortality in patients with cystic fibrosis (CF). Pseudomonas aeruginosa remains the main pathogen in adults, but other Gram-negative bacteria such as Achromobacter xylosoxidans and Stenotrophomonas maltophilia...... respiratory tract (nasal sampling) should be investigated and both infection sites should be treated....

  19. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by

  20. Subcellular sites for bacterial protein export

    NARCIS (Netherlands)

    Campo, Nathalie; Tjalsma, Harold; Buist, Girbe; Stepniak, Dariusz; Meijer, Michel; Veenhuis, Marten; Westermann, Martin; Müller, Jörg P.; Bron, Sierd; Kok, Jan; Kuipers, Oscar P.; Jongbloed, Jan D.H.

    2004-01-01

    Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA-YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the

  1. Subcellular sites for bacterial protein export.

    NARCIS (Netherlands)

    Campo, N.; Tjalsma, H.; Buist, G.; Stepniak, D.; Meijer, M.; Veenhuis, M.; Westermann, M.; Muller, J.P.; Bron, S.; Kok, J.; Kuipers, O.P.; Jongbloed, J.D.

    2004-01-01

    Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA-YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the

  2. SnapShot: The Bacterial Cytoskeleton.

    Science.gov (United States)

    Fink, Gero; Szewczak-Harris, Andrzej; Löwe, Jan

    2016-07-14

    Most bacteria and archaea contain filamentous proteins and filament systems that are collectively known as the bacterial cytoskeleton, though not all of them are cytoskeletal, affect cell shape, or maintain intracellular organization. To view this SnapShot, open or download the PDF. Copyright © 2016. Published by Elsevier Inc.

  3. Factors influencing bacterial adhesion to contact lenses.

    Science.gov (United States)

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.

  4. Bacterial interaction forces in adhesion dynamics

    NARCIS (Netherlands)

    Boks, Niels Peter

    2009-01-01

    Wanneer interactiekrachten tussen bacteriën en oppervlakken bepaald worden, hangen deze erg af van de gebruikte meettechniek. De mechanismen die verantwoordelijk zijn voor deze verschillen zijn echter nog niet duidelijk. Om hier meer inzicht in te krijgen, zijn in dit onderzoek interactiekrachten

  5. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Directory of Open Access Journals (Sweden)

    Jihane Cheriaa

    2012-01-01

    Full Text Available A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila-(CM-4 was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L and malachite green (50 mg/L dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  6. Multiple bacterial species reside in chronic wounds

    DEFF Research Database (Denmark)

    Gjødsbøl, Kristine; Christensen, Jens Jørgen; Karlsmark, Tonny

    2006-01-01

    . aeruginosa were found to be significantly larger than ulcers without the presence of P. aeruginosa (P wound is colonised by multiple bacterial species and that once they are established many of them persist in the wound. Our results suggest that the presence...... of P. aeruginosa in venous leg ulcers can induce ulcer enlargement and/or cause delayed healing....

  7. Microbial minimalism: genome reduction in bacterial pathogens.

    Science.gov (United States)

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  8. Biosynthesis of highly porous bacterial cellulose nanofibers

    Science.gov (United States)

    Hosseini, Hadi; Kokabi, Mehrdad; Mousavi, Seyyed Mohammad

    2018-01-01

    Bacterial cellulose nanofibers (BCNFs) as a sustainable and biodegradable polymer has drawn tremendous research attention in tissue engineering, bacterial sensors and drug delivery due to its extraordinary properties such as high purity, high crystallinity, high water absorption capacity and excellent mechanical strength in the wet state. This awesome properties, is attributed to BCNFs structure, therefore its characterization is important. In this work, the bacterial strain, Gluconacetobacter xylinus (PTCC 1734, obtained from Iranian Research Organization for Science and Technology (IROST)), was used to produce BCNFs hydrogel using bacterial fermentation under static condition at 29 °C for 10 days in the incubator. Then, the biosynthesized BCNFs wet gel, were dried at ambient temperature and pressure and characterized using Brunauer-Emmett-Teller (BET) and Field emission scanning electron microscopy (FE-SEM) analysis. FESEM image displayed highly interconnected and porous structure composed of web-like continuous, nanofibers with an average diameter of 48.5±2.1 nm. BET result analysis depicted BCNFs dried at ambient conditions had IV isotherm type, according to the IUPAC classification, indicating that BCNFs dried at ambient condition is essentially mesoporous. On the other hand, BET results depicted, mesoporous structure is around 85%. In addition, Specific surface area (SBET) obtained 81.45 m2/g. These results are in accordance with the FESEM observation.

  9. The normal bacterial flora prevents GI disease

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. The normal bacterial flora prevents GI disease. Inhibits pathogenic enteric bacteria. Decrease luminal pH; Secrete bacteriocidal proteins; Colonization resistance; Block epithelial binding – induce MUC2. Improves epithelial and mucosal barrier integrity. Produce ...

  10. Bacterial Diversity across Individual Lichens▿ †

    Science.gov (United States)

    Mushegian, Alexandra A.; Peterson, Celeste N.; Baker, Christopher C. M.; Pringle, Anne

    2011-01-01

    Symbioses are unique habitats for bacteria. We surveyed the spatial diversity of bacterial communities across multiple individuals of closely related lichens using terminal restriction fragment length polymorphism (T-RFLP) and pyrosequencing. Centers of lichens house richer, more consistent assemblages than species-poor and compositionally disparate lichen edges, suggesting that ecological succession plays a role in structuring these communities. PMID:21531831

  11. Prevalence of antibacterial resistant bacterial contaminants from ...

    African Journals Online (AJOL)

    Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9%) out of 106 ...

  12. Structural Genomics of Bacterial Virulence Factors

    Science.gov (United States)

    2006-05-01

    Moller, T., T. Franch , P. Hojrup, D.R. Keene, H.P. Bachinger, R.G. Brennan, and P. Valentin-Hansen. 2002. Hfq: a bacterial Sm-like protein that...level, an unre- sponsiveness to external stimuli, or an inability to obtain readily available food or water, along with any of the following accompa

  13. A study of bacterial gene regulatory mechanisms

    DEFF Research Database (Denmark)

    Hansen, Sabine

    Bacterial cells are capable of rapidly changing their protein expression in response to ever-changing environments and physiological conditions. The cells are able to switch on the expression of proteins that due to changing environmental conditions have become vital to sustain life and likewise ...

  14. Bacterial proteases: targets for diagnostics and therapy

    NARCIS (Netherlands)

    Kaman, W.E.; Hays, J.P.; Endtz, H.P.; Bikker, F.J.

    2014-01-01

    Proteases are essential for the proliferation and growth of bacteria, and are also known to contribute to bacterial virulence. This makes them interesting candidates as diagnostic and therapeutic targets for infectious diseases. In this review, the authors discuss the most recent developments and

  15. Discovery of inhibitors of bacterial histidine kinases

    NARCIS (Netherlands)

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based drug discovery approach, we have identified small-molecule histidine-kinase

  16. Engineering nanoparticles to silence bacterial communication

    Directory of Open Access Journals (Sweden)

    Kristen Publicover Miller

    2015-03-01

    Full Text Available The alarming spread of bacterial resistance to traditional antibiotics has warranted the study of alternative antimicrobial agents. Quorum sensing is a chemical cell-to-cell communication mechanism utilized by bacteria to coordinate group behaviors and establish infections. Quorum sensing is integral to bacterial survival, and therefore provides a unique target for antimicrobial therapy. In this study, silicon dioxide nanoparticles (Si-NP were engineered to target the signaling molecules (i.e. acylhomoserine lactones (HSL used for quorum sensing in order to halt bacterial communication. Specifically, when Si-NP were surface functionalized with beta-cyclodextrin (beta-CD, then added to cultures of bacteria (Vibrio fischeri, whose luminous output depends upon HSL-mediated quorum sensing, the cell-to-cell communication was dramatically reduced. Reductions in luminescence were further verified by quantitative polymerase chain reaction (qPCR analyses of luminescence genes. Binding of AHLs to Si-NPs was examined using nuclear magnetic resonance (NMR spectroscopy. The results indicated that by delivering high concentrations of engineered NPs with associated quenching compounds, the chemical signals were removed from the immediate bacterial environment. In actively-metabolizing cultures, this treatment blocked the ability of bacteria to communicate and regulate quorum sensing, effectively silencing and isolating the cells. Si-NPs provide a scaffold and critical stepping-stone for more pointed developments in antimicrobial therapy, especially with regard to quorum sensing – a target that will reduce resistance pressures imposed by traditional antibiotics.

  17. Multiple bacterial species reside in chronic wounds

    DEFF Research Database (Denmark)

    Gjødsbøl, Kristine; Christensen, Jens Jørgen; Karlsmark, Tonny

    2006-01-01

    species present were identified. More than one bacterial species were detected in all the ulcers. The most common bacteria found were Staphylococcus aureus (found in 93.5% of the ulcers), Enterococcus faecalis (71.7%), Pseudomonas aeruginosa (52.2%), coagulase-negative staphylococci (45.7%), Proteus...

  18. Field determination of bacterial disappearance in seawater

    DEFF Research Database (Denmark)

    Harremoës, Poul

    1970-01-01

    The article presents two approaches to field determination of disappearance of viable, fecal bacteria after discharge with sewage into a marine environment. The first approach is based on simultaneous sampling for bacterial counting and monitoring of dilution using a conservative tracer, which is...

  19. Advances in treatment of bacterial meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; Brouwer, Matthijs C.; Thwaites, Guy E.; Tunkel, Allan R.

    2012-01-01

    Bacterial meningitis kills or maims about a fifth of people with the disease. Early antibiotic treatment improves outcomes, but the effectiveness of widely available antibiotics is threatened by global emergence of multidrug-resistant bacteria. New antibiotics, such as fluoroquinolones, could have a

  20. Common Bacterial Pathogens and their Antibiotic Sensitivity

    African Journals Online (AJOL)

    these three drugs can be used in treating most from this study suggest that these three drugs can be used in treating most bacterial infections. This would be particularly useful in health set-ups where culturing and sensitivity testing is impossible, although the availability and cost effectiveness of these antibiotics is in ...

  1. Electrochemical characterization of the bacterial cell surface

    NARCIS (Netherlands)

    Wal, van der A.

    1996-01-01


    Bacterial cells are ubiquitous in natural environments and also play important roles in domestic and industrial processes. They are found either suspended in the aqueous phase or attached to solid particles. The adhesion behaviour of bacteria is influenced by the physico-chemical

  2. Corrosion, haemocompatibility and bacterial adhesion behaviour of ...

    Indian Academy of Sciences (India)

    TiZrN coating was deposited on 316L stainless steel (SS) by the reactive magnetron co-sputtering technique. Cubic phase of TiZrN with uniform surface morphology was observed by X-ray diffraction and atomic force microscopy. Bacterial adhesion, haemocompatibility and corrosion behaviour of TiZrN coating were ...

  3. Protein malnutrition and metronidazole induced intestinal bacterial ...

    African Journals Online (AJOL)

    This study was designed to assess the effects of protein malnutrition (PM) associated with antibiotic on growth weight, cecal bacterial overgrowth and enterobacteria translocation. Eighteen Gnotobiotic young Wistar rats (135 ± 2.35 g) were treated orally with antibiotic and submitted to dietary restriction based on maize diet ...

  4. Selected topics from classical bacterial genetics.

    Science.gov (United States)

    Raleigh, Elisabeth A; Elbing, Karen; Brent, Roger

    2002-08-01

    Current cloning technology exploits many facts learned from classical bacterial genetics. This unit covers those that are critical to understanding the techniques described in this book. Topics include antibiotics, the LAC operon, the F factor, nonsense suppressors, genetic markers, genotype and phenotype, DNA restriction, modification and methylation and recombination.

  5. Immunotolerance during bacterial pneumonia and sepsis

    NARCIS (Netherlands)

    Hoogerwerf, J.J.

    2010-01-01

    Bacterial pneumonia and sepsis are a major cause of morbidity and mortality worldwide. Massive use of antibiotics promotes pathogen resistance, and, as a consequence, the incidence of drug-resistant bacteria is increasing. Therefore, it is of the utmost importance to expand our comprehension of host

  6. Pediatric bacterial meningitis in French Guiana.

    Science.gov (United States)

    Elenga, N; Sicard, S; Cuadro-Alvarez, E; Long, L; Njuieyon, F; Martin, E; Kom-Tchameni, R; Balcaen, J; Moreau, B; Boukhari, R

    2015-01-01

    Controlling vaccine-preventable infectious diseases is a public health priority in French Guiana but there is currently no epidemiological data on pediatric bacterial meningitis in this overseas department. Our aim was to describe data related to pediatric bacterial meningitis in French Guiana and compare it with that of metropolitan France. We conducted a multicenter retrospective study from 2000 to 2010 to describe the clinical picture, biological data, epidemiology, and outcome of pediatric bacterial meningitis case patients in French Guiana. The median age of bacterial meningitis patients was 6months [0-15] and the sex ratio 1.06. We observed a total of 60 bacterial meningitis case patients. Most presented with pneumococcal meningitis (24 patients; 40%); 11 with Haemophilus influenzae type b meningitis (23%), five with group B streptococcal meningitis (8.5%), and five others (8.5%) with staphylococcal meningitis (three patients presented with coagulase-negative staphylococci and two with Staphylococcus aureus). Only one patient presented with group B meningococcal meningitis, an 18-month-old infant. We recorded 14 deaths (overall case fatality: 23%); eight were due to Streptococcus pneumoniae (case fatality: 33%). The overall sequelae rate was 28%. It was 32% for patients presenting with pneumococcal meningitis. We observed that 38% of children who had never been vaccinated were infected by a vaccine-preventable bacterium. We observed many differences in the distribution of the bacteria and in the patients' prognosis when comparing the French Guiana data with that of metropolitan France. Improving vaccination coverage would decrease the incidence of H. influenzae meningitis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds

    International Nuclear Information System (INIS)

    Zhang Xiaowei; Moore, Jeremy N.; Newsted, John L.; Hecker, Markus; Zwiernik, Matthew J.; Jones, Paul D.; Bursian, Steven J.

    2009-01-01

    As part of an ongoing effort to understand aryl hydrocarbon receptor (AhR) mediated toxicity in mink, cDNAs encoding for CYP1A1 and the CYP1A2 mixed function monooxygenases were cloned and characterized. In addition, the effects of selected dibenzofurans on the expression of these genes and the presence of their respective proteins (P4501A) were investigated, and then correlated with the catalytic activities of these proteins as measured by ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) activities. The predicted protein sequences for CYP1A1 and CYP1A2 comprise 517 and 512 amino acid residues, respectively. The phylogenetic analysis of the mink CYP1As with protein sequences of other mammals revealed high sequence homology with sea otter, seals and the dog, with amino acid identities ranging from 89 to 95% for CYP1A1 and 81 to 93% for CYP1A2. Since exposure to both 2,3,7,8-Tetrachlorodibenzofuran (TCDF) and 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) resulted in dose-dependent increases of CYP1A1 mRNA, CYP1A2 mRNA and CYP1A protein levels an underlying AhR-mediated mechanism is suggested. The up-regulation of CYP1A mRNA in liver was more consistent to the sum adipose TEQ concentration than to the liver TEQ concentration in minks treated with TCDF or PeCDF. The result suggested that the hepatic-sequestered fraction of PeCDF was biologically inactive to the induction of CYP1A1 and CYP1A2

  8. Kynurenine 3-monooxygenase from Pseudomonas fluorescens: substrate-like inhibitors both stimulate flavin reduction and stabilize the flavin-peroxo intermediate yet result in the production of hydrogen peroxide.

    Science.gov (United States)

    Crozier-Reabe, Karen R; Phillips, Robert S; Moran, Graham R

    2008-11-25

    Kynurenine 3-monooxygenase (KMO) is a flavin-dependent hydroxylase that catalyzes the conversion of l-kynurenine (l-Kyn) to 3-hydroxykynurenine (3OHKyn) in the pathway for tryptophan catabolism. KMO inhibition has been widely suggested as an early treatment for stroke and other neurological disorders that involve ischemia. We have investigated the reductive and the oxidative half-reactions of a stable form of KMO from Pseudomonas fluorescens (KMO). The binding of l-Kyn by the enzyme is relatively slow and involves at least two reversible steps. The rate constant for reduction of the flavin cofactor by NADPH increases by a factor of approximately 2.5 x 10(3) when l-Kyn is bound. The rate of reduction of the KMO.l-Kyn complex is 160 s(-1), and the K(d) for the NADPH complex is 200 microM with charge-transfer absorption bands for the KMO(RED).l-Kyn.NADP(+) complex accumulating after reduction. The reduction potential of KMO is -188 mV and is unresponsive to the addition of l-Kyn or other inhibitory ligands. KMO inhibitors whose structures are reminiscent of l-Kyn such as m-nitrobenzoylalanine and benzoylalanine also stimulate reduction of flavin by NADPH and, in the presence of dioxygen, result in the stoichiometric liberation of hydrogen peroxide, diminishing the perceived therapeutic potential of inhibitors of this type. In the presence of the native substrate, the oxidative half-reaction exhibits triphasic absorbance data. A spectrum consistent with that of a peroxyflavin species accumulates and then decays to yield the oxidized enzyme. This species then undergoes minor spectral changes that, based on flavin difference spectra defined in the presence of 3OHKyn, can be correlated with product release. The oxidative half-reaction observed in the presence of saturating benzoylalanine or m-nitrobenzoylalanine also shows the accumulation of a peroxyflavin species that then decays to yield hydrogen peroxide without hydroxylation.

  9. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation.

    Science.gov (United States)

    Jin, Shuangxia; Singh, Nameirakpam D; Li, Lebin; Zhang, Xianlong; Daniell, Henry

    2015-04-01

    In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Rifaximin has minor effects on bacterial composition, inflammation and bacterial translocation in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Pedersen, Julie S.; Tavenier, Juliette

    2018-01-01

    .4), and MELD score 12 (±3.9). Patients received rifaximin 550 mg BD (n=36) or placebo BD (n=18). Blood and faecal (n=15) sampling were conducted at baseline and after four weeks. Bacterial DNA in blood was determined by real-time qPCR 16S rRNA gene quantification. Bacterial composition in faeces was analysed......BACKGROUND & AIMS: Decompensated cirrhosis is characterized by disturbed haemodynamics, immune dysfunction, and high risk of infections. Translocation of viable bacteria and bacterial products from the gut to the blood is considered a key driver in this process. Intestinal decontamination...... with rifaximin may reduce bacterial translocation (BT) and decrease inflammation. In a randomized, placebo-controlled trial investigated the effects of rifaximin on inflammation and BT in decompensated cirrhosis. METHODS: Fifty-four out-patients with cirrhosis and ascites were randomized, mean age 56 years (±8...

  11. Bacterial vaginosis in pregnant adolescents: proinflammatory cytokine and bacterial sialidase profile. Cross-sectional study

    Directory of Open Access Journals (Sweden)

    Carolina Sanitá Tafner Ferreira

    Full Text Available ABSTRACT CONTEXT AND OBJECTIVE: Bacterial vaginosis occurs frequently in pregnancy and increases susceptibility to sexually transmitted infections (STI. Considering that adolescents are disproportionally affected by STI, the aim of this study was to evaluate the cervicovaginal levels of interleukin (IL-1 beta, IL-6, IL-8 and bacterial sialidase in pregnant adolescents with bacterial vaginosis. DESIGN AND SETTING: Cross-sectional study at mother and child referral units in Belém, Pará, Brazil. METHODS: Vaginal samples from 168 pregnant adolescents enrolled were tested for trichomoniasis and candidiasis. Their vaginal microbiota was classified according to the Nugent criteria (1991 as normal, intermediate or bacterial vaginosis. Cervical infection due to Chlamydia trachomatisand Neisseria gonorrhoeae was also assessed. Cytokine and sialidase levels were measured, respectively, using enzyme-linked immunosorbent assays and MUAN conversion in cervicovaginal lavages. Forty-eight adolescents (28.6% were excluded because they tested positive for some of the infections investigated. The remaining 120 adolescents were grouped according to vaginal flora type: normal (n = 68 or bacterial vaginosis (n = 52. Their cytokine and sialidase levels were compared between the groups using the Mann-Whitney test (P < 0.05. RESULTS: The pregnant adolescents with bacterial vaginosis had higher levels of IL-1 beta, IL-6 and IL-8 (P < 0.05. Sialidase was solely detected in 35 adolescents (67.2% with bacterial vaginosis. CONCLUSIONS: Not only IL-1 beta and sialidase levels, but also IL-6 and IL-8 levels are higher in pregnant adolescents with bacterial vaginosis, thus indicating that this condition elicits a more pronounced inflammatory response in this population, which potentially increases vulnerability to STI acquisition.

  12. Cholinesterase modulations in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Ofek, Keren; Qvist, Tavs

    2011-01-01

    The circulating cholinesterases acetyl- and butyrylcholinesterase may be suppressed and subsequently released from the brain in acute bacterial meningitis.......The circulating cholinesterases acetyl- and butyrylcholinesterase may be suppressed and subsequently released from the brain in acute bacterial meningitis....

  13. Bacterial Meningitis in Adults After Splenectomy and Hyposplenic States

    NARCIS (Netherlands)

    Adriani, Kirsten S.; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2013-01-01

    Objective: To examine the occurrence, disease course, prognosis, and vaccination status of patients with community-acquired bacterial meningitis with a history of splenectomy or functional hyposplenia. Patients and Methods: Patients with bacterial meningitis proven by cerebrospinal fluid culture

  14. A study of bacterial contamination of rattlesnake venom

    Directory of Open Access Journals (Sweden)

    E. Garcia-Lima

    1987-03-01

    Full Text Available The authors studied the bacterial contamination of rattlesnake venom isolated from snakes in captivity and wild snakes caught recently. The captive snakes showed a relatively high incidence of bacterial contamination of their venom.

  15. Emerging antibiotic resistant enteric bacterial flora among food ...

    African Journals Online (AJOL)

    Emerging antibiotic resistant enteric bacterial flora among food animals in Abeokuta, Nigeria. ... Nigerian Journal of Animal Production ... Bacterial resistance to antibiotic in food animals is an emerging public health concern as a result of ...

  16. Bacterial adhesion of porphyromonas gingivalis on provisional fixed prosthetic materials

    Directory of Open Access Journals (Sweden)

    Mustafa Zortuk

    2010-01-01

    Conclusion : The quantity of bacterial adhesion and surface roughness differed among the assessed provisional fixed prosthodontic materials. The light-polymerized provisional material Revotek LC had rougher surface and more bacterial adhesion compared with the others.

  17. SEXUAL DYSFUNCTION ASSOCIATION WITH THE CHRONIC BACTERIAL PROSTATITIS

    Directory of Open Access Journals (Sweden)

    H. S. Ibishev

    2013-01-01

    Full Text Available The study involved 230 patients aged 20 to 45 years with a diagnosis of chronic bacterial prostatitis. The study found that in patients with chronic bacterial prostatitis clinical picture, in addition to pain, is a lower urinary tract symptoms, neuro-vegetative and sexual dysfunction. In patients with chronic bacterial prostatitis, recorded various sexual disorders, most of which are normalized after antibiotic therapy. Erectile dysfunction, which are recorded in patients with chronic bacterial prostatitis is psychogenic in nature dysfunction.

  18. Bacterial cells with improved tolerance to isobutyric acid

    DEFF Research Database (Denmark)

    2017-01-01

    Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds.......Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds....

  19. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Beevi, Akbar Sait Hameedha; Priya, Radhakrishnan Jeeva; Maduraiveeran, Govindhan

    2015-01-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices. (paper)

  20. Bacterial pyomyositis in a patient with aplastic anaemia.

    OpenAIRE

    Mitsuyasu, R.; Gale, R. P.

    1980-01-01

    Bacterial pyomyositis is common in the tropids but is rare in temperate climates. A patient with aplastic anaemia who had never left the continental United States developed bacterial pyomyositis secondary to Staphylococcus aureus which responded to antibiotics and surgical drainage. Bacterial pyomyositis should be considered in the differential diagnosis of fever and myalgias in the immunocompromised patient.