WorldWideScience

Sample records for monomict basaltic eucrite

  1. Trace Element Abundances in Eucrite Basalts: Enrichment or Depletion?

    Science.gov (United States)

    Castle, N. R.

    2018-05-01

    It is not clear how incompatible trace element (ITE) variation in eucrite basalts originated. Here, mechanisms for relative ITE enrichment or depletion are experimentally evaluated in an attempt to reconcile the Stannern and main group eucrites.

  2. Dynamic crystallization of a eucrite basalt. [achondrite textural features produced by superheating and differing cooling rates

    Science.gov (United States)

    Walker, D.; Powell, M. A.; Hays, J. F.; Lofgren, G. E.

    1978-01-01

    The textural features produced in Stannern, a non-porpyritic representative of the eucrite basaltic achondrite class of meteorite, at differing cooling rates and various degrees of initial superheating were studied. Textures produced from mildly superheated melts were found to be fasciculate rather than porphyritic as the result of the cosaturated bulk chemistry of Stannern. The qualitative type of texture apparently depends mainly on the degree of initial superheating, whereas cooling rate exerts a strong influence on the coarseness of texture. Increasing the degree of superheating produces textures from intergranular/subophitic to fasciculate/porphyritic. With initial superheating to 1200 deg C the transition to quasi-porphyritic is controlled by cooling rate, but the development of phenocrysts is merely an overprint on the fasciculate background texture of the groundmass. The suppression of fasciculate texture is completed by a decrease of the degree of initial superheating below the plagioclast entry and suppression of quasi-porphyritic texture is completed by decrease of the degree of initial superheating below pyroxene entry; these qualitative changes do not seem to be produced by changes of cooling rate. A grain size/cooling rate dependence has been used to deduce the cooling rate of fasciculate-textured Stannern clasts (10.1 to 100 deg C/hr).

  3. Petrology of Antarctic Eucrites PCA 91078 and PCA 91245

    Science.gov (United States)

    Howard, L. M.; Domanik, K. J.; Drake, M. J.; Mittlefehldt, D. W.

    2002-01-01

    Antarctic eucrites PCA 91078 and PCA 91245, are petrographically characterized and found to be unpaired, type 6, basaltic eucrites. Observed textures that provide insight into the petrogenesis of these meteorites are also discussed. Additional information is contained in the original extended abstract.

  4. Post-igneous redistribution of components in eucrites

    Science.gov (United States)

    Phinney, W. C.; Lindstrom, D. J.; Mittlefehldt, D. W.; Martinez, R. R.

    1993-01-01

    In our analyses, we utilize a microdrilling technique that removes 40 to 100 micron diameter cores from mineral grains in thin sections analyzed by microprobe. The cores are then analyzed by INAA using the technique of Lindstrom. Three eucrites were selected for application of this analytical technique: monomict breccias Pasamonte and Stannern and unbrecciated EET90020. Pasamonte is among the most unequilibrated of the eucrites on the basis of zoning in pyroxenes and is considered to be an igneous rock not significantly affected by metamorphism. Stannern has igneous texture but its pyroxenes indicate some re-equilibration, although little, if any, recrystallization. EET90020 has a granulite texture and has been substantially recrystallized. Our sample of Pasamonte contains several clasts of different grain sizes ranging from glass to fine grained with diabasic texture containing lathy plagioclase, unexsolved pigeonite, and mesostasis. Cores were taken of the glass and from minerals and mesostases in six lithic clasts which normally allowed sampling of more than one phase per clast. Our sample of Stannern is also a breccia but with little difference in grain size between clasts and matrix. The plagioclase and pigeonite are blocky, twinned, and exsolved and coexist with a bit of mesostasis. Cores were taken of plagioclase and pigeonite with no attempt to distinguish separate clasts. EET90020 is a granular mixture of twinned plagioclase and pigeonite having rather uniform size and many triple junctions. Several cores were taken of both phases. Both clear and cloudy grains of plagioclase and pyroxene were sampled in all three eucrites.

  5. Petrologic and Oxygen-Isotopic Investigations of Eucritic and Anomalous Mafic Achondrites

    Science.gov (United States)

    Mittlefehldt, D. W.; Greenwood, R. C.; Peng, Z. X.; Ross, D. K.; Berger, E. L.; Barrett, T. J.

    2016-01-01

    The most common asteroidal igneous meteorites are eucrite-type basalts and gabbros rocks composed of ferroan pigeonite and augite, calcic plagioclase, silica, ilmenite, troilite, Ca-phosphate, chromite and Fe-metal. These rocks are thought to have formed on a single asteroid along with howardites and diogenites (HEDs). However, Northwest Africa (NWA) 011 is mineralogically identical to eucrites, but has an O-isotopic composition distinct from them and was derived from a different asteroid. Modern analyses with higher precision have shown that some eucrites have smaller O-isotopic differences that are nevertheless well-resolved from the group mean.

  6. Differentiation and magmatic activity in Vesta evidenced by 26Al-26Mg dating in eucrites and diogenites

    Science.gov (United States)

    Hublet, G.; Debaille, V.; Wimpenny, J.; Yin, Q.-Z.

    2017-12-01

    The 26Al-26Mg short-lived chronometer has been widely used for dating ancient objects in studying the early Solar System. Here, we use this chronometer to investigate and refine the geological history of the asteroid 4-Vesta. Ten meteorites widely believed to come from Vesta (4 basaltic eucrites, 3 cumulate eucrites and 3 diogenites) and the unique achondrite Asuka 881394 were selected for this study. All samples were analyzed for their δ26Mg∗ and 27Al/24Mg ratios, in order to construct both whole rock and model whole rock isochrons. Mineral separation was performed on 8 of the HED's in order to obtain internal isochrons. While whole rock Al-Mg analyses of HED's plot on a regression that could be interpreted as a vestan planetary isochron, internal mineral isochrons indicate a more complex history. Crystallization ages obtained from internal 26Al-26Mg systematic in basaltic eucrites show that Vesta's upper crust was formed during a short period of magmatic activity at 2.66-0.58+1.39 million years (Ma) after Calcium-Aluminum inclusions (after CAI). We also suggest that impact metamorphism and subsequent age resetting could have taken place at the surface of Vesta while 26Al was still extant. Cumulate eucrites crystallized progressively from 5.48-0.60+1.56 to >7.25 Ma after CAI. Model ages obtained for both basaltic and cumulate eucrites are similar and suggest that the timing of differentiation of a common eucrite source from a chondritic body can be modeled at 2.88-0.12+0.14 Ma after CAI, i.e. contemporaneously from the onset of the basaltic eucritic crust. Based on their cumulate texture, we suggest cumulate eucrites were likely formed deeper in the crust of Vesta. Diogenites have a more complicated history and their 26Al-26Mg systematics show that they likely formed after the complete decay of 26Al and thus are younger than eucrites. This refined chronology for eucrites and diogenites is consistent with a short magma ocean stage on 4-Vesta from which the

  7. Further Evidence for Geochemical Diversity, and Possible Bimodality, Among Cumulate Eucrites

    Science.gov (United States)

    Warren, P. H.; Kallemeyn, G. W.

    1992-07-01

    monomict. The pyroxene is uniformly Mg-rich (opx mg = 68), yet diogenitic px is not present. No Ce anomaly was detected. If lunar standards can be applied to eucrites, our RNAA siderophile result for Au gives a marginal indication of "pristinity": [Au] = 2.5 X 10^-4 times CI; also [Re] = 4.3 X 10^-4 times CI, but [Ir] = 7.4 X 10^-4 times CI (possibly linked to the unusually mafic nature of this rock). Like Binda and the mildly accumulative Pomozdino, LEW87002 appears to be the product of a melt along the moderate-mg, high- ITE "Stannem Trend." Collectively, these samples suggest that cumulate eucrites formed from parent melts more diverse than the known noncumulate eucrites. The data also hint at a geochemical bimodality for the parent melts, reminiscent of the bimodality among ancient lunar cumulates, which show a paradoxical tendency for high-mg cumulates to be more ITE-rich than low-mg cumulates. The same basic mechanism might be responsible: later melts are more directly linked to the high-mg mantle, but tend to be contaminated by mixing with residual melts left over from the slightly older Nuevo Laredo Trend linked cumulates. References: Delaney J. S. (1988) Lunar and Planet. Sci. XX, 236-237. Mittlefehldt D. W. and Lindstrom M. M. (1991) Geochim. Cosmochim. Acta 55, 77-87. Takeda H., Tagai T., and Graham A. (1988) Thirteenth Symp. Ant. Mets. (Tokyo), pp. 142-144. Figure 1, which in the hard copy appears here, shows cumulate and cumulate-like eucrites and possible parent melt compositions.

  8. Petrology of the Indian Eucrite Piplia Kalan

    Science.gov (United States)

    Buchanan, Paul C.; Mittlefehldt, D. W.; Hutchinson, R.; Koeberl, C.; Lindstrom, D. J.; Pandit, M. K.

    1999-01-01

    Piplia Kalan is an equilibrated eucrite consisting of 60-80 vol.% lithic clasts in a subordinate brecciated matrix. Ophitic/subophitic lithic clasts fall into two groups: finer-grained lithology A and coarser-grained lithology B. Very fine-grained clasts (lithology C) also occur and originally were hypocrystalline in texture. The variety of materials represented in Piplia Kalan suggests cooling histories ranging from quenching or fast crystallization to slower crystallization. Despite textural differences, clasts and matrix have similar mineral and bulk compositions. Thus. Piplia Kalan is probably best classified as a genomict breccia that could represent fragments of a single lava flow or shallow intrusive body, including fine-grained or glassy outer margin and more slowly cooled coarser-grained interior. Piplia Kalan displays evidence of an early shock event, including brecciated matrix and areas of lithic clasts that contain fine-grained, equigranular pyroxene between deformed feldspar laths. The meteorite also displays evidence of at least one episode of thermal metamorphism: hypocrystalline materials are recrystallized to hornfelsic textures and the matrix has a nonporous texture similar to those of eucrites that were affected by post-brecciation heating. Veins of brown glass transect both lithic clasts and brecciated matrix and indicate a second, post-metamorphism shock event.

  9. Pyroxene Homogenization and the Isotopic Systematics of Eucrites

    Science.gov (United States)

    Nyquist, L. E.; Bogard, D. D.

    1996-01-01

    The original Mg-Fe zoning of eucritic pyroxenes has in nearly all cases been partly homogenized, an observation that has been combined with other petrographic and compositional criteria to establish a scale of thermal "metamorphism" for eucrites. To evaluate hypotheses explaining development of conditions on the HED parent body (Vesta?) leading to pyroxene homogenization against their chronological implications, it is necessary to know whether pyroxene metamorphism was recorded in the isotopic systems. However, identifying the effects of the thermal metamorphism with specific effects in the isotopic systems has been difficult, due in part to a lack of correlated isotopic and mineralogical studies of the same eucrites. Furthermore, isotopic studies often place high demands on analytical capabilities, resulting in slow growth of the isotopic database. Additionally, some isotopic systems would not respond in a direct and sensitive way to pyroxene homogenization. Nevertheless, sufficient data exist to generalize some observations, and to identify directions of potentially fruitful investigations.

  10. Basalts as probes of planetary interiors: constraints on the chemistry and mineralogy of their source regions

    International Nuclear Information System (INIS)

    Bence, A.E.; Grove, T.L.; Papike, J.J.

    1980-01-01

    Basalt magmas, derived by the partial melting of planetary interiors, have compositions that reflect the pre-accretionary history of the material from which the planet formed, the planets, subsequent evolutionary history, the chemistry and mineralogy of the source regions, and the intensive thermodynamic parameters operating at the source and emplacement sites. Studies of basalt suites from the Earth, its Moon, and the eucrite parent body reveal compositional differences intrinsic to their source regions which are, in turn, a characteristic of the planet and its formational and evolutionary history. (Auth.)

  11. The annual cycle of plutonium in the water column of a warm, monomictic reservoir

    International Nuclear Information System (INIS)

    Pinder, J.E. III; Alberts, J.J.; Bowling, J.W.; Nelson, D.M.; Orlandini, K.A.

    1992-01-01

    An annual cycle occurs in the 239,240 Pu inventories of the water column of Pond B, an 87-ha warm monomictic reservoir on the US Department of Energy's Savannah River Site in Barnwell Co., South Carolina. The pond has elevated concentrations of 238 Pu and 239,240 Pu in sediments due to releases from former reactor operations and continues to receive additional Pu input from atmospheric deposition. For surface waters, the 239,240 Pu inventory increases following turnover in November to a maximum in March followed by a decline until later summer when minimum inventories occur. For deeper waters, the 239,240 Pu inventories increase rapidly following turnover and reach maximum values in March. The inventories in deeper waters remain large from March until turnover. Maximum inventories for the entire water column occur in March with minimum inventories at turnover in October and November. Turnover results in a redistribution of Pu across water depth but no measurable Pu loss from the water column. Ratios of 238 Pu: 239,240 Pu indicate that the cycle involves primarily Pu from sediment sources with little influence from atmospheric sources. Thus, the cycle represents net remobilization of 239,240 Pu from the sediments to the water column during the oxic, holomictic portion of the year followed by a net loss of Pu from the water column once stratification occurs. (author)

  12. Long term picoplankton dynamics in a warm-monomictic, tropical high altitude lake

    Directory of Open Access Journals (Sweden)

    Alfonso LUGO VÁZQUEZ

    2009-08-01

    Full Text Available Long term analyses of the microbial loop, centred on the picoplankton dynamics, were carried out over a five-year (1998 to 2002 period in Lake Alchichica (Puebla, Mexico, a high altitude tropical athalassohaline lake. The hydrodynamics of the lake followed a warm-monomictic pattern with mixing at a minimum temperature during the early dry season while the stratification was pronounced in the late dry season and throughout the rainy season; anoxic conditions in the hypolimnion lasted <9 months. The annual mean concentrations of chlorophyll-a were below 4 μg L-1 in 1998, 1999 and 2001, however, 6.1 and 5.2 μg L-1 in 2000 and 2002, respectively. Total picoplankton, TPP, displayed a temporal pattern that followed the mixing-stratification cycle. The highest TPP values (the whole water column ≥5×106 cells mL-1 were found during mixing and early stratification (January-March. The minimum numbers were present during late stratification (October-November. The maximum TPP numbers were observed within the layer 0-20 m, which corresponded to the epilimnion during the stratification period. Neither the thermocline nor the deep chlorophyll maximum showed an elevated TPP concentration. In the hypolimnion, TPP numbers were low (frequently <1×106 cells mL-1 apparently as a result of the long period of anoxia. Notwithstanding autotrophic picoplankton (APP contributed even ≥30% of TPP (2001 to 2002; no significant correlation was found between TPP and chlorophyll-a.

  13. Origin of howardites, diogenites and eucrites - A mass balance constraint

    Science.gov (United States)

    Warren, P. H.

    1985-01-01

    Two petrogenetic models for the noncumulate-basaltic parts of howardite meteorites are discussed. A mass balance constraint is developed which indicates that more than half of the basaltic components in howardites formed as residual liquids from fractional crystallization of melts that had earlier produced diogentelike pyroxene cumulate components. Other model constriants involving scandium trends, clustering near olivine-pyroxene-plagioclase peritectic, and MgO/(MgO + FeO) ratios are discussed.

  14. Bunburra Rockhole: Exploring the Geology of a New Differentiated Basaltic Asteroid

    Science.gov (United States)

    Benedix, G.K.; Bland, P. A.; Friedrich, J. M.; Mittlefehldt, D.; Sanborn, M. E.; Yin, Q.-Z.; Greenwood, R. C; Franchi, L. A.; Bevan, A. W. R.; Towner, M. C.; hide

    2014-01-01

    Bunburra Rockhole (BR) is the first recovered meteorite of the Desert Fireball Network. It was initially classified as a basaltic eucrite, based on texture, mineralogy, and mineral chemistry but subsequent O isotopic analyses showed that BR's composition lies significantly far away from the HED group of meteorites. This suggested that BR was not a piece of the HED parent body (4 Vesta), but other explanations could also account for the observed oxygen signatures. Possible scenarios include contamination by components from other bodies (chondrites or other achondrites) or that 4 Vesta may not be as equilibrated as hypothesized. After examining multiple pieces with different instruments (CT scans and x-ray maps), no obvious evidence of contamination was found. If BR is not from Vesta, a conundrum exists as no unusual features were found in mineral and bulk trace element chemistry as exist for other anomalous basaltic achondrites such as Ibitira or Asuka 881394. These meteorites have distinct petrological and geochemical characteristics, in addition to their anomalous O isotope compositions, that set them apart from eucrites. Thus, early results provided a somewhat ambiguous picture of BR's petrogenesis and parentage. To clarify the nature of the relationship, if any, between BR and eucrites, we have performed a correlated stable isotope and bulk chemical study of several lithologic fragments.

  15. Vestas Pinaria Region: Original Basaltic Achondrite Material Derived from Mixing Upper and Lower Crust

    Science.gov (United States)

    Mcfadden, L. A.; Combe, Jean-Philippe; Ammannito, Eleonora; Frigeri, Alessandro; Stephan, Katrin; Longobardo, Andrea; Palomba, Ernesto; Tosi, Federico; Zambon, Francesca; Krohn, Katrin; hide

    2015-01-01

    Analysis of data from the Dawn mission shows that the Pinaria region of Vesta spanning a portion of the rim of the Rheasilvia basin is bright and anhydrous. Reflectance spectra, absorption band centers, and their variations, cover the range of pyroxenes from diogenite-rich to howardite and eucrite compositions, with no evidence of olivine in this region. By examining band centers and depths of the floor, walls and rims of six major craters in the region, we find a lane of diogenite-rich material next to howardite-eucrite material that does not follow the local topography. The source of this material is not clear and is probably ejecta from post-Rheasilvia impacts. Material of a howardite-eucrite composition originating from beyond the Rheasilvia basin is evident on the western edge of the region. Overall, the Pinaria region exposes the complete range of basaltic achondrite parent body material, with little evidence of contamination of non-basaltic achondrite material. With both high reflectance and low abundance of hydrated material, this region of Vesta may be considered the "Pinaria desert".

  16. RAPID TIMESCALES FOR MAGMA OCEAN CRYSTALLIZATION ON THE HOWARDITE-EUCRITE-DIOGENITE PARENT BODY

    International Nuclear Information System (INIS)

    Schiller, Martin; Paton, Chad; Bizzarro, Martin; Baker, Joel; Creech, John; Millet, Marc-Alban; Irving, Anthony

    2011-01-01

    Asteroid 4 Vesta has long been postulated as the source for the howardite-eucrite-diogenite (HED) achondrite meteorites. Here we show that Al-free diogenite meteorites record variability in the mass-independent abundance of 26 Mg ( 26 Mg*) that is correlated with their mineral chemistry. This suggests that these meteorites captured the Mg-isotopic evolution of a large-scale differentiating magma body with increasing 27 Al/ 24 Mg during the lifespan of the short-lived 26 Al nuclide (t 1/2 ∼ 730,000 yr). Thus, diogenites and eucrites represent crystallization products of a large-scale magma ocean associated with the differentiation and magmatic evolution of the HED parent body. The 26 Mg* composition of the most primitive diogenites requires onset of the magma ocean crystallization within 0.6 -0.4 +0.5 Myr of solar system formation. Moreover, 26 Mg* variations among diogenites and eucrites imply that near complete solidification of the HED parent body occurred within the following 2-3 Myr. Thermal models predict that such rapid cooling and magma ocean crystallization could only occur on small asteroids (<100 km), implying that 4 Vesta is not the source of the HED meteorites.

  17. Year-round N2O production by benthic NOx reduction in a monomictic south-alpine lake

    Science.gov (United States)

    Freymond, C. V.; Wenk, C. B.; Frame, C. H.; Lehmann, M. F.

    2013-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas, generated through microbial nitrogen (N) turnover processes, such as nitrification, nitrifier denitrification, and denitrification. Previous studies quantifying natural sources have mainly focused on soils and the ocean, but the potential role of terrestrial water bodies in the global N2O budget has been widely neglected. Furthermore, the biogeochemical controls on the production rates and the microbial pathways that produce benthic N2O in lakes are essentially unknown. In this study, benthic N2O fluxes and the contributions of the microbial pathways that produce N2O were assessed using 15N label flow-through sediment incubations in the eutrophic, monomictic south basin of Lake Lugano in Switzerland. The sediments were a significant source of N2O throughout the year, with production rates ranging between 140 and 2605 nmol N2O h-1 m-2, and the highest observed rates coinciding with periods of water column stratification and stably anoxic conditions in the overlying bottom water. Nitrate (NO3-) reduction via denitrification was found to be the major N2O production pathway in the sediments under both oxygen-depleted and oxygen-replete conditions in the overlying water, while ammonium oxidation did not contribute significantly to the benthic N2O flux. A marked portion (up to 15%) of the total NO3- consumed by denitrification was reduced only to N2O, without complete denitrification to N2. These fluxes were highest when the bottom water had stabilized to a low-oxygen state, in contrast with the notion that stable anoxia is particularly conducive to complete denitrification without accumulation of N2O. This study provides evidence that lake sediments are a significant source of N2O to the overlying water and may produce large N2O fluxes to the atmosphere during seasonal mixing events.

  18. A Howardite-Eucrite-Diogenite (HED) Meteorite Compendium: Summarizing Samples of ASteroid 4 Vesta in Preparation for the Dawn Mission

    Science.gov (United States)

    Garber, J. M.; Righter, K.

    2011-01-01

    The Howardite-Eucrite-Diogenite (HED) suite of achondritic meteorites, thought to originate from asteroid 4 Vesta, has recently been summarized into a meteorite compendium. This compendium will serve as a guide for researchers interested in further analysis of HEDs, and we expect that interest in these samples will greatly increase with the planned arrival of the Dawn Mission at Vesta in August 2011. The focus of this abstract/poster is to (1) introduce and describe HED samples from both historical falls and Antarctic finds, and (2) provide information on unique HED samples available for study from the Antarctic Meteorite Collection at JSC, including the vesicular eucrite PCA91007, the olivine diogenite EETA79002, and the paired ALH polymict eucrites.

  19. Basalt stratigraphy - Pasco Basin

    International Nuclear Information System (INIS)

    Waters, A.C.; Myers, C.W.; Brown, D.J.; Ledgerwood, R.K.

    1979-10-01

    The geologic history of the Pasco Basin is sketched. Study of the stratigraphy of the area involved a number of techniques including major-element chemistry, paleomagnetic investigations, borehole logging, and other geophysical survey methods. Grande Ronde basalt accumulation in the Pasco Basin is described. An illustrative log response is shown. 1 figure

  20. Pre-bombardment crystallization ages of basaltic clasts from Antarctic howardites EET87503 and EET87513

    Science.gov (United States)

    Nyquist, L. E.; Shih, C.-Y.; Wiesmann, H.; Bansal, B. M.

    1994-01-01

    Igneous clasts of basaltic eucrites are found in both howardites and polymict eucrites. We have studied the Rb-Sr and Sm-Nd isotopic systematics of a number of such clasts, of metamorphic grades 1-6, using the classification of Takeda and Graham. Here, we report Rb-Sr, (147)Sm-(143)Nd, and (145)Sm-(142)Nd studies of clast, 53 from Antarctic howardite EET87503. Although there is no evidence of disturbance of trace element systematics by Antarctic weathering, the Rb-Sr and conventional Sm-Nd isotopic systematics are severely disturbed, which we ascribe to thermal metamorphism. The Ar-Ar age spectrum shows ages ranging from approximately 3.85-3.55 Ga in an unusual 'down stairstep'. The (146)Sm-(142)Nd systematics, however, show the presence of live (146)Sm(t(sub 1/2) = 103 Ma), with (146)Sm/(144)Sm = 0.0061 +/- 0.0007 at the time of crystallization. This result is very similar to that previously obtained for basaltic clast, 18 from howardite EET87513 (paired with EET87503), which has concordant Rb-Sr and Sm-Nd ages of approximately 4.5 Ga. Thus, the two clasts are nearly the same age, and we conclude further than the EET87503,53 clast crystallized within 33 +/- 19 Ma of the LEW86010 angrite by comparing initial (146)Sm/(144)Sm to that of the angrite. We suggest that disturbances in the isotopic systematics of EET87503,53 are consanguineous with pyroxene homogenization.

  1. Ion probe analysis of plagioclase in three howardites and three eucrites

    Science.gov (United States)

    Steele, I. M.; Smith, J. V.

    1982-01-01

    Ion microprobe data for plagioclase from a small group of achondrites are presented, and lunar data reported by Steele et al. (1980) are used as a basis for comparison. The elements are discussed in sequence, using observations on lunar plagioclase as a guide. Attention is given to lithium, potassium, strontium, barium, and titanium. The presented data provide encouragement regarding the significance of studies of the trace element content of plagioclase in the achondrites. It is pointed out that the trace-element signature should prove important in classifying and comparing the individual components of the polymict eucrites and howardites. Thus, the simple patterns in Jodzie contrast with the more complex patterns in Frankfort and particularly Brient.

  2. Mineralogy, petrology and geochemistry of carbonaceous chondritic clasts in the LEW 85300 polymict eucrite

    Science.gov (United States)

    Zolensky, M. E.; Hewins, R. H.; Mittlefehldt, D. W.; Lindstrom, M. M.; Xiao, X.; Lipschutz, M. E.

    1992-01-01

    We have performed a detailed petrologic and mineralogic study of two chondritic clasts from the polymict eucrite Lewis Cliff (LEW) 85300, and performed chemical analyses by INAA and RNAA on one of these. Petrologically, the clasts are identified and are composed of dispersed aggregates, chondrules, and chondrule fragments supported by matrix. The aggregates and chondrules are composed of olivine, orthopyroxene, plus some diopside. The matrix consists of fine-grained olivine, and lesser orthopyroxene and augite. Fine-grained saponite is common in the matrix. The bulk major composition of the clast studied by INAA and RNAA shows unusual abundance patterns for lithophile, siderophile and chalcophile elements but is basically chondritic. The INAA/RNAA data preclude assignment of the LEW 85300,15 clast to any commonly accepted group of carbonaceous chondrite.

  3. A pristine eucrite-like gabbro from Descartes and its exotic kindred

    Science.gov (United States)

    Marvin, U. B.; Warren, P. H.

    1980-01-01

    A coarse-grained plagioclase-pyroxene gabbro (61224,6) with a cumulate texture suggestive of a slowly cooled plutonic rock was recovered from the 4-10 mm fraction of an Apollo 16 soil. The rock is uncommonly poor in feldspar and rich in Na for a lunar highlands lithology. Trace element analyses show extremely low siderophile element concentrations which confirm the pristine character indicated by the texture. The composition of 61224,6 is compared with those of 3 other pristine, exceptionally mafic, nonmare gabbros and of certain eucrites. 61224,6 and the three other gabbros have notable chemical differences but share relatively high ratios of Ti/Sm and Sc/Sm which suggest a possible genetic relationship. We conclude that 61224,6 represents a Na-rich cumulate from a layered intrusion within the highlands crust.

  4. Moessbauer Studies of Volhynian Basalts

    International Nuclear Information System (INIS)

    Bakun-Czubarow, N.; Milczarski, J.; Galazka-Friedman, J.; Szlachta, K.; Forder, S.

    2011-01-01

    The Volhynian basalts studied belong to the effusive-tuffogenic Volhynian Series (Slawatycze Series in Poland), being the large Ediacaran continental igneous province, that covers an area of 200 000 km 2 in the western margin of East European Craton. The series is underlain by the Cryogenian terrigenous Polesie Series with doleritic sills and dikes. The Volhynian Series consists of the rock beds belonging to the three volcanic cycles with different ratios of flood basalts to pyroclastics. The aim of the study was recognition of primary and secondary Fe-bearing minerals, particularly Fe- and Fe-Ti oxides as well as determination of iron oxidation state, that is an important tool in the search for native copper deposits in these rocks. For Moessbauer studies the following rock samples were chosen: the Polesie Series dolerites, the Volhynian Series basalts from the Ukrainian quarries and drill-holes, e.g. from the Volodymir Volhynskaya drilling hole; the Slawatycze Series basalts from Kaplonosy drill-hole in Poland. In the Kaplonosy basalts the content of magnetite decreases with depth, which may be caused by magma differentiation due to fractional crystallization, when Mg content decreases as Ti and Fe - increases in basic magma. In the Kaplonosy basalts the Fe 2+ /Fe 3+ ratio increases with depth, which points to the increase of iron oxidation with the progress of basaltic magma differentiation. (authors)

  5. Elastic Anisotropy of Basalt

    Science.gov (United States)

    Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.

    2005-12-01

    Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are

  6. Presence of 60Fe in eucrite Piplia Kalan: A new perspective to the initial 60Fe/ 56Fe in the early solar system

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; Sahijpal, S.; Bhandari, N.

    Fe-Ni isotope measurements of ferrous pyroxenes of the Piplia Kalan eucrite using Secondary Ion Mass Spectrometer revealed the presence of sup (60) Ni excess corresponding to the initial 60Fe/56Fe of (5.2 + or - 2.4) × 10 sup(-9). Combining...

  7. Angrites: A Volatile-rich Variety of Asteroidal Basalt (Except for Alkalis and Gallium!)

    Science.gov (United States)

    Warren, P. H.; Kallemeyn, G. W.

    1995-09-01

    Angrites are commonly viewed as extremely volatile-depleted, and a related notion is that they formed by differentiation of a very CAI-rich material [e.g., 1]. Partial melting experiments reportedly reproduce the bulk compositions (although not fassaite-rich mineralogy) of angrites with Allende as starting material [2], but highly CAI-rich parent materials are difficult to reconcile with isotopic and REE data [3,4]. Mittlefehldt and Lindstrom [5] inferred from the low Na/Al ratios of angrites that outgassing, and thus primordial magmatism, was more intense on their parent body than on the eucrite parent asteroid. Of seven elements that (a) have been adequately determined in angrites, and (b) are far more volatile (solar-nebula 50% condensation T [6] = 690-430 K) than the alkalis (1000-910 K), four are enriched, and none is significantly depleted, in average angrite compared to average eucrite or low-Ti mare basalt (Figure). Gallium, which is of intermediate volatility (830 K), is depleted to roughly the same extent as Na and K. Results for A881371 [3] are incomplete (Zn, 6 micrograms/g, is near INAA detection limit), but even based only on AdoR and the two LEW angrites, this pattern seems firmly established. Apparent gas cavities in A881371 [7] also suggest that volatiles are far from uniformly depleted. The only elements known to be depleted, as volatiles, by clearly significant factors in angrites versus eucrites or lunar basalts, are alkalis plus gallium. Besides being moderately volatile, a noteworthy characteristic shared among Ga and alkalis (and not shared with elements such as Br, Se, and Zn) is that these elements probably tend to partition into crustal feldspar during gross differentiation of small (low-pressure) bodies. If gallium + alkalis were depleted by a single process starting from "normal" chondritic material, that process would seem to require selective exposure of a feldspar-enriched region (i.e., crust) to extremely high temperature. Igneous

  8. Subseafloor basalts as fungal habitats

    Science.gov (United States)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  9. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  10. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  11. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    Science.gov (United States)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  12. Geologic structure of the eastern mare basins. [lunar basalts

    Science.gov (United States)

    Dehon, R. A.; Waskom, J. D.

    1976-01-01

    The thickness of mare basalts in the eastern maria are estimated and isopachs of the basalts are constructed. Sub-basalt basin floor topography is determined, and correlations of topographic variations of the surface with variations in basalt thickness or basin floor topography are investigated.

  13. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts

    Science.gov (United States)

    Dixon, E. T.; Honda, M.; McDougall, I.

    2001-01-01

    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  14. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  15. Naming Lunar Mare Basalts: Quo Vadimus Redux

    Science.gov (United States)

    Ryder, G.

    1999-01-01

    Nearly a decade ago, I noted that the nomenclature of lunar mare basalts was inconsistent, complicated, and arcane. I suggested that this reflected both the limitations of our understanding of the basalts, and the piecemeal progression made in lunar science by the nature of the Apollo missions. Although the word "classification" is commonly attached to various schemes of mare basalt nomenclature, there is still no classification of mare basalts that has any fundamental grounding. We remain basically at a classification of the first kind in the terms of Shand; that is, things have names. Quoting John Stuart Mill, Shand discussed classification of the second kind: "The ends of scientific classification are best answered when the objects are formed into groups respecting which a greater number of propositions can be made, and those propositions more important than could be made respecting any other groups into which the same things could be distributed." Here I repeat some of the main contents of my discussion from a decade ago, and add a further discussion based on events of the last decade. A necessary first step of sample studies that aims to understand lunar mare basalt processes is to associate samples with one another as members of the same igneous event, such as a single eruption lava flow, or differentiation event. This has been fairly successful, and discrete suites have been identified at all mare sites, members that are eruptively related to each other but not to members of other suites. These eruptive members have been given site-specific labels, e.g., Luna24 VLT, Apollo 11 hi-K, A12 olivine basalts, and Apollo 15 Green Glass C. This is classification of the first kind, but is not a useful classification of any other kind. At a minimum, a classification is inclusive (all objects have a place) and exclusive (all objects have only one place). The answer to "How should rocks be classified?" is far from trivial, for it demands a fundamental choice about nature

  16. Hydrothermal evolution of repository groundwaters in basalt

    International Nuclear Information System (INIS)

    Apps, J.A.

    1984-01-01

    Groundwaters in the near field of a radioactive waste repository in basalt will change their chemical composition in response to reactions with the basalt. These reactions will be promoted by the heat generated by the decaying waste. It is important to predict both the rate and the extent of these reactions, and the secondary minerals produced, because the alteration process controls the chemical environment affecting the corrosion of the canister, the solubility and complexation of migrating radionuclides, the reactivity of the alteration products to radionuclides sorption, and the porosity and permeability of the host rock. A comprehensive review of the literature leads to the preliminary finding that hydrothermally altering basalts in geothermal regions such as Iceland lead to a secondary mineralogy and groundwater composition similar to that expected to surround a repository. Furthermore, laboratory experiments replicating the alteration conditions approximate those observed in the field and expected in a repository. Preliminary estimates were made of the rate of hydration and devitrification of basaltic glass and the zero-order dissolution rate of basaltic materials. The rates were compared with those for rhyolitic glasses and silicate minerals. Preliminary calculations made of mixed process alteration kinetics, involving pore diffusion and surface reaction suggest that at temperatures greater than 150 0 C, alteration proceeds so rapidly as to become pervasive in normally fractured basalt exposed to higher temperatures in the field. 70 references

  17. Implications of one-year basalt weathering/reactivity study for a basalt repository environment

    International Nuclear Information System (INIS)

    Pine, G.L.; Jantzen, C.M.

    1987-03-01

    The Savannah River Laboratory is testing the performance of the Defense Waste Processing Facility glass under conditions representing potential repository environments. For a basalt repository, one of the important issues is how rapidly reducing conditions are re-established after placement of the waste. The objective of this study was to examine the factors affecting the reactivity of the basalt. Construction of a nuclear waste repository in basalt will temporarily perturb the groundwater conditions, creating more oxidizing (air-saturated) conditions than an undisturbed repository system. Reducing conditions can be beneficial to the performance of waste glass and canisters, and may limit the transport of certain radionuclides. The Basalt Waste Isolation Project intends to use a backfill containing crushed basalt to re-establish the reducing conditions of the groundwater. The reactivity of the basalt has been found to be minimal once the fresh crushed surfaces have been weathered and the reactive intergranular glass component has been leached, e.g., by long-term surface storage. Crushing of the basalt for pneumatic emplacement of the backfill should, therefore, occur shortly before placement in the repository. This backfill must contain a minimum of 5 percent reactive fines (<100 mesh), to rapidly achieve reducing conditions. 23 refs., 21 figs., 18 tabs

  18. Vapor deposition in basaltic stalactites, Kilauea, Hawaii

    Science.gov (United States)

    Baird, A. K.; Mohrig, D. C.; Welday, E. E.

    Basaltic stalacties suspended from the ceiling of a large lava tube at Kilauea, Hawaii, have totally enclosed vesicles whose walls are covered with euhedral FeTi oxide and silicate crystals. The walls of the vesicles and the exterior surfaces of stalactites are Fe and Ti enriched and Si depleted compared to common basalt. Minerals in vesicles have surface ornamentations on crystal faces which include alkali-enriched, aluminosilicate glass(?) hemispheres. No sulfide-, chloride-, fluoride-, phosphate- or carbonate-bearing minerals are present. Minerals in the stalactites must have formed by deposition from an iron oxide-rich vapor phase produced by the partial melting and vaporization of wall rocks in the tube.

  19. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...... by varying the temperature of heat treatment. The predominant crystalline phase in the glass was identified as augite. It was found that the hardness of the glass phase decreased slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreased....

  20. Isotopic signature of Madeira basaltic magmatism

    International Nuclear Information System (INIS)

    Kogarko, L.N.; Karpenko, S.F.; Bibikova, E.V.; Mato, Zh.

    2000-01-01

    Chemical composition of the basalts of Madeira Island is studied. To assess the isotopic sources of magmatism the Pb-Sr, Sm-Nd, U-Th-Pb systems were investigated in a number of basalts. It is shown that the island's rocks are characterized by the mostly deplet sources in relation to Pb-Sr and Sm-Nd systems ( 87 Sr/ 86 Sr - 0.70282-0.70292, 143 Nd/ 144 Nd - 0.52303-0.51314). Isotopic composition of lead testifies that the magmatism reservoir is some enriched. It is concluded that the magmatism of Madeira Island is a new example of world ocean island's volcanism [ru

  1. Antifriction basalt-plastics based on polypropylene

    Science.gov (United States)

    Bashtannik, P. I.; Ovcharenko, V. G.

    1997-05-01

    A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.

  2. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    Directory of Open Access Journals (Sweden)

    URKHANOVA Larisa Alekseevna

    2014-08-01

    Full Text Available Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of basalt fiber.

  3. Investigation of Basalt Woven Fabrics for Military Applications

    Science.gov (United States)

    2011-11-01

    investigates the use of basalt fibers in a composite along with SC-15 epoxy resin for ballistic protection. Basalt fibers are not known as a ballistic...material but rather as a structural one. Even though basalt fibers are not expected to outperform some of the higher ballistic performing materials...such as the aramid and polyethylene fibers ; however, due to the lower manufacturing costs, basalt fibers are an interesting alternative. The objective

  4. Pressure grouting of fractured basalt flows

    International Nuclear Information System (INIS)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material

  5. Site identification presentation: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1979-11-01

    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included

  6. Giant Plagioclase Basalts, eruption rate versus time

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging) 1461 1996 Oct 15 13:05:22

    I found the GPB lavas to be very interest- ing because in some ... by Venkatesan et al (1993) and thus in a way validates my approach. ... and age calculation of lavas from phenocrysts. Keywords. Deccan Trap; Giant Plagioclase Basalts; eruption duration. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 111, No. 4, December ...

  7. Pressure grouting of fractured basalt flows

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material.

  8. Petrography of basalts from the Carlsberg ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    Petrographic characteristics of basalts collected from a segment of the Carlsberg Ridge (lat. 3 degrees 35'N to 3 degrees 41'N; long. 64 degrees 05'E to 64 degrees 09'E) show typical pillow lava zonations with variable concentrations of plagioclase...

  9. Effects of Basalt Fibres on Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    El-Gelani A. M.

    2018-01-01

    Full Text Available This paper presents the results of an experimental program carried out to investigate the effects of Basalt Fibre Reinforced Polymers (BFRP on some fundamental mechanical properties of concrete. Basalt fibres are formed by heating crushed basalt rocks and funnelling the molten basalt through a spinneret to form basalt filaments. This type of fibres have not been widely used till recently. Two commercially available chopped basalt fibres products with different aspect ratios were investigated, which are dry basalt (GeoTech Fibre and basalt pre-soaked in an epoxy resin (GeoTech Matrix .The experimental work included compression tests on 96 cylinders made of multiple batches of concrete with varying amounts of basalt fibre additives of the two mentioned types, along with control batches containing no fibres. Furthermore, flexural tests on 24 prisms were carries out to measure the modulus of rupture, in addition to 30 prisms for average residual strength test. Results of the research indicated that use of basalt fibres has insignificant effects on compressive strength of plain concrete, where the increase in strength did not exceed about 5%. On the other hand, results suggest that the use of basalt fibres may increase the compressive strength of concrete containing fly as up top 40%. The rupture strength was increased also by 8% to 28% depending on mix and fibre types and contents. Finally, there was no clear correlation between the average residual strength and ratios of basalt fibres mixed with the different concrete batches.

  10. Geochemical characteristics of the Jos-Plateau Basalts, North ...

    African Journals Online (AJOL)

    The Jos Plateau basalts, present Zr/Nb ratios (2.4-3.0) comparable to those of the alkali basalts of the lower Benue valley, and of the Cameroon volcanic line, suggesting that they were possibly derived from the same mantle source. Keywords: Jos Plateau, alkali basalt, mantle, partial melting, incompatible elements.

  11. Petrology of basalts from Loihi Seamount, Hawaii

    Science.gov (United States)

    Hawkins, James; Melchior, John

    1983-12-01

    Loihi Seamount is the southeasternmost active volcano of the Emperor-Hawaii linear volcanic chain. It comprises a spectrum of basalt compositional varieties including basanite, alkali basalt, transitional basalt and tholeiite. Samples from four dredge collections made on Scripps Institution of Oceanography Benthic Expedition in October 1982 are tholeiite. The samples include highly vesicular, olivine-rich basalt and dense glass-rich pillow fragments containing olivine and augite phenocrysts. Both quartz-normative and olivine-normative tholeiites are present. Minor and trace element data indicate relatively high abundances of low partition coefficient elements (e.g., Ti, K, P. Rb, Ba, Zr) and suggest that the samples were derived by relatively small to moderate extent of partial melting, of an undepleted mantle source. Olivine composition, MgO, Cr and Ni abundances, and Mg/(Mg+Fe), are typical of moderately fractionated to relatively unfractionated "primary" magmas. The variations in chemistry between samples cannot be adequately explained by low-pressure fractional crystallization but can be satisfied by minor variations in extent of melting if a homogeneous source is postulated. Alternatively, a heterogeneous source with variable abundances of certain trace elements, or mixing of liquids, may have been involved. Data for 3He/ 4He, presented in a separate paper, implies a mantle plume origin for the helium composition of the Loihi samples. There is little variation in the helium isotope ratio for samples having different compositions and textures. The helium data are not distinctive enough to unequivocally separate the magma sources for the tholeiitic rocks from the other rock types such as Loihi alkalic basalts and the whole source region for Loihi may have a nearly uniform helium compositions even though other element abundances may be variable. Complex petrologic processes including variable melting, fractional crystallization and magma mixing may have blurred

  12. Additive Construction using Basalt Regolith Fines

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  13. Basalts of the Khodzhirbulak Suite and Assessment their Feasibility for Basalt Fiber (Surkhantau Mountains, Southwestern Shoots of the Hissar Ridge

    Directory of Open Access Journals (Sweden)

    N. M. Khakberdyev

    2017-06-01

    Full Text Available The results of preliminary assessment of basalt of the Khodzhirbulakskoy Suite of Surkhantau Mountains for the basalt fiber production are presented. According to petrographic study, the rocks are described as basalts of amygdaloidal structure. On the base of content of the amount of glassy form and nodular calcite, three groups of basalts were identified. The inverse relationship between the bulk content of the volcanic rock and the content of calcite: the greater volume of volcanic rocks, the less content of calcite, and vice versa. The basalt material demonstrates average pH module of 3.52.

  14. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses....

  15. Technical program plan, Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1979-12-01

    The Basalt Waste Isolation Project (BWIP) program as administered by the DOE's Richland Operations Office and Rockwell Hanford Operations is described. The objectives, scope and scientific technologies are discussed. The work breakdown structure of the project includes: project management and support, systems integration, geosciences, hydrology, engineered barriers, test facility design and construction, engineering testing, repository studies, and schedules. The budget of the program including operating and capital cost control is also included

  16. Gamma radiolysis effects on basalt groundwater

    International Nuclear Information System (INIS)

    Gray, W.J.

    1983-10-01

    Gamma radiolysis of basalt groundwater containing 700 ppM methane produces a milky liquid that is a suspension of fine particles of a high molecular weight hydrocarbon somewhat like polyethylene. The ability of these polymers to chelate with, or otherwise sorb, metal ions from aqueous solution was measured using Cu +2 as a representative cation. Values in the range 0.3 to 0.8 millimoles of Cu per liter of solution were found. 5 references, 2 figures, 2 tables

  17. Iron isotopic systematics of oceanic basalts

    Science.gov (United States)

    Teng, Fang-Zhen; Dauphas, Nicolas; Huang, Shichun; Marty, Bernard

    2013-04-01

    The iron isotopic compositions of 93 well-characterized basalts from geochemically and geologically diverse mid-ocean ridge segments, oceanic islands and back arc basins were measured. Forty-three MORBs have homogeneous Fe isotopic composition, with δ56Fe ranging from +0.07‰ to +0.14‰ and an average of +0.105 ± 0.006‰ (2SD/√n, n = 43, MSWD = 1.9). Three back arc basin basalts have similar δ56Fe to MORBs. By contrast, OIBs are slightly heterogeneous with δ56Fe ranging from +0.05‰ to +0.14‰ in samples from Koolau and Loihi, Hawaii, and from +0.09‰ to +0.18‰ in samples from the Society Islands and Cook-Austral chain, French Polynesia. Overall, oceanic basalts are isotopically heavier than mantle peridotite and pyroxenite xenoliths, reflecting Fe isotope fractionation during partial melting of the mantle. Iron isotopic variations in OIBs mainly reflect Fe isotope fractionation during fractional crystallization of olivine and pyroxene, enhanced by source heterogeneity in Koolau samples.

  18. AEGIS methodology demonstration: case example in basalt

    International Nuclear Information System (INIS)

    Dove, F.H.

    1982-01-01

    The AEGIS technology has been successfully demonstrated. For the same data, similar unpublished results have been obtained by RHO and INTERA Environmental Consultants, Inc. for contaminant transport. In addition to establishing the utility of computer codes and assessment methodology, the AEGIS technology demonstration in basalt has also produced some practical guidance for future field data gathering programs. The results of this basalt demonstration indicate that the geohydrologic systems separating the nuclear waste from the natural biosphere discharge site mitigate the consequences of the postulated fault intersection event. This analysis suggests that the basalt system satisfies the 1000- and 10,000-yr proposed standards for release to the accessible environment (limited release of 129 I and 14 C). The reader should be cautioned, however, that the results are valid only for one particular set of parameters and one postulated release scenario. A complete sensitivity analysis must be performed to evaluate the range of effects that might be observed under different release conditions and for the different range in parameters

  19. Hydrologic modeling of the Columbia Plateau basalts

    International Nuclear Information System (INIS)

    Dove, F.H.; Cole, C.R.; Bond, F.W.; Zimmerman, D.A.

    1982-09-01

    The Office of Nuclear Waste Isolation (ONWI) directed the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program to conduct a technology demonstration of current performance assessment techniques for the Department of Energy (DOE) as applied to a nuclear waste repository in the Columbia Plateau Basalts. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The hydrologic simulation was divided into three major parts: (1) aquifer recharge calculations, (2) a regional hydrologic model, and (3) a local hydrologic model of the Pasco Basin. The presentation discusses the regional model. An estimate of the amount of water transmitted through the groundwater system was required to bound the transmissivity values and to estimate the transmissivity distributions for the deeper basalts. The multiple layer two-dimensional Variable Thickness Transient (VTT) code was selected as appropriate for the amount of data available and for the conditions existing in the regional systems. This model uses a finite difference formulation to represent the partial differential flow equation. The regional study area as defined for the VTT model was divided into 55 by 55 square pattern with each grid 5 kilometers on a side. The regional system was modeled as a held potential surface layer and two underlying basalt layers. The regional model established the boundary conditions for the hydrologic model the Pasco Basin

  20. Making rhyolite in a basalt crucible

    Science.gov (United States)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  1. Magnetostratigraphy of the Grande Ronde Basalt Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Packer, D.R.; Petty, M.H.

    1979-01-01

    The paleomagnetic measurements of samples from the holes sampled have shown that there are four magnetic correlation lines, between adjacent flows in holes that have distinctly different mean stratigraphic inclinations, and two magnetic polarity boundaries that can be used for magnetic correlation in the Grande Ronde Basalt in the Pasco Basin. The results of paleomagnetic measurements of samples from the Wanapum Basalt and Saddle Mountains Basalt indicate that the potential for magnetostratigraphic correlation in these sequences is also good

  2. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    OpenAIRE

    URKHANOVA Larisa Alekseevna; LKHASARANOV Solbon Aleksandrovich; ROZINA Victoria Yevgenievna; BUYANTUEV Sergey Lubsanovich; BARDAKHANOV Sergey Prokopievich

    2014-01-01

    Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of ba...

  3. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  4. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  5. Descriptive summary of the Grande Ronde Basalt type section, Columbia River Basalt Group

    International Nuclear Information System (INIS)

    Camp, V.E.; Price, S.M.; Reidel, S.P.

    1978-10-01

    The Grande Ronde Basalt type section, located in extreme southeastern Washington, was measured, sampled, and characterized. The section is 800 meters thick and is comprised of 35 Grande Ronde Basalt flows. These flows are divisible into 3 magnetostratiographic units termed, in ascending order, the R 1 , the N 1 , and the R 2 . The R 1 unit is represented by 13 reversely polarized flows; the N 1 unit, by 13 normally polarized flows; and the R 2 , by 9 reversely polarized flows. Chemically, the Grande Ronde Basalt flows are divided into 2 major groups, termed A and B. The compositions of the lower 9 flows, members of Group A, are similar to either the high-Mg Grande Ronde chemical type, the high-Ti Grande Ronde chemical type, or the Pomona chemical type. The compositions of the upper 25 flows, members of Group B, are predominantly similar to the low-Mg Grande Ronde chemical type. Petrographically, the Grande Ronde Basalt flows are generally fine grained and aphyric, and have a intergranular or intersertal micro-texture. Major mineral phases include plagioclase (An/sub 40-60/) and augite; minor mineral phases include pigeonite, orthopyroxene, ilmenite, titanomagnetite, and olivine. Group A flows generally contain more olivine and less pigeonite than do Group B flows. 6 figures, 6 tables

  6. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13

    Science.gov (United States)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.

    2014-01-01

    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  7. Emplacement of Columbia River flood basalt

    Science.gov (United States)

    Reidel, Stephen P.

    1998-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  8. Commercial nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Hardy, M.P.; Patricio, J.G.; Heley, W.H.

    1980-06-01

    The Basalt Waste Isolation Project (BWIP) is an ongoing research and engineering effort being conducted by Rockwell Hanford Operations (Rockwell), which is under contract to the US Department of Energy. The objectives of this program are to assess the feasibility of and to provide the technology needed to design and construct a licensed commercial nuclear waste repository in the deep basalt formations underlying the Hanford Site. An extensive preconceptual design effort was undertaken during 1979 to develop a feasible concept that could serve as a reference design for both surface and underground facilities. The preconceptual design utilized existing technology to the greatest extent possible to offer a system design that could be utilized in establishing schedule and cost baseline data, recommend alternatives that require additional study, and develop basic design requirements that would allow evolution of the design process prior to the existence of legislated criteria. This paper provides a description of the concept developed for the subsurface aspects of this nuclear waste repository

  9. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  10. Degassing of reduced carbon from planetary basalts.

    Science.gov (United States)

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.

  11. Petrology of offshore basalts of Bombay harbour area, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.

    glass are conspicuous. The chemical data indicate that the basalts are tholeiitic. Secondary minerals encountered support the view that the basalts are spilitised. Basalts of this area show affinities to both continental and oceanic types especially...

  12. Hydrogeology of the basalts in the Uruguayan NW

    International Nuclear Information System (INIS)

    Hausman, A.; Fernandez, A.

    1967-01-01

    This work is about the hydrogeological aspects in the NW Uruguayan basaltic area. The results of this research are the main geological, morphological and hydrogeological aspects of the area as well as the characteristics and the color of the basalt and sandstones

  13. Influence of basalt/groundwater interactions on radionuclide migration

    International Nuclear Information System (INIS)

    Vandegrift, G.F.

    1984-01-01

    The work presented here is a partial summary of the experimental results obtained in the Laboratory Analog Program. Two aspects of this effort are (1) the interaction between simulated basaltic groundwater and basalt fissures that were either freshly cleaved or laboratory altered by hydrothermal treatment with the simulated groundwater and (2) the effect of this interaction on radionuclide migration through these basalt fissures. The following conclusions of this study bear heavily on the predicted safety of a basalt repository: Sorption properties of freshly fissured basalt and naturally aged basalt are quite different for different chemical species. Analog experiments predict that aged basalt would be an effective retarder of cesium, but would be much less so for actinide elements. Distribution ratios measured from batch experiments with finely ground rock samples (presenting unaltered rock surfaces) are not a reliable means of predicting radionuclide migration in geological repositories. As the near-repository area is resaturated by groundwater, its ability to retard actinide migration will be degraded with time. Disturbing the natural flow of groundwater through the repository area by constructing and backfilling the repository will modify the composition of groundwater. This modified groundwater is likely to interact with and to modify naturally aged basalt surfaces downstream from the repository

  14. Constructibility issues associated with a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Turner, D.A.

    1981-01-01

    This report contains the text and slide reproductions of a speech on nuclear waste disposal in basalt. The presentation addresses the layout of repository access shafts and subsurface facilities resulting from the conceptual design of a nuclear repository in basalt. The constructibility issues that must be resolved prior to construction are described

  15. Use of basaltic waste as red ceramic raw material

    Directory of Open Access Journals (Sweden)

    T. M. Mendes

    Full Text Available Abstract Nowadays, environmental codes restrict the emission of particulate matters, which result in these residues being collected by plant filters. This basaltic waste came from construction aggregate plants located in the Metropolitan Region of Londrina (State of Paraná, Brazil. Initially, the basaltic waste was submitted to sieving (< 75 μm and the powder obtained was characterized in terms of density and particle size distribution. The plasticity of ceramic mass containing 0%, 10%, 20%, 30%, 40% and 50% of basaltic waste was measured by Atterberg method. The chemical composition of ceramic formulations containing 0% and 20% of basaltic waste was determined by X-ray fluorescence. The prismatic samples were molded by extrusion and fired at 850 °C. The specimens were also tested to determine density, water absorption, drying and firing shrinkages, flexural strength, and Young's modulus. Microstructure evaluation was conducted by scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry. Basaltic powder has similar physical and chemical characteristics when compared to other raw materials, and contributes to ceramic processing by reducing drying and firing shrinkage. Mechanical performance of mixtures containing basaltic powder is equivalent to mixtures without waste. Microstructural aspects such as pore size distribution were modified by basaltic powder; albite phase related to basaltic powder was identified by X-ray diffraction.

  16. Hydrothermal interactions of cesium and strontium phases from spent unreprocessed fuel with basalt phases and basalts

    International Nuclear Information System (INIS)

    Komarneni, S.; Scheetz, B.E.; McCarthy, G.J.; Coons, W.E.

    1980-03-01

    This investigation is a segment of an extensive research program aimed at investigating the feasibility of long-term, subsurface storage of commercial nuclear waste. Specifically, it is anticipated that the waste will be housed in a repository mined from the basalt formations which lie beneath the Hanford Site. The elements monitored during the present experiments were Cs and Sr. These two elements represent significant biohazards if released from a repository and are the major heat producing radionuclides present in commercial radioactive waste. Several Cs phases and/or solutions were reacted with either isolated basalt phases or bulk-rock basalt, and the resulting solids and solutions were analyzed. The hydrothermal reactivity of SrZrO 3 , which is believed to be a probable host for Sr in SFE was investigated. While so far no evidence exists which indicates that Sr is present in a water soluble phase in spent fuel elements (SFE), detailed investigation of a potential hazard is warranted. This investigation has determined that some Cs compounds likely to be stable components of spent fuel (i.e., CsOH, Cs 2 MoO 4 , Cs 2 U 2 O 7 ) have significant hydrothermal solubilities. These solubilities are greatly decreased in the presence of basalt and/or basalt minerals. The decrease in the amount of Cs in solution results from reactions which form pollucite and/or CsAlSiO 4 , with the production of pollucite exceeding that of CsAlSiO 4 . Dissolution of β-Cs 2 U 2 O 7 implies solubilizing a uranium species to an undetermined extent. The production of schoepite (UO 3 .3H 2 O) during some experiments containing basalt phases, indicates a tendency to oxidize U 4+ to U 6+ . When diopside (nominally CaMgSi 2 O 6 ) and β-Cs 2 U 2 O 7 were hydrothermally reacted, at 300 0 C both UO 2 and UO 3 .3H 2 O were produced. Experiments on SrZrO 3 show it to be an unreactive phase

  17. Hydrothermal interactions of cesium and strontium phases from spent unreprocessed fuel with basalt phases and basalts

    Energy Technology Data Exchange (ETDEWEB)

    Komarneni, S.; Scheetz, B.E.; McCarthy, G.J.; Coons, W.E.

    1980-03-01

    This investigation is a segment of an extensive research program aimed at investigating the feasibility of long-term, subsurface storage of commercial nuclear waste. Specifically, it is anticipated that the waste will be housed in a repository mined from the basalt formations which lie beneath the Hanford Site. The elements monitored during the present experiments were Cs and Sr. These two elements represent significant biohazards if released from a repository and are the major heat producing radionuclides present in commercial radioactive waste. Several Cs phases and/or solutions were reacted with either isolated basalt phases or bulk-rock basalt, and the resulting solids and solutions were analyzed. The hydrothermal reactivity of SrZrO/sub 3/, which is believed to be a probable host for Sr in SFE was investigated. While so far no evidence exists which indicates that Sr is present in a water soluble phase in spent fuel elements (SFE), detailed investigation of a potential hazard is warranted. This investigation has determined that some Cs compounds likely to be stable components of spent fuel (i.e., CsOH, Cs/sub 2/MoO/sub 4/, Cs/sub 2/U/sub 2/O/sub 7/) have significant hydrothermal solubilities. These solubilities are greatly decreased in the presence of basalt and/or basalt minerals. The decrease in the amount of Cs in solution results from reactions which form pollucite and/or CsAlSiO/sub 4/, with the production of pollucite exceeding that of CsAlSiO/sub 4/. Dissolution of ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ implies solubilizing a uranium species to an undetermined extent. The production of schoepite (UO/sub 3/.3H/sub 2/O) during some experiments containing basalt phases, indicates a tendency to oxidize U/sup 4 +/ to U/sup 6 +/. When diopside (nominally CaMgSi/sub 2/O/sub 6/) and ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ were hydrothermally reacted, at 300/sup 0/C both UO/sub 2/ and UO/sub 3/.3H/sub 2/O were produced. Results of experiments on SrZrO/sub 3/ show it to be

  18. [Determination of Total Iron and Fe2+ in Basalt].

    Science.gov (United States)

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen

    2015-08-01

    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  19. Basalt alteration and basalt-waste interaction in the Pasco Basin of Washington State. Final report

    International Nuclear Information System (INIS)

    Benson, L.V.; Carnahan, C.L.; Apps, J.A.; Mouton, C.A.; Corrigan, D.J.; Frisch, C.J.; Shomura, L.K.

    1978-09-01

    A study was conducted to determine the nature of the minerals which coat vesicle and fracture surfaces in the Grande Ronde Basalt Formation, simulate the mass transfer which led to their precipitation, and predict the mass transfer associated with the dissolution of spent unreprocessed fuel (SURF). Scanning electron microscopy (SEM), petrographic, x-ray diffraction (XRD), and electron microprobe (EMP) analyses have been made on a series of samples taken from 1100 ft (335.3 m) of core from core hole DC2. Preliminary simulations of the mass transfer associated with basalt dissolution in a thermodynamically closed system have been accomplished. In addition two mass transfer codes have been modified to facilitate data base changes. Thermochemical data for uranium and plutonium have been collected and converted to standard state conditions. These data will be critically evaluated and input to the mass transfer data base in the near future

  20. Strontium stable isotope behaviour accompanying basalt weathering

    Science.gov (United States)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  1. BASALT A: Basaltic Terrains in Idaho and Hawaii as Planetary Analogs for Mars Geology and Astrobiology

    Science.gov (United States)

    Hughes, Scott S.; Haberle, Christopher W.; Nawotniak, Shannon E. Kobs; Sehlke, Alexander; Garry, W. Brent; Elphic, Richard C.; Payler, Sam J.; Stevens, Adam H.; Cockell, Charles S.; Brady, Allyson L.; hide

    2018-01-01

    Assessments of field research target regions are described within two notably basaltic geologic provinces as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawaii, USA, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provide rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho; and (3) Mauna Ulu low shield, (4) Kilauea Iki lava lake and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of Hawaii. Our evaluation of compositional and textural differences, as well as the effects of syn- and post-eruptive rock alteration, shows that the basaltic terrains in Idaho and Hawaii provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.

  2. The Thickness and Volume of Young Basalts Within Mare Imbrium

    Science.gov (United States)

    Chen, Yuan; Li, Chunlai; Ren, Xin; Liu, Jianjun; Wu, Yunzhao; Lu, Yu; Cai, Wei; Zhang, Xunyu

    2018-02-01

    Basaltic volcanism is one of the most important geologic processes of the Moon. Research on the thickness and volume of late-stage basalts of Mare Imbrium helps better understand the source of lunar volcanism and eruption styles. Based on whether apparent flow fronts exist or not, the late-stage basalts within Mare Imbrium were divided into two groups, namely, Upper Eratosthenian basalts (UEm) and Lower Eratosthenian basalts (LEm). Employing the topographic profile analysis method for UEm and the crater excavation technique for LEm, we studied the thickness and distribution of Eratosthenian basalts in Mare Imbrium. For the UEm units, their thicknesses were estimated to be 16-34 (±2) m with several layers of individual lava ( 8-13 m) inside. The estimated thickness of LEm units was 14-45(±1) m, with a trend of reducing thickness from north to south. The measured thickness of late-stage basalts around the Chang'E-3 landing site ( 37 ± 1 m) was quite close to the results acquired by the lunar penetrating radar carried on board the Yutu Rover ( 35 m). The total volume of the late-stage basalts in Mare Imbrium was calculated to be 8,671 (±320) km3, which is 4 times lower than that of Schaber's estimation ( 4 × 104 km3). Our results indicate that the actual volume is much lower than previous estimates of the final stage of the late basaltic eruption of Mare Imbrium. Together, the area flux and transport distance of the lava flows gradually decreased with time. These results suggest that late-stage volcanic evolution of the Moon might be revised.

  3. Simulating the structure of gypsum composites using pulverized basalt waste

    Directory of Open Access Journals (Sweden)

    Buryanov Аleksandr

    2017-01-01

    Full Text Available This paper examines the possibility of simulating the structure of gypsum composite modified with basalt dust waste to make materials and products based on it. Structural simulating of the topological space in gypsum modified composite by optimizing its grain-size composition highly improves its physical and mechanical properties. Strength and density tests have confirmed the results of the simulation. The properties of modified gypsum materials are improved by obtaining of denser particle packing in the presence of hemihydrate of finely dispersed basalt and plasticizer particles in the system, and by engaging basalt waste in the structuring process of modified gypsum stone.

  4. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1990-01-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  5. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    Science.gov (United States)

    Shervais, John W.; Vetter, Scott K.

    1993-05-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  6. Engineered barrier development for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    The BWIP Engineered Barrier Program has been developed to provide an integrated approach to the development of site-specific Engineered Barrier assemblages for a repository located in basalt. The goal of this program is to specify engineered and natural barriers which will ensure that nuclear and non-radioactive hazardous materials emplaced in a repository in basalt do not exceed acceptable rates of release to the biosphere. A wide range of analytical and experimental activities related to the basalt repository environment, waste package environment, waste/barrier/rock interactions, and barrier performance assessment provide the basis for selection of systems capable of meeting licensing requirements. Work has concentrated on specifying and testing natural and man-made materials which can be used to plug boreholes in basalt and which can be used as multiple barriers to surround nuclear waste forms and containers. The Engineered Barriers Program is divided into two major activities: multiple barrier studies and borehole plugging. 8 figures, 4 tables

  7. Geochemical characterization of oceanic basalts using artificial neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Das, P.; Iyer, S.D.

    method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) is applied to identify the inherent...

  8. Alteration of basaltic glasses from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    Textural, mineralogical and compositional characteristics of basaltic glasses from the Central Indian Ocean show them to be altered to varying extents through their interaction with the seawater, resulting in the formation of palagonite. The major...

  9. A note on incipient spilitisation of central Indian basin basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; Iyer, S.D.

    Rocks dredged in the vicinity of the 79 degrees E fracture zone, in the Central Indian Basin, are sub-alkaline basalts, which are regarded as precursors to spilites. The minerals identified are mainly albitic plagioclase, augite, olivine, and less...

  10. [Comparative carcinogenic properties of basalt fiber and chrysotile-asbestos].

    Science.gov (United States)

    Nikitina, O V; Kogan, F M; Vanchugova, N N; Frash, V N

    1989-01-01

    In order to eliminate asbestos adverse effect on workers' health it was necessary to use mineral rayon, primarily basalt fibre, instead of asbestos. During a chronic experiment on animals the oncogenicity of 2 kinds of basalt fibre was studied compared to chrysotile asbestos. The dust dose of 25 mg was twice administered by intraperitonial route. All types of dust induced the onset of intraperitonial mesotheliomas but neoplasm rates were significantly lower in the groups exposed to basalt fibre. There was no credible data on the differences between the groups exposed to various types of basalt fibre. Since the latter produced some oncogenic effect, it was necessary to develop a complex of antidust measures, fully corresponding to the measures adopted for carcinogenic dusts.

  11. Chemical magnetization when determining Thellier paleointensity experiments in oceanic basalts

    Science.gov (United States)

    Tselebrovskiy, Alexey; Maksimochkin, Valery

    2017-04-01

    The natural remanent magnetization (NRM) of oceanic basalts selected in the rift zones of the Mid-Atlantic Ridge (MAR) and the Red Sea has been explored. Laboratory simulation shows that the thermoremanent magnetization and chemical remanent magnetization (CRM) in oceanic basalts may be separated by using Tellier-Coe experiment. It was found that the rate of CRM destruction is about four times lower than the rate of the partial thermoremanent magnetization formation in Thellier cycles. The blocking temperatures spectrum of chemical component shifted toward higher temperatures in comparison with the spectrum of primary thermoremanent magnetization. It was revealed that the contribution of the chemical components in the NRM increases with the age of oceanic basalts determined with the analysis of the anomalous geomagnetic field (AGF) and spreading theory. CRM is less than 10% at the basalts aged 0.2 million years, less than 50% at basalts aged 0.35 million years, from 60 to 80% at basalts aged 1 million years [1]. Geomagnetic field paleointensity (Hpl) has been determined through the remanent magnetization of basalt samples of different ages related to Brunhes, Matuyama and Gauss periods of the geomagnetic field polarity. The value of the Hpl determined by basalts of the southern segment of MAR is ranged from 17.5 to 42.5 A/m, by the Reykjanes Ridge basalts — from 20.3 to 44 A/m, by the Bouvet Ridge basalts — from 21.7 to 34.1 A/m. VADM values calculated from these data are in good agreement with the international paleointensity database [2] and PISO-1500 model [3]. Literature 1. Maksimochkin V., Tselebrovskiy A., (2015) The influence of the chemical magnetization of oceanic basalts on determining the geomagnetic field paleointensity by the thellier method, moscow university physics bulletin, 70(6):566-576, 2. Perrin, M., E. Schnepp, and V. Shcherbakov (1998), Update of the paleointensity database, Eos Trans. AGU, 79, 198. 3. Channell JET, Xuan C, Hodell DA (2009

  12. Diversity of life in ocean floor basalt

    Science.gov (United States)

    Thorseth, I. H.; Torsvik, T.; Torsvik, V.; Daae, F. L.; Pedersen, R. B.

    2001-12-01

    Electron microscopy and biomolecular methods have been used to describe and identify microbial communities inhabiting the glassy margins of ocean floor basalts. The investigated samples were collected from a neovolcanic ridge and from older, sediment-covered lava flows in the rift valley of the Knipovich Ridge at a water depth around 3500 m and an ambient seawater temperature of -0.7°C. Successive stages from incipient microbial colonisation, to well-developed biofilms occur on fracture surfaces in the glassy margins. Observed microbial morphologies are various filamentous, coccoidal, oval, rod-shaped and stalked forms. Etch marks in the fresh glass, with form and size resembling the attached microbes, are common. Precipitation of alteration products around microbes has developed hollow subspherical and filamentous structures. These precipitates are often enriched in Fe and Mn. The presence of branching and twisted stalks that resemble those of the iron-oxidising Gallionella, indicate that reduced iron may be utilised in an energy metabolic process. Analysis of 16S-rRNA gene sequences from microbes present in the rock samples, show that the bacterial population inhabiting these samples cluster within the γ- and ɛ-Proteobacteria and the Cytophaga/Flexibacter/Bacteroides subdivision of the Bacteria, while the Archaea all belong to the Crenarchaeota kingdom. This microbial population appears to be characteristic for the rock and their closest relatives have previously been reported from cold marine waters in the Arctic and Antarctic, deep-sea sediments and hydrothermal environments.

  13. Magnesium-rich Basalts on Mercury

    Science.gov (United States)

    Martel, L. M. V.

    2013-05-01

    X-ray and gamma-ray spectrometers on NASA's MESSENGER spacecraft are making key measurements regarding the composition and properties of the surface of Mercury, allowing researchers to more clearly decipher the planet's formation and geologic history. The origin of the igneous rocks in the crust of Mercury is the focus of recent research by Karen Stockstill-Cahill and Tim McCoy (National Museum of Natural History, Smithsonian Institution), along with Larry Nittler and Shoshana Weider (Carnegie Institution of Washington) and Steven Hauck II (Case Western Reserve University). Using the well-known MELTS computer code Stockstill-Cahill and coauthors worked with MESSENGER-derived and rock-analog compositions to constrain petrologic models of the lavas that erupted on the surface of Mercury. Rock analogs included a partial melt of the Indarch meteorite and a range of Mg-rich terrestrial rocks. Their work shows the lavas on Mercury are most similar to terrestrial magnesian basalt (with lowered FeO content). The implications of the modeling are that Mg-rich lavas came from high-temperature sources in Mercury's mantle and erupted at high temperature with exceptionally low viscosity into thinly bedded and laterally extensive flows, concepts open to further evaluation by laboratory experiments and by geologic mapping of Mercury's surface using MESSENGER's imaging system and laser altimeter to document flow features and dimensions.

  14. Basalt FRP Spike Repairing of Wood Beams

    Directory of Open Access Journals (Sweden)

    Luca Righetti

    2015-08-01

    Full Text Available This article describes aspects within an experimental program aimed at improving the structural performance of cracked solid fir-wood beams repaired with Basalt Fiber Reinforced Polymer (BFRP spikes. Fir wood is characterized by its low density, low compression strength, and high level of defects, and it is likely to distort when dried and tends to fail under tension due to the presence of cracks, knots, or grain deviation. The proposed repair technique consists of the insertion of BFRP spikes into timber beams to restore the continuity of cracked sections. The experimental efforts deal with the evaluation of the bending strength and deformation properties of 24 timber beams. An artificially simulated cracking was produced by cutting the wood beams in half or notching. The obtained results for the repaired beams were compared with those of solid undamaged and damaged beams, and increases of beam capacity, bending strength and of modulus of elasticity, and analysis of failure modes was discussed. For notched beams, the application of the BFRP spikes was able to restore the original bending capacity of undamaged beams, while only a small part of the original capacity was recovered for beams that were cut in half.

  15. Radiolytic hydrogen production in the subseafloor basaltic aquifer

    Directory of Open Access Journals (Sweden)

    Mary E Dzaugis

    2016-02-01

    Full Text Available Hydrogen (H2 is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U, thorium (232Th and potassium (40K. To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt concentrations (which can vary between eruptive events and post-emplacement alteration. In our samples, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may

  16. Geochemistry of the Potassic Basalts from the Bufumbira Volcanic ...

    African Journals Online (AJOL)

    The various basalts are low in SiO2 wt %, Al2O3 wt % and Na2O wt % but high in MgO wt %, TiO2 wt %, CaO wt %, K2O wt % with K2O/Na2O = 1.08 to 2.07. These are potassic belonging to the kamafugite series. Plots discriminate two geochemical trends corresponding to the picritic and clinopyroxene rich basalts.

  17. Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube

    OpenAIRE

    Lapena, Mauro Henrique; Marinucci, Gerson

    2017-01-01

    The application of basalt fibers are possible in many areas thanks to its multiple and good properties. It exhibits excellent resistance to alkalis, similar to glass fiber, at a much lower cost than carbon and aramid fibers. In the present paper, a comparative study on mechanical properties of basalt and E-glass fiber composites was performed. Results of apparent hoop tensile strength test of ring specimens cut from tubes and the interlaminar shear stress (ILSS) test are presented. Tensile te...

  18. Carbon Sequestration in Olivine and Basalt Powder Packed Beds.

    Science.gov (United States)

    Xiong, Wei; Wells, Rachel K; Giammar, Daniel E

    2017-02-21

    Fractures and pores in basalt could provide substantial pore volume and surface area of reactive minerals for carbonate mineral formation in geologic carbon sequestration. In many fractures solute transport will be limited to diffusion, and opposing chemical gradients that form as a result of concentration differences can lead to spatial distribution of silicate mineral dissolution and carbonate mineral precipitation. Glass tubes packed with grains of olivine or basalt with different grain sizes and compositions were used to explore the identity and spatial distribution of carbonate minerals that form in dead-end one-dimensional diffusion-limited zones that are connected to a larger reservoir of water in equilibrium with 100 bar CO 2 at 100 °C. Magnesite formed in experiments with olivine, and Mg- and Ca-bearing siderite formed in experiments with flood basalt. The spatial distribution of carbonates varied between powder packed beds with different powder sizes. Packed beds of basalt powder with large specific surface areas sequestered more carbon per unit basalt mass than powder with low surface area. The spatial location and extent of carbonate mineral formation can influence the overall ability of fractured basalt to sequester carbon.

  19. High alkali-resistant basalt fiber for reinforcing concrete

    International Nuclear Information System (INIS)

    Lipatov, Ya.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I.

    2015-01-01

    Highlights: • Doping of basalt fiber with ZrSiO 4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO 4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO 2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr 4+ , Fe 3+ and Mg 2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO 4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  20. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    International Nuclear Information System (INIS)

    Ulmer, G.C.; Grandstaff, D.E.

    1984-01-01

    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs

  1. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer

    2015-06-01

    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  2. Complex layering of the Orange Mountain Basalt: New Jersey, USA

    Science.gov (United States)

    Puffer, John H.; Block, Karin A.; Steiner, Jeffrey C.; Laskowich, Chris

    2018-06-01

    The Orange Mountain Basalt of New Jersey is a Mesozoic formation consisting of three units: a single lower inflated sheet lobe about 70 m thick (OMB1), a middle pillow basalt about 10 to 20 m thick (OMB2), and an upper compound pahoehoe flow about 20 to 40 m thick (OMB3). The Orange Mountain Basalt is part of the Central Atlantic Magmatic Province. Quarry and road-cut exposures of OMB1 near Paterson, New Jersey, display some unusual layering that is the focus of this study. OMB1 exposures displays the typical upper crust, core, and basal crust layers of sheet lobes but throughout the Patterson area also display distinct light gray layers of microvesicular basalt mineralized with albite directly over the basal crust and under the upper crust. The lower microvesicular layer is associated with mega-vesicular diapirs. We propose that the upper and lower microvesicular layers were composed of viscous crust that was suddenly quenched before it could devolatilize immediately before the solidification of the core. During initial cooling, the bottom of the basal layer was mineralized with high concentrations of calcite and albite during a high-temperature hydrothermal event. Subsequent albitization, as well as zeolite, prehnite, and calcite precipitation events, occurred during burial and circulation of basin brine heated by recurring Palisades magmatism below the Orange Mountain Basalt. Some of the events experienced by the Orange Mountain Basalt are unusual and place constraints on the fluid dynamics of thick flood basalt flows in general. The late penetration of vesicular diapirs through the entire thickness of the flow interior constrains its viscosity and solidification history.

  3. Surface oxidization-reduction reactions in Columbia Plateau basalts

    International Nuclear Information System (INIS)

    White, A.F.; Yee, A.

    1984-01-01

    Results are presented which define principal oxidation-reduction reactions expected between ground water and iron in the Umtanum and Cohassett basalt flows of south central Washington. Data include kinetics of aqueous iron speciation, rates of O 2 uptake and nature of oxyhydroxide precipitates. Such data are important in predicting behavior of radionuclides in basalt aquifers including determination of valence states, speciation, solubility, sorption, and coprecipitation on iron oxyhydroxide substrates and colloids. Analyses of the basalt by XPS indicates that ferrous iron is oxidized to ferric iron on the surface and that the total iron decreases as a function of pH during experimental weathering. Iron oxyhydroxide phases did not form surface coating on basalt surfaces but rather nucleated as separate plases in solution. No significant increases in Cs or Sr sorption were observed with increased weathering of the basalt. Concurrent increases in Fe(II) and decreases in Fe(III) in slightly to moderately acid solutions indicated continued oxidization of ferrous iron in the basalt. At neutral to basic pH, Fe(II) was strongly sorbed onto the basalt surface (Kd = 6.5 x 10 -3 1 x m 2 ) resulting in low dissolved concentrations even under anoxic conditions. The rate of O 2 uptake increased with decreasing pH. Diffusion rates (-- 10 -14 cm 2 x s -1 ), calculated using a one-dimensional analytical model, indicate grain boundary diffusion. Comparisons of Eh values calculated by Pt electrode, dissolved O 2 and Fe(II)/Fe(III) measurements showed considerable divergence, with the ferric-ferrous couple being the preferred method of estimating Eh

  4. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    B.P. McGrail; E. C. Sullivan; F. A. Spane; D. H. Bacon; G. Hund; P. D. Thorne; C. J. Thompson; S. P. Reidel; F. S. Colwell

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling of Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow

  5. Diffusion of hydrous species in model basaltic melt

    Science.gov (United States)

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei

    2017-10-01

    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  6. Stratigraphy of Oceanus Procellarum basalts - Sources and styles of emplacement

    Science.gov (United States)

    Whitford-Stark, J. L.; Head, J. W., III

    1980-01-01

    The basaltic fill of Oceanus Procellarum has been formally subdivided into four lithostratigraphic formations: The Repsold Formation, the Telemann Formation, the Hermann Formation, and the Sharp Formation. The Repsold Formation is composed of high-Ti basalts and pyroclastic deposits with an estimated age of 3.75 + or - 0.05 b.y. and an estimated volume of about 2.1 x 10 to the 5th cu km. This is overlain by the Telemann Formation composed of very low-Ti basalts and pyroclastic deposits with an estimated age of 3.6 + or - 0.2 b.y. and a volume of 4.2 x 10 to the 5th cu km. The Hermann Formation, composed of intermediate basalts with an estimated age of 3.3 + or - 0.3 b.y., represents the next youngest unit with an estimated volume of 2.2 x 10 to the 5th cu km. The youngest materials in Procellarum are the medium-to-high-Ti basalts comprising the Sharp Formation with an estimated age of 2.7 + or - 0.7 b.y. and a volume of 1.8 x 10 to the 4th cu km.

  7. Similar microbial communities found on two distant seafloor basalts

    Directory of Open Access Journals (Sweden)

    Esther eSinger

    2015-12-01

    Full Text Available The oceanic crust forms two thirds of the Earth’s surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō’ihi Seamount, Hawai’i, and the East Pacific Rise (EPR (9˚N. Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō’ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  8. High water content in primitive continental flood basalts.

    Science.gov (United States)

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin

    2016-05-04

    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>10(5) km(3)) within short time span (primitive CFB in the early Permian Tarim large igneous province (NW China), using the H2O content of ten early-formed clinopyroxene (cpx) crystals that recorded the composition of the primitive Tarim basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB.

  9. Corrosion phase formation on container alloys in basalt repository environments

    International Nuclear Information System (INIS)

    Johnston, R.G.; Anantatmula, R.P.; Lutton, J.M.; Rivera, C.L.

    1986-01-01

    The Basalt Waste Isolation Project is evaluating the suitability of basalt in southeastern Washington State as a possible location for a nuclear waste repository. The performance of the waste package, which includes the waste form, container, and surrounding packing material, will be affected by the stability of container alloys in the repository environment. Primary corrosion phases and altered packing material containing metals leached from the container may also influence subsequent reactions between the waste form and repository environment. Copper- and iron-based alloys were tested at 50 0 to 300 0 C in an air/steam environment and in pressure vessels in ground-water-saturated basalt-bentonite packing material. Reaction phases formed on the alloys were identified and corrosion rates were measured. Changes in adhering packing material were also evaluated. The observed reactions and their possible effects on container alloy durability in the repository are discussed

  10. Regional basalt hydrology of the Columbia Plateau in Washington

    International Nuclear Information System (INIS)

    Tanaka, H.; Barrett, G.; Wildrick, L.

    1979-10-01

    This study is part of the Basalt Waste Isolation Project, operated for the US Department of Energy by Rockwell Hanford Operations. The overall purpose of the study is to assess locations within the Columbia River Basalt Group beneath the Hanford Site in south-central Washington suitable for a geologic repository for radioactive waste. This hydrologic study was made to describe the hydrologic characteristics of the basalt units of the Columbia Plateau. This was done by comprehensive data compilation, data interpretation and analysis. Data are presented in the form of maps and tables suitable as input information about the regional hydrology for possible future analysis by computer models. The report includes: an introduction; basic data; interpretation which covers stratigraphic trend surface, water levels, transmissivity and storage of aquifers, recharge, discharge, flow, subbasins, cross sections, references and appendix of record of wells

  11. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties

    International Nuclear Information System (INIS)

    Carmisciano, Salvatore; Rosa, Igor Maria De; Sarasini, Fabrizio; Tamburrano, Alessio; Valente, Marco

    2011-01-01

    A preliminary comparative study of basalt and E-glass woven fabric reinforced composites was performed. The fabrics were characterized by the same weave pattern and the laminates tested by the same fiber volume fraction. Results of the flexural and interlaminar characterization are reported. Basalt fiber composites showed higher flexural modulus and apparent interlaminar shear strength (ILSS) in comparison with E-glass ones but also a lower flexural strength and similar electrical properties. With this fiber volume fraction, scanning electron microscopy (SEM) analysis of the fractured surfaces enabled a better understanding both of the failure modes involved and of points of concern. Nevertheless, the results of this study seem promising in view of a full exploitation of basalt fibers as reinforcement in polymer matrix composites (PMCs).

  12. Corrosion and tribological properties of basalt fiber reinforced composite materials

    Science.gov (United States)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  13. On causal links between flood basalts and continental breakup

    Science.gov (United States)

    Courtillot, V.; Jaupart, C.; Manighetti, I.; Tapponnier, P.; Besse, J.

    1999-03-01

    Temporal coincidence between continental flood basalts and breakup has been noted for almost three decades. Eight major continental flood basalts have been produced over the last 300 Ma. The most recent, the Ethiopian traps, erupted in about 1 Myr at 30 Ma. Rifting in the Red Sea and Gulf of Aden, and possibly East African rift started at about the same time. A second trap-like episode occurred around 2 Ma and formation of true oceanic crust is due in the next few Myr. We find similar relationships for the 60 Ma Greenland traps and opening of the North Atlantic, 65 Ma Deccan traps and opening of the NW Indian Ocean, 132 Ma Parana traps and South Atlantic, 184 Ma Karoo traps and SW Indian Ocean, and 200 Ma Central Atlantic Margin flood basalts and opening of the Central Atlantic Ocean. The 250 Ma Siberian and 258 Ma Emeishan traps seem to correlate with major, if aborted, phases of rifting. Rifting asymmetry, apparent triple junctions and rift propagation (towards the flood basalt area) are common features that may, together with the relative timings of flood basalt, seaward dipping reflector and oceanic crust production, depend on a number of plume- and lithosphere- related factors. We propose a mixed scenario of `active/passive' rifting to account for these observations. In all cases, an active component (a plume and resulting flood basalt) is a pre-requisite for the breakup of a major oceanic basin. But rifting must be allowed by plate-boundary forces and is influenced by pre-existing heterogeneities in lithospheric structure. The best example is the Atlantic Ocean, whose large-scale geometry with three large basins was imposed by the impact points of three mantle plumes.

  14. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.

    1985-01-01

    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/l Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to 10 -6 mol/l and 8 x 10 -7 mol/l under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 references, 6 figures

  15. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.; Florida State Univ., Tallahassee)

    1984-01-01

    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/L Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to approx. 10 -6 mol/L and 8 x 10 -7 mol/L under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 refs., 6 tabs

  16. Basalt fiber reinforced polymer composites: Processing and properties

    Science.gov (United States)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  17. Distribution and stratigraphy of basaltic units in Maria Tranquillitatis and Fecunditatis: A Clementine perspective

    Science.gov (United States)

    Rajmon, D.; Spudis, P.

    2004-01-01

    Maria Tranquillitatis and Fecunditatis have been mapped based on Clementine image mosaics and derived iron and titanium maps. Impact craters served as stratigraphic probes enabling better delineation of compositionally different basaltic units, determining the distribution of subsurface basalts, and providing estimates of total basalt thickness and the thickness of the surface units. Collected data indicate that volcanism in these maria started with the eruption of low-Ti basalts and evolved toward medium- and high-Ti basalts. Some of the high-Ti basalts in Mare Tranquillitatis began erupting early and were contemporaneous with the low- and medium-Ti basalts; these units form the oldest units exposed on the mare surface. Mare Tranquillitatis is mostly covered with high- Ti basalts. In Mare Fecunditatis, the volume of erupting basalts clearly decreased as the Ti content increased, and the high-Ti basalts occur as a few patches on the mare surface. The basalt in both maria is on the order of several hundred meters thick and locally may be as thick as 1600 m. The new basalt thickness estimates generally fall within the range set by earlier studies, although locally differ. The medium- to high-Ti basalts exposed at the surfaces of both maria are meters to tens of meters thick.

  18. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1984-01-01

    Hydrothermal waste package interaction tests were conducted with a mixture of crushed glass, basalt, and steel in methane-containing synthetic basalt groundwater. In the absence of gamma radiolysis, methane was found to have little influence on the corrosion behavior of the waste package constituents. Under gamma radiolysis, methane was found to significantly lower the solution oxidation potential when compared to identical tests without methane. In addition, colloidal hydrocarbon polymers that have been produced under the irradiation conditions of these experiments were not formed. The presence of the waste package constituents apparently inhibited the formation of the polymers. However, the mechanism which prevented their formation was not determined

  19. Feasibility of storing radioactive wastes in Columbia River basalts

    International Nuclear Information System (INIS)

    Deju, R.A.

    1976-01-01

    In 1968 Atlantic Richfield Hanford Company initiated a study to assess the feasibility of final geologic storage of Hanford defense, radioactive waste in deep caverns constructed in the Columbia River flood basalts. The project, which included geologic studies, hydrologic tests, heat flow analysis, compatibility analysis, and tectonic studies, was suspended in 1972 before completion of interpretive work. In 1976 the interpretation and documentation were completed. These data may be valuable in qualifying the Columbia River flood basalts as a viable medium for final geologic storage of commercial radioactive waste. The findings to date are summarized, and the proposed future work is presented

  20. Friction Joint Between Basalt-Reinforced Composite and Aluminum

    DEFF Research Database (Denmark)

    Costache, Andrei; Glejbøl, Kristian; Sivebæk, Ion Marius

    2015-01-01

    The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing the frictio......The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing...

  1. Preliminary feasibility study on storage of radioactive wastes in Columbia River basalts. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1976-11-01

    Volume II comprises four appendices: analytical data and sample locations for basalt flow type localities; Analytical data and sample locations for measured field sections in Yakima basalts; core hole lithology and analytical data; and geophysical logs. (LK)

  2. Mobilization of manganese by basalt associated Mn(II)-oxidizing bacteria from the Indian Ridge System

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; Mourya, B.S.; Krishnamurthi, S.; Meena, R.M.; LokaBharathi, P.A.

    The Indian Ridge System basalt bearing Mn-oxide coatings had todorokite as the major and birnesite as the minor mineral. We posit that microorganisms associated with these basalts participate in the oxidation of Mn and contribute to mineral...

  3. Petrographical indicators of petrogenesis: Examples from Central Indian Ocean Basin basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Mislankar, P.G.; Iyer, S.D.

    Petrographical features of the Central Indian Basin (CIOB) basalts were studied to understand their genetic significance. The fresh basaltic pillows show three textural zones from the top glassy (zone A) through the intermediate (zone B...

  4. Use of solar power for the production of basalt-based mineral fibers

    International Nuclear Information System (INIS)

    Gulamova, D. D.; Shevchenko, V. P.; Tokunov, S. G.; Kim, R. B.

    2012-01-01

    The possibility of obtaining basalt mineral fibers using concentrating solar power and melt-quench technique is shown. The microstructure and physicochemical properties of basalt fibers are analyzed. (author)

  5. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    OpenAIRE

    Choi, Jeong-Il; Lee, Bang

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber?s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then th...

  6. Flame-resistant pure and hybrid woven fabrics from basalt

    Science.gov (United States)

    Jamshaid, H.; Mishra, R.; Militky, J.

    2017-10-01

    This work has been formulated to investigate the burning behavior of different type of fabrics. The main concentration is to see how long the fabric resists after it catches the fire and the propagation of fire can be reduced by using flame resistant fiber i.e basalt. Basalt fiber is an environmental friendly material with low input, high output, low energy consumption and less emission. The goal of present investigations is to show the dependence of fabric flammability on its structure parameters i.e weave type, blend type etc. Fabric weaves have strong effect on flammability properties. Plain weave has the lowest burning rate as the density of the plain weave fabric is more and the structure is tight which gives less chances of flame passing through the fabric. Thermal stability is evaluated with TGA of all hybrid and nonhybrid fabrics and compared. The thermal stability of the basalt fiber is excellent. When comparing thermal analysis curves for hybrid samples it demonstrates that thermal stability of the samples containing basalt is much higher than the non- hybrid samples. Percentage weight loss is less in hybrid samples as compared to non-hybrid samples. The effectiveness of hybridization on samples may be indicated by substantial lowering of the decomposition mass. Correlation was made between flammability with the infrared radiations (IR)

  7. Age of the youngest Palaeogene flood basalts in East Greenland

    DEFF Research Database (Denmark)

    Heilmann-Clausen, C.; Piasecki, Stefan; Abrahamsen, Niels

    2008-01-01

    results, this constrains the termination of the East Greenland Paleogene Igneous Province to the Early-Middle Eocene transition (nannoplankton chronozones NP13-NP14/earliest NP15). This is 6-8 Ma younger than according to previous biostratigraphic age assignments. The new data show that flood basalt...

  8. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    International Nuclear Information System (INIS)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test

  9. Genetic aspects of basalts from the Carlsberg Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    of the CR rocks are sparse. The bulk chemical, mineral chemical and ore mineralization aspects of the dredged basalts from a segment of the CR (at 3°37¢N, 64°57¢E) are synthesized to indicate the influence of fractional crystallization coupled with magma...

  10. Gas adsorption on crushed quartz and basalt. [in vacuum

    Science.gov (United States)

    Barker, C.; Torkelson, B. E.

    1975-01-01

    The new surfaces generated by crushing rocks and minerals adsorb gases. Different gases are adsorbed to different extents so that both the total amount and composition of the released gases are changed. This affects the interpretation of the composition of the gases obtained by vacuum crushing lunar basalts, meteorites and minerals with fluid inclusions.

  11. Petrology of spinel lherzolite xenoliths in alkali basalts from Liri ...

    African Journals Online (AJOL)

    Al2O3), and Al-rich spinel occur in alkali basalts from Liri, South of the ... these spinel lherzolite xenoliths are reported, along with the analyses of ...... erupted in the Liri region. .... and temperatures with controlled activities of water, carbon.

  12. Petrography and chemistry of basalts from the Carlsberg ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    interior through a variolitic zone. The silica-alkalies relation show these basalts to be of sub-alkaline nature. Variable normative compositions and Mg number, increase in alkali index, differences in Al2O3/CaO and FeO/MgO ratios, variable trace element...

  13. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    al-Swaidani Aref M.

    2015-11-01

    Full Text Available The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction. Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289 and accelerated mortar bar test (ASTM C1260 have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida’a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  14. Basalt Waste Isolation Project. Annual report, fiscal year 1979

    International Nuclear Information System (INIS)

    1979-11-01

    This project is aimed at examining the feasibility and providing the technology to design and construct a radwaste repository in basalt formations beneath and within the Hanford Site. The project is divided into seven areas: systems integration, geosciences, hydrologic studies, engineered barriers, near-surface test facility, engineering testing, and repository engineering. This annual report summarizes key investigations in these seven areas

  15. Evaluation of basalt flows as a waste isolation media

    International Nuclear Information System (INIS)

    Deju, R.A.

    1978-01-01

    Activities in basalt waste isolation programs in the Columbia River basin are reported. Work during the period is summarized for the overall program which is divided into systems integration, geology, hydrology, engineered barriers studies, engineering testing, and the construction of a near-surface test facility

  16. Nature and composition of interbedded marine basaltic pumice in the

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2. Nature and composition of interbedded marine basaltic pumice in the ~52–50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea. Sarajit Sensarma Hukam Singh R S Rana Debajyoti Paul ...

  17. Fire performance of basalt FRP mesh reinforced HPC thin plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2013-01-01

    An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...

  18. Hydrologic testing methodology and results from deep basalt boreholes

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A.; Jackson, R.L.; Pidcoe, W.W.

    1982-05-01

    The objective of the hydrologic field-testing program is to provide data for characterization of the groundwater systems wihin the Pasco Basin that are significant to understanding waste isolation. The effort is directed toward characterizing the areal and vertical distributions of hydraulic head, hydraulic properties, and hydrochemistry. Data obtained from these studies provide input for numerical modeling of groundwater flow and solute transport. These models are then used for evaluating potential waste migration as a function of space and time. The groundwater system beneath the Hanford Site and surrounding area consists of a thick, accordantly layered sequence of basalt flows and associated sedimentary interbed that primarily occur in the upper part of the Columbia River basalt. Permeable horizons of the sequence are associated with the interbeds and the interflow zones within the basalt. The columnar interiors of a flow act as low-permeability aquitards, separating the more-permeable interflows or interbeds. This paper discusses the hydrologic field-gathering activities, specifically, field-testing methodology and test results from deep basalt boreholes

  19. Heat resistance study of basalt fiber material via mechanical tests

    Science.gov (United States)

    Gao, Y. Q.; Jia, C.; Meng, L.; Li, X. H.

    2017-12-01

    This paper focuses on the study of the relationship between the fracture strength of basalt rovings and temperature. Strong stretching performance of the rovings has been tested after the treatment at fixed temperatures but different heating time and then the fracture strength of the rovings exposed to the heating at different temperatures and cooled in different modes investigated. Finally, the fracture strength of the basalt material after the heat treatment was studied. The results showed that the room-temperature strength tends to decrease with an increase of the heat treatment time at 250 °C, but it has the local maximum after 2h heating. And the basalt rovings strength increased after the heat treatment up to 200 °C. It was 16.7 percent higher than the original strength. The strength depends not only on the temperature and duration of the heating, but also on the cooling mode. The value of the strength measured after cold water cooling was less by 6.3% compared with an ambient air cooling mode. The room-temperature breaking strength of the rovings heated at 200 °C and 100 °C for 2 hours each increased by about 14.6% with respect to unpretreated basalt rovings.

  20. Depleted basaltic lavas from the proto-Iceland plume, Central East Greenland

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Baker, Joel A.

    2012-01-01

    New geochemical and isotopic data are presented for volumetrically minor, depleted low-Ti basalts that occur in the Plateau Basalt succession of central East Greenland (CEG), formed during the initial stages of opening of the North Atlantic at 55 Ma. The basalts have MORB-like geochemistry (e.g. ...

  1. Geochemical study of young basalts in East Azerbaijan (Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Nasir Amel

    2016-12-01

    Full Text Available The young basalts in East Azerbaijan are placed in West Alborz – Azerbaijan zone. Volcanic activities have extended from the Pliocene to the Quaternary by eruption from fracture systems and faults. Rocks under study are olivine-basalt and trachybasalts. The main minerals are olivine, pyroxene, plagioclase set in glassy or microcrystalline matrix and olivine are present as phenocryst. The textures in the studied rocks are mainly hyaloporphyric, hyalomicrolitic and porphyritic. Trace elements and rare earth elements on spider diagrams have high LREE/HREE ratio. Rare earth elements on diagram display negative slope indicating alkaline nature for the basalts under study. As it may be observed, on tectonic diagrams, the Marand basalts are placed on Island Arc basalt (IAB field, whereas the Ahar, Heris, Kalaibar and Miyaneh basalts are classified as Ocean Island Basalts (OIB and finally the basalts of Sohrol area are plotted on continental rift Basalt (CRB field. The Marand and Sohrol basalts were likely originated from lithospheric - astenospheric mantle with 2 to 5 % partial melting whereas, the Ahar, Heris and Kalaibar basalts having same source experienced 1-2% partial melting rate and the Miyaneh basalts possibly produced from lithospheric mantle with 10-20% partial melting rate pointing to shallow depth of mantle and the higher rate of melting. Based on tectonic setting diagrams, all the rocks studied are plotted in post collisional environments.

  2. Behaviour of rare earth elements, as natural analogues of transuranium elements, during weathering of basaltic glasses

    International Nuclear Information System (INIS)

    Daux, V.; Crovisier, J.L.; Petit, J.C.

    1991-01-01

    Subglacial basaltic glasses from Iceland have been studied in order to investigate REE behaviour low-temperature weathering. Just as actinides accumulate in the hydrated superficial corrosion layer of borosilicate glasses, REEs are found to be enriched in the natural corrosion layer of basaltic glasses (palagonite). However, this enrichment is only relative for basaltic glasses [fr

  3. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    Science.gov (United States)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  4. Miocene Basaltic Lava Flows and Dikes of the Intervening Area Between Picture Gorge and Steens Basalt of the CRBG, Eastern Oregon

    Science.gov (United States)

    Cahoon, E. B.; Streck, M. J.

    2016-12-01

    Mid-Miocene basaltic lavas and dikes are exposed in the area between the southern extent of the Picture Gorge Basalt (PGB) and the northern extent of Steens Basalt in a wide corridor of the Malheur National Forest, eastern Oregon. An approximate mid-Miocene age of sampled basaltic units is indicated by stratigraphic relationships to the 16 Ma Dinner Creek Tuff. Lavas provide an opportunity to extend and/or revise distribution areas of either CRBG unit and explore the petrologic transition between them. The PGB and the Steens Basalt largely represent geochemically distinct tholeiitic units of the CRBG; although each unit displays internal complexity. Lavas of PGB are relatively primitive (MgO 5-9 wt.%) while Steens Basalt ranges in MgO from >9 to 3 wt.% but both units are commonly coarsely porphyritic. Conversely, Steens Basalt compositions are on average more enriched in highly incompatible elements (e.g. Rb, Th) and relatively enriched in the lesser incompatible elements (e.g. Y, Yb) compared to the Picture Gorge basalts. These compositional signatures produce inclined and flat patterns on mantle-normalized incompatible trace element plots but with similar troughs and spikes, respectively. New compositional data from our study area indicate basaltic lavas can be assigned as PGB lava flows and dikes, and also to a compositional group chemically distinct between Steens Basalt and PGB. Distribution of lava flows with PGB composition extend this CRBG unit significantly south/southeast closing the exposure gap between PGB and Steens Basalt. We await data that match Steens Basalt compositions but basaltic lavas with petrographic features akin to Steens Basalt have been identified in the study area. Lavas of the transitional unit share characteristics with Upper Steens and Picture Gorge basalt types, but identify a new seemingly unique composition. This composition is slightly more depleted in the lesser incompatible elements (i.e. steeper pattern) on mantle normalized

  5. Surface modification of basalt with silane coupling agent on asphalt mixture moisture damage

    Energy Technology Data Exchange (ETDEWEB)

    Min, Yahong; Fang, Ying; Huang, Xiaojun; Zhu, Yinhui; Li, Wensheng [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Yuan, Jianmin [College of Materials Engineering, Hunan University, Changsha, 410082 (China); Tan, Ligang [College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 (China); Wang, Shuangyin [State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wu, Zhenjun, E-mail: wooawt@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China)

    2015-08-15

    Graphical abstract: - Highlights: • A new silane coupling agent was synthesized based on KH570. • Basalt surface was modified using the new silane coupling agent. • Chemical bond between basalt and the new silane coupling agent was formed. • Asphalt mixture which used modified basalt show superior water stability. - Abstract: A new silane coupling agent was synthesized based on γ-(methacryloyloxy) propyltrimethoxysilane (KH570). The surface of basalt rocks was modified by KH570 and the new silane coupling agent (NSCA), and the interfacial interaction between silane coupling agent and basalt was also studied. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis showed that the silane coupling agent molecule bound strongly with basalt rocks. Scanning electronic microscopy (SEM) observation showed that a thin layer of coupling agent was formed on the surface of modified basalt. The boiling test and immersion Marshall test confirmed that the moisture sensitivity of basalt modified with the new silane coupling agent increased more significantly than that untreated and treated with KH570. The Retained Marshall Strength of basalt modified with the new coupling agent increased from 71.74% to 87.79% compared with untreated basalt. The results indicated that the new silane coupling agent played an important role in improving the interfacial performance between basalt and asphalt.

  6. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    Science.gov (United States)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  7. Investigation on mechanical properties of basalt composite fabrics (experiment study

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.

    2010-06-01

    Full Text Available To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1. Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2. Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3. Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4. Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one

  8. Basalt characterization by means of nuclear and electrical well logging techniques. Case study from Southern Syria

    International Nuclear Information System (INIS)

    Asfahani, Jamal

    2011-01-01

    Nuclear well logging, including natural gamma ray, density, and neutron-porosity techniques are used with electrical well logging of long and short normal techniques to characterize the basaltic areas largely extended in Southern Syria. Statistical analysis approach with the threshold concept has been adapted for such characterization, where four kinds of basalt have been identified: very hard basalt, hard basalt, fractured basalt, and basalt alteration products. The spectrometric gamma technique has also been applied on the retrieved rock samples in order to determine the radioactive content (eU, eTh, and K%) of the basaltic section in the study area. No radioactive anomalies have been detected, the radioactive values are normal and in the expected range.

  9. Basaltic rocks analyzed by the Spirit rover in Gusev crater

    Science.gov (United States)

    McSween, H.Y.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Crumpler, L.S.; Des Marias, D.J.; Farmer, J.D.; Gellert, Ralf; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L.A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Klingelhoefer, G.; Knudson, A.T.; McLennan, S.; Milam, K.A.; Moersch, J.E.; Morris, R.V.; Rieder, R.; Ruff, S.W.; De Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Wyatt, M.B.; Yen, A.; Zipfel, J.

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ???25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mo??ssbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  10. Mars weathering analogs - Secondary mineralization in Antarctic basalts

    Science.gov (United States)

    Berkley, J. L.

    1982-01-01

    Alkalic basalt samples from Ross Island, Antarctica, are evaluated as terrestrial analogs to weathered surface materials on Mars. Secondary alteration in the rocks is limited to pneumatolytic oxidation of igneous minerals and glass, rare groundmass clay and zeolite mineralization, and hydrothermal minerals coating fractures and vesicle surfaces. Hydrothermal mineral assemblages consist mainly of K-feldspar, zeolites (phillipsite and chabazite), calcite, and anhydrite. Low alteration rates are attributed to cold and dry environmental factors common to both Antarctica and Mars. It is noted that mechanical weathering (aeolian abrasion) of Martian equivalents to present Antarctic basalts would yield minor hydrothermal minerals and local surface fines composed of primary igneous minerals and glass but would produce few hydrous products, such as palagonite, clay or micas. It is thought that leaching of hydrothermal vein minerals by migrating fluids and redeposition in duricrust deposits may represent an alternate process for incorporating secondary minerals of volcanic origin into Martian surface fines.

  11. Petrogeochemistry of Mesozoic basaltic volcanics in Daqingshan area

    International Nuclear Information System (INIS)

    Li Xiaoguang; Li Ziying; Wei Sanyuan; Qi Da'neng

    2009-01-01

    Through the discussion on petrogeochemistry of Later Mesozoic basaltic volcanics in Daqingshan Basin in Manzhouli area, combined with field observation and the predecessors' study, its magma evolution,genesis and diagenetic structural environment are discussed, and some suggestion are provided for the further work. Basaltic magma in this area is believed to be derived from mantle with incompatible elements which were later participated by some crustal materials. It is a partially melting product of mantle by early metasomatized fluid under lithosphere extension. Through petrogeochemical analysis of the volcanics and the contrast to the adjacent uranium-producing volcanics, it is concluded that this region has structural environment to form magma evolution series which are more favorable for volcanic hydrothermal-type uranium and polymetallic mineralization. (authors)

  12. Americium migration in basalt and implications to repository risk analysis

    International Nuclear Information System (INIS)

    Rickert, P.G.

    1980-01-01

    Experiments were performed with americium as a minor component in groundwater. Batch adsorption, migration through column, and filtration experiments were performed. It was determined in batch experiments that americium is strongly adsorbed from solution. It was determined with filtration experiments that large percentages of the americium concentrations suspended by the contact solutions in batch experiments and suspended by the infiltrating groundwater in migration experiments were associated with particulate. Filtration was determined to be the primary mode of removal of americium from infiltrating groundwater in a column of granulated basalt (20 to 50 mesh) and an intact core of permeable basalt. Fractionally, 0.46 and 0.22 of the americium component in the infiltrating groundwater was transported through the column and core respectively. In view of these filtration and migration experiment results, the concept of K/sub d/ in the chromatographic sense is meaningless for predicting americium migration in bedrock by groundwater transport at near neutral pH

  13. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  14. Environmental resistance and mechanical performance of basalt and glass fibers

    International Nuclear Information System (INIS)

    Wei Bin; Cao Hailin; Song Shenhua

    2010-01-01

    The treated basalt and glass fibers with sodium hydroxide and hydrochloric acid solutions for different times were analyzed, respectively. This paper summarized the mass loss ratio and the strength maintenance ratios of the fibers after treatment. The fibers' surface corrosion morphologies were characterized using scanning electron microscopy and their compositions were detected using energy dispersive X-ray spectroscopy. The acid resistance was much better than the alkali resistance for the basalt fibers. Nevertheless, for the glass fibers the situation is different: the acid resistance was almost the same as the alkali resistance. Among the two types of aqueous environments evaluated, the alkali solution is the most aggressive to the fibers' surface. The possible corrosion mechanisms are revealed.

  15. A new basaltic glass microanalytical reference material for multiple techniques

    Science.gov (United States)

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only

  16. Basalt-trachybasalt samples in Gale Crater, Mars

    International Nuclear Information System (INIS)

    Edwards, Peter H.; Anderson, Ryan B.; Dyar, Darby

    2017-01-01

    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO 2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO 2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg# = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. Finally, the Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.

  17. Basaltic Shergottite NWA 856: Differentiation of a Martian Magma

    Science.gov (United States)

    Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.

    2016-01-01

    NWA 856 or Djel Ibone, is a basaltic shergottite discovered as a single stone of 320 g in South Morocco in April, 2001. This meteorite is fresh, i.e. shows minimal terrestrial weathering for a desert find. No shergottite discovered in North Africa can be paired with NWA 856. The purpose of this study is to constrain its crystallization history using textural observations, crystallization sequence modeling and in-situ trace element analysis in order to understand differentiation in shergottite magmatic systems.

  18. Rock mass deformation properties of closely jointed basalt

    International Nuclear Information System (INIS)

    Kim, K.; Cramer, M.L.

    1982-12-01

    The deformational behavior of the Columbia River basalt is being investigated as part of a comprehensive site characterization program intended to determine the feasibility of constructing a nuclear waste repository in basalt at Hanford, Washington. Direct field measurements were conducted in a 2-m cube of basalt to obtain truly representative rock mass deformation properties. Load was applied to the test block in three orthogonal directions through the use of flat jacks in two perpendicular planes and a cable anchor system in the third. This configuration allowed the block to be placed in a simulated triaxial stress state at stress levels up to 12.5 MPa. The deformation at the center of the test block was monitored through the use of an optical measurement system developed for this project. The results indicate that the vertically oriented columnar joints have a significant influence on the deformation behavior of the basalt. The modulus in the direction parallel to the column axis was approx. 30 GPa, while the modulus value perpendicular to the columns was approx. 20 GPa. Laboratory measurements of intact specimens taken from this area yielded a value of 80 GPa with no indication of anisotropy. Hysteresis was observed in all loading cycles, but was distinctly more pronounced perpendicular to the column axis, indicative of significant joint displacement in this direction. The results of this test represent the first true rock mass modulus data obtained in closely jointed rock on a large scale. These measurement methods have eliminated many of the ambiguities associated with borehole jacking and surface measurement techniques

  19. Interim reclamation report, Basalt Waste Isolation project: Boreholes, 1989

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-03-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. An extensive site characterization program was begun to determine the feasibility of using the basalts beneath the Hanford Site for the repository. Site research focused primarily on determining the direction and speed of groundwater movement, the uniformity of basalt layers, and tectonic stability. Some 98 boreholes were sited, drilled, deepened, or modified by BWIP between 1977 and 1988 to test the geologic properties of the Site. On December 22, 1987, President Reagan signed into law the Nuclear Waste Policy Amendments Act of 1987, which effectively stopped all repository-related activities except reclamation of disturbed lands at the Hanford Site. This report describes the development of the reclamation program for the BWIP boreholes, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 48 refs., 28 figs., 14 tabs

  20. The Age of Rift-Related Basalts in East Antarctica

    Science.gov (United States)

    Leitchenkov, G. L.; Belyatsky, B. V.; Kaminsky, V. D.

    2018-01-01

    The Lambert Rift, which is a large intracontinental rift zone in East Antarctica, developed over a long period of geological time, beginning from the Late Paleozoic, and its evolution was accompanied by magmatic activity. The latest manifestation of magmatism is eruption of alkaline olivine-leucite basalts on the western side of the Lambert Rift; Rb-Sr dating referred its time to the Middle Eocene, although its genesis remained vague. In order to solve this problem, we found geochronometer minerals in basaltic samples and 68 apatite grains appeared to be suitable for analysis. Their ages and ages of host basalts, determined by the U-Pb local method on the SIMS SHRIMP-II, were significantly different (323 ± 31 Ma) from those assumed earlier. This age corresponds to the earliest stage of crustal extension in East Antarctica and to most of Gondwana. The new data crucially change the ideas about the evolution of Lambert Rift and demonstrate the ambiguity of K-Ar dates of the alkali effusive formed under long-term rifting.

  1. Basalt Waste Isolation Project. Annual report, fiscal year 1980

    International Nuclear Information System (INIS)

    1980-11-01

    During this fiscal year the information available in the fields of geology and hydrology of the Columbia Plateau was consolidated and two reports were issued summarizing this information. In addition, the information on engineered barriers was consolidated and a report summarizing the research to date on waste package development and design of borehole seals was prepared. The waste package studies, when combined with the hydrologic integration, revealed that even under extreme disruptive conditions, a repository in basalt with appropriately designed waste packages can serve as an excellent barrier for containment of radionuclides for the long periods of time required for waste isolation. On July 1, 1980, the first two heater tests at the Near-Surface Test Facility were started and have been successfully operated to this date. The papers on the Near-Surface Test Facility section of this report present the results of the equipment installed and the preliminary results of the testing. In October 1979, the US Department of Energy selected the joint venture of Kaiser Engineers/Parsons Brinckerhoff Quade and Douglas, Inc., to be the architect-engineer to produce a conceptual design of a repository in basalt. During the year, this design has progressed and concept selection has now been completed. This annual report presents a summary of the highlights of the work completed during fiscal year 1980. It is intended to supplement and summarize the nearly 200 papers and reports that have been distributed to date as a part of the Basalt Waste Isolation Project studies

  2. Dissolution of basaltic glass in seawater: Mechanism and rate

    International Nuclear Information System (INIS)

    Crovisier, J.L.; Honnorez, J.; Eberhart, J.P.

    1987-01-01

    Basaltic glasses are considered as natural analogues for nuclear waste glasses. Thermodynamic computer codes used to evaluate long term behavior of both nuclear waste and basaltic glasses require the knowledge of the dissolution mechanism of the glass network. The paper presents the results of a series of experiments designed to study the structure and chemical composition of alteration layers formed on the surface of artificial tholeiitic glass altered in artificial seawater. Experiments were performed at 60 degree C, 1 bar and 350 bars in non-renewed conditions. A natural sample from Palagonia (Sicily) has been studied by electron microscopy and comparison between natural and experimental palagonitic layers is made. The behavior of dissolved silica during experiments, and both the structure and the chemical composition of the palagonitic layers, indicate that they form by precipitation of secondary minerals from solution after a total breakdown of the glassy network, i.e., congruent dissolution of the glass. Hence the dissolution equation necessary for thermodynamic modelling of basaltic glass dissolution in seawater at low temperature must be written as a simple stoichiometric process. These experiments indicate that the transformation of glass to palagonitic material is not isovolumetric. Hence it is preferable to use Fe or Ti as conservative elements for chemical budget calculations

  3. Characterization of iron-enriched synthetic basalt for transuranic containment

    International Nuclear Information System (INIS)

    Flinn, J.E.; Henslee, S.P.; Kelsey, P.V.; Tallman, R.L.; Welch, J.M.

    1980-01-01

    In the slagging pyrolytic incineration process, combustibles are burned and noncombustibles, including metals, are oxidized into a molten , an electromelter, where the molten slag, with further processing conducted in a heated tundish, e.g. is allowed to homogenize (within a reasonable time period) and then cast into large, cylindrical metal containers. Analyses of Idaho National Engineering Laboratory waste slags show them similar in composition and appearance to natural basalts, but rich in iron. The electromelt process and the resulting iron-rich castings offer great promise for rendering nuclear waste into a stable form. The process offers great flexibility with regard to both compositional variation of the incoming waste and the high rates at which the waste can be introduced and cast. The cast product, a fine-grained basalt-like material, shows excellent homogeneity with little or no reaction to the steel containment. The preliminary mechanical and chemical durability data show the form to have adequate containment properties for TRU waste. However, work presently underway to improve these properties through additives and controlled cooling cycles has greatly enhanced the durability of the waste form. Furthermore, recent evidence indicates that divalent iron (Fe 2+ ) included in the crystalline phases of granites and basalts imparts a resistance to leaching of uranium and other actinide ions

  4. Strontium isotopic and trace element geochemistry of the saddle mountains and Grande Ronde Basalts of the Columbia River Basalt Group

    International Nuclear Information System (INIS)

    Nelson, D.O.

    1980-01-01

    The Columbia River Basalt (CRB) group displays significant variations in major and trace element and Sr isotopic compositions. These compositions reflect complex and variable origins for the CRB magmas. Among the most varied is the Saddle Mountains Basalt (SMB) in which Sr ratios vary from 0.7078 to 0.7147 +- 0.002. The higher ratios reflect contamination through consistent correlations with major element compositions. Modeling suggests contamination by assimilation of 4.4 to 9.4 wt % of radiogenic crustal rocks. High delta 18 O values (up to +7.68 per mil) support the model. Age and field relations suggest that the contamination flowrocks are not the result of progressive contamination of a single magma, but rather reflect the contamination of independent magmas during this ascent

  5. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts and gabbros

    Science.gov (United States)

    Mason, O. U.; di Meo-Savoie, C. A.; Nakagawa, T.; van Nostrand, J. D.; Rosner, M.; Maruyama, A.; Zhou, J.; Fisk, M. R.; Giovannoni, S. J.

    2008-12-01

    Oceanic crust covers nearly 70% of the Earth's surface, of which, the upper, sediment layer is estimated to harbor substantial microbial biomass. Marine crust, however, extends several kilometers beyond this surficial layer, and includes the basalt and gabbro layers. The microbial diversity in basalts is well characterized, yet metabolic diversity is unknown. To date, the microflora associated with gabbros, including microbial and metabolic diversity has not been reported. In our analyses basaltic and gabbroic endoliths were analyzed using terminal restriction fragment length polymorphism, cloning and sequencing, and microarray analysis of functional genes. Our results suggest that despite nearly identical chemical compositions of basalt and gabbro the associated microflora did not overlap. Basalt samples harbor a surprising diversity of seemingly cosmopolitan microorganisms, some of which appear to be basalt specialists. Conversely, gabbros have a low diversity of endoliths, none of which appear to be specifically adapted to the gabbroic environment. Microarray analysis (GeoChip) was used to assay for functional gene diversity in basalts and gabbros. In basalt genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation were present, suggesting that basalts harbor previously unrecognized metabolic diversity. Similar processes were observed in gabbroic samples, yet metabolic inference from phylogenetic relationships of gabbroic endoliths with other microorganisms, suggests that hydrocarbon oxidation is the prevailing metabolism in this environment. Our analyses revealed that the basalt and gabbro layers harbor microorganisms with the genetic potential to significantly impact biogeochemical cycling in the lithosphere and overlying hydrosphere.

  6. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    Science.gov (United States)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  7. UTILIZATION OF BASALT FIBERS AS A RAW MATERIAL FOR CLAY CERAMIC PRODUCTION

    Directory of Open Access Journals (Sweden)

    Supawan Vichaphund

    2016-03-01

    Full Text Available This research aimed to investigate the possibility of utilization basalt fibers as a raw material for ceramic production. Both quartz and feldspar were replaced partially or entirely by basalt fiber in the range of 10-25 wt%. The mixture of ceramic powders and basalt fibers were uniaxially pressed and sintered at temperatures between 1000 and 1200°C for 1 h. The substitution of basalt fibers in ceramic compositions demonstrated the positive effect on the physical and mechanical properties. The addition of basalt fibers in an appropriate amount enhance the densification and reduce sintering temperature of clay-based ceramics (CB-0 from 1200 to 1150°C. The highest density and strength were 2.40 g/cm³ and 116 MPa, respectively, when replacing feldspar and quartz with basalt up to 20 wt% (CB-20 and sintering at 1150°C.

  8. Methods of simulating low redox potential (Eh) for a basalt repository

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1983-01-01

    Basalt groundwaters have inherently low redox potentials, approximately -0.4V, which can be measured with platinum electrodes, but are difficult to reproduce during leaching experiments. In the presence of deionized water, crushed basalt reaches the measured Eh-pH values of a basalt repository. Other waste package components, such as iron, will interact with groundwater in different ways under oxic or anoxic conditions since the presence of any redox active solid will affect the groundwater Eh. 26 references, 4 figures

  9. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed

  10. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

  11. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian)

    OpenAIRE

    Daniela Ogrean

    2001-01-01

    The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes) indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Tim...

  12. Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility

    Science.gov (United States)

    Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.

    1977-01-01

    Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.

  13. A Brillouin scattering study of hydrous basaltic glasses: the effect of H2O on their elastic behavior and implications for the densities of basaltic melts

    Science.gov (United States)

    Wu, Lei; Yang, De-Bin; Liu, Jun-Xiu; Hu, Bo; Xie, Hong-Sen; Li, Fang-Fei; Yu, Yang; Xu, Wen-Liang; Gao, Chun-Xiao

    2017-06-01

    Hydrous basalt glasses with water contents of 0-6.82% were synthesized using a multi-anvil press at 1.0-2.0 GPa and 1200-1400 °C. The starting materials were natural Mesozoic basalts from the eastern North China Craton (NCC). Their sound velocities and elastic properties were measured by Brillouin scattering spectroscopy. The longitudinal ( V P) and shear ( V S) wave velocities decreased with increasing water content. Increasing the synthesis pressure resulted in the glass becoming denser, and finally led to an increase in V P. As the degree of depolymerization increased, the V P, V S, and shear and bulk moduli of the hydrous basalt glasses decreased, whereas the adiabatic compressibility increased. The partial molar volumes of water (ν) under ambient conditions were independent of composition, having values of 11.6 ± 0.8, 10.9 ± 0.6 and 11.5 ± 0.5 cm3/mol for the FX (Feixian), FW (Fuxin), and SHT (Sihetun) basalt glasses, respectively. However, the {{V}_{{{{H}}_{{2}}}{O}}} values measured at elevated temperatures and pressures are increasing with increasing temperature or decreasing pressure. The contrasting densities of these hydrous basalt melts with those previously reported for mid-ocean ridge basalt and preliminary reference Earth model data indicate that hydrous basalt melts may not maintain gravitational stability at the base of the upper mantle.

  14. Geology of the Sabie River Basalt Formation in the Southern Kruger National Park

    Directory of Open Access Journals (Sweden)

    R.J. Sweeney

    1986-11-01

    Full Text Available The Sabie River Basalt Formation (SRBF in the central Lebombo is a virtually continuous sequence of basaltic lavas some 2 500 m thick that was erupted 200 - 179 Ma ago. Flows are dominantly pahoehoe in character and vary from 2 m to 20 m in thickness. Dolerite dykes cross-cutting the basalt sequence probably represent feeders to this considerable volcanic event. Volcanological features observed within the SRBF are described. Two chemically distinct basaltic magma types are recognised, the simultaneous eruption of which presents an intriguing geochemical problem as to their origins.

  15. Radiation shielding properties of a novel cement–basalt mixture for nuclear energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ipbüker, Cagatay; Nulk, Helena; Gulik, Volodymyr [University of Tartu, Institute of Physics (Estonia); Biland, Alex [HHK Technologies, Houston (United States); Tkaczyk, Alan Henry, E-mail: alan@ut.ee [University of Tartu, Institute of Physics (Estonia)

    2015-04-01

    Highlights: • Basalt fiber is a relatively cheap material that can be used as reinforcement. • Gamma-ray attenuation remains relatively stable with addition of basalt fiber. • Neutron attenuation remains relatively stable with addition of basalt fiber. • Cement–basalt mixture has a good potential for use in nuclear energy applications. - Abstract: The radiation shielding properties of a new proposed building material, a novel cement–basalt fiber mixture (CBM), are investigated. The authors analyze the possibility of this material to be a viable substitute to outgoing materials in nuclear energy applications, which will lead to a further sustained development of nuclear energy in the future. This computational study involves four types of concrete with various amounts of basalt fiber in them. The gamma-ray shielding characteristics of proposed CBM material are investigated with the help of WinXCom program, whereas the neutron shielding characteristics are computed by the Serpent code. For gamma-ray shielding, we find that the attenuation coefficients of concretes with basalt fibers are not notably influenced by the addition of fibers. For neutron shielding, additional basalt fiber in mixture presents negligible effect on neutron radiation shielding. With respect to radiation shielding, it can be concluded that basalt fibers have good potential as an addition to heavyweight concrete for nuclear energy applications.

  16. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    International Nuclear Information System (INIS)

    Karavaeva, E; Rogozhnikov, A; Nikitin, V; Cherepennikov, Yu; Lysakov, A

    2015-01-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice. (paper)

  17. Basalt Fiber for Volcanic Slag Lightweight Aggregate Concrete Research on the Impact of Performance

    Science.gov (United States)

    Xiao, Li-guang; Li, Gen-zhuang

    2018-03-01

    In order to study the effect of basalt fiber on the mechanical properties and durability of volcanic slag lightweight aggregate concrete, the experimental study on the flexural strength, compressive strength and freeze-thaw resistance of volcanic slag concrete with different basalt fiber content were carried out, the basalt fiber was surface treated with NaOH and water glass, the results show that the surface treatment of basalt fiber can significantly improve the mechanical properties, durability and other properties of volcanic slag lightweight aggregate concrete.

  18. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    Science.gov (United States)

    Karavaeva, E.; Rogozhnikov, A.; Nikitin, V.; Cherepennikov, Yu; Lysakov, A.

    2015-11-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice.

  19. Radiation shielding properties of a novel cement–basalt mixture for nuclear energy applications

    International Nuclear Information System (INIS)

    Ipbüker, Cagatay; Nulk, Helena; Gulik, Volodymyr; Biland, Alex; Tkaczyk, Alan Henry

    2015-01-01

    Highlights: • Basalt fiber is a relatively cheap material that can be used as reinforcement. • Gamma-ray attenuation remains relatively stable with addition of basalt fiber. • Neutron attenuation remains relatively stable with addition of basalt fiber. • Cement–basalt mixture has a good potential for use in nuclear energy applications. - Abstract: The radiation shielding properties of a new proposed building material, a novel cement–basalt fiber mixture (CBM), are investigated. The authors analyze the possibility of this material to be a viable substitute to outgoing materials in nuclear energy applications, which will lead to a further sustained development of nuclear energy in the future. This computational study involves four types of concrete with various amounts of basalt fiber in them. The gamma-ray shielding characteristics of proposed CBM material are investigated with the help of WinXCom program, whereas the neutron shielding characteristics are computed by the Serpent code. For gamma-ray shielding, we find that the attenuation coefficients of concretes with basalt fibers are not notably influenced by the addition of fibers. For neutron shielding, additional basalt fiber in mixture presents negligible effect on neutron radiation shielding. With respect to radiation shielding, it can be concluded that basalt fibers have good potential as an addition to heavyweight concrete for nuclear energy applications

  20. Nuclear waste repository in basalt: preconceptual design guidelines

    International Nuclear Information System (INIS)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation

  1. Nuclear waste repository in basalt: preconceptual design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation.

  2. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    International Nuclear Information System (INIS)

    Bennecke, W.M.

    1996-10-01

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well

  3. Sentinel Gap basalt reacted in a temperature gradient

    International Nuclear Information System (INIS)

    Charles, R.W.; Bayhurst, G.K.

    1983-01-01

    Six basalt prisms were reacted in a controlled temperature gradient hydrothermal circulation system for two months. The prisms were centered at 72, 119, 161, 209, 270, and 310 0 C. Total pressure was 1/3 kbar. All prisms showed large weight loss: 5.5% to 14.9%. The matrix micropegmatite and natural nontronitic alteration reacted readily to clays at all temperatures. The first four prisms were coated with a calcium smectite, and the last two prisms were covered with discrete patches of potassium-rich phengite and alkali feldspar. The results indicated that clays may act as adsorbers of various ions

  4. Sentinel Gap basalt reacted in a temperature gradient

    International Nuclear Information System (INIS)

    Charles, R.W.; Bayhurst, G.K.

    1982-01-01

    Six basalt prisms were reacted in a controlled temperature gradient hydrothermal circulation system for two months. The prisms are centered at 72, 119, 161, 209, 270, and 310 0 C. Total pressure is 1/3 kbar. All prisms show large weight loss: 5.5% to 14.9%. The matrix micropegmatite and natural nontronitic alteration readily reacts to clays at all temperatures. The first four prisms are coated with a Ca-smectite while the last two prisms are covered with discrete patches of K rich phengite and alkali feldspar. The clays may act as adsorbers of various ions

  5. Environmental issue identification for the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    Carrell, D.J.; Jones, K.A.

    1980-04-01

    A preliminary evaluation of environmental issues is provided in this report. It contains summary of the thought process that was used during the area characterization studies for a geological repository for high-level radioactive wastes. Environmental issues are discussed separately for construction, operation, and long term isolation aspects of a repository in basalt. During construction the primary environmental concerns are public perception and water resources; intermediate concerns are air quality, ecosystems, physical resources, and cultural and social resources. During operation, the primary environmental issues concern the transport of radioactive materials and physical resources. Long term environmental issues envolve water resources and borehole plugging

  6. Basalt Waste Isolation Project exploratory shaft site: Final reclamation report

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.

    1990-06-01

    The restoration of areas disturbed by activities of the Basalt Waste Isolation Project (BWIP) constitutes a unique operation at the US Department of Energy's (DOE) Hanford Site, both from the standpoint of restoration objectives and the time frame for accomplishing these objectives. The BWIP reclamation program comprises three separate projects: borehole reclamation, Near Surface Test Facility (NSTF) reclamation, and Exploratory Shaft Facility (ESF) reclamation. The main focus of this report is on determining the success of the revegetation effort 1 year after work was completed. This report also provides a brief overview of the ESF reclamation program. 21 refs., 7 figs., 14 tabs

  7. Penetration of molten core materials into basaltic and limestone concrete

    International Nuclear Information System (INIS)

    Sutherland, H.J.

    1978-01-01

    In conjunction with the small-scale, melt-concrete interaction tests being conducted at Sandia Laboratories, an acoustic technique has been used to monitor the penetration of molten core materials into basaltic and limestone concrete. Real time plots of the position of the melt/concrete interface have been obtained, and they illustrate that the initial penetration rate of the melt may be of the order of 80 mm/min. Phenomena deduced by the technique include a non-wetted melt/concrete interface

  8. Hydrologic bibliography of the Columbia River basalts in Washington

    International Nuclear Information System (INIS)

    Tanaka, H.H.; Wildrick, L.

    1978-07-01

    This bibliography is part of the hydrologic data compilation effort of the Columbia Plateau Hydrology Study, Rockwell Hanford Operations' Waste Isolation Program. It includes references on both surface and subsurface hydrology directly or indirectly related to the Washington State portion of the Columbia River basalts. A comprehensive, annotated bibliography of the Pasco Basin (including the Hanford site) hydrology has been prepared for Rockwell Hanford Operations under the Pasco Basin Hydrology Study. In order to avoid unnecessary duplication, no effort was made to include a complete list of bibliographic references on Hanford in this volume

  9. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  10. Melt density and the average composition of basalt

    Science.gov (United States)

    Stolper, E.; Walker, D.

    1980-01-01

    Densities of residual liquids produced by low pressure fractionation of olivine-rich melts pass through a minimum when pyroxene and plagioclase joint the crystallization sequence. The observation that erupted basalt compositions cluster around the degree of fractionation from picritic liquids corresponding to the density minimum in the liquid line of descent may thus suggest that the earth's crust imposes a density fiber on the liquids that pass through it, favoring the eruption of the light liquids at the density minimum over the eruption of denser more fractionated and less fractionated liquids.

  11. Experimental assessment of borehole wall drilling damage in basaltic rocks

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1986-06-01

    Ring tension tests, permeability tests, and microscopic fracture studies have been performed to investigate the borehole damage induced at low confining pressure by three drilling techniques (diamond, percussion and rotary). Specimens are drilled with three hole sizes (38, 76, and 102 mm diameter) in Pomona basalt and Grande basaltic andesite. The damaged zone is characterized in terms of fractures and fracture patterns around the hole, and in terms of tensile strength reduction of the rock around the holes. Experimental results show that the thickness of the damaged zone around the hole ranges from 0.0 to 1.7 mm. A larger drill bit induces more wall damage than does a smaller one. Different drilling techniques show different damage characteristics (intensity and distribution). Damage characteristics are governed not only by drilling parameters (bit size, weight on bit, rotational speed, diamond radius, and energy), but also by properties of the rock. The weaker rock tends to show more intense damage than does the stronger one. Cracks within grains or cleavage fractures are predominant in slightly coarser grained rock (larger than 0.5 mm grain size) while intergranular cracks are predominant in very fine grained rock (smaller than 0.01 mm grain size). The damaged zones play no significant role in the flow path around a borehole plug

  12. The Disruption of Tephra Fall Deposits by Basaltic Lava Flows

    Science.gov (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2010-12-01

    Complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents of the Roza Member in the Columbia River Basalt Province, (CRBP), USA, illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter tephra fall deposits. Thin pahoehoe lobes and sheet lobes occur intercalated with tephra deposits and provide evidence for synchronous effusive and explosive activity. Tephra that accumulated on the tops of inflating pahoehoe flows became disrupted by tumuli, which dissected the overlying sheet into a series of mounds. During inflation of subjacent tumuli tephra percolated down into the clefts and rubble at the top of the lava, and in some cases came into contact with lava hot enough to thermally alter it. Lava breakouts from the tumuli intruded up through the overlying tephra deposit and fed pahoehoe flows that spread across the surface of the aggrading tephra fall deposit. Non-welded scoria fall deposits were compacted and welded to a depth of ~50 cm underneath thick sheet lobes. These processes, deduced from the field relationships, have resulted in considerable stratigraphic complexity in proximal regions. We also demonstrate that, when the advance of lava and the fallout of tephra are synchronous, the contacts of some tephra sheets can be diachronous across their extent. The net effect is to reduce the usefulness of pyroclastic deposits in reconstructing eruption dynamics.

  13. Network topology of olivine-basalt partial melts

    Science.gov (United States)

    Skemer, Philip; Chaney, Molly M.; Emmerich, Adrienne L.; Miller, Kevin J.; Zhu, Wen-lu

    2017-07-01

    The microstructural relationship between melt and solid grains in partially molten rocks influences many physical properties, including permeability, rheology, electrical conductivity and seismic wave speeds. In this study, the connectivity of melt networks in the olivine-basalt system is explored using a systematic survey of 3-D X-ray microtomographic data. Experimentally synthesized samples with 2 and 5 vol.% melt are analysed as a series of melt tubules intersecting at nodes. Each node is characterized by a coordination number (CN), which is the number of melt tubules that intersect at that location. Statistically representative volumes are described by coordination number distributions (CND). Polyhedral grains can be packed in many configurations yielding different CNDs, however widely accepted theory predicts that systems with small dihedral angles, such as olivine-basalt, should exhibit a predominant CN of four. In this study, melt objects are identified with CN = 2-8, however more than 50 per cent are CN = 4, providing experimental verification of this theoretical prediction. A conceptual model that considers the role of heterogeneity in local grain size and melt fraction is proposed to explain the formation of nodes with CN ≠ 4. Correctly identifying the melt network topology is essential to understanding the relationship between permeability and porosity, and hence the transport properties of partial molten mantle rocks.

  14. Smectite Formation from Basaltic Glass Under Acidic Conditions on Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2015-01-01

    Massive deposits of phyllosilicates of the smectite group, including Mg/Fe-smectite, have been identified in Mars's ancient Noachian terrain. The observed smectite is hypothesized to form through aqueous alteration of basaltic crust under neutral to alkaline pH conditions. These pH conditions and the presence of a CO2-rich atmosphere suggested for ancient Mars were favorable for the formation of large carbonate deposits. However, the detection of large-scale carbonate deposits is limited on Mars. We hypothesized that smectite deposits may have formed under acidic conditions that prevented carbonate precipitation. In this work we investigated formation of saponite at a pH of approximately 4 from Mars-analogue synthetic Adirondack basaltic glass of composition similar to Adirondack class rocks located at Gusev crater. Hydrothermal (200º Centigrade) 14 day experiments were performed with and without 10 millimoles Fe(II) or Mg under anoxic condition [hereafter denoted as anoxic_Fe, anoxic_Mg and anoxic (no addition of Fe(II) or Mg)] and under oxic condition [hereafter denoted as oxic (no addition of Fe(II) or Mg)]. Characterization and formation conditions of the synthesized saponite provided insight into the possible geochemical conditions required for saponite formation on Mars.

  15. Characterization and recognition of intraflow structures, Grande Ronde Basalt

    International Nuclear Information System (INIS)

    Long, P.E.

    1978-09-01

    This investigation was carried out as part of a feasibility study for long-term storage of nuclear waste at depth in the Pasco Basin. Three general types of intraflow structures were found at Sentinel Gap: flows with stubby, irregular columns that lack a well-developed entablature; flows consisting of multiple tiers of largely entablature-type columns; and flows with a well-developed colonnade and entablature showing a sharp break between the two. Certain features occur locally in all three types of intraflow structures: variations in fracture morphology, primary platey fracture zones, pillow-palagonite zones, and tectonically induced zones of closely spaced fractures. Fractures in each of the three types of flows were logged both at the surface and in core from Core Hole DH-5, and petrographic textures of basalt sampled from surface exposures were examined. The textures of the basalt correlate with the intraflow structures and provide a technique for identifying flows as to their general type of intraflow structure, locating internal contacts between intraflow structures and possibly estimating fracture density within flows. Fracture logging, on the other hand, does not accurately delimit intraflow structures

  16. Noble gas and carbon isotopes in Mariana Trough basalt glasses

    International Nuclear Information System (INIS)

    Bernard, M.; Jambon, A.; Gamo, T.; Nishio, Y.; Sano, Y.

    1998-01-01

    Noble gas elemental and isotopic compositions have been measured as well as the abundance of C and its isotopic ratios in 11 glasses from submarine pillow basalts collected from the Mariana Trough. The 3 He/ 4 He ratios of 8.22 and 8.51 R atm of samples dredged from the central Mariana Trough (similar18N) agree well with that of the Mid-Ocean Ridge Basalt (MORB) glasses (8.4±0.3 R atm ), whereas a mean ratio of 8.06±0.35 R atm in samples from the northern Mariana Trough (similar20N) is slightly lower than those of MORB. One sample shows apparent excess of 20 Ne and 21 Ne relative to atmospheric Ne, suggesting incorporation of solar-type Ne in the magma source. There is a positive correlation between 3 He/ 4 He and 40 Ar/ 36 Ar ratios, which may be explained by mixing between MORB-type and atmospheric noble gases. Excess 129 Xe is observed in the sample which also shows 20 Ne and 21 Ne excesses. Observed δ 13 C values of similar20N samples vary from -3.76 per thousand to -2.80 per thousand, and appear higher than those of MORB, and the corresponding CO 2 / 3 He ratios are higher than those of MARA samples at similar18N, suggesting C contribution from the subducted slab. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Design approaches for access plugs in a basalt repository

    International Nuclear Information System (INIS)

    O'Rourke, J.; Allirot, D.; O'Connor, K.

    1982-01-01

    This paper describes research, laboratory testing, and analytical approaches taken toward the development of designs for sealing boreholes, shafts, and tunnels penetrating from ground surface to a deep, mined nuclear waste repository in basalt. A material selection process leading to identification of preferred sealing materials is discussed, and the laboratory testing program to define the geochemical and geotechnical performance of these materials is described. Analysis of the environmental conditions in the Columbia Plateau basalt flows leads to identification of tentative design criteria for plug systems. These design criteria include performance of the plug as a hydraulic barrier and as a radionuclide barrier. An important problem for effective performance of a plug system as a hydraulic barrier is shown to be a potentially disturbed zone surrounding the excavation in the stressed and jointed host rock. An idealized one-dimensional numerical model is described for analyzing the performance of the plug as a barrier to radionuclide transport. The preliminary analyses led to the conclusion that the composition and dimensions of practical candidate plugs can satisfy both hydraulic and radionuclide barrier criteria. Examples of candidate designs are shown for boreholes, shafts, and tunnels. 9 references, 6 figures, 6 tables

  18. Evaluation of thermobarometry for spinel lherzolite fragments in alkali basalts

    Science.gov (United States)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; McKenzie, Dan; Nagahara, Hiroko

    2017-04-01

    Geothermobarometry of solid fragments in kimberlite and alkali basalts, generally called "xenoliths", provides information on thermal and chemical structure of lithospheric and asthenospheric mantle, based on which various chemical, thermal, and rheological models of lithosphere have been constructed (e.g., Griffin et al., 2003; McKenzie et al., 2005; Ave Lallemant et al., 1980). Geothermobarometry for spinel-bearing peridotite fragments, which are frequently sampled from Phanerozoic provinces in various tectonic environments (Nixon and Davies, 1987), has essential difficulties, and it is usually believed that appropriated barometers do not exist for them (O'Reilly et al., 1997; Medaris et al., 1999). Ozawa et al. (2016; EGU) proposed a method of geothermobarometry for spinel lherzolite fragments. They applied the method to mantle fragments in alkali basalts from Bou Ibalhatene maars in the Middle Atlas in Morocco (Raffone et al. 2009; El Azzouzi et al., 2010; Witting et al., 2010; El Messbahi et al., 2015). Ozawa et al. (2016) obtained 0.5GPa pressure difference (1.5-2.0GPa) for 100°C variation in temperatures (950-1050°C). However, it is imperative to verify the results on the basis of completely independent data. There are three types of independent information: (1) time scale of solid fragment extraction, which may be provided by kinetics of reactions induced by heating and/or decompression during their entrapment in the host magma and transportation to the Earth's surface (Smith, 1999), (2) depth of the host basalt formation, which may be provided by the petrological and geochemical studies of the host basalts, and (3) lithosphere-asthenosphere boundary depths, which may be estimated by geophysical observations. Among which, (3) is shown to be consistent with the result in Ozawa et al. (2016). We here present that the estimated thermal structure just before the fragment extraction is fully supported by the information of (1) and (2). Spera (1984) reviewed

  19. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    Science.gov (United States)

    Hui. Hejiu; Neal, Clive, R.; Shih, Chi-Yu; Nyquist, Laurence E.

    2012-01-01

    Pristine Apollo 14 (A-14) high-Al basalts represent the oldest volcanic deposits returned from the Moon [1,2] and are relatively enriched in Al2O3 (>11 wt%) compared to other mare basalts (7-11 wt%). Literature Rb-Sr isotopic data suggest there are at least three different eruption episodes for the A-14 high-Al basalts spanning the age range approx.4.3 Ga to approx.3.95 Ga [1,3]. Therefore, the high-Al basalts may record lunar mantle evolution between the formation of lunar crust (approx.4.4 Ga) and the main basin-filling mare volcanism (groups [5,6], and then regrouped into three with a possible fourth comprising 14072 based on the whole-rock incompatible trace element (ITE) ratios and Rb-Sr radiometric ages [7]. However, Rb-Sr ages of these basalts from different laboratories may not be consistent with each other because of the use of different 87Rb decay constants [8] and different isochron derivation methods over the last four decades. This study involved a literature search for Rb-Sr isotopic data previously reported for the high-Al basalts. With the re-calculated Rb-Sr radiometric ages, eruption episodes of A-14 high-Al basalts were determined, and their petrogenesis was investigated in light of the "new" Rb-Sr isotopic data and published trace element abundances of these basalts.

  20. Feldspar basalts in lunar soil and the nature of the lunar continents

    Science.gov (United States)

    Reid, A. M.; Ridley, W. I.; Harmon, R. S.; Warner, J.; Brett, R.; Jakes, P.; Brown, R. W.

    1974-01-01

    It is found that 25% on the Apollo-14 glasses have the same composition as the glasses in two samples taken from the Luna-16 column. The compositions are equivalent to feldspar basalt and anorthosite gabbro, and are similar to the feldspar basalts identified from Surveyor-7 analysis for lunar continents.

  1. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    Energy Technology Data Exchange (ETDEWEB)

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

    1980-05-23

    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive.

  2. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Olivia U.; Di Meo-Savoie, Carol A.; Van Nostrand, Joy D.; Zhou, Jizhong; Fisk, Martin R.; Giovannoni, Stephen J.

    2008-09-30

    We used molecular techniques to analyze basalts of varying ages that were collected from the East Pacific Rise, 9 oN, from the rift axis of the Juan de Fuca Ridge, and from neighboring seamounts. Cluster analysis of 16S rDNA Terminal Restriction Fragment Polymorphism data revealed that basalt endoliths are distinct from seawater and that communities clustered, to some degree, based on the age of the host rock. This age-based clustering suggests that alteration processes may affect community structure. Cloning and sequencing of bacterial and archaeal 16S rRNA genes revealed twelve different phyla and sub-phyla associated with basalts. These include the Gemmatimonadetes, Nitrospirae, the candidate phylum SBR1093 in the c, andin the Archaea Marine Benthic Group B, none of which have been previously reported in basalts. We delineated novel ocean crust clades in the gamma-Proteobacteria, Planctomycetes, and Actinobacteria that are composed entirely of basalt associated microflora, and may represent basalt ecotypes. Finally, microarray analysis of functional genes in basalt revealed that genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation are present, suggesting that basalts harbor previously unrecognized metabolic diversity. These novel processes could exert a profound influence on ocean chemistry.

  3. High-Ti type N-MORB parentage of basalts from the south Andaman ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    by Irvine and Baragar (1971) or MacDonald and. Katsura (1964) were not included here because of the considerable uncertainty that exists in such a classification scheme (see Sheth et al 2002 for more explanation). The Andaman ophiolite samples are mainly basalts (20 samples), with some basaltic andesites.

  4. Effect of basalt, silica sand and fly ash on the mechanical properties ...

    Indian Academy of Sciences (India)

    2018-05-17

    May 17, 2018 ... For this, we first manufactured binary PCs of epoxy/basalt ... Keywords. Polymer concrete; mechanical strength; mixture design; fly ash; silica sand; basalt. 1. .... To reduce the production cost of PCs, it is necessary to minimize ...

  5. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    International Nuclear Information System (INIS)

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

    1980-01-01

    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive

  6. From mantle roots to surface eruptions: Cenozoic and Mesozoic continental basaltic magmatism

    Czech Academy of Sciences Publication Activity Database

    Kämpf, H.; Németh, K.; Puziewicz, J.; Mrlina, Jan; Geissler, W.H.

    2015-01-01

    Roč. 104, č. 8 (2015), s. 1909-1912 ISSN 1437-3254 Institutional support: RVO:67985530 Keywords : continental basaltic volcanism * BASALT 2013 conference * Cenozoic * Mesozoic Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.133, year: 2015

  7. Post-Columbia River Basalt Group stratigraphy and map compilation of the Columbia Plateau, Oregon

    International Nuclear Information System (INIS)

    Farooqui, S.M.; Bunker, R.C.; Thoms, R.E.; Clayton, D.C.; Bela, J.L.

    1981-01-01

    This report presents the results of reconnaissance mapping of sedimentary deposits and volcanic rocks overlying the Columbia River Basalt. The project area covers parts of the Dalles, Pendleton, Grangeville, Baker, Canyon City, and Bend. The mapping was done to provide stratigraphic data on the sedimentary deposits and volcanic rocks overlying the Columbia River Basalt Group. 160 refs., 16 figs., 1 tab

  8. Glass and mineral chemistry of northern central Indian ridge basalts: Compositional diversity and petrogenetic significance

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, Dwijesh; Banerjee, R.; Iyer, S.D.; Basavalingu, B.; Mukhopadhyay, S.

    -88)), diopside (Wo sub(45-51), En sub(25-37), Fs sub14-24)), and titanomagnetite (FeO sub(t) approx. 63.5 wt% and Ti0 sub(2) approx. 22.69 wt%). The whole-rock composition of these basalts has similar Mg [mole Mg/mole(Mg+Fe sup(2+))] (VT basalt: approx. 0...

  9. Magmatic evolution of the fresh basalts from the Ridge axis near Egaria Fracture Zone, Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mudholkar, A.V.

    was run through a computer programme of the least square and mass balance calculations for understanding the evolutionary path by differentiating minerals present in these basalts. The results indicate that the basalts under study represent a set...

  10. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    Science.gov (United States)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  11. Reference waste form, basalts, and ground water systems for waste interaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.; Ledgerwood, R.K.; Long, P.E.

    1978-09-01

    This report summarizes the type of waste form, basalt, and ground water compositions to be used in theoretical and experimental models of the geochemical environment to be simulated in studying a typical basalt repository. Waste forms to be used in the experiments include, and are limited to, glass, supercalcine, and spent unreprocessed fuel. Reference basalts selected for study include the Pomona member and the Umtanum Unit, Shwana Member, of the Columbia River Basalt Group. In addition, a sample of the Basalt International Geochemical Standard (BCR-1) will be used for cross-comparison purposes. The representative water to be used is of a sodium bicarbonate composition as determined from results of analyses of deep ground waters underlying the Hanford Site. 12 figures, 13 tables.

  12. Reference waste form, basalts, and ground water systems for waste interaction studies

    International Nuclear Information System (INIS)

    Deju, R.A.; Ledgerwood, R.K.; Long, P.E.

    1978-09-01

    This report summarizes the type of waste form, basalt, and ground water compositions to be used in theoretical and experimental models of the geochemical environment to be simulated in studying a typical basalt repository. Waste forms to be used in the experiments include, and are limited to, glass, supercalcine, and spent unreprocessed fuel. Reference basalts selected for study include the Pomona member and the Umtanum Unit, Shwana Member, of the Columbia River Basalt Group. In addition, a sample of the Basalt International Geochemical Standard (BCR-1) will be used for cross-comparison purposes. The representative water to be used is of a sodium bicarbonate composition as determined from results of analyses of deep ground waters underlying the Hanford Site. 12 figures, 13 tables

  13. Influence of surface modified basalt fiber on strength of cinder lightweight aggregate concrete

    Science.gov (United States)

    Xiao, Liguang; Li, Jiheng; Liu, Qingshun

    2017-12-01

    In order to improve the bonding and bridging effect between volcanic slag lightweight aggregate concrete cement and basalt fiber, The basalt fiber was subjected to etching and roughening treatment by NaOH solution, and the surface of the basalt fiber was treated with a mixture of sodium silicate and micro-silica powder. The influence of modified basalt fiber on the strength of volcanic slag lightweight aggregate concrete was systematically studied. The experimental results show that the modified basalt fiber volcanic slag lightweight aggregate concrete has a flexural strength increased by 47%, the compressive strength is improved by 16% and the toughness is increased by 27% compared with that of the non-fiber.

  14. Using ESEM to analyze the microscopic property of basalt fiber reinforced asphalt concrete

    Directory of Open Access Journals (Sweden)

    Chunmei Gao

    2018-07-01

    Full Text Available The basalt fiber staggered distribution in the asphalt concrete matrix and the bonding situation between asphalt are analyzed by images collected using field emission environmental scanning electron microscope (ESEM test equipment. The results show that bonding of the fiber and the asphalt binder is very good and there is a strong binding force of chemical bonding connections between the two; the lipophilicity of basalt fiber is very good, the wrapped cover ability of asphalt for fiber is very strong; basalt fiber forms the local space network structure in the asphalt concrete matrix, effectively overcome the relative slip between the particles, connect the damaged parts into a whole; basalt fiber across internal micropores, and the internal defects in material can be remedied. At the same time, crack resistance mechanism of the fiber to internal micro cracks is qualitatively explained according to the magnitude of the stress intensity factor Kf. Keywords: Road engineering, Asphalt concrete, Basalt fiber, Microscopic analysis

  15. Potential for microbial oxidation of ferrous iron in basaltic glass.

    Science.gov (United States)

    Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E

    2015-05-01

    Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and

  16. Short-circuiting magma differentiation from basalt straight to rhyolite?

    Science.gov (United States)

    Ruprecht, P.; Winslow, H.

    2017-12-01

    Silicic magmas are the product of varying degrees of crystal fractionation and crustal assimilation/melting. Both processes lead to differentiation that is step-wise rather than continuous for example during melt separation from a crystal mush (Dufek and Bachmann, 2010). However, differentiation is rarely efficient enough to evolve directly from a basaltic to a rhyolitic magma. At Volcán Puyehue-Cordón Caulle, Chile, the magma series is dominated by crystal fractionation where mixing trends between primitive and felsic end members in the bulk rock compositions are almost absent (e.g. P, FeO, TiO2 vs. SiO2). How effective fraction is in this magmatic system is not well-known. The 2011-12 eruption at Cordón Caulle provides new constraints that rhyolitic melts may be derived directly from a basaltic mush. Minor, but ubiquitous mafic, crystal-rich enclaves co-erupted with the predominantly rhyolitic near-aphyric magma. These enclaves are among the most primitive compositions erupted at Puyehue-Cordón Caulle and geochemically resemble closely basaltic magmas that are >10 ka old (Singer et al. 2008) and that have been identified as a parental tholeiitic mantle-derived magma (Schmidt and Jagoutz, 2017) for the Southern Andean Volcanic Zone. The vesiculated nature, the presence of a microlite-rich groundmass, and a lack of a Eu anomaly in these encalves suggest that they represent recharge magma/mush rather than sub-solidus cumulates and therefore have potentially a direct petrogenetic link to the erupted rhyolites. Our results indicate that under some conditions crystal fractionation can be very effective and the presence of rhyolitic magmas does not require an extensive polybaric plumbing system. Instead, primitive mantle-derived magmas source directly evolved magmas. In the case, of the magma system beneath Puyehue-Cordón Caulle, which had three historic rhyolitic eruptions (1921-22, 1960, 2011-12) these results raise the question whether rhyolite magma extraction

  17. Interim reclamation report: Basalt Waste Isolation Project exploration shaft site

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-02-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs

  18. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1984-11-01

    Hydrothermal waste package interaction tests with methane-containing synthetic basalt groundwater have shown that in the absence of gamma radiolysis, methane has little influence on the glass dissolution rate. Gamma radiolysis tests at fluxes of 5.5 x 10 5 and 4.4 x 10 4 R/hr showed that methane-saturated groundwater was more reducing than identical experiments where Ar was substituted for CH 4 . Dissolved methane, therefore, may be beneficial to the waste package in limiting the solubility of redox sensitive radionuclides such a 99 Tc. Hydrocarbon polymers known to form under the irradiation conditions of these tests were not produced. The presence of the waste package constituents apparently inhibited the formation of the polymers, however, the mechanism which prevented their formation was not determined

  19. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. This paper describes the distribution and characteristics of perched ground water. It discusses perched water below the surficial sediments in wells at the RWMC, the characteristics of chemical constituents found in perched water, the implications for contaminant transport in the unsaturated zone of water, and the lateral extent of perched water. Recommendations are made to increase the probability of detecting and sampling low yield perched water zones. 6 refs., 6 figs., 2 tabs

  20. Continental crustal formation and recycling: Evidence from oceanic basalts

    Science.gov (United States)

    Saunders, A. D.; Tarney, J.; Norry, M. J.

    1988-01-01

    Despite the wealth of geochemical data for subduction-related magma types, and the clear importance of such magmas in the creation of continental crust, there is still no concensus about the relative magnitudes of crustal creation versus crustal destruction (i.e., recycling of crust into the mantle). The role of subducted sediment in the formation of the arc magmas is now well documented; but what proportion of sediment is taken into the deeper mantle? Integrated isotopic and trace element studies of magmas erupted far from presently active subduction zones, in particular basaltic rocks erupted in the ocean basins, are providing important information about the role of crustal recycling. By identifying potential chemical tracers, it is impossible to monitor the effects of crustal recycling, and produce models predicting the mass of material recycled into the mantle throughout long periods of geological time.

  1. Geoscience parameter data base handbook: granites and basalts

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Department of Energy has the responsibility for selecting and constructing Federal repositories for radioactive waste. The Nuclear Regulatory Commission must license such repositories prior to construction. The basic requirement in the geologic disposal of radioactive waste is stated as: placement in a geologic host whereby the radioactive waste is not in mechanical, thermal or chemical equilibrium with the object of preventing physical or chemical migration of radionuclides into the biosphere or hydrosphere in hazardous concentration (USGS, 1977). The object of this report is to document the known geologic parameters of large granite and basalt occurrences in the coterminous United States, for future evaluation in the selection and licensing of radioactive waste repositories. The description of the characteristics of certain potential igneous hosts has been limited to existing data pertaining to the general geologic character, geomechanics, and hydrology of identified occurrences. A description of the geochemistry is the subject of a separate report.

  2. Geoscience parameter data base handbook: granites and basalts

    International Nuclear Information System (INIS)

    1979-12-01

    The Department of Energy has the responsibility for selecting and constructing Federal repositories for radioactive waste. The Nuclear Regulatory Commission must license such repositories prior to construction. The basic requirement in the geologic disposal of radioactive waste is stated as: placement in a geologic host whereby the radioactive waste is not in mechanical, thermal or chemical equilibrium with the object of preventing physical or chemical migration of radionuclides into the biosphere or hydrosphere in hazardous concentration (USGS, 1977). The object of this report is to document the known geologic parameters of large granite and basalt occurrences in the coterminous United States, for future evaluation in the selection and licensing of radioactive waste repositories. The description of the characteristics of certain potential igneous hosts has been limited to existing data pertaining to the general geologic character, geomechanics, and hydrology of identified occurrences. A description of the geochemistry is the subject of a separate report

  3. Nuclear waste repository in basalt: a design description

    International Nuclear Information System (INIS)

    Ritchie, J.S.; Schmidt, B.

    1982-01-01

    The conceptual design of a nuclear waste repository in basalt is described. Nuclear waste packages are placed in holes drilled into the floor of tunnels at a depth of 3700 ft. About 100 miles of tunnels are required to receive 35,000 packages. Five shafts bring waste packages, ventilation air, excavated rock, personnel, material, and services to and from the subsurface. The most important surface facility is the waste handling building, located over the waste handling shaft, where waste is received and packaged for storage. Two independent ventilation systems are provided to avoid potential contamination of spaces that do not contain nuclear waste. Because of the high temperatures at depth, an elaborate air chilling system is provided. Because the waste packages deliver a considerable amount of heat energy to the rock mass, particular attention is paid to heat transfer and thermal stress studies. 3 references, 31 figures, 3 tables

  4. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    Science.gov (United States)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  5. The Fe/Mn constraint on precursors of basaltic achondrites

    Science.gov (United States)

    Delaney, Jeremy S.; Boesenberg, Joseph S.

    1993-01-01

    Most achondritic meteorites have Fe/Mn ratios that are lower than those of carbonaceous chondrites and of course are lower than the solar system abundance ratio of these elements. Models of the origin of achondritic assemblages must, therefore, account for these ratios. Fe/Mn ratios are suggested to be distinctive for samples from each achondrite parent body and for the Earth and Moon, but the correspondence between the Fe/Mn systematics of achondrites and chondritic precursors is unclear. Most models of achondrite genesis involve magmatic differentiation of chondritic precursors. The Fe/Mn difference between achondrites and chondrites is particularly significant since Fe and Mn are geochemically similar elements with similar partitioning behavior in familiar magmatic systems and are generally coupled during crystal-liquid fractionation. In contrast, however, Mn is more volatile than Fe in a nebular setting. Variation of Fe/Mn ratios based on the relative volatility of these elements in the early nebula provides a constraint for models by which the basaltic achondrites (with Fe/Mn ratios approximately = 25-50) are derived from mixtures of nebular components that were enriched in volatile components such as Mn. However, such volatile enriched components have not been identified in chondrites. When the abundance in achondrites of elements of similar volatility is examined, anomalies appear. For example, Na is massively depleted in basaltic achondrites when compared to Mn. These anomalies might be explained using current models but the alternative hypothesis, that Fe/Mn ratio is controlled not by nebular volatility constraints, but by planetary differentiation should be explored.

  6. Repository site definition in basalt: Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi 2 (5180 km 2 ) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process

  7. Repository site definition in basalt: Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  8. The Influence of Topographic Obstacles on Basaltic Lava Flow Morphologies

    Science.gov (United States)

    von Meerscheidt, H. C.; Brand, B. D.; deWet, A. P.; Bleacher, J. E.; Hamilton, C. W.; Samuels, R.

    2014-12-01

    Smooth pāhoehoe and jagged ´áā represent two end-members of a textural spectrum that reflects the emplacement characteristics of basaltic lava flows. However, many additional textures (e.g., rubbly and slabby pāhoehoe) reflect a range of different process due to lava flow dynamics or interaction with topography. Unfortunately the influence of topography on the distribution of textures in basaltic lava flows is not well-understood. The 18 ± 1.0 ka Twin Craters lava flow in the Zuni-Bandera field (New Mexico, USA) provides an excellent site to study the morphological changes of a lava flow that encountered topographic obstacles. The flow field is 0.2-3.8 km wide with a prominent central tube system that intersects and wraps around a 1000 m long ridge, oriented perpendicular to flow. Upstream of the ridge, the flow has low-relief inflation features extending out and around the ridge. This area includes mildly to heavily disrupted pāhoehoe with interdispersed agglutinated masses, irregularly shaped rubble and lava balls. Breakouts of ´áā and collapse features are also common. These observations suggest crustal disruption due to flow-thickening upstream from the ridge and the movement of lava out and around the obstacle. While the ridge influenced the path of the tube, which wraps around the southern end of the ridge, the series of collapse features and breakouts of ´áā along the tube system are more likely a result of changes in flux throughout the tube system because these features are found both upstream and downstream of the obstacle. This work demonstrates that topography can significantly influence the formation history and surface disruption of a flow field, and in some cases the influence of topography can be separated from the influences of changes in flux along a tube system.

  9. Sulfur degassing due to contact metamorphism during flood basalt eruptions

    Science.gov (United States)

    Yallup, Christine; Edmonds, Marie; Turchyn, Alexandra V.

    2013-11-01

    We present a study aimed at quantifying the potential for generating sulfur-rich gas emissions from the devolatilization of sediments accompanying sill emplacement during flood basalt eruptions. The potential contribution of sulfur-rich gases from sediments might augment substantially the magma-derived sulfur gases and hence impact regional and global climate. We demonstrate, from a detailed outcrop-scale study, that sulfur and total organic carbon have been devolatilized from shales immediately surrounding a 3-m thick dolerite sill on the Isle of Skye, Scotland. Localized partial melting occurred within a few centimetres of the contact in the shale, generating melt-filled cracks. Pyrite decomposed on heating within 80 cm of the contact, generating sulfur-rich gases (a mixture of H2S and SO2) and pyrrhotite. The pyrrhotite shows 32S enrichment, due to loss of 34S-enriched SO2. Further decomposition and oxidation of pyrrhotite resulted in hematite and/or magnetite within a few cm of the contact. Iron sulfates were produced during retrogressive cooling and oxidation within 20 cm of the contact. Decarbonation of the sediments due to heating is also observed, particularly along the upper contact of the sill, where increasing δ13C is consistent with loss of methane gas. The geochemical and mineralogical features observed in the shales are consistent with a short-lived intrusion, emplaced in desulfurization, as well as decarbonation, of shales adjacent to an igneous intrusion. The liberated fluids, rich in sulfur and carbon, are likely to be focused along regions of low pore fluid pressure along the margins of the sill. The sulfur gases liberated from the sediments would have augmented the sulfur dioxide (and hydrogen sulfide) yield of the eruption substantially, had they reached the surface. This enhancement of the magmatic sulfur budget has important implications for the climate impact of large flood basalt eruptions that erupt through thick, volatile-rich sedimentary

  10. Tracking Hadean processes in modern basalts with 142-Neodymium

    Science.gov (United States)

    Horan, M. F.; Carlson, R. W.; Walker, R. J.; Jackson, M.; Garçon, M.; Norman, M.

    2018-02-01

    The short-lived 146Sm→142 Nd isotope system (t1/2 = 103 Ma) provides constraints on the timing and processes of terrestrial silicate fractionation during the early Hadean. Although some Archean terranes preserve variability in 142Nd/144Nd, no anomalies have been resolved previously in young rocks. This study provides high precision 142Nd/144Nd data on a suite of ocean island basalts from Samoa and Hawaii previously shown to have variable depletions in 182W/184W that are inversely correlated with 3He/4He ratios. Improved analytical techniques and multiple replicate analyses of Nd show a variation in μ142 Nd values between -1.3 and +2.7 in the suite, relative to the JNdi standard. Given the reproducibility of the standard (±2.9 ppm, 2 SD), two Samoan samples exhibit resolved variability in their 142Nd/144Nd ratios outside of their 95% confidence intervals, suggesting minor variability in the Samoan hotspot. One sample from Samoa has a higher μ142 Nd of +2.7, outside the 95% confidence interval (±1.0 ppm) of the average of the JNdi standard. Limited, but resolved, variation in 142Nd/144Nd within the suite suggests the preservation of early Hadean silicate differentiation in the sources of at least some basalts from Samoa. Larger variations of 182W/184W and 3He/4He ratios in the same samples suggest that metal-silicate separation and mantle outgassing left a more persistent imprint on the accessible mantle compared to 142Nd/144Nd ratios which are impacted by early silicate differentiation.

  11. Probability encoding of hydrologic parameters for basalt. Elicitation of expert opinions from a panel of three basalt waste isolation project staff hydrologists

    International Nuclear Information System (INIS)

    Runchal, A.K.; Merkhofer, M.W.; Olmsted, E.; Davis, J.D.

    1984-11-01

    The present study implemented a probability encoding method to estimate the probability distributions of selected hydrologic variables for the Cohassett basalt flow top and flow interior, and the anisotropy ratio of the interior of the Cohassett basalt flow beneath the Hanford Site. Site-speciic data for these hydrologic parameters are currently inadequate for the purpose of preliminary assessment of candidate repository performance. However, this information is required to complete preliminary performance assessment studies. Rockwell chose a probability encoding method developed by SRI International to generate credible and auditable estimates of the probability distributions of effective porosity and hydraulic conductivity anisotropy. The results indicate significant differences of opinion among the experts. This was especially true of the values of the effective porosity of the Cohassett basalt flow interior for which estimates differ by more than five orders of magnitude. The experts are in greater agreement about the values of effective porosity of the Cohassett basalt flow top; their estimates for this variable are generally within one to two orders of magnitiude of each other. For anisotropy ratio, the expert estimates are generally within two or three orders of magnitude of each other. Based on this study, the Rockwell hydrologists estimate the effective porosity of the Cohassett basalt flow top to be generally higher than do the independent experts. For the effective porosity of the Cohassett basalt flow top, the estimates of the Rockwell hydrologists indicate a smaller uncertainty than do the estimates of the independent experts. On the other hand, for the effective porosity and anisotropy ratio of the Cohassett basalt flow interior, the estimates of the Rockwell hydrologists indicate a larger uncertainty than do the estimates of the independent experts

  12. Application of the iron-enriched basalt waste form for immobilizing commercial transuranic waste

    International Nuclear Information System (INIS)

    Owen, D.E.

    1981-08-01

    The principal sources of commercial transuranic (TRU) waste in the United States are identified. The physical and chemical nature of the wastes from these sources are discussed. The fabrication technique and properties of iron-enriched basalt, a rock-like waste form developed for immobilizing defense TRU wastes, are discussed. The application of iron-enriched basalt to commercial TRU wastes is discussed. Review of commercial TRU wastes from mixed-oxide fuel fabrication, light water reactor fuel reprocessing, and miscellaneous medical, research, and industrial sources, indicates that iron-enriched basalt is suitable for most types of commercial TRU wastes. Noncombustible TRU wastes are dissolved in the high temperature, oxidizing iron-enriched basalt melt. Combustible TRU wastes are immobilized in iron-enriched basalt by incinerating the wastes and adding the TRU-bearing ash to the melt. Casting and controlled cooling of the melt produces a devitrified, rock-like iron-enriched basalt monolith. Recommendations are given for testing the applicability of iron-enriched basalt to commercial TRU wastes

  13. Stratigraphic imaging of sub-basalt sediments using waveform tomography of wide-angle seismic data

    Science.gov (United States)

    Sain, K.; Gao, F.; Pratt, G.; Zelt, C. A.

    2003-12-01

    The oil industry is interested in imaging the fine structures of sedimentary formations masked below basalt flows for commercial exploration of hydrocarbons. Seismic exploration of sediments hidden below high-velocity basalt cover is a difficult problem because near-vertical reflection data are contaminated with multiples, converted waves and scattering noise generated by interbeds, breccia and vesicles within the basalt. The noise becomes less prominent as the source-receiver offset increases, and the signals carrying sub-surface information stand out at the wide-angle range. The tomography of first arrival traveltime data can provide little information about the underlying low-velocity sediments. Traveltime inversion of wide-angle seismic data including both first arrivals and identifiable wide-angle reflected phases has been an important tool in the delineation of the large-scale velocity structure of sub-basalt sediments, although it lacks the small-scale velocity details. Here we apply 2-D full-waveform inversion ("waveform tomography") to wide-angle seismic data with a view to extracting the small-scale stratigraphic features of sedimentary formations. Results from both synthetic data, generated for a realistic earth model, and field dataset from the basalt covered Saurashtra peninsula, India, will be presented. This approach has potential to delineate thin sedimentary layers hidden below thick basalt cover also, and may serve as a powerful tool to image sedimentary basins, where they are covered by high-velocity materials like basalts, salts, carbonates, etc. in various parts of the world.

  14. Microseismic monitoring of columnar jointed basalt fracture activity: a trial at the Baihetan Hydropower Station, China

    Science.gov (United States)

    Chen, Bing-Rui; Li, Qing-Peng; Feng, Xia-Ting; Xiao, Ya-Xun; Feng, Guang-Liang; Hu, Lian-Xing

    2014-10-01

    Severe stress release has occurred to the surrounding rocks of the typically columnar jointed basalt after excavation at the Baihetan Hydropower Station, Jinsha River, China, where cracking, collapse, and other types of failure may take place occasionally due to relaxation fracture. In order to understand the relaxation fracture characteristics of the columnar jointed basalt in the entire excavation process at the diversion tunnel of the Baihetan Hydropower Station, real-time microseismic monitoring tests were performed. First, the applicability of a geophone and accelerometer was analyzed in the columnar jointed basalt tunnel, and the results show that the accelerometer was more applicable to the cracking monitoring of the columnar jointed basalt. Next, the waveform characteristics of the microseismic signals were analyzed, and the microseismic signals were identified as follows: rock fracture signal, drilling signal, electrical signal, heavy vehicle passing signal, and blast signal. Then, the attenuation characteristics of the microseismic signals in the columnar jointed basalt tunnel were studied, as well as the types and characteristics of the columnar jointed basalt fracture. Finally, location analysis was conducted on the strong rock fracture events, in which four or more sensors were triggered, to obtain the temporal and spatial evolution characteristics and laws of the columnar jointed basalt relaxation fracture after excavation. The test results are not only of important reference value to the excavation and support of diversion tunnel at the Baihetan Hydropower Station, but also of great referential significance and value to the conduction of similar tests.

  15. Elevation of surficial sediment/basalt contact in the Subsurface Disposal Area, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1993-01-01

    The elevation of the surficial sediment/basalt contact at the Subsurface Disposal Area (SDA), within the Radioactive Waste Management Complex (RWMC) is presented to provide a data base for future remedial actions at this site. About 1,300 elevation data from published and unpublished reports, maps, and surveyors notes were compiled to generate maps and cross-sections of the surficial sediment/basalt contact. In general, an east to west trending depression exists in the south central portion of the SDA with basalt closer to land surface on the northern and southern boundaries of the SDA. The lowest elevation of the surficial sediment/basalt contact is 4,979 ft and the greatest is land surface at 5,012 ft. The median elevation of the sediment/basalt interface is 4,994 ft. The median depth to basalt in the SDA is 16 ft if land surface elevation is assumed to be 5,010 ft. The depth from land surface to the sediment/basalt interface ranges from 24 ft in the southeast corner of the SDA to less than 3 ft at the north-central boundary of the SDA

  16. Petrochemistry and origin of basalt breccia from Ban Sap Sawat area, Wichian Buri, Phetchabun, central Thailand

    Directory of Open Access Journals (Sweden)

    Phisit Limtrakun

    2013-08-01

    Full Text Available Thailand is usually considered to be controlled by escape tectonics associated with India-Asia collision during theLate Cenozoic, and basaltic volcanism took place in this extensional period. This volcanism generated both subaqueous andsubaerial lava flows with tholeiitic to alkalic basaltic magma. The subaqueous eruptions represented by the studied WichianBuri basalts, Ban Sap Sawat in particular, are constituted by two main types of volcanic lithofacies, including lava flows andbasalt breccias. The lava flows are commonly porphyritic with olivine and plagioclase phenocrysts and microphenocrysts,and are uncommonly seriate textured. The basalt breccias are strongly vitrophyric texture with olivine and plagioclasephenocrysts and microphenocrysts. Chemical analyses indicate that both lava flows and basalt breccias have similar geochemical compositions, signifying that they were solidified from the same magma. Their chondrite normalized REE patternsand N-MORB normalized patterns are closely analogous to the Early to Middle Miocene tholeiites from central Sinkhote-Alinand Sakhalin, northeastern margin of the Eurasian continent which were erupted in a continental rift environment. The originfor the Wichian Buri basalts show similarity of lava flows and basalt breccias, in terms of petrography and chemical compositions, signifying that they have been formed from the same continental within-plate, transitional tholeiitic magma.

  17. Radionuclide sorption kinetics and column sorption studies with Columbia River basalts

    International Nuclear Information System (INIS)

    Barney, G.S.

    1983-09-01

    The kinetics of radionuclide sorption and desorption reactions in basalt-groundwater systems were evaluated at 60 degrees C using a batch equilibration method. It was found that many sorption reactions on surfaces of fresh (unaltered) basalt from the Umtanum and Cohassett flows are slow. Some reactions require more than 50 days to reach a steady state. Sorption of neptunium and uranium in oxidizing (air saturated) groundwater appears to be controlled by slow reduction of these elements by the basalt surfaces. The resulting lower oxidation states are more strongly sorbed. Technetium and selenium, which are anionic under oxidizing conditions, are not measurably sorbed on fresh basalt surfaces, but are slightly sorbed on the altered surfaces of flow top basalt. Under reducing conditions, where the groundwater contains dilute hydrazine, sorption is faster for neptunium, uranium, technetium, selenium, and lead. Plutonium sorption rates were not affected by the groundwater Eh. It was shown that radium was precipitated rather than sorbed under the conditions of these experiments. Umtanum flow top material sorbed radionuclides much faster than fresh basalt surfaces due to its greater surface area and cation exchange capacity. Desorption rates for plutonium, uranium, neptunium, technetium, and selenium were generally much less than sorption rates (especially for reducing conditions). These radionuclides are irreversibly sorbed on the basalts. 25 refs., 20 figs., 19 tabs

  18. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    Directory of Open Access Journals (Sweden)

    Jeong-Il Choi

    2015-09-01

    Full Text Available The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  19. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    Science.gov (United States)

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  20. Basalt generation at the Apollo 12 site. Part 2: Source heterogeneity, multiple melts, and crustal contamination

    Science.gov (United States)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and

  1. The compatibility of basalt and MgO with liquid sodium

    International Nuclear Information System (INIS)

    Jung, J.; Runge, H.

    1984-01-01

    The interaction of commercially available basalt and MgO-ceramics with liquid sodium has been investigated up to 900 0 C. The two basalt qualities even reacted with sodium at low temperatures and short exposure times. Some inserted MgO-ceramics exhibited the expected good sodium compatibility even at 900 0 C for 100 hours. The reaction mechanisms, the volume changes and the mass balance are discussed. In the thermal shock experiments, the basaltic materials were totally disintegrated while the MgO-qualities remained compact. (author)

  2. Chemical differences between small subsamples of Apollo 15 olivine-normative basalts

    Science.gov (United States)

    Shervais, J. W.; Vetter, S. K.; Lindstrom, M. M.

    1990-01-01

    Results are presented on the chemical and petrological characterization of nine samples of an Apollo 15 mare basalt suite. The results show that all nine samples are low-silica olivine normative basalts (ONBs) similar to those described earlier for low-silica ONBs from Apollo 15 site. The samples were found to vary in texture and grain size, from fine-grained intergranular or subophitic basalts to coarse-grained granular 'microgabbros'. Several displayed macroscopic heterogeneity. Variation diagrams show that the overall trend of the data is consistent with the fractionation of olivine (plus minor Cr-spinel) from a high-MgO parent magma.

  3. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    OpenAIRE

    Gao, Lei; Hu, Guohui; Xu, Nan; Fu, Junyi; Xiang, Chao; Yang, Chen

    2015-01-01

    In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0...

  4. Comparison of mechanical and tribotechnical properties of UHMWPE reinforced with basalt fibers and particles

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Qitao, Huang; Ivanova, L. R.

    2016-11-01

    Mechanical and tribotechnical properties of UHMWPE composites reinforced with basalt fibers and particles under dry sliding friction and abrasion were investigated. It is shown that adding of the basalt particles provides higher wear resistance under the dry sliding friction while at abrasion filling by the basalt fibers is more efficient since the wear resistance of the reinforced UHMWPE composites is by 3.7 times higher in contrast with the neat polymer. Wear mechanisms of the polymeric UHMWPE composites under various types of wear are discussed.

  5. Petrological, magnetic and chemical properties of basalt dredged from an abyssal hill in the North-east pacific

    Science.gov (United States)

    Luyendyk, B.P.; Engel, C.G.

    1969-01-01

    OVER the years, samples of basalt from the oceanic crust have been taken mainly from seamounts, fracture zones and ridge and rise crests1-6, and rarely from the vast fields of abyssal hills which cover a large part of the deep-sea floor. The basalt sampled from the deeper regions of the oceanic crust (for example, on fault scarps) is a distinct variety of tholeiitic basalt, while alkali basalt is restricted to the volcanic edifices4. Oceanic tholeiitic basalt differs from alkali basalt and continental tholeiite chiefly in having a relatively low percentage of K2O (0.2 weight per cent)4. Some authors have speculated that this type of tholeiitic basalt is the major extrusion from the upper mantle and constitutes the predominant rock type in the upper oceanic crust. ?? 1969 Nature Publishing Group.

  6. Circumventing shallow air contamination in Mid Ocean Ridge Basalts

    Science.gov (United States)

    Mukhopadhyay, Sujoy; Parai, Rita; Tucker, Jonathan; Middleton, Jennifer; Langmuir, Charles

    2016-04-01

    Noble gases in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. However, the ubiquity of shallow-level air contamination frequently obscures the mantle noble gas signal. In a majority of samples, shallow air contamination dominates the noble gas budget. As a result, reconstructing the variability in heavy noble gas mantle source compositions and inferring the history of deep recycling of atmospheric noble gases is difficult. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Here, we present results from experiments designed to elucidate the source of shallow air contamination in MORBs. Step-crushes were carried out to measure He, Ne, Ar and Xe isotopic compositions on two aliquots of a depleted popping glass that was dredged from between the Kane and Atlantis Fracture Zones of the Mid-Atlantic Ridge in May 2012. One aliquot was sealed in ultrapure N2 after dredge retrieval, while the other aliquot was left exposed to air for 3.5 years. The bulk 20Ne/22Ne and 129Xe/130Xe ratios measured in the aliquot bottled in ultrapure N2 are 12.3 and 7.6, respectively, and are nearly identical to the estimated mantle source values. On the other hand, step crushes in the aliquot left exposed to air for several years show Ne isotopic compositions that are shifted towards air, with a bulk 20Ne/22Ne of 11.5; the bulk 129Xe/130Xe, however, was close to 7.6. These results indicate that lighter noble gases exchange more efficiently between the bubbles trapped in basalt glass and air, suggesting a diffusive or kinetic mechanism for the incorporation of the shallow air contamination. Importantly, in Ne-Ar or Ar-Xe space, step-crushes from the bottled aliquot display a trend that can be easily fit with a simple two-component hyperbolic mixing between mantle and atmosphere noble gases. Step

  7. Multicomponent diffusion in basaltic melts at 1350 °C

    Science.gov (United States)

    Guo, Chenghuan; Zhang, Youxue

    2018-05-01

    Nine successful diffusion couple experiments were conducted in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O system at ∼1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature and diffusion couple experiments from this study, were fit together. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO2 and Al2O3 is the slowest, the exchange of SiO2 with other oxide components is the second slowest with an eigenvalue that is only ∼10% larger, then the exchange between divalent oxide components and all the other oxide components is the third slowest with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO + K2O with all the other oxide components is the fourth slowest with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of MgO with FeO + CaO is the third fastest with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO + K2O with all the other oxide components is the second fastest with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na2O with all other oxide components is the fastest with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during

  8. Petrogenesis of basalt-trachyte lavas from Olmoti Crater, Tanzania

    Science.gov (United States)

    Mollel, Godwin F.; Swisher, Carl C., III; McHenry, Lindsay J.; Feigenson, Mark D.; Carr, Michael J.

    2009-08-01

    Olmoti Crater is part of the Plio-Pleistocene Ngorongoro Volcanic Highland (NVH) in northern Tanzania to the south of Gregory Rift. The Gregory Rift is part of the eastern branch of the East African Rift System (EARS) that stretches some 4000 km from the Read Sea and Gulf of Aden in the north to the Zambezi River in Mozambique. Here, we (1) characterize the chemistry and mineral compositions of lavas from Olmoti Crater, (2) determine the age and duration of Olmoti volcanic activity through 40Ar/ 39Ar dating of Olmoti Crater wall lavas and (3) determine the genesis of Olmoti lavas and the relationship to other NVH and EARS volcanics and (4) their correlation with volcanics in the Olduvai and Laetoli stratigraphic sequences. Olmoti lavas collected from the lower part of the exposed crater wall section (OLS) range from basalt to trachyandesite whereas the upper part of the section (OUS) is trachytic. Petrography and major and trace element data reflect a very low degree partial melt origin for the Olmoti lavas, presumably of peridotite, followed by extensive fractionation. The 87Sr/ 86Sr data overlap whereas Nd and Pb isotope data are distinct between OLS and OUS samples. Interpretation of the isotope data suggests mixing of enriched mantle (EM I) with high-μ-like reservoirs, consistent with the model of Bell and Blenkinsop [Bell, K., Blenkinsop, J., 1987. Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 5, 99-102] for East African carbonatite lavas. The isotope ratios are within the range of values defined by Oceanic Island Basalt (OIB) globally and moderate normalized Tb/Yb ratios (2.3-1.6) in these lavas suggest melting in the lithospheric mantle consistent with other studies in the region. 40Ar/ 39Ar incremental-heating analyses of matrix and anorthoclase separates from Olmoti OLS and OUS lavas indicate that volcanic activity was short in duration, lasting ˜200 kyr from 2.01 ± 0.03 Ma to 1.80 ± 0

  9. Spectroscopy of olivine basalts using FieldSpec and ASTER data: A ...

    Indian Academy of Sciences (India)

    Several volcanic episodes occurred during Early- to Late-. Cretaceous are ... produce a new scene that has the best of orig- ... developed from an olivine basalt parent magma, ..... Marcelino E, Formaggio A and Maeda E 2009 Landslide.

  10. Petrology of dune sand derived from basalt on the Ka'u Desert, Hawaii

    Science.gov (United States)

    Gooding, J. L.

    1982-01-01

    Dune sand from the Ka'u Desert, southwest flank of Kilauea volcano, Hawaii, is moderately well-sorted (median = 1.60 Phi, deviation = 0.60, skewness = 0.25, kurtosis = 0.68) and composed mostly of frosted subangular particles of basalt glass ('unfractionated' olivine-normative tholeitte), olivine, lithic fragments (subophitic and intersertal basalts; magnetite-ilmenite-rich basalts), reticular basalt glass, magnetite, ilmenite, and plagioclase, in approximately that order of abundance. Quantitative lithological comparison of the dune sand with sand-sized ash from the Keanakakoi Formation supports suggestions that the dune sand was derived largely from Keanakakoi ash. The dune sand is too well sorted to have been emplaced in its present form by base-surge but could have evolved by post-eruption reworking of the ash.

  11. Mineral chemistry of Carlsberg Ridge basalts at 3 degrees 35'- 3 degrees 41' N

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Banerjee, R.

    (approximately 91 mole %) are few and rarely zoned. The composition of plagioclase and olivine indicate low pressure equilibrium crystallization. The basalts were probably derived through fractional crystallization at shallow depths under low partial melting...

  12. Characterization and Distribution of Lunar Mare Basalt Types Using Remote Sensing Techniques. Ph.D. Thesis

    Science.gov (United States)

    Pieters, C.

    1977-01-01

    The types of basal to be found on the moon were identified using reflectance spectra from a variety of lunar mare surfaces and craters as well as geochemical interpretations of laboratory measurements of reflectance from lunar, terrestrial, and meteoritic samples. Findings indicate that major basaltic units are not represented in lunar sample collections. The existence of late stage high titanium basalts is confirmed. All maria contain lateral variations of compositionally heterogenous basalts; some are vertically inhomogenous with distinctly different subsurface composition. Some basalt types are spectrally gradational, suggesting minor variations in composition. Mineral components of unsampled units can be defined if spectra are obtained with sufficient spectral coverage (.3 to 2.5 micron m) and spatial resolution (approximating .5 km).

  13. Pb isotope evidence for contributions from different Iceland mantle components to Palaeogene East Greenland flood basalts

    DEFF Research Database (Denmark)

    Peate, David; Stecher, Ole

    2003-01-01

    We present new Pb isotope data on 21 samples of break-up-related flood basalts (56–54 Ma) from the Blosseville Kyst region of East Greenland. These samples show a considerable range in isotopic composition (206Pb/204Pb 17.6 to 19.3) that broadly correlates with compositional type. The ‘low-Ti’ type...... in the selected samples. Uncontaminated Palaeogene East Greenland flood basalts appear to have sampled the same broad range in mantle compositions seen in Recent Iceland basalts. In contrast to the peripheral lava suites from the British Isles and Southeast Greenland, where the inferred uncontaminated magmas have...... to the most radiogenic values found in recent Icelandic basalts. Furthermore, the main volume of lavas in East Greenland is displaced away from the NAEM towards this radiogenic Pb component. Thus, this ‘Iceland radiogenic Pb end-member’ component was a significant contributor to the break-up-related magmatism...

  14. Basalt microlapilli in deep sea sediments of Indian Ocean in the vicinity of Vityaz fracture zone

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Iyer, S.D.

    Two cores recovered from the flanks of Mid-India oceanic ridge in the vicinity of Vityaz fracture zone consist of discrete pyroclastic layers at various depths. These layers are composed of coarse-grained, angular basaltic microlapilli in which...

  15. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian

    Directory of Open Access Journals (Sweden)

    Daniela Ogrean

    2001-04-01

    Full Text Available The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Timiş district and between 539–958 respectively, in case of the Racoş basalts (Braşov district. There is a certain variation of the hardness within the same sample, in various measurement points, within the theoretical limits of the hardnesses of the pyroxenes and that of the spinels.

  16. A note on sulphide-oxide mineralisation in Carlsberg Ridge basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    Pillow basalts from the Carlsberg Ridge at 3 degrees 35'N contain disseminated chalcopyrite, pyrite, and magnetite. The euhedral shape of the pyrite grains indicate them to be early formed and grown unobstructed while magnetite occurs as skeletal...

  17. Coupled geomechanical/hydrological modeling: an overview of basalt waste isolation project studies

    International Nuclear Information System (INIS)

    Baca, R.G.; Case, J.B.; Patricio, J.G.

    1980-07-01

    Basalt Waste Isolation Project investigations of the Columbia River basalts are multi-disciplinary in nature with a broad scope spanning such areas as geology, seismology, geochemistry, hydrology, rock mechanics, and many other disciplines as well. In this paper, an overview is presented which surveys recent work on numerical modeling of geomechanical and hydrological processes in a basalt rock environment. A major objective of the ongoing numerical modeling work is to establish a predictive technology base with which to: interpret the interrelationships between geomechanical behavior of rock media, the natural hydrologic phenomena, and repository conditions; evaluate the effectiveness of preconceptual repository designs and assist in the design of in situ field testing; and assess the waste isolation capability of candidate host rocks within the Columbia River basalts. To accomplish this objective, a systems approach has been adopted which is based on the use of digital simulation models

  18. Mechanical Properties of Wood Flour Reinforced High Density Polyethylene Composites with Basalt Fibers

    Directory of Open Access Journals (Sweden)

    Guojun LU

    2014-12-01

    Full Text Available Basalt fibers (BFs were surface-treated with a vinyl triethoxy silane coupling agent to improve the mechanical properties of wood fiber-reinforced high density polyethylene (HDPE composites. Basalt fibers were characterized with SEM and FT-IR. The effects of the basalt fiber content and apparent morphology on the mechanical properties of the hybrid composites were investigated in this paper. The results show that the BF coated with the vinyl triethoxy silane coupling agent resulted in an improvement in mechanical properties due to the increased interfacial compatibility between the BF and HDPE. The flexural strength and impact properties significantly increased with 4 wt.% modified basalt fibers. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6441

  19. Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents

    Directory of Open Access Journals (Sweden)

    2010-10-01

    Full Text Available In this work solution surface treatment was applied for producing basalt fiber reinforced PA6 matrix composites. Beyond scanning electron microscopy, static and dynamic mechanical tests, dynamic mechanical analysis of composites was used for qualifying the interfacial adhesion in a wide temperature range. The loss factor peak height of loss factor is particularly important, because it is in close relationship with the mobility of polymer molecular chain segments and side groups, hence it correlates with the number and strength of primary or secondary bondings established between the matrix and the basalt fibers. It was proven, that the interfacial adhesion between basalt fibers and polyamide can be largely improved by the application of silane coupling agents in the entire usage temperature range of composites. The presence of coupling agents on the surface of basalt fibers was proven by Fourier transform infrared spectroscopy. The best results were obtained by 3-glycidoxypropyltrimethoxysilane coupling agent.

  20. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  1. Corrosion of ferrous materials in a basaltic environment

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1990-01-01

    The results of corrosion tests on A27 cast low-carbon steel are discussed. The corrosion performance of these materials was tested in condensed systems at temperature ranging from 50 C to 200 C and in air-steam mixtures between 150 C and 300 C. The groundwater used was a deoxygenated mild sodium chloride solution. When used, the packing material was 75 percent crushed basalt and 25 percent Wyoming sodium bentonite. In synthetic groundwater corrosion rates for both cast carbon steel and A387 steel in saturated packing and air-steam mixtures were low; maximum rates of 9 μm/a for A27 steel and 1.8 μm/a for A387 steel were observed. These maximum rates were observed at intermediate temperatures because of the formation of non-protective corrosion films. In A27 steel magnetite was the principal corrosion product, with non-protective siderite observed at 100 C. Pits were difficult to produce in saturated packing in A27 steel and did not grow. In air-steam mixtures corrosion rates of both steels were again very low, less than 1 μm/a. Magnetite and small amounts of hematite were detected in corrosion product films

  2. Off-gassing induced tracer release from molten basalt pools

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Callow, R.A.

    1994-01-01

    Two in situ vitrification (ISV) field tests were conducted at the Idaho National Engineering Laboratory (INEL) during the summer of 1990 to assess ISV suitability for long-term stabilization of buried waste that contains transuranic and other radionuclide contaminants. The ISV process uses electrical resistance heating to melt buried waste and soil in place, which upon cooldown and resolidification fixes the waste into a vitrified (glass-like) form. In these two ISV field tests, small quantities of rare-earth oxides (tracers DY 2 O 3 , Yb 2 O 3 , and Tb 4 O 7 ) were placed in the test pits to simulate the presence of plutonium oxides and assess plutonium retention/release behavior. The analysis presented in this report indicates that dissolution of tracer oxides into basaltic melts can be expected with subsequent tracer molecular or microparticle carry-off by escaping gas bubbles, which is similar to adsorptive bubble separation and ion flotation processes employed in the chemical industry to separate dilute heavy species from liquids under gas sparging conditions. Gaseous bubble escape from the melt surface and associated aerosolization is believed to be responsible for small quantities of tracer ejection from the melt surface to the cover hood and off-gas collection system. Methods of controlling off-gassing during ISV would be expected to improve the overall retention of such heavy oxide contaminants during melting/vitrification of buried waste

  3. Underground engineering at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1987-01-01

    A special task group was organized by the US National Committee for Rock Mechanics and the Board on Radioactive Waste Management of the National Research Council to address issues relating to the geotechnical site characterization program for an underground facility to house high-level radioactive waste of the Basalt Waste Isolation Project (BWIP). Intended to provide an overview of the geotechnical program, the study was carried out by a task group consisting of ten members with expertise in the many disciplines required to successfully complete such a project. The task group recognized from the outset that the short time frame of this study would limit its ability to address all geotechnical issues in detail. Geotechnical issues were considered to range from specific technical aspects such as in-situ testing for rock mass permeability; rock hardness testing in the laboratory; or geologic characterizations and quantification of joints, to broader aspects of design philosophy, data collection, and treatment of uncertainty. The task group chose to focus on the broader aspects of underground design and construction, recognizing that the BWIP program utilizes a peer review group on a regular basis which reviews the specific technical questions related to geotechnical engineering. In this way, it was hoped that the review provided by the task group would complement those prepared by the BWIP peer review group

  4. Possible solar noble-gas component in Hawaiian basalts

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Masahiko; McDougall, I.; Patterson, D.B.; Doulgeris, A. (Australian National Univ., Canberra (Australia). Research School of Earth Sciences); Clague, D.A. (Geological Survey, Menlo Park, CA (USA))

    1991-01-10

    The noble-gas elemental and isotopic composition in the Earth is significantly different from that of the present atmosphere, and provides an important clue to the origin and history of the Earth and its atmosphere. Possible candidates for the noble-gas composition of the primordial Earth include a solar-like component, a planetary-like component (as observed in primitive meteorites) and a component similar in composition to the present atmosphere. In an attempt to identify the contributions of such components, we have measured isotope ratios of helium and neon in fresh basaltic glasses dredged from Loihi seamount and the East Rift Zone of Kilauea. We find a systematic enrichment in {sup 20}Ne and {sup 21}Ne relative to {sup 22}Ne, compared with atmospheric neon. The helium and neon isotope signatures observed in our samples can be explained by mixing of solar, present atmospheric, radiogenic and nucleogenic components. These data suggest that the noble-gas isotopic composition of the mantle source of the Hawaiian plume is different from that of the present atmosphere, and that it includes a significant solar-like component. We infer that this component was acquired during the formation of the Earth. (author).

  5. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones are often overlooked in monitoring plans, but they can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. Perched water has been detected at depths of 90 and 210 ft below land surface, approximately 370 ft above the regional water table. Eighteen years of water level measurements from one well at a depth of 210 ft indicate a consistent source of water. Water level data indicate a seasonal fluctuation. The maximum water level in this well varies within a 0.5 ft interval, suggesting the water level reaches equilibrium with the inflow to the well at this height. Volatile organic constituents have been detected in concentrations from 1.2 to 1.4 mg/L of carbon tetrachloride. Eight other volatile organics have been detected. The concentrations of organics are consistent with the prevailing theory of movement by diffusion in the gaseous phase. Results of tritium analyses indicate water has moved to a depth of 86 ft in 17 yr. Results of well sampling analyses indicate monitoring and sampling of perched water can be a valuable resource for understanding the hydrogeologic environment of the vadose zone at disposal sites

  6. Pb, Nd and Sr isotopes in oceanic ferromanganese deposits and ocean floor basalts

    International Nuclear Information System (INIS)

    O'Nions, R.K.; Carter, S.R.; Cohen, R.S.; Evensen, N.M.; Hamilton, P.J.

    1978-01-01

    The Pb-, Nd-, and Sr-isotope compositions of oceanic ferromanganese deposits, together with the Nd- and Sr-isotope compositions of altered ocean-floor basalts, are here reported. These data are used to evaluate these metals as sources in both the oceans and ocean ferromanganese deposits and the extent to which ocean-floor basalts may be a source of, or a sink for, these metals. (author)

  7. Single and Multi-Date Landsat Classifications of Basalt to Support Soil Survey Efforts

    Directory of Open Access Journals (Sweden)

    Jessica J. Mitchell

    2013-10-01

    Full Text Available Basalt outcrops are significant features in the Western United States and consistently present challenges to Natural Resources Conservation Service (NRCS soil mapping efforts. Current soil survey methods to estimate basalt outcrops involve field transects and are impractical for mapping regionally extensive areas. The purpose of this research was to investigate remote sensing methods to effectively determine the presence of basalt rock outcrops. Five Landsat 5 TM scenes (path 39, row 29 over the year 2007 growing season were processed and analyzed to detect and quantify basalt outcrops across the Clark Area Soil Survey, ID, USA (4,570 km2. The Robust Classification Method (RCM using the Spectral Angle Mapper (SAM method and Random Forest (RF classifications was applied to individual scenes and to a multitemporal stack of the five images. The highest performing RCM basalt classification was obtained using the 18 July scene, which yielded an overall accuracy of 60.45%. The RF classifications applied to the same datasets yielded slightly better overall classification rates when using the multitemporal stack (72.35% than when using the 18 July scene (71.13% and the same rate of successfully predicting basalt (61.76% using out-of-bag sampling. For optimal RCM and RF classifications, uncertainty tended to be lowest in irrigated areas; however, the RCM uncertainty map included more extensive areas of low uncertainty that also encompassed forested hillslopes and riparian areas. RCM uncertainty was sensitive to the influence of bright soil reflectance, while RF uncertainty was sensitive to the influence of shadows. Quantification of basalt requires continued investigation to reduce the influence of vegetation, lichen and loess on basalt detection. With further development, remote sensing tools have the potential to support soil survey mapping of lava fields covering expansive areas in the Western United States and other regions of the world with similar

  8. NEW GEOCHEMICAL DATA OF BASALTS IN THE TSOROIDOG AREA, CENTRAL MONGOLIA

    Directory of Open Access Journals (Sweden)

    T. Oyunchimeg

    2017-01-01

    Full Text Available At present, geochemical data are widely used for reconstructing geodynamic settings, especially, volcanic rocks of mafic composition, i.e., basalts, because they are widespread in many orogenic belts and are indicative of different geodynamic environments. In general, we propose the reconstruction of the tectonic settings of basalts according to their relationships with associated ocean plate stratigraphy (OPS sediments, their petrogenesis and their geochemical features.

  9. Growing magma chambers control the distribution of small-scale flood basalts.

    Science.gov (United States)

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-11-19

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  10. Material toughness, internal structure, and caldera-collapse frequencies in basaltic and composite edifices

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Agust [Department of Earth Sciences, Queen' s Building, Royal Holloway University of London, Egham TW20 OEX (United Kingdom)], E-mail: a.gudmundsson@es.rhul.ac.uk

    2008-10-01

    Formation of, and slip on existing, collapse calderas is much more common in basaltic edifices than in composite edifices. I suggest that this difference is partly due to the composite edifices being tougher and more resistant to ring-fault formation than a basaltic edifices. The high matieral toughness of composite edifices is related to their being composed of rock layers with widely different elastic properties, the elastic mismatch promoting deflection and/or arrest of potential ring faults at layer contacts.

  11. A study of the thermostimulated evolution of labelled hydrogen sulfide from the leached basalt fibers

    International Nuclear Information System (INIS)

    Zheleznov, A.V.; Zyuzin, A.Yu.; Bekman, I.N.

    1991-01-01

    Thermostimulated separation of labelled hydrogen sulfide from basalt fibers leached by hydrochloric acid is investigated by the method of radioactive tracers. It is shown that the type of H 2 35 S thermosorption spectrum depends on the presence of water traces in a fibrous adsrobent. Formal order and activation energy of thermodesorption of labelled hydrogen sulfide as well as inhomogeneity of porous structure of adsorbents based on basalt fibers are established

  12. Mechanical Properties of a Unidirectional Basalt-Fiber-Reinforced Plastic Under a Loading Simulating Operation Conditions

    Science.gov (United States)

    Lobanov, D. S.; Slovikov, S. V.

    2017-01-01

    The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.

  13. Preliminary feasibility study on storage of radioactive wastes in Columbia River basalts. Volume I

    International Nuclear Information System (INIS)

    1976-11-01

    Geologic, hydrologic, heat transfer and rock-waste compatibility studies conducted by the Atlantic Richfield Hanford Company to evaluate the feasibility of storing nuclear wastes in caverns mined out into the Columbia River basalts are discussed. The succession of Columbia River Plateau flood basalts was sampled at various outcrops and in core holes and the samples were analyzed to develop a stratigraphic correlation of the various basalt units and sedimentary interbeds. Hydrologic tests were made in one bore hole to assess the degree of isolation in the various deep aquifers separated by thick basalt accumulations. Earthquake and tectonic studies were conducted to assess the tectonic stability of the Columbia River Plateau. Studies were made to evaluate the extent of heat dissipation from stored radioactive wastes. Geochemical studies were aimed at evaluating the compatibility between the radioactive wastes and the basalt host rocks. Data obtained to-date have allowed development of a hydrostratigraphic framework for the Columbia River Plateau and a preliminary understanding of the deep aquifer systems. Finally, the compilation of this information has served as a basis for planning the studies necessary to define the effectiveness of the Columbia River basalts for permanently isolating nuclear wastes from the biosphere

  14. Basaltic material in the main belt: a tale of two (or more) parent bodies?

    Science.gov (United States)

    Ieva, S.; Dotto, E.; Lazzaro, D.; Fulvio, D.; Perna, D.; Epifani, E. Mazzotta; Medeiros, H.; Fulchignoni, M.

    2018-06-01

    The majority of basaltic objects in the main belt are dynamically connected to Vesta, the largest differentiated asteroid known. Others, due to their current orbital parameters, cannot be easily dynamically linked to Vesta. This is particularly true for all the basaltic asteroids located beyond 2.5 au, where lies the 3:1 mean motion resonance with Jupiter. In order to investigate the presence of other V-type asteroids in the middle and outer main belt (MOVs) we started an observational campaign to spectroscopically characterize in the visible range MOV candidates. We observed 18 basaltic candidates from TNG and ESO - NTT between 2015 and 2016. We derived spectral parameters using the same approach adopted in our recent statistical analysis and we compared our data with orbital parameters to look for possible clusters of MOVs in the main belt, symptomatic for a new basaltic family. Our analysis seemed to point out that MOVs show different spectral parameters respect to other basaltic bodies in the main belt, which could account for a diverse mineralogy than Vesta; moreover, some of them belong to the Eos family, suggesting the possibility of another basaltic progenitor. This could have strong repercussions on the temperature gradient present in the early Solar System, and on our current understanding of differentiation processes.

  15. Mineralogy, geochemistry and expansion testing of an alkali-reactive basalt from western Anatolia, Turkey

    International Nuclear Information System (INIS)

    Copuroglu, Oguzhan; Andic-Cakir, Ozge; Broekmans, Maarten A.T.M.; Kuehnel, Radko

    2009-01-01

    In this paper, the alkali-silica reaction performance of a basalt rock from western Anatolia, Turkey is reported. It is observed that the rock causes severe gel formation in the concrete microbar test. It appears that the main source of expansion is the reactive glassy phase of the basalt matrix having approximately 70% of SiO 2 . The study presents the microstructural characteristics of unreacted and reacted basalt aggregate by optical and electron microscopy and discusses the possible reaction mechanism. Microstructural analysis revealed that the dissolution of silica is overwhelming in the matrix of the basalt and it eventually generates four consequences: (1) Formation of alkali-silica reaction gel at the aggregate perimeter, (2) increased porosity and permeability of the basalt matrix, (3) reduction of mechanical properties of the aggregate and (4) additional gel formation within the aggregate. It is concluded that the basalt rock is highly prone to alkali-silica reaction. As an aggregate, this rock is not suitable for concrete production.

  16. Mineralogy, geochemistry and expansion testing of an alkali-reactive basalt from western Anatolia, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Copuroglu, Oguzhan, E-mail: O.Copuroglu@CiTG.TUDelft.NL [Delft University of Technology, Faculty of CiTG, Materials and Environment, Stevinweg 1, 2628CN, Delft (Netherlands); Andic-Cakir, Ozge [Ege University, Civil Engineering Dept., 35100 Bornova, Izmir (Turkey); Broekmans, Maarten A.T.M. [Geological Survey of Norway, Dept. of Mineral Characterization, N-7491 Trondheim (Norway); Kuehnel, Radko [Burgemeester Merkusstraat 5, 2645 NJ, Delfgauw (Netherlands)

    2009-07-15

    In this paper, the alkali-silica reaction performance of a basalt rock from western Anatolia, Turkey is reported. It is observed that the rock causes severe gel formation in the concrete microbar test. It appears that the main source of expansion is the reactive glassy phase of the basalt matrix having approximately 70% of SiO{sub 2}. The study presents the microstructural characteristics of unreacted and reacted basalt aggregate by optical and electron microscopy and discusses the possible reaction mechanism. Microstructural analysis revealed that the dissolution of silica is overwhelming in the matrix of the basalt and it eventually generates four consequences: (1) Formation of alkali-silica reaction gel at the aggregate perimeter, (2) increased porosity and permeability of the basalt matrix, (3) reduction of mechanical properties of the aggregate and (4) additional gel formation within the aggregate. It is concluded that the basalt rock is highly prone to alkali-silica reaction. As an aggregate, this rock is not suitable for concrete production.

  17. The durability of fired brick incorporating textile factory waste ash and basaltic pumice

    Energy Technology Data Exchange (ETDEWEB)

    Binici, Hanifi [Kahramanmaras Sutcu Imam Univ., Kahramanmaras (Turkey). Dept. of Civil Engineering; Yardim, Yavuz [Epoka Univ., Tirana (Albania). Dept. of Civil Engineering

    2012-07-15

    This study investigates the durability of fired brick produced with additives of textile factories' waste ash and basaltic pumice. The effects of incorporating waste ash and basaltic pumice on durability and mechanical properties of the clay bricks were studied. Samples were produced with different ratios of the textile factories' waste ash and basaltic pumice added and at different fire temperatures of 700, 900, and 1 050 C for 8 h. The bricks with additives were produced by adding equal amounts of textile factories' waste ash and basaltic pumice, separately and together, with rates of 5, 10 and 20 wt.%. The produced samples were kept one year in sodium sulphate and sodium nitrate and tested under freezing - unfreezing and drying - wetting conditions. Then compression strength and mass loss of the samples with and without additives were investigated. The test results were compared with standards and results obtained from control specimens. The results showed that incorporations up to 10 wt.% of textile factories' waste ash and basaltic pumice is beneficial to the fired brick. Both textile factories' waste ash and basaltic pumice were suitable additives and could be used for more durable clay brick production at 900 C fire temperature. (orig.)

  18. Properties of composite laminates based on basalt fibers with epoxidized vegetable oils

    International Nuclear Information System (INIS)

    Samper, M.D.; Petrucci, R.; Sanchez-Nacher, L.; Balart, R.; Kenny, J.M.

    2015-01-01

    Highlights: • New environmentally friendly composites from biobased epoxies and basalt fibers. • Improved performance with conventional silane treatment on basalt fabrics. • Composites with excellent appearance due to basalt shiny brown color. • Potential applications as substitute of glass fiber reinforced composites in engineering design. • Processing with conventional resin transfer molding (RTM) techniques. - Abstract: This paper deals with the development of polymeric materials derived from epoxidized vegetable oils which have been used in the manufacture of laminated composite materials with basalt fabrics. Epoxidized linseed oil (ELO) and epoxidized soybean oil (ESBO) were used as biobased matrices. The basalt fabrics were modified with amino-silane and glycidyl-silane to increase fiber–matrix interactions. The curing behavior of both resins was evaluated by differential scanning calorimetry (DSC) and oscillatory rheometry (OR). The evaluation of mechanical properties was made by tensile, flexural and Charpy tests. The extent of the fiber–matrix interactions among interface was evaluated by scanning electron microscopy (SEM). The obtained results revealed that surface modification of basalt fibers with glycidyl-silane clearly improves the mechanical properties of the composites. The use of the ELO resin as matrix for composite laminates improved substantially the mechanical performance compared to composites made with ESBO

  19. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2015-01-01

    Full Text Available In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.

  20. The investigation of gamma and neutron shielding properties of concrete including basalt fibre for nuclear energy applications

    International Nuclear Information System (INIS)

    Nulk, H.; Ipbuker, C.; Gulik, V.; Tkaczyk, A.; Biland, A.

    2015-01-01

    In this study, we would like to draw attention to the prospect of basalt fibre as the main component for concrete reinforcement of NPP. This work describes the computational study of gamma attenuation parameters, the effective atomic number Z(eff) and the effective electron density N e (eff), of relatively light-weight concrete with chopped basalt fibre used as reinforcement in different mixture rates. We can draw the following conclusions. Basalt fibre is a relatively cheap material that can be used as reinforcement instead of metallic fibers. Basalt fibre has a similar specific gravity to that of concrete elements. Basalt fibre has high chemical and abrasion resistance. Basalt fibre has almost 10 times the tensile strength of steel re-bars. Gamma-ray attenuation coefficients increase with addition of basalt fibre into concrete in every case. The effective atomic number of the concrete increases with the addition of basalt fibre. The results show that basalt fibre reinforced concrete have improved shielding properties against gamma rays in comparison with regular concrete. This result is based on a regular concrete with only basalt fiber reinforcement. We estimate that with addition of standard aggregates for radiation shielding concrete, such as barite, magnetite or hematite, the shielding properties will increase exponentially

  1. Geochemistry of cenozoic basaltic rocks from Shandong province and its implication for mantle process in North China

    International Nuclear Information System (INIS)

    Lee Yungtan; Chen Juchin; Huang Shaowei; Shih Jyhyi; Lin Menglung; Juang Wenshing; Yang Huaijen

    2006-01-01

    Cenozoic (Miocene to Pleistocene) basaltic rocks found in Shandong province of northern China include tholeiite, olivine tholeiite and alkali basalt. We present major, trace and rare earth elements data of these basalts and together with Sr-Nd isotopic data in the literatures to discuss the petrogenesis of these basalts. The basalts from Penglai area have higher K, Na and P and incompatible elements, but lower Ca, Mg and compatible elements contents than those from Changle area of Shandong province. Spidergrams indicate that Cenozoic basalts from Shandong province have geochemical characteristics similar to those of ocean island basalts (OIB) with slight positive Nb anomaly. The negative Ba, Rb and K anomalies found in the alkali basalts suggest the presence of residual phlogopite in the mantle source, indicating a metasomatic event occurred before the partial melting. The 143 Nd/ 144 Nd vs. 87 Sr/ 86 Sr plot suggested that basalts from Shandong province can be produced by MORB and EM-I components mixing. We propose that the EM-I type lithospheric mantle may have been produced by the recent H 2 O-CO 2 -fluids metasomatism and the fluids may be derived from dehydration of the subducted slab. Based on Shaw's equation, the basalts from eastern and central Shandong province have undergone different degrees of particle melting from the mantle source. Degrees of partial melting and chemical composition of basalts from Shandong province suggest that the lithosphere has thickened progressively since the Miocene. On the basis of Ar-Ar ages of this study and the fractional crystallization model proposed by Brooks and Nielsen (1982), we suggest that basalts from Changle and Penglai areas belong to different magmatic systems which have undergone fractional crystallization and evolved progressively to produce other types of basalts. (author)

  2. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    Science.gov (United States)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  3. Density of basalt core from Hilo drill hole, Hawaii

    Science.gov (United States)

    Moore, J.G.

    2001-01-01

    Density measurements of 1600 samples of core from 889 to 3097 m depth below sea level in the Hawaii Scientific Drilling Program hole near Hilo, Hawaii show marked differences between the basaltic rock types and help define stratigraphy in the hole. Water-saturated densities of subaerial lava flows (occurring above 1079 m depth) have the broadest range because of the large density variation within a single lava flow. Water-saturated densities commonly range from 2.0 to 3.0 with an average of 2.55 ?? 0.24 g/cc. Dikes and sills range from 2.8 to 3.1 g/cc). Densities of hyaloclastite commonly range from 2.3 to 2.7, with an overall average of about 2.5 g/cc. The low-density of most hyaloclastite is due primarily to palagonitization of abundant glass and presence of secondary minerals in the interstices between fragments. Four principal zones of pillow lava, separated by hyaloclastite, occur in the drill core. The shallowest (1983-2136 m) is paradoxically the densest, averaging 3.01 ?? 0.10 g/cc. The second (2234-2470 m) is decidedly the lightest, averaging 2.67 ?? 0.13 g/cc. The third (2640-2790 m) and fourth (2918-bottom at 3097 m) are high, averaging 2.89 ?? 0.17 and 2.97 ?? 0.08 g/cc, respectively. The first pillow zone includes degassed pillows i.e. lava erupted on land that flowed into the sea. These pillows are poor in vesicles, because the subaerial, one-atmosphere vesicles were compressed when the flow descended to deeper water and higher pressure. The second (low-density, non-degassed) pillow zone is the most vesicle-rich, apparently because it was erupted subaqueously at a shallow depth. The higher densities of the third and fourth zones result from a low vesicularity of only a few percent and an olivine content averaging more than 5% for the third zone and about 10% for the fourth zone. The uppermost hyaloclastite extending about 400 m below the bottom of the subaerial basalt is poorly cemented and absorbs up to 6 wt% of water when immersed. Progressing

  4. Carbon and its isotopes in mid-oceanic basaltic glasses

    International Nuclear Information System (INIS)

    Des Marais, D.J.

    1984-01-01

    Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO 2 is about 3.8per mille enriched in 13 C, relative to dissolved carbon. Despite this fractionation, delta 13 Csub(PDB) values for all spreading ridge glasses lie within the range -5.6 and -7.5, and the delta 13 Csub(PDB) of mantle carbon likely lies between -5 and -7. The carbon abundances and delta 13 Csub(PDB) values of Kilauea East Rift glasses apparently are influences by the differentiation and movement of magma within that Hawaiian volcano. Using 3 He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 x 10 13 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory. (orig.)

  5. Nuclear waste repository in basalt: preliminary socioeconomic assessment

    International Nuclear Information System (INIS)

    Cluett, C.; Bolton, P.A.; Malhotra, S.; McStay, J.R.; Slingsby, J.A.

    1984-06-01

    This report was prepared as a part of the continuing site characterization activities for a proposed nuclear waste repository in basalt (NWRB) to be located on the Hanford Site near Richland, Washington. The purpose of this study is to assess the social and economic impacts that could be caused by the construction and operation of the proposed NWRB facility. The specific objectives of this study are to describe historical socioeconomic trends in the study area, to describe current conditions, to project future baseline conditions without the NWRB, to project potential impacts due to the proposed NWRB under two alternative regional development scenarios and assess their significance, and to suggest an overall impact management and mitigation strategy. A closely related objective is to assemble a comprehensive socioeconomic data base that can be easily updated for future analyses. This study examines employment, labor supply, population change, housing, local transportation, revenues, and expenditures for public services. This report documents the marked demographic and economic decline that has occurred in the study area since 1981 and concludes that future baseline growth will resume at a relatively slower pace after further expected declines have been experienced through about 1985. The projected socioeconomic impacts of the NWRB development are assessed under two alternative baseline scenarios and are not expected to be significant in either case. With careful planning and attention to impact mitigation, including public participation and interaction with local and regional planning agencies, potential socioeconomic impacts can be anticipated and managed effectively. Recommendations are made for providing frequent updating of the data base and for improving the analysis of socioeconomic impacts. 68 references, 19 figures, 38 tables

  6. Autogenous Tumbling Media Assessment to Clean Weathered Surfaces of Waste-Rock Particles from a Basalt Quarry

    Directory of Open Access Journals (Sweden)

    Baran Tufan

    2015-06-01

    Full Text Available In this study, the optimum feed composition in autogenous tumbling of basalt waste-rock particles to clean their weathered surface was determined. The weathered surfaces of basalt are generally cut out consequent to extraction of basalt columns in quarry operations. The inefficiently cut out portions of basalt cause formation of huge quarry waste dumps causing visual pollution on roadsides. Mixtures of different particle size fractions of basalt waste-rock particles were experimented to achieve the optimum feed material composition. The minimum loss of commercially available basalt particles and maximum clear surface was intended. The results were compared with respect to weight loss (% and reflectance values of used and generated samples.

  7. Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina)

    Science.gov (United States)

    Varekamp, J. C.; Hesse, A.; Mandeville, C. W.

    2010-11-01

    Young basaltic back-arc volcanoes occur east of the main Andes chain at about 37.5°-39°S in the Loncopue graben, Province of Neuquen, Argentina. These olivine-rich basalts and trachybasalts have up to 8% MgO, with high Ni and Cr contents, but highly variable incompatible element concentrations. Mafic lava flows and cinder cones at the southern end of the graben lack phenocrystic plagioclase. The northern samples have relative Ta-Nb depletions and K, Pb and LREE enrichment. These samples strongly resemble rocks of the nearby arc volcanoes Copahue and Caviahue, including their Fe-Ti enrichment relative to the main Andes arc rocks. The Sr, Nd and Pb isotope ratios show that the source regions of these back-arc basalts are enriched in subducted components that were depleted in the aqueous mobile elements such as Cs, Sr and Ba as a result of prior extractions from the subducted complex below the main arc. Some mafic flows show slightly low 206Pb/ 204Pb and 143Nd/ 144Nd values as well as incompatible trace element ratios similar to southern Patagonia plateau back-arc basalts, suggesting contributions from an EM1 mantle source. Geothermometry and barometry suggest that the basalts crystallized and fractionated small amounts of olivine and spinel at ˜ 35 km depth at temperatures of 1170-1220 °C, at about QFM + 0.5 to QFM + 1 with 1-2% H 2O, and then rose rapidly to the surface. The Loncopue graben back-arc basalts are transitional in composition between the South Patagonia back-arc plateau basalts and the Caviahue and Copahue arc volcanoes to the northwest. The EM1 source endmember is possibly the subcontinental lithospheric mantle. Strong variations in incompatible element enrichment and isotopic compositions between closely spaced cinder cones and lava flows suggest a heterogeneous mantle source for the Loncopue graben volcanics.

  8. Behavior of 99Tc in doped-glass/basalt hydrothermal interaction tests

    International Nuclear Information System (INIS)

    Coles, D.G.; Apted, M.J.

    1984-01-01

    The release of polyvalent radionuclides from a nuclear waste repository located in basalt may be sensitively related to the redox potential (Eh) imposed by the basalt. A series of tests are reported here, evaluating the effect of basalt on the concentrations of 99 Tc released into solution from a borosilicate glass waste form. Crushed PNL 76-68 glass, doped with 0.7 mg 99 Tc/g glass, was reacted with reference basalt groundwater under oxic hydrothermal conditions in a sampling autoclave, both alone and in the presence of crushed basalt. The steady state fluid concentrations of 99 Tc and various table species were determined from samples obtained at the test conditions of 200 0 C, 30 MPa, and a initial solution to solid mass ratio of 10 for both tests. In the glass + groundwater test, the 99 Tc concentration rose rapidly to about 50 mg/L after only 200 hr of run time and remained at a value between 50 and 60 mg/L throughout the duration of the test. For the basalt + glass + groundwater test, the 99 Tc concentration rose to an initial value of about 2.5 mg/L. At about 700 hr, the 99 Tc concentration began to drop rapidly until a value near the analytical detection limit (approximately 0.005 mg/L) was reached after a test duration of 1400 hr. It is concluded that the presence of basalt in these hydrothermal experiments reduces the concentration of 99 Tc in solution by nearly four orders of magnitude, probably by control of solution Eh and subsequent precipitation of a solid containing a reduced form of technetium. Reaction mechanisms are discussed that can account for these observations. 17 references, 1 figure

  9. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 3. Stratigraphies of salt, granite, shale, and basalt

    International Nuclear Information System (INIS)

    1978-04-01

    This study presents the methodology and basic literature used to develop generic stratigraphic sections for the various geologic repository host rocks under considerations: salt, granite, shale and basalt

  10. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 7. Baseline rock properties-basalt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/7 Baseline Rock Properties--Basalt, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report contains an evaluation of the results of a literature survey to define the rock mass properties of a generic basalt, which could be considered as a geological medium for storing radioactive waste. The general formation and structure of basaltic rocks is described. This is followed by specific descriptions and rock property data for the Dresser Basalt, the Amchitka Island Basalt, the Nevada Test Site Basalt and the Columbia River Group Basalt. Engineering judgment has been used to derive the rock mass properties of a typical basalt from the relevant intact rock property data and the geological information pertaining to structural defects, such as joints and faults

  11. Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts in West Qinling, China

    Science.gov (United States)

    Dai, Li-Qun; Zheng, Fei; Zhao, Zi-Fu; Zheng, Yong-Fei

    2018-03-01

    Although alkali basalts are common in oceanic islands and continental rifts, the lithology of their mantle sources is still controversial. While the peridotite is usually viewed as a common source lithology, there are increasing studies suggesting significant contributions from ultramafic metasomatites such as carbonated peridotite, pyroxenite and hornblendite to the origin of alkali basalts. The present study indicates that carbonated peridotite plus hornblendite would have served as the mantle sources of Cenozoic alkali basalts from the West Qinling orogen in China. The target basalts show low SiO2 contents of 36.9 to 40.8 wt% and highly variable Na2O + K2O contents from 0.86 to 4.77 wt%, but high CaO contents of 12.5 to 16.3 wt% and CaO/Al2O3 ratios of 1.42 to 2.19. They are highly enriched in the majority of incompatible trace elements, but depleted in Rb, K, Pb, Zr, Hf, and Ti. Furthermore, they exhibit high (La/Yb)N, Zr/Hf, Ce/Pb and Nb/Ta ratios, but low Ti/Eu and Hf/Sm ratios. Generally, with increasing (La/Yb)N and CaO/Al2O3 ratios, their Ti/Eu and Hf/Sm ratios decrease whereas their Zr/Hf, Ce/Pb and Nb/Ta ratios increase. These major and trace element features are similar to those of carbonatites and hornblendite-derived melts to some extent, but significantly different from those of mid-ocean ridge basalts (MORB). This suggests that the alkali basalts would be originated from metasomatic mantle sources. A comparison of the major-trace elements in the alkali basalts with those of some representative mantle-derived melts indicates that the source lithology of alkali basalts is a kind of ultramafic metasomatites that are composed of carbonated peridotite and hornblendite. Such metasomatites would be generated by reaction of the depleted MORB mantle peridotite with hydrous, carbonate-bearing felsic melts derived from partial melting of the subducted Paleotethyan oceanic crust. Therefore, the melt-peridotite reaction at the slab-mantle interface in the

  12. Petrochemistry of a xenolith-bearing Neogene alkali olivine basalt from northeastern Iran

    Science.gov (United States)

    Saadat, Saeed; Stern, Charles R.

    2012-05-01

    A small isolated Neogene, possibly Quaternary, monogenetic alkali olivine basalt cone in northeastern Iran contains both mantle peridotite and crustal gabbroic xenoliths, as well as plagioclase megacrysts. The basaltic magma rose to the surface along pathways associated with local extension at the junction between the N-S right-lateral and E-W left-lateral strike slip faults that form the northeastern boundary of the Lut microcontinental block. This basalt is enriched in LREE relative to HREE, and has trace-element ratios similar to that of oceanic island basalts (OIB). Its 87Sr/86Sr (0.705013 to 0.705252), 143Nd/144Nd (0.512735 to 0.512738), and Pb isotopic compositions all fall in the field of OIB derived from enriched (EM-2) mantle. It formed by mixing of small melt fractions from both garnet-bearing asthenospheric and spinel-facies lithospheric mantle. Plagioclase (An26-32) megacrysts, up to 4 cm in length, have euhedral crystal faces and show no evidence of reaction with the host basalt. Their trace-element concentrations suggest that these megacrysts are co-genetic with the basalt host, although their 87Sr/86Sr (0.704796) and 143Nd/144Nd (0.512687) ratios are different than this basalt. Round to angular, medium-grained granoblastic meta-igneous gabbroic xenoliths, ranging from ~ 1 to 6 cm in dimension, are derived from the lower continental crust. Spinel-peridotite xenoliths equilibrated in the subcontinental lithosphere at depths of 30 to 60 km and temperatures of 965 °C to 1065 °C. These xenoliths do not preserve evidence of extensive metasomatic enrichment as has been inferred for the mantle below the Damavand volcano further to the west in north-central Iran, and clinopyroxenes separated from two different mantle xenoliths have 87Sr/86Sr (0.704309 and 0.704593) and 143Nd/144Nd (0.512798) ratios which are less radiogenic than either their host alkali basalt or Damavand basalts, implying significant regional variations in the composition and extent of

  13. The relationship of seismic velocity structure and surface fracture characteristics of basalt outcrops to rippability estimates

    International Nuclear Information System (INIS)

    Kay, S.E.; Dougherty, M.E.; Pelton, J.R.

    1994-01-01

    Seismic velocity has been shown in previous engineering studies to be related to the fracture characteristics and rippability of rock outcrops. However, common methods of measuring seismic velocity in outcrops do not take into account the many possible travel paths for wave propagation and the fact that velocity zones may exist within an outcrop. Presented here are the results of using raytracing inversion of first-arrival travel-time data to map P-velocity structure in basalt outcrops, and also the investigation of the relationship of the mapped velocities to observed surface fractures and hand-sample P-velocities. It is shown that basalt outcrops commonly consist of an irregular near-surface low-velocity zone underlain by higher velocity material; that velocity gradients can exist in outcrops; that hand-sample velocity measurements are typically higher than outcrop-scale measurements; and that the characteristics of surface fractures are empirically related to near-surface P-velocity. All of these findings are relevant to the estimated rippability of rock in geotechnical engineering. The data for this study are derived from eleven sites on basalt outcrops of the Troodos Ophiolite in Cyprus. The basalt types include pillow basalts, massive flows, and a pillow breccia. A commonly available raytracing inversion program (RAYINVR) was used to produce a velocity profile of each outcrop. Different velocity zones were detailed by inverting observed travel times to produce a model of outcrop velocity structure which produces rippability profiles for each outcrop. 16 refs., 9 figs

  14. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    Science.gov (United States)

    Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken

    2016-04-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  15. Non-destructive XRF analyses of fine-grained basalts from Eiao, Marquesas Islands

    International Nuclear Information System (INIS)

    Charleux, M.; McAlister, A.; Mills, P.R.; Lundblad, S.P.

    2014-01-01

    The Marquesan island of Eiao was an important source of fine-grained basalt in Central East Polynesia, with examples being identified in archaeological assemblages throughout the region. However, compared to many other large-scale Polynesian basalt sources, little has been published about the physical extent and geochemical variability of tool-quality basalt on Eiao; prior to our study, only a single site with evidence of stone extraction had been identified and geochemical information was limited to less than two dozen samples. In this paper we report geochemical data for 225 additional basalt specimens collected on Eiao. Our analyses were conducted non-destructively using three EDXRF instruments: one lab-based unit and two portable analysers. The majority of our sample, identified here as Group 1, possesses geochemical and physical characteristics similar to those reported in previous studies. Group 1 samples were collected from various locations on Eiao suggesting that, rather than being limited to a single quarry site, fine-grained basalt was extracted from multiple sources throughout the island. In addition, we identified a second group (Group 2), which possesses a distinct geochemistry, a coarser grain and often an unusual reddish colour. Evidence from Eiao indicates that Group 2 stone was regularly utilised and our analysis of an adze collected on Hiva Oa Island suggests that this material was distributed at least as far as the southern Marquesas. (author)

  16. Preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt

    International Nuclear Information System (INIS)

    Taylor, C.L.; O'Rourke, J.E.; Allirot, D.; O'Connor, K.

    1980-09-01

    This report presents results of a study leading to preconceptual designs for plugging boreholes, shafts, and tunnels to a nuclear waste repository in basalt. Beginning design criteria include a list of preferred plug materials and plugging machines that were selected to suit the environmental conditions, and depths, diameters, and orientations of the accesses to a nuclear waste repository in the Columbia River basalts located in eastern Washington State. The environmental conditions are described. The fiscal year 1979-1980 Task II work is presented in two parts: preliminary testing of materials for plugging of man-made accesses to a repository in basalt (described in a separate report); and preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt (described in this report). To fulfill the scope of the Task II work, Woodward-Clyde Consultants (WCC) was requested to: provide preconceptual systems for plugging boreholes, tunnels, and shafts in basalt; describe preconceptual borehole plugging equipment for placing the selected materials in man-made accesses; utilize the quality assurance program, program plan and schedule, and work plans previously developed for Task II; and prepare a preliminary report

  17. Geochemistry contribution of Pb isotopes on basalts origin study from Parana basin, Brazil

    International Nuclear Information System (INIS)

    Marques, L.S.; Dupre, B.; Allegre, C.J.

    1990-01-01

    This paper presents thirty new Pb-isotope and concentration data for low- and high-tiO sub(2) continental flood basalts of the Parana Basin. The results obtained from representative samples show significant differences with respect to type and location of these basic rocks. The low- and high-TiO sub(2) basalts from the northern region of the Parana Basin exhibit very similar Pb-isotope compositions. On the other hand, the low-TiO sub(2) basalts of central and southern areas, which exhibit low Sr initial isotope ratios (less than 0,7060), show very small variation in Pb isotope compositions which are highly enriched in radiogenic Pb in comparison with the analogues of northern region. The high-TiO sub(2) basic rocks analysed from northern and central regions have the same values for Pb isotope ratios, which are slightly more radiogenic compared with high-TiO sub(2) basalts from southern region. The data obtained, combined with other geochemical (major and trace elements, including rare earths) and isotope (Sr and Nd) results support the view that the basalts from northern and southern areas of the Parana Basin originated in lithospheric mantle reservoirs with different geochemical characteristics. (author)

  18. Zircon evidence for incorporation of terrigenous sediments into the magma source of continental basalts.

    Science.gov (United States)

    Xu, Zheng; Zheng, Yong-Fei; Zhao, Zi-Fu

    2018-01-09

    Crustal components may be incorporated into continental basalts by either shallow contamination or deep mixing. While the former proceeds at crustal depths with common preservation of refractory minerals, the latter occurs at mantle depths with rare survival of relict minerals. Discrimination between the two mechanisms has great bearing to subcontinental mantle geochemistry. Here we report the occurrence of relict zircons in Cenozoic continental basalts from eastern China. A combined study of zircon U-Pb ages and geochemistry indicates that detrital zircons were carried by terrigenous sediments into a subcontinental subduction zone, where the zircon were transferred by fluids into the magma sources of continental basalts. The basalts were sampled from three petrotectonic units with distinct differences in their magmatic and metamorphic ages, making the crustal contamination discernible. The terrigenous sediments were carried by the subducting oceanic crust into the asthenospheric mantle, producing both soluble and insoluble materials at the slab-mantle interface. These materials were served as metasomatic agents to react with the overlying mantle wedge peridotite, generating a kind of ultramafic metasomatites that contain the relict zircons. Therefore, the occurrence of relict zircons in continental basalts indicates that this refractory mineral can survive extreme temperature-pressure conditions in the asthenospheric mantle.

  19. Seeking a paleontological signature for mass extinctions caused by flood basalt eruptions

    Science.gov (United States)

    Payne, J.; Bush, A. M.; Chang, E. T.; Heim, N. A.; Knope, M. L.; Pruss, S. B.

    2016-12-01

    Flood basalt eruptions coincide with numerous extinction events in the fossil record. Increasingly precise absolute age determinations for both the timing of eruption and of species extinctions have strengthened the case for flood basalt eruptions as the single most important trigger for major mass extinction events in the fossil record. However, the extent to which flood basalt eruptions cause a pattern of biotic loss distinctive from extinctions triggered by other geological or biological processes remains an open question. In the absence of diagnostic mapping between geological triggers and biological losses, establishing the identities of causal agents for mass extinctions will continue to depend primarily on evidence for temporal coincidence. Here we use a synoptic database of marine animal genera spanning the Phanerozoic, including times of first and last occurrence, body size, motility, life position, feeding mode, and respiratory physiology to assess whether extinction events temporally associated with flood basalt eruptions exhibit a diagnostic pattern of extinction selectivity. We further ask whether any events not associated with known large igneous provinces nevertheless display extinction patterns suggestive of such a cause. Finally, we ask whether extinction events associated with other primary causes, such as glaciation or bolide impact, are distinguishable from events apparently triggered by flood basalt eruptions on the basis of extinction selectivity patterns

  20. A LREE-depleted component in the Afar plume: Further evidence from Quaternary Djibouti basalts

    Science.gov (United States)

    Daoud, Mohamed A.; Maury, René C.; Barrat, Jean-Alix; Taylor, Rex N.; Le Gall, Bernard; Guillou, Hervé; Cotten, Joseph; Rolet, Joël

    2010-02-01

    Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K-Ar ages are presented for Quaternary (0.90-0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (La n/Sm n = 0.76-0.83), with 87Sr/ 86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/ 144Nd ( ɛNd = + 5.9-+ 7.3) and Pb isotopic compositions ( 206Pb/ 204Pb = 18.47-18.55, 207Pb/ 204Pb = 15.52-15.57, 208Pb/ 204Pb = 38.62-38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.

  1. Hydrogeological and quantitative groundwater assessment of the Basaltic Aquifer, Northern Harrat Rahat, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Shaibani, A.; Abokhodair, Abdulwahab A.; Lloyd, J.W.; Al-Ahmari, A.

    2007-01-01

    The Northern Harrat Rahat consists of 300m basalt lavas covering some 2000 km2 to the south-east of Al-Madinah in western Saudi Arabia. Like many basalt sequences, the Rahat basalts form an important aquifer and groundwater resource. The aquifer has a saturated thickness of up to 60m and made up of the weathered upper part of underlying basement, pre-basalt sands and gravels and the fractured basalts. Since 1992, groundwater has been abstracted from the aquifer as part of the Al-Madinah water supply. To assess the potential of the aquifer an assessment has been made based on pumping tests of 70 wells. The hydraulic parameters have been shown to be highly variable typical of the fractured domain. The aquifer contains good-quality water in storage, but receives limited recharge. Groundwater temperature anomalies indicate remnant volcanic activity locally. A numerical groundwater model has been constructed, which has been calibrated using limited groundwater head measurements, but with good abstraction records. Prediction of groundwater heads and the examination of several abstraction scenarios indicate that the aquifer can continue to support part of the Al-Madinah demand for the next several years, if certain well distributions are adopted. The predictions also show that the aquifer can only support the total demand of the city for a few days as a contingency resource. (author)

  2. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    Science.gov (United States)

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  3. Characterization and utilization potential of basalt rock from East-Lampung district

    Science.gov (United States)

    Isnugroho, K.; Hendronursito, Y.; Birawidha, D. C.

    2018-01-01

    The aim of this research was to study the petrography and chemical properties of basalt rock from East Lampung district, Lampung province. Petrography analysis was performed using a polarization microscope, and analysis of chemical composition using X-RF method. From the analysis of basalt rock samples, the mineral composition consists of pyroxene, plagioclase, olivine, and opaque minerals. Basic mass of basalt rock samples is, composed of plagioclase and pyroxene with subhedral-anhedral shape, forming intergranular texture, and uniform distribution. Mineral plagioclase is colorless and blade shape, transformed into opaque minerals with a size of basalt rock samples, consisting of 37.76-59.64 SiO2; 10.10-20.93 Fe2O3; 11.77-14.32 Al2O3; 5.57-14.75 CaO; 5.37-9.15 MgO; 1.40-3.34 Na2O. From the calculation, obtained the value of acidity ratio (Ma) = 3.81. With these values, indicate that the basalt rock from East Lampung district has the potential to be utilized as stone wool fiber.

  4. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.

    Science.gov (United States)

    Chen, Xi; Li, Yan; Gu, Ning

    2010-08-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  5. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair

    International Nuclear Information System (INIS)

    Chen Xi; Li Yan; Gu Ning

    2010-01-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  6. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater

    International Nuclear Information System (INIS)

    Wei Bin; Cao Hailin; Song Shenhua

    2011-01-01

    Research highlights: → BFRP degradation process in seawater environment was first investigated. → The mass gain change includes two effects: absorption and extraction. → The interfacial adhesion of BFRP is bigger than GFRP. → After treated, the bending strength of BFRP is lower than GFRP. → Reducing the Fe 2+ in the basalt fibre could lead to a higher stability of BFRP. - Abstract: Epoxy resins reinforced, respectively, by basalt fibres and glass fibres were treated with a seawater solution for different periods of time. Both the mass gain ratio and the strength maintenance ratio of the composites were examined after the treatment. The fracture surfaces were characterized using scanning electron microscopy. The tensile and bending strengths of the seawater treated samples showed a decreasing trend with treating time. In general, the anti-seawater corrosion property of the basalt fibre reinforced composites was almost the same as that of the glass fibre reinforced ones. Based on the experimental results, possible corrosion mechanisms were explored, indicating that an effective lowering of the Fe 2+ content in the basalt fibre could lead to a higher stability for the basalt fibre reinforced composites in a seawater environment.

  7. Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite

    International Nuclear Information System (INIS)

    Li, Ran; Gu, Yizhuo; Yang, Zhongjia; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2015-01-01

    Gamma-ray (γ-ray) irradiation is a crucial reason for the aging in materials used for nuclear industry. Due to high specific strength and stiffness, light weight and good corrosion resistance, fiber reinforced composites are regarded as an alternative of traditional materials used on nuclear facilities. In this study, basalt fiber (BF)/AG80 epoxy composite laminates were fabricated by autoclave process and treated with "6"0Co gamma irradiation dose up to 2.0 MGy. Irradiation induced polymer chain scission and oxidation of AG80 resin were detected from physical and chemical analysis. The experimental results show that the tensile and flexural performances of irradiated BF/AG80 composite maintain stable and have a low amplitude attenuation respectively, and the interlaminar shear strength has increased from irradiation dose of 0–1.5 MGy. Furthermore, the comparison between the studied BF composite and reported polymer and composite materials was done for evaluating the γ resistance property of BF composite. - Highlights: • The properties of basalt fiber reinforced epoxy resin matrix composite under "6"0Co γ irradiation up to 2.0 MGy were studied. • Basalt fiber can weaken the aging effects of γ irradiation on the resin matrix. • Tensile property of basalt fiber composite remains stable and flexural property has a low degree of attenuation. • Basalt fiber composite is an ideal candidate of structural material for nuclear industry.

  8. Low-Ti basalts from the Faroe Islands constrain the early Iceland depleted plume component

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin

    New Sr, Nd, Hf and high precision Pb isotope analyses of 46 Faroese low-Ti lavas erupted at the rifting of the proto-North Atlantic ~56-55 Ma ago are presented. The low-Ti lavas are depleted, MORB-like basalts erupted close to the riftzone at the same time as enriched high-Ti basalts were erupted...... away from the rift . The low-Ti samples include a large proportion of high-MgO basalts and can be related by a common model of low-pressure fractionation. Fractionation correction to 13 % MgO shows only little variation in their primitive major element contents, suggesting very similar origins...

  9. Study of crystallization of a basalt glass; Estudo de cristalizacao de um vidro de basalto

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Fernando Takahiro; Hashizume, Camila Mina; Toffoli, Samuel Marcio, E-mail: toffoli@usp.b [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais

    2009-07-01

    Basalt vitreous ceramics posses industrial importance by presenting high mechanical resistance to the abrasion. It was studied the obtention and the crystallization of a glass obtained from a basalt of Campinas, Sao Paulo, Brazil, aiming to develop a material with great abrasive resistance. Fusions were made at 1400 deg Celsius in electrical oven and in alumina crucible, of fine residues of basalt mining. The obtained glass was treated in a crystallization temperature of 880 deg Celsius, determined by DSC, by various time of treatment. The present main crystalline phases, detected by XRD, were the magnesium-ferrite (MgFe{sub 2}O{sub 4}) and the diopsid Ca(Mg,Fe,Al)(Si,Al){sub 2}O{sub 6}. Analysing the density by the Archimedes methodology and the DRX it was possible to follow the crystallization kinetic up.

  10. Geochemistry of the earth mantle: distribution of trace elements in the basaltic magma Pt. 1

    International Nuclear Information System (INIS)

    Joron, J.-L.; Jaffrezic, H.; Treuil, M.

    1982-01-01

    A method for the study of petrogenetic processes by geochemical reasoning based on the chemical analysis of ''hygromagmaphil'' elements in rock suites has recently been applied in our laboratory to suites of oceanic basalts sampled during the I.P.O.P. (International Program for Ocean Drilling) program and several French missions in the North Atlantic (FAMOUS-VEMA-MAPCO). The main conclusions derived from this extensive data are as follows. We confirm that magma sources for the oceanic basalts are to be found in two distinctive mantle domains. To the large scale heterogeneity a smaller scale complex one is superimposed. Intermediate mantle source characteristics may also be found. Mantle source zonation is, at least in part, an old feature as borne out by off ridge metamorphosed basalts. (author)

  11. Preparation of Basalt Incorporated Polyethylene Composite with Enhanced Mechanical Properties for Various Applications

    Directory of Open Access Journals (Sweden)

    Bredikhin Pavel

    2017-01-01

    Full Text Available The present article showed the possibility of increasing the complex of mechanical properties of polyolefins with dispersed mineral fillers obtained by fine grinding of basalt rocks via ball mill processing. The composites based on dispersed basalt, which were derived from Samara rock mass (Russia with rare earth elements containing, were obtained by extrusion combining the binder and filler, followed by preparation injection-molded test samples. The study of mechanical properties of materials developed showed the possibility of a significant increase in strength characteristics of different types of polyethylene: the breaking stress at static bending for HDPE can be increasing more than 60% and the impact strength by more than 4 times. In addition the incorporation of the dispersed basalt also enhanced the thermal properties of the composites (the oxygen index of HDPE increases from 19 to 25%.

  12. water alteration processes and kinetics of basaltic glasses, natural analogue of nuclear glasses

    International Nuclear Information System (INIS)

    Techer, I.; Advocat, Th.; Vernaz, E.; Lancelot, J.R.; Liotard, J.M.

    1997-01-01

    Dissolution experiments of a basaltic glass were carried out at 90 deg C for different reaction progresses. The initial dissolution rate was compared with values obtained for rhyolitic glass and the R7T7 nuclear glass. The activation energy was also determined by computing literature data. The results provide similar reactional mechanism for basaltic and nuclear glasses. Dissolution rates measured under saturation conditions were compared to theoretical dissolution rates. These ones were calculated using two kinetic models: the first rate equation is the Grambow's law which only takes into account ortho-silica acid activity; the second rate equation was proposed by Daux et al., where silica and aluminum are combined to formulate the affinity. The comparison between experimental and theoretical results point out that these two models are not appropriate to describe the alteration kinetic of basaltic glasses. (authors)

  13. Effect of chromate action on morphology of basalt-inhabiting bacteria

    International Nuclear Information System (INIS)

    Lin Zhang; Zhu Ying; Kalabegishvili, Tamaz L.; Tsibakhashvili, Nelly Y.; Holman, Hoi-Ying

    2006-01-01

    Basalt-inhabiting bacteria isolated from polluted basalts have been demonstrated to be able to tolerate moderate to high concentrations of chromium oxyanions such as chromate. Previous results have shown that macromolecules outside the cell wall of bacteria may play an important role in this survival ability. In this paper, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were applied to study the chromate-induced morphological changes in chromate-resistant basalt-inhabiting Arthrobacter K-2 and K-4, which were isolated from the Republic of Georgia. The surfaces of both strains changed in the presence of chromate. TEM thin sections show that chromate stimulates the appearance of bacteria capsular polysaccharide outside the cell wall, although the chromate concentration does not have a strong effect on the capsular thickness. These results, in conjunction with those reported earlier, provide direct evidence to show that capsular polysaccharides of the bacteria play very important role for the reduction and localization of chromate

  14. 40Ar-39Ar age determinations on the Owyhee basalt of the Columbia plateau

    International Nuclear Information System (INIS)

    Bottomley, R.J.; York, D.

    1976-01-01

    40 Ar/ 39 Ar step-heating analyses have been performed on 11 samples of basalt from sites near Owyhee Reservoir of southeastern Oregon, U.S.A. These rocks were extruded during the great flood basalt episode of the Pacific Northwest. The whole-rock points are highly correlated on a plot of 40 Ar/ 36 Ar versus 39 Ar/ 36 Ar, corresponding to a common age of the samples of 14.3+-0.3 m.y. Inspite of this, individual 'plateau' plots of the age versus fraction of 39 Ar released do not give good plateaux. These age spectra exhibit to varying degrees a common structure in which lower age values are found at higher temperatures. This pattern may result from a closed-system redistribution of the argon isotopes. The usefulness of grinding the basalts in removing a loosely held atmospheric argon component is confirmed. (Auth.)

  15. Bibliography of geologic studies: Columbia Plateau (Columbia River Basalt) and adjacent areas in Idaho

    International Nuclear Information System (INIS)

    Strowd, W.

    1978-11-01

    The objective of this compilation is to present a comprehensive listing of published, unpublished, and open-file references pertaining to the geology of the Columbia Plateau and adjacent areas in the State of Idaho. The bibliography was compiled in support of Rockwell's Basalt Waste Isolation Program that is evaluating the feasibility of nuclear waste storage in the Columbia River Basalt Group. The emphasis is on stratigraphy, structural geology, seismicity, and tectonics, although the nature of Columbia River Basalt distribution in Idaho has necessitated the inclusion of a sizeable collection of references on geology marginal to the Columbia Plateau and associated mineral resources. The bibliography is divided into two major sections, the alphabetical listing of all references and the subject index. The subject index is divided into 19 categories to facilitate locating a specific reference in the user's field of interest

  16. Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics.

    Science.gov (United States)

    La Spina, G; Burton, M; De' Michieli Vitturi, M; Arzilli, F

    2016-12-12

    Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism.

  17. Studies of Basalt Through Laser Induced Breakdown Spectroscopy (LIBS for the Manufacturing of Lapilli Blocks

    Directory of Open Access Journals (Sweden)

    Ismael De la Viuda-Pérez

    2016-10-01

    Full Text Available Basaltic samples selected from different areas of Tenerife were analyzed by applying laser induced breakdown spectroscopy (LIBS, Raman spectroscopy and X Ray Diffraction (XRD in order to identify the basic chemical composition and mineralogy. The basic composition obtained from the analysis was: O, F, Na, K, Mg, Al Si, Ca, Ti and Fe. Raman spectroscopic and XRD analyses indicated a basaltic mineralogy which is consistent with the basic composition results obtained from LIBS. The results of the analyses carried out using portable instrumentation proved the suitability of the LIBS, specially combined with the Raman spectroscopy for their application in the mineralogical-chemical identification in the areas where basalts and lapilli are extracted for construction works in Tenerife.

  18. Impact behavior of basalt/epoxy composite: Comparison between flat and twill fabric

    Science.gov (United States)

    Papa, I.; Ricciardi, M. R.; Antonucci, V.; Langella, A.; Lopresto, V.

    2018-05-01

    Two types of basalt fibre reinforced epoxy laminates were realized by overlapping flat and twill woven basalt fabrics by resin infusion. Rectangular specimens, cut from the panels were impacted at penetration and at increasing energy values, to investigate the damage onset and propagation. A non-destructive technique, Ultrasound testing (UT), was adopted to investigate the internal damage. Despite the difficulties to obtain information by UT method due to the high amount of signal absorbed, the technique, properly calibrated, proved to be very useful in providing information about the presence, the shape and the extent of the delaminations. The results were compared at the aim to investigate the effect of the fiber architecture (textile). The experimental results indicate a similar impact behavior between basalt flat and twill composites but in the case of the twill a minor delaminated area was detected, even if a higher absorbed energy was recorded

  19. Study of inflammatory responses to crocidolite and basalt wool in the rat lung.

    Science.gov (United States)

    Adamis, Z; Kerényi, T; Honma, K; Jäckel, M; Tátrai, E; Ungváry, G

    2001-03-09

    The subacute effects of crocidolite and basalt wool dusts were studied by nmeans of biochemical, morphological. and histological methods 1 and .3 mo after intrabronchial instillation. The cell count, protein and phospholipid contents, and lactate dehydrogenase (LDH) activity were determined in the bronchoalveolar lavage (BAL). Both types of fibers induced a prolonged inflammatory reaction in the lung. All the parameters studied in the experimental groups were more markedly elevated after 3 mo. Relative to the control, the protein and LDH values were increased three- to fivefold, the phospholipid content twofold, and the number of free cells in the BAL exceeded the control level up to ninefold. The inflammatory responses to crocidolite and basalt wool in the lung did not differ significantly. In spite of this, basalt wool is recoinmended as an asbestos substitute, as the use of this man-nade fiber may result in a significantly lower release of dust than that from crocidolite.

  20. A study on the crushing behavior of basalt fiber reinforced composite structures

    Science.gov (United States)

    Pandian, A.; Veerasimman, A. P.; Vairavan, M.; Francisco, C.; Sultan, M. T. H.

    2016-10-01

    The crushing behavior and energy absorption capacity of basalt fiber reinforced hollow square structure composites are studied under axial compression. Using the hand layup technique, basalt fiber reinforced composites were fabricated using general purpose (GP) polyester resin with the help of wooden square shaped mould of varying height (100 mm, 150 mm and 200 mm). For comparison, similar specimens of glass fiber reinforced polymer composites were also fabricated and tested. Axial compression load is applied over the top end of the specimen with cross head speed as 2 mm/min using Universal Testing Machine (UTM). From the experimental results, the load-deformation characteristics of both glass fiber and basalt fiber composites were investigated. Crashworthiness and mode of collapse for the composites were determined from load-deformation curve, and they were then compared to each other in terms of their crushing behaviors.

  1. Influence of length-to-diameter ratio on shrinkage of basalt fiber concrete

    Science.gov (United States)

    Ruijie, MA; Yang, Jiansen; Liu, Yuan; Zheng, Xiaojun

    2017-09-01

    In order to study the shrinkage performance of basalt concrete, using the shrinkage rate as index, the work not only studied the influence of different length-to-diameter ratio (LDR) on plastic shrinkage and drying shrinkage of basalt fiber concrete, but also analyzed the action mechanism. The results show that when the fiber content is 0.1%, the LDR of 800 and 1200 take better effects on reducing plastic shrinkage, however the fiber content is 0.3%, that of LDR 600 is better. To improve drying shrinkage, the fiber of LDR 800 takes best effect. In the concrete structure, the adding basalt fibers form a uniform and chaotic supporting system, optimize the pore and the void structure of concrete, make the material further compacted, reduce the water loss, so as to decrease the shrinkage of concrete effectively.

  2. Wear Characterization of Aluminium/Basalt Fiber Reinforced Metal Matrix Composites - A Novel Material

    Directory of Open Access Journals (Sweden)

    P. Amuthakkannan

    2017-06-01

    Full Text Available Aluminum alloy based metal matrix composite participate have a wider applications in wear resistance applications. Attempt made in current study is that, basalt fiber reinforced aluminum metal matrix composite have been prepared using stir casting method. Different weight percentage of basalt fiber reinforced with Al (6061 metal matrix composites are used to study the wear resistance of the composites. For wear study, percentage of reinforcement, normal load and sliding velocity are the considered as important parameters. To study the effect of basalt fiber reinforcement on the dry sliding wear of Al6061 alloy composites the Pin On wear tester is used. Initially hardness of the composites was tested, it was found that increasing reinforcement in the composite hardness value of the composites also increased. Based on the Grey relation analysis (GRA the effects of wear resistance of the composites were studied.

  3. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    Science.gov (United States)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  4. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    Science.gov (United States)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  5. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2006-04-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  6. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2007-08-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  7. The petrogenesis of Gorgona komatiites, picrites and basalts: new field, petrographic and geochemical constraints

    Science.gov (United States)

    Kerr, A. C.; Marriner, G. F.; Arndt, N. T.; Tarney, J.; Nivia, A.; Saunders, A. D.; Duncan, R. A.

    1996-04-01

    Gorgona Island, Colombia is remarkable not only because it contains the only Phanerozoic komatiites, but also because it has mafic to ultramafic lavas with a wide range of compositions, from moderately enriched to extremely depleted (relative to Bulk Earth). The komatiite flows are, in many respects similar to Archaean komatiites; they formed from MgO-rich (18%) liquids and have upper spinifex zones and lower cumulate zones. The cumulate zones of Archaean komatiites contain many solid grains, in contrast more than 90% of the olivine in the Gorgona cumulates is highly skeletal. This combined with the fact that the Gorgona cumulate zones are thinner than those in Archaean komatiites, suggests that the komatiite magma became strongly superheated en route to the surface. The komatiites have trace element contents intermediate between those of the basalts and the ultramafic tuffs. Some basalts have isotope compositions indicative of long-term enrichment in incompatible elements, whereas other basalts and ultramafic volcanics have isotopic signatures that imply corresponding depletion. It is apparent that the plume source region of the Gorgona magmas was markedly heterogeneous, with at least two source components contributing to the observed variation in composition. This heterogeneity may have resulted from the incorporation of different components into the plume source, or it may be the result of complex melting and melt extraction processes during the ascent of a heterogeneous plume. Despite earlier suggestions that there may have been a significant age gap between depleted komatiite and basalt flows and the enriched basalts, new 40Ar- 39Ar dating of basalts and gabbros are more consistent with all being generated at 87 Ma during formation of the Caribbean/Colombian plateau, possibly at the Galapagos hotspot.

  8. Asthenosphere versus lithosphere as possible sources for basaltic magmas erupted during formation of the Red Sea

    International Nuclear Information System (INIS)

    Altherr, R.; Henjes-Kunst, F.; Baumann, A.

    1990-01-01

    Representative basalts from the axial trough of the Red Sea and from volcanic fields of the Arabian Peninsula ranging in composition from N-type MORB to basanite and in age from Early Miocene to Recent show a limited variation in their isotopic compositions: 87 Sr/ 86 Sr = 0.70240-0.70361, 206 Pb/ 204 Pb = 18.040-19.634, 207 Pb/ 204 Pb = 15.496-15.666, 208 Pb/ 204 Pb = 37.808-39.710, 143 Nd/ 144 Nd = 0.513194-0.512670. There is a poorly constrained correlation between chemical composition and isotope ratios: with increasing alkalinity, Sr and Pb isotope ratios increase and the Nd isotope ratio tends to decrease. In Pb isotope variation diagrams most of the basalts plot significantly above the NHRLs, irrespective of tectonic setting, i.e. thickness of underlying crust and/or lithosphere. MORBs from the axial trough of the Red Sea have higher Pb isotope ratios for a given 87 Sr/ 86 Sr than MORBs from the Indian Ocean ridges, including the Carlsberg Ridge. It is therefore suggested that both spreading ridges tap different convective systems in the asthenosphere. The tectonic setting of the basalts is reflected in their Nd-Sr isotope characteristics. Basalts from areas where the continental lithosphere is drastically thinned or absent (i.e. Red Sea axial trough and coastal plain, Afar) plot along a reference line defined by N-type MORB and Tristan da Cunha. Basalts erupted in areas with Pan-African crust of normal thickness and moderately thinned lithospheric mantle (i.e. rift shoulder) are characterized by relative low 143 Nd/ 144 Nd ratios and plot below the reference line towards an EM I component which is also found in the subcontinental lithospheric mantle. These differences in the Nd-Sr isotopic compositions of the basalts are independent of bulk-rock chemistry and are therefore controlled by tectonic setting alone. (orig./WL)

  9. High-level waste-basalt interactions. Annual progress report, February 1, 1977--September 30, 1977

    International Nuclear Information System (INIS)

    McCarthy, G.J.; Scheetz, B.E.

    1978-05-01

    Commercial radioactive waste can be placed under ground in a basalt repository to contain significant amounts of radioactive decay heat for the first hundred or so years, which constitutes the ''thermal period'' of waste isolation, if the feasibility is determined that a basalt geology is a suitable medium for storage of radioactive wastes. Several physical-chemical changes analogous to natural geochemical processes can occur in and around this repository during the thermal period. The waste canister can act as a heat source and cause changes in the mineralogy and properties of the surrounding basalts. Geochemically, this is ''contact metamorphism.'' This phenomenon needs to be investigated because it could affect the behavior of the basalt with regard to migration of long-lived radionuclides away from the immediate repository. It is well known that even the relatively low-grade hydrothermal conditions possible in the repository (temperatures up to 400 degrees Centigrade; pressures up to 300 bars) can cause extensive modifications in rocks and minerals. At the end of the thermal period, the residue of the original waste plus the waste-basalt interaction products would constitute the actual waste form (or ''source term'') subject to the low-temperature leaching and migration processes under investigation in other laboratories. During the last eight months of fiscal year 1977, a program was initiated at The Pennsylvania State University which had as its objective the determination of the nature and implication of any chemical or mineralogical changes in, or interactions between, each candidate radioactive waste form and representative Columbia River Basalt under the various relevant repository conditions during the thermal period. Results of these investigations are given

  10. High-level waste-basalt interactions. Annual progress report, February 1, 1977--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, G.J.; Scheetz, B.E.

    1978-05-01

    Commercial radioactive waste can be placed under ground in a basalt repository to contain significant amounts of radioactive decay heat for the first hundred or so years, which constitutes the ''thermal period'' of waste isolation, if the feasibility is determined that a basalt geology is a suitable medium for storage of radioactive wastes. Several physical-chemical changes analogous to natural geochemical processes can occur in and around this repository during the thermal period. The waste canister can act as a heat source and cause changes in the mineralogy and properties of the surrounding basalts. Geochemically, this is ''contact metamorphism.'' This phenomenon needs to be investigated because it could affect the behavior of the basalt with regard to migration of long-lived radionuclides away from the immediate repository. It is well known that even the relatively low-grade hydrothermal conditions possible in the repository (temperatures up to 400 degrees Centigrade; pressures up to 300 bars) can cause extensive modifications in rocks and minerals. At the end of the thermal period, the residue of the original waste plus the waste-basalt interaction products would constitute the actual waste form (or ''source term'') subject to the low-temperature leaching and migration processes under investigation in other laboratories. During the last eight months of fiscal year 1977, a program was initiated at The Pennsylvania State University which had as its objective the determination of the nature and implication of any chemical or mineralogical changes in, or interactions between, each candidate radioactive waste form and representative Columbia River Basalt under the various relevant repository conditions during the thermal period. Results of these investigations are given.

  11. Hydrochemistry and hydrogeologic conditions within the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Webber, W.D.

    1995-09-01

    As part of the Hanford Site Ground-Water Surveillance Project, Flow System Characterization Task. Pacific Northwest Laboratory examines the potential for offsite migration of contamination within the upper basalt confined aquifer system for the US Department of Energy (DOE). As part of this activity, groundwater samples were collected over the past 2 years from selected wells completed in the upper Saddle Mountains Basalt. The hydrochemical and isotopic information obtained from these groundwater samples provides hydrologic information concerning the aquifer-flow system. Ideally, when combined with other hydrologic property information, hydrochemical and isotopic data can be used to evaluate the origin and source of groundwater, areal groundwater-flow patterns, residence and groundwater travel time, rock/groundwater reactions, and aquifer intercommunication for the upper basalt confined aquifer system. This report presents the first comprehensive Hanford Site-wide summary of hydrochemical properties for the upper basalt confined aquifer system. This report provides the hydrogeologic characteristics (Section 2.0) and hydrochemical properties (Section 3.0) for groundwater within this system. A detailed description of the range of the identified hydrochemical parameter subgroups for groundwater in the upper basalt confined aquifer system is also presented in Section 3.0. Evidence that is indicative of aquifer contamination/aquifer intercommunication and an assessment of the potential for offsite migration of contaminants in groundwater within the upper basalt aquifer is provided in Section 4.0. The references cited throughout the report are given in Section 5.0. Tables that summarize groundwater sample analysis results for individual test interval/well sites are included in the Appendix

  12. Effects of Elevated Temperature Treatment on Compositions and Tensile Properties of Several Kinds of Basalt Fibers

    Directory of Open Access Journals (Sweden)

    CHEN Jing

    2017-06-01

    Full Text Available Five kinds of domestic basalt fibers were studied for the changes of chemical compositions, physical properties and tensile properties of these fibers before and after 200-800℃ treatment in air atmosphere and in nitrogen atmosphere. These works were done mainly by means of X-ray fluorescence spectrometry and fiber monofilament tensile testing methods in order to understand the elevated temperature resistance of basalt fiber. The experimental results show that the surface of basalt fibers becomes smoother with slightly smaller in diameter and mass reduction at the same time, due to the removal of fiber surface treatment agent after elevated temperature treatment in air atmosphere. Mass fractions of SiO2 and Al2O3 decrease while mass fractions of FeO+Fe2O3, CaO and MgO increase, among which the mass fraction of FeO+Fe2O3 increase the most with the maximum increase of 21%. The monofilament tensile strength of basalt fiber is reduced after 200℃ treatment and the maximum strength retention percentage is 98.3%. The monofilament tensile strength reduces evidently after 400℃ treatment and the maximum strength retention percentage is 64.6%. Moreover, the strength retention percentages of five kinds of basalt fibers are all less than 20% after 800℃ treatment. In addition, the fiber elongation at break decreases with the increase of treating temperature and the elastic modulus increases. Compared with that in air atmosphere, strength retention rate of basalt fiber is higher and tensile properties are more stable in nitrogen atmosphere.

  13. Sr isotopic evidence on the spilitic degradation of the Deccan basalt

    International Nuclear Information System (INIS)

    Subbarao, K.V.

    2000-01-01

    Similar Sr isotopic ratios (∼0.7055) for the tholeiite-spilite flow unit and the associated mineral phases, of Bombay (Deccan Traps) provide a direct evidence for the spilitic degradation of tholeiite. In contrast, a dramatic increase in the rare earth elements (REE) from basalt to spilite is rather puzzling as rare earths are considered to be relatively immobile. The geochemistry thus suggests that the process of spilitization is due to the reaction with a complex fluid having identical Sr-isotopic composition as that of the basaltic magma-thereby masking the details of the mixing process. (author)

  14. Technical conservatism in the design and analysis of a nuclear-waste repository in basalt

    International Nuclear Information System (INIS)

    Jones, K.A.

    1982-01-01

    The US Department of Energy's National Waste Terminal Storage Program has adopted a policy of technical conservatism to guide the design and analysis of geologic disposal systems for commercial high-level radioactive waste. Technical conservatism serves as the programmatic philosophy for managing uncertainty in the performance of the disposal system. The implementation of technical conservatism as applied to a nuclear waste repository in basalt is discussed. Preliminary assessments of the performance of the waste package, repository, and site subsystems are compared to key proposed regulatory criteria. The comparison shows that there are substantial safety margins in the predicted performance of the nuclear waste repository in basalt

  15. Review of the upper Cenozoic stratigraphy overlying the Columbia River Basalt Group in western Idaho

    International Nuclear Information System (INIS)

    Strowd, W.B.

    1980-12-01

    This report is a synthesis of information currently available on the rocks that stratigraphically overlie the Columbia River Basalt Group in Idaho. The primary objective is to furnish a brief but comprehensive review of the literature available on upper Cenozoic rocks in western Idaho and to discuss their general stratigraphic relationships. This study also reviews the derivation of the present stratigraphy and notes weaknesses in our present understanding of the geology and the stratigraphy. This report was prepared in support of a study to evaluate the feasibility of nuclear waste storage in the Columbia River Basalt Group of the Pasco Basin, Washington

  16. Petrology and chemistry of the Huntzinger flow, Columbia River basalt, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Ward, A.W. Jr.

    1976-11-01

    Drill core samples of basalts of the Columbia River Group from the Hanford Reservation reveal a spotted, diabasic flow of up to 60 meters in thickness. These samples and those from the flow outcropping at Wahatis Peak (Saddle Mountains, Washington) were examined in detail to document intraflow textural, mineralogical, and chemical variations, which are of importance in basalt flow correlations. Analyses were by atomic absorption, instrumental neutron activation, electron microprobe, natural gamma well logging, K-Ar age dating, X-ray fluorescence, field (portable) magnetometer, and petrographic microscope.

  17. Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments

    Directory of Open Access Journals (Sweden)

    Karen Olsson-Francis

    2017-09-01

    Full Text Available Bio-signatures play a central role in determining whether life existed on early Mars. Using a terrestrial basalt as a compositional analog for the martian surface, we applied a combination of experimental microbiology and thermochemical modeling techniques to identify potential geochemical bio-signatures for life on early Mars. Laboratory experiments were used to determine the short-term effects of biota on the dissolution of terrestrial basalt, and the formation of secondary alteration minerals. The chemoorganoheterotrophic bacterium, Burkholderia sp. strain B_33, was grown in a minimal growth medium with and without terrestrial basalt as the sole nutrient source. No growth was detected in the absence of the basalt. In the presence of basalt, during exponential growth, the pH decreased rapidly from pH 7.0 to 3.6 and then gradually increased to a steady-state of equilibrium of between 6.8 and 7.1. Microbial growth coincided with an increase in key elements in the growth medium (Si, K, Ca, Mg, and Fe. Experimental results were compared with theoretical thermochemical modeling to predict growth of secondary alteration minerals, which can be used as bio-signatures, over a geological timescale. We thermochemically modeled the dissolution of the basalt (in the absence of biota in very dilute brine at 25°C, 1 bar; the pH was buffered by the mineral dissolution and precipitation reactions. Preliminary results suggested that at the water to rock ratio of 1 × 107, zeolite, hematite, chlorite, kaolinite, and apatite formed abiotically. The biotic weathering processes were modeled by varying the pH conditions within the model to adjust for biologic influence. The results suggested that, for a basaltic system, the microbially-mediated dissolution of basalt would result in “simpler” secondary alteration, consisting of Fe-hydroxide and kaolinite, under conditions where the abiotic system would also form chlorite. The results from this study demonstrate

  18. Estimation of the geological age of oceanic basalts by track method

    International Nuclear Information System (INIS)

    Komarov, A.N.; Krylov, A.Ya.

    1977-01-01

    The method is described of the determination of the thermostability of tracks applied to oceanic basalts and the comparison is carried out of age values obtained for the same samples by the track method and by the potassium-argon method. The obtained results allow to consider that the track method is quite practicable for the dating of oceanic basalts on the condition that natural annealing of a part of tracks of the spontaneous uranium fission is taken into accout. For glasses of the other origin - tektites - such approach results in the agreement of the obtained values with the results of potassium-argon method

  19. Hydrologic bibliography of the Columbia River basalts in Washington with selected annotations

    International Nuclear Information System (INIS)

    Tanaka, H.; Wildrick, L.; Pearson, B.

    1979-08-01

    The objective of this compilation is to present a comprehensive listing of the published, unpublished, and open file references pertaining to the surface and subsurface hydrology of the Columbia River basalts within the State of Washington and is presented in support of Rockwell's hydrologic data compilation effort for the Basalt Waste Isolation Program. A comprehensive, annotated bibliography of the Pasco Basin (including the Hanford Site) hydrology has been prepared for Rockwell as part of the Pasco Basin hydrology studies. In order to avoid unnecessary duplication, no effort was made to include a complete list of bibliographic references on Hanford in this volume

  20. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    International Nuclear Information System (INIS)

    Nerilli, Francesca; Vairo, Giuseppe

    2016-01-01

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  1. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nerilli, Francesca [Unicusano - Università degli Studi Niccolò Cusano Telematica Roma, 00166 Rome (Italy); Vairo, Giuseppe [Università degli Studi di Roma “Tor Vergata”- (DICII), 00133 Rome (Italy)

    2016-06-08

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  2. Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada

    Science.gov (United States)

    Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.

    1989-01-01

    The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled

  3. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    Science.gov (United States)

    Nerilli, Francesca; Vairo, Giuseppe

    2016-06-01

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  4. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  5. Thermobarometry for spinel lherzolite xenoliths in alkali basalts

    Science.gov (United States)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; Nagahara, Hiroko

    2016-04-01

    geothermobarometry based on reactions with large and distinct volume changes, is necessary. Specification of mineral domains and their components representing the thermal state of the mantle just before xenolith extraction is one of the major tasks for the establishment of reliable geothermobarometry for spinel lherzolite xenoliths. Systematic variations of such mineralogical information among xenoliths transported by a single volcanic eruption guarantees proper estimation of a mantle geotherm. For the development of such geobarometry, it is important to choose appropriate xenolith locality, where previous studies provide enough information and where many xenolith samples are available for extending a range of derivation depth. Spinel lherzolite xenoliths in alkali basalts from Bou Ibalhatene maars in the Middle Atlas in Morocco are suitable study target. Geochemical, geochronological, petrological, and rheological aspects of the spinel lherzolite xenoliths have been studied (Raffone et al. 2009; El Messbahi et al., 2015; Witting et al., 2010; El Azzouzi et al., 2010), which show that they represent fragments of the lithospheric mantle formed and modified since 1.7Ga before their extraction from Miocene to recent. We have pinpointed portions of minerals in the xenolith samples and their components representing condition just before their entrapment in magmas, on which appropriate geothermobarometers are applied and detected ~0.5GPa pressure difference (1.5-2.0GPa) for ~100°C variation in temperatures (950-1050°C).

  6. Thermal Demagnetization of Mare Basalts 10017 and 10020

    Science.gov (United States)

    Suavet, C. R.; Weiss, B. P.; Grove, T. L.

    2012-12-01

    unstable. The fact that the NRM and the ARM have similar behavior upon heating confirms that the magnetization is a TRM. We compared the AF demagnetization of a 0.1 mT ARM before and after heating a subsample of 10017 up to 250°C: there was no change in the coercivity spectrum, which shows that the demagnetization was not due to alteration of the magnetic carriers. The thermal demagnetization of a subsample of 10017 with a saturation isothermal magnetization (SIRM) does not show a Curie point at 250°C. Therefore, the low-temperature demagnetization of mare basalts 10017 and 10020 is real. It could be caused by a defect magnetization of troilite, interaction between troilite and kamacite, presence of cohenite, or an unknown phenomenon.

  7. Performance allocation traceable to regulatory criteria as applied to site characterization work at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    Deju, R.A.; Babad, H.; Bensky, M.S.; Jacobs, G.K.

    1983-01-01

    The Basalt Waste Isolation Project has developed a method for defining in detail the work required to demonstrate the feasibility of emplacing and providing for the safe isolation of nuclear wastes in a repository in the deep basalts at the Hanford Site near Richland, Washington. Criteria analysis allows the identification of areas of significant technical uncertainty or controversy that can be highlighted as issues. A preliminary analysis has been conducted, which, by identifying key radionuclides and allocating performance among the multiple barriers in a repository constructed in a basalt, allows the design and development testing activities at the Basalt Waste Isolation Project to be put into perspective. Application of sophisticated uncertainty analysis techniques will allow refinements in the analysis to be made and to further guide characterization and testing activities. Preliminary results suggest that a repository constructed in basalt will provide for the safe isolation of nuclear wastes in a cost-effective and reliable manner with a high degree of confidence

  8. Investigation of novel composite material based on extra-heavy concrete and basalt fiber for gamma radiation protection properties

    International Nuclear Information System (INIS)

    Romanenko, Yi.M.; Nosovs'kij, A.V.; Gulyik, V.Yi.; Golyuk, M.Yi.

    2018-01-01

    The paper presents a new composite material for radiation protection based on extra-heavy concrete reinforced by basalt fiber. Basalt fiber is a new material for concrete reinforcement, which provides improved mechanical characteristics of concrete, reduces the level of microcracks and increases the durability of concrete. Within the scope of present work, the gamma-ray radiation protection properties of concrete reinforced with basalt fiber was modeled. Two types of extra-heavy concrete were used for this paper. The main gamma-ray attenuation coefficients such as mean atomic number, mean atomic mass, mean electron density, effective atomic number, effective electron density, Murty effective atomic number were analyzed with help of WinXCom software. It has been shown that the addition of basalt fiber to concrete does not impair its gamma-ray radiation shielding properties. With increasing the basalt fiber dosage in concrete, the radiation properties against gamma radiation are improved.

  9. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars

    Science.gov (United States)

    McSween, H.Y.; Wyatt, M.B.; Gellert, Ralf; Bell, J.F.; Morris, R.V.; Herkenhoff, K. E.; Crumpler, L.S.; Milam, K.A.; Stockstill, K.R.; Tornabene, L.L.; Arvidson, R. E.; Bartlett, P.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Des Marais, D.J.; Economou, T.; Farmer, J.D.; Farrand, W.; Ghosh, A.; Golombek, M.; Gorevan, S.; Greeley, R.; Hamilton, V.E.; Johnson, J. R.; Joliff, B.L.; Klingelhofer, G.; Knudson, A.T.; McLennan, S.; Ming, D.; Moersch, J.E.; Rieder, R.; Ruff, S.W.; Schrorder, C.; de Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Yen, A.; Zipfel, J.

    2006-01-01

    Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times. Copyright 2006 by the American Geophysical Union.

  10. Effect of Elevated Temperature on the Residual Properties of Quartzite, Granite and Basalt Aggregate Concrete

    Science.gov (United States)

    Masood, A.; Shariq, M.; Alam, M. Masroor; Ahmad, T.; Beg, A.

    2018-05-01

    In the present study, experimental investigations have been carried out to determine the effect of elevated temperature on the residual properties of quartzite, granite and basalt aggregate concrete mixes. Ultrasonic pulse velocity and unstressed residual compressive strength tests on cube specimens have been conducted at ambient and after single heating-cooling cycle of elevated temperature ranging from 200 to 600 °C. The relationship between ultrasonic pulse velocity and residual compressive strength of all concrete mixes have been developed. Scanning electron microscopy was also carried out to study micro structure of quartzite, granite and basalt aggregate concrete subjected to single heating-cooling cycle of elevated temperature. The results show that the residual compressive strength of quartzite aggregate concrete has been found higher than granite and basalt aggregate concrete at ambient and at all temperatures. It has also been found that the loss of strength in concrete is due to the development of micro-cracks result in failure of cement matrix and coarse aggregate bond. Further, the basalt aggregate concrete has been observed lower strength due to low affinity with Portland cements ascribed to its ferro-magnesium rich mineral composition.

  11. Comparison of mechanical properties and structural changes of continous basalt and glass fibres at elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Glogar, Petr; Goliáš, V.; Hruška, J.; Jakeš, P.; Sucharda, Zbyněk; Vávrová, I.

    2007-01-01

    Roč. 51, č. 2 (2007), s. 82-88 ISSN 0862-5468 R&D Projects: GA ČR GA106/05/0817 Institutional research plan: CEZ:AV0Z30460519 Keywords : basalt fibre * glass fibre * tensile properties Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.488, year: 2007

  12. From initiation to termination: a petrostratigraphic tour of the Ethiopian Low-Ti Flood Basalt Province

    Science.gov (United States)

    Krans, S. R.; Rooney, T. O.; Kappelman, J.; Yirgu, G.; Ayalew, D.

    2018-05-01

    Continental flood basalts (CFBs), thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insights into melt generation processes in large igneous provinces (LIPs). Despite the utility of CFBs in probing mantle plume composition, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of residence within the lithosphere provide additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well-preserved stratigraphic sequence from flood basalt initiation to termination, and is thus an important target for study of CFBs. This study examines modal observations within a stratigraphic framework and places these observations within the context of the magmatic evolution of the Ethiopian CFB province. Data demonstrate multiple pulses of magma recharge punctuated by brief shut-down events, with initial flows fed by magmas that experienced deeper fractionation (lower crust). Broad changes in modal mineralogy and flow cyclicity are consistent with fluctuating changes in magmatic flux through a complex plumbing system, indicating pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. The composition of plagioclase megacrysts suggests a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of volcanism, reaching an apex prior to flood basalt termination. The petrostratigraphic data sets presented in this paper provide new insight into the evolution of a magma plumbing system in a CFB province.

  13. Disruption of tephra fall deposits caused by lava flows during basaltic eruptions

    Science.gov (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2015-10-01

    Observations in the USA, Iceland and Tenerife, Canary Islands reveal how processes occurring during basaltic eruptions can result in complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents. Observations illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter sheet-form fall deposits. Complexity arises through synchronous and alternating effusive and explosive activity that results in intercalated lavas and tephra deposits. Tephra deposits can become disrupted into mounds and ridges by lateral and vertical displacement caused by movement (including inflation) of underlying pāhoehoe lavas and clastogenic lavas. Mounds of tephra can be rafted away over distances of 100 s to 1,000 s m from proximal pyroclastic constructs on top of lava flows. Draping of irregular topography by fall deposits and subsequent partial burial of topographic depressions by later lavas can result in apparent complexity of tephra layers. These processes, deduced from field relationships, have resulted in considerable stratigraphic complexity in the studied proximal regions where fallout was synchronous or alternated with inflation of subjacent lava sheets. These mechanisms may lead to diachronous contact relationships between fall deposits and lava flows. Such complexities may remain cryptic due to textural and geochemical quasi-homogeneity within sequences of interbedded basaltic fall deposits and lavas. The net effect of these processes may be to reduce the usefulness of data collected from proximal fall deposits for reconstructing basaltic eruption dynamics.

  14. Lithofacies of deep marine basalts emplaced on a Jurassic backarc apron, Baja California (Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Busby-Spera, C.J.

    1987-09-01

    Basalts of the mid-Jurassic Gran Canon Formation, Cedros Island, Mexico, were emplaced on a volcaniclastic apron in a deep marine backarc basin. Elongate pillows and lava tubes, as well as paleocurrent data from the volcaniclastic apron, indicate a southward regional paleoslope away from the island arc source. Basalts emplaced on relatively proximal parts of the apron are nearly entirely pillowed and have thick flow units with mega-pillows. Basalts on distal parts of the apron (about 15 to 20 km down paleo-current) are dominated by pillow fragment breccias (flow foot rubble), and individual lava flows are generally thin, with small pillows, suggesting that the distal ends of lava flows, erupted upslope, are represented. These distal flow fronts, however, are interstratified with features that typically form close to a vent, including thick massive to mega-pillowed lavas and lava tubes up to 8 m in diameter. It is inferred that a fissure (or system of fissures) extended from the arc into the backarc basin, erupting basalt lavas onto both proximal and distal parts of the volcaniclastic apron. Such intraplate volcanism may be common on the hot frontal arc side of backarc basins. 26 references.

  15. Overview of hydrothermal testing of waste-package barrier materials at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1982-01-01

    The current Waste Package Department (WPD) hydrothermal testing program for the Basalt Waste Isolation Project (BWIP) has followed a systematic approach for the testing of waste-barrier-basalt interactions based on sequential penetration of barriers by intruding groundwaters. Present test activities in the WPD program have focused on determining radionuclide solubility limits (or steady-state conditions) of simulated waste forms and the long-term stability of waste package barriers under site-specific hydrothermal conditions. The resulting data on solution compositions and solid alteration products have been used to evaluate waste form degradation under conditions specific to a nuclear waste repository located in basalt (NWRB). Isothermal, time-invariant compositional data on sampled solutions have been coupled with realistic hydrologic flow data for near-field and far-field modeling for the calculation of meaningful radionuclide release rates. Radionuclides that are not strongly sorbed or precipitated from solution and that, therefore, may require special attention to ensure their isolation within the waste package have been identified. Taken together, these hydrothermal test data have been used to establish design requirements for waste packages located in basalt

  16. Geophysical logging and hydrologic testing of deep basalt flows in the Rattlesnake Hills Well Number One

    International Nuclear Information System (INIS)

    Gephart, R.E.; Eddy, P.A.; Deju, R.A.

    1979-01-01

    Geophysical logging and hydrologic testing were conducted in the Rattlesnake Hills Well Number One located along the western boundary of the Hanford Site in south-central Washington. Three-dimensional velocity, Seisviewer and caliper logging were completed across 2,000 feet of basalt rock within the Wanapum and Grande Ronde formations. Drillstem testing focused along a 250-foot interval of the Grande Ronde Formation. Individual high- (approx. 2.7-2.9 grams per cubic centimeter) and low-density (approx. 2.3-2.6 grams per cubic centimeter) basalt zones within the Wanapum Formation are generally less than 50 feet thick. Within the estimated thickness of the Grande Ronde Formation, 85 percent of the low-density zones are less than 50 feet thick, compared to 55 percent of those of higher density. The Grande Ronde Formation has 13 high-density zones varying in thickness from 51 to 230 feet. Logging data suggest the thicknesses of low-density are independent of the thicknesses of the associated and underlying higher density columnar basalts. Eleven drillstem tests were conducted across selected intervals within the Grande Ronde Formation. Hydraulic conductivity values calculated for the low-density basalt zones ranged between 1.7 x 10 -7 and 3.8 x 10 -9 centimeters per second; those for high-density zones were between 1.1 x 10 -8 and 4.7 x 10 -9 centimeters per second

  17. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  18. Age relationships and tectonic implications of late Cenozoic basaltic volcanism in Northland, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I E.M. [Department of Geology, Auckland University, Auckland (New Zealand); Okada, T [Okayama University of Science, Hiruzen Research Institute, Okayama (Japan); Itaya, T [Okayama University of Science, Hiruzen Research Institute, Okayama (Japan); Black, P M [Department of Geology, Auckland University, Auckland (New Zealand)

    1993-07-01

    An episode of late Miocene-Recent essentially basaltic volcanism is the latest in a sequence of magmatic events recognised in the tectonically complex geological development of the Northland Peninsula. New K-Ar dates together with an extensive collection of new major and trace element chemical analyses prompt a reassessment of the significance of these late Cenozoic basalts. The main time/space groupings recognised are Tertiary volcanics in the Kaikohe-Bay of Islands, Puhipuhi, Ti Point, and Stony Batter areas and Quaternary basalts in the Kaikohe-Bay of Islands and Whangarei areas and at Tara. Basalts in the Kaikohe-Bay of Islands area are transitional to alkalic in character, while those in the south are transitional to tholeiitic, with the Ti Point and Stony Batter rocks being geochemically distinct. A consistent model for these observations is that the magmas originate from different levels of a layered mantle source in which the upper part carries a geochemical signature inherited from an earlier subduction event. (author). 27 refs., 7 figs., 1 tab.

  19. Apollo 12 feldspathic basalts 12031, 12038, and 12072; petrology, comparison and interpretations

    International Nuclear Information System (INIS)

    Beaty, E.W.; Hill, S.M.R.; Albee, A.L.; Baldridge, W.S.

    1979-01-01

    Modal and chemical data indicate that 12072, 12038, and 12031, the Apollo 12 feldspathic basalts, form a well-defined group which cannot be related to the other Apollo 12 rock types. 12072 contains phenocrysts of olivine and pigeonite and microphenocrysts of Cr-spinel set in a fine-grained, variolitic groundmass. 12038 is a medium-grained, equigranular basalt with a texture indicating it was multiply saturated. 12031 is a coarse-grained rock with granular to graphic intergrowths of pyroxene and plagioclase; it was also multiply saturated. Petrologic observations, as well as the bulk chemistry, are consistent with the interpretation that 12031 could be derived from 12072 through fractionation of Cr-spinel, olivine, and pigeonite, the observed phenocryst assemblage. 12038, however, contains more pigeonite, less olivine, three times as much Ca-phosphate minerals, one-fifth as much troilite, and much more sodic plagioclase than 12072. These differences indicate that 12038 must have come from a separate igneous body. Consideration of the bulk compositions indicates that neither 12072 and 12031 nor 12038 could have been derived from the Apollo 12 olivine, pigeonite, or ilmenite basalts by crystal--liquid fractionation. The general petrologic similarities between 12072, 12031, and the other Apollo 12 basalts suggests that they were produced in either the same or similar source regions. 12038, however, is petrologically and chemically unique, and is probably exotic to the Apollo 12 landing site

  20. The decompression of basaltic magma into a sub-surface repository

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.

    2002-01-01

    We examine the ascent of volatile-rich basaltic magma through a vertical dike that intersects a horizontal tunnel of comparable cross-sectional area to the dike and located 300 $m$ below the surface and initially filled with air at atmospheric pressure. This process is a simplified representation of

  1. Coevolution of hydrology and topography on a basalt landscape in the Oregon Cascade Range, USA

    Science.gov (United States)

    A. Jefferson; G.E. Grant; S.L. Lewis; S.T. Lancaster

    2010-01-01

    Young basalt terrains offer an exceptional opportunity to study landscape and hydrologic evolution through time, as the age of the landscape itself can be determined by dating lava flows. These constructional terrains are also highly permeable, allowing one to examine timescales and process of geomorphic evolution as they relate to the partitioning of hydrologic...

  2. Physiological and morphological characterization of basalt milkvetch (Astragalus filipes): Basis for plant improvement

    Science.gov (United States)

    Kishor Bhattarai; Douglas A. Johnson; Thomas A. Jones; Kevin J. Connors; Dale R. Gardner

    2008-01-01

    Astragalus filipes Torr. ex A. Gray (basalt milkvetch or threadstalk milkvetch) is a legume that is widely distributed in western North America andholds promise for revegetation and restoration programs in the western United States. Seed of 67 accessions was collected in 2003 from Utah, Nevada, Idaho, Oregon, California, and Washington. Field-collected forage samples...

  3. Heterogeneity in small aliquots of Apolllo 15 olivine-normative basalt: Implications for breccia clast studies

    Science.gov (United States)

    Lindstrom, Marilyn M.; Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Most of the recent advances in lunar petrology are the direct result of breccia pull-apart studies, which have identified a wide array of new highland and mare basalt rock types that occur only as clasts within the breccias. These rocks show that the lunar crust is far more complex than suspected previously, and that processes such as magma mixing and wall-rock assimilation were important in its petrogenesis. These studies are based on the implicit assumption that the breccia clasts, which range in size from a few mm to several cm across, are representative of the parent rock from which they were derived. In many cases, the aliquot allocated for analysis may be only a few grain diameters across. While this problem is most acute for coarse-grained highland rocks, it can also cause considerable uncertainty in the analysis of mare basalt clasts. Similar problems arise with small aliquots of individual hand samples. Our study of sample heterogeneity in 9 samples of Apollo 15 olivine normative basalt (ONB) which exhibit a range in average grain size from coarse to fine are reported. Seven of these samples have not been analyzed previously, one has been analyzed by INAA only, and one has been analyzed by XRF+INAA. Our goal is to assess the effects of small aliquot size on the bulk chemistry of large mare basalt samples, and to extend this assessment to analyses of small breccia clasts.

  4. Age relationships and tectonic implications of late Cenozoic basaltic volcanism in Northland, New Zealand

    International Nuclear Information System (INIS)

    Smith, I.E.M.; Okada, T.; Itaya, T.; Black, P.M.

    1993-01-01

    An episode of late Miocene-Recent essentially basaltic volcanism is the latest in a sequence of magmatic events recognised in the tectonically complex geological development of the Northland Peninsula. New K-Ar dates together with an extensive collection of new major and trace element chemical analyses prompt a reassessment of the significance of these late Cenozoic basalts. The main time/space groupings recognised are Tertiary volcanics in the Kaikohe-Bay of Islands, Puhipuhi, Ti Point, and Stony Batter areas and Quaternary basalts in the Kaikohe-Bay of Islands and Whangarei areas and at Tara. Basalts in the Kaikohe-Bay of Islands area are transitional to alkalic in character, while those in the south are transitional to tholeiitic, with the Ti Point and Stony Batter rocks being geochemically distinct. A consistent model for these observations is that the magmas originate from different levels of a layered mantle source in which the upper part carries a geochemical signature inherited from an earlier subduction event. (author). 27 refs., 7 figs., 1 tab

  5. Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid

    Science.gov (United States)

    Kanakiya, Shreya; Adam, Ludmila; Esteban, Lionel; Rowe, Michael C.; Shane, Phil

    2017-06-01

    One of the leading hydrothermal alteration processes in volcanic environments is when rock-forming minerals with high concentrations of iron, magnesium, and calcium react with CO2 and water to form carbonate minerals. This is used to the advantage of geologic sequestration of anthropogenic CO2. Here we experimentally investigate how mineral carbonation processes alter the rock microstructure due to CO2-water-rock interactions. In order to characterize these changes, CO2-water-rock alteration in Auckland Volcanic Field young basalts (less than 0.3 Ma) is studied before and after a 140 day reaction period. We investigate how whole core basalts with similar geochemistry but different porosity, permeability, pore geometry, and volcanic glass content alter due to CO2-water-rock reactions. Ankerite and aluminosilicate minerals precipitate as secondary phases in the pore space. However, rock dissolution mechanisms are found to dominate this secondary mineral precipitation resulting in an increase in porosity and decrease in rigidity of all samples. The basalt with the highest initial porosity and volcanic glass volume shows the most secondary mineral precipitation. At the same time, this sample exhibits the greatest increase in porosity and permeability, and a decrease in rock rigidity post reaction. For the measured samples, we observe a correlation between volcanic glass volume and rock porosity increase due to rock-fluid reactions. We believe this study can help understand the dynamic rock-fluid interactions when monitoring field scale CO2 sequestration projects in basalts.

  6. Basalt waste isolation project. Quarterly report, April 1, 1981-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.

    1981-08-01

    This document reports progress made in the Basalt Waste Isolation Project during the third quarter of fiscal year 1981. Efforts are described for the following programs of the project work breakdown structure: systems; waste package; site; repository; regulatory and institutional; test facilities; in situ test facilities.

  7. New absolute paleointensity determinations for the Permian-Triassic boundary from the Kuznetsk Trap Basalts.

    Science.gov (United States)

    Kulakov, E.; Metelkin, D. V.; Kazansky, A.

    2015-12-01

    We report the results of a pilot absolute paleointensity study of the ~250 Ma basalts of Kuznetsk traps (Kuznetsk Basin, Altai-Sayan folded area). Studied samples are characterized by a reversed polarity of natural remanent magnetization that corresponds to the lower part of Siberian Trap basalts sequence. Geochemical similarity of Kuznets basalts with those from Norilsk region supports this interpretation. Primary origin of thermal remanence in our sample is confirmed by a positive backed contact test. Rock magnetic analyses indicate that the ChRM is carried by single-domain titanomagnetite. The Coe-version of the Thellier-Therllier double-heating method was utilized for the paleointensity determinations. In contrast to the previous studies of the Permian-Triassic Siberian trap basalts, our data indicate that by the P-T boundary the paleofield intensity was relatively high and comparable with geomagnetic field strength for the last 10 millions of years. New results question the duration of the "Mesozoic dipole-low".

  8. Green glass vitrophyre 78526 - An impact of very low-Ti mare basalt composition

    Science.gov (United States)

    Warner, R. D.; Taylor, G. J.; Kiel, K.; Planner, H. H.; Nehru, C. E.; Ma, M.-S.; Schmitt, R. A.

    1978-01-01

    Rake sample 78526 is an 8.77 g rock consisting primarily of vitrophyric pale green glass with subordinate mineral and lithic relics. Petrographic and compositional evidence leads to the following conclusions: (1) the bulk composition represents that of a mixture formed by impact melting of at least two different textural and compositional varieties of VLT mare basalt that are now present in the rock as lithic relics and a poorly defined low-Ti mare basalt component observed in thin section only in the form of isolated mineral relics; (2) the admixed VLT mare basalts had REE abundances lower than those found in other mare basalts (but probably higher than emerald green glass) and REE patterns showing significant enrichment of the heavy relative to light REE's, suggesting that they were derived by comparatively high degrees of partial melting of a clinopyroxene-rich source region; and (3) the impact melt supercooled to produce the vitrophyre, with rather sharply contrasting textural domains present in the vitrophyre resulting from differences in nucleation kinetics and degrees of supercooling in various portions of the sample.

  9. Olivine Major and Trace Element Compositions in Southern Payenia Basalts, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Portnyagin, Maxim; Hoernle, Kaj

    2015-01-01

    Olivine major and trace element compositions from 12 basalts from the southern Payenia volcanic province in Argentina have been analyzed by electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The olivines have high Fe/Mn and low Ca/Fe and many fall at the end of t...

  10. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  11. Sorption of uranium and cesium by Hanford basalts and associated secondary smectite

    International Nuclear Information System (INIS)

    Ames, L.L.; McGarrah, J.E.; Walker, B.A.; Salter, P.F.

    1982-01-01

    Three characterized basalts and an associated secondary smectite were used in comparative uranium and cesium sorption studies. Experiments utilizing two synthetic characteristic basalt groundwaters at 23 and 60 0 C allowed comparison of increased temperature and carbonate concentration effects on Cs and U sorption. The sorption data were fitted to the Dubinin-Radushkevich (D-R) isotherm, and loading maxima and energetics derived. An increase in temperature caused a decrease in Cs sorption maxima on all solids from all groundwaters studied and an increase in U sorption maxima, especially from the higher-carbonate-content groundwater. Sorption energies were characteristic of ion exchange for both Cs and U sorption processes. Basalt U sorption maxima were relatively insignificant, but smectite U sorption maxima surpassed Cs sorption maxima in both groundwaters at 60 0 C. The uranyl carbonate complexes thus may be relatively temperature-sensitive. Upon removal of excess Fe-oxides from the secondary smectite, U sorption decreased and the D-R isotherm reverted to a normal Freundlich sorption isotherm. Removal of excess Fe-oxides from the basalts and secondary smectite would probably result in Freundlich sorption isotherms for both Cs and U. (Auth.)

  12. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    International Nuclear Information System (INIS)

    Thorne, P.

    1999-01-01

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995)

  13. Principal elements of the Basalt Waste Isolation Project performance assessment studies

    International Nuclear Information System (INIS)

    Baca, R.G.; Wilde, R.T.

    1983-12-01

    In this paper, three of the principal elements of the Basalt Waste Isolation Project (BWIP) performance assessment studies are focused on: (1) development of a methodology for probabilistic risk assessment, (2) performance analyses of repository subsystems, and (3) selection and ranking of disruptive event scenarios. Other elements of the BWIP performance assessment studies are briefly outlined. 12 references, 5 figures

  14. Investigation of the Reliability of Bridge Elements Reinforced with Basalt Plastic Fibers

    Science.gov (United States)

    Koval', T. I.

    2017-09-01

    The poorly studied problem on the reliability and durability of basalt-fiber-reinforced concrete bridge elements is considered. A method of laboratory research into the work of specimens of the concrete under a manyfold cyclic dynamic load is proposed. The first results of such experiments are presented.

  15. Laboratory Study on Properties of Diatomite and Basalt Fiber Compound Modified Asphalt Mastic

    Directory of Open Access Journals (Sweden)

    Yongchun Cheng

    2017-01-01

    Full Text Available In order to improve the performance of asphalt mastic, some researchers have added diatomite or basalt fiber as a modifier to the asphalt mastic, and the results show that some properties of the asphalt mastic were improved. For the simultaneous addition of diatomite and basalt fiber, two kinds of modifier, compound modified asphalt mastic had not been reported; in this paper, thirteen groups of diatomite and basalt fiber (DBFCMAM compound modified asphalt mastic with different content were prepared to study the performance. Softening point, cone penetration, viscosity, and DSR tests were conducted, for the high temperature performance evaluation of DBFCMAM, whereas force ductility and BBR tests were used in the low temperature performance study of the DBFCMAM. The results demonstrated that the high temperature performance of DBFCMAM was increased; moreover, the low temperature performance of DBFCMAM improved by diatomite and basalt fiber according to the results of the force ductility test; however, the conclusion of the BBR test data was inconsistent with the force ductility test. In summary, the high temperature and low temperature properties of DBFCMAM had been improved.

  16. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    Science.gov (United States)

    Hui, H.; Neal, C. R.; Shih, C.-Y.; Nyquist, L. E.

    2012-03-01

    Four eruption episodes were identified for A-14 high-Al basalts. Rb-Sr isotopic data and ITE ratios show that their parental melt compositions of are correlated through mixing of evolved components with a relatively primitive magma ocean cumulate.

  17. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dalmora, Adilson C. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Institute for Environmental Assessment and Water Studies (IDÆA), Spanish National Research Council (CSIC), C/Jordi Girona 18-26, 08034 Barcelona (Spain); Ramos, Claudete G.; Oliveira, Marcos L.S. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Teixeira, Elba C. [Fundação Estadual de Proteção Ambiental Henrique Luis Roessler, Porto Alegre, RS (Brazil); Kautzmann, Rubens M.; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500. Bairro Agronomia. CEP: 91501-970 Porto Alegre, RS (Brazil); and others

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during “stonemeal” soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO{sub 2}, Al{sub 2}O{sub 3}, and Fe{sub 2}O{sub 3,} with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano

  18. The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma

    Science.gov (United States)

    Huppert, Herbert E.; Sparks, R. Stephen J.

    1981-09-01

    This paper describes a fluid dynamical investigation of the influx of hot, dense ultrabasic magma into a reservoir containing lighter, fractionated basaltic magma. This situation is compared with that which develops when hot salty water is introduced under cold fresh water. Theoretical and empirical models for salt/water systems are adapted to develop a model for magmatic systems. A feature of the model is that the ultrabasic melt does not immediately mix with the basalt, but spreads out over the floor of the chamber, forming an independent layer. A non-turbulent interface forms between this layer and the overlying magma layer across which heat and mass are transferred by the process of molecular diffusion. Both layers convect vigorously as heat is transferred to the upper layer at a rate which greatly exceeds the heat lost to the surrounding country rock. The convection continues until the two layers have almost the same temperature. The compositions of the layers remain distinct due to the low diffusivity of mass compared to heat. The temperatures of the layers as functions of time and their cooling rate depend on their viscosities, their thermal properties, the density difference between the layers and their thicknesses. For a layer of ultrabasic melt (18% MgO) a few tens of metres thick at the base of a basaltic (10% MgO) magma chamber a few kilometres thick, the temperature of the layers will become nearly identical over a period of between a few months and a few years. During this time the turbulent convective velocities in the ultrabasic layer are far larger than the settling velocity of olivines which crystallise within the layer during cooling. Olivines only settle after the two layers have nearly reached thermal equilibrium. At this stage residual basaltic melt segregates as the olivines sediment in the lower layer. Depending on its density, the released basalt can either mix convectively with the overlying basalt layer, or can continue as a separate

  19. High-Mg basalts as a Signal of Magma System Replenishment at Lopevi Island, Vanuatu

    Science.gov (United States)

    Stewart, R. B.; Smith, I. E.; Turner, M. B.; Cronin, S. J.

    2007-05-01

    Lopevi is is a basalt to basaltic andesite island stratovolcano in central Vanuatu and is part of a long-lived, mature Island Arc chain. Central Vanuatu is tectonically influenced by the subduction of the D'Entrecasteaux zone. Primitive rock types that have been identified from the arc include picrites, ankaramites and high MgO basalts. High MgO rocks are generally considered to be a relatively rare component of arc-type magma suites but as detailed sequence sampling of individual volcanoes occurs, they have been identified more often. Here we report on the occurrence of high-Mg basalts in a sequence of lavas erupted in the last 100 years from Lopevi volcano. Activity at Lopevi is characteristically intermittent with eruptive sequences occurring over a c. 6 year period, separated by longer periods of repose. A major eruptive episode in 1939 caused evacuation of the island and the next eruptive episode in the 1960's also led to evacuation. The 1960's cycle of activity ended in 1982. The most recent phase of activity commenced in 1998 with a return to eruption of more siliceous, high alumina basaltic andesite. Geochemical data show that the 1960's lavas were different from those erupted earlier and later. They are olivine basalts with up to 9 wt percent MgO, 70 ppm Ni and 300 ppm Cr; Al2O3 content is about 12 wt percent. The 2003 lavas and pre-1960's lavas, in contrast, are basaltic andesites with c. 4 wt percent MgO, less than 25 ppm Ni, less than 100 ppm Cr and c. 20 wt percent Al2O3. The 1960's Lopevi sequence of eruptions represents an injection of a more primitive, high MgO magma at the end of a 21 year quiescent period after the major eruptions of 1939. Injection of small batches of more primitive magmas over decadal time periods at Lopevi marks the initiation of a new magmatic cycle. The occurrence of high MgO magmas as part of a cycle that includes typically low MgO arc type rocks demonstrates a consanguineous relationship and shows that high MgO arc type

  20. Origin of major element chemical trends in DSDP Leg 37 basalts, Mid-Atlantic Ridge

    Science.gov (United States)

    Byerly, G.R.; Wright, T.L.

    1978-01-01

    In this paper we summarize the major element chemical variation for basalts from the Deep Sea Drilling Project Leg 37 and relate it to stratigraphic position in each of five drilling sites. Least-squares techniques are successfully used to quantify the nature and extent of alteration in these basalts, and to correct the major element analysis back to a magmatic, or alteration-free, composition on the assumption that alteration takes place in two ways: (1) secondary minerals are introduced into veins and vesicles, and (2) CO2 and H2O react with components in the rock to form a simple alteration assemblage. A chemical stratigraphy is defined for these basalts by grouping lavas whose chemistries are related by low-pressure phenocryst-liquid differentiation as identified by least-squares calculation. Major chemical-stratigraphic units are as much as 200 m thick; correlations of these units can be made between the holes at site 332 (about 100 m apart), but not between the other sites. Compositions of parental magmas are calculated by extrapolating low-pressure variations to a constant value of 9% MgO. The differences in these extrapolated compositions reflect high-pressure processes, and suggest that clinopyroxene may be an important phase in either intermediate-level fractionation of basaltic liquids, or as a residual phase during the partial melting which produces these basaltic liquids. Several of the basaltic liquids calculated as parental to the Leg 37 basalts have CaO contents greater than 14% and indicate that the oceanic mantle is richer in CaO and Al2O3 than values used in pyrolite models for the upper mantle. A model for magma generation and eruption beneath the Mid-Atlantic Ridge embodies the following characteristics: 1. (1) Separate magma batches are generated in the mantle. 2. (2) Each of these may be erupted directly or stored at shallow depth where significant fractionation takes place. Common fractionation processes are inferred to be gravitative

  1. Simulation and Experimental Determination of Technological Liquid Molding Parameters of Tubing Basalt Insulation

    Directory of Open Access Journals (Sweden)

    Yu. V. Badanina

    2015-01-01

    Full Text Available The article is dedicated to one of the most important and urgent tasks in mechanical engineering development - the creation of low-density and environmentally-friendly thermoinsulation from available cheap basalt fibers for products to operate at temperatures up to 700°C.One of the most effective applications of such thermo-insulation is to develop and provide highly porous coatings from short basalt fibers by liquid filtration for tubing (T to supply superheated up to 420° C steam under pressure of 35 MPa in the deep layers with severe highviscosity oil. Tubing with the short low-density basalt insulation can be used for a greater depth than the vacuum-insulated tubing, which are also called "thermo-cases", and do not fully meet business needs for long-term reliability of oil vacuum tubes, too large mass per unit length of their design and, as a consequence, the impossibility to use such pipes for deep wells.The aim of the work is to simulate a liquid filtration process of short fibers and determine technological parameters of producing thermal insulation coatings of tubing pipes from basalt fibers and mineral binder shaped as cylinders and cylindrical shells. The paper proposes a mathematical model of free filtration deposition of short fibers from liquid slurry, which describes dynamics of creating thermal insulation products and allows us to determine the rational parameters of their manufacturing process. It shows methods to improve the products quality while forming the thermal insulation by filtration through additional vacuum deposition of a filtrate chamber and the final prepressing of sediment layer, giving dimensions and shape to the final product.The paper defines a prescription hydro mass composition. It shows that to increase the compressive strength of highly fibrous rings and cylindrical shells it is necessary to use based on oxide А12O3 5-7% by weight mineral binder, which fixes basalt fibers in places of their contacts. It

  2. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes

    International Nuclear Information System (INIS)

    Dalmora, Adilson C.; Ramos, Claudete G.; Oliveira, Marcos L.S.; Teixeira, Elba C.; Kautzmann, Rubens M.; Taffarel, Silvio R.; Brum, Irineu A.S. de

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during “stonemeal” soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO 2 , Al 2 O 3 , and Fe 2 O 3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical

  3. Gas cluster ion beam for the characterization of organic materials in submarine basalts as Mars analogs

    International Nuclear Information System (INIS)

    Sano, Naoko; Barlow, Anders J.; Cumpson, Peter J.; Purvis, Graham W. H.; Abbott, Geoffrey D.; Gray, Neil N. D.

    2016-01-01

    The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars and Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.

  4. Migration of Amphitheater-Headed Valleys in Kauai Basalts: Wailua Falls as a Case Example

    Science.gov (United States)

    Pederson, D. T.; Blay, C.

    2006-12-01

    Amphitheater-headed valleys in Kauai basalts migrate upstream primarily because of weathering processes. Basalt weathering rates are enhanced by the presence of water and/or vegetation. When both weathering process are present, weathering rates are greater than the sum of the two processes. Because waterfalls can create an environment where vegetation growth is greatly inhibited by the impact of falling water, weathering rates may be much greater on each side of the falls where vegetation can grow. Sources of water for weathering include groundwater discharge, waterfall spray, and condensation of atmospheric water. Because basalts weather rapidly in tropical environments, streams require only the capability to transport smaller particle sizes to sustain amphitheater migration. It should be noted that most waterfalls occupy only a small fraction of the amphitheater head which further supports weathering as the principal agent in amphitheater development and migration. Lava flows building shield volcanos are usually episodic with crystallization and possible weathering occurring before the next flow. The rate of cooling of a flow determines the crystal size of minerals and in combination with the magma chemistry the susceptibility of a flow to weathering process as well as the strength of the rock. With time, soils and topography will develop on the now crystallized flow. Because clays are a product of basalt weathering, soils when buried by later flows, represent low permeability layers. Additionally, new flows may follow (and bury) surface drainage systems resulting in localized thicker flows that cool more slowly and have different properties then the adjacent thinner flows. Consequently, most amphitheater heads have significant heterogenieties, especially in a vertical section representing multiple basalt flows. Wailua Falls on Kauai will be used as a field example of amphitheater weathering processes and migration.

  5. Gas cluster ion beam for the characterization of organic materials in submarine basalts as Mars analogs

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Naoko, E-mail: naoko.sano@ncl.ac.uk; Barlow, Anders J.; Cumpson, Peter J. [National EPSRC XPS Users' Service (NEXUS), School of Mechanical and Systems Engineering, Stephenson Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU (United Kingdom); Purvis, Graham W. H.; Abbott, Geoffrey D.; Gray, Neil N. D. [School of Civil Engineering and Geosciences, Devonshire Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU (United Kingdom)

    2016-07-15

    The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars and Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.

  6. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-07

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  7. Shallow Miocene basaltic magma reservoirs in the Bahia de Los Angeles basin, Baja California, Mexico

    Science.gov (United States)

    Delgado-Argote, Luis A.; García-Abdeslem, Juan

    1999-01-01

    The basement in the Bahía de Los Angeles basin consists of Paleozoic metamorphic rocks and Cretaceous granitoids. The Neogene stratigraphy overlying the basement is formed, from the base to the top, by andesitic lava flows and plugs, sandstone and conglomeratic horizons, and Miocene pyroclastic flow units and basaltic flows. Basaltic dikes also intrude the whole section. To further define its structure, a detailed gravimetric survey was conducted across the basin about 1 km north of the Sierra Las Flores. In spite of the rough and lineal topography along the foothills of the Sierra La Libertad, we found no evidence for large-scale faulting. Gravity data indicates that the basin has a maximum depth of 120 m in the Valle Las Tinajas and averages 75 m along the gravimetric profile. High density bodies below the northern part of the Sierra Las Flores and Valle Las Tinajas are interpreted to be part of basaltic dikes. The intrusive body located north of the Sierra Las Flores is 2.5 km wide and its top is about 500 m deep. The lava flows of the top of the Sierra Las Flores, together with the distribution of basaltic activity north of this sierra, suggests that this intrusive body continues for 20 km along a NNW-trending strike. Between the sierras Las Flores and Las Animas, a 0.5-km-wide, 300-m-thick intrusive body is interpreted at a depth of about 100 m. This dike could be part of the basaltic activity of the Cerro Las Tinajas and the small mounds along the foothills of western Sierra Las Animas. The observed local normal faulting in the basin is inferred to be mostly associated with the emplacement of the shallow magma reservoirs below Las Flores and Las Tinajas.

  8. Early Jurassic Carbon and Sodium Sequestration in a CAMP basalt flow

    Science.gov (United States)

    Block, K. A.; Puffer, J. H.

    2017-12-01

    The initial HTQ-type CAMP Orange Mountain Basalt flow, as well as related pillowed flows and the overlying Preakness flows, locally underwent substantial and well documented albitization, chloritization, and sulphate, carbonate, and zeolite mineralization. Layers representing at least 25 vol % of the Orange Mountain Basalt have undergone a major net increase in sodium and carbon content and a major redistribution of magnesium and calcium. Most alteration occurred during the development of a widespread early Jurassic geothermal system similar to the active system of Iceland. In both cases alteration was controlled by active circulation of basin brines through vesicular layers during rapid burial at temperatures that were kept elevated by recurring magmatism. Whole rock Na2O levels typically increased from 2.2 wt. % in unaltered layers to 3.2 wt. % in vesicular layers, and commonly reached levels exceeding 5 wt. %. The environmental implications of the removal of such massive amounts of sodium from the geothermal system on the chlorine budget and the salt content of Early Jurassic lakes are currently being evaluated. Massive amounts of carbon sequestration from the geothermal system may have mitigated an increased burden on the early Jurassic atmosphere where geothermal CO2 may have otherwise been vented at hot springs or solfataras. Calcite amygdules typically account for 5 to 10 vol. % of the vesiculated layers amounting to 66 to 132 kg of CO2 per m3 of basalt. If 25 vol. % of the 160 thick Orange Mountain Basalt is vesiculated that would equate to about 2640 to 5280 kg of CO2 per m2 of basalt. The full extent of calcite enrichment across the entire CAMP province, however, has not yet been determined.

  9. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    Energy Technology Data Exchange (ETDEWEB)

    Zorla, Eyüp; Ipbüker, Cagatay [University of Tartu, Institute of Physics (Estonia); Biland, Alex [US Basalt Corp., Houston (United States); Kiisk, Madis [University of Tartu, Institute of Physics (Estonia); Kovaljov, Sergei [OÜ Basaltest, Tartu (Estonia); Tkaczyk, Alan H. [University of Tartu, Institute of Physics (Estonia); Gulik, Volodymyr, E-mail: volodymyr.gulik@gmail.com [Institute for Safety Problems of Nuclear Power Plants, Lysogirska 12, of. 201, 03028 Kyiv (Ukraine)

    2017-03-15

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  10. Basalt identification by interpreting nuclear and electrical well logging measurements using fuzzy technique (case study from southern Syria)

    International Nuclear Information System (INIS)

    Asfahani, J.; Abdul Ghani, B.; Ahmad, Z.

    2015-01-01

    Fuzzy analysis technique is proposed in this research for interpreting the combination of nuclear and electrical well logging data, which include natural gamma ray, density and neutron-porosity, while the electrical well logging include long and short normal. The main objective of this work is to describe, characterize and establish the lithology of the large extended basaltic areas in southern Syria. Kodana well logging measurements have been used and interpreted for testing and applying the proposed technique. The established lithological cross section shows the distribution and the identification of four kinds of basalt, which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The fuzzy analysis technique is successfully applied on the Kodana well logging data, and can be therefore utilized as a powerful tool for interpreting huge well logging data with higher number of variables required for lithological estimations. - Highlights: • Apply fuzzy analysis technique on the nuclear and electrical well logging data of Kodana well in Southern Syria. • Determine and differentiate between four kinds of basalt. • Establish the lithological section of the studied well.

  11. Basalt fibers: the green material of the XXI-century, for a sustainable restoration of historical buildings

    Directory of Open Access Journals (Sweden)

    Giacomo Di Ruocco

    2016-12-01

    Full Text Available In recent decades in the construction industry, the need to experience consolidation techniques with non-corroding materials is being developed. Studies and tests have been led about integration of basalt fibers in concrete structures: they have shown improvements both in terms of mechanical strength and in terms of intervention of consolidation durability (Ólafsson, Thorhallsson, 2009. The basalt rock can be used to produce not only basalt bars, but also fabrics, paddings, continuous filaments and basalt network. Some applications of these basalt-composites materials concern the consolidation of civil construction structures, thermal and acoustic insulation, security clothing, etc. Some years ago the Italian company ENEA (National Agency for New Technologies, Energy and Sustainable Economic Development has signed an agreement with HG GBF (one of the world's leading companies in the production of basalt fibers, for the verification of possible applications of this material in the construction field but also in the nautical and automotive ones. The use of basalt fiber in construction could present a series of advantages: natural origin, a cycle of production to lower energy impact compared to other fibers, a high chemical inertia and thus a high degree of durability, low thermal conductivity, good mechanical and thermo-acoustic properties, high fire resistance, a competitive cost and, in general, more environmental compatibility and sustainability than other synthetic fibers.

  12. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    International Nuclear Information System (INIS)

    Zorla, Eyüp; Ipbüker, Cagatay; Biland, Alex; Kiisk, Madis; Kovaljov, Sergei; Tkaczyk, Alan H.; Gulik, Volodymyr

    2017-01-01

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  13. Crystallization of oxidized, moderately hydrous arc basalt at mid-to-lower crustal pressures

    Science.gov (United States)

    Blatter, D. L.; Sisson, T. W.; Hankins, W. B.

    2012-12-01

    Decades of experimental work show that dry, reduced, subalkaline basalts differentiate to produce tholeiitic (high Fe/Mg) daughter liquids, however the influences of H2O and oxidation on differentiation paths are not well established. Accordingly, we performed crystallization experiments on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic lavas erupted in the Cascades magmatic arc near Mount Rainier, Washington. Starting material was synthesized with 3 wt% H2O and run in 2.54 cm piston-cylinder vessels at 900, 700, and 400 MPa and 1200 to 925 degrees C. Samples were contained in Au75Pd25 capsules pre-saturated with Fe by reaction with magnetite at controlled fO2. Oxygen fugacity was controlled during high-pressure syntheses by the double capsule method using Re-ReO2 plus H2O-CO2 vapor in the outer capsule, mixed to match the expected fH2O of the vapor-undersaturated sample. Crystallization was similar at all pressures with a high temperature interval consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, FeTi-oxides replace spinel, olivine dissolves, and finally amphibole appears. Liquids at 900 MPa track along Miyashiro's (1974) tholeiitic vs. calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline by ~57 wt% SiO2 and greater. Although these evolved liquids are similar in most respects to common calc-alkaline andesites, they differ in having low-CaO due to early and abundant crystallization of augite prior to plagioclase, with the result that they become peraluminous (ASI: Al/(Na+K+Ca)>1) by ~55 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer, 2006 and references therein). A compilation of >7000 analyses of volcanic and intrusive rocks from the Cascades and the Sierra Nevada batholith shows that ASI in arc magmas increases continuously and linearly with SiO2 from

  14. Basalt Reactivity Variability with Reservoir Depth in Supercritical CO2 and Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2011-04-01

    Long term storage of CO{sub 2} in geologic formations is currently considered the most attractive option to reduce greenhouse gas emissions while continuing to utilize fossil fuels for energy production. Injected CO{sub 2} is expected to reside as a buoyant water-saturated supercritical fluid in contact with reservoir rock, the caprock system, and related formation waters. As was reported for the first time at the GHGT-9 conference, experiments with basalts demonstrated surprisingly rapid carbonate mineral formation occurring with samples suspended in the scCO{sub 2} phase. Those experiments were limited to a few temperatures and CO{sub 2} pressures representing relatively shallow (1 km) reservoir depths. Because continental flood basalts can extend to depths of 5 km or more, in this paper we extend the earlier results across a pressure-temperature range representative of these greater depths. Different basalt samples, including well cuttings from the borehole used in a pilot-scale basalt sequestration project (Eastern Washington, U.S.) and core samples from the Central Atlantic Magmatic Province (CAMP), were exposed to aqueous solutions in equilibrium with scCO{sub 2} and water-rich scCO{sub 2} at six different pressures and temperatures for select periods of time (30 to 180 days). Conditions corresponding to a shallow injection of CO{sub 2} (7.4 MPa, 34 C) indicate limited reactivity with basalt; surface carbonate precipitates were not easily identified on post-reacted basalt grains. Basalts exposed under identical times appeared increasingly more reacted with simulated depths. Tests, conducted at higher pressures (12.0 MPa) and temperatures (55 C), reveal a wide variety of surface precipitates forming in both fluid phases. Under shallow conditions tiny clusters of aragonite needles began forming in the wet scCO{sub 2} fluid, whereas in the CO{sub 2} saturated water, cation substituted calcite developed thin radiating coatings. Although these types of coatings

  15. Solid phases limiting the concentration of dissolved constituents in basalt aquifers of the Columbia Plateau in eastern Washington

    International Nuclear Information System (INIS)

    Deutsch, W.J.; Jenne, E.A.; Krupka, K.M.

    1981-01-01

    The purposes of this study were: (1) to provide information on the solid phases which are in apparent equilibrium with ground waters of basalt aquifers, and (2) to further develop the capability of geochemical modeling to support solute transport studies and performance assessments of nuclear waste repositories. The basalt aquifers of the Columbia Plateau in eastern Washington were chosen as the study area because: (1) regional ground-water analyses are readily available, (2) these basalts are a potential medium for a nuclear-waste repository, and (3) mineralogical analyses from local site studies are available

  16. Preliminary geochemical and physical testing of materials for plugging of man-made accesses to a repository in basalt

    International Nuclear Information System (INIS)

    Taylor, C.L.; Anttonen, G.J.; O'Rourke, J.E.; Allirot, D.

    1980-04-01

    The available data on environmental conditions (both natural and man-made) at the Hanford Site are sufficient for preconceptual plug system design. Results of the geochemical testing program indicate that preferred candidate plug materials are chemically nonreactive during laboratory tests that simulated some of the expected environmental conditions. Agitated, crushed-basalt samples and mixtures containing basalt were found to be self-cementing under the hydrothermal conditions. Materials considered most suitable for consideration in future test programs and preconceptual plug design are mixtures of natural materials (basalt, clay, glaciofluvial sand, gravel, and zeolite) and processed natural materials

  17. Near field chemical speciation: the reaction of uranium and thorium with Hanford basalt and elevated pH

    International Nuclear Information System (INIS)

    Perry, D.L.

    1984-01-01

    The hydrolysis of radionuclides such as thorium and uranium and their subsequent chemisorption on Hanford basalt have been studied using a variety of techniques, including x-ray photoelectron and infrared spectroscopy. Data obtained to date indicate mixed complexes of uranium and thorium to be on the basalt surface, the complexes being radionuclide oxides, hydrated oxides (hydroxides), and carbonates. These findings are discussed with respect to their importance for input for models describing speciation and dissolution processes involving nuclear waste repository materials such as Hanford basalt. 5 figures, 2 tables

  18. Studying the ability to use basalt in preparing radiation shielding concrete and the properties of the resulted concrete

    International Nuclear Information System (INIS)

    Alhajali, S.; Yousef, S.; Kanbour, M.; Naoum, B.

    2010-12-01

    Basalt is widespread rocks in the lands of Syria. This kind of rocks has high density relatively, high insulation properties and, mechanical and heat resistance. In this work several kinds of basalt rocks, which were collected from several sites, were studied. The analyses which were done, shows that the basalt rocks collected from Shahba, Nba'a Al-Sakhr and Almana'a mountain are suitable for high efficient gamma radiation shielding, but with low efficiency for neutron shielding, especially for thermal and epithermal neutrons. (author)

  19. New potassium-argon basalt data in relation to the Pliocene Bluff Downs Local Fauna, northern Australia

    International Nuclear Information System (INIS)

    Mackness, B.S.

    2000-01-01

    A new radiometric date of 3.6 Ma for the basalt overlying fossiliferous units of the Allingham Formation, provides a minimum age for the Bluff Downs Local Fauna. Ground studies and interpretation of aerial photography has clarified the volcanic history of the area and a new basalt flow has been identified and named. Although the age of the capping basalt permits a younger age for the Bluff Downs Local Fauna than originally described, the stratigraphy, combined with the interpreted stage of evolution of the fauna, still supports an Early Pliocene age for the site. Copyright (2000) Geological Society of Australia

  20. Preliminary geochemical and physical testing of materials for plugging of man-made accesses to a repository in basalt

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.L.; Anttonen, G.J.; O' Rourke, J.E.; Allirot, D.

    1980-04-01

    The available data on environmental conditions (both natural and man-made) at the Hanford Site are sufficient for preconceptual plug system design. Results of the geochemical testing program indicate that preferred candidate plug materials are chemically nonreactive during laboratory tests that simulated some of the expected environmental conditions. Agitated, crushed-basalt samples and mixtures containing basalt were found to be self-cementing under the hydrothermal conditions. Materials considered most suitable for consideration in future test programs and preconceptual plug design are mixtures of natural materials (basalt, clay, glaciofluvial sand, gravel, and zeolite) and processed natural materials (portland cement Type V and grouts plus additives).

  1. Basalt fiber and nanoclay compositions, articles incorporating the same, and methods of insulating a rocket motor with the same

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor)

    2010-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.

  2. Rocket motors incorporating basalt fiber and nanoclay compositions and methods of insulating a rocket motor with the same

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor)

    2011-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.

  3. Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers

    Science.gov (United States)

    Khalili, S. Mohammad Reza; Najafi, Moslem; Eslami-Farsani, Reza

    2017-01-01

    The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.

  4. Life and Death of a Flood Basalt: Evolution of a Magma Plumbing System in the Ethiopian Low-Ti Flood Basalt Province

    Science.gov (United States)

    Krans, S. R.; Rooney, T. O.; Kappelman, J. W.; Yirgu, G.; Ayalew, D.

    2017-12-01

    Continental flood basalt provinces (CFBPs), which are thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insight into melt generation processes in Large Igneous Provinces (LIPs). Despite the utility of CFBPs in probing the composition of mantle plumes, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of this residence within the continental lithosphere provides additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well preserved stratigraphic section from flood basalt initiation to termination, and is thus an important target for study of CFBPs. We examine petrographic and whole rock geochemical variation within a stratigraphic framework and place these observations within the context of the magmatic evolution of the Ethiopian CFBP. We observe multiple pulses of magma recharge punctuated by brief shut-down events and an overall shallowing of the magmatic plumbing system over time. Initial flows are fed by magmas that have experienced deeper fractionation (clinopyroxene dominated and lower CaO/Al2O3 for a given MgO value), likely near the crust-mantle boundary. Subsequent flows are fed by magmas that have experienced shallower fractionation (plagioclase dominated and higher CaO/Al2O3 for a given MgO value) in addition to deeper fractionated magmas. Broad changes in flow thickness and modal mineralogy are consistent with fluctuating changes in magmatic flux through a complex plumbing system and indicate pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. Pulses of less differentiated magmas (MgO > 8 wt%) and high-An composition of plagioclase megacrysts (labradorite to bytownite) suggest a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of flood volcanism, though the magnitude of

  5. Quickly erupted volcanic sections of the Steens Basalt, Columbia River Basalt Group: Secular variation, tectonic rotation, and the Steens Mountain reversal

    Science.gov (United States)

    Jarboe, Nicholas A.; Coe, Robert S.; Renne, Paul R.; Glen, Jonathan M. G.; Mankinen, Edward A.

    2008-01-01

    The Steens Basalt, now considered part of the Columbia River Basalt Group (CRBG), contains the earliest eruptions of this magmatic episode. Lava flows of the Steens Basalt cover about 50,000 km2 of the Oregon Plateau in sections up to 1000 m thick. The large number of continuously exposed, quickly erupted lava flows (some sections contain over 200 flows) allows for small loops in the magnetic field direction paths to be detected. For volcanic rocks, this detail and fidelity are rarely found outside of the Holocene and yield estimates of eruption durations at our four sections of ∼2.5 ka for 260 m at Pueblo Mountains, 0.5 to 1.5 ka for 190 m at Summit Springs, 1–3 ka for 170 m at North Mickey, and ∼3 ka for 160 m at Guano Rim. That only one reversal of the geomagnetic field occurred during the eruption of the Steens Basalt (the Steens reversal at approximately 16.6 Ma) is supported by comparing 40Ar/39Ar ages and magnetic polarities to the geomagnetic polarity timescale. At Summit Springs two 40Ar/39Ar ages from normal polarity flows (16.72 ± ± 0.29 Ma (16.61) and 16.92 ± ± 0.52 Ma (16.82); ± ± equals 2σ error) place their eruptions after the Steens reversal, while at Pueblo Mountains an 40Ar/39Ar age of 16.72 ± ± 0.21 Ma (16.61) from a reverse polarity flow places its eruption before the Steens reversal. Paleomagnetic field directions yielded 50 nontransitional directional-group poles which, combined with 26 from Steens Mountain, provide a paleomagnetic pole for the Oregon Plateau of 85.7°N, 318.4°E, K = 15.1, A95 = 4.3. Comparison of this new pole with a reference pole derived from CRBG flows from eastern Washington and a synthetic reference pole for North America derived from global data implies relative clockwise rotation of the Oregon Plateau of 7.4 ± 5.0° or 14.5 ± 5.4°, respectively, probably due to northward decreasing extension of the basin and range.

  6. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Constrains on Chemistry of Recycled Component

    Science.gov (United States)

    Gao, S.; Takahashi, E.; Matsukage, K. N.; Suzuki, T.; Kimura, J. I.

    2015-12-01

    It is believed that magma genesis of OIB is largely influenced by recycled oceanic crust component involved in the mantle plume (e.g., Hauri et al., 1996; Takahashi & Nakajima., 2002; Sobolev et al., 2007). Mallik & Dasgupta (2012) reported that the wall-rock reaction in MORB-eclogite and peridotite layered experiments produced a spectrum of tholeiitic to alkalic melts. However, the proper eclogite source composition is still under dispute. In order to figure out the geochemistry of recycled component as well as their melting process, we conducted a series of high-P, high-T experiments. Melting experiments (1~10hrs) were performed under 2.9GPa with Boyd-England type piston-cylinder (1460~1540°C for dry experiments, 1400~1500°C for hydrous experiments) and 5GPa with Kawai-type multi-anvil (1550~1650°C for dry experiments, 1350~1550°C for hydrous experiments), at the Magma Factory, Tokyo Tech. Spinel lherzolite KLB-1 (Takahashi 1986) was employed as peridotite component. Two basalts were used as recycled component: Fe-enriched Columbia River basalt (CRB72-180, Takahashi et al., 1998) and N-type MORB (NAM-7, Yasuda et al., 1994). In dry experiments below peridotite dry solidus, melt compositions ranged from basaltic andesite to tholeiite. Opx reaction band generated between basalt and peridotite layer hindered chemical reaction. On the other hand, alkali basalt was formed in hydrous run products because H2O promoted melting process in both layers. Compared with melts formed by N-MORB-peridotite runs, those layered experiments with CRB are enriched in FeO, TiO2, K2O and light REE at given MgO. In other words, melts produced by CRB-peridotite layered experiments are close to alkali basalts in OIB and tholeiite in Hawaii, while those by layered experiments with N-MORB are poor in above elements. Thus we propose that Fe-rich Archean or Proterozoic tholeiite (BVSP 1980) would be a possible candidate for recycled component in OIB source.

  7. Investigating the Influence of Waste Basalt Powder on Selected Properties of Cement Paste and Mortar

    Science.gov (United States)

    Dobiszewska, Magdalena; Beycioğlu, Ahmet

    2017-10-01

    Concrete is the most widely used man-made construction material in civil engineering applications. The consumption of cement and thus concrete, increases day by day along with the growth of urbanization and industrialization and due to new developments in construction technologies, population growing, increasing of living standard. Concrete production consumes much energy and large amounts of natural resources. It causes environmental, energy and economic losses. The most important material in concrete production is cement. Cement industry contributes to production of about 7% of all CO2 generated in the world. Every ton of cement production releases nearly one ton of CO2 to atmosphere. Thus the concrete and cement industry changes the environment appearance and influences it very much. Therefore, it has become very important for construction industry to focus on minimizing the environmental impact, reducing energy consumption and limiting CO2 emission. The need to meet these challenges has spurred an interest in the development of a blended Portland cement in which the amount of clinker is reduced and partially replaced with mineral additives - supplementary cementitious materials (SCMs). Many researchers have studied the possibility of using another mineral powder in mortar and concrete production. The addition of marble dust, basalt powder, granite or limestone powder positively affects some properties of cement mortar and concrete. This paper presents an experimental study on the properties of cement paste and mortar containing basalt powder. The basalt powder is a waste emerged from the preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement, has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance also. The present study shows the results of the research concerning the modification of cement

  8. Trace element and isotopic compositions of Vietnamese basalts: implications for mantle dynamics in the southeast Asian region; Compositions isotopiques et en elements en trace des basaltes vietnamiens: implications pour la dynamique du manteau en Asie du Sud-Est

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H.; Fower, M. [Illinois Univ., Chicago, IL (United States); Nguyen, H. [Tokyo Univ. (Japan); Nguyen, X.B.; Nguyen, T.Y. [Institute of Nuclear Science and Technology, Hanoi (Viet Nam)

    1996-12-31

    Cenozoic basalts in Indo-China are part of a regional melting episode along the rifted Eurasian margin. Trace element and isotopic compositions of Vietnamese basalts are used to place constraints on the extent of lithospheric and asthenosphere contributions to the melts and possible mantle dynamic implications. The {sup 87}Sr/{sup 86}Sr, {sup 207}Pb/{sup 204}Pb, and {sup 208}Pb/{sup 204}Pb isotopic ratios of the basalts reflect minimal crustal wall rock reaction, and variable enrichment in EM1 and EM2 of a {sup 208}Pb-rich MORB-like source. Some, but not all, of this variation corresponds to the age of lithospheric sector penetrated. Basalts erupted through a cratonic, central sector (e.g. at Quang Ngai, Pleiku, Song Cau, Kong Plong, and Buon Ma Thuot) and off-cratonic, southwest sector (e.g. Phuoc Long) resemble those of EM2-rich basalts from southern and southeaster China and the South China Sea. Basalts from an off-cratonic, southeast sector (e.g. from Dalat, Xuan Loc, and the offshore Ile des Cendres-Phu Cuy complex) reflect mixing between a low- {sup 206}Pb/{sup 204}Pb, high-{sup 208}Pb/{sup 204}Pb, EM1-like component, and resemble basalts from northwest Taiwan, eastern and northeastern China, and parts of the Japan Sea. While EM2 tends to characterise lithospheric sectors, presence of EM1 in off-cratonic rather than cratonic basalts implies an asthenosphere rather than lithospheric source. Pervasive presence of EM1 in southeast Asian and marginal basin asthenosphere corresponds with thermally-anomalous mantle and may involve delaminated cratonic substrate entrained by mobile, extruded asthenosphere. (authors) 85 refs.

  9. Intermediate-scale sodium-concrete reaction tests with basalt and limestone concrete

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Muhlestein, L.D.

    1981-01-01

    Ten tests were performed to investigate the chemical reactions and rate and extent of attack between sodium and basalt and limestone concretes. Test temperatures ranged from 510 to 870 0 C (950 to 1600 0 F) and test times from 2 to 24 hours. Sodium hydroxide was added to some of the tests to assess the impact of a sodium hydroxide-aided reaction on the overall penetration characteristics. Data suggest that the sodium penetration of concrete surfaces is limited. Penetration of basalt concrete in the presence of sodium hydroxide is shown to be less severe than attack by the metallic sodium alone. Presence of sodium hydroxide changes the characteristics of sodium penetration of limestone concrete, but no major differences in bulk penetration were observed as compared to penetration by metallic sodium

  10. Martian volcanism: festoon-like ridges on terrestrial basalt flows and implications for Mars

    International Nuclear Information System (INIS)

    Theilig, E.; Greeley, R.

    1987-01-01

    The Fink and Fletcher, and Fink model was used to assess and compare flow rheology for two terrestrial basalt flows and one Martian flow with previous studies. Based on the morphologic similarities between the Martian flows and the Icelandic flows and knowledge of the emplacement of the terrestrial flows, the flows west of Arsia Mons are considered to have been emplaced as large sheet flows from basaltic flood style eruptions. Festoon ridges represent folding of the surface crust in the last stages of emplacement when viscosities would be high due to cooling. Alternatively, the lava may have had a high crystallinity or was erupted at low temperatures. In addition, increased compressive stress behind halted flow fronts or in ponded areas may have contributed to ridge formation

  11. Construction Technology and Mechanical Properties of a Cement-Soil Mixing Pile Reinforced by Basalt Fibre

    Directory of Open Access Journals (Sweden)

    Yingwei Hong

    2017-01-01

    Full Text Available A new type of cement-soil mixing pile reinforced by basalt fibre is proposed for increasing the bearing capacity of cement-soil mixing piles. This work primarily consists of three parts. First, the process of construction technology is proposed, which could allow uniform mixing of the basalt fibre in cement-soil. Second, the optimal proportions of the compound mixtures and the mechanical properties of the pile material are obtained from unconfined compression strength test, tensile splitting strength test, and triaxial shear test under different conditions. Third, the reliability of the construction technology, optimal proportions, and mechanical properties are verified by testing the mechanical properties of the drilling core sample on site.

  12. Geochemistry of Ua Huka basalts (Marquesas): partial melting variations and mantle source heterogeneity

    International Nuclear Information System (INIS)

    Ielsch, G.; Caroff, M.; Maury, R.C.; Cotten, J.; Barsczus, H.G.; Guillou, H.

    1998-01-01

    The main shield volcano of Ua Huka Island (Marquesas Archipelago) was emplaced between 2.2 and 2.4 Ma, and then affected by two caldera collapse events. After a 0.9 Ma-long gap, volcanic activity resumed with the emplacement of two smaller volcanoes in the southwest part of the island, between 1.5 and 0.75 Ma. The geochemical characteristics of Ua Huka mafic lavas, which range from olivine tholeiites to alkali basalts and basanites, are consistent with a temporal decrease in partial melting degrees of a heterogeneous mantle source. The associated temporal variation of the isotopic signatures of Ua Huka basalts implies a more important contribution of a Depleted MORB Mantle (DMM) end-member during the genesis of the youngest basanitic lavas. Such a variation was not previously documented in the Marquesas Archipelago. (authors)

  13. Chromium isotope fractionation during oxidative weathering of a modern basaltic weathering profile

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Døssing, Lasse Nørbye; Frei, Robert

    Chromium can be used as a tracer of redox sensitive environmental processes. In soils Cr (III) is inert, immobile and resides predominantly in minerals, clays and oxides. Cr (VI) is toxic, soluble and mobile and is usually lost from the soil to local run off. Chromium isotopes have been shown...... to fractionate under both reducing and oxidizing conditions [1, 2]. Recent studies on d53Cr isotopes in laterite soils show that oxidative weathering of Cr-bearing rocks is accompanied by an isotopic fractionation, where by the lighter isotopes are retained in the residual soil and the heavier isotope...... is enriched in local runoff [1]. This study aims to quantify the stable Cr isotope composition of two modern basaltic weathering profiles, to help better understand the processes that oxidize inert Cr (III) to toxic Cr (VI). We sampled basaltic weathering profiles and associated river waters from areas of two...

  14. Effect of Crystallisation Degree on Hardness of Basaltic Glass-Ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    The dependence of hardness of basaltic glass-ceramics on their crystallisation degree has been explored by means of differential scanning calorimetry, optical microscopy, X-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses have been obtained...... by varying the temperature of heat treatment. The change of the relative degree of crystallisation with the heat treatment temperature can be described by an empirical model established in this work. The predominant crystalline phase in the glass has been identified as the pyroxene augite. The hardness...... principle calculations. It is found that the hardness of the glass phase decreases slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreases....

  15. Scenarios constructed for basaltic igneous activity at Yucca Mountain and vicinity

    International Nuclear Information System (INIS)

    Barr, G.E.; Dunn, E.; Dockery, H.; Barnard, R.; Valentine, G.; Crowe, B.

    1993-08-01

    Basaltic volcanism has been identified as a possible future event initiating a release of radionuclides from a potential repository at the proposed Yucca Mountain high-level waste repository site. The performance assessment method set forth in the Site Characterization Plan (DOE, 1988) requires that a set of scenarios encompassing all significant radionuclide release paths to the accessible environment be described. This report attempts to catalogue the details of the interactions between the features and processes produced by basaltic volcanism in the presence of the presumed groundwater flow system and a repository structure, the engineered barrier system (EBS), and waste. This catalogue is developed in the form of scenarios. We define a scenario as a well-posed problem, starting from an initiating event or process and proceeding through a logically connected and physically possible combination or sequence of features, events, and processes (FEPs) to the release of contaminants

  16. Immiscible iron- and silica-rich melt in basalt petrogenesis documented in the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Jakobsen, Jakob Kløve; Veksler, Ilya; Tegner, Christian

    2005-01-01

    colored type contains 30.9 6 4.2 wt% FeOt and 40.7 6 3.6 wt% SiO2, whereas the light colored type contains 8.6 6 5.9 wt% FeOt and 65.6 6 7.3 wt% SiO2. Similar light colored melt inclusions in olivine and fine grained dark and light colored interstitial pockets also give evidence of crystallization from......Silicate liquid immiscibility in basalt petrogenesis is a contentious issue. Immiscible iron and silica-rich liquids were reported in melt inclusions of lunar basalt and in groundmass glasses of terrestrial volcanics. In fully crystallized plutonic rocks, however, silicate liquid immiscibility has...

  17. K-Ar age and chemical composition of basalt, andesite distributed in Shimabara peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Setsuya; Kamata, Hirotake

    1987-10-01

    Regarding the volcanic rocks genarated by eruption of volcanos in Shimabara Penisula, historical process of change of chemical compositions were studied. For determining the chemical compositions of basalt, andesite, X-ray fluorescence analysis was applied. By this result, distribution map of potassium and other microelements contained in the basalt and andesite was completed. It was considered that magma of similar composition were continuously kept supplied to north-western Kyushu including Shimabara Penisula since later Mesozoic era, that island arc type magma was generated at least 1.4 million years ago by the action of ocean plate, and that andesites were produced by mixing magma of hot spot type with that of island arc type. (3 figs, 2 tabs, 31 refs)

  18. The Basalt Waste Isolation Project technical program evaluation process: A criteria-based method

    International Nuclear Information System (INIS)

    Babad, H.; Evans, C.; Wolfe, B.A.

    1982-01-01

    The need to objectively evaluate the progress being made by the Basalt Waste Isolation Project (BWIP) toward establishing the feasibility of siting a nuclear waste repository in basalt (NWRB) mandates a process for evaluating the technical work of the project. To assist BWIP management in the evaluation process, the Systems Department staff has developed a BWIP Technical Program Evaluation Process (TPEP). The basic process relates progress on project technical work to the BWIP Functional and System Performance Criteria as defined in National Waste Terminal Storage (NWTS) Criteria Documents. The benefits of the TPEP to BWIP and future plans for TPEP are discussed. During fiscal year (FY) 1982, TPEP will be further formalized and further applied to the review of BWIP technical activities

  19. Basalt Waste Isolation Project Technical Program Evaluation Process: a criteria-based method

    International Nuclear Information System (INIS)

    Babad, H.; Evans, G.C.; Wolfe, B.A.

    1982-01-01

    The need to objectively evaluate the progress being made by the Basalt Waste Isolation Project (BWIP) toward establishing the feasibility of siting a nuclear waste repository in basalt (NWRB) mandates a process for evaluating the technical work of the project. To assist BWIP management in the evaluation process, the Systems Department staff has developed a BWIP Technical Program Evaluation Process (TPEP). The basic process relates progress on project technical work to the SWIP Functional and System Performance Criteria as defined in National Waste Terminal Storage (MWTS) Criteria Documents. The benefits of the TPEP to BWIP and future plans for TPEP are discussed. During fiscal year (FY) 1982, TPEP wll be further formalized and further applied to the review of BWIP technical activities

  20. Dynamic strength of cylindrical fiber-glass shells and basalt plastic shells under multiple explosive loading

    Science.gov (United States)

    Syrunin, M. A.; Fedorenko, A. G.

    2006-08-01

    We have shown experimentally that, for cylindrical shells made of oriented fiberglass platic and basalt plastic there exists a critical level of deformations, at which a structure sustains a given number of explosions from the inside. The magnitude of critical deformation for cylindrical fiberglass shells depends linearly on the logarithm of the number of loads that cause failure. For a given type of fiberglass, there is a limiting level of explosive action, at which the number of loads that do not lead to failure can be sufficiently large (more than ˜ 102). This level is attained under loads, which are an order of magnitude lower than the limiting loads under a single explosive action. Basalt plastic shells can be repeatedly used even at the loads, which cause deformation by ˜ 30-50% lower than the safe value ˜ 3.3.5% at single loading.

  1. Economic and ecologic importance of the non - metalic deposits in basalt maars of Southern Slovakia

    Directory of Open Access Journals (Sweden)

    Vass Dionýz

    1998-03-01

    Full Text Available By investigation of the basalt maars infill in Luèenská kotlina Depression the diatomite and alginite deposits have been found. Both maars belong to Podreèany basalt formation, Pontian (Late Miocene in age. By technological investigation it was proved the diatomite can be used in the building trade as raw materil for light tiles convenient especially for the construction of the saddle roof with attic appatments. The alginite can be used in the agriculture and horticulture, as a fertiliser becouse of humus, nutritive end same trace elements, a desodorant in livestoc feedlots, a water and nutritive elements trap to distribute them for the growing plants. The alginite can be used as well as in pharmacy and in different industrial branches. Both deposits are of high significance for the ecology and the nature protection.

  2. Crystallization behaviors and seal application of basalt based glass-ceramics

    Science.gov (United States)

    Ateş, A.; Önen, U.; Ercenk, E.; Yılmaz, Ş.

    2017-02-01

    Basalt based glass-ceramics were prepared by conventional melt-quenching technique and subsequently converted to glass-ceramics by a controlled nucleation and crystallization process. Glass materials were obtained by melt at 1500°C and quenched in cold water. The powder materials were made by milling and spin coating. The powders were applied on the 430 stainless steel interconnector material, and heat treatment was carried out. The interface characteristics between the glass-ceramic layer and interconnector were investigated by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The results showed that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.

  3. Flexural Behavior of RC Slabs Strengthened in Flexure with Basalt Fabric-Reinforced Cementitious Matrix

    Directory of Open Access Journals (Sweden)

    Sugyu Lee

    2018-01-01

    Full Text Available This paper presents both experimental and analytical research results for predicting the flexural capacity of reinforced concrete (RC slabs strengthened in flexure with basalt fabric-reinforced cementitious matrix (FRCM. A total of 13 specimens were fabricated to evaluate the flexural behavior of RC slabs strengthened with basalt FRCM composite and were tested under four-point loading. The fiber type, tensile reinforcement ratio, and the number of fabric layers were chosen as experimental variables. The maximum load of FRCM-strengthened specimens increased from 11.2% to 98.2% relative to the reference specimens. The energy ratio and ductility of the FRCM-strengthened specimens decreased with the higher amount of fabric and tensile reinforcement. The effective stress level of FRCM fabric can be accurately predicted by a bond strength of ACI 549 and Jung’s model.

  4. Flexural Behavior of High-Volume Steel Fiber Cementitious Composite Externally Reinforced with Basalt FRP Sheet

    Directory of Open Access Journals (Sweden)

    Seungwon Kim

    2016-01-01

    Full Text Available High-performance fiber-reinforced cementitious composites (HPFRCCs are characterized by unique tensile strain hardening and multiple microcracking behaviors. The HPFRCC, which demonstrates remarkable properties such as strength, ductility, toughness, durability, stiffness, and thermal resistance, is a class of fiber cement composite with fine aggregates. It can withstand tensile stresses by forming distributed microcracks owing to the embedded fibers in the concrete, which improve the energy absorption capacity and apparent ductility. This high energy absorbing capacity can be enhanced further by an external stiff fiber-reinforced polymer (FRP. Basalt fabric is externally bonded as a sheet on concrete materials to enhance the durability and resistance to fire and other environmental attacks. This study investigates the flexural performance of an HPFRCC that is externally reinforced with multiple layers of basalt FRP. The HPFRCC considered in the study contains steel fibers at a volume fraction of 8%.

  5. Strength and Deformability of Fiber Reinforced Cement Paste on the Basis of Basalt Fiber

    Directory of Open Access Journals (Sweden)

    Yury Barabanshchikov

    2016-01-01

    Full Text Available The research object of the paper is cement paste with the particulate reinforcement of basalt fiber. Regardless of fibers’ length at the same fiber cement mix workability and cement consumption equality compressive solidity of the specimens is reduced with increasing fiber content. This is due to the necessity to increase the water-cement ratio to obtain a given workability. The flexural stability of the specimens with increasing fiber content increments in the same conditions. There is an optimum value of the fibers’ dosage. That is why stability has a maximum when crooking. The basaltic fiber particulate reinforcement usage can abruptly increase the cement paste level limiting extensibility, which is extremely important in terms of crack resistance.

  6. Optimal Design for Hybrid Ratio of Carbon/Basalt Hybrid Fiber Reinforced Resin Matrix Composites

    Directory of Open Access Journals (Sweden)

    XU Hong

    2017-08-01

    Full Text Available The optimum hybrid ratio range of carbon/basalt hybrid fiber reinforced resin composites was studied. Hybrid fiber composites with nine different hybrid ratios were prepared before tensile test.According to the structural features of plain weave, the unit cell's performance parameters were calculated. Finite element model was established by using SHELL181 in ANSYS. The simulated values of the sample stiffness in the model were approximately similar to the experimental ones. The stress nephogram shows that there is a critical hybrid ratio which divides the failure mechanism of HFRP into single failure state and multiple failure state. The tensile modulus, strength and limit tensile strain of HFRP with 45% resin are simulated by finite element method. The result shows that the tensile modulus of HFRP with 60% hybrid ratio increases by 93.4% compared with basalt fiber composites (BFRP, and the limit tensile strain increases by 11.3% compared with carbon fiber composites(CFRP.

  7. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Study of the petrology of Hawaiian volcanoes, in particular the historically active volcanoes on the Island of Hawai‘i, has long been of worldwide scientific interest. When Dr. Thomas A. Jaggar, Jr., established the Hawaiian Volcano Observatory (HVO) in 1912, detailed observations on basaltic activity at Kīlauea and Mauna Loa volcanoes increased dramatically. The period from 1912 to 1958 saw a gradual increase in the collection and analysis of samples from the historical eruptions of Kīlauea and Mauna Loa and development of the concepts needed to evaluate them. In a classic 1955 paper, Howard Powers introduced the concepts of magnesia variation diagrams, to display basaltic compositions, and olivine-control lines, to distinguish between possibly comagmatic and clearly distinct basaltic lineages. In particular, he and others recognized that Kīlauea and Mauna Loa basalts must have different sources.

  8. U-Pb, Sm-Nd and Rb-Sr systematics of mid-ocean ridge basalt glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R S; Evensen, N M; Hamilton, P J; O' Nions, R K [Columbia Univ., Palisades, NY (USA). Lamont-Doherty Geological Observatory

    1980-01-10

    The measurement of Pb, Nd and Sr isotopes in basalt glasses from mid-ocean ridges reveals correlations in isotope parameters which have important implications for the differentiation history of the mantle.

  9. Supplemental technical information in support of Y/OWI/TM--44. Volume 15. Drawings for repository preconceptual design studies: basalt

    International Nuclear Information System (INIS)

    1978-04-01

    Volume 15 contains the drawings of a preconceptual design for a nuclear waste repository in basalt. Three fuel cycles are considered: fuel recycle, throwaway cycle, and uranium recycle with plutonium in the high-level wastes

  10. Tachylyte in Cenozoic basaltic lavas from the Czech Republic and Iceland: contrasting compositional trends

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Krmíček, Lukáš; Teschner, C.; Řanda, Zdeněk; Skála, Roman; Jonášová, Šárka; Fediuk, F.; Adamovič, Jiří; Pokorný, R.

    2017-01-01

    Roč. 111, č. 5 (2017), s. 761-775 ISSN 0930-0708 Institutional support: RVO:67985831 ; RVO:61389005 Keywords : basaltic glass * chemical composition * major genetic types * mineral composition * rift-related volcanites * Sr-Nd isotopes Subject RIV: DB - Geology ; Mineralogy; CB - Analytical Chemistry, Separation (UJF-V) OBOR OECD: Mineralogy; Analytical chemistry (UJF-V) Impact factor: 1.236, year: 2016

  11. Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast

    Energy Technology Data Exchange (ETDEWEB)

    Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.; Tomutsa, L.; Brantley, S.L.

    2009-02-15

    Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering, but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.

  12. Petrology of rift-related basalts at Bombay High waters, Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; Iyer, S.D.

    Tholeiitic basalts obtained in 6 cores from Bombay High Region (Maharashtra, India), at depths of 860-2550 m below the seabed, are of low K and high Fe types. SiO sub(2) varies from 45.68 to 50.72%, K sub(2)O 0.09 to 0.69%, TiO sub(2) 1.06 to 2...

  13. Basaltic rocks behavior of the Corrientes and Entre Rios province from the alcali silice reaction

    International Nuclear Information System (INIS)

    Marfil, S.; Batic, O.; Grecco, L.; Falcone, D.

    2010-01-01

    This work is about the basaltic rocks deposits in Mesopotamia - Argentina. This material is used for dikes, flooring and art . In several of them has been developed expansive processes associated with alkali - silica reaction such as pavements of some routes. In order to evaluate the behavior of these rocks their are obtained samples from the quarries using standard methods such as petrographic, rod accelerated and dissolved silica agree with the IRA M standards

  14. In-situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    Science.gov (United States)

    Masotta, M.; Ni, H.; Keppler, H.

    2013-12-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in-situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1100 to 1240 °C and 1 bar, obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (GR) ranges from 3.4*10-6 to 5.2*10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (NB) at nucleation ranges from 1.8*108 to 7.9*107 cm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble-size distribution (BSD) through time, the BSD's of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSD's may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and

  15. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites

    International Nuclear Information System (INIS)

    Zhang Yihe; Yu Chunxiao; Chu, Paul K.; Lv Fengzhu; Zhang Changan; Ji Junhui; Zhang Rui; Wang Heli

    2012-01-01

    Highlights: ► Novel basalt fiber-reinforced biodegradable poly(butylene succinate) composites have been successfully fabricated with various fiber loadings. ► The tensile and flexural properties of the PBS matrix resin are improved significantly by increasing the fiber loading in the composites. ► The impact strength of the BF/PBS composite decreases with the addition fibers primarily and increases with increasing fiber loading due to energy dissipation when the fibers are pulled out. ► Heat deflection temperature tests clearly show that the HDT of the basalt fiber reinforced PBS composites is significantly higher than the HDT of the PBS resin. - Abstract: Basalt fiber (BF) reinforced poly(butylene succinate) (PBS) composites have been fabricated with different fiber contents by a injection molding method and their tensile, flexural and impact properties, as well as thermal stability have been investigated. The tensile and flexural properties of the PBS matrix resin are improved markedly by increasing the fiber contents in the composites. The values are relatively higher than the natural fiber/PP systems reported earlier by other research groups. The heat deflection temperature (HDT) and Vicat softening temperature (VST) of the composites are significantly higher than those of the neat PBS resin. Scanning electron microscopy (SEM) conducted on the fracture surfaces of the composites reveals superior interfacial linkage between the basalt fibers and PBS matrix. The results suggest that the BF/PBS composites may be a potential candidate of PP or PP composites to manufacturing some daily commodities to solve the “white pollution” in environmental management.

  16. Geochemistry of the earth mantle: distribution of trace elements in the basaltic magma Pt. 2

    International Nuclear Information System (INIS)

    Treuil, M.; Joron, J.-L.; Jaffrezic, H.

    1982-01-01

    The analytical accuracy of the neutron activation method has been integrated in a geochemical framework. This way it is possible to elaborate methods of identification and modelling of the mantle properties on the basis of hygromagmaphil elements. The principles of the method are exposed and its application to the geochemical studies of basalts from various geodynamical settings in the lithosphere are illustrated. The method emphasizes the complexity of the chemical and mineralogical heterogeneity of the mantle and its effect on magma properties. (author)

  17. High water contents in basaltic melt inclusions from Arenal volcano, Costa Rica

    Science.gov (United States)

    Wade, J. A.; Plank, T.; Hauri, E. H.; Melson, W. G.; Soto, G. J.

    2004-12-01

    Despite the importance of water to arc magma genesis, fractionation and eruption, few quantitative constraints exist on the water content of Arenal magmas. Early estimates, by electron microprobe sum deficit, suggested up to 4 wt% H2O in olivine-hosted basaltic andesite melt inclusions (MI) from pre-historic ET-6 tephra (Melson, 1982), and up to 7 wt% H2O in plagioclase and orthopyroxene-hosted dacitic MI from 1968 lapilli (Anderson, 1979). These high water contents are consistent with abundant hornblende phenocrysts in Arenal volcanics, but inconsistent with geochemical tracers such as 10Be and Ba/La that suggest a low flux of recycled material (and presumably water) from the subduction zone. In order to test these ideas, and provide the first direct measurements of water in mafic Arenal magmas, we have studied olivine-hosted MI from the prehistoric (900 yBP; Soto et al., 1998) ET3 tephra layer. MI range from andesitic (> 58% SiO2) to basaltic compositions ( 4 wt%) found here for Arenal basaltic MI support the semi-quantitative data from earlier studies, but are somewhat unexpected given predictions from slab tracers. Arenal water contents (4%) approach those of the 1995 eruption of Cerro Negro in Nicaragua (4-5 wt% in basaltic MI; Roggensack et al., 1997), despite the fact that the latter has Ba/La of > 100, while Arenal has Ba/La Journal of Geology; Melson, William G. (1982) Boletin de Volcanologia; Roggensack et al. (1997) Science; Soto et al. (1998) OSIVAM; Williams-Jones et al. (2001) Journal of Volc. and Geoth. Res.

  18. Geology of hole drill thermal infra basaltic (Guarani Aquifer System) in Salto Uruguay

    International Nuclear Information System (INIS)

    Goso, C.; Muzio, R.; Marmisolle, J.; De Souza, S.

    2004-01-01

    This paper deals with the lithological description of a thermal infrabasaltic (Guarani Aquifer System) hole drill cutting in Dayman (Kanarek Hotel), Salto department (Uruguay). This hole drill shows 152 meters of Buena Vista Formation (Upper Permian- Lower Triassic), 188 meters of Tacuarembo Formation (Upper Jurassic-Lower Cretaceous) and 940meters of Arapey Formation (Lower Cretaceous). Petrographical studies of six basaltic levels were done [es

  19. Geothermal Alteration of Basaltic Core from the Snake River Plain, Idaho

    OpenAIRE

    Sant, Christopher Joseph

    2012-01-01

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquife...

  20. Stratigraphy, composition and form of the Deccan Basalts, Western Ghats, India

    Science.gov (United States)

    Beane, J. E.; Turner, C. A.; Hooper, P. R.; Subbarao, K. V.; Walsh, J. N.

    1986-02-01

    In the Western Ghats between latitudes 18° 20' N and 19° 15' N, 7000 km2 of Deccan Basalt have been mapped with the primary objective of establishing a flow stratigraphy as a guide to the volcanic history of the flood basalts. Using over 70 measured vertical sections, major and trace element analyses of nearly 1200 samples, and rare-earth and87Sr/86Sr determinations for over 60 samples, we divide the basalt into three subgroups and ten formations. In this paper we describe the seven principal formations in the area and the most prominent individual flows. The Kalsubai Subgroup is formed by the lower five formations, the Jawhar, Igatpuri, Neral, Thakurvadi, and Bhimashankar formations, from botton to top. In these formations amygdaloidal compound flows predominate and have a typically high MgO content, including picrite basalt (> 10% MgO) and picrite (> 18% MgO) with phenocrysts of olivine and clinopyroxene. These flows are separated by others which contain giant plagioclase phenocrysts and have more evolved chamical compositions. The Lonavala Subgroup overlies the Kalsubai and is composed of two formations, the Khandala and the Bushe. Both are readily recognized in the field and by their chemical compositions. The Wai Subgroup includes the upper three formations, the Poladpur, the Ambenali, and the Mahabaleshwar. The whole subgroup is composed of simple flows with well-developed flow tops, small phenocrysts of plagioclase, pyroxene and olivine, and relatively evolved bulk compositions. Distribution and variation in thickness of the straitigraphic units within the Western Ghats provide a first comprehensive view of the development of the Deccan volcanic edifice. The persistent southerly dip and gentle southerly plunging anticlinal form of the flows, the lensoid shape of many of the formations, and nearly randomly oriented feeder-dike system are together interpreted as evidence of a central volcanic edifice formed as the Indian plate drifted northward over a mantle

  1. Geochemistry and petrology of pyroxenite xenoliths from Cenozoic alkaline basalts, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Ackerman, Lukáš; Špaček, Petr; Medaris Jr., G.; Hegner, E.; Svojtka, Martin; Ulrych, Jaromír

    2012-01-01

    Roč. 57, č. 4 (2012), s. 199-219 ISSN 1802-6222 R&D Projects: GA ČR(CZ) GA205/09/1170 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z30120515 Institutional support: RVO:67985831 ; RVO:67985530 Keywords : pyroxenite * xenolith * Cenozoic * basalt * Sr-Nd isotopes * geothermobarometry Subject RIV: DD - Geochemistry Impact factor: 0.804, year: 2012

  2. Basalt fiber insulating material with a mineral binding agent for industrial use

    Science.gov (United States)

    Drozdyuk, T.; Aizenshtadt, A.; Tutygin, A.; Frolova, M.

    2016-04-01

    The paper considers a possibility of using mining industry waste as a binding agent for heat insulating material on the basis of basalt fiber. The main objective of the research is to produce a heat-insulating material to be applied in machine building in high-temperature environments. After synthetic binder having been replaced by a mineral one, an environmentally sound thermal insulating material having desirable heat-protecting ability and not failing when exposed to high temperatures was obtained.

  3. Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete

    International Nuclear Information System (INIS)

    Rambo, Dimas Alan Strauss; Andrade Silva, Flávio de; Toledo Filho, Romildo Dias; Fonseca Martins Gomes, Otávio da

    2015-01-01

    Highlights: • The thermo-mechanical behavior of basalt TRC is investigated. • The fiber polymer coating can become a deterministic factor in the TRC response. • Pre-heating the TRC at 150 °C leads to a matrix–polymer interlocking mechanism. • Above 400 °C a sudden drop in the TRC tensile response is observed. - Abstract: The work in hand presents the results of an experimental investigation on the thermo-mechanical properties of a textile refractory composite reinforced with polymer coated basalt fibers under tensile loading. The composites were produced as a laminate material using basalt bi-directional fabric layers as reinforcement. A high alumina cement matrix was used in the matrix composition which was designed using the compressible packing method. A series of uniaxial tensile tests was performed under temperatures ranging from 25 to 1000 °C. The cracking mechanisms were discussed and compared to that obtained at room temperature. Thermogravimetry and X-ray diffraction analysis were used to study the deterioration/phase changes as a function of the studied temperatures. Scanning electron microscopy (SEM) was used to study the damage processes in the fiber–matrix interfaces after exposure to high temperatures. The obtained results indicated that the presence and the type of coating can become a deterministic factor in the tensile response of the composite submitted to elevated temperatures. A sudden drop in the serviceability limit state of the composite was observed above 400 °C, caused by the degradation of the polymer used as a fiber surface coating, the degradation of the basalt fiber and by the dehydration process of the refractory matrix

  4. FINE-GRAINED THE FIBER CONCRETE WITH APPLICATION VOLCANIC ASH, REINFORCED BY THE BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    I. A. Dzugulov

    2015-01-01

    Full Text Available The compositions of fine-grained concrete with the application of volcanic ash are developed. Are investigated compositions and properties of fine-grained fiber concrete with the volcanic ash with the application of methods of the mathematical planning of experiment. It is revealed, that the reinforcement of finegrained concrete by basaltic fibers substantially increases their strength with the bend. 

  5. Tensile Mechanical Properties and Failure Modes of a Basalt Fiber/Epoxy Resin Composite Material

    OpenAIRE

    He, Jingjing; Shi, Junping; Cao, Xiaoshan; Hu, Yifeng

    2018-01-01

    Uniaxial tensile tests of basalt fiber/epoxy (BF/EP) composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the ...

  6. The Efficiency of Basalt Fibres in Strengthening the Reinforced Concrete Beams

    OpenAIRE

    Şerbescu, Andreea; Kypros, Pilakoutas; Ţăranu, N.

    2006-01-01

    The technique of externally bonding fibre reinforced polymer (FRP) composite laminates on the tension side of reinforced concrete (RC) beams is already widely accepted as an easy to apply, corrosion resistant and effective solution due to the high strength as well as the low weight of the composite material. The basalt fibres are produced from volcano rocks by a simple process; their applicability as reinforcing material composites utilized for plate bonding of RC beams was not enough researc...

  7. Buckling Resistance of Basalt Fiber Reinforced Polymer Infill Panel Subjected to Elevated Temperatures

    OpenAIRE

    Viriyavudh Sim; Woo Young Jung

    2017-01-01

    Performance of Basalt Fiber Reinforced Polymer (BFRP) sandwich infill panel system under diagonal compression was studied by means of numerical analysis. Furthermore, the variation of temperature was considered to affect the mechanical properties of BFRP, since their composition was based on polymeric material. Moreover, commercial finite element analysis platform ABAQUS was used to model and analyze this infill panel system. Consequently, results of the analyses show that the overall perform...

  8. Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel

    OpenAIRE

    Viriyavudh Sim; Jung Kyu Choi; Yong Ju Kwak; Oh Hyeon Jeon; Woo Young Jung

    2017-01-01

    In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In...

  9. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China

    Science.gov (United States)

    Xu, Zheng; Zheng, Yong-Fei

    2017-09-01

    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by

  10. Origin of primitive ocean island basalts by crustal gabbro assimilation and multiple recharge of plume-derived melts

    Science.gov (United States)

    Borisova, Anastassia Y.; Bohrson, Wendy A.; Grégoire, Michel

    2017-07-01

    Chemical Geodynamics relies on a paradigm that the isotopic composition of ocean island basalt (OIB) represents equilibrium with its primary mantle sources. However, the discovery of huge isotopic heterogeneity within olivine-hosted melt inclusions in primitive basalts from Kerguelen, Iceland, Hawaii and South Pacific Polynesia islands implies open-system behavior of OIBs, where during magma residence and transport, basaltic melts are contaminated by surrounding lithosphere. To constrain the processes of crustal assimilation by OIBs, we employed the Magma Chamber Simulator (MCS), an energy-constrained thermodynamic model of recharge, assimilation and fractional crystallization. For a case study of the 21-19 Ma basaltic series, the most primitive series ever found among the Kerguelen OIBs, we performed sixty-seven simulations in the pressure range from 0.2 to 1.0 GPa using compositions of olivine-hosted melt inclusions as parental magmas, and metagabbro xenoliths from the Kerguelen Archipelago as wallrock. MCS modeling requires that the assimilant is anatectic crustal melts (P2O5 ≤ 0.4 wt.% contents) derived from the Kerguelen oceanic metagabbro wallrock. To best fit the phenocryst assemblage observed in the investigated basaltic series, recharge of relatively large masses of hydrous primitive basaltic melts (H2O = 2-3 wt%; MgO = 7-10 wt.%) into a middle crustal chamber at 0.2 to 0.3 GPa is required. Our results thus highlight the important impact that crustal gabbro assimilation and mantle recharge can have on the geochemistry of mantle-derived olivine-phyric OIBs. The importance of crustal assimilation affecting primitive plume-derived basaltic melts underscores that isotopic and chemical equilibrium between ocean island basalts and associated deep plume mantle source(s) may be the exception rather than the rule.

  11. Pb and Sr isotopic systematics of some basalts and sulfides from the East Pacific Rise at 210N (project RITA)

    International Nuclear Information System (INIS)

    Vidal, P.; Clauer, N.

    1981-01-01

    Tholeiitic basalts and sulfide deposits from the 'Cyana' and 'Alvin' diving programs (RITA project) on the East Pacific Rise were analyzed for Pb and Sr isotopes. The basalt data plot within the field defined previously by other East Pacific Rise basalts ( 206 Pb/ 204 Pb: 18.35-18.58; 207 Pb/ 204 Pb: 15.48-15.53; 208 Pb/ 204 Pb: 37.8-38.1; 87 Sr/ 86 Sr: 0.7022-0.7025). Pb, U and Sr contents (approx. equal to 0.5, approx. equal to 0.05 and approx. equal to 110 ppm, respectively) and μ values (approx. equal to 6) are typical of MORB, whereas Th/U ratios (approx. equal to 3.5) are significantly higher. The Pb isotopic ratios of the sulfide samples are very homogeneous ( 206 Pb/ 204 Pb approx. equal to 18.47, 207 Pb/ 204 Pb approx. equal to 15.49, 208 Pb/ 204 Pb approx. equal to 37.90), and plot in the middle of the basalt field. This indicates that the sulfide Pb was derived from the basaltic crust without any significant contribution from either seawater or hemipelagic sediments, and the solutions from which the sulfiedes were deposited had uniform Pb isotopic composition. The Pb contents of three sulfide samples is relatively high (170-1310 ppm). The Sr contents of five sulfide samples are widely scattered from 12 to 210 ppm, with 87 Sr/ 86 Sr ratios intermediate between basaltic and seawater values (0.70554 +- 0.00005 to 0.70795 +- 0.00011). Leaching experiments show that both basalt-derived Sr and seawater Sr were present in the solutions which deposited the sulfides. In some cases, Sr was also adsorbed from seawater onto the sulfides following their deposition. Basalt-derived Sr and seawater Sr are also present in associated non-sulfide phases. (orig.)

  12. A petrogenetic model of basalts from the Northern Central Indian Ridge: 3-11°S

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, Dwijesh; Iyer, S.D.; Banerjee, R.; Misra, S.; Widdowson, M.

    ) to subhedral (rare) equant grains, which are almost colourless and rarely show zoning. In a few cases, olivine shows alteration along the inherent fracture to reddish- brown iddingsite. Amphiboles occur in the VT as well as in VM basalts but only as poorly... (primitive mantle normalized data from Sun and McDonough, 1989) patterns for selected samples are shown. The basalt samples collected from VT 4, VT 5 and VM 9DG locations characteristically exhibit differential variation in their trace element...

  13. Disseminated sulphides in basalts from the northern central Indian ridge: Implications on late-stage hydrothermal activity

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Ray, D.

    interplay between oceanic crust fractur- ing due to tectonically active megamullions and subsequent hydrothermal alteration, accounting for the formation of dis- seminated sulphides at the NCIR. In a novel attempt, this study examines the mineralogy... of samples. Instead, the dark greyish coloured altered basalts, frequently fractured and often with a greenish tint, dominate the assemblage. Specks of sulphides are un- evenly distributed in these altered basalts as disseminated grains or fine stringers...

  14. Trace element and isotopic compositions of Vietnamese basalts: implications for mantle dynamics in the southeast Asian region

    International Nuclear Information System (INIS)

    Nguyen, H.; Fower, M.; Nguyen, H.; Nguyen, X.B.; Nguyen, T.Y.

    1996-01-01

    Cenozoic basalts in Indo-China are part of a regional melting episode along the rifted Eurasian margin. Trace element and isotopic compositions of Vietnamese basalts are used to place constraints on the extent of lithospheric and asthenosphere contributions to the melts and possible mantle dynamic implications. The 87 Sr/ 86 Sr, 207 Pb/ 204 Pb, and 208 Pb/ 204 Pb isotopic ratios of the basalts reflect minimal crustal wall rock reaction, and variable enrichment in EM1 and EM2 of a 208 Pb-rich MORB-like source. Some, but not all, of this variation corresponds to the age of lithospheric sector penetrated. Basalts erupted through a cratonic, central sector (e.g. at Quang Ngai, Pleiku, Song Cau, Kong Plong, and Buon Ma Thuot) and off-cratonic, southwest sector (e.g. Phuoc Long) resemble those of EM2-rich basalts from southern and southeaster China and the South China Sea. Basalts from an off-cratonic, southeast sector (e.g. from Dalat, Xuan Loc, and the offshore Ile des Cendres-Phu Cuy complex) reflect mixing between a low- 206 Pb/ 204 Pb, high- 208 Pb/ 204 Pb, EM1-like component, and resemble basalts from northwest Taiwan, eastern and northeastern China, and parts of the Japan Sea. While EM2 tends to characterise lithospheric sectors, presence of EM1 in off-cratonic rather than cratonic basalts implies an asthenosphere rather than lithospheric source. Pervasive presence of EM1 in southeast Asian and marginal basin asthenosphere corresponds with thermally-anomalous mantle and may involve delaminated cratonic substrate entrained by mobile, extruded asthenosphere. (authors)

  15. Summary and evaluation of hydraulic property data available for the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Vermeul, V.R.

    1994-09-01

    Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated using recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10 0 to 10 2 m 2 /d, with 65% of the calculated estimate values occurring between 10 1 to 10 2 m 2 d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt

  16. Estimation of influence of a solution of a boric acid and temperatures on a isolation material from basalt fibers

    International Nuclear Information System (INIS)

    Pyshnova, V.V.; Skobelkina, T.N.; Yurchenko, V.G.; Knot'ko, A.V.; Putlyaev, V.I.

    2006-01-01

    Paper presents the results of investigation into long-term simultaneous effect of a medium (boric acid solution) and temperature on a thermal-insulating basalt fiber material. The basalt fiber clothes used at the NPP were tested. When evaluating simultaneous effect of boric acid solution and temperature one kept watch on density, compressibility, elasticity and diameter of fiber. According to the results of 30 day tests, the basic technical parameters of the thermal-insulating material have changed insignificantly [ru

  17. Optical and mechanical excitation thermography for impact response in basalt-carbon hybrid fiber-reinforced composite laminates

    OpenAIRE

    Zhang, Hai; Sfarra, Stefano; Sarasini, Fabrizio; Ibarra-Castanedo, Clemente; Perilli, Stefano; Fernandes, Henrique; Duan, Yuxia; Peeters, Jeroen; Avelidis, Nicholas P; Maldague, Xavier

    2017-01-01

    Abstract: In this paper, optical and mechanical excitation thermography were used to investigate basalt fiber reinforced polymer (BFRP), carbon fiber reinforced polymer (CFRP) and basalt-carbon fiber hybrid specimens subjected to impact loading. Interestingly, two different hybrid structures including sandwich-like and intercalated stacking sequence were used. Pulsed phase thermography (PPT), principal component thermography (PCT) and partial least squares thermography (PLST) were used to pro...

  18. Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts

    Science.gov (United States)

    Arndt, Nicholas T.; Kerr, Andrew C.; Tarney, John

    1997-01-01

    The small Pacific island of Gorgona, off the coast of Colombia, is well known for its spectacular spinifex-textured komatiites. These high-Mg liquids, which have been linked to a late Cretaceous deep mantle plume, are part of a volcanic series with a wide range of trace-element compositions, from moderately enriched basalts ( La/SmN ˜ 1.5) to extremely depleted ultramafic tuffs and picrites ( La/SmN ˜ 0.2). Neither fractional crystallization, nor partial melting of a homogeneous mantle source, can account for this large variation: the source must have been chemically heterogeneous. Low 143Nd/144Nd in the more enriched basalts indicates some initial source heterogeneity but most of the variation in magma compositions is believed to result from dynamic melting during the ascent of a plume. Modelling of major- and trace-element compositions suggests that ultramafic magmas formed at ˜ 60-100 km depth, and that the melt extraction that gave rise to their depleted sources started at still greater depths. The ultra-depleted lavas represent magmas derived directly from the hottest, most depleted parts of the plume; the more abundant moderately depleted basalts are interpreted as the products of pooling of liquids from throughout the melting region.

  19. Overview of the waste/barrier/rock interactions program of the basalt waste isolation project

    International Nuclear Information System (INIS)

    Salter, P.F.; Burnell, J.R.; Lane, D.L.

    1986-01-01

    The waste package waste/barrier/rock interactions testing program of the Basalt Waste Isolation Project is designed to assess the interactions between nuclear waste forms, other waste package components, and the environment in order to evaluate long-term waste package isolation (radionuclide release) behavior. The program involves reacting fully radioactive waste forms with combinations of steel or copper container material and basalt/bentonite packing material in site-specific ground water under anticipated repository conditions to obtain the steady state radionuclide concentrations required to predictively model waste package radionuclide concentrations required to predictively model waste package radionuclide releases. Both static and flow-through autoclaves are being used in the test program to determine radionuclide concentrations as a function of time and groundwater flow rate, and to evaluate the solid phase and water chemistry changes that control those concentrations. This test program, when combined with project hydrologic and geochemical testing and modeling efforts, and natural analog studies, provides the information required to evaluate long-term radionuclide mobility within a waste package emplaced in a basalt repository

  20. Epithermal neutron activation analysis of CR(VI)-reducer basalt-inhabiting bacteria

    International Nuclear Information System (INIS)

    Tsibakhashvili, N.Ya.; Kalabegishvili, T.L.; Murusidze, I.G.; Mosulishvili, L.M.; Frontas'eva, M.V.; Kirkesali, E.I.; Aksenova, N.G.; Holman, H.Y.

    2005-01-01

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(VI) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 μg/g of dry weight) indicate bacterial adaptation to the environmental conditions typical of the basalts. The concentrations of at least 12-19 different elements ranging from major- to ultratrace ones were determined in each type of bacteria simultaneously. The range of concentrations spans over 8 orders of magnitude

  1. Diversity of basaltic lunar volcanism associated with buried impact structures: Implications for intrusive and extrusive events

    Science.gov (United States)

    Zhang, F.; Zhu, M.-H.; Bugiolacchi, R.; Huang, Q.; Osinski, G. R.; Xiao, L.; Zou, Y. L.

    2018-06-01

    Relatively denser basalt infilling and the upward displacement of the crust-mantle interface are thought to be contributing factors for the quasi-circular mass anomalies for buried impact craters in the lunar maria. Imagery and gravity observations from the Lunar Reconnaissance Orbiter (LRO) and dual Gravity Recovery and Interior Laboratory (GRAIL) missions have identified 10 partially or fully buried impact structures where diversity of observable basaltic mare volcanism exists. With a detailed investigation of the characteristics of associated volcanic landforms, we describe their spatial distribution relationship with respect to the subsurface tectonic structure of complex impact craters and propose possible models for the igneous processes which may take advantage of crater-related zones of weakness and enable magmas to reach the surface. We conclude that the lunar crust, having been fractured and reworked extensively by cratering, facilitates substance and energy exchange between different lunar systems, an effect modulated by tectonic activities both at global and regional scales. In addition, we propose that the intrusion-caused contribution to gravity anomalies should be considered in future studies, although this is commonly obscured by other physical factors such as mantle uplift and basalt load.

  2. Sorption and desorption reactions of radionuclides with a crushed basalt-bentonite packing material

    International Nuclear Information System (INIS)

    Barney, G.S.; Lane, D.L.; Allen, C.C.; Jones, T.E.

    1985-04-01

    Current design of waste packages for disposal of high-level radioactive wastes in underground basalt formations includes a layer of packing material that surrounds the waste container. One of the functions of this material is to limit the release of radionuclides from a breached container into groundwater by providing a low hydraulic conductivity zone and by sorbing dissolved radionuclides. The objective of this study was to assess the radionuclide sorption capability of a proposed packing material composed of 25% sodium bentonite and 75% crushed basalt (by weight). Sorption and desorption reactions of several important waste radioelements (neptunium, uranium, plutonium, technetium, selenium, and radium) were investigated in the absence of air at 90 0 C. Uranium and neptunium were sorbed by slow reactions that follow first-order kinetics. The reaction rates are probably controlled by reduction of weakly sorbed uranium(VI) and neptunium(V) by ferrous iron in the crushed basalt component. Technetium(VII) was not reduced or sorbed under these conditions. Freundlich sorption and desorption isotherms for a given radionuclide were non-singular and show a strong tendency for sorption hysteresis. Applying the isotherm data to a one-dimensional transport model indicated that hysteretic sorption on the packing material provides an important safety factor in controlling releases of some radionuclides

  3. Site selection report basalt waste isolation program near-surface test facility

    International Nuclear Information System (INIS)

    Sharpe, S.D.

    1978-01-01

    A site selection committee was established to review the information gathered on potential sites and to select a site for the Near-Surface Test Facility Phase I. A decision was made to use a site on the north face of Gable Mountain located on the Hanford Site. This site provided convenient access to the Pomona Basalt Flow. This flow was selected for use at this site because it exhibited the characteristics established in the primary criteria. These criteria were: the flows thickness; its dryness; its nearness to the surface; and, its similarities to basalt units which are candidates for the repository. After the selection of the Near-Surface Test Facility Phase I Site, the need arose for an additional facility to demonstrate safe handling, storage techniques, and the physical effects of radioactive materials on an in situ basalt formation. The committee reviewed the sites selected for Phase I and chose the same site for locating Phase II of the Near-Surface Test Facility

  4. Isotopic composition of strontium in three basalt-andesite centers along the Lesser Antilles arc

    Science.gov (United States)

    Hedge, C.E.; Lewis, J.F.

    1971-01-01

    Si87/Sr86 ratios have been determined for lavas and py lastic rocks from three basalt-andesite centers along the Lesser Antilles arc-Mt. Misery on the island of St. Kitts, Soufriere on the island of St. Vincent, and Carriacou, an island of The Grenadines. The average Si87/Sr86 content of these rocks is 0.7038 for Mt. Misery, 0.7041 for Soufriere, and 0.7053 for Carriacou. All the Sr87/Sr86 values from each center are the same within analytical uncertainty (??0.0002). The constancy of strontium isotopic data within each center supports the hypothesis that basalts and andesites for each specific center investigated are generated from the same source - in agreement with petrographic and major- and minor-element data. Strontium isotopic compositions and elemental concentrations, particularly of strontium and nickel, indicate that this source was mantle peridotite and that the relationship between the respective basalts and andesites is probably fractional crystallization. ?? 1971 Springer-Verlag.

  5. Basaltic glass alteration in confined media: analogy with nuclear glass in geological disposal conditions

    International Nuclear Information System (INIS)

    Parruzot, Benjamin

    2014-01-01

    This dissertation concerns basaltic glass alteration mechanisms and rates. Through a better understanding of the processes controlling the basaltic glass durability, this thesis attempts to establish a link between laboratory studies and volcanic glass alteration in natural environment. The methodology used here is similar to the one used for nuclear glasses. Thus, we measured for the first time the residual alteration rate of basaltic glasses. Protective effect of the alteration film is clearly established. Moreover, synthetic glass representativeness is evaluated through a study focused on the effect of iron oxidation degree on the glass structure and leaching properties. A minor effect of Fe II on the forward rate and a negligible effect on the residual rate are shown. The residual rate is extrapolated at 5 C and compared to the mean alteration rate of natural samples of ages ranging from 1900 to 10 7 years. Non-zeolitized natural glasses follow this linear tendency, suggesting a control of the long-term rate by clayey secondary phase precipitation. Natural environments are open environments: a parametric study was performed in order to quantify the water flow rate effect on chemical composition of the alteration layer. When applied to two natural samples, the obtained laws provide coherent results. It seems possible to unify the descriptive approach from the study of natural environments to the mechanistic approach developed at the laboratory. The next step will consist in developing a model to transpose these results to nuclear glasses. (author) [fr

  6. Development and characterization of basalt-glass ceramics for the immobilization of transuranic wastes

    International Nuclear Information System (INIS)

    Lokken, R.O.; Chick, L.A.; Thomas, L.E.

    1982-09-01

    Basalt-based waste forms were developed for the immobilization of transuranic (TRU) contaminated wastes. The specific waste studied is a 3:1 blend of process sludge and incinerator ash. Various amounts of TRU blended waste were melted with Pomona basalt powder. The vitreous products were subjected to a variety of heat treatment conditions to form glass ceramics. The total crystallinity of the glass ceramic, ranging from 20 to 45 wt %, was moderately dependent on composition and heat treatment conditions. Three parent glasses and four glass ceramics with varied composition and heat treatment were produced for detailed phase characterization and leaching. Both parent glasses and glass ceramics were mainly composed of a continuous, glassy matrix phase. This glass matrix entered into solution during leaching in both types of materials. The Fe-Ti rich dispersed glass phase was not significantly degraded by leaching. The glass ceramics, however, exhibited four to ten times less elemental releases during leaching than the parent glasses. The glass ceramic matrix probably contains higher Fe and Na and lower Ca and Mg relative to the parent glass matrix. The crystallization of augite in the glass ceramics is believed to contribute to the improved leach rates. Leach rates of the basalt glass ceramic are compared to those of other TRU nuclear waste forms containing 239 Pu

  7. Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene–clay nanocomposites

    International Nuclear Information System (INIS)

    Eslami-Farsani, Reza; Reza Khalili, S. Mohammad; Hedayatnasab, Ziba; Soleimani, Neda

    2014-01-01

    Highlights: • We studied tensile properties of basalt fiber/nanoclay-polypropylene (BF–PPCN). • Addition of nanoclay improves the yield strength and Young’s modulus of BF–PPCN. • The tensile properties of BF–PPCN are high at low temperature (−196 °C). - Abstract: In this paper, a comparative study on the tensile properties of clay reinforced polypropylene (PP) nanocomposites (PPCN) and chopped basalt fiber reinforced PP–clay nanocomposites (PPCN-B) is presented. PP matrix are filled with 1, 3 and 5 wt.% of nanoclays. The ultimate tensile strength, yield strength, Young’s modulus and toughness are measured at various temperature conditions. The thermal conditions are included the room temperature (RT), low temperature (LT) and high temperature (HT). The basal spacing of clay in the composites is measured by X-ray diffraction (XRD). Nanoscale morphology of the samples is observed by transmission electron microscopy (TEM). Addition of nanoclay improves the yield strength and Young’s modulus of PPCN and PPCN-B; however, it reduces the ultimate tensile strength. Furthermore, the addition of chopped basalt fibers to PPCN improves the Young’s modulus of the composites. The Young’s modulus and the yield strength of both PPCN and PPCN-B are significantly high at LT (−196 °C), descend at RT (25 °C) and then low at HT (120 °C)

  8. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  9. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites

    Science.gov (United States)

    Shishevan, Farzin Azimpour; Akbulut, Hamid; Mohtadi-Bonab, M. A.

    2017-06-01

    In this research, we studied low velocity impact response of homogenous basalt fiber-reinforced polymer (BFRP) composites and then compared the impact key parameters with carbon fiber-reinforced polymer (CFRP) homogenous composites. BFRPs and CFRPs were fabricated by vacuum-assisted resin transfer molding (VARTM) method. Fabricated composites included 60% fiber and 40% epoxy matrix. Basalt and carbon fibers used as reinforcement materials were weaved in 2/2 twill textile tip in the structures of BFRP and CFRP composites. We also utilized the energy profile method to determine penetration and perforation threshold energies. The low velocity impact tests were carried out in 30, 60, 80, 100, 120 and 160 J energy magnitudes, and impact response of BFRPs was investigated by related force-deflection, force-time, deflection-time and absorbed energy-time graphics. The related impact key parameters such as maximum contact force, absorbed energy, deflection and duration time were compared with CFRPs for various impact energy levels. As a result, due to the higher toughness of basalt fibers, a better low velocity impact performance of BFRP than that of CFRP was observed. The effects of fabrication parameters, such as curing process, were studied on the low velocity impact behavior of BFRP. The results of tested new fabricated materials show that the change of fabrication process and curing conditions improves the impact behavior of BFRPs up to 13%.

  10. Tensile Mechanical Properties and Failure Modes of a Basalt Fiber/Epoxy Resin Composite Material

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2018-01-01

    Full Text Available Uniaxial tensile tests of basalt fiber/epoxy (BF/EP composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the fiber orientation angle is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all increase with increasing fiber volume fraction. A certain degree of fiber clustering appears in the epoxy resin when the basalt fiber volume fraction is >1.2%. The fiber equidistribution coefficient and clustering fiber content were used to characterize the basalt fiber clustering effect. With the increase of fiber volume fraction, the clustering fiber content gradually increased, but the fiber equidistribution coefficient decreased. Meanwhile, based on Tsai theory, a geometric model and a tensile mechanical model of the clustering fiber are established. By considering the fiber clustering effect, the BF/EP composite material tensile strength is calculated, and the calculated values are close to the experimental results.

  11. Petrophysical characteristics of basalt in the vadose zone, Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Knutson, C.F.; Harrison, W.E.; Smith, R.P.

    1989-01-01

    We have used a core characterization system to measure bulk densities, porosities, and permeabilities of basalt lavas from the vadose zone at the Idaho National Engineering Laboratory (INEL). At the INEL, basalt lava flows with intercalated alluvial, aeolian, and lacustrine sediments extend to depths of one kilometer or more. Individual lava flows are generally less than 15 meters thick and commonly have vesicular tops and bottoms with massive basalt in their interiors. Petrophysical characterization is essential to an understanding of fluid movement in the vadose zone and in the saturated zone. Many hundreds of closely spaced permeability/porosity/bulk density measurements have defined the variability of these parameters within and between individual basalt flows. Based on geological logging and porosity/permeability measurements made on many hundred feet of core, we feel that a rather sophisticated and rigorous logging program is necessary to characterize these complex and highly variable basaltic flow units. This paper endeavors to provide a petrophysical/geological conceptual model of the Snake River Plain basalts from the vadose zone under the Radioactive Waste Management Complex area at the INEL. We hope that this model will aid in subsequent geotechnical logging in this portion of the Eastern Snake River Plain. 8 refs., 14 figs., 2 tabs

  12. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.

    Science.gov (United States)

    Perner, M; Hansen, M; Seifert, R; Strauss, H; Koschinsky, A; Petersen, S

    2013-07-01

    Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes. © 2013 John Wiley & Sons Ltd.

  13. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Energy Technology Data Exchange (ETDEWEB)

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  14. Genetic interpretation of lead-isotopic data from the Columbia River basalt group, Oregon, Washington, and Idaho.

    Science.gov (United States)

    Church, S.E.

    1985-01-01

    Lead-isotopic data for the high-alumina olivine plateau basalts and most of the Colombia River basalt group plot within the Cascade Range mixing array. The data for several of the formations form small, tight clusters and the Nd and Sr isotopic data show discrete variation between these basalt groups. The observed isotopic and trace-element data from most of the Columbia River basalt group can be accounted for by a model which calls for partial melting of the convecting oceanic-type mantle and contamination by fluids derived from continental sediments which were subducted along the trench. These sediments were transported in the low-velocity zone at least 400 km behind the active arc into a back-arc environment represented by the Columbia Plateau province. With time, the zone of melting moved up, resulting in the formation of the Saddle Mt basalt by partial melting of a 2600 m.y.-old sub-continental lithosphere characterized by high Th/U, Th/Pb, Rb/Sr and Nd/Sm ratios and LREE enrichment. Partial melting of old sub-continental lithosphere beneath the continental crust may be an important process in the formation of continental tholeiite flood basalt sequences world-wide. -L.di H.

  15. Assessment of rock mechanical properties and seismic slope stability in variably weathered layered basalts

    Science.gov (United States)

    Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome

    2016-04-01

    A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation

  16. Numerical simulations of hydrothermal circulation resulting from basalt intrusions in a buried spreading center

    Science.gov (United States)

    Fisher, A.T.; Narasimhan, T.N.

    1991-01-01

    A two-dimensional, one by two-kilometer section through the seafloor was simulated with a numerical model to investigate coupled fluid and heat flow resulting from basalt intrusions in a buried spreading center. Boundary and initial conditions and physical properties of both sediments and basalt were constrained by field surveys and drilling in the Guaymas Basin, central Gulf of California. Parametric variations in these studies included sediment and basalt permeability, anisotropy in sediment permeability, and the size of heat sources. Faults were introduced through new intrusions both before and after cooling.Background heat input caused fluid convection at velocities ≤ 3 cm a−1 through shallow sediments. Eighty to ninety percent of the heat introduced at the base of the simulations exited through the upper, horizontal surface, even when the vertical boundaries were made permeable to fluid flow. The simulated injection of a 25–50 m thick basalt intrusion at a depth of 250 m resulted in about 10 yr of pore-fluid expulsion through the sea-floor in all cases, leaving the sediments above the intrusions strongly underpressured. A longer period of fluid recharge followed, sometimes accompanied by reductions in total seafloor heat output of 10% in comparison to pre-intrusion values. Additional discharge-recharge events were dispersed chaotically through the duration of the cooling period. These cycles in heat and fluid flow resulted from the response of the simulated system to a thermodynamic shock, the sudden emplacement of a large heat source, and not from mechanical displacement of sediments and pore fluids, which was not simulated.Water/rock mass ratios calculated from numerical simulations are in good agreement with geochemical estimates from materials recovered from the Guaymas Basin, assuming a bulk basalt permeability value of at least 10−17 m2/(10−2 mD). The addition of faults through intrusions and sediments in these simulations did not facilitate

  17. Basaltic caves at Craters of the Moon National Monument and Preserve as analogs for Mars

    Science.gov (United States)

    Hinman, N. W.; Richardson, C. D.; McHenry, L.; Scott, J. R.

    2010-12-01

    Basaltic caves and lava tubes offer stable physicochemical conditions for formation of secondary minerals. Such features, putatively observed on Mars, intercept groundwater to weather country rock, leading to formation of secondary minerals. Further, caves are stable environments to search for evidence of past life, as they could offer protection from the oxidizing martian atmosphere. Searching for signs of life in a cave that could protect bio/organic compounds would preclude the need for risky drilling on Mars. Craters of the Moon National Monument (COM) offers an opportunity to study caves in Holocene iron-rich basalt flows to characterize secondary mineral deposits and search for organic compounds associated with secondary minerals; COM basalts are a good analog for martian basalts because of their high iron but other elements are higher at COM than on Mars. The Blue Dragon flow (~2.1 ka) contains the majority of the accessible caves and lava tubes. Two types of secondary mineral deposits were observed in these caves: ceiling coatings and crack or floor precipitates. Hematite, silica, and calcite comprise ceiling coatings. The crack and floor precipitates are white, efflorescent deposits in cavities along cave walls and ceilings or in localized mounds on cave floors. The secondary minerals in crack and floor precipitates are mainly thenardite and mirabilite with some minor concentrations of trona and/or burkeite. Organic compounds were found associated with the efflorescent deposits. Formation of the deposits is likely due to chemical leaching of basalt by meteoritic water. To test this, fluids collected from the ceiling and walls of the caves were analyzed. Solutions were modeled with the geochemical code, PHREEQC. The model tracked composition as water evaporated. Selected minerals were allowed to precipitate as they became oversaturated. Among the first minerals to become oversaturated were quartz and calcite, which are observed in ceiling deposits. Iron

  18. Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies

    Science.gov (United States)

    Vedanti, Nimisha; Malkoti, Ajay; Pandey, O. P.; Shrivastava, J. P.

    2018-03-01

    Petrophysical properties and ultrasonic P- and S-wave attenuation measurements on 35 Deccan basalt core specimens, recovered from Killari borehole site in western India, provide unique reference data-sets for a lesser studied Deccan Volcanic Province. These samples represent 338-m-thick basaltic column, consisting four lava flows each of Ambenali and Poladpur Formations, belonging to Wai Subgroup of the Deccan volcanic sequence. These basalt samples are found to be iron-rich (average FeOT: 13.4 wt%), but relatively poor in silica content (average SiO2: 47.8 wt%). The saturated massive basalt cores are characterized by a mean density of 2.91 g/cm3 (range 2.80-3.01 g/cm3) and mean P- and S-wave velocities of 5.89 km/s (range 5.01-6.50 km/s) and 3.43 km/s (range 2.84-3.69 km/s), respectively. In comparison, saturated vesicular basalt cores show a wide range in density (2.40-2.79 g/cm3) as well as P-wave (3.28-4.78 km/s) and S-wave (1.70-2.95 km/s) velocities. Based on the present study, the Deccan volcanic sequence can be assigned a weighted mean density of 2.74 g/cm3 and a low V p and V s of 5.00 and 3.00 km/s, respectively. Such low velocities in Deccan basalts can be attributed mainly to the presence of fine-grained glassy material, high iron contents, and hydrothermally altered secondary mineral products, besides higher porosity in vesicular samples. The measured Q values in saturated massive basalt cores vary enormously (Q p: 33-1960 and Q s: 35-506), while saturated vesicular basalt samples exhibit somewhat lesser variation in Q p (6-46) as well as Q s (5-49). In general, high-porosity rocks exhibit high attenuation, but we observed the high value of attenuation in some of the massive basalt core samples also. In such cases, energy loss is mainly due to the presence of fine-grained glassy material as well as secondary alteration products like chlorophaeite, that could contribute to intrinsic attenuation. Dominance of weekly bound secondary minerals might also be

  19. Experimental research on the microstructure and compressive and tensile properties of nano-SiO2 concrete containing basalt fibers

    Directory of Open Access Journals (Sweden)

    Qinyong Ma

    2017-09-01

    Full Text Available Urban underground space resources are gaining increasing attention for the sustainable development of cities. Traditional concrete cannot meet the needs of underground construction. High-performance concrete was prepared using varying dosages of nano-SiO2 and basalt fiber, and its compressive and tensile strength was measured. The concrete microstructure was analyzed and used to assess the mechanisms through which the nano-SiO2 and basalt fibers affect the strength of concrete. The cement hydration productions in concrete produced varied with the dosage of nano-SiO2. When the nano-SiO2 dosage was between 0 and 1.8%, the mass of the C-S-H gel and AFt crystals increased gradually with the nano-SiO2 dosage. When the nano-SiO2 dosage was 1.2%, optimum amounts of C-S-H gel and AFt crystals existed, and the compactness of concrete was well, which agreed with the results of the compressive strength tests. When the basalt-fiber dosage was between 3 and 4 kg/m3, the basalt fibers and the cement matrix were closely bonded, and the splitting tensile strength of the concrete markedly improved. When the basalt-fiber dosage exceeded 5 kg/m3, the basalt fibers clustered together, resulting in weak bonding between the basalt fibers and the cement matrix, consequently, the basalt fibers were easily pulled apart from the cement. When the nano-SiO2 and basalt fiber dosages were 1.2% and 3 kg/m3, respectively, the compactness of the concrete microstructure was well and the strength enhancement was the greatest; additionally, the compressive strength and splitting tensile strength were 9.04% and 17.42%, respectively, greater than those of plain concrete. The macroscopic tests on the mechanical properties of the nano-SiO2 concrete containing basalt fibers agreed well with the results of microstructure analysis.

  20. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    Science.gov (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  1. PETRO- AND PALEOMAGNETIC STUDIES OF BASALTS OF THE UPPER DEVONIAN APPAINSKAYA SUITE (WESTERN YAKUTIA

    Directory of Open Access Journals (Sweden)

    К. M. Konstantinov

    2016-01-01

    Full Text Available Introduction. One of the main tasks of paleomagnetic studies is to obtain a framework of reference poles for calculating the kinematic characteristics of lithospheric taxones as a basis for geodynamic reconstructions. Each paleomagnetic reference point must have a precise (±10 Ma geochronological dating and a maximum paleomagnetic reliability index. A correct paleomagnetic pole (PMP can be obtained from the data of geochronological and paleomagnetic studies conducted in one and the same geological object, such as a suite, an intrusive complex etc. In the Yakutian diamondiferous province (YDP, such objects include basalt nappes of the Upper Devonian Appainskaya suite, which stratigraphic position is undoubted (Fran, 385–375 Ma.Geological setting (in brief. In the eastern segments of the Siberian platform, a powerful cycle of tectonic and magmatic activity in the Middle Paleozoic produced transgressive and sheet intrusions, volcanic pipes, lava and tuff formations comprised of basites, as well as all the currently known industrial diamondiferous kimberlite bodies. Magmatic activity of basites was associated with formation of paleorift systems, including the largest one, Viluyi paleorift (Fig. 1. In the Middle Paleozoic, the geodynamic setting for magmatism and rifting was determined by the plume-lithosphere interaction. The rise of the plume’s matter underneath the thinned lithosphere was accompanied by decompression melting and formation of basaltic magmas in large volumes.We have studied basalts of the Appainskaya suite which were sampled from the Ygyatta and Markha river valleys (Fig. 2. In the coastal outcrops at the Ygyatta river, two nappes are observed, a (stratigraphically lower outcrop 17÷23/10 containing plagiophyre palagonite basalts (upper five meters are outcropped, and an upper outcrop 16/10 containing olivinophyric palagonite basalts (upper three meters are outcropped. In the coastal outcrops of the Markha river, from the

  2. The Cameroon line, West Africa, and its bearing on the origin of oceanic and continental alkali basalt

    International Nuclear Information System (INIS)

    Fitton, J.G.

    1985-01-01

    The Cameroon line is a unique within-plate volcanic province which straddles a continental margin. It consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. It provides, therefore, an ideal area in which to compare the sub-oceanic and sub-continental mantle sources for alkali basalt. Basaltic rocks in the oceanic and continental sectors are geochemically and isotopically indistinguishable which suggests that they have identical mantle sources. This conclusion rules out substantial lithosphere involvement in the generation of alkali basalts and therefore weakens the case for mantle metasomatism as a necessary precursor to alkaline magmatism. The convecting upper mantle is a much more likely source as it will be well-stirred and unlikely to show any ocean-continent differences. The long history of Cameroon line magmatism (65 Ma) and lack of evidence for migration of volcanism with time makes a deeper mantle source unlikely. Mid-ocean ridge basalts (MORB) also originate within the convecting upper mantle and so must share a common source with the Cameroon line alkali basalts (and, by implication, ocean island and continental rift basalts). A grossly homogeneous mantle with a bulk composition depleted in large-ion lithophile elements (LILE), but containing streaks of old, LILE-enriched material, provides a plausible common source. Large degree, near-surface melting of such a source would produce MORB. Smaller degree melts produced at deeper levels would percolate upwards along grain boundaries and become enriched in LILE by leaching LILE-rich grain boundary films. The mixing of these liquids with melts from the LILE-rich streaks will produce magmas with the geochemical and isotopic features of ocean island basalts. (orig.)

  3. Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source

    International Nuclear Information System (INIS)

    Stille, P.

    1986-01-01

    Pb, Sr, Nd, and Hf isotopic relationships among basalts from the Hawaiian Islands suggest that these basalts were derived from three sources; the oceanic lithosphere (Kea end member), the depleted asthenosphere (posterosional end member) and a deep-mantle plume (Koolau end member). Hawaiian tholeiites are derived within the lithosphere and the isotopic trends collectively defined by the tholeiite data are interpreted as a plume-lithosphere mixing trend. The isotopic characteristics of late-stage basalts are derived from the tholeiite source (lithosphere + plume) with additional input from the lithosphere, asthenosphere, or both. These basalts probably originate from near the asthenosphere-lithosphere boundary. Posterosional basalts are derived from the depleted asthenosphere, but their isotopic characteristics have been slightly modified by either the plume or the source of previously erupted volcanics. The isotopic data require little or no mixing of asthenospheric material into the plume during tholeiite production and thus are consistent with the concept of a rapidly ascending, fluid-rich plume. In addition to providing a source of heat, the plume may supply volatiles to both the sources of tholeiites and posterosional basalts. The isotopic characteristics of the Koolau (plume) component are unique among OIB sources. If undifferentiated or 'primitive' mantle material still exists, then the radiogenic-isotope data for Koolau in combination with rare gas data for Hawaiian basalts in general suggest that the Hawaiian plume may be derived from such material. In any case, the Hawaiian Islands data, when compared to those of other OIB, serve to illustrate the isotopically diverse nature of mantle sources. (author)

  4. Release of Volatiles During North Atlantic Flood Basalt Volcanism and Correlation to the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Pedersen, J. M.; Tegner, C.; Kent, A. J.; Ulrich, T.

    2017-12-01

    The opening of the North Atlantic Ocean between Greenland and Norway during the lower Tertiary led to intense flood basalt volcanism and the emplacement of the North Atlantic Igneous Province (NAIP). The volcanism is temporally overlapping with the Paleocene-Eocene Thermal Maximum (PETM), but ash stratigraphy and geochronology suggests that the main flood basalt sequence in East Greenland postdates the PETM. Significant environmental changes during the PETM have been attributed to the release of CO2 or methane gas due to either extensive melting of hydrates at the ocean floor or as a consequence of the interaction of mantle derived magmas with carbon rich sediments.Estimates suggest that a minimum of 1.8x106 km3 of basaltic lava erupted during North Atlantic flood basalt volcanism. Based on measurements of melt inclusions from the flood basalts our preliminary calculations suggest that approximately 2300 Gt of SO2 and 600 Gt of HCl were released into the atmosphere. Calculated yearly fluxes approach 23 Mt/y SO2 and 6 Mt/y HCl. These estimates are regarded as conservative.The S released into to the atmosphere during flood basalt volcanism can form acid aerosols that absorb and reflect solar radiation, causing an effective cooling effect. The climatic effects of the release of Cl into the atmosphere are not well constrained, but may be an important factor for extinction scenarios due to destruction of the ozone layer.The climatic changes due to the release of S and Cl in these amounts, and for periods extending for hundred thousand of years, although not yet fully constrained are likely to be significant. One consequence of the North Atlantic flood basalt volcanism may have been the initiation of global cooling to end the PETM.

  5. Rate of deformation in the Pasco Basin during the Miocene as determined by distribution of Columbia River basalt flows

    International Nuclear Information System (INIS)

    Reidel, S.P.; Ledgerwood, R.K.; Myers, C.W.; Jones, M.G.; Landon, R.D.

    1980-03-01

    Detailed mapping of over 8000 square kilometers and logs from 20 core holes were used to determine the distribution and thickness of basalt flows and interbeds in the Pasco Basin. The data indicate the high-MgO Grande Ronde Basalt and Wanapum Basalt thicken from the northeast to the southwest. Deformation began in late Frenchman Springs time in the Saddle Mountains along a northwest-southeast trend and in Roza time along an east-west trend. By late Wanapum time, basalt flows were more restricted on the east side. Saddle Mountains Basalt flows spread out in the basin from narrow channels to the east. The Umatilla Member entered from the southeast and is confined to the south-central basin, while the Wilbur Creek, Asotin, Esquatzel, Pomona, and Elephant Mountain Members entered from the east and northeast. The distribution of these members is controlled by flow volume, boundaries of other flows, and developing ridges. The Wilbur Creek, Asotin, and Esquatzel flows exited from the basin in a channel along the northern margin of the Umatilla flow, while the Pomona and Elephant Mountain flows exited between Umtanum Ridge and Wallula Gap. The thickness of sedimentary interbeds and basalt flows indicated subsidence and/or uplift began in post-Grande Ronde time (14.5 million years before present) and continued through Saddle Mountains time (10.5 million years before present). Maximum subsidence occurred 40 kilometers (24 miles) north of Richland, Washington with an approximate rate of 25 meters (81 feet) per million years during the eruption of the basalt. Maximum uplift along the developing ridges was 70 meters (230 feet) per million years

  6. Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique

    OpenAIRE

    Samper Madrigal, María Dolores; Petrucci, R.; Sánchez Nacher, Lourdes; Balart Gimeno, Rafael Antonio; Kenny, J. M.

    2015-01-01

    The fiber-matrix interfacial shear strength (IFSS) of biobased epoxy composites reinforced with basalt fiber was investigated by the fragmentation method. Basalt fibers were modified with four different silanes, (3-aminopropyl)trimethoxysilane, [3-(2-aminoethylamino)propyl]-trimethoxysilane, trimethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane and (3-glycidyloxypropyl)trimethoxysilane to improve the adhesion between the basalt fiber and the resin. The analysis of the fiber tensile strength...

  7. Plume-stagnant slab-lithosphere interactions: Origin of the late Cenozoic intra-plate basalts on the East Eurasia margin

    Science.gov (United States)

    Kimura, Jun-Ichi; Sakuyama, Tetsuya; Miyazaki, Takashi; Vaglarov, Bogdan S.; Fukao, Yoshio; Stern, Robert J.

    2018-02-01

    Intra-plate basalts of 35-0 Ma in East Eurasia formed in a broad backarc region above the stagnant Pacific Plate slab in the mantle transition zone. These basalts show regional-scale variations in Nd-Hf isotopes. The basalts with the most radiogenic Nd-Hf center on the Shandong Peninsula with intermediate Nd-Hf at Hainan and Datong. The least radiogenic basalts occur in the perimeters underlain by the thick continental lithosphere. Shandong basalts possess isotopic signatures of the young igneous oceanic crust of the subducted Pacific Plate. Hainan and Datong basalts have isotopic signatures of recycled subduction materials with billions of years of storage in the mantle. The perimeter basalts have isotopic signatures similar to pyroxenite xenoliths from the subcontinental lithospheric mantle beneath East Eurasia. Hainan basalts exhibit the highest mantle potential temperature (Tp), while the Shandong basalts have the lowest Tp. We infer that a deep high-Tp plume interacted with the subducted Pacific Plate slab in the mantle transition zone to form a local low-Tp plume by entraining colder igneous oceanic lithosphere. We infer that the subducted Izanagi Plate slab, once a part of the Pacific Plate mosaic, broke off from the Pacific Plate slab at 35 Ma to sink into the lower mantle. The sinking Izanagi slab triggered the plume that interacted with the stagnant Pacific slab and caused subcontinental lithospheric melting. This coincided with formation of the western Pacific backarc marginal basins due to Pacific Plate slab rollback and stagnation.

  8. Chopped basalt fibres: A new perspective in reinforcing poly(lactic acid to produce injection moulded engineering composites from renewable and natural resources

    Directory of Open Access Journals (Sweden)

    P. Tamas

    2013-02-01

    Full Text Available This paper focuses on the reinforcing of Poly(lactic acid with chopped basalt fibres by using silane treated and untreated basalt fibres. Composite materials with 5–10–15–20–30–40 wt% basalt fibre contents were prepared from silane sized basalt fibres using extrusion, and injection moulding, while composites with 5–10–15 wt% basalt fibre contents were also prepared by using untreated basalt fibres as control. The properties of the injection moulded composites were extensively examined by using quasi-static (tensile, three-point bending and dynamic mechanical tests (notched and unnotched Charpy impact tests, dynamic mechanical analysis (DMA, differential scanning calorimetry (DSC, heat deflection temperature (HDT analysis, dimensional stability test, as well as melt flow index (MFI analysis and scanning electron microscopic (SEM observations. It was found that silane treated chopped basalt fibres are much more effective in reinforcing Poly(lactic acid than natural fibres; although basalt fibres are not biodegradable but they are still considered as natural (can be found in nature in the form of volcanic rocks and biologically inert. It is demonstrated in this paper that by using basalt fibre reinforcement, a renewable and natural resource based composite can be produced by injection moulding with excellent mechanical properties suitable even for engineering applications. Finally it was shown that by using adequate drying of the materials, composites with higher mechanical properties can be achieved compared to literature data.

  9. Decoding the Margins: What Can the Fractal Geometry of Basaltic Flow Margins Tell Us?

    Science.gov (United States)

    Schaefer, E. I.; Hamilton, C.; Neish, C.; Beard, S. P.; Bramson, A. M.; Sori, M.; Rader, E. L.

    2016-12-01

    Studying lava flows on other planetary bodies is essential to characterizing eruption styles and constraining the bodies' thermal evolution. Although planetary basaltic flows are common, many key features are not resolvable in orbital imagery. We are thus developing a technique to characterize basaltic flow type, sub-meter roughness, and sediment mantling from these data. We will present the results from upcoming fieldwork at Craters of the Moon National Monument and Preserve with FINESSE (August) and at Hawai'i Volcanoes National Park (September). We build on earlier work that showed that basaltic flow margins are approximately fractal [Bruno et al., 1992; Gaonac'h et al., 1992] and that their fractal dimensions (D) have distinct `a`ā and pāhoehoe ranges under simple conditions [Bruno et al., 1994]. Using a differential GPS rover, we have recently shown that the margin of Iceland's 2014 Holuhraun flow exhibits near-perfect (R2=0.9998) fractality for ≥24 km across dm to km scales [Schaefer et al., 2016]. This finding suggests that a fractal-based technique has significant potential to characterize flows at sub-resolution scales. We are simultaneously seeking to understand how margin fractality can be modified. A preliminary result for an `a'ā flow in Hawaii's Ka'ū Desert suggests that although aeolian mantling obscures the original flow margin, the apparent margin (i.e., sediment-lava interface) remains fractal [Schaefer et al., 2015]. Further, the apparent margin's D is likely significantly modified from that of the original margin. Other factors that we are exploring include erosion, transitional flow types, and topographic confinement. We will also rigorously test the intriguing possibility that margin D correlates with the sub-meter Hurst exponent H of the flow surface, a common metric of roughness scaling [e.g., Shepard et al., 2001]. This hypothesis is based on geometric arguments [Turcotte, 1997] and is qualitatively consistent with all results so far.

  10. Demonstration of a performance assessment methodology for high-level radioactive waste disposal in basalt formations

    International Nuclear Information System (INIS)

    Bonano, E.J.; Davis, P.A.; Shipers, L.R.; Brinster, K.F.; Beyler, W.E.; Updegraff, C.D.; Shepherd, E.R.; Tilton, L.M.; Wahi, K.K.

    1989-06-01

    This document describes a performance assessment methodology developed for a high-level radioactive waste repository mined in deep basalt formations. This methodology is an extension of an earlier one applicable to bedded salt. The differences between the two methodologies arise primarily in the modeling of round-water flow and radionuclide transport. Bedded salt was assumed to be a porous medium, whereas basalt formations contain fractured zones. Therefore, mathematical models and associated computer codes were developed to simulate the aforementioned phenomena in fractured media. The use of the methodology is demonstrated at a hypothetical basalt site by analyzing seven scenarios: (1) thermohydrological effects caused by heat released from the repository, (2) mechanohydrological effects caused by an advancing and receding glacier, (3) normal ground-water flow, (4) pumping of ground water from a confined aquifer, (5) rerouting of a river near the repository, (6) drilling of a borehole through the repository, and (7) formation of a new fault intersecting the repository. The normal ground-water flow was considered the base-case scenario. This scenario was used to perform uncertainty and sensitivity analyses and to demonstrate the existing capabilities for assessing compliance with the ground-water travel time criterion and the containment requirements. Most of the other scenarios were considered perturbations of the base case, and a few were studied in terms of changes with respect to initial conditions. The potential impact of these scenarios on the long-term performance of the disposal system was ascertained through comparison with the base-case scenario or the undisturbed initial conditions. 66 refs., 106 figs., 27 tabs

  11. Rangitoto Volcano Drilling Project: Life of a Small 'Monogenetic' Basaltic Shield in the Auckland Volcanic Field

    Science.gov (United States)

    Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.

    2014-12-01

    Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the

  12. Impact of iron chelators on short-term dissolution of basaltic glass

    Science.gov (United States)

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Verney-Carron, Aurélie; Huguenot, David; van Hullebusch, Eric D.; Catillon, Gilles; Razafitianamaharavo, Angelina; Guyot, François

    2015-08-01

    Although microorganisms seem to play an important role in the alteration processes of basaltic glasses in solution, the elementary mechanisms involved remain unclear in particular with regard to the role of organic ligands excreted by the cells. Two glasses, one with Fe and one without Fe were synthesized to model basaltic glass compositions. Fe in the glass was mostly Fe(III) for enhancing interaction with siderophores, yet with small but significant amounts of Fe(II) (between 10% and 30% of iron). The prepared samples were submitted to abiotic alteration experiments in buffered (pH 6.4) diluted solutions of metal-specific ligands, namely oxalic acid (OA, 10 mM), desferrioxamine (DFA, 1 mM) or 2,2‧-bipyridyl (BPI, 1 mM). Element release from the glass into the solution after short term alteration (maximum 1 week) was measured by ICP-OES, and normalized mass losses and relative release ratios (with respect to Si) were evaluated for each element in each experimental condition. The presence of organic ligands had a significant effect on the dissolution of both glasses. Trivalent metals chelators (OA, DFA) impacted on the release of Fe3+ and Al3+, and thus on the global dissolution of both glasses, enhancing all release rates and dissolution stoichiometry (release rates were increased up to 7 times for Al or Fe). As expected, the mostly divalent metal chelator BPI interacted preferentially with Ca2+, Mg2+ and Fe2+. This study thus allows to highlight the central roles of iron and aluminium in interaction with some organic ligands in the alteration processes of basaltic glasses. It thus provides a step toward understanding the biological contribution of this fundamental geological process.

  13. Impact of dissolution and carbonate precipitation on carbon storage in basalt

    Science.gov (United States)

    Wells, R. K.; Xiong, W.; Tadeoye, J.; Menefee, A.; Ellis, B. R.; Skemer, P. A.; Giammar, D.

    2016-12-01

    The spatial evolution of silicate mineral dissolution, carbonate precipitation, and the transport of fluids influence the viability of carbon storage in basalt reservoirs. Dissolution of natural basalt and subsequent carbonate precipitation in systems with different transport processes operating were characterized using static and flow-through (5 mL/hr) experiments at 50, 100, and 150 °C, and 100 bar CO2. Intact samples and cores with milled pathways that simulate fractures were tested. Spatial and mineralogical patterns in dissolution and precipitation were analyzed using optical and electron microscopy, microCT scanning, and surface roughness data. Precipitates and fluid chemistry were analyzed using Raman spectroscopy, SEM-EDS, and ICP-MS. Analysis of the bulk solution and surface topography suggests dissolution of olivine and pyroxene grains begins within hours of the start of the experiments. In flow-through experiments, total effluent cation concentrations reach a peak concentration within a few hours then drop towards a steady state within a few days. In static experiments, the initial rate of cation release is faster than it is after several weeks. In both cases Ca2+, Mg2+, and Fe2+ are the dominant cations in solution in the initial stages of reaction. Lower concentrations of Na2+, K+, and Al3+, and the preservation of feldspar and matrix grains after several weeks of reaction indicate the slow reactivity of these minerals. As the reaction progresses, the surface roughness increases steadily with cavities developing at the sites of olivine and pyroxene grains. Post-reaction analysis of basalt samples reacted at static conditions with milled pathways reveals that both siderite and amorphous silica precipitated within diffusion-limited zones as early as 4-6 weeks. Siderite abundance varies with distance along the pathway with the highest concentration of carbonates 1-2 cm below the fracture opening. Siderite precipitates are large enough to fill fracture

  14. Regulation of arsenic mobility on basaltic glass surfaces by speciation and pH.

    Science.gov (United States)

    Sigfusson, Bergur; Meharg, Andrew A; Gislason, Sigurdur R

    2008-12-01

    The importance of geothermal energy as a source for electricity generation and district heating has increased over recent decades. Arsenic can be a significant constituent of the geothermal fluids pumped to the surface during power generation. Dissolved As exists in different oxidation states, mainly as As(III) and As(V), and the charge of individual species varies with pH. Basaltic glass is one of the most important rock types in many high-temperature geothermal fields. Static batch and dynamic column experiments were combined to generate and validate sorption coefficients for As(III) and As(V) in contact with basaltic glass at pH 3-10. Validation was carried out by two empirical kinetic models and a surface complexation model (SCM). The SCM provided a better fit to the experimental column data than kinetic models at high pH values. However, in certain circumstances, an adequate estimation of As transport in the column could not be attained without incorporation of kinetic reactions. The varying mobility with pH was due to the combined effects of the variable charge of the basaltic glass with the pH point of zero charge at 6.8 and the individual As species as pH shifted, respectively. The mobility of As(III) decreased with increasing pH. The opposite was true for As(V), being nearly immobile at pH 3 to being highly mobile at pH 10. Incorporation of appropriate sorption constants, based on the measured pH and Eh of geothermal fluids, into regional groundwater-flow models should allow prediction of the As(III) and As(V) transport from geothermal systems to adjacent drinking water sources and ecosystems.

  15. Variation of lithium isotope geochemistry during basalt weathering and secondary mineral transformations in Hawaii

    Science.gov (United States)

    Ryu, Jong-Sik; Vigier, Nathalie; Lee, Sin-Woo; Lee, Kwang-Sik; Chadwick, Oliver A.

    2014-11-01

    Lithium isotopes are a potential tracer of silicate weathering but the relationship between lithium isotope compositions and weathering state still need to be established with precision. Here, we report Li concentrations and Li isotope compositions of soils developed along a 4 million year humid-environment chronosequence in the Hawaiian Islands. Li concentrations are variable with depth and age, ranging from 0.24 to 21.3 ppm, and significant Li depletions (up to 92%) relative to parent basalts are systematically enhanced towards the surface. Our calculations show that the relative contribution from atmospheric deposits to the Li soil budget remains small, with a maximum contribution from dust Li of 20% at the oldest site. This is explained by the capacity of the weathering products to retain, within the profiles, the Li coming from basalt alteration, and allows us to explore more specifically the role of alteration processes on soil Li isotope signatures. The δ7Li values display a large range between -2.5‰ and +13.9‰. The youngest soils (0.3 ka) display the same δ7Li value as fresh basalt, regardless of depth, despite ∼30% Li loss by leaching, indicating that there is little Li isotope fractionation during the incipient stage of weathering. δ7Li values for the older soils (⩾20 ka) vary non-linearly as a function of time and can be explained by progressive mineral transformations starting with the synthesis of metastable short-range order (nano-crystalline) minerals and followed by their transformation into relatively inert secondary minerals. Results highlight significant Li isotope fractionation during secondary mineral formation and in particular during Li uptake by kaolinite. Finally, we suggest that the non-monotonous evolution of the regolith δ7Li value over the last 4 Ma is consistent with climatic variations, where congruent release of Li isotopes occurs during warmer periods.

  16. Physical response of backfill materials to mineralogical changes in a basalt environment

    International Nuclear Information System (INIS)

    Couture, R.A.; Seitz, M.G.

    1983-01-01

    Backfill materials surrounding waste canisters in a high-level nuclear waste repository are capable of ensuring very slow flow of groundwater past the canisters, and thereby increase the safety of the repository. However, in the design of a repository it will be necessary to allow for possible changes in the backfill. In this experimental program, changes in permeability, swelling behavior, and plastic behavior of the backfill at the temperatures, pressures, and radiation levels expected in a repository are investigated. The emphasis is on investigation of relevant phenomena and evaluation of experimental procedures for use in licensing procedures. The permeability of a slightly compacted sand-clay mixture containing 25% bentonite, with a dry bulk density of 1.59 g/cm 3 , was determined to be 0.9 x 10 -18 m 2 in liquid water at 25 and 200 0 C, respectively. This is sufficiently low to demonstrate the potential effectiveness of proposed materials. In practice, fractures in the host rock may form short circuits around the backfill, so an even lower flow rate is probable. However, alteration by any of several mechanisms is expected to change the properties of the backfill. Crushed basalt plus bentonite is a leading candidate backfill for a basalt repository. Experiments show that basalt reacts with groundwater vapor or with liquid groundwater producing smectites, zeolites, silica, and other products that may be either beneficial or detrimental to the long-term performance of the backfill. Concentration of groundwater salts in the backfill by evaporation would cause immediate, but possibly reversible, reduction of the swelling abaility of bentonite. Moreover, under some circumstances, gamma radiolysis of moist air in the backfill could produce up to 0.5 mole of nitric acid or ammonia per liter of pore space. 27 references, 7 figures, 4 tables

  17. Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts

    Science.gov (United States)

    Tollan, P. M. E.; Bindeman, I.; Blundy, J. D.

    2012-02-01

    In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine-gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4-10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89-5.18‰), plagioclase (5.84-6.28‰), clinopyroxene (5.17-5.47‰) and hornblende (5.48-5.61‰) and hydrogen isotope composition of hornblende (δD = -35.5 to -49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth

  18. REE and Isotopic Compositions of Lunar Basalts Demonstrate Partial Melting of Hybridized Mantle Sources after Cumulate Overturn is Required

    Science.gov (United States)

    Dygert, N. J.; Liang, Y.

    2017-12-01

    Lunar basalts maintain an important record of the composition of the lunar interior. Much of our understanding of the Moon's early evolution comes from studying their petrogenesis. Recent experimental work has advanced our knowledge of major and trace element fractionation during lunar magma ocean (LMO) crystallization [e.g., 1-3], which produced heterogeneous basalt sources in the Moon's mantle. With the new experimental constraints, we can evaluate isotopic and trace element signatures in lunar basalts in unprecedented detail, refining inferences about the Moon's dynamic history. Two petrogenetic models are invoked to explain the compositions of the basalts. The assimilation model argues they formed as primitive melts of early LMO cumulates that assimilated late LMO cumulates as they migrated upward. The cumulate overturn model argues that dense LMO cumulates sank into the lunar interior, producing hybridized sources that melted to form the basalts. Here we compare predicted Ce/Yb and Hf and Nd isotopes of partial melts of LMO cumulates with measured compositions of lunar basalts to evaluate whether they could have formed by end-member petrogenetic models. LMO crystallization models suggest all LMO cumulates have chondrite normalized Ce/Yb 1.5; these could not have formed by assimilation of any LMO cumulate or residual liquid (or KREEP basalt, which has isotopically negative ɛNd and ɛHf). In contrast, basalt REE patterns and isotopes can easily be modeled assuming partial melting of hybridized mantle sources, indicating overturn may be required. A chemical requirement for overturn independently confirms that late LMO cumulates are sufficiently low in viscosity to sink into the lunar interior, as suggested by recent rock deformation experiments [4]. Overturned, low viscosity late LMO cumulates would be relatively stable around the core [5]. High Ce/Yb basalts require that overturned cumulates were mixed back into the overlying mantle by convection within a few

  19. Goethite (U–Th)/He geochronology and precipitation mechanisms during weathering of basalts

    OpenAIRE

    Riffel, Silvana B.; Vasconcelos, Paulo M.; Carmo, Isabela O.; Farley, Kenneth A.

    2016-01-01

    (U–Th)/He geochronology of 33 goethite grains from in situ ferruginous duricrusts overlying the Paraná flood basalt in the Guarapuava region, Paraná, Brazil, reveals ages ranging from 3.6 ± 0.4 to 0.4 ± 0.1 Ma. Thirty-one grains from detrital fragments of ferruginous duricrust yield ages in the 6.2 ± 0.6 to 0.7 ± 0.1 Ma range. The results show that goethites from detrital blocks are generally older than those from the in situ ferruginous layers and that all the goethites from the Guarapuava s...

  20. In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    Science.gov (United States)

    Masotta, M.; Ni, H.; Keppler, H.

    2014-02-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate ( G R) ranges from 3.4 × 10-6 to 5.2 × 10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density ( N B) at nucleation ranges from 7.9 × 104 mm-3 to 1.8 × 105 mm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important