WorldWideScience

Sample records for monomial complex absorbing

  1. Monomial algebras

    CERN Document Server

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  2. Monomial ideals induced by permutations avoiding patterns

    Indian Academy of Sciences (India)

    20

    supported on the order complex ∆(Σn) of a poset Σn. The Alexander dual I. [n] ... binatorially defined monomial ideals I, the standard monomials in R ...... Southeastern International Conference on Combinatorics, Graph Theory and Computing.

  3. Monomial ideals, computations and applications

    CERN Document Server

    Gimenez, Philippe; Sáenz-de-Cabezón, Eduardo

    2013-01-01

    This work covers three important aspects of monomials ideals in the three chapters "Stanley decompositions" by Jürgen Herzog, "Edge ideals" by Adam Van Tuyl and "Local cohomology" by Josep Álvarez Montaner. The chapters, written by top experts, include computer tutorials that emphasize the computational aspects of the respective areas. Monomial ideals and algebras are, in a sense, among the simplest structures in commutative algebra and the main objects of combinatorial commutative algebra. Also, they are of major importance for at least three reasons. Firstly, Gröbner basis theory allows us to treat certain problems on general polynomial ideals by means of monomial ideals. Secondly, the combinatorial structure of monomial ideals connects them to other combinatorial structures and allows us to solve problems on both sides of this correspondence using the techniques of each of the respective areas. And thirdly, the combinatorial nature of monomial ideals also makes them particularly well suited to the devel...

  4. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  5. Triviality of monomial Higgs potentials

    International Nuclear Information System (INIS)

    Cho Hingtong; Milton, K.A.

    1990-01-01

    The δ expansion method is used to study all scalar field theories with symmetric monomial self-interactions of the form (φ 2 ) p in four dimensions. With a momentum cut-off Λ it is shown that these theories are all distinct, admit spontaneous symmetry breaking, and have a nonperturbative structure in the coupling constant λ. In the limit that the momentum cut-off is taken to infinity, it is shown that the δ expansion of all these theories degenerates to the renormalized expansion of a single theory independent of p. That expansion is the renormalized weak-coupling expansion of λφ 4 . It is argued that all theories of this class are the same in the limit Λ→∞. This universal behavior of all monomial interactions with the discrete symmetry φ→-φ is interpreted as a strong indication that all such theories are free, as λφ 4 is believed to be. (orig.)

  6. Introduction to the theory of standard monomials

    CERN Document Server

    Seshadri, C S

    2016-01-01

    The book is a reproduction of a course of lectures delivered by the author in 1983-84 which appeared in the Brandeis Lecture Notes series. The aim of this course was to give an introduction to the series of papers by concentrating on the case of the full linear group. In recent years, there has been great progress in standard monomial theory due to the work of Peter Littelmann. The author’s lectures (reproduced in this book) remain an excellent introduction to standard monomial theory. d-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">Standard monomial theory deals with the construction of nice bases of finite dimensional irreducible representations of semi-simple algebraic groups or, in geometric terms, nice bases of coordinate rings of flag varieties (and their Schubert subvarieties) associated with these groups. Besides its intrinsic interest, standard monomial theory has applications to the study of the geometry of Schubert varieties. Standard monomi...

  7. The Slice Algorithm For Irreducible Decomposition of Monomial Ideals

    DEFF Research Database (Denmark)

    Roune, Bjarke Hammersholt

    2009-01-01

    Irreducible decomposition of monomial ideals has an increasing number of applications from biology to pure math. This paper presents the Slice Algorithm for computing irreducible decompositions, Alexander duals and socles of monomial ideals. The paper includes experiments showing good performance...

  8. On the monomial birational maps of the projective space

    Directory of Open Access Journals (Sweden)

    Gonzalez-Sprinberg Gérard

    2003-01-01

    Full Text Available We describe the group structure of monomial Cremona transformations. It follows that every element of this group is a product of quadratic monomial transformations, and geometric descriptions in terms of fans.

  9. Monomial codes seen as invariant subspaces

    Directory of Open Access Journals (Sweden)

    García-Planas María Isabel

    2017-08-01

    Full Text Available It is well known that cyclic codes are very useful because of their applications, since they are not computationally expensive and encoding can be easily implemented. The relationship between cyclic codes and invariant subspaces is also well known. In this paper a generalization of this relationship is presented between monomial codes over a finite field and hyperinvariant subspaces of n under an appropriate linear transformation. Using techniques of Linear Algebra it is possible to deduce certain properties for this particular type of codes, generalizing known results on cyclic codes.

  10. MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS.

    Science.gov (United States)

    Austin, Daniel; Dinwoodie, Ian H

    We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks.

  11. Monomial strategies for concurrent reachability games and other stochastic games

    DEFF Research Database (Denmark)

    Frederiksen, Søren Kristoffer Stiil; Miltersen, Peter Bro

    2013-01-01

    We consider two-player zero-sum finite (but infinite-horizon) stochastic games with limiting average payoffs. We define a family of stationary strategies for Player I parameterized by ε > 0 to be monomial, if for each state k and each action j of Player I in state k except possibly one action, we...... have that the probability of playing j in k is given by an expression of the form c ε d for some non-negative real number c and some non-negative integer d. We show that for all games, there is a monomial family of stationary strategies that are ε-optimal among stationary strategies. A corollary...... is that all concurrent reachability games have a monomial family of ε-optimal strategies. This generalizes a classical result of de Alfaro, Henzinger and Kupferman who showed that this is the case for concurrent reachability games where all states have value 0 or 1....

  12. Low reheating temperatures in monomial and binomial inflationary models

    International Nuclear Information System (INIS)

    Rehagen, Thomas; Gelmini, Graciela B.

    2015-01-01

    We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied ϕ 2 inflationary potential is no longer favored by current CMB data, as well as ϕ p with p>2, a ϕ 1 potential and canonical reheating (w re =0) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, n s , implies an upper bound on the reheating temperature of T re ≲6×10 10 GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a ϕ 1 potential. We find that as a subdominant ϕ 2 term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of T re =4 MeV is excluded by the Planck 2015 68% confidence limit

  13. Monomial geometric programming with an arbitrary fuzzy relational inequality

    Directory of Open Access Journals (Sweden)

    E. Shivanian

    2015-11-01

    Full Text Available In this paper, an optimization model with geometric objective function is presented. Geometric programming is widely used; many objective functions in optimization problems can be analyzed by geometric programming. We often encounter these in resource allocation and structure optimization and technology management, etc. On the other hand, fuzzy relation equalities and inequalities are also used in many areas. We here present a geometric programming model with a monomial objective function subject to the fuzzy relation inequality constraints with an arbitrary function. The feasible solution set is determined and compared with some common results in the literature. A necessary and sufficient condition and three other necessary conditions are presented to conceptualize the feasibility of the problem. In general a lower bound is always attainable for the optimal objective value by removing the components having no effect on the solution process. By separating problem to non-decreasing and non-increasing function to prove the optimal solution, we simplify operations to accelerate the resolution of the problem.

  14. Solving Some Special Cases of Monomial Ratio Equations Appearing Frequently in Physical and Engineering Problems

    Directory of Open Access Journals (Sweden)

    Enrique Castillo

    2016-01-01

    Full Text Available We first show that monomial ratio equations are not only very common in Physics and Engineering, but the natural type of equations in many practical problems. More precisely, in the case of models involving scale variables if the used formulas are not of this type they are not physically valid. The consequence is that when estimating the model parameters we are faced with systems of monomial ratio equations that are nonlinear and difficult to solve. In this paper, we provide an original algorithm to obtain the unique solutions of systems of equations made of linear combinations of monomial ratios whose coefficient matrix has a proper null space with low dimension that permits solving the problem in a simple way. Finally, we illustrate the proposed methods by their application to two practical problems from the hydraulic and structural fields.

  15. Parametrization of complex absorbing potentials for time-dependent quantum dynamics

    International Nuclear Information System (INIS)

    Vibok, A.; Balint-Kurti, G.G.

    1992-01-01

    Five different forms of complex absorbing potentials are examined and compared. Such potentials are needed to absorb wavepackets near the edges of grids in time-dependent quantum dynamical calculations. The extent to which the different potentials transmit or reflect an incident wavepacket is quantified, and optimal potential parameters to minimize both the reflection and transmission for each type of potential are derived. A rigorously derived scaling procedure, which permits the derivation of optimal potential parameters for use with any chosen mass or kinetic energy from those optimized for different conditions, is described. Tables are also presented which permit the immediate selection of the parameters for an absorbing potential of a particular form so as to allow a preselected (very small) degree of transmitted plus reflected probability to be attained. It is always desirable to devote a minimal region to the absorbing potential, while at the same time effectively absorbing all of the wavepacket and neither transmitting nor reflecting any of it. The tables presented here enable the use to easily select the potential parameters he will require to attain these goals. 23 refs., 7 figs., 4 tabs

  16. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    Science.gov (United States)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  17. Generating a heated fluid using an electromagnetic radiation-absorbing complex

    Science.gov (United States)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2018-01-09

    A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EM radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.

  18. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yi, E-mail: zhaoyi9515@163.com; Hao, Runlong; Guo, Qing

    2014-09-15

    Graphical abstract: - Highlights: • An innovative liquid-phase complex absorbent (LCA) for Hg{sup 0} removal was prepared. • A novel integrative process for Hg{sup 0} removal was proposed. • The simultaneous removal efficiencies of SO{sub 2}, NO and Hg{sup 0} were 100%, 79.5% and 80.4%, respectively. • The reaction mechanism of simultaneous removal of SO{sub 2}, NO and Hg{sup 0} was proposed. - Abstract: A novel semi-dry integrative method for elemental mercury (Hg{sup 0}) removal has been proposed in this paper, in which Hg{sup 0} was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH{sub 3}COOOH) and sodium chloride (NaCl), after which Hg{sup 2+} was absorbed by the resultant Ca(OH){sub 2}. The experimental results indicated that CH{sub 3}COOOH and NaCl were the best additives for Hg{sup 0} oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg{sup 0} removal. The coexisting gases, SO{sub 2} and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg{sup 0} was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO{sub 2}, NO and Hg{sup 0} were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO{sub 2}, NO and Hg{sup 0} was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references.

  19. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent

    International Nuclear Information System (INIS)

    Zhao, Yi; Hao, Runlong; Guo, Qing

    2014-01-01

    Graphical abstract: - Highlights: • An innovative liquid-phase complex absorbent (LCA) for Hg 0 removal was prepared. • A novel integrative process for Hg 0 removal was proposed. • The simultaneous removal efficiencies of SO 2 , NO and Hg 0 were 100%, 79.5% and 80.4%, respectively. • The reaction mechanism of simultaneous removal of SO 2 , NO and Hg 0 was proposed. - Abstract: A novel semi-dry integrative method for elemental mercury (Hg 0 ) removal has been proposed in this paper, in which Hg 0 was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH 3 COOOH) and sodium chloride (NaCl), after which Hg 2+ was absorbed by the resultant Ca(OH) 2 . The experimental results indicated that CH 3 COOOH and NaCl were the best additives for Hg 0 oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg 0 removal. The coexisting gases, SO 2 and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg 0 was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO 2 , NO and Hg 0 were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO 2 , NO and Hg 0 was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references

  20. Optimal reflection-free complex absorbing potentials for quantum propagation of wave packets

    International Nuclear Information System (INIS)

    Shemer, Oded; Brisker, Daria; Moiseyev, Nimrod

    2005-01-01

    The conditions for optimal reflection-free complex-absorbing potentials (CAPs) are discussed. It is shown that the CAPs as derived from the smooth-exterior-scaling transformation of the Hamiltonian [J. Phys. B 31, 1431 (1998)] serve as optimal reflection-free CAPs (RF CAPs) in wave-packet propagation calculations of open systems. The initial wave packet, Φ(t=0), can be located in the interaction region (as in half collision experiments) where the CAPs have vanished or in the asymptote where V CAP ≠0. As we show, the optimal CAPs can be introduced also in the region where the physical potential has not vanished. The unavoided reflections due to the use of a finite number of grid points (or basis functions) are discussed. A simple way to reduce the 'edge-grid' reflection effect is described

  1. Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, Dmitry; Jagau, Thomas-C.; Krylov, Anna I. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Bravaya, Ksenia B. [Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521 (United States); Epifanovsky, Evgeny [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Q-Chem, Inc., 6601 Owens Drive, Suite 105 Pleasanton, California 94588 (United States); Shao, Yihan [Q-Chem, Inc., 6601 Owens Drive, Suite 105 Pleasanton, California 94588 (United States); Sundstrom, Eric; Head-Gordon, Martin [Department of Chemistry, University of California, Berkeley, California 94720 (United States)

    2014-07-14

    A production-level implementation of equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) for electron attachment and excitation energies augmented by a complex absorbing potential (CAP) is presented. The new method enables the treatment of metastable states within the EOM-CC formalism in a similar manner as bound states. The numeric performance of the method and the sensitivity of resonance positions and lifetimes to the CAP parameters and the choice of one-electron basis set are investigated. A protocol for studying molecular shape resonances based on the use of standard basis sets and a universal criterion for choosing the CAP parameters are presented. Our results for a variety of π{sup *} shape resonances of small to medium-size molecules demonstrate that CAP-augmented EOM-CCSD is competitive relative to other theoretical approaches for the treatment of resonances and is often able to reproduce experimental results.

  2. Microwave absorbing property and complex permittivity and permeability of graphene–CdS nanocomposite

    International Nuclear Information System (INIS)

    Zhang, Dong-Dong; Zhao, Dong-Lin; Zhang, Ji-Ming; Bai, Li-Zhong

    2014-01-01

    Graphical abstract: Graphene–CdS (G–CdS) nanocomposite with a good structural interface and enhanced microwave absorption has been successfully and directly synthesized from graphene oxide via a facile hydrothermal approach. The permittivity of G–CdS nanocomposite presents triple dielectric relaxations by constructing a good structural G–CdS interface. The triple dielectric relaxations are critical to improve the microwave absorption of the G–CdS nanocomposite. Highlights: • Graphene–CdS (G–CdS) nanocomposite was directly synthesized from graphene oxide. • The G–CdS nanocomposite exhibits enhanced microwave absorption. • The permittivity of G–CdS nanocomposite presents triple dielectric relaxations. -- Abstract: The graphene–CdS (G–CdS) nanocomposite with enhanced microwave absorption was directly synthesized from graphene oxide (GO) via a facile hydrothermal approach, during which the formation of CdS nanoparticles and the reduction of GO occured simultaneously. The morphology, structure, microwave absorbing property, complex permittivity and permeability of G–CdS nanocomposite were systematically investigated by transmission electron microscope, X-ray diffraction and the coaxial line method. The complex permittivity of G–CdS nanocomposite presents triple dielectric relaxations with constructing a good structural graphene–CdS interface. The triple dielectric relaxations were critical to improve the microwave absorption of G–CdS nanocomposite. The G–CdS nanocomposite achieved a reflection loss below –10 dB in the frequency range of 5.2–18 GHz when adjusting the thicknesses from 2 to 5 mm, which was mainly ascribed to the proper electromagnetic matching of the CdS nanoparticles and graphene sheets, and the triple dielectric relaxations. The G–CdS nanocomposite is promising as a lightweight and wide-frequency microwave absorber

  3. The Hodge structure of semiample hypersurfaces and a generalization of the monomial-divisor mirror map

    OpenAIRE

    Mavlyutov, Anvar R.

    2000-01-01

    We solved the long-standing problem of describing the cohomology ring of semiample hypersurfaces in complete simplicial toric varieties. Also, the monomial-divisor mirror map is generalized to a map between the whole Picard group and the space of infinitesimal deformations for a mirror pair of Calabi-Yau hypersurfaces. This map is compatible with certain vanishing limiting products of the subrings of the chiral rings, on which the ring structure is related to a product of the roots of $A$-typ...

  4. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential

    Science.gov (United States)

    Huang, Qing-Guo; Pi, Shi

    2018-04-01

    The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.

  5. Monomiality principle, Sheffer-type polynomials and the normal ordering problem

    International Nuclear Information System (INIS)

    Penson, K A; Blasiak, P; Dattoli, G; Duchamp, G H E; Horzela, A; Solomon, A I

    2006-01-01

    We solve the boson normal ordering problem for (q(a † )a + v(a † )) n with arbitrary functions q(x) and v(x) and integer n, where a and a † are boson annihilation and creation operators, satisfying [a, a † ] = 1. This consequently provides the solution for the exponential e λ(q(a † )a+v(a † )) generalizing the shift operator. In the course of these considerations we define and explore the monomiality principle and find its representations. We exploit the properties of Sheffer-type polynomials which constitute the inherent structure of this problem. In the end we give some examples illustrating the utility of the method and point out the relation to combinatorial structures

  6. Energy, Electron Transfer and Photocatalytic Reactions of Visible Light Absorbing Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Schmehl, Russell H. [Tulane Univ., New Orleans, LA (United States)

    2016-03-02

    This is the final technical report for a project carried out at Tulane University of New Orleans that describes the development of light induced (solar) reactions geared toward decomposing water into its component elements : hydrogen and oxygen. Much of the work involved optimizing systems for absorbing visible light and undergoing light promoted reactions to generate very strong reducing agents that are capable of reacting with water to produce hydrogen. Additional portions of the research were collaborative efforts to put the strong reducing agents to work in reaction with hydrogen generation catalysts prepared elsewhere. Time resolved laser spectroscopic methods were used to evaluate the light induced reactions and characterize very reactive intermediate substances formed during the reactions.

  7. The papillary muscles as shock absorbers of the mitral valve complex. An experimental study.

    Science.gov (United States)

    Joudinaud, Thomas M; Kegel, Corrine L; Flecher, Erwan M; Weber, Patricia A; Lansac, Emmanuel; Hvass, Ulrich; Duran, Carlos M G

    2007-07-01

    Although it is known that the papillary muscles ensure the continuity between the left ventricle (LV) and the mitral apparatus, their precise mechanism needs further study. We hypothesize that the papillary muscles function as shock absorbers to maintain a constant distance between their tips and the mitral annulus during the entire cardiac cycle. Sonomicrometry crystals were implanted in five sheep in the mitral annulus at the trigones (T1 and T2), mid anterior annulus (AA) mid posterior annulus (PA), base of the posterior lateral scallops (P1 and P2), tips of papillary muscles (M1 and M2), and LV apex. LV and aortic pressures were simultaneously recorded and used to define the different phases of the cardiac cycle. No significant distance changes were found during the cardiac cycle between each papillary muscle tip and their corresponding mitral hemi-annulus: M1-T1, (3.5+/-2%); M1-P1 (5+/-2%); M1-PA (5+/-3%); M2-T2 (2.7+/-2%); M2-P2 (6.1+/-3%); and M2-AA (4.2+/-3%); (p>0.05, ANOVA). Significant changes were observed in distances between each papillary muscle tip and the contralateral hemi-mitral annulus: M1-T2 (1.7+/-3%); M1-P2 (23+/-6%); M1-AA (6+/-3%); M2-T1 (8+/-3%); M2-P1 (10.5+/-6%); and M2-PA (12.6+/-8%); (pshock absorbers to maintain the basic mitral valve geometry constant during the cardiac cycle.

  8. Wavefront propagation from one plane to another with the use of Zernike polynomials and Taylor monomials.

    Science.gov (United States)

    Dai, Guang-ming; Campbell, Charles E; Chen, Li; Zhao, Huawei; Chernyak, Dimitri

    2009-01-20

    In wavefront-driven vision correction, ocular aberrations are often measured on the pupil plane and the correction is applied on a different plane. The problem with this practice is that any changes undergone by the wavefront as it propagates between planes are not currently included in devising customized vision correction. With some valid approximations, we have developed an analytical foundation based on geometric optics in which Zernike polynomials are used to characterize the propagation of the wavefront from one plane to another. Both the boundary and the magnitude of the wavefront change after the propagation. Taylor monomials were used to realize the propagation because of their simple form for this purpose. The method we developed to identify changes in low-order aberrations was verified with the classical vertex correction formula. The method we developed to identify changes in high-order aberrations was verified with ZEMAX ray-tracing software. Although the method may not be valid for highly irregular wavefronts and it was only proven for wavefronts with low-order or high-order aberrations, our analysis showed that changes in the propagating wavefront are significant and should, therefore, be included in calculating vision correction. This new approach could be of major significance in calculating wavefront-driven vision correction whether by refractive surgery, contact lenses, intraocular lenses, or spectacles.

  9. Leveraging Understanding of Flow of Variable Complex Fluid to Design Better Absorbent Hygiene Products

    Science.gov (United States)

    Krautkramer, C.; Rend, R. R.

    2014-12-01

    Menstrual flow, which is a result of shedding of uterus endometrium, occurs periodically in sync with a women's hormonal cycle. Management of this flow while allowing women to pursue their normal daily lives is the purpose of many commercial products. Some of these products, e.g. feminine hygiene pads and tampons, utilize porous materials in achieving their goal. In this paper we will demonstrate different phenomena that have been observed in flow of menstrual fluid through these porous materials, share some of the advances made in experimental and analytical study of these phenomena, and also present some of the unsolved challenges and difficulties encountered while studying this kind of flow. Menstrual fluid is generally composed of four main components: blood plasma, blood cells, cervical mucus, and tissue debris. This non-homogeneous, multiphase fluid displays very complex rheological behavior, e. g., yield stress, thixotropy, and visco-elasticity, that varies throughout and between menstrual cycles and among women due to various factors. Flow rates are also highly variable during menstruation and across the population and the rheological properties of the fluid change during the flow into and through the product. In addition to these phenomena, changes to the structure of the porous medium within the product can also be seen due to fouling and/or swelling of the material. This paper will, also, share how the fluid components impact the flow and the consequences for computer simulation, the creation of a simulant fluid and testing methods, and for designing products that best meet consumer needs. We hope to bring to light the challenges of managing this complex flow to meet a basic need of women all over the world. An opportunity exists to apply learnings from research in other disciplines to improve the scientific knowledge related to the flow of this complex fluid through the porous medium that is a sanitary product.

  10. The use of SIWI strategy to improve the performance of Grade 8 students in factoring polynomials by a common monomial

    Directory of Open Access Journals (Sweden)

    Shamile Josephine T. Arobo

    2017-12-01

    Full Text Available Teachers play an important role in honing students’ knowledge and skills. The strategy used in teaching greatly affects the final result of students learning. Hence, the teacher should properly plan and organize the strategy to be used. In this paper, we presented another teaching strategy in mathematics which is more fun and easier for students to understand mathematical concepts like factoring polynomials. We devised the so-called Substitute It With Icons or (SIWI as teaching strategy in factoring polynomials by common monomial. Results revealed that SIWI is more helpful among low achievers group compared to high achievers who still preferred the old variable number style. It is recommended to try out SIWI with other mathematics topic like Algebra.

  11. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  12. Absorbant materials

    International Nuclear Information System (INIS)

    Quetier, Monique.

    1978-11-01

    Absorbants play a very important part in the nuclear industry. They serve for the control, shut-down and neutron shielding of reactors and increase the capacity of spent fuel storage pools and of special transport containers. This paper surveys the usual absorbant materials, means of obtainment, their essential characteristics relating to their use and their behaviour under neutron irradiation [fr

  13. Self-assembly of Terbium(III)-based metal-organic complexes with two-photon absorbing active

    Science.gov (United States)

    Li, Dandan; Shao, Nanqi; Sun, Xianshun; Zhang, Guocui; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2014-12-01

    Hybrid complexes based on D-π-A type dyes p-aminostyryl-pyridinum and Terbium(III) complex anion (1, 2) have been synthesized by ionic exchange reaction. Meanwhile two different alkyl-substituted amino groups were used as electron donors in organic dyes cations. The synthesized complexes were characterized by element analysis. In addition, the structural features of them were systematic studied by single crystal X-ray diffraction analysis. Their linear properties have been systematically investigated by absorption spectra and fluorescence, the results show that the energy transfer takes place from the trans-4-[4‧-(N,N-diethylamino)styryl]-N-methyl pyridinium (2‧) cation to Tb(III). In addition, complex 2 exhibit a large two-photon absorption coefficient β: 0.044 cm/GW at 710 nm.

  14. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  15. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  16. Nonlinear absorbing cationic iridium(III) complexes bearing benzothiazolylfluorene motif on the bipyridine (N∧N) ligand: synthesis, photophysics and reverse saturable absorption.

    Science.gov (United States)

    Li, Yuhao; Dandu, Naveen; Liu, Rui; Hu, Lei; Kilina, Svetlana; Sun, Wenfang

    2013-07-24

    Four new heteroleptic cationic Ir(III) complexes bearing benzothiazolylfluorene motif on the bipyridine (N∧N) (1 and 2) and phenylpyridine (C∧N) (3 and 4) ligands are synthesized and characterized. The influence of the position of the substituent and the extent of π-conjugation on the photophysics of these complexes is systematically investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). The complexes exhibit ligand-centered (1)π,π* transitions with admixtures of (1)ILCT (π(benzothiazolylfluorene) → π*(bpy)) and (1)MLCT (metal-to-ligand charge transfer) characters below 475 nm, and very weak (1,3)MLCT and (1,3)LLCT (ligand-to-ligand charge transfer) transitions above 475 nm. The emission of these complexes at room temperature in CH2Cl2 solutions is ascribed to be predominantly from the (3)MLCT/(3)LLCT states for 1 and from the (3)π,π* state for 2, while the emitting state of 3 and 4 are assigned to be an admixture of (3)MLCT, (3)LLCT, and (3)π,π* characters. The variations of the photophysical properties of 1-4 are attributed to different degrees of π-conjugation in the bipyridine and phenylpyridine ligands induced by different positions of the benzothiazolylfluorenyl substituents on the bipyridine ligand and different extents of π-conjugation in the phenylpyridine ligands, which alters the energy and lifetime of the lowest singlet and triplet excited states. 1-4 all possess broadband transient absorption (TA) upon nanosecond laser excitation, which extends from the visible to the NIR region. Therefore, 1-4 all exhibit strong reverse saturable absorption (RSA) at 532 nm for ns laser pulses. However, the TA of complexes 1, 2, and 3 are much stronger than that of 4. This feature, combined with the difference in ground-state absorption and triplet excited-state quantum yield, result in the difference in RSA strength, which follows this trend: 1 ≈ 2 ≈ 3 > 4. Therefore, complexes 1-3 are strong

  17. Radiation absorbed-dose estimates for the liver, spleen, and metaphyseal growth complexes in children undergoing gallium-67 citrate scanning

    International Nuclear Information System (INIS)

    Thomas, S.R.; Gelfand, M.J.; Burns, G.S.; Purdom, R.C.; Kereiakes, J.G.; Maxon, H.R.

    1983-01-01

    Quantitative conjugate-view external counting techniques were applied to estimate the radiation dose to the liver, spleen, and metaphyseal growth complexes (distal femur and proximal tibia) for ten pediatric patients undergoing gallium-67 scanning procedures. The effective half-life of Ga 67 in these organs was approximately 78 hours. The dose per unit of administered activity for the liver and spleen was between 0.3 and 4.0 rad/mCi (0.08 to 1.08 Gy/GBq) and 0.5 and 7.0 rad/mCi (0.13 to 1.89 Gy/GBq), respectively. For the metaphyseal growth plates, the range was 2.3 to 14.3 rad/mCi (0.62 to 3.86 Gy/GBq)

  18. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    International Nuclear Information System (INIS)

    Dinh, Thanh-Chung; Renger, Thomas

    2015-01-01

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Q y transition dipole moments in Chl b homodimers is larger by about 9 ∘ than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b

  19. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at [Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)

    2015-01-21

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Q{sub y} transition dipole moments in Chl b homodimers is larger by about 9{sup ∘} than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.

  20. Synthesis, spectroscopic properties, and photoconductivity of black absorbers consisting of pt(bipyridine)(dithiolate) charge transfer complexes in the presence and absence of nitrofluorenone acceptors.

    Science.gov (United States)

    Browning, Charles; Hudson, Joshua M; Reinheimer, Eric W; Kuo, Fang-Ling; McDougald, Roy N; Rabaâ, Hassan; Pan, Hongjun; Bacsa, John; Wang, Xiaoping; Dunbar, Kim R; Shepherd, Nigel D; Omary, Mohammad A

    2014-11-19

    The diimine-dithiolato ambipolar complexes Pt(dbbpy)(tdt) and Pt(dmecb)(bdt) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; tdt(2-) = 3,4-toluenedithiolate; dmecb = 4,4'-dimethoxyester-2,2'-bipyridine; bdt(2-) = benzene-1,2-dithiolate) are prepared herein. Pt(dmecb)(bdt) exhibits photoconductivity that remains constant (photocurrent density of 1.6 mA/cm(2) from a 20 nm thin film) across the entire visible region of the solar spectrum in a Schottky diode device structure. Pt(dbbpy)(tdt) acts as donor when combined with the strong nitrofluorenone acceptors 2,7-dinitro-9-fluorenone (DNF), 2,4,7-trinitro-9-fluorenone (TRNF), or 2,4,5,7-tetranitro-9-fluorenone (TENF). Supramolecular charge transfer stacks form and exhibit various donor-acceptor stacking patterns. The crystalline solids are "black absorbers" that exhibit continuous absorptions spanning the entire visible region and significant ultraviolet and near-infrared wavelengths, the latter including long wavelengths that the donor or acceptor molecules alone do not absorb. Absorption spectra reveal the persistence of donor-acceptor interactions in solution, as characterized by low-energy donor/acceptor charge transfer (DACT) bands. Crystal structures show closely packed stacks with distances that underscore intermolecular DACT. (1)H NMR provides further evidence of DACT, as manifested by upfield shifts of aromatic protons in the binary adducts versus their free components, whereas 2D nuclear Overhauser effect spectroscopy (NOESY) spectra suggest coupling between dithiolate donor protons with nitrofluorenone acceptor protons, in correlation with the solid-state stacking. The NMR spectra also show significant peak broadening, indicating some paramagnetism verified by magnetic susceptibility data. Solid-state absorption spectra reveal further red shifts and increased relative intensities of DACT bands for the solid adducts vs solution, suggesting cooperativity of the DACT phenomenon in the solid state, as further

  1. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  2. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  3. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  4. PWR burnable absorber evaluation

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Weader, R.J.; Malone, J.P.

    1995-01-01

    The purpose of the study was to evaluate the relative neurotic efficiency and fuel cycle cost benefits of PWR burnable absorbers. Establishment of reference low-leakage equilibrium in-core fuel management plans for 12-, 18- and 24-month cycles. Review of the fuel management impact of the integral fuel burnable absorber (IFBA), erbium and gadolinium. Calculation of the U 3 O 8 , UF 6 , SWU, fuel fabrication, and burnable absorber requirements for the defined fuel management plans. Estimation of fuel cycle costs of each fuel management plan at spot market and long-term market fuel prices. Estimation of the comparative savings of the different burnable absorbers in dollar equivalent per kgU of fabricated fuel. (author)

  5. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  6. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooher, G.I.

    1979-01-01

    A neutron absorbing article, in flat plate form and suitable for use in a storage rack for spent fuel, includes boron carbide particles, diluent particles and a solid, irreversibly cured phenolic polymer cured to a continuous matrix binding the boron carbide and diluent particles. The total conent of boron carbide and diluent particles is a major proportion of the article and the content of cured phenolic polymer present is a minor proportion. By regulation of the ratio of boron carbide particles to diluent particles, normally within the range of 1:9 and 9:1 and preferably within the range of 1:5 to 5:1, the neutron absorbing activity of the product may be controlled, which facilitates the manufacture of articles of particular absorbing activities best suitable for specific applications

  7. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1983-01-01

    A neutron-absorber body for use in burnable poison rods in a nuclear reactor. The body is composed of a matrix of Al 2 O 3 containing B 4 C, the neutron absorber. Areas of high density polycrystalline Al 2 O 3 particles are predominantly encircled by pores in some of which there are B 4 C particles. This body is produced by initially spray drying a slurry of A1 2 O 3 powder to which a binder has been added. The powder of agglomerated spheres of the A1 2 O 3 with the binder are dry mixed with B 4 C powder. The mixed powder is formed into a green body by isostatic pressure and the green body is sintered. The sintered body is processed to form the neutron-absorber body. In this case the B 4 C particles are separate from the spheres resulting from the spray drying instead of being embedded in the sphere

  8. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  9. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooker, G.I.

    1981-01-01

    A neutron-absorbing article suitable for use in spent fuel racks is described. It comprises boron carbide particles, diluent particles, and a phenolic polymer cured to a continuous matrix. The diluent may be silicon carbide, graphite, amorphous carbon, alumina, or silica. The combined boron carbide-diluent phase contains no more than 2 percent B 2 O 3 , and the neutron-absorbing article contains from 20 to 40 percent phenol resin. The ratio of boron carbide to diluent particles is in the range 1:9 to 9:1

  10. Low Absorbance Measurements

    Science.gov (United States)

    Harris, T. D.; Williams, A. M.

    1983-10-01

    The application of low absorption measurements to dilute solute determination requires specific instrumental characteristics. The use of laser intracavity absorption and thermal lens calorimetry to measure concentration is shown. The specific operating parameters that determine sensitivity are delineated along with the limits different measurement strategies impose. Finally areas of improvement in components that would result in improve sensitivity, accuracy, and reliability are discussed. During the past decade, a large number of methods have been developed for measuring the light absorbed by transparent materials. These include measurements on gases, liquids, and solids. The activity has been prompted by a variety of applications and a similar variety of disciplines. In Table 1 some representative examples of these methods is shown along with their published detection limits.1 It is clear that extraordinarily small absorbances can be measured. Most of the methods can be conveniently divided into two groups. These groups are those that measure the transmission of the sample and those that measure the light absorbed by the sample. The light absorbed methods are calorimetric in character. The advantages and disadvantages of each method varies depending on the principal application for which they were developed. The most prevalent motivation has been to characterize the bulk optical properties of transparent materials. Two examples are the development of extremely transparent glasses for use as fiber optic materials and the development of substrates for high power laser operation.

  11. Adjustable Shock Absorbers

    OpenAIRE

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  12. Kinetic energy absorbing pad

    International Nuclear Information System (INIS)

    Bricmont, R.J.; Hamilton, P.A.; Ming Long Ting, R.

    1981-01-01

    Reactors, fuel processing plants etc incorporate pipes and conduits for fluids under high pressure. Fractures, particularly adjacent to conduit elbows, produce a jet of liquid which whips the broken conduit at an extremely high velocity. An enormous impact load would be applied to any stationary object in the conduit's path. The design of cellular, corrugated metal impact pads to absorb the kinetic energy of the high velocity conduits is given. (U.K.)

  13. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  14. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al 2 O 3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B 4 C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  15. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  16. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  17. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  18. Feynman Integrals with Absorbing Boundaries

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    1997-01-01

    We propose a formulation of an absorbing boundary for a quantum particle. The formulation is based on a Feynman-type integral over trajectories that are confined to the non-absorbing region. Trajectories that reach the absorbing wall are discounted from the population of the surviving trajectories with a certain weighting factor. Under the assumption that absorbed trajectories do not interfere with the surviving trajectories, we obtain a time dependent absorption law. Two examples are worked ...

  19. Physically absorbable reagents-collectors in elementary flotation

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Kondrat' ev; I.G. Bochkarev [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute of Mining

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  20. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  1. Precision test method by x-ray absorbent clay

    International Nuclear Information System (INIS)

    Nakadai, Toru; Matsukawa, Hideyuki; Sekita, Jun-ichiro; Murakoshi, Atsushi.

    1982-01-01

    In X-ray penetration photography of such as welds with reinforcing metal and castings of complex shape, the X-ray absorbent clay developed to eliminate various disadvantages of the conventional absorbents was further studied for better application. The results of the usage are as follows. Because the X-ray absorbent is clay, it is flexible in form, and gives good adhesion to test objects. In the welds and castings mentioned, it is effective for reducing the scattered ray, accordingly, it results in superior images. The following matters are described: contrast in radiographs, the required conditions for X-ray absorbents in general, the properties of the absorbent (absorption coefficient, consistency, density), improvement in radiographs by means of the X-ray absorbent clay (wall thickness compensation, masking, the application together with narrow-field irradiation photography). (Mori, K.)

  2. Liquid absorbent solutions for separating nitrogen from natural gas

    Science.gov (United States)

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  3. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Heterogeneous neutron absorbers development

    International Nuclear Information System (INIS)

    Boccaccini, Aldo; Agueda, Horacio; Russo, Diego; Perez, Edmundo

    1987-01-01

    The use of solid burnable absorber materials in power light water reactors has increased in the last years, specially due to improvements attained in costs of generated electricity. The present work summarizes the basic studies made on an alumina-gadolinia system, where alumina is the inert matrix and gadolinia acts as burnable poison, and describes the fabrication method of pellets with that material. High density compacts were obtained in the range of concentrations used by cold pressing and sintering at 1600 deg C in inert (Ar) atmosphere. Finally, the results of the irradiation experiences made at RA-6 reactor, located at the Bariloche Atomic Center, are given where variations on negative reactivity caused by introduction of burnable poison rods were measured. The results obtained from these experiences are in good agreement with those coming from calculation codes. (Author)

  5. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  6. Reflection measurements of microwave absorbers

    Science.gov (United States)

    Baker, Dirk E.; van der Neut, Cornelis A.

    1988-12-01

    A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.

  7. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  8. Neutron absorbing element

    International Nuclear Information System (INIS)

    Kasai, Shigeo.

    1991-01-01

    The present invention concerns a neutron absorbing element of a neutron shielding member used for an LMFBR type reactor. The inside of a fuel can sealed at both of the upper and the lower ends thereof with plugs is partitioned into an upper and a lower chambers by an intermediate plug. A discharging hole is disposed at the upper end plug, which is in communication with the outside. A communication tube is disposed at the intermediate end plug and it is in communication with the lower chamber containing B 4 C pellets. A cylindrical support member having three porous plugs connected in series is disposed at the lower surface of the discharging hole provided at the upper end plug. Further, the end of the discharging hole is sealed with high temperature solder and He atmosphere is present at the inside of the fuel can. With such a constitution, the supporting differential pressure of the porous plugs can be made greater while discharging He gases generated from B 4 C to the outside. Further, the porous plugs can be surely wetted by coolants. Accordingly, it is possible to increase life time and shorten the size. (I.N.)

  9. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  10. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  11. Reflection and Refraction of Light in Absorbing Media

    Science.gov (United States)

    Katsumata, Koichi; Sasaki, Shosuke

    2018-05-01

    The results of a rigorous calculation of optical phenomena in absorbing media based on Maxwell's equations are reported. In the case of an absorbing dielectric, we assume a complex dielectric constant. We find an expression for the angle of refraction as a function of the incident angle and the real and imaginary parts of the complex dielectric constant, all of which are real. The amplitudes of the reflected and transmitted waves are calculated on the same footing. These amplitudes are shown to be complex, from which we deduce the magnitude and phase change of the reflection and transmission coefficients. The same argument applies to an absorbing magnetic material if we replace the complex dielectric constant by a complex magnetic permeability.

  12. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  13. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  14. Photoelectron antibunching and absorber theory

    International Nuclear Information System (INIS)

    Pegg, D.T.

    1980-01-01

    The recently detected photoelectron antibunching effect is considered to be evidence for the quantised electromagnetic field, i.e. for the existence of photons. Direct-action quantum absorber theory, on the other hand, has been developed on the basis that the quantised field is illusory, with quantisation being required only for atoms. In this paper it is shown that photoelectron antibunching is readily explicable in terms of absorber theory and in fact is directly attributable to the quantum nature of the emitting and detecting atoms alone. The physical nature of the reduction of the wavepacket associated with the detection process is briefly discussed in terms of absorber theory. (author)

  15. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1990-10-01

    The selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts. 3 refs., 3 figs

  16. Neutron physics calculation for WWER-1000 absorber element lifetime determination

    International Nuclear Information System (INIS)

    Kurakin, K.Yu.; Kushmanov, S.A.

    2009-01-01

    Absorber element with compound absorber has been operating in WWER-1000 power units since 1995. AE design meets operating organizations requirements for reliability, service life (to 10 years) and safety functions. Extension of AE service life up to 20 - 30 years by the complex of calculation and experimental work is an important problem of WWER new designs development. The paper deals with the issues related to calculation determination of main factors that influence AE service life limitation - neutron flux and fluence onto absorbing and structural materials during extended service life. (Authors)

  17. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  18. Neutron absorbers, and the production method

    International Nuclear Information System (INIS)

    Kayano, Hideo; Yajima, Seishi; Oono, Hironori.

    1979-01-01

    Purpose: To integrally sinter a metal powder and a metal network material thereby to obtain a material having a high neutron absorbing function, an excellent corrosion resistance and an excellent oxidation resistance. Method: An element having a high neutron absorbing function, such as Gd, or a compound thereof and a powder of a metal having excellent corrosion resistance, oxidation resistance and ductility, such as Fe, Cr or the like are uniformly mixed with each other. In a case where a substance having a neutron absorbing function is a hydroxide an organic complex or the like, it is formed into a gel-like substance and mixed uniformly with the metal powder, the gel-like substance being pasted, and covered on the surface of the metal powder and dried. Then, the mixture or the dry coated material is extended and the metal network material having excellent corrosion resistance, oxidation resistance and ductility is covered or interposed or between at least one layer of upper, intermediate or lower layers of said laminated material, and thereafter is subjected to cold or hot rolling, and then sintered and furthermore rolled, if necessary, the thus treated material being burned in vacuum or a non-oxidizing atmosphere. (Kamimura, M.)

  19. Absorber materials in CANDU PHWR's

    International Nuclear Information System (INIS)

    Price, E.G.; Boss, C.R.; Novak, W.Z.; Fong, R.W.L.

    1995-03-01

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in a relatively benign environment of low pressure, low temperature heavy water between neighbouring rows of columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a designed back-fit resolved the problem. (author). 3 refs., 1

  20. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  1. Microwave absorbing property of a hybrid absorbent with carbonyl irons coating on the graphite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yan, Zhenqiang; Zhang, Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2015-11-30

    Graphical abstract: The absorbing property could be enhanced as the CIPs coated on the graphite. - Highlights: • Absorbers filled with CIPs coating on the graphite was fabricated. • The permittivity and permeability increased as CIPs coated. • The CIP materials enhanced the electromagnetic property. • The graphite coated CIPs were effective in 2–18 GHz. - Abstract: The hybrid absorbent filled with carbonyl iron particles (CIPs) coating on the graphite was prepared using a chemical vapor decomposition (CVD) process. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz. The results showed that α-Fe appeared in the super-lattice diffraction peaks in XRD graph. The composites added CIPs coating on the graphite had a higher permittivity and imaginary permeability due to the superior microwave dielectric loss and magnetic loss of the CIPs. The reflection loss (RL) result showed that composites filled with 5 vol% Fe-graphite had an excellent absorbing property in the 2–18 GHz, the minimum RL was −25.14 dB at 6 mm and −26.52 dB at 8 mm, respectively.

  2. Energy deposition studies for the LBNE beam absorber

    International Nuclear Information System (INIS)

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options. (authors)

  3. Effects of soluble organic complexants and their degradation products on the removal of selected radionuclides from high-level waste. Part II: Distributions of Sr, Cs, Tc, and Am onto 32 absorbers from four variations of Hanford tank 101-SY simulant solution

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-04-01

    Many of the radioactive waste storage tanks at U.S. Department of Energy facilities contain organic compounds that have been degraded by radiolysis and chemical reactions during decades of storage. In this second part of our three-part investigation of the effects of soluble organic complexants and their degradation products, we measured the sorption of strontium, cesium, technetium, and americium onto 32 absorbers that offer high sorption of these elements in the absence of organic complexants. The four solutions tested were (1) a simulant for a 3:1 dilution of Hanford Tank 101-SY contents that initially contained ethylenediaminetetraacetic acid (EDTA), (2) this simulant after gamma-irradiation to 34 Mrads, (3) the unirradiated simulant after treatment with a hydrothermal organic-destruction process, and (4) the irradiated simulant after hydrothermal processing. For each of 512 element/absorber/solution combinations, we measured distribution coefficients (Kds) twice for each period for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of our 3,072 measured Kd values, the sorption of strontium and americium is significantly decreased by the organic components of the simulant solutions, whereas the sorption of cesium and technetium appears unaffected by the organic components of the simulant solutions

  4. Adaptive inertial shock-absorber

    International Nuclear Information System (INIS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-01-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated. (paper)

  5. Invariant Theory (IT) & Standard Monomial Theory (SMT)

    Indian Academy of Sciences (India)

    2013-07-06

    Jul 6, 2013 ... Why invariant theory? (continued). Now imagine algebraic calculations being made, with the two different sets of co-ordinates, about something of geometrical or physical interest concerning the configuration of points, ...

  6. Radiation sterilization of absorbent cotton and of absorbent gauze

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari; Oka, Mitsuru; Kaneko, Akira; Ishiwata, Hiroshi.

    1986-01-01

    The bioburden of absorbent cotton and of absorbent gauze and their physical and chemical characteristics after irradiation are investigated. The survey conducted on contaminants of 1890 cotton samples from 53 lots and 805 gauze samples from 56 lots showed maximum numbers of microbes per g of the cotton and gauze were 859 (an average of 21.4) and 777 (an average of 42.2), respectively. Isolation and microbiological and biochemical tests of representative microbes indicated that all of them, except one, were bacilli. The sterilization dose at 10 -6 of sterlity assurance level was found to be 2.0 Mrad when irradiated the spores loaded on paper strips and examined populations having graded D values from 0.10 to 0.28 Mrad. The sterilization dose would be about 1.5 Mrad if subjected the average numbers of contaminants observed in this study to irradiation. No significant differences were found between the irradiated samples and control up to 2 Mrad in tensile strength, change of color, absorbency, sedimentation rate, soluble substances, and pH of solutions used for immersion and other tests conventionally used. These results indicate that these products can be sterilized by irradiation. (author)

  7. Dynamical study of a laser with a saturable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Dignowity, D; RamIrez, R [Centro de Investigaciones en Optica, Loma del Bosque 115, Col. Lomas del Campestre, 37150, Leon, Guanajuato (Mexico)

    2005-01-01

    The study of a laser including a saturable absorber is presented. The non-linear system describing the complex dynamics of the laser is presented. The laser is shown to operate in several regimes depending on the parameters used. It is also shown how the control of the laser is possible depending on the operating regime parameters.

  8. Digital Alloy Absorber for Photodetectors

    Science.gov (United States)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  9. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  10. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  11. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon

  12. Piezooptic effect of absorbing environment

    Directory of Open Access Journals (Sweden)

    Ю. А. Рудяк

    2013-07-01

    Full Text Available Application of piezooptic effect of absorbing environment for the definition of the parameter of stress deformation state was examined. The analysis of dielectric permeability tensor of imaginary parts was done. It is shown that changes in the real part dielectric permeability tensor mainly the indicator of fracture was fixed by means of mechanics interference methods and the changes in the imaginary part (α – real rate of absorption can be measured by means of analysis of light absorption and thus stress deformation state can be determined

  13. Energy absorbers as pipe supports

    International Nuclear Information System (INIS)

    Khlafallah, M.Z.; Lee, H.M.

    1985-01-01

    With the exception of springs, pipe supports currently in use are designed with the intent of maintaining their rigidity under load. Energy dissipation mechanisms in these pipe supports result in system damping on the order presented by Code Case N-411 of ASME Section III code. Examples of these energy dissipation mechanisms are fluids and gaps in snubbers, gaps in frame supports, and friction in springs and frame supports. If energy absorbing supports designed in accordance with Code Case N-420 are used, higher additional damping will result

  14. Laser Beam Melting of Alumina: Effect of Absorber Additions

    Science.gov (United States)

    Moniz, Liliana; Colin, Christophe; Bartout, Jean-Dominique; Terki, Karim; Berger, Marie-Hélène

    2018-03-01

    Ceramic laser beam melting offers new manufacturing possibilities for complex refractory structures. Poor absorptivity in near infra-red wavelengths of oxide ceramics is overcome with absorber addition to ceramic powders. Absorbers affect powder bed densities and geometrical stability of melted tracks. Optimum absorber content is defined for Al2O3 by minimizing powder bed porosity, maximizing melting pool geometrical stability and limiting shrinkage. Widest stability fields are obtained with addition of 0.1 wt.% C and 0.5 wt.% β-SiC. Absorption coefficient values of Beer-Lambert law follow stability trends: they increase with C additions, whereas with β-SiC, a maximum is reached for 0.5 wt.%. Powder particle ejections are also identified. Compared to metallic materials, this ejection phenomenon can no longer be neglected when establishing a three-dimensional manufacturing strategy.

  15. Specification of absorbed dose for reporting a therapeutic irradiation

    International Nuclear Information System (INIS)

    Wambersie, A.; Chassagne, D.

    1981-01-01

    The problem of dose specification in external beam therapy with photons and electrons has been dealt with in ICRU Report 29 (1978). This problem arises from the fact that the absorbed dose distribution is usually not uniform in the target volume and that for the purpose of treatment reporting a nominal absorbed dose - which will be called target absorbed dose - has to be selected. When comparing the clinical results obtained between radiotherapy centres, the differences in the reported target absorbed doses which can be introduced by differences in the methods of dose specification often are much larger than the differences related to the dosimetric procedures themselves. This shows the importance of the problem. In this paper, some definitions of terms and concepts currently used in radiotherapy are first recalled: tumour volume, target volume, treatment volume, etc. These definitions have been proposed in ICRU Report 29 for photon and electron beams; they can be extended to any kind of irradiation. For external beam therapy with photons and electrons, the target absorbed dose is defined as the absorbed dose at selected point(s) (specification point(s)) having a meaningful relation to the target volume and/or the irradiation beams. Examples are discussed for typical cases. As far as interstitial and intracavitary therapy is concerned, the problem is more complex and no recommendations have so far been made by the ICRU Commission. A major difficulty arises from the sharp dose gradient as a function of the distance to the sources. The particular case of the treatment of cervix carcinoma is considered and some possible methods of specification are discussed: (1) the indication of the sources (in adequate units) and the duration of the application, (2) the absorbed doses at selected reference points (bladder, rectum, bony structures) and (3) the description of the tissue volume (height, width, thickness) encompassed by a given isodose surface (60Gy). (author)

  16. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  17. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  18. Determination of absorbed dose in reactors

    International Nuclear Information System (INIS)

    1971-01-01

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  19. Oxalate: Effect on calcium absorbability

    International Nuclear Information System (INIS)

    Heaney, R.P.; Weaver, C.M.

    1989-01-01

    Absorption of calcium from intrinsically labeled Ca oxalate was measured in 18 normal women and compared with absorption of Ca from milk in these same subjects, both when the test substances were ingested in separate meals and when ingested together. Fractional Ca absorption from oxalate averaged 0.100 +/- 0.043 when ingested alone and 0.140 +/- 0.063 when ingested together with milk. Absorption was, as expected, substantially lower than absorption from milk (0.358 +/- 0.113). Nevertheless Ca oxalate absorbability in these women was higher than we had previously found for spinach Ca. When milk and Ca oxalate were ingested together, there was no interference of oxalate in milk Ca absorption and no evidence of tracer exchange between the two labeled Ca species

  20. An omnidirectional electromagnetic absorber made of metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng

    2010-01-01

    In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.

  1. Ruggedizing Printed Circuit Boards Using a Wideband Dynamic Absorber

    Directory of Open Access Journals (Sweden)

    V.C. Ho

    2003-01-01

    Full Text Available The existing approaches to ruggedizing inherently fragile and sensitive critical components of electronic equipment such as printed circuit boards (PCB for use in hostile industrial and military environment are either insufficient or expensive. This paper addresses a novel approach towards ruggedizing commercial-off-the-shelf PCBs using a miniature wideband dynamic absorber. The optimisation technique used relies on the experimentally measured vibration spectra and complex receptance of the original PCB.

  2. Comments on liquid hydrogen absorbers for MICE

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    This report describes the heat transfer problems associated with a liquid hydrogen absorber for the MICE experiment. This report describes a technique for modeling heat transfer from the outside world, to the absorber case and in its vacuum vessel, to the hydrogen and then into helium gas at 14 K. Also presented are the equation for free convection cooling of the liquid hydrogen in the absorber

  3. Absorbed dose by a CMOS in radiotherapy

    International Nuclear Information System (INIS)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L. C.

    2011-10-01

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  4. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  5. Preparation of super absorbent by irradiation polymerization

    International Nuclear Information System (INIS)

    Hua Fengjun; Tan Chunhong; Qian Mengping

    1995-01-01

    A kind of absorbent is prepared by gamma-rays irradiated by reversed-phase suspension polymerization. Drying particles have 1400 (g/g) absorbency in de-ionic water. Effects of reactive conditions, e.g.: dose-rate, dose, monomer concentration, degree of monomer neutralization and crosslinking agents on absorbency in de-ionic water are discussed. The cause of absorbing de-ionic water by polymer is related to its network structure and ionic equilibrium in particle. Accordingly, a suit reactive condition is chosen for preparation of hydro gel spheres

  6. Absorber rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    Acher, H.

    1985-01-01

    The invention concerns a further addition to the invention of DE 33 42 830 A1. The free contact of the hollow piston with the nut due to hydraulic pressure is replaced by a hydraulic or spring attachment. The pressure system required to produce the hydraulic pressure is therefore omitted, and the electrical power required for driving the pump or the mass flow is also omitted. The absorber rod slotted along its longitudinal axis is replaced by an absorber rod, in the longitudinal axis of which a hollow piston is connected together with the absorber rod. This makes the absorber rod more stable, and assembly is simplified. (orig./HP) [de

  7. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  8. Gaseous carbon dioxide absorbing column

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    The absorbing column of the present invention comprises a cyclone to which CO 2 gas and Ca(OH) 2 are blown to form CaCO 3 , a water supply means connected to an upper portion of the cyclone for forming a thin water membrane on the inner wall thereof, and a water processing means connected to a lower portion of the cyclone for draining water incorporating CaCO 3 . If a mixed fluid of CO 2 gas and Ca(OH) 2 is blown in a state where a flowing water membrane is formed on the inner wall of the cyclone, formation of CaCO 3 is promoted also in the inside of the cyclone in addition to the formation of CaCO 3 in the course of blowing. Then, formed CaCO 3 is discharged from the lower portion of the cyclone together with downwardly flowing water. With such procedures, solid contents such as CaCO 3 separated at the inner circumferential wall are sent into the thin water membrane, adsorbed and captured, and the solid contents are successively washed out, so that a phenomenon that the solid contents deposit and grow on the inner wall of the cyclone can be prevented effectively. (T.M.)

  9. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  10. Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials

    Science.gov (United States)

    Mingdong, Chen; Huangzhong, Yu; Xiaohua, Jie; Yigang, Lu

    2018-03-01

    Based on the physical principle of interaction between electromagnetic field and the electromagnetic medium, the relationship between microwave absorbing coefficient (MAC) and the electromagnetic parameters of materials was established. With the composite materials of nickel ferrite (NiFe2O4), carbon nanotubes (CNTs) and paraffin as an example, optimization on absorbing properties of CNTs/magnetic oxide composite materials was studied at the frequency range of 2-18 GHz, and a conclusion is drawn that the MAC is the biggest at the same frequency, when the CNTs is 10 wt% in the composite materials. Through study on the relationship between complex permeability and MAC, another interesting conclusion is drawn that MAC is obviously affected by the real part of complex permeability, and increasing real part of complex permeability is beneficial for improving absorbing properties. The conclusion of this paper can provide a useful reference for the optimization research on the microwave absorbing properties of CNTs/ferrite composite materials.

  11. Absorbers in the Transactional Interpretation of Quantum Mechanics

    Science.gov (United States)

    Boisvert, Jean-Sébastien; Marchildon, Louis

    2013-03-01

    The transactional interpretation of quantum mechanics, following the time-symmetric formulation of electrodynamics, uses retarded and advanced solutions of the Schrödinger equation and its complex conjugate to understand quantum phenomena by means of transactions. A transaction occurs between an emitter and a specific absorber when the emitter has received advanced waves from all possible absorbers. Advanced causation always raises the specter of paradoxes, and it must be addressed carefully. In particular, different devices involving contingent absorbers or various types of interaction-free measurements have been proposed as threatening the original version of the transactional interpretation. These proposals will be analyzed by examining in each case the configuration of absorbers and, in the special case of the so-called quantum liar experiment, by carefully following the development of retarded and advanced waves through the Mach-Zehnder interferometer. We will show that there is no need to resort to the hierarchy of transactions that some have proposed, and will argue that the transactional interpretation is consistent with the block-universe picture of time.

  12. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes

    2014-01-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  13. THERMODYNAMIC STUDY OF CHARGE-TRANSFER COMPLEX ...

    African Journals Online (AJOL)

    a

    The formation constant of the resulting complex was evaluated from the absorbance-mole ratio data by using a non-linear least square curve-fitting program (curve-fitting toolbox in. MATLAB). The program is based on the iteration adjustment of calculated absorbances to the observed values. The observed absorbance of ...

  14. Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating

    OpenAIRE

    Liu, Zhaohui; Tao, Rui; Ban, Guodong; Luo, Ping

    2018-01-01

    The radar absorbing coating was prepared with short carbon fiber asabsorbent and waterborne polyurethane (WPU) as matrix resin. The coating’s absorbing property was tested with vectornetwork analyzer, using aramid honeycomb as air layer which was matched withcarbon fiber coating. The results demonstrate that the single-layered carbonfiber absorbing coating presented relatively poor absorbing property when thelayer was thin, and the performance was slightly improved after the matched airlayer ...

  15. Absorber element for fast breeder reactor

    International Nuclear Information System (INIS)

    Verset, L.

    1987-01-01

    This absorber element is characterized by a new head which avoids an accident disconnection of the mobil absorber. This head is made by a superior piece which can take shore up an adjusting ring on an adjusting bearing on the inferior piece. The intermediate piece is catched at the superior piece by a link of chain [fr

  16. Analysis of absorbing times of quantum walks

    International Nuclear Information System (INIS)

    Yamasaki, Tomohiro; Kobayashi, Hirotada; Imai, Hiroshi

    2003-01-01

    Quantum walks are expected to provide useful algorithmic tools for quantum computation. This paper introduces absorbing probability and time of quantum walks and gives both numerical simulation results and theoretical analyses on Hadamard walks on the line and symmetric walks on the hypercube from the viewpoint of absorbing probability and time

  17. Absorber transmissivities in 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ballet, O.

    1985-01-01

    Some useful relations are derived for the polarization dependent optical index of 57 Fe Moessbauer absorbers. Real rotation matrices are extensively used and, besides wave-direction dependence, their properties simplify also the treatment of texture and f-anisotropy. The derivation of absorber transmissivities from the optical index is discussed with a special emphasis on line overlapping. (Auth.)

  18. Groebner bases for finite-temperature quantum computing and their complexity

    International Nuclear Information System (INIS)

    Crompton, P. R.

    2011-01-01

    Following the recent approach of using order domains to construct Groebner bases from general projective varieties, we examine the parity and time-reversal arguments relating to the Wightman axioms of quantum field theory and propose that the definition of associativity in these axioms should be introduced a posteriori to the cluster property in order to generalize the anyon conjecture for quantum computing to indefinite metrics. We then show that this modification, which we define via ideal quotients, does not admit a faithful representation of the Braid group, because the generalized twisted inner automorphisms that we use to reintroduce associativity are only parity invariant for the prime spectra of the exterior algebra. We then use a coordinate prescription for the quantum deformations of toric varieties to show how a faithful representation of the Braid group can be reconstructed and argue that for a degree reverse lexicographic (monomial) ordered Groebner basis, the complexity class of this problem is bounded quantum polynomial.

  19. Liquid absorber experiments in ZED-2

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1975-07-01

    A set of liquid absorber experiments was performed in ZED-2 to provide data with which to test the adequacy of calculational methods for zone controller and refuelling studies associated with advanced reactor concepts. The absorber consisted of a full length aluminum tube, containing either i)H 2 O, ii)H 2 O + boron (2.5 mg/ml) or iii)H 2 O + boron (8.0 mg/ml). The tube was suspended vertically at interstitial or in-channel locations. A U-tube absorber was also simulated using two absorber tubes with appropriate spacers. Experiments were carried out at two different square lattice pitches, 22.86 and 27.94 cm. Measurements were made of the reactivity effects of the absorbers and, in some cases, of the detailed flux distribution near the perturbation. The results from one calculational method, the source-sink approach, were compared with the data from selected experiments. (author)

  20. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  1. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    Lafferty, R.H.; Smiley, S.H.; Radimer, K.J.

    1976-01-01

    A method is described for recovering UF 6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  2. Kinetic study on UV-absorber photodegradation under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bubev, Emil, E-mail: ebubev@my.uctm.edu [University of Chemical Technology and Metallurgy, Department of Physical Chemistry (Bulgaria); Georgiev, Anton [University of Chemical Technology and Metallurgy, Department of Organic Chemistry (Bulgaria); Machkova, Maria [University of Chemical Technology and Metallurgy, Department of Physical Chemistry (Bulgaria)

    2016-09-12

    The photodegradation kinetics of two benzophenone derivative UV-absorbers (UVAs)-BP-4 (benzophenone-4) and 4-HBP (4-hydroxybenzophenone), as additives in polyvinyl acetate (PVAc) films, were studied. Solution-processed PVAc films were irradiated in different environments in order to study oxygen and atmospheric humidity influence on UVA photodegradation. Photodegradation was traced by absorption intensity loss via UV–vis spectroscopy. Both UVAs exhibited excellent photostability in an inert atmosphere. Rate constants showed that BP-4 has better permanence in absence of oxygen. Both film types experienced rapid absorption loss, when irradiated in an oxygen containing atmosphere. UVA degradation was treated as a two-stage process. The photodegradation kinetics in the first stage agreed with the adopted complex rate law, but the second stage was best described by pseudo-first order kinetics. BP-4 exhibited better stability. Oxygen was established as the main accelerating factor for photodegradation of benzophenone derivatives UV-absorbers in thin PVAc films.

  3. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Grusell, Erik

    2015-01-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  4. Radioactive iodine absorbing properties of tetrathiafulvalene

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tomiyasu; Nakamura, Asao (Ajinomoto Co. Inc., Kawasaki, Kanagawa (Japan). Central Research Labs.); Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake

    1989-05-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and /sup 125/I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author).

  5. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  6. Radioactive iodine absorbing properties of tetrathiafulvalene

    International Nuclear Information System (INIS)

    Ito, Tomiyasu; Nakamura, Asao; Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake.

    1989-01-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and 125 I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author)

  7. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  8. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  9. Energy Absorbing Effectiveness – Different Approaches

    Directory of Open Access Journals (Sweden)

    Kotełko Maria

    2018-03-01

    Full Text Available In the paper the study of different crashworthiness indicators used to evaluate energy absorbing effectiveness of thin-walled energy absorbers is presented. Several different indicators are used to assess an effectiveness of two types of absorbing structures, namely thin-walled prismatic column with flaws and thin-walled prismatic frustum (hollow or foam filled in both cases subjected to axial compressive impact load. The indicators are calculated for different materials and different geometrical parameters. The problem of selection of the most appropriate and general indicators is discussed.

  10. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  11. Strategy on biological evaluation for biodegradable/absorbable materials and medical devices.

    Science.gov (United States)

    Liu, Chenghu; Luo, Hongyu; Wan, Min; Hou, Li; Wang, Xin; Shi, Yanping

    2018-01-01

    During the last two decades, biodegradable/absorbable materials which have many benefits over conventional implants are being sought in clinical practices. However, to date, it still remains obscure for us to perform full physic-chemical characterization and biological risk assessment for these materials and related devices due to their complex design and coherent processing. In this review, based on the art of knowledge for biodegradable/absorbable materials and biological risk assessment, we demonstrated some promising strategies to establish and improve the current biological evaluation systems for these biodegradable/absorbable materials and related medical devices.

  12. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal is to build and test a rigid Lithium Chloride Absorber Radiator (LCAR) coupon based on honeycomb geometry that would be applicable for EVA and...

  13. Full-flow absorbers. Every centimetre counts

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2012-07-01

    New absorbers with a maximised area for heat exchange with the thermal medium are significantly more efficient than the presently typical designs. Both the industry and researchers are working to revive an old idea. (orig.)

  14. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  15. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  16. Phase Space Exchange in Thick Wedge Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-01-01

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  17. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  18. Actual behaviour of a ball vibration absorber

    Czech Academy of Sciences Publication Activity Database

    Pirner, Miroš

    2002-01-01

    Roč. 90, č. 8 (2002), s. 987-1005 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GV103/96/K034 Institutional support: RVO:68378297 Keywords : TV towers * wind-excited vibrations * vibration absorbers * pendulum absorber Subject RIV: JM - Building Engineering Impact factor: 0.513, year: 2002 http://www.sciencedirect.com/science/article/pii/S0167610502002155#

  19. A Wedge Absorber Experiment at MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2017-05-01

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders, as well as configurations for low-energy muon sources. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  20. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  1. Performance of an absorbing concentrating solar collectors

    International Nuclear Information System (INIS)

    Imadojemu, H.

    1990-01-01

    This paper reports on a comparison of the efficiency of an absorbing fluid parabolic trough concentrating solar collector and a traditional concentrating collector that was made. In the absorbing fluid collector, black liquid flows through a glass tube absorber while the same black liquid flows through a selective black coated copper tube absorber while the same black fluid flows through a selective black coated copper tube absorber in the traditional collector. After a careful study of the properties of available black liquids, a mixture of water and black ink was chosen as the black absorbing medium or transfer fluid. In the black liquid glass collector there is a slightly improved efficiency based on beam radiation as a result of the direct absorption process and an increase in the effective transmittance absorptance. At worst the efficiency of this collector equals that of the traditional concentrating collector when the efficiency is based on total radiation. The collector's reflecting surfaces were made of aluminum sheet, parabolic line focus and with cylindrical receivers. The ease of manufacture and reduced cost per unit energy collected, in addition to the clean and pollution free mode of energy conversion, makes it very attractive

  2. Method of absorbance correction in a spectroscopic heating value sensor

    Science.gov (United States)

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  3. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  4. Identifying the perfect absorption of metamaterial absorbers

    Science.gov (United States)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  5. Neutron absorbed dose in a pacemaker CMOS

    International Nuclear Information System (INIS)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L.

    2012-01-01

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10 -17 Gy per neutron emitted by the source. (Author)

  6. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  7. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić

    2013-09-01

    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  8. Quantum walk with one variable absorbing boundary

    International Nuclear Information System (INIS)

    Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli

    2017-01-01

    Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks. - Highlights: • A novel scheme about quantum walk with variable boundary is proposed. • The analytical results of the survival probability from the absorbing boundary. • The behavior of survival probability under different boundary conditions. • The influence of different initial coin states on the survival probability.

  9. A wideband absorber for television studios

    Science.gov (United States)

    Baird, M. D. M.

    The acoustic treatment in BBC television has taken various forms to date, all of which have been relatively expensive, some of which provide inadequate absorption. An investigation has been conducted into the possibilities of producing a new type of wideband absorber which would be more economic, also taking installation time into account, than earlier designs. This Report describes the absorption coefficient measurements made on various combinations of materials, from which a wideband sound absorber has been developed. The absorber works efficiently between 50 Hz and 10 kHz, is simple and easy to construct using readily available materials, and is fire resistant. The design lends itself, if necessary, to on-site fine tuning, and savings in the region of 50 percent can be achieved in terms of cost and space with respect to previous designs.

  10. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  11. Aluminum alloy excellent in neutron absorbing performance

    International Nuclear Information System (INIS)

    Iida, Tetsuya; Tamamura, Tadao; Morimoto, Hiroyuki; Ouchi, Ken-ichiro.

    1987-01-01

    Purpose: To obtain structural materials made of aluminum alloys having favorable neutron absorbing performance and excellent in the performance as structural materials such as processability and strength. Constitution: Powder of Gd 2 O 3 as a gadolinium compound or metal gadolinium is uniformly mixed with the powder of aluminum or aluminum alloy. The amount of the gadolinium compound added is set to 0.1 - 30 % by weight. No sufficient neutron absorbing performance can be obtained if it is less than 0.1 % by weight, whereas the processability and mechanical property of the alloy are degraded if it exceeds 30 % by weight. Further, the grain size is set to less about 50 μm. Further, since the neutron absorbing performance varies greatly if the aluminum powder size exceeds 100 μm, the diameter is set to less than about 100 μm. These mixtures are molded in a hot press. This enables to obtain aimed structural materials. (Takahashi, M.)

  12. The MIRD method of estimating absorbed dose

    International Nuclear Information System (INIS)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine

  13. Absorbed Energy in Ship Collisions and Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    is that the absorbed energy does not depend on the arrangement of the structure, the material properties, and the damage mode.The purpose of the present paper is to establish a new simple relation between the absorbed energy and the destroyed material volume, which can be used as a design tool for analysis of ship...... collisions and grounding. The developed expressions reflect the structural arrangement, the material properties and different damage patterns.The present method is validated against a large number of existing experimental results and detailed numerical simulation results. Applications to full-sale ship...

  14. Method for manufacture of neutron absorbing articles

    International Nuclear Information System (INIS)

    Owens, D.

    1980-01-01

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form

  15. LINEAR MODEL FOR NON ISOSCELES ABSORBERS.

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.

    2003-05-12

    Previous analyses have assumed that wedge absorbers are triangularly shaped with equal angles for the two faces. In this case, to linear order, the energy loss depends only on the position in the direction of the face tilt, and is independent of the incoming angle. One can instead construct an absorber with entrance and exit faces facing rather general directions. In this case, the energy loss can depend on both the position and the angle of the particle in question. This paper demonstrates that and computes the effect to linear order.

  16. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented....... Utilizing photo-excited free carriers in silicon padsplaced in the capacitive gaps of split ring resonators, a dynamically modu-lated perfect absorber is designed and fabricated to operate in reflection.Large modulation depth (38% and 91%) in two absorption bands (with 97%and 92% peak absorption...

  17. Microstructured extremely thin absorber solar cells

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed by press......In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed...

  18. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  19. Optimization of Perfect Absorbers with Multilayer Structures

    Science.gov (United States)

    Li Voti, Roberto

    2018-02-01

    We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.

  20. Device for absorbing seismic effects on buildings

    International Nuclear Information System (INIS)

    Xercavins, Pierre; Pompei, Michel.

    1979-01-01

    Device for absorbing seismic effects. The construction or structure to be protected rests on its foundations through at least one footing formed of a stack of metal plates interlinked by layers of adhesive material, over at least a part of their extent, this material being an elastomer that can distort, characterized in that at least part of the area of some metal plates works in association with components which are able to absorb at least some of the energy resulting from friction during the relative movements of the metal plates against the distortion of the elastomer [fr

  1. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  2. An optimized absorbing potential for ultrafast, strong-field problems

    Science.gov (United States)

    Yu, Youliang; Esry, B. D.

    2018-05-01

    Theoretical treatments of strong-field physics have long relied on the numerical solution of the time-dependent Schrödinger equation. The most effective such treatments utilize a discrete spatial representation—a grid. Since most strong-field observables relate to the continuum portion of the wave function, the boundaries of the grid—which act as hard walls and thus cause reflection—can substantially impact the observables. Special care thus needs to be taken. While there exist a number of attempts to solve this problem—e.g., complex absorbing potentials and masking functions, exterior complex scaling, and coordinate scaling—none of them are completely satisfactory. The first of these is arguably the most popular, but it consumes a substantial fraction of the computing resources in any given calculation. Worse, this fraction grows with the dimensionality of the problem. In addition, no systematic way to design such a potential has been used in the strong-field community. In this work, we address these issues and find a much better solution. By comparing with previous widely used absorbing potentials, we find a factor of 3–4 reduction in the absorption range, given the same level of absorption over a specified energy interval.

  3. The Cooling of a Liquid Absorber using a Small Cooler

    International Nuclear Information System (INIS)

    Baynham, D.E.; Bradshaw, T.W.; Green, M.A.; Ishimoto, S.; Liggins, N.

    2005-01-01

    This report discusses the use of small cryogenic coolers for cooling the Muon Ionization Cooling Experiment (MICE) liquid cryogen absorbers. Since the absorber must be able contain liquid helium as well liquid hydrogen, the characteristics of the available 4.2 K coolers are used here. The issues associated with connecting two-stage coolers to liquid absorbers are discussed. The projected heat flows into an absorber and the cool-down of the absorbers using the cooler are presented. The warm-up of the absorber is discussed. Special hydrogen safety issues that may result from the use of a cooler on the absorbers are also discussed

  4. Review of Plasmonic Nanocomposite Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Mehdi Keshavarz Hedayati

    2014-02-01

    Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

  5. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  6. Can polar bear hairs absorb environmental energy?

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2011-01-01

    Full Text Available A polar bear (Ursus maritimus has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  7. Shock absorbing structure for nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1981-01-01

    A hydraulic apparatus is described that absorbs shocks that may be applied to fuel assemblies. Spring pads mounted on the upper end fittings of the fuel assemblies have plungers that move within hollow guide posts attached to the upper grids of the fuel assemblies. (L.L.)

  8. Absorbance and fluorescence studies on porphyrin Nanostructures ...

    African Journals Online (AJOL)

    The aim of this work was to study some photophysical properties of PNR for application as light harvester in dye sensitized solar cells. These properties included absorbance, fluorescence, and fluorescence quantum yield and lifetime. The results of Transmission Electron Microscope (TEM) images showed the formation of ...

  9. Proposal concerning the absorbed dose conversion factor

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, A [National Inst. of Radiological Sciences, Chiba (Japan)

    1978-03-01

    New definitions of the absorbed dose conversion factors Csub(lambda) and Csub(E) are proposed. The absorbed dose in water is given by the product of absorbed dose conversion factor, exposure calibration factor, ionisation chamber reading, cap displacement correction factor and perturbation correction factor. At exposure calibration the material of the build-up cap must be the same as that of the chamber wall. An ionisation chamber of which the wall material is water-equivalent or air-equivalent may be used. In the latter case the wall must be thin. For these two cases absorbed dose conversion factors are introduced and it is recommended that either of the two sets should be adopted. Furthermore, if the chamber wall is neither water- nor air-equivalent, the factor by which these currently defined values should be multiplied is also given: again the wall must be thin. The ICRU definitions of Csub(lambda) and Csub(E) are inconsistent, as recently pointed out, while the definitions presented here are consistent.

  10. Fabrication of high efficacy selective solar absorbers

    CSIR Research Space (South Africa)

    Tile, N

    2012-03-01

    Full Text Available High efficiency tandem selective solar absorber materials of carbon in nickel oxide (C-NiO) composite were fabricated on an aluminium substrate using a simple and cost effective sol-gel process. The process involved preparation of carbon and nickel...

  11. Strain absorbent modules for cavity filling

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Strain absorbent modules made from weldmesh panels and helical steel binders can be used, together with timber packing, to support the roof and sides of cavities instead of softwood and hardwood nogs. A description of these modules and a series of load tests and underground trials carried out on the modules is given.

  12. Measuring the absorbed radioactivity during a flight

    International Nuclear Information System (INIS)

    2002-01-01

    This paper presents the new system SIEVERT developed by the General Direction of the Civil Aviation (DGAC) to measure the radiations doses absorbed from cosmic radiation. The system is available on the Internet site: www.sievert-system.org. (A.L.B.)

  13. Electromagnetic and microwave absorbing properties of hollow ...

    Indian Academy of Sciences (India)

    bandwidth below −10 dB and minimum RL decrease with increasing thickness of HCNSs/paraffin composites. Keywords. Nanomaterials; nanospheres; CVD; electric; magnetic; microwave absorption properties. 1. Introduction. In recent years, microwave absorbing materials have attracted considerable attention because it ...

  14. Coupler for nuclear reactor absorber rods

    International Nuclear Information System (INIS)

    Kerz, K.

    1984-01-01

    A coupler is described for absorber rods being suspended during operation of nuclear reactors which includes plurality of actuating elements being movable for individually and jointly releasing the coupler, the movement of each of the actuating elements for releasing the coupler being independently controllable

  15. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  16. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet

    International Nuclear Information System (INIS)

    Xu, Yonggang; Zhang, Deyuan; Cai, Jun; Yuan, Liming; Zhang, Wenqiang

    2013-01-01

    Silicone rubber composites filled with carbonyl iron particles (CIPs) and graphite platelet (GP) were prepared using non-coating or coating processes. The complex permittivity and permeability of the composites were measured using a vector network analyzer in the frequency range of 1–18 GHz and dc electric conductivity was measured by the standard four-point contact method. The results showed that CIPs/GP composites fabricated in the coating process had the highest permittivity and permeability due to the particle orientation and interactions between the two absorbents. The coating process resulted in a decreased effective eccentricity of the absorbents, and the dc conductivity increased according to Neelakanta's equations. The reflection loss (RL) value showed that the composites had an excellent absorbing property in the L-band, minimum −11.85 dB at 1.5 mm and −15.02 dB at 2 mm. Thus, GP could be an effective additive in preparing thin absorbing composites in the L-band. - Highlights: ► The added GP increased the permittivity and permeability of composites filled with CIPs. ► The enhancement was owing to interactions of the two absorbents and the fabrication process. ► The coating process decreased the effective eccentricity of the particles, and increased the conductivity of the composites. ► The composites to which CIPs/GP were added in coating process had excellent absorbing properties in the L-band.

  17. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  18. A rate based reactor model for BiodeNOx absorber units

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Gambardella, F.; Heeres, H. J.

    2007-01-01

    The reactive absorption of NO in aqueous solutions of Fe-II(EDTA), resulting in the formation of a nitrosyl complex, Fe-II(EDTA)(NO), is a key step of the BiodeNOx process for the removal of NOx from industrial flue gas. Oxygen present in the flue gas will also absorb and oxidize Fe-II(EDTA). This

  19. Design and development of radiation absorber for sighting beam line

    International Nuclear Information System (INIS)

    Sridhar, R.; Shukla, S.K.

    2005-01-01

    During the commissioning of Indus-2 , it is necessary to view the synchrotron radiation that will be emanating from the dipole exit ports. The 10 0 beam line from dipole 11 was earmarked for sighting beam line. The synchrotron radiation power density would be around 340 watts on the photon absorber inside the radiation absorber module, at the specified beam power of Indus-2. The beam striking on this photon absorber produces x-rays and Bremsstrahlung radiation. These are to be stopped and absorbed by radiation absorber. The photon absorber and the radiation absorber are integrated in a single vacuum chamber and actuated by a pneumatic cylinder connected using a bellow. Radiation absorber was needed to isolate the diagnostic components and to protect them from radiation a well as heat when they were not in use. The paper describes the design, calculation and development of the dynamic photon cum radiation absorber. The ultimate vacuum performance is also described. (author)

  20. Elaboration and qualification of a reference calculation routes for the absorbers in the PWR reactors

    International Nuclear Information System (INIS)

    Blanc-Tranchant, P.

    1999-11-01

    The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code Apollo 2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B 4 C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI14. They were then checked against experimental data measured during french experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)

  1. Development and qualification of reference calculation schemes for absorbers in pressured water reactor

    International Nuclear Information System (INIS)

    Blanc-Tranchant, P.

    2001-01-01

    The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code APOLLO2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B4C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI4. They were then checked against experimental data measured during French experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)

  2. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    Science.gov (United States)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  3. Fault Detection for Automotive Shock Absorber

    Science.gov (United States)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  4. Carbon Nanomaterials for Optical Absorber Applications

    Directory of Open Access Journals (Sweden)

    Anupama KAUL

    2011-12-01

    Full Text Available Optical absorbers based on vertically aligned multi-walled carbon nanotubes (MWCNTs, synthesized using electric-field assisted growth, are described here that show an ultra-low reflectance, 100X lower compared to the benchmark, a diffuse metal black - Au-black - from wavelength l ~ 350 nm – 2500 nm. The reflectance of the MWCNT arrays was measured to be as low as 0.02 % at 2 mm in the infra-red (IR. Growth conditions were optimized for the realization of high-areal density arrays of MWCNTs using a plasma-based chemical vapor deposition (CVD process. Such high efficiency absorbers are particularly attractive for radiometry, as well as energy harnessing applications. Optical modeling calculations were conducted that enabled a determination of the extinction coefficient in the films.

  5. Use of Wedge Absorbers in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Mohayai, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Snopok, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Rogers, C. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)

    2017-03-01

    Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL and G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.

  6. Development of an innovative solar absorber

    Science.gov (United States)

    Goodchild, Gavin

    Solar thermal systems have great potential to replace or reduce the dependence of conventional fossil fuel based heating technologies required for space and water heating. Specifically solar domestic hot water systems can contribute 50-75% of the annual thermal load. To date residential users have been slow to purchase and install systems, primarily due to the large monetary investment required to purchase and install a system. Recent innovations in materials design and manufacturing techniques, offer opportunities for the development of absorber plate designs that have the potential to reduce cost, increase efficiency and reduce payback periods. Consequently, this design study was conducted in conjunction with industrial partners to develop an improved absorber based on roll bond manufacturing that can be produced at reduced cost with comparable or greater thermal efficiency.

  7. Effect of the bio-absorbent on the microwave absorption property of the flaky CIPs/rubber absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Xu, Yonggang, E-mail: xuyonggang221@163.com; Cai, Jun; Yuan, Liming; Zhang, Deyuan

    2015-09-01

    Microwave absorbing composites filled with flaky carbonyl iron particles (CIPs) and the bio-absorbent were prepared by using a two-roll mixer and a vulcanizing machine. The electromagnetic (EM) parameters were measured by a vector network analyzer and the reflection loss (RL) was measured by the arch method in the frequency range of 1–4 GHz. The uniform dispersion of the absorbents was verified by comparing the calculated RL with the measured one. The results confirm that as the bio-absorbent was added, the permittivity was increased due to the volume content of absorbents, and the permeability was enlarged owing to the volume content of CIPs and interactions between the two absorbents. The composite filled with bio-absorbents achieved an excellent absorption property at a thickness of 1 mm (minimum RL reaches −7.8 dB), and as the RL was less than −10 dB the absorption band was widest (2.1–3.8 GHz) at a thickness of 2 mm. Therefore, the bio-absorbent is a promising additive candidate on fabricating microwave absorbing composites with a thinner thickness and wider absorption band. - Graphical abstract: Morphology of composites filled with flaky CIPs and the bio-absorbent. The enhancement of bio-absorbent on the electromagnetic absorption property of composites filled with flaky carbonyl iron particles (CIPs) is attributed to the interaction of the two absorbents. The volume content of the FCMPs with the larger shape CIPs play an important role in this effects, the composites filled with irons and bio-absorbents can achieve wider-band and thinner-thickness absorbing materials. - Highlights: • Absorbers filled with bio-absorbents and CIPs was fabricated. • Bio-absorbents enhanced the permittivity and permeability of the composites. • The absorbent interactions play a key role in the enhancement mechanism. • Bio-absorbents enhanced the composite RL in 1–4 GHz.

  8. Removing fuelling transient using neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, S.; Chan, P.K.; Bonin, H.W., E-mail: Stephane.Paquette@rmc.ca [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, Ontario (Canada); Pant, A. [Cameco Fuel Manufacturing, Port Hope, Ontario (Canada)

    2012-07-01

    Preliminary criticality and burnup calculation results indicate that by employing a small amount of neutron absorber the fuelling transient, currently occurring in a CANDU 37-element fuel bundle, can be significantly reduced. A parametric study using the Los Alamos National Laboratories' MCNP 5 code and Atomic Energy of Canada Limited's WIMS-AECL 3.1 is presented in this paper. (author)

  9. Radiation and shielding around beam absorbers

    International Nuclear Information System (INIS)

    Hurkmans, A.; Maas, R.

    1978-12-01

    During operational conditions it is anticipated that a fair amount of the total available beam power is dumped in either the slit system on one of the beam dumps. Thses beam absorbers therefore become strong radioactive sources. The radiation level due to the absorption of a 100 kW electron beam is estimated and the problem of residual activity is treated. Proposed shielding materials are discussed. (C.F.)

  10. Visual indicator of absorbed radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Generalova, V V; Krasovitskii, B M; Vainshtok, B A; Gurskii, M N

    1968-10-15

    A visual indicator of the absorbed doses of ionizing radiation is proposed. The indicator has a polymer base with the addition of a dye. A distinctive feature of the indicator consists of the use of polystyrene as its polymer base with the addition of halogen-containing hydrocarbon and the light-proof dye. Such combination of the radiation-resistant polymer of polystyrene and the light-proof dyestuff makes the proposed indicator highly stable.

  11. Heaving buoys, point absorbers and arrays.

    Science.gov (United States)

    Falnes, Johannes; Hals, Jørgen

    2012-01-28

    Absorption of wave energy may be considered as a phenomenon of interference between incident and radiated waves generated by an oscillating object; a wave-energy converter (WEC) that displaces water. If a WEC is very small in comparison with one wavelength, it is classified as a point absorber (PA); otherwise, as a 'quasi-point absorber'. The latter may be a dipole-mode radiator, for instance an immersed body oscillating in the surge mode or pitch mode, while a PA is so small that it should preferably be a source-mode radiator, for instance a heaving semi-submerged buoy. The power take-off capacity, the WEC's maximum swept volume and preferably also its full physical volume should be reasonably matched to the wave climate. To discuss this matter, two different upper bounds for absorbed power are applied in a 'Budal diagram'. It appears that, for a single WEC unit, a power capacity of only about 0.3 MW matches well to a typical offshore wave climate, and the full physical volume has, unfortunately, to be significantly larger than the swept volume, unless phase control is used. An example of a phase-controlled PA is presented. For a sizeable wave-power plant, an array consisting of hundreds, or even thousands, of mass-produced WEC units is required.

  12. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.

    1995-01-01

    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  13. The near-UV absorber OSSO and its isomers.

    Science.gov (United States)

    Wu, Zhuang; Wan, Huabin; Xu, Jian; Lu, Bo; Lu, Yan; Eckhardt, André K; Schreiner, Peter R; Xie, Changjian; Guo, Hua; Zeng, Xiaoqing

    2018-05-01

    Disulfur dioxide, OSSO, has been proposed as the enigmatic "near-UV absorber" in the yellowish atmosphere of Venus. However, the fundamentally important spectroscopic properties and photochemistry of OSSO are scarcely documented. By either condensing gaseous SO or 266 laser photolysis of an S2O2 complex in Ar or N2 at 15 K, syn-OSSO, anti-OSSO, and cyclic OS([double bond, length as m-dash]O)S were identified by IR and UV/Vis spectroscopy for the first time. The observed absorptions (λmax) for OSSO at 517 and 390 nm coincide with the near-UV absorption (320-400 nm) found in the Venus clouds by photometric measurements with the Pioneer Venus orbiter. Subsequent UV light irradiation (365 nm) depletes syn-OSSO and anti-OSSO and yields a fourth isomer, syn-OSOS, with concomitant dissociation into SO2 and elemental sulfur.

  14. Radar absorbing properties of carbon nanotubes/polymer ...

    Indian Academy of Sciences (India)

    This research is devoted to the study of radar absorbing properties of the composites, based on the epoxy binder and ... Radar absorbing materials; carbon nanotubes; nanocomposites; reflection loss. 1. ..... So, for example, the papers of [3–5 ...

  15. Simulated mixed absorbers and effective atomic numbers for γ ...

    Indian Academy of Sciences (India)

    Keywords. γ-rays; γ attenuation; simulated mixed absorbers; effective atomic ... We have tried to simulate composite (mixed) absorbers ... Experimental method .... puter, Program manual, Centre for Radiation Research, National Bureau of ...

  16. Effect of inclusions' distribution on microwave absorbing properties of composites

    International Nuclear Information System (INIS)

    Qin, Siliang; Wang, Qingguo; Qu, Zhaoming

    2013-01-01

    Effect of inclusions' spatial distributions on the permeability and permittivity of composites is studied using the generalized Maxwell-Garnett equations. The result indicates that inclusions' orientation distribution can increase the longitudinal electromagnetic parameters. For inclusions' random and orientation distribution, single and three-layer absorbers are designed and optimized using genetic algorithm. The result shows that under a given absorbing requirement, absorber with inclusions' orientation distribution is lighter and thinner than absorber with inclusions' random distribution.

  17. Dynamic testing of airplane shock-absorbing struts

    Science.gov (United States)

    Langer, P; Thome, W

    1932-01-01

    Measurement of perpendicular impacts of a landing gear with different shock-absorbing struts against the drum testing stand. Tests were made with pneumatic shock absorbers having various degrees of damping, liquid shock absorbers, steel-spring shock absorbers and rigid struts. Falling tests and rolling tests. Maximum impact and gradual reduction of the impacts in number and time in the falling tests. Maximum impact and number of weaker impacts in rolling tests.

  18. GEOMETRICAL OPTIMIZATION OF VEHICLE SHOCK ABSORBERS WITH MR FLUID

    OpenAIRE

    ENGIN, Tahsin; PARLAK, Zekeriya; ŞAHIN, Ismail; ÇALLI, Ismail

    2016-01-01

    Magnetorheological (MR) shock absorber have received remarkable attention in the last decade due to being a potential technology to conduct semi-active control in structures and mechanical systems in order to effectively suppress vibration. To develop performance of MR shock absorbers, optimal design of the dampers should be considered. The present study deals with optimal geometrical modeling of a MR shock absorber. Optimal design of the present shock absorber was carried out by using Taguch...

  19. On (m, n)-absorbing ideals of commutative rings

    Indian Academy of Sciences (India)

    with respect to various ring theoretic constructions and study (m, n)-absorbing ideals in several commutative rings. For example, in a Bézout ring or a Boolean ring, an ideal is an (m, n)-absorbing ideal if and only if it is an n-absorbing ideal, and in an almost. Dedekind domain every (m, n)-absorbing ideal is a product of at ...

  20. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    Saunders, G.A.

    1989-11-01

    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  1. Slow and Fast Light in an Electro-Absorber

    DEFF Research Database (Denmark)

    Öhman, Filip; Bermejo Ramirez, Andres; Sales, Salvador

    2006-01-01

    We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated.......We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated....

  2. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  3. [Absorbable coronary stents. New promising technology].

    Science.gov (United States)

    Erbel, Raimund; Böse, Dirk; Haude, Michael; Kordish, Igor; Churzidze, Sofia; Malyar, Nasser; Konorza, Thomas; Sack, Stefan

    2007-06-01

    Coronary stent implantation started in Germany 20 years ago. In the beginning, the progress was very slow and accelerated 10 years later. Meanwhile, coronary stent implantation is a standard procedure in interventional cardiology. From the beginning of permanent stent implantation, research started to provide temporary stenting of coronary arteries, first with catheter-based systems, later with stent-alone technology. Stents were produced from polymers or metal. The first polymer stent implantation failed except the Igaki-Tamai stent in Japan. Newly developed absorbable polymer stents seem to be very promising, as intravascular ultrasound (IVUS) and optical coherence tomography have demonstrated. Temporary metal stents were developed based on iron and magnesium. Currently, the iron stent is tested in peripheral arteries. The absorbable magnesium stent (Biotronik, Berlin, Germany) was tested in peripheral arteries below the knee and meanwhile in the multicenter international PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) study. The first magnesium stent implantation was performed on July 30, 2004 after extended experimental testing in Essen. The magnesium stent behaved like a bare-metal stent with low recoil of 5-7%. The stent struts were absorbed when tested with IVUS. Stent struts were not visible by fluoroscopy or computed tomography (CT) as well as magnetic resonance imaging (MRI). That means, that the magnesium stent is invisible and therefore CT and MRI can be used for imaging of interventions. Only using micro-CT the stent struts were visible. The absorption process could be demonstrated in a patient 18 days after implantation due to suspected acute coronary syndrome, which was excluded. IVUS showed a nice open lumen. Stent struts were no longer visible, but replaced by tissue indicating the previous stent location. Coronary angiography after 4 months showed an ischemia-driven target lesion

  4. 21 CFR 880.5300 - Medical absorbent fiber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical absorbent fiber. 880.5300 Section 880.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5300 Medical absorbent fiber. (a) Identification. A medical absorbent fiber is a device...

  5. Piston-rotaxanes as molecular shock absorbers.

    Science.gov (United States)

    Sevick, E M; Williams, D R M

    2010-04-20

    We describe the thermomechanical response of a new molecular system that behaves as a shock absorber. The system consists of a rodlike rotaxane connected to a piston and tethered to a surface. The response of this system is dominated by the translational entropy of the rotaxane rings and can be calculated exactly. The force laws are contrasted with those for a rigid rod and a polymer. In some cases, the rotaxanes undergo a sudden transition to a tilted state when compressed. These piston-rotaxanes provide a potential motif for the design of a new class of materials with a novel thermomechanical response.

  6. DHCAL with Minimal Absorber: Measurements with Positrons

    CERN Document Server

    Freund, B; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Antequera, J.Berenguer; Calvo Alamillo, E.; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; Kolk, N.van der; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-01-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  7. Performansi Purifikasi Biogas Dengan KOH Based Absorbent

    Directory of Open Access Journals (Sweden)

    Dadang Hermawan

    2016-10-01

    Full Text Available The absorpstion of CO2 is aimed to increase the methane gas fraction in biogas. Enhancing methane fraction hopefully will increase the total energy of the biogas it self. The purification process of biogas minimizing another elements maintains combustion, especially minimizing H2O, CO2, and H2S. The purification using KOH as the absorbent to decrease the CO2. The result shown that the content of CO2 decreased into 27% from 35.5%, the average content of CH4 increased from 18% to 48.5%. Increasing KOH composition decreases bubble generator diameter and mass flow.

  8. Performansi Purifikasi Biogas Dengan KOH Based Absorbent

    OpenAIRE

    Hermawan, Dadang; Hamidi, Nurkholis; Sasongko, Mega Nur

    2016-01-01

    The absorpstion of CO2 is aimed to increase the methane gas fraction in biogas. Enhancing methane fraction hopefully will increase the total energy of the biogas it self. The purification process of biogas minimizing another elements maintains combustion, especially minimizing H2O, CO2, and H2S. The purification using KOH as the absorbent to decrease the CO2. The result shown that the content of CO2 decreased into 27% from 35.5%, the average content of CH4 increased from 18% to 48.5%. Increas...

  9. Liquid holdup in turbulent contact absorber

    International Nuclear Information System (INIS)

    Haq, A.; Zaman, M.; Inayat, M.H.; Chughtai, I.R.

    2009-01-01

    Dynamic liquid holdup in a turbulent contact absorber was obtained through quick shut off valves technique. Experiments were carried out in a Perspex column. Effects of liquid velocity, gas velocity, packing diameter packing density and packing height on dynamic liquid holdup were studied. Hollow spherical high density polyethylene (HDPE) balls were used as inert fluidized packing. Experiments were performed at practical range of liquid and gas velocities. Holdup was calculated on the basis of static bed height. Liquid holdup increases with increasing both liquid and gas velocities both for type 1 and type 2 modes of fluidization. Liquid holdup increases with packing density. No effect of dia was observed on liquid holdup. (author)

  10. Optical Pulsing in an Absorbing Liquid

    Science.gov (United States)

    Barnes, Jacob; Evans, Dean; Guha, Shekhar

    2003-03-01

    A continuous-wave laser can be converted into a series of repetitive pulses by focusing the laser beam into an absorbing liquid (e.g. nigrosine dissolved in a solvent), where the mechanism responsible for the pulses is the scattering of light off of photo-generated bubbles. The dependence of the pulsation frequency on the solvent, power, and cell thickness will be shown. The authors would like to acknowledge the contributions made by Prof. Daniel Lathrop (University of Maryland, Department of Physics) at the APS March 2002 meeting.

  11. Impedance matched thin metamaterials make metals absorbing.

    Science.gov (United States)

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin ( 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  12. High energy model for irregular absorbing particles

    International Nuclear Information System (INIS)

    Chiappetta, Pierre.

    1979-05-01

    In the framework of a high energy formulation of relativistic quantum scattering a model is presented which describes the scattering functions and polarization of irregular absorbing particles, whose dimensions are greater than the incident wavelength. More precisely in the forward direction an amplitude parametrization of eikonal type is defined which generalizes the usual diffraction theory, and in the backward direction a reflective model is used including a shadow function. The model predictions are in good agreement with the scattering measurements off irregular compact and fluffy particles performed by Zerull, Giese and Weiss (1977)

  13. Absorbency of Superabsorbent Polymers in Cementitious Environments

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede

    2012-01-01

    Optimal use of superabsorbent polymers (SAP) in cement-based materials relies on knowledge on how SAP absorbency is influenced by different physical and chemical parameters. These parameters include salt concentration in the pore fluid, temperature of the system and SAP particle size. The present...... work shows experimental results on this and presents a new technique to measure the swelling of SAP particles. This new technique is compared with existing techniques that have been recently proposed for the measurement of pore fluid absorption by superabsorbent polymers. It is seen...

  14. Modelling of TES X-ray Microcalorimeters with a Novel Absorber Design

    Science.gov (United States)

    Iyomoto, Naoko; Bandler, Simon; Brefosky, Regis; Brown, Ari; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Lindeman, Mark; hide

    2007-01-01

    Our development of a novel x-ray absorber design that has enabled the incorporation of high-conductivity electroplated gold into our absorbers has yielded devices that not only have achieved breakthrough performance at 6 keV, but also are extraordinarily well modelled. We have determined device parameters that reproduce complex impedance curves and noise spectra throughout transition. Observed pulse heights, decay time and baseline energy resolution were in good agreement with simulated results using the same parameters. In the presentation, we will show these results in detail and we will also show highlights of the characterization of our gold/bismuth-absorber devices. We will discuss possible improvement of our current devices and expected performance of future devices using the modelling results.

  15. An Extended Multi-Zone Model for the MCG-6-30-15 Warm Absorber

    Science.gov (United States)

    Morales, R.; Fabian, A. C.; Reynolds, C. S.

    2000-01-01

    The variable warm absorber seen with ASCA in the X-ray spectrum of MCG 6-30-15 shows complex time behaviour in which the optical depth of O VIII anticorrelates with the flux whereas that of O VII is unchanging. The explanation in terms of a two zone absorber has since been challenged by BeppoSAX observations. These present a more complicated behaviour for the O VII edge. The explanation we offer for both ASCA and BeppoSAX observations requires a very simple photoionization model together with the presence of a third, intermediate, zone and a period of very low luminosity. In practice warm absorbers are likely to be extended, multi-zone regions of which only part causes directly observable absorption edges at any given time depending on the value of the luminosity.

  16. Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application

    International Nuclear Information System (INIS)

    Méjean, Chloé; Pometcu, Laura; Benzerga, Ratiba; Sharaiha, Ala; Le Paven-Thivet, Claire; Badard, Mathieu; Pouliguen, Philippe

    2017-01-01

    Highlights: • Carbon fibers loaded epoxy foam composites are proposed as microwave absorbers. • Dielectric properties (ε′, tanδ) of composites increase with carbon fibers content and length. • S 11 coefficient of a pyramidal prototype was characterized in anechoic chamber. • Epoxy prototype shows better absorption performance than commercial absorber. • S 11 of the prototype is lower than −30 dB (4–18 GHz) at normal and oblique incidences. - Abstract: This paper presents a new electromagnetic absorbing material developed from carbon fibers loaded epoxy foam for an application in anechoic chamber. The composite was developed in order to replace the currently used pyramidal absorbers made of carbon particles loaded polyurethane foam. Epoxy-composites filled with different weight percentages (from 0 wt.% to 4 wt.%) and length (1 and 3 mm) of carbon fibers were achieved. After an optimization of the dispersion of carbon fibers in composite materials, the dielectric properties of the composites were measured using a coaxial-probe in the frequency range 4–18 GHz. Results have shown that the complex permittivity of the composites increases with the amount of charge and also with the length of the carbon fibers. Absorption performance of a prototype prepared with a low concentration (0.5 wt.%) of carbon fibers was measured in an anechoic chamber: it shows a mean gain of 10 dB compared to a commercial absorber.

  17. Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application

    Energy Technology Data Exchange (ETDEWEB)

    Méjean, Chloé; Pometcu, Laura [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Benzerga, Ratiba, E-mail: ratiba.benzerga@univ-rennes1.fr [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Sharaiha, Ala; Le Paven-Thivet, Claire; Badard, Mathieu [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Pouliguen, Philippe [Département Recherche et Innovation Scientifique de la Direction Générale de l’Armement, 7-9 rue des Mathurins, 92221 Bagneux (France)

    2017-06-15

    Highlights: • Carbon fibers loaded epoxy foam composites are proposed as microwave absorbers. • Dielectric properties (ε′, tanδ) of composites increase with carbon fibers content and length. • S{sub 11} coefficient of a pyramidal prototype was characterized in anechoic chamber. • Epoxy prototype shows better absorption performance than commercial absorber. • S{sub 11} of the prototype is lower than −30 dB (4–18 GHz) at normal and oblique incidences. - Abstract: This paper presents a new electromagnetic absorbing material developed from carbon fibers loaded epoxy foam for an application in anechoic chamber. The composite was developed in order to replace the currently used pyramidal absorbers made of carbon particles loaded polyurethane foam. Epoxy-composites filled with different weight percentages (from 0 wt.% to 4 wt.%) and length (1 and 3 mm) of carbon fibers were achieved. After an optimization of the dispersion of carbon fibers in composite materials, the dielectric properties of the composites were measured using a coaxial-probe in the frequency range 4–18 GHz. Results have shown that the complex permittivity of the composites increases with the amount of charge and also with the length of the carbon fibers. Absorption performance of a prototype prepared with a low concentration (0.5 wt.%) of carbon fibers was measured in an anechoic chamber: it shows a mean gain of 10 dB compared to a commercial absorber.

  18. Wave energy extraction by coupled resonant absorbers.

    Science.gov (United States)

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  19. Erbium concentration dependent absorbance in tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Sazali, E. S., E-mail: mdsupar@utm; Rohani, M. S., E-mail: mdsupar@utm; Sahar, M. R., E-mail: mdsupar@utm; Arifin, R., E-mail: mdsupar@utm; Ghoshal, S. K., E-mail: mdsupar@utm; Hamzah, K., E-mail: mdsupar@utm [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  20. Possible Quantum Absorber Effects in Cortical Synchronization

    Science.gov (United States)

    Kämpf, Uwe

    The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.

  1. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  2. Pregnant woman mode for absorbed fraction calculations

    International Nuclear Information System (INIS)

    Cloutier, R.J.; Snyder, W.S.; Watson, E.E.

    1977-01-01

    The most radiation-sensitive segment of our population is the developing fetus. Until recently, methods available for calculating the dose to the fetus were inadequate because a model for the pregnant woman was not available. Instead, the Snyder and Fisher model of Reference Man, which includes a uterus, was frequently used to calculate absorbed fractions when the source was in various organs of the body and the nongravid uterus was the target. These values would be representative of the dose to the embryo during the early stages of pregnancy. Unfortunately, Reference Man is considerable larger than Reference Woman. The authors recently reported on the design of a Reference Woman phantom that has dimensions quite similar to the ICRP Reference Woman. This phantom was suitable for calculating the dose to the embryo during early stages of pregnancy (0 to 3 mo.), but was not suitable for the later stages of pregnancy because of the changing shape of the mother and the displacement of several abdominal organs brought about by the growth of the uterus and fetus. The models of Reference Woman that were subsequently developed for each month of pregnancy are described. The models take into account the growth of the uterus and fetus and the repositioning of the various abdominal organs. These models have been used to calculate absorbed fractions for the fetus as a target and the gastrointestinal tract as a source of radiation for twelve photon energies ranging from 10 keV to 4 MeV

  3. High-efficiency ventilated metamaterial absorber at low frequency

    Science.gov (United States)

    Wu, Xiaoxiao; Au-Yeung, Ka Yan; Li, Xin; Roberts, Robert Christopher; Tian, Jingxuan; Hu, Chuandeng; Huang, Yingzhou; Wang, Shuxia; Yang, Zhiyu; Wen, Weijia

    2018-03-01

    We demonstrate a ventilated metamaterial absorber operating at low frequency (90%) has been achieved in both simulations and experiments. This high-efficiency absorption under the ventilation condition originates from the weak coupling of two identical split tube resonators constituting the absorber, which leads to the hybridization of the degenerate eigenmodes and breaks the absorption upper limit of 50% for conventional transmissive symmetric acoustic absorbers. The absorber can also be extended to an array and work in free space. The absorber should have potential applications in acoustic engineering where both noise reduction and ventilation are required.

  4. Frequency Tuning of Vibration Absorber Using Topology Optimization

    Science.gov (United States)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  5. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  6. A shock absorber model for structure-borne noise analyses

    Science.gov (United States)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  7. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong; Han, Seul Gi; Lee, Sang Dong; Kim, Ki Hong; Ryu, Eag Hyang; Park, Hwa Gyu [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2014-10-15

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al{sup 27}, C{sup 12}, B{sup 11}, B{sup 10} and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B{sup 10} content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B{sup 10} content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B{sup 10} content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B{sup 10} content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 10{sup 10} order, however, usual neutron flux from spent fuel is 10{sup 8} order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B{sup 10} content is little decreased, so, initial neutron absorbing ability could be kept continuously.

  8. Thermal Shielding Effects of a Damaged Shock Absorber and an Intact Shock Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    In order to safely transport the radioactive waste arising from the hot test of an ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore, KAERI is developing a shipping package to transport the radioactive waste arising from the ACPF during a hot test. The regulatory requirements for a Type B package are specified in the Korea Most Act 2009-37, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. investigated the thermal protection provided by shock absorbers by using the CAFE computer code. To evaluate the thermal shielding effect of the shock absorber, the thermal test was performed by using a 1/2 scale model with a shock absorber which was damaged by both a 9 m drop test and a 1 m puncture test. For the purpose of comparison, the thermal test was also carried out by using a 1/2 scale model with the intact shock absorber

  9. A chiral microwave absorbing absorbent of Fe–CoNiP coated on spirulina

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yuan, Liming [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Zhang, Deyuan [School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 (China)

    2015-11-15

    A chiral bio-absorbent of Fe–CoNiP coated on the spirulina was fabricated by the electroless and chemical vapor decomposition. The scanning electron microscopy (SEM) was used to evaluate the spirulina cells particle morphology. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The permittivity and permeability was measured by a vector network analyzer in frequency 8–18 GHz, and the reflection loss (RL) was calculated. The results showed the carbonyl iron particles (CIPs) and CoNiP were bonded to the spirulina surface, the permittivity and permeability could be enlarged as Fe films coated on the particles compared with the CoNiP spirulina, it was attributed to the excellent electromagnetic property of CIPs. The chiral Fe–CoNiP composites had a better absorbing property at 8–18 GHz than the CoNiP spirulina composite, the RL was −16.26 dB at 10.48 GHz, the absorbing band was 9.5–11.5 GHz of RL less than −10 dB, which indicated the Fe–CoNiP spirulina could be an effective absorbent used in 8–18 GHz. - Highlights: • Absorbers filled with Fe–CoNiP coating on the spirulina were fabricated. • The permittivity and permeability increased as CIPs coated. • The Fe material enhanced the electromagnetic property. • The spirulina coated Fe–CoNiP was effective in 8–18 GHz.

  10. Electromagnetic radiation absorbers and modulators comprising polyaniline

    Science.gov (United States)

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  11. Modelling and validation of electromechanical shock absorbers

    Science.gov (United States)

    Tonoli, Andrea; Amati, Nicola; Girardello Detoni, Joaquim; Galluzzi, Renato; Gasparin, Enrico

    2013-08-01

    Electromechanical vehicle suspension systems represent a promising substitute to conventional hydraulic solutions. However, the design of electromechanical devices that are able to supply high damping forces without exceeding geometric dimension and mass constraints is a difficult task. All these challenges meet in off-road vehicle suspension systems, where the power density of the dampers is a crucial parameter. In this context, the present paper outlines a particular shock absorber configuration where a suitable electric machine and a transmission mechanism are utilised to meet off-road vehicle requirements. A dynamic model is used to represent the device. Subsequently, experimental tests are performed on an actual prototype to verify the functionality of the damper and validate the proposed model.

  12. Novel active vibration absorber with magnetorheological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, T; Ehrlich, J; Boese, H [Fraunhofer-Institut fuer Silicatforschung ISC, Neunerplatz 2, D-97082 Wuerzburg (Germany)], E-mail: thomas.gerlach@isc.fraunhofer.de

    2009-02-01

    Disturbing vibrations diminish the performance of technical high precision devices significantly. In search of a suitable solution for reducing these vibrations, a novel concept of active vibration reduction was developed which exploits the special properties of magnetorheological fluids. In order to evaluate the concept of such an active vibration absorber (AVA) a demonstrator was designed and manufactured. This demonstrator generates a force which counteracts the motion of the vibrating body. Since the counterforce is generated by a centrifugal exciter, the AVA provides the capability to compensate vibrations even in two dimensions. To control the strength of the force transmitted to the vibrating body, the exciter is based on a tunable MR coupling. The AVA was integrated in an appropriate testing device to investigate its performance. The recorded results show a significant reduction of the vibration amplitudes by an order of magnitude.

  13. Corundum-based transparent infrared absorbers

    KAUST Repository

    Schwingenschlögl, Udo

    2009-10-01

    Hypothetical corundum-based compounds are studied by electronic structure calculations. One quarter of the Al atoms in Al2O3 is replaced by a 3d transition metal from the M = Ti, ..., Zn (d1, ..., d9) series. Structure optimisations are performed for all the M-Al2O3 compounds and the electronic states are evaluated. Due to the M substitutes, narrow partially filled bands are formed at the Fermi energy. Beyond, for M = Ni and M = Cu the optical properties of Al2O3 in the visible range are conserved, while for M = Ti, ..., Co the systems form high accuracy optical filters. Since the compounds absorb the infrared radiation, the M = Ni and M = Cu systems are good candidates for heat-protective coatings. © 2009 Elsevier B.V. All rights reserved.

  14. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  15. Ultrathin microwave metamaterial absorber utilizing embedded resistors

    Science.gov (United States)

    Kim, Young Ju; Hwang, Ji Sub; Yoo, Young Joon; Khuyen, Bui Xuan; Rhee, Joo Yull; Chen, Xianfeng; Lee, YoungPak

    2017-10-01

    We numerically and experimentally studied an ultrathin and broadband perfect absorber by enhancing the bandwidth with embedded resistors into the metamaterial structure, which is easy to fabricate in order to lower the Q-factor and by using multiple resonances with the patches of different sizes. We analyze the absorption mechanism in terms of the impedance matching with the free space and through the distribution of surface current at each resonance frequency. The magnetic field, induced by the antiparallel surface currents, is formed strongly in the direction opposite to the incident electromagnetic wave, to cancel the incident wave, leading to the perfect absorption. The corresponding experimental absorption was found to be higher than 97% in 0.88-3.15 GHz. The agreement between measurement and simulation was good. The aspects of our proposed structure can be applied to future electronic devices, for example, advanced noise-suppression sheets in the microwave regime.

  16. Transport in coherently absorbing or amplifying media

    International Nuclear Information System (INIS)

    Sen, A.K.

    1995-11-01

    We study electronic transport in a one-dimensional ordered chain in the presence of either absorption or amplification at each site (the site-potential having an imaginary positive or negative part) within a single-band tightbinding Hamiltonian. The spectrum in either case for the isolated (closed) quantum system is found to become broader compared to the regular Bloch case where there is no absorption or amplification at any site. Interestingly for the transport through an infinitely long ordered chain (open quantum system), the reflectance saturates to a value greater (lesser) than unity in the amplifying (absorbing) case and the transmittance decays to zero in either case. This fact implies that the transmittance does not grow indefinitely even for an ordered, amplifying (active or lasing) medium and that it is not necessary to have any disorder or interaction induced confining mechanism on the transmitted wave, so as to achieve an amplification in the backscattered wave. (author). 8 refs, 2 figs

  17. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  18. Radiation absorbed dose from medically administered radiopharmaceuticals

    International Nuclear Information System (INIS)

    Roedler, H.D.; Kaul, A.

    1975-01-01

    The use of radiopharmaceuticals for medical examinations is increasing. Surveys carried out in West Berlin show a 20% average yearly increase in such examinations. This implies an increased genetic and somatic radiation exposure of the population in general. Determination of radiation exposure of the population as well as of individual patients examined requires a knowledge of the radiation dose absorbed by each organ affected by each examination. An extensive survey of the literature revealed that different authors reported widely different dose values for the same defined examination methods and radiopharmaceuticals. The reason for this can be found in the uncertainty of the available biokinetic data for dose calculations and in the application of various mathematical models to describe the kinetics and calculation of organ doses. Therefore, the authors recalculated some of the dose values published for radiopharmaceuticals used in patients by applying biokinetic data obtained from exponential models of usable metabolism data reported in the literature. The calculation of organ dose values was done according to the concept of absorbed fractions in its extended form. For all radiopharmaceuticals used in nuclear medicine the energy dose values for the most important organs (ovaries, testicles, liver, lungs, spleen, kidneys, skeleton, total body or residual body) were recalculated and tabulated for the gonads, skeleton and critical or examined organs respectively. These dose values are compared with those reported in the literature and the reasons for the observed deviations are discussed. On the basis of recalculated dose values for the gonads and bone-marrow as well as on the basis of results of statistical surveys in West Berlin, the genetically significant dose and the somatically (leukemia) significant dose were calculated for 1970 and estimated for 1975. For 1970 the GSD was 0.2 mrad and the LSD was 0.7 mrad. For 1975 the GSD is estimated at < 0.5 mrad and the

  19. Burnable absorber for the PIK reactor

    International Nuclear Information System (INIS)

    Gostev, V.V.; Smolskii, S.L.; Tchmshkyan, D.V.; Zakharov, A.S.; Zvezdkin, V.S.; Konoplev, K.A.

    1998-01-01

    In the reactor PIK design a burnable absorber is not used and the cycle duration is limited by the rods weight. Designed cycle time is two weeks and seams to be not enough for the 100 MW power research reactor equipped by many neutron beams and experimental facilities. Relatively frequent reloading reduces the reactor time on full power and in this way increases the maintenance expenses. In the reactor core fuel elements well mastered by practice are used and its modification was not approved. We try to find the possibilities of installation in the core separate burnable elements to avoid poison of the fuel. It is possible to replace a part of the fuel elements by absorbers, since the fuel elements are relatively small (diameter 5.15mm, uranium 235 content 7.14g) and there are more then 3800 elements in the core. Nevertheless, replacing decreases the fuel burnup and its consumption. In the PIK fuel assembles a little part of the volume is occupied by the dumb elements to create a complete package of the assembles shroud, that is necessary in the hydraulic reasons. In the presented report the assessment of such a replacement is done. As a burnable material Gadolinium was selected. The measurements or the beginning of cycle were performed on the critical facility PIK. The burning calculation was confirmed by measurements on the 18MW reactor WWR-M. The results give the opportunity to twice the cycle duration. The proposed modification of the fuel assembles does not lead to alteration in the other reactor systems, but it touch the burned fuel reprocessing technology. (author)

  20. Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents

    International Nuclear Information System (INIS)

    Ting, T.H.; Jau, Y.N.; Yu, R.P.

    2012-01-01

    Polyaniline/multi-walled carbon nanotube (PANI/MWNT) composites were synthesized using in situ polymerization at different aniline/multi-walled carbon nanotube weight ratios (Ani/MWNT = 1/2, 1/1, 2/1 and 3/1) and introduced into an epoxy resin to act as a microwave absorber. The spectroscopic characterization of the process of formation of PANI/MWNT composites were studied using Fourier transform infrared spectroscopy, an ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. The microwave absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2-18 and 18-40 GHz microwave frequency range, using the free space method. The results showed that the addition of PANI was useful for achieving a large absorption over a wide frequency range, especially for higher frequency values.

  1. Preparation and characterization of super absorbent polymer from sugarcane bagasse

    International Nuclear Information System (INIS)

    Wiwien Andriyanti; Suyanti; Ngasifudin

    2012-01-01

    Sugarcane bagasse is a source of biomass which large enough numbers and has not been fully exploited. At this time has developed a super absorbent polymer material of sugarcane bagasse that can absorb water up to several times of its own weight and keep this water. Super absorbent polymers can be used as a soil conditioner that can be used as an absorber and storage of ground water, the giver of nutrients for plants, and can improve soil properties. The purpose of this study is to make and characterization of super absorbent polymer (PCS) from sugarcane bagasse. Preparation of super absorbent polymers (PCS) has been done by grafting method using ionizing radiation from Electron Beam Engineering (MBE) 350 mA keV/10. Irradiation process carried out with a dose variation of 20, 35, and 50 kGy. Increasing doses of radiation will increase the percentage fraction of transplantation (grafting) and the fraction of water absorption ability (swelling ratio). (author)

  2. Absorbed dose in CT. Comparison by CT dose index

    International Nuclear Information System (INIS)

    Yamamoto, Kenji; Akazawa, Hiroshi; Andou, Takashi

    2002-01-01

    Few reports have discussed the absorbed dose on CT units with increased scanning capacity even with the current widespread adoption of multi-slice CT units. To compare and investigate the dose indexes among CT units, we measured the absorbed dose on CT units operating in Nagano Prefecture Japan. The measurements showed proportionality between phantom absorbed dose and the exposured mAs values in conventional scanning operation. Further, the measurements showed that the absorbed dose in the center of the phantom differed by about 2.1-fold between the highest and lowest levels on individual CT units. Within a single company, multi-slice CT units of the same company gave absorbed doses of about 1.3 to 1.5 times those of conventional single-slice CT units under the same exposured conditions of conventional scanning. When the scanning pitch was reduced in helical scanning, the absorbed dose at the center of the phantom increased. (author)

  3. Estimation of absorbed dose for poor shields under conditions of near-earth space flight

    International Nuclear Information System (INIS)

    Konyukov, V.V.; Krajnyukov, V.I.; Trufanov, A.I.

    1995-01-01

    Estimation of electron absorbed dose in materials of a space vehicle for poor shields under conditions of near-earth space flight is carried out. Impact of power and angular distribution of incidence electrons and radiation scattering processes under conditions of complex geometry and multitude of materials of flight vehicle elements and nodes is studied through simulator model by example of isolating layer of aluminium-polyethylene assembly. 3 refs.; 2 figs

  4. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  5. NASA's Bio-Inspired Acoustic Absorber Concept

    Science.gov (United States)

    Koch, L. Danielle

    2017-01-01

    Transportation noise pollutes our worlds cities, suburbs, parks, and wilderness areas. NASAs fundamental research in aviation acoustics is helping to find innovative solutions to this multifaceted problem. NASA is learning from nature to develop the next generation of quiet aircraft.The number of road vehicles and airplanes has roughly tripled since the 1960s. Transportation noise is audible in nearly all the counties across the US. Noise can damage your hearing, raise your heart rate and blood pressure, disrupt your sleep, and make communication difficult. Noise pollution threatens wildlife when it prevents animals from hearing prey, predators, and mates. Noise regulations help drive industry to develop quieter aircraft. Noise standards for aircraft have been developed by the International Civil Aviation Organization and adopted by the US Federal Aviation Administration. The US National Park Service is working with the Federal Aviation Administration to try to balance the demand for access to the parks and wilderness areas with preservation of the natural soundscape. NASA is helping by conceptualizing quieter, more efficient aircraft of the future and performing the fundamental research to make these concepts a reality someday. Recently, NASA has developed synthetic structures that can absorb sound well over a wide frequency range, and particularly below 1000 Hz, and which mimic the acoustic performance of bundles of natural reeds. We are adapting these structures to control noise on aircraft, and spacecraft. This technology might be used in many other industrial or architectural applications where acoustic absorbers have tight constraints on weight and thickness, and may be exposed to high temperatures or liquids. Information about this technology is being made available through reports and presentations available through the NASA Technical Report Server, http:ntrs.nasa.gov. Organizations who would like to collaborate with NASA or commercialize NASAs technology

  6. Air box shock absorber for a nuclear reactor

    International Nuclear Information System (INIS)

    Pradhan, A.V.; George, J.A.

    1977-01-01

    Disclosed is an air box type shock absorber primarily for use in an ice condenser compartment of a nuclear reactor. The shock absorber includes a back plate member and sheet metal top, bottom, and front members. The front member is prefolded, and controlled clearances are provided among the members for predetermined escape of air under impact and compression. Prefolded internal sheet metal stiffeners also absorb a portion of the kinetic energy imparted to the shock absorber, and limit rebound. An external restraining rod guided by restraining straps insures that the sheet metal front member compresses inward upon impact. 6 claims, 11 figures

  7. The Australian Commonwealth standard of measurement for absorbed radiation dose

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1990-06-01

    This report documents the absorbed dose standard for photon beams in the range from 1 to 25 MeV. Measurements of absorbed dose in graphite irradiated by a beam of cobalt-60 gamma rays from an Atomic Energy of Canada Limited (AECL) E1 Dorado 6 teletherapy unit are reported. The measurements were performed using a graphite calorimeter, which is the primary standard for absorbed dose. The measurements are used to calibrate a working standard ion chamber in terms of absorbed dose in graphite. Details of the methods, results and correction factors applied are given in Appendices. 13 refs., 6 tabs., 6 figs

  8. Wideband aural acoustic absorbance predicts conductive hearing loss in children.

    Science.gov (United States)

    Keefe, Douglas H; Sanford, Chris A; Ellison, John C; Fitzpatrick, Denis F; Gorga, Michael P

    2012-12-01

    This study tested the hypothesis that wideband aural absorbance predicts conductive hearing loss (CHL) in children medically classified as having otitis media with effusion. Absorbance was measured in the ear canal over frequencies from 0.25 to 8 kHz at ambient pressure or as a swept tympanogram. CHL was defined using criterion air-bone gaps of 20, 25, and 30 dB at octaves from 0.25 to 4 kHz. A likelihood-ratio predictor of CHL was constructed across frequency for ambient absorbance, and across frequency and pressure for absorbance tympanometry. Performance was evaluated at individual frequencies and for any frequency at which a CHL was present. Absorbance and conventional 0.226-kHz tympanograms were measured in children of age three to eight years with CHL and with normal hearing. Absorbance was smaller at frequencies above 0.7 kHz in the CHL group than the control group. Based on the area under the receiver operating characteristic curve, wideband absorbance in ambient and tympanometric tests were significantly better predictors of CHL than tympanometric width, the best 0.226-kHz predictor. Accuracies of ambient and tympanometric wideband absorbance did not differ. Absorbance accurately predicted CHL in children and was more accurate than conventional 0.226-kHz tympanometry.

  9. ABSORBENCY CHARACTERISTICS OF PESHTAMALS: TRADITIONAL TURKISH WOVEN CLOTHES

    Directory of Open Access Journals (Sweden)

    KESKIN Reyhan

    2014-05-01

    Full Text Available Absorbency of textiles is defined as the ability of taking in a fluid in the manner of a sponge. Absorbency is required for comfort properties in so me clothes such as sportswear and underwear clothing, for drying properties in napkins, towels and bathrobes, for health concerns in some medical textiles such as bandages, gauze and absorbent cotton, and for cleaning properties in washclothes and mops. In this study five different fabric samples (three woven 100% cotton fabrics A, B and P respectively at plain, twill, and peshtamal weaving patterns and two 100% cotton terry towels T1 and T2 were tested. The absorbency properties of the samples were evaluated according to the droplet test, sinking time test and wicking height tests (pottasium chromate test. Peshtamal samples showed better absorbency results than plain and twill weaves and lower but close results to towel samples according to the droplet test, sinking time test and wicking height tests. The absorbency properties of peshtamals showed results close to towel samples. The void content of peshtamals is higher than plain and twill samples but closer and lower than towel samples. The good absorbency results of peshtamals might be due to the void content of peshtamals which is higher than plain and twill samples but closer and lower than towel samples. Peshtamals which are good in absorbency and light in weight might be used widespreadly in daily life for their high absorbency, and on travel for weight saving purposes.

  10. Convergence estimates for iterative methods via the Kriess Matrix Theorem on a general complex domain

    Energy Technology Data Exchange (ETDEWEB)

    Toh, K.C.; Trefethen, L.N. [Cornell Univ., Ithaca, NY (United States)

    1994-12-31

    What properties of a nonsymmetric matrix A determine the convergence rate of iterations such as GMRES, QMR, and Arnoldi? If A is far from normal, should one replace the usual Ritz values {r_arrow} eigenvalues notion of convergence of Arnoldi by alternative notions such as Arnoldi lemniscates {r_arrow} pseudospectra? Since Krylov subspace iterations can be interpreted as minimization processes involving polynomials of matrices, the answers to questions such as these depend upon mathematical problems of the following kind. Given a polynomial p(z), how can one bound the norm of p(A) in terms of (1) the size of p(z) on various sets in the complex plane, and (2) the locations of the spectrum and pseudospectra of A? This talk reports some progress towards solving these problems. In particular, the authors present theorems that generalize the Kreiss matrix theorem from the unit disk (for the monomial A{sup n}) to a class of general complex domains (for polynomials p(A)).

  11. On the Optimization of Point Absorber Buoys

    Directory of Open Access Journals (Sweden)

    Linnea Sjökvist

    2014-05-01

    Full Text Available A point absorbing wave energy converter (WEC is a complicated dynamical system. A semi-submerged buoy drives a power take-off device (PTO, which acts as a linear or non-linear damper of the WEC system. The buoy motion depends on the buoy geometry and dimensions, the mass of the moving parts of the system and on the damping force from the generator. The electromagnetic damping in the generator depends on both the generator specifications, the connected load and the buoy velocity. In this paper a velocity ratio has been used to study how the geometric parameters buoy draft and radius, assuming constant generator damping coefficient, affects the motion and the energy absorption of a WEC. It have been concluded that an optimal buoy geometry can be identified for a specific generator damping. The simulated WEC performance have been compared with experimental values from two WECs with similar generators but different buoys. Conclusions have been drawn about their behaviour.

  12. Thoron exhalation rate monitor with absorber

    International Nuclear Information System (INIS)

    Xiao Detao; Zhao Guizhi

    2003-01-01

    A measurement method of thoron exhalation rate is developed based on the characteristic of thorium C' which emits a α particle with higher energy than those of α particles released from radon and radon progenies. The principles of discriminating radon and realizing thoron exhalation rate measurement on the material surface with absorber, the passive and integrated thoron exhalation rate monitor studied, and its calibration coefficient determination method are introduced. The effectiveness of mitigating thoron exhalation rate of wall surface by depressurization inside wall and thoron exhalation rates on some materials surfaces were measured by using the studied monitors. The calibration coefficient of the studied monitor is R=0.246 cm -2 ·(kBq·m -3 ·h) -1 . The lower limit of detection is LLD=18.4 mBq·m -2 ·s -1 when the sampling period is 7 days and the standard deviation of background track densities of the adopted CR-39 SSNTD is s T =1.6 cm -2

  13. Ultrathin microwave absorber based on metamaterial

    International Nuclear Information System (INIS)

    Kim, Y J; Yoo, Y J; Hwang, J S; Lee, Y P

    2016-01-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8–4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62–4.2 GHz; however, the absorption was slightly lower than 99% in 1.8–2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments. (paper)

  14. Radiologist and angiographic procedures. Absorbed radiation dose

    International Nuclear Information System (INIS)

    Tryhus, M.; Mettler, F.A. Jr.; Kelsey, C.

    1987-01-01

    The radiation dose absorbed by the angiographer during angiographic procedures is of vital importance to the radiologist. Nevertheless, most articles on the subject are incomplete, and few measure gonadal dose. In this study, three TLDs were used for each of the following sites: radiologist's eyes, thyroid, gonads with and without shielding apron, and hands. The average dose during carotid angiograms was 2.6, 4.1, 0.4, 4.7, and 7.1 mrads to the eyes, thyroid, gonads with and without .5 mm of lead shielding, and hands, respectively. Average dose during abdominal and peripheral vascular angiographic procedures was 5.2, 7.5, 1.2, 8.5, and 39.9 mrads to the eyes, thyroid, gonads with and without shielding, and hands, respectively. A literature review demonstrates a significant reduction in radiation dose to the angiographer after the advent of automated injectors. Our measured doses for carotid angiography are compatible with contemporary reported values. There was poor correlation with fluoroscopy time and measured dose to the angiographer

  15. Experimental use of new absorbable tracheal stent.

    Science.gov (United States)

    Schopf, Luciano F; Fraga, José Carlos; Porto, Rodrigo; Santos, Luis A; Marques, Douglas R; Sanchez, Paulo R; Meyer, Fabíola S; Ulbrich, Jane M

    2017-11-16

    Silicone and metallic stents are not effective in children with tracheobronchial stenosis or tracheomalacia. Herein, we aimed to evaluate the clinical manifestations and histological reaction of rabbit trachea to the presence of a new poly(lactic-co-glycolic acid) with polyisoprene (PLGA/PI) polymer absorbable stent. Fourteen adult white rabbits (weight, 3.0-3.5kg) were randomly assigned to three groups: Group I (n=6): PLGA/PI spiral stent; Group II (n=6): PLGA/PI fragment; and Group III (n=2): controls. After a longitudinal incision on three cervical tracheal rings, the stents and fragments were inserted into the trachea and fixed onto the lateral wall with nonabsorbable sutures. The stented group showed significantly more stridor at rest (p=0.0041), agitation (p=0.014), and use of accessory muscles (p=0.0002) and required more emergency endoscopies than the fragment group. Further, it showed significantly more remarkable histological inflammatory damage than the fragment and control groups (p=0.002). The new PLGA/PI polymeric stent implanted into the trachea of rabbits caused more clinical manifestations and histologically verified inflammatory reaction than the PLGA/PI polymeric fragment. Future studies should be aimed at reducing the stent-wall thickness. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Absorbing multicultural states in the Axelrod model

    Science.gov (United States)

    Vazquez, Federico; Redner, Sidney

    2005-03-01

    We determine the ultimate fate of a limit of the Axelrod model that consists of a population of leftists, centrists, and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (similarly for a centrist and a rightist), but leftists and rightists do not interact. This interaction is applied repeatedly until the system can no longer evolve. The constraint between extremists can lead to a frustrated final state where the system consists of only leftists and rightists. In the mean field limit, we can view the evolution of the system as the motion of a random walk in the 3-dimensional space whose coordinates correspond to the density of each species. We find the exact final state probabilities and the time to reach consensus by solving for the first-passage probability of the random walk to the corresponding absorbing boundaries. The extension to a larger number of states will be discussed. This approach is a first step towards the analytic solution of Axelrod-like models.

  17. Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  18. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  19. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    Science.gov (United States)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  20. Simulating complex noise barrier reflections

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Lutgendorf, D.; Roo, F. de

    2011-01-01

    Within the EU FP7 QUIESST project, QUIeting the Environment for a Sustainable Surface Transport, a test method is being developed for the reflectivity of noise barriers. The method needs to account for a complex shape of barriers and the use of various types of absorbing materials. The performance

  1. Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials

    Directory of Open Access Journals (Sweden)

    Weihua Chen

    2016-01-01

    Full Text Available To investigate the changing rules between sound absorbing performance and geometrical parameters of porous fibrous metal materials (PFMMs, this paper presents a fractal acoustic model by incorporating the static flow resistivity based on Biot-Allard model. Static flow resistivity is essential for an accurate assessment of the acoustic performance of the PFMM. However, it is quite difficult to evaluate the static flow resistivity from the microstructure of the PFMM because of a large number of disordered pores. In order to overcome this difficulty, we firstly established a static flow resistivity formula for the PFMM based on fractal theory. Secondly, a fractal acoustic model was derived on the basis of the static flow resistivity formula. The sound absorption coefficients calculated by the presented acoustic model were validated by the values of Biot-Allard model and experimental data. Finally, the variation of the surface acoustic impedance, the complex wave number, and the sound absorption coefficient with the fractal dimensions were discussed. The research results can reveal the relationship between sound absorption and geometrical parameters and provide a basis for improving the sound absorption capability of the PFMMs.

  2. Estimation of human absorbed dose for (166)Ho-PAM: comparison with (166)Ho-DOTMP and (166)Ho-TTHMP.

    Science.gov (United States)

    Vaez-Tehrani, Mahdokht; Zolghadri, Samaneh; Yousefnia, Hassan; Afarideh, Hossein

    2016-10-01

    In this study, the human absorbed dose of holmium-166 ((166)Ho)-pamidronate (PAM) as a potential agent for the management of multiple myeloma was estimated. (166)Ho-PAM complex was prepared at optimized conditions and injected into the rats. The equivalent and effective absorbed doses to human organs after injection of the complex were estimated by radiation-absorbed dose assessment resource and methods proposed by Sparks et al based on rat data. The red marrow to other organ absorbed dose ratios were compared with these data for (166)Ho-DOTMP, as the only clinically used (166)Ho bone marrow ablative agent, and (166)Ho-TTHMP. The highest absorbed dose amounts are observed in the bone surface and bone marrow with 1.11 and 0.903 mGy MBq(-1), respectively. Most other organs would receive approximately insignificant absorbed dose. While (166)Ho-PAM demonstrated a higher red marrow to total body absorbed dose ratio than (166)Ho-1,4,7,10-tetraazacyclo dodecane-1,4,7,10 tetra ethylene phosphonic acid (DOTMP) and (166)Ho-triethylene tetramine hexa (methylene phosphonic acid) (TTHMP), the red marrow to most organ absorbed dose ratios for (166)Ho-TTHMP and (166)Ho-PAM are much higher than the ratios for (166)Ho-DOTMP. The result showed that (166)Ho-PAM has significant characteristics than (166)Ho-DOTMP and therefore, this complex can be considered as a good agent for bone marrow ablative therapy. In this work, two separate points have been investigated: (1) human absorbed dose of (166)Ho-PAM, as a potential bone marrow ablative agent, has been estimated; and (2) the complex has been compared with (166)Ho-DOTMP, as the only clinically used bone marrow ablative radiopharmaceutical, showing significant characteristics.

  3. Development and qualification of reference calculation schemes for absorbers in pressured water reactor; Elaboration et qualification de schemas de calcul de reference pour les absorbants dans les reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Blanc-Tranchant, P

    2001-07-01

    The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code APOLLO2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B4C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI4. They were then checked against experimental data measured during French experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)

  4. Elaboration and qualification of a reference calculation routes for the absorbers in the PWR reactors; Elaboration et qualification des schemas de calcul de reference pour les absorbants dans les reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Blanc-Tranchant, P

    1999-11-01

    The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code Apollo 2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B{sub 4}C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI14. They were then checked against experimental data measured during french experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)

  5. Contributions to the Study of Dynamic Absorbers, a Case Study

    Directory of Open Access Journals (Sweden)

    Monica Balcau

    2012-01-01

    Full Text Available Dynamic absorbers are used to reduce torsional vibrations. This paper studies the effect of a dynamic absorber attached to a mechanical system formed of three reduced masses which are acted on by one, two or three order x harmonics of a disruptive force.

  6. Shock absorber system for nuclear reactor ice condenser compartment

    International Nuclear Information System (INIS)

    Meier, J.F.; Rudd, G.E.; Pradhan, A.V.; George, J.A.; Lippincott, H.W.; Sutherland, J.D.

    1979-01-01

    A shock absorber system was designed to absorb the energy imparted to doors in a nuclear reactor ice condenser compartment as they swing rapidly to an open position. Each shock absorber which is installed on a wall adjacent to each door is large and must absorb up to about 40,000 foot pounds of energy. The basic shock absorber component comprises foam enclosed in a synthetic fabric bag having a volume about twice the foam volume. A stainless steel knitted mesh bag of the same volume as the fabric bag, contains the fabric bag and its enclosed foam. To protect the foam and bags during construction activities at the reactor site and from the shearing action of the doors, a protective sheet metal cover is installed over the shock absorber ends and the surface to be contacted by the moving door. With the above shock absorber mounted on a wall behind each door, as the door is forcibly opened by steam pressure and air resulting from a pipe break in the reactor compartment, it swings at a high velocity into contact with the shock absorber, crushes the foam and forces it into the fabric bag excess material thus containing the foam fragmented particles, and minimizes build-up of pressure in the bag as a result of the applied compressive force

  7. 14 CFR 27.475 - Tires and shock absorbers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 27.475 Section 27.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock absorbers. Unless otherwise prescribed...

  8. 14 CFR 29.475 - Tires and shock absorbers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 29.475 Section 29.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.475 Tires and shock absorbers. Unless otherwise...

  9. Low fluid level in pulse rod shock absorber

    International Nuclear Information System (INIS)

    Aderhold, H.C.

    1974-01-01

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  10. Simulated mixed absorbers and effective atomic numbers for γ ...

    Indian Academy of Sciences (India)

    The total -ray interaction crosss-sections on mixed absorbers were determined at 662 keV with a view to study the effective atomic numbers for -ray absorption under narrow beam good geometry set-up. The measurements were taken for the combination of metallic absorbers like aluminium, copper, lead and mercury ...

  11. An Absorbing Look at Terry-Cloth Towels

    Science.gov (United States)

    Moyer, Richard; Everett, Susan

    2010-01-01

    This article describes a lesson where students explore the absorbency of several towels with different weaves and weights. The lesson follows the 5E learning-cycle model and incorporates engineering in the sense of product testing with a focus on the relationship between the weave of a towel and its absorbency. The National Science Education…

  12. Low fluid level in pulse rod shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Aderhold, H. C.

    1974-07-01

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  13. Fabrication of selective solar absorbers using pulsed laser deposition

    CSIR Research Space (South Africa)

    Yalisi, B

    2009-06-01

    Full Text Available Selective solar absorbers are devices that have been designed to absorb as much as possible of the solar radiation which is in the wavelength range of 0.3 to 2.5 µm and to minimise thermal emittance in the wavelength range from 2.5µm to the far...

  14. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... surgical gut suture. (a) Identification. An absorbable surgical gut suture, both plain and chromic, is an...

  15. 21 CFR 880.6025 - Absorbent tipped applicator.

    Science.gov (United States)

    2010-04-01

    ... stick. The device is used to apply medications to, or to take specimens from, a patient. (b...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6025 Absorbent tipped applicator. (a) Identification. An absorbent tipped applicator is a...

  16. Performance of Closely Spaced Point Absorbers with Constrained Floater Motion

    DEFF Research Database (Denmark)

    De Backer, G.; Vantorre, M.; Beels, C.

    2009-01-01

    The performance of a wave energy converter array of twelve heaving point absorbers has been assessed numerically in a frequency domain model. Each point absorber is assumed to have its own linear power take-off. The impact of slamming, stroke and force restrictions on the power absorption...

  17. Preparation and characterization of water-absorbing composite ...

    African Journals Online (AJOL)

    The present work introduces a novel method for the formation of water absorbing composite membrane. The prepared composite is based on chitosan, carboxymethyl cellulose (CMC), and Montmorillonite. Prepared composite membrane exhibits high water absorbing and holding capacity with increasing clay content.

  18. Laser beam propagation in non-linearly absorbing media

    CSIR Research Space (South Africa)

    Forbes, A

    2006-08-01

    Full Text Available Many analytical techniques exist to explore the propagation of certain laser beams in free space, or in a linearly absorbing medium. When the medium is nonlinearly absorbing the propagation must be described by an iterative process using the well...

  19. Preparation and characterization of water-absorbing composite ...

    African Journals Online (AJOL)

    ABCO

    2012-08-16

    Aug 16, 2012 ... The present work introduces a novel method for the formation of water absorbing composite membrane. The prepared composite is based on chitosan, carboxymethyl cellulose (CMC), and. Montmorillonite. Prepared composite membrane exhibits high water absorbing and holding capacity with increasing ...

  20. Why muscle is an efficient shock absorber.

    Directory of Open Access Journals (Sweden)

    Michael A Ferenczi

    Full Text Available Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.

  1. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Sandra Birk; Brent Matteson; Hongbo Tian

    2006-01-01

    The Yucca Mountain Project (YMP) has been directed by DOE-RW to develop a new repository waste package design based on the transport, aging, and disposal canister (TAD) system concept. A neutron poison material for fabrication of the internal spent nuclear fuel (SNF) baskets for these canisters needs to be identified. A material that has been used for criticality control in wet and dry storage of spent nuclear fuel is borated stainless steel. These stainless products are available as an ingot metallurgy plate product with a molybdenum addition and a powder metallurgy product that meets the requirements of ASTM A887, Grade A. A new Ni-Cr-Mo-Gd alloy has been developed by the Idaho National Laboratory (INL) with its research partners (Sandia National Laboratory and Lehigh University) with DOE-EM funding provided by the National Spent Nuclear Fuel Program (NSNFP). This neutron absorbing alloy will be used to fabricate the SNF baskets in the DOE standardized canister. The INL has designed the DOE Standardized Spent Nuclear Fuel Canister for the handling, interim storage, transportation, and disposal in the national repository of DOE owned spent nuclear fuel (SNF). A corrosion testing program is required to compare these materials in environmental conditions representative of a breached waste canister. This report will summarize the results of crevice corrosion tests for three alloys in solutions representative of ionic compositions inside the waste package should a breech occur. The three alloys in these tests are Neutronit A978 (ingot metallurgy, hot rolled), Neutrosorb 304B4 Grade A (powder metallurgy, hot rolled), and Ni-Cr-Mo-Gd alloy (ingot metallurgy, hot rolled)

  2. Study on density distribution and diffusion of deuterons in mono- and polycrystalline Ni absorbers using the nuclear reaction method

    International Nuclear Information System (INIS)

    Heintze, V.

    1976-01-01

    Irradiation experiments with cooled poly- and monocrystalline Ni absorbers are reported on. A very complex irradiation apparatus was set up, and a nuclear physics method was tested which enables an alignment of low-index crystal directions of monocrystalline absorbers in the target chamber with an exactness of at least 0.1 0 with regard to the ion beam. The nuclear reaction technique for the D(d,p)T reaction was developed far enough to enable a non-destructive determination of deuteron density distributions by analyzing proton spectra of this reaction. At low incorporation doses, there was no dose dependence of density distributions in monocrystalline Ni samples. Profile changes interpreted by a 'blurring' of the incident angle α due to an arching of the surface were only observed at doses Qsub(w) approximately > 3 x 10 18 deuterons/cm 2 . Furthermore, in polycrystalline Ni absorbers, there was a dependence of deuteron distributions on the angle between the beam and the absorber surface, which may be interpreted as a picture of a certain deposition, probability of single ions. In monocrystalline absorbers, range distributions for each of the low-index crystal directions were measured and compared with similar profiles of the polycrystalline absorber which had been measured at the same incident angle α. (orig.) [de

  3. New Technology in Hydrogen Absorbers for Muon Cooling Channels

    CERN Document Server

    Cummings, M A C

    2005-01-01

    Ionization cooling is the only technique fast enough to cool and focus muons for neutrino factories and muon colliders, and hydrogen is the optimal material for maximum cooling and minimal multiple scattering. Liquid hydrogen absorber R&D for the Muon Collaboration has proceeded on parallel and complementary fronts. The continuing LH2 absorber engineering and technical developments by the MuCool group conducted by ICAR* institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University, in cooperation with Fermilab, will be summarized, including results from the first hydrogen absorber tests at the newly constructed FNAL Mucool Test Area (MTA). The program includes designs for the high-powered test of an absorber prototype (external heat exchange) at the MTA which are nearing completion to be installed by summer 2005, an alternative absorber design (internal heat exchange) being finalized for the approved cooling experiment (MICE) at Rutherford-Appleton Laboratory, and a novel idea for ...

  4. Performance evaluation of CFRP-rubber shock absorbers

    Science.gov (United States)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  5. Performance evaluation of CFRP-rubber shock absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma, 29 - 81031 Aversa (Italy)

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  6. Pool fire upon a balsa-filled shock absorber

    International Nuclear Information System (INIS)

    Fry, C.J.

    1990-07-01

    When performing a safety assessment of a transport flask with balsa-filled shock absorbers it is important to know how the shock absorbers, which may have the outer skin punctured by an impact, will perform in a fire. A 30 minute pool test, which satisfied all the requirements of a thermal test under the IAEA regulations, was carried out upon a small, balsa-filled shock absorber. The outer steel shell was partly cut away exposing the wood to the fire and the air. The balsa wood prevented 90% of the heat from the fire from being transferred through the shock absorber, even though the balsa was only 133 mm thick. The maximum heat flux through to the inside of the shock absorber due to the burning of the balsa wood was relatively low, 2.8 kW/m 2 , and occurred 2 to 3 hours after the end of the pool fire. (author)

  7. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated

  8. A combined nonlinear and hysteresis model of shock absorber for quarter car simulation on the basis of experimental data

    Directory of Open Access Journals (Sweden)

    Vijay Barethiye

    2017-12-01

    Full Text Available Modeling dynamic characteristics of an automotive shock absorber is a challenging task due to its complex behavior. In the present paper, the nonparametric and hybrid approach is proposed to represent the nonlinear and hysteresis characteristics of the shock absorber. An experiment is carried out on a car damper utilizing INSTRON to obtain force-velocity characteristics of the shock absorber. The experimental data is used to devise two different models, namely, piecewise linear model and hysteresis model, to capture the damping properties of the absorber and for consequent use in simulations. The complexity involved due to certain physical phenomenon such as oil compressibility, gas entrapment etc. gives rise to hysteresis behavior and the present paper tries to model such behavior with the help of Neural Networks. Finally, a combined (hybrid shock absorber model (including the characteristics of both piecewise linear and hysteresis behavior is developed in Simulink and integrated into a quarter car simulation to verify its feasibility. The results generated by the combined (hybrid model are compared with linear as well as piecewise linear model and the comparison shows that the proposed model substantially a better option to study the vehicle characteristics more accurately and precisely.

  9. Preparation of Active Absorbent for Flue Gas Desulfurization From Coal Bottom Ash: Effect of Absorbent Preparation Variables

    Directory of Open Access Journals (Sweden)

    Chang Chin Li, Lee Keat Teong, Subhash Bhatia and Abdul Rahman Mohamed

    2012-08-01

    Full Text Available An active absorbent for flue gas desulfurization was prepared from coal bottom ash, calcium oxide (CaO and calcium sulfate by hydro-thermal process. The absorbent was examined for its micro-structural properties. The experiments conducted were based on Design Of Experiments (DOE according to 23 factorial design. The effect of various absorbent preparation variables such as ratio of CaO to bottom ash (A, hydration temperature (B and hydration period (C towards the BET (Brunauer-Emmett-Teller specific surface area of the absorbent were studied. At a CaO to bottom ash ratio = 2, hydration temperature = 200 ?C and hydration period = 10 hrs, absorbent with a surface area of 90.1 m2/g was obtained. Based on the analysis of the factorial design, it was concluded that factor A and C as well as the interaction of factors ABC and BC are the significant factors that effect the BET surface area of the absorbent. A linear mathematical model that describes the relation between the independent variables and interaction between variables towards the BET specific surface area of the absorbent was also developed. Analysis of variance (ANOVA showed that the model was significant at 1% level.Key Words: Absorbent, Bottom Ash, Design Of Experiments, Desulfurization, Surface Area.

  10. Evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes

    International Nuclear Information System (INIS)

    Sebesta, F.; John, J.; Motl, A.; Stamberg, K.

    1995-11-01

    The chemical and radiation stability of polyacrylonitrile (PAN) in the form of beads (B-PAN), similar to the beads of composite absorbers, and one selected composite absorber (ammonium molybdophosphate, the active component in PAN binder [AMP-PAN], a prospective candidate for the treatment of acidic wastes) were studied. Aqueous 1M HNO 3 + 1M NaNO 3 , 1M NaOH + 1M NaNO 3 , and 1M NaOH were chosen as simulants of DOE acidic and alkaline wastes. In addition,radiation stability was determined indistilled water. The chemical stability of B-PAN and AMP-PAN beads was tested for a period up to one month of contact with the solution at ambient temperature. The radiation stability of the beads was checked in a radiation dose range 10 3 --10 6 Gy (10 5 --10 8 rads). In acidic solutions the stability of PAN binder was proved not to be limited by either chemical or radiation decomposition. PAN binder may thus be used for preparing composite absorbers for treatment of acid wastes from DOE facilities. The same conclusion is valid for alkaline solutions with pH up to 13. In highly alkaline solutions (concentration of NAOH higher than I M) and in the presence of NaNO 3 , the stability of the tested polyacrylonitrile polymer was sufficient for applications not extending over 10 days. Cross-linking of the polymer caused by ionizing radiation was found to have a positive influence on chemical stability. This effect enables a longer period of applicability of PAN-based composite absorbers. Because of the high sorption rate achievable with PAN-based absorbers, the stability achieved is sufficient for most applications in the DOE complex. The chemical stability of binding polymer may also be further improved by testing another, more suitable type of polymer from the broad family of polyacrylonitrile polymers

  11. Estudo voltamétrico do complexo de cobre(II com o ligante vermelho de alizarina S, adsorvido na superfície do eletrodo de grafite pirolítico Voltammetric study of complex of copper (II with alizarin red S ligand, absorbed on surface of pyrolytic graphite electrode

    Directory of Open Access Journals (Sweden)

    Victor E. Mouchrek Filho

    1999-06-01

    Full Text Available The alizarin red S (ARS has been used as a spectrophotometric reagent of several metals for a long time. Now this alizarin has been used as modifier agent of electrodes, for voltammetric analyses. In this work cyclic voltammetry experiments was accomplished on closed circuit, with the objective of studying the voltammetric behavior of alizarin red S adsorbed and of its copper complex, on the surface of the pyrolytic graphite electrode. These studies showed that ARS strongly adsorbs on the surface of this electrode. This adsorption was used to immobilize ions copper(II from the solution.

  12. Influence of Housing Wall Compliance on Shock Absorbers in the Context of Vehicle Dynamics

    Science.gov (United States)

    Pulvirenti, G.; Faria, C.

    2017-10-01

    Shock absorbers play a key role in vehicle dynamics. Researchers have spent significant effort in order to understand phenomena associated with this component, but there are still several issues to address, in part because new technology development and design trends continually lead to new challenges, among which weight reduction is crucial. For shock absorbers, weight reduction is related to the use of new materials (e.g. composite) or new design paradigms (e.g. more complex geometry, wall thickness, etc.). All of them are directly linked to wall compliance values higher than the actual ones. The present article proposes a first analysis of the phenomena introduced by a high wall compliance, through a modelling approach and various simulations in order to understand the vehicle behaviour changes. It is shown that high values of wall compliance lead to increased hysteresis in the force-velocity curve. However, comfort, handling and ride performances are not significantly affected by this designing parameter.

  13. Acoustic behavior of a fibrous bulk material. [Kevlar 29 sound absorber

    Science.gov (United States)

    Hersh, A. S.; Walker, B.

    1979-01-01

    A semiempirical model is presented describing the acoustic behavior of Kevlar 29, a bulk absorbing material. The model is based on an approximate solution to the one-dimensional equations representing conservation of fluctuating mass, momentum and energy. By treating the material as a momentum sink, theoretical expressions of the material complex propagation constants and characteristic impedance were derived in terms of a single constant. Evaluating the constant at a single frequency for a particular specimen, excellent agreement between prediction and measurement was achieved for a large range of sound frequencies and material porosities and thicknesses. Results show that Kevlar 29 absorbs sound efficiently even at low frequencies. This is explained in terms of a frequency dependent material phase speed.

  14. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    Science.gov (United States)

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  15. Ni-Al Alloys as Alternative EUV Mask Absorber

    Directory of Open Access Journals (Sweden)

    Vu Luong

    2018-03-01

    Full Text Available Extreme ultraviolet (EUV lithography is being industrialized as the next candidate printing technique for high-volume manufacturing of scaled down integrated circuits. At mask level, the combination of EUV light at oblique incidence, absorber thickness, and non-uniform mirror reflectance through incidence angle, creates photomask-induced imaging aberrations, known as mask 3D (M3D effects. A possible mitigation for the M3D effects in the EUV binary intensity mask (BIM, is to use mask absorber materials with high extinction coefficient κ and refractive coefficient n close to unity. We propose nickel aluminide alloys as a candidate BIM absorber material, and characterize them versus a set of specifications that a novel EUV mask absorber must meet. The nickel aluminide samples have reduced crystallinity as compared to metallic nickel, and form a passivating surface oxide layer in neutral solutions. Composition and density profile are investigated to estimate the optical constants, which are then validated with EUV reflectometry. An oxidation-induced Al L2 absorption edge shift is observed, which significantly impacts the value of n at 13.5 nm wavelength and moves it closer to unity. The measured optical constants are incorporated in an accurate mask model for rigorous simulations. The M3D imaging impact of the nickel aluminide alloy mask absorbers, which predict significant M3D reduction in comparison to reference absorber materials. In this paper, we present an extensive experimental methodology flow to evaluate candidate mask absorber materials.

  16. Graphene Based Terahertz Absorber Designed With Effective Surface Conductivity Approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    Young field of terahertz (THz) science and technology demands new materials and devices, such as filters, modulators, polarization converters and absorbers. Graphene, a recently discovered single-atom-thick material, provides exciting properties for functional terahertz applications. Graphene...... conductivity and how to use it in optical design. We demonstrate a tunable THz perfect absorber, which consists of continuous graphene various structured graphene metamaterials above a metal mirror. Changing the Fermi level from 0 eV to 0.5 eV allows for drastic changes in absorbance from less than 0.1 to 1...

  17. RackSaver neutron absorbing device development and testing

    International Nuclear Information System (INIS)

    Lambert, R.; O'Leary, P.; Roberts, P.

    1996-01-01

    Siemens Power Corporation (SPC), in cooperation with the Electric Power Research Institute (EPRI), has developed the RackSaver neutron absorbing insert. The RackSaver insert can be installed onto spent nuclear fuel assemblies to replace deteriorating Boraflex neutron absorbing material installed in some spent-fuel storage racks. This paper describes results of a development and in-pool demonstration program performed to support potential utilization of the RackSaver neutron absorbing insert by affected utilities. The program objective was to advance the RackSaver concept into a field-demonstrated product. This objective was accomplished through three phases: design, licensing and criticality evaluations, and demonstration testing

  18. Applying an overstress principle in accelerated testing of absorbing mechanisms

    Science.gov (United States)

    Tsyss, V. G.; Sergaeva, M. Yu; Sergaev, A. A.

    2018-04-01

    The relevance of using overstress test as a forced one to determine the pneumatic absorber lifespan was studied. The obtained results demonstrated that at low load overstress the relative error for the absorber lifespan evaluation is no more than 3%. This means that the test results spread has almost no effect on the lifespan evaluation, and this effect is several times less than that at high load overstress tests. Accelerated testing of absorbers with low load overstress is more acceptable since the relative error for the lifespan evaluation is negligible.

  19. Absorber rod driving into a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Elter, C.; Schmitt, H.; Schoening, J.

    1987-01-01

    The absorber rod consists of a hollow cylinder which has a layer of absorber material applied on its inside circumferential surface. The absorber rod is held via a guide sleeve, which is supported centrally in a hole in the side reflector. The guidance within the sleeve is provided by flanges on the hollow cylinder. The movement of the hollow cylinder is carried out hydraulically or pneumatically. A flow of cooling gas is used for cooling, which is passed through the inner central areas of the hollow cylinder and the guide sleeve. (DG) [de

  20. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals

    DEFF Research Database (Denmark)

    Ding, Fei; Dai, Jin; Chen, Yiting

    2016-01-01

    Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally...... demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor...

  1. COMPARISON OF ABSORBABLE EXTRA LONG TERM POLY HYDROXY BUTYRATE SUTURE VS NON ABSORBABLE (POLYPROPYLENE SUTURE FOR ABDOMINAL WALL CLOSURE

    Directory of Open Access Journals (Sweden)

    Mallikarjun

    2015-07-01

    Full Text Available PURPOSE: The aim of study is to compare Continuous technique with non - absorbable sutures, Interrupted technique with non - absorbable sutures and Continuous technique with slowly absorbable sutures Focusing mainly on incidence of incisional hernias, burst abdomen, wound infections, chronic wound pain, suture sinus, stitch granuloma, time for rectus closure. METHODOLOGY : Study was conducted for a period of one year on 271 randomized patients with primary elective midline laparotomy in our hospital . patients are divided into group I includes 102 patients with continuous technique using non absorbable polypropylene, group II includes 91 patients with interrupted technique using non absorbable polypropylene and group III includes 78 patients with continuous slowly absorbable polyhydroxybutyrate. RESULTS: No significant difference observed in incidence of wound infections and burst abdomen in all the 3 groups but relatively higher incidence of wound infections in noted our hospital. Incidence of stich granuloma suture sinus and chronic wound pain is more with interrupted technique than continuous technique and are more with non - absor bable suture material. CONCLUSION: Incidence of incisional hernias, suture complications like suture sinus, stitch granuloma can be more effectively reduced with slowly absorbable continuous sutures.

  2. The MuCool/MICE LH2 Absorber Program

    International Nuclear Information System (INIS)

    Cummings, Mary Anne

    2004-01-01

    Hydrogen absorber R and D for the MuCool Collaboration is actively pushing ahead on two parallel and complementary fronts. The continuing LH2 engineering and technical developments by the MuCool group, conducted by ICAR institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University in cooperation with Fermilab, are summarized here, including plans for the first tests of an absorber prototype from Osaka University and KEK cooled by internal convection at the newly constructed FNAL MuCool Test Area (MTA). Designs for the high-power test of another absorber prototype (employing external heat exchange) are complete and the system will be installed by summer 2004. A convection-cooled absorber design is being developed for the approved MICE cooling demonstration at Rutherford Appleton Laboratory

  3. Calculations in the Wheeler-Feynman absorber theory of radiation

    International Nuclear Information System (INIS)

    Balaji, K.S.

    1986-01-01

    One dimensional computer aided calculations were done to find the self consistent solutions for various absorber configurations in the context of the Wheeler-Feynman absorber theory, wherein every accelerating charge is assumed to produce a time symmetric combination of advanced and retarded fields. These calculations picked out the so called outerface solution for incomplete absorbers and showed that advanced as well as retarded signals interact with matter in the same manner as in the full retarded theory. Based on these calculations, the Partridge experiment and the Schmidt-Newman experiment were ruled out as tests of the absorber theory. An experiment designed to produce and detect advanced effects is proposed, based on more one-dimensional calculations

  4. [Study on absorbing volatile oil with mesoporous carbon].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.

  5. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  6. Development of highly effective neutron shields and neutron absorbing materials

    International Nuclear Information System (INIS)

    Tsuda, K.; Matsuda, F.; Taniuchi, H.; Yuhara, T.; Iida, T.

    1993-01-01

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  7. Microwave absorbing properties of activated carbon fibre polymer ...

    Indian Academy of Sciences (India)

    cations in the field of radar and electromagnetic compatibility. (Singh et al ... fibres have irregular-shaped cross sections (shown in fig- ure 1) ... Microwave absorbing properties of activated carbon fibre polymer composites. 77. 2. 4. 6. 8. 10. 12.

  8. Fabrication and characterization of absorber pellets for FFTF irradiation testing

    International Nuclear Information System (INIS)

    Wilson, C.N.; Hollenberg, G.W.

    1981-01-01

    Methods used for characterization of B 4 C powder and fabricated pellets are summarized. Fabrication techniques used at HEDL for absorber test pellets are reviewed and selected powder and pellet characterization data are presented

  9. Ammonia IR Absorbance Measurements with an Equilibrium Vapor Cell

    National Research Council Canada - National Science Library

    Field, Paul

    2004-01-01

    Infrared (IR) absorbance spectra were acquired for 18 ammonia vapor pressures. The vapor pressures were generated with 15 gravimetrically prepared aqueous solutions and three commercial aqueous solutions using a dynamic method I.E...

  10. Determination of Absorbed Dose Using a Dosimetric Film

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Badita, E.; Mitru, E.

    2009-01-01

    This paper presents the absorbed dose measurements by means of the irradiated dosimetric reference films. The dose distributions were made by MULTIDATA film densitometer using RTD-4 software, in INFLPR Linear Accelerator Department

  11. Absorbed energy for radiation crosslinking in stabilized PE systems

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Charlesby, A.

    1990-01-01

    A quantitative consideration on the absorbed energy consumption in various γ-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author)

  12. Absorbed energy for radiation crosslinking in stabilized PE systems

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia); Charlesby, A

    1990-01-01

    A quantitative consideration on the absorbed energy consumption in various {gamma}-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author).

  13. Broadband infrared metamaterial absorber based on anodic aluminum oxide template

    Science.gov (United States)

    Yang, Jingfan; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Yang, Shen; Pang, Yongqiang

    2018-05-01

    In this work, a broadband infrared metamaterial absorber is proposed based on trapezoid-shaped anodic aluminum oxide (AAO) template. Unlike traditional metamaterial absorber constructed from metal-dielectric-metal sandwich structure, our proposed absorber is composed of trapezoid-shaped AAO template with metallic nanowires inside. The infrared absorption efficiency is numerically calculated and the mechanism analysis is given in the paper. Owing to the superposition of multiple resonances produced by the nanowires with different heights, the infrared metamatrial absorber can keep high absorption efficiency during broad working wavelength band from 3.4 μm to 6.1 μm. In addition, the resonance wavelength is associated with the height of nanowires, which indicates that the resonance wavelength can be modulated flexibly through changing the heights of nanowires. This kind of design can also be adapted to other wavelength regions.

  14. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Kyeongseob Kim

    2016-04-01

    Full Text Available A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS. To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm to 6.4 cm.

  15. Analysis of buffering process of control rod hydraulic absorber

    International Nuclear Information System (INIS)

    Bao Jishi; Qin Benke; Bo Hanliang

    2011-01-01

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  16. Preparation and characterization of water-absorbing composite ...

    African Journals Online (AJOL)

    ABCO

    2012-08-16

    Aug 16, 2012 ... 1Regional Center for Food and Feed, Agricultural Research Center, 9 El Gamaa Street, Giza, Egypt. ... meantime, clay has been used to improve the mechanical ... should be able to absorb and hold body fluids such as.

  17. Two-dimensional QR-coded metamaterial absorber

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zhang, Jieqiu; Qu, Shaobo

    2016-01-01

    In this paper, the design of metamaterial absorbers is proposed based on QR coding and topology optimization. Such absorbers look like QR codes and can be recognized by decoding softwares as well as mobile phones. To verify the design, two lightweight wideband absorbers are designed, which can achieve wideband absorption above 90 % in 6.68-19.30 and 7.00-19.70 GHz, respectively. More importantly, polarization-independent absorption over 90 % can be maintained under incident angle within 55°. The QR code absorber not only can achieve wideband absorption, but also can carry information such as texts and Web sites. They are of important values in applications such identification and electromagnetic protection.

  18. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yijun [Institute of Optoelectronic Technology, Department of Electronic Engineering, Xiamen University, Xiamen 361005 (China); Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Zhu, Jinfeng, E-mail: nanoantenna@hotmail.com [Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Liu, Qing Huo [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2015-01-26

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  19. Springback optimization in automotive Shock Absorber Cup with Genetic Algorithm

    Science.gov (United States)

    Kakandikar, Ganesh; Nandedkar, Vilas

    2018-02-01

    Drawing or forming is a process normally used to achieve a required component form from a metal blank by applying a punch which radially draws the blank into the die by a mechanical or hydraulic action or combining both. When the component is drawn for more depth than the diameter, it is usually seen as deep drawing, which involves complicated states of material deformation. Due to the radial drawing of the material as it enters the die, radial drawing stress occurs in the flange with existence of the tangential compressive stress. This compression generates wrinkles in the flange. Wrinkling is unwanted phenomenon and can be controlled by application of a blank-holding force. Tensile stresses cause thinning in the wall region of the cup. Three main types of the errors occur in such a process are wrinkling, fracturing and springback. This paper reports a work focused on the springback and control. Due to complexity of the process, tool try-outs and experimentation may be costly, bulky and time consuming. Numerical simulation proves to be a good option for studying the process and developing a control strategy for reducing the springback. Finite-element based simulations have been used popularly for such purposes. In this study, the springback in deep drawing of an automotive Shock Absorber Cup is simulated with finite element method. Taguchi design of experiments and analysis of variance are used to analyze the influencing process parameters on the springback. Mathematical relations are developed to relate the process parameters and the resulting springback. The optimization problem is formulated for the springback, referring to the displacement magnitude in the selected sections. Genetic Algorithm is then applied for process optimization with an objective to minimize the springback. The results indicate that a better prediction of the springback and process optimization could be achieved with a combined use of these methods and tools.

  20. Transduction on Directed Graphs via Absorbing Random Walks.

    Science.gov (United States)

    De, Jaydeep; Zhang, Xiaowei; Lin, Feng; Cheng, Li

    2017-08-11

    In this paper we consider the problem of graph-based transductive classification, and we are particularly interested in the directed graph scenario which is a natural form for many real world applications.Different from existing research efforts that either only deal with undirected graphs or circumvent directionality by means of symmetrization, we propose a novel random walk approach on directed graphs using absorbing Markov chains, which can be regarded as maximizing the accumulated expected number of visits from the unlabeled transient states. Our algorithm is simple, easy to implement, and works with large-scale graphs on binary, multiclass, and multi-label prediction problems. Moreover, it is capable of preserving the graph structure even when the input graph is sparse and changes over time, as well as retaining weak signals presented in the directed edges. We present its intimate connections to a number of existing methods, including graph kernels, graph Laplacian based methods, and interestingly, spanning forest of graphs. Its computational complexity and the generalization error are also studied. Empirically our algorithm is systematically evaluated on a wide range of applications, where it has shown to perform competitively comparing to a suite of state-of-the-art methods. In particular, our algorithm is shown to work exceptionally well with large sparse directed graphs with e.g. millions of nodes and tens of millions of edges, where it significantly outperforms other state-of-the-art methods. In the dynamic graph setting involving insertion or deletion of nodes and edge-weight changes over time, it also allows efficient online updates that produce the same results as of the batch update counterparts.

  1. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    International Nuclear Information System (INIS)

    Zoch, H.L.

    1979-01-01

    A neutron absorbing composition is described and consists of a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide. 20 claims

  2. Shock absorber in combination with a nuclear reactor core structure

    International Nuclear Information System (INIS)

    Housman, J.J.

    1976-01-01

    This invention relates to the provision of shock absorbers for use in blind control rod passages of a nuclear reactor core structure which are not subject to degradation. The shock absorber elements are made of a porous brittle carbonaceous material, a porous brittle ceramic material, or a porous brittle refractory oxide and have a void volume of between 30% and 70% of the total volume of the element for energy absorption by fracturing due to impact loading by a control rod. (UK)

  3. Sodium erosion of boron carbide from breached absorber pins

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Baker, D.E.

    1981-03-01

    The purpose of the irradiation experiment was to provide an engineering demonstration of the irradiation behavior of breached boron carbide absorber pins. By building defects into the cladding of prototypic absorber pins, and performing the irradiation under typical FFTF operating conditions, a qualitative assessment of the consequences of a breach was achieved. Additionally, a direct comparison of pin behavior with that of the ex-reactor test could be made

  4. Process and device for exchanging neutron absorber rods

    International Nuclear Information System (INIS)

    Baero, G.; Kraus, W.; Stindt, W.

    1987-01-01

    The control element repair device contains lifting equipment for inserting the control element in the accommodation device. Due to the case position assigned to each absorber rod of a control element, after removing the carrier with the absorber rods fixed to it, the defective rods can be replaced by new ones. The accommodation device has a support to support the carrier. Turning the control element for the PWR through 180 0 is prevented. (DG) [de

  5. Calirimeter/absorber optimization for a RHIC dimuon experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, S.H.; Murtagh, M.J.; Starks, M. [Brookhaven National Lab., Upton, NY (United States); Liu, X.T.; Petitt, G.A.; Zhang, Z. [Georgia State Univ., Atlanta (United States); Ewell, L.A.; Hill, J.C.; Wohn, F.K. [Iowa State Univ., Ames (United States); Costales, J.B.; Namboodiri, M.N., Sangster, T.C.; Thomas, J.H. [Lawrence Livermore National Lab., CA (United States); Gavron, A.; Waters, L. [Los Alamos National Lab., NM (United States); Kehoe, W.L.; Steadman, S.G. [Massachusetts Institute of Technology, Cambridge (United States); Awes, T.C.; Obenshain, F.E.; Saini, S.; Young, G.R. [Oak Ridge National Lab., TN (United States); Chang, J.; Fung, S.Y.; Kang, J.H. [Univ. of California, Riverside, CA (United States); Kreke, J.; He, Xiaochun, Sorensen, S.P. [Univ. of Tennessee, Knoxville (United States); Cornell, E.C.; Maguire, C.F. [Vanderbilt Univ., Nashville, TN (United States)

    1991-12-31

    The RD-10 R&D effort on calorimeter/absorber optimization for a RHIC experiment had an extended run in 1991 using the A2 test beam at the AGS. Measurements were made of the leakage of particles behind various model hadron calorimeters. Behavior of the calorimeter/absorber as a muon-identifier was studied. First comparisons of results from test measurements to calculated results using the GHEISHA code were made

  6. Electromagnetic behavior of radar absorbing materials based on Ca hexaferrite modified with Co-Ti ions and doped with La

    Directory of Open Access Journals (Sweden)

    Valdirene Aparecida da Silva

    2009-06-01

    Full Text Available Radar Absorbing Materials (RAM are compounds that absorb incidental electromagnetic radiation in tuned frequencies and dissipate it as heat. Its preparation involves the adequate processing of polymeric matrices filled with compounds that act as radar absorbing centers in the microwave range. This work shows the electromagnetic evaluation of RAM based on CoTi and La doped Ca hexaferrite. Vibrating Sample Magnetization analyses show that ion substitution promoted low values for the parameters of saturation magnetization (123.65 Am2/kg and coercive field (0.07 T indicating ferrite softening. RAM samples obtained using different hexaferrite concentrations (40-80 per cent, w/w show variations in complex permeability and permittivity parameters and also in the performance of incidental radiation attenuation. Microwave attenuation values between 40 and 98 per cent were obtained.

  7. A Stretchable Electromagnetic Absorber Fabricated Using Screen Printing Technology.

    Science.gov (United States)

    Jeong, Heijun; Lim, Sungjoon

    2017-05-21

    A stretchable electromagnetic absorber fabricated using screen printing technology is proposed in this paper. We used a polydimethylsiloxane (PDMS) substrate to fabricate the stretchable absorber since PDMS exhibits good dielectric properties, flexibility, and restoring capabilities. DuPont PE872 (DuPont, Wilmington, CT, USA), a stretchable silver conductive ink, was used for the screen printing technique. The reflection coefficient of the absorber was measured using a vector network analyzer and a waveguide. The proposed absorber was designed as a rectangular patch unit cell, wherein the top of the unit cell acted as the patch and the bottom formed the ground. The size of the patch was 8 mm × 7 mm. The prototype of the absorber consisted of two unit cells such that it fits into the WR-90 waveguide (dimensions: 22.86 mm × 10.16 mm) for experimental measurement. Before stretching the absorber, the resonant frequency was 11 GHz. When stretched along the x -direction, the resonant frequency shifted by 0.1 GHz, from 11 to 10.9 GHz, demonstrating 99% absorption. Furthermore, when stretched along the y -direction, the resonant frequency shifted by 0.6 GHz, from 11 to 10.4 GHz, demonstrating 99% absorption.

  8. Neutron absorbing article and method for manufacture of such article

    International Nuclear Information System (INIS)

    Hortman, M.T.; Mcmurtry, C.H.; Naum, R.G.; Owens, D.P.

    1980-01-01

    A neutron absorbing article, preferably in long, thin, flat form , suitable for but not necessarily limited to use in storage racks for spent nuclear fuel at locations between volumes of such stored fuel, to absorb neutrons from said spent fuel and prevent uncontrolled nuclear reaction of the spent fuel material, is composed of finely divided boron carbide particles and a solid, irreversibly cured phenolic polymer, forming a continuous matrix about the boron carbide particles, in such proportions that at least 6% of b10 from the boron carbide content is present therein. The described articles withstand thermal cycling from repeated spent fuel insertions and removals, withstand radiation from said spent nuclear fuel over long periods of time without losing desirable neutron absorbing and physical properties, are sufficiently chemically inert to water so as to retain neutron absorbing properties if brought into contact with it, are not galvanically corrodible and are sufficiently flexible so as to withstand operational basis earthquake and safe shutdown earthquake seismic events, without loss of neutron absorbing capability and other desirable properties, when installed in storage racks for spent nuclear fuel. The disclosure also relates to a plurality of such neutron absorbing articles in a storage rack for spent nuclear fuel and to a method for the manufacture of the articles

  9. Investigations on laser transmission welding of absorber-free thermoplastics

    Science.gov (United States)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  10. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  11. A multicenter randomized controlled trial comparing absorbable barbed sutures versus conventional absorbable sutures for dermal closure in open surgical procedures.

    Science.gov (United States)

    Rubin, J Peter; Hunstad, Joseph P; Polynice, Alain; Gusenoff, Jeffrey A; Schoeller, Thomas; Dunn, Raymond; Walgenbach, Klaus J; Hansen, Juliana E

    2014-02-01

    Barbed sutures were developed to reduce operative time and improve security of wound closure. The authors compare absorbable barbed sutures (V-Loc, Covidien, Mansfield, Massachusetts) with conventional (smooth) absorbable sutures for soft tissue approximation. A prospective multicenter randomized study comparing barbed sutures with smooth sutures was undertaken between August 13, 2009, and January 31, 2010, in 241 patients undergoing abdominoplasty, mastopexy, and reduction mammaplasty. Each patient received barbed sutures on 1 side of the body, with deep dermal sutures eliminated or reduced. Smooth sutures with deep dermal and subcuticular closure were used on the other side as a control. The primary endpoint was dermal closure time. Safety was assessed through adverse event reporting through a 12-week follow-up. A total of 229 patients were ultimately treated (115 with slow-absorbing polymer and 114 with rapid-absorbing polymer). Mean dermal closure time was significantly quicker with the barbed suture compared with the smooth suture (12.0 vs 19.2 minutes; P<.001), primarily due to the need for fewer deep dermal sutures. The rapid-absorbing barbed suture showed a complication profile equivalent to the smooth suture, while the slow-absorbing barbed suture had a higher incidence of minor suture extrusion. Barbed sutures enabled faster dermal closure quicker than smooth sutures, with a comparable complication profile. 1.

  12. BRIGITTE, Dose Rate and Heat Source and Energy Flux for Self-Absorbing Rods

    International Nuclear Information System (INIS)

    Jegu, M.; Clement, M.

    1978-01-01

    1 - Nature of physical problem solved: Calculation of dose rate, heat sources or energy flux. The sources are self-absorbing radioactive rods. The shielding consists of blocks of which the cross section can be defined. 2 - Method of solution: Exponential attenuation and build-up factor between source points and detector points. Source integration with error estimate. Automatic or controlled build-up with monitor print-out. 3 - Restrictions on the complexity of the problem: Number of energy points, regions, detector points, abscissa points of the rod, vertical position of the rod, are all limited to ten. The maximum total number of vertical steps is 124

  13. Absorbing systematic effects to obtain a better background model in a search for new physics

    International Nuclear Information System (INIS)

    Caron, S; Horner, S; Sundermann, J E; Cowan, G; Gross, E

    2009-01-01

    This paper presents a novel approach to estimate the Standard Model backgrounds based on modifying Monte Carlo predictions within their systematic uncertainties. The improved background model is obtained by altering the original predictions with successively more complex correction functions in signal-free control selections. Statistical tests indicate when sufficient compatibility with data is reached. In this way, systematic effects are absorbed into the new background model. The same correction is then applied on the Monte Carlo prediction in the signal region. Comparing this method to other background estimation techniques shows improvements with respect to statistical and systematic uncertainties. The proposed method can also be applied in other fields beyond high energy physics.

  14. Overlapping bio-absorbable scaffolds: Aim for D2D technique?

    Science.gov (United States)

    Khan, Asaad A; Dangas, George D

    2018-06-01

    The results of overlapping metallic stents have been concerning but this practice is often unavoidable in the setting of long or tortuous lesions, diameter discrepancy of proximal and distal vessel, and for residual dissections. Theoretically, bio-absorbable scaffolds may carry an advantage over metallic stents due to the progressive resorption of the scaffold theoretically rendering the overlap a non-issue; this has not been clinically evident. Since stent/scaffold overlap cannot be entirely avoided, improved stent delivery/deployment and scaffold design modification may reduce complications in this complex patient subset. © 2018 Wiley Periodicals, Inc.

  15. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs.

    Science.gov (United States)

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Gallium-68 DOTA-DPhe 1 -Tyr 3 -Octreotide ( 68 Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68 Ga-DOTATOC preparation, using a novel germanium-68 ( 68 Ge)/ 68 Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. 68 Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68 Ga-DOTATOC. The obtained results showed that 68 Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran.

  16. Cross connecting absorber module inlets of multiple boiler units

    International Nuclear Information System (INIS)

    Cirillo, A.J.; Sperber, P.K.; Belavadi, V.N.; Mukherji, A.

    1991-01-01

    The retrofitting of scrubbers downstream of existing balanced draft boilers is often accomplished by the addition of induced draft (ID) booster fans. By creating a common plenum between the ID fans and the ID booster fans of two or more boiler-absorber trains, absorber module capacity may be shared among multiple boiler units. At Harrison Power Station, three (3) 4,900,000 lb/hour boilers (640 MWe Gross) will be linked through a common plenum. This sharing capability precludes the need to add standby module capacity, thereby saving capital dollars and keeping project critical path schedules, which typically run through absorber procurement and construction, to a minimum. Through damper placement in the ductwork cross connections, unitized boiler-absorber module operation or common plenum operation may be obtained, thus providing both operational flexibility and reliability. Additionally, open plenum operation allows the removal of an absorber unit from service, while keeping its associated boiler on line, thereby precluding 'cold starts' and maintaining overall unit availabilities. As either unitized or common plenum operation is possible with the cross connection, the furnace draft control systems of each boiler must be examined for varying load operation and trip conditions. This paper addresses the means by which to analyze such cross connection operational scenarios while maintaining compliance with furnace flame out safety guidelines, and will discuss the physical design considerations, ramifications and benefits of same, with select emphasis on what is being implemented at the Harrison Power Station

  17. Are bio-absorbable stents the future of SFA treatment?

    Science.gov (United States)

    Peeters, P; Keirse, K; Verbist, J; Deloose, K; Bosiers, M

    2010-02-01

    Several limitations inherent to the implantation of a metallic device, such as the occurrence of in-stent re-stenosis, in an arterial lumen intuitively explain the interest for developing bio-absorbable stents. Two main types of bio-absorbable stents currently exist: polymer stents and metallic stents. To date, no studies with bio-absorbable stents have been conducted in the superficial femoral artery (SFA). Because of their strut thickness and lack of radial force, polymer stents are no good candidates for endovascular use. Absorbable metal stents (AMS) do have the potential to perform well for artery treatment, although current evidence from in-human coronary and infrapopliteal studies yield unsatisfactory results. Drastic technological improvements are mandatory before AMS can be considered for every day practice. Yet, it is our belief that further development of other metal and non-metal bio-absorbable stents, with or without drug-coating, may lead to the creation of the ultimate SFA stent.

  18. Study on 'Tannix' an absorbent for heavy metals including uranium

    International Nuclear Information System (INIS)

    Nakamura, Yasuo

    1997-01-01

    To treat radioactive wastes including uranium and transuranic elements such as plutonium, americium etc., development of an absorbent which can be used to absorb and isolate these elements without producing secondary wastes after treatment was attempted. And an absorbent has been successfully developed by polymerizing tannin, a natural product. It is known that tannin binds heavy metals including uranium resulting to produce their precipitates. There are some reports suggesting its absorption ability for uranium. However, tannin has not been used to isolate a heavy metal from a solution because it is soluble in water. Here, insolubilization of tannin was attempted and a manufacturing method for a gelatinized insoluble tannin named as ''Tannix'' was established. Wattle tannin extracted from Mimosa pudica produced in Africa was dissolved in an alkaline solution and gelatinized by heating after the addition of formalin. Thus obtained insoluble tannin was used after crushing and sieving. This product, ''Tannix'' was able to absorb more than 99% of uranium in the waste. And the absorbed Tannin could be degraded by incineration even at a low temperature, leaving only uranium, but not producing any secondary product. (M.N.)

  19. Absorber performance of a water/lithium-bromide absorption chiller

    International Nuclear Information System (INIS)

    Xie Guozhen; Sheng Guogang; Bansal, Pradeep Kumar; Li, Guang

    2008-01-01

    An absorber is one of the most important components of a lithium-bromide absorption chiller (LBAC) as its absorbing characteristics directly influence the performance of the whole chiller. It has been indicated that the absorbing efficiency and cooling capacity could be improved by increasing the solution concentration. In this paper, based on the mechanism of falling film absorption on horizontal tubes, the theoretical models of falling film absorption on horizontal tubes have been established. A series of programs used for computing the theoretical mathematical models, including simulation of LBAC cycle and falling film absorption, have been programmed. The models have been validated reasonably by the experimental data. The results show that the cooling capacity of the LBAC varies in parabola shape of curve with the solution concentration from 52.5% to 58.5%, and that the best coefficient of performance (COP) occurs at concentration of 57%. The investigation proposes the absorbing process of sub-steady thermodynamic equilibrium for the duality solution under increase absorbing pressure

  20. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    Science.gov (United States)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-09-10

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  1. Inferring absorbing organic carbon content from AERONET data

    Directory of Open Access Journals (Sweden)

    A. Arola

    2011-01-01

    Full Text Available Black carbon, light-absorbing organic carbon (often called "brown carbon" and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light–absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon levels in biomass burning regions of South America and Africa are relatively high (about 15–20 mg m−2 during biomass burning season, while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30–35 mg m−2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  2. Inferring absorbing organic carbon content from AERONET data

    Science.gov (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called "brown carbon") and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light-absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South America and Africa are relatively high (about 15-20 mg m-2 during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 mg m-2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  3. Study on `Tannix` an absorbent for heavy metals including uranium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yasuo [Mitsubishi Nuclear Fuel Co. Ltd., Tokyo (Japan)

    1997-09-01

    To treat radioactive wastes including uranium and transuranic elements such as plutonium, americium etc., development of an absorbent which can be used to absorb and isolate these elements without producing secondary wastes after treatment was attempted. And an absorbent has been successfully developed by polymerizing tannin, a natural product. It is known that tannin binds heavy metals including uranium resulting to produce their precipitates. There are some reports suggesting its absorption ability for uranium. However, tannin has not been used to isolate a heavy metal from a solution because it is soluble in water. Here, insolubilization of tannin was attempted and a manufacturing method for a gelatinized insoluble tannin named as ``Tannix`` was established. Wattle tannin extracted from Mimosa pudica produced in Africa was dissolved in an alkaline solution and gelatinized by heating after the addition of formalin. Thus obtained insoluble tannin was used after crushing and sieving. This product, ``Tannix`` was able to absorb more than 99% of uranium in the waste. And the absorbed Tannin could be degraded by incineration even at a low temperature, leaving only uranium, but not producing any secondary product. (M.N.)

  4. Robust optimization of a tandem grating solar thermal absorber

    Science.gov (United States)

    Choi, Jongin; Kim, Mingeon; Kang, Kyeonghwan; Lee, Ikjin; Lee, Bong Jae

    2018-04-01

    Ideal solar thermal absorbers need to have a high value of the spectral absorptance in the broad solar spectrum to utilize the solar radiation effectively. Majority of recent studies about solar thermal absorbers focus on achieving nearly perfect absorption using nanostructures, whose characteristic dimension is smaller than the wavelength of sunlight. However, precise fabrication of such nanostructures is not easy in reality; that is, unavoidable errors always occur to some extent in the dimension of fabricated nanostructures, causing an undesirable deviation of the absorption performance between the designed structure and the actually fabricated one. In order to minimize the variation in the solar absorptance due to the fabrication error, the robust optimization can be performed during the design process. However, the optimization of solar thermal absorber considering all design variables often requires tremendous computational costs to find an optimum combination of design variables with the robustness as well as the high performance. To achieve this goal, we apply the robust optimization using the Kriging method and the genetic algorithm for designing a tandem grating solar absorber. By constructing a surrogate model through the Kriging method, computational cost can be substantially reduced because exact calculation of the performance for every combination of variables is not necessary. Using the surrogate model and the genetic algorithm, we successfully design an effective solar thermal absorber exhibiting a low-level of performance degradation due to the fabrication uncertainty of design variables.

  5. Energy Analysis of Solar Collector With perforated Absorber Plate

    Directory of Open Access Journals (Sweden)

    Ammar A. Farhan

    2017-09-01

    Full Text Available The thermal performance of three solar collectors with 3, 6 mm and without perforation absorber plate was assessed experimentally. The experimental tests were implemented in Baghdad during the January and February 2017. Five values of airflow rates range between 0.01 – 0.1 m3/s were used through the test with a constant airflow rate during the test day. The variation of the following parameters air temperature difference, useful energy, absorber plate temperature, and collector efficiency was recorded every 15 minutes. The experimental data reports that the increases the number of absorber plate perforations with a small diameter is more efficient rather than increasing the hole diameter of the absorber plate with decreasing the perforation numbers. Maximum air temperature difference throughout the solar collector with 3, 6 mm perforations and without perforations are 17, 15, and 12 oC, respectively. Also, it can be concluded that the energy gained from the solar collector with 3 mm perforation absorber plate is 28.2 % more than the energy gained from solar collector without holes per day for 0.1 m3/s airflow rate. The maximum values of the thermal performance curves are 0.67, 0.64, and 0.56 for the solar collector with 3, 6 mm, and without perforations, respectively.

  6. Effect of different absorbing materials on the performance of basin solar still under Libyan climate conditions

    International Nuclear Information System (INIS)

    Shuia, Essaied M.; El-Agouz, Elsayed A.

    2013-01-01

    This experimental study deals with a single-basin solar still using various absorbing materials with and without black painting. Different types of absorbing materials with and without black painting were used to enhance the solar still productivity through improvement in absorptivity. These materials are steel and aluminum with and without black painting and rubber. Two identical solar stills were manufactured using locally available materials. All the results were compared together to reach the best absorbing materials with and without painting that can be used for solar still. it was found that the rubber absorber has the highest water collection during daytime, followed by the black painted steel absorber, then by black painted aluminum absorber and steel without painting absorber. The average enhancement in the daily productivity was about 50% for the rubber absorber compared with the black painted aluminum absorber and about 43% for the rubber absorber compared with the black painted steel absorber.(author)

  7. Enhancement of acoustical performance of hollow tube sound absorber

    International Nuclear Information System (INIS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-01-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  8. An efficient absorbing system for spectrophotometric determination of nitrogen dioxide

    Science.gov (United States)

    Kaveeshwar, Rachana; Amlathe, Sulbha; Gupta, V. K.

    A simple and sensitive spectrophotometric method for determination of atmospheric nitrogen dioxide using o-nitroaniline as an efficient absorbing, as well as diazotizing, reagent is described. o-Nitroaniline present in the absorbing medium is diazotized by the absorbed nitrite ion to form diazonium compound. This is later coupled with 1-amino-2-naphthalene sulphonic acid (ANSA) in acidic medium to give red-violet-coloured dye,having λmax = 545 nm. The isoamyl extract of the red azo dye has λmax = 530 nm. The proposed reagents has ≈ 100% collection efficiency and the stoichiometric ratio of NO 2:NO 2- is 0.74. The other important analytical parameters have been investigated. By employing solvent extraction the sensitivity of the reaction was increased and up to 0.03 mg m -3 nitrogen dioxide could be estimated.

  9. The dynamics analysis of a ferrofluid shock absorber

    International Nuclear Information System (INIS)

    Yao, Jie; Chang, Jianjun; Li, Decai; Yang, Xiaolong

    2016-01-01

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology. - Highlights: • We study a ferrofluid shock absorber. • The mechanical model of the flow of the ferrofluid has been built. • The theoretical model of the energy dissipation processes is developed. • The magnetic restoring force between the body and the magnets has been measured.

  10. Preview control of vehicle suspension system featuring MR shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seong, M S; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Cho, M W [Precision Manufacturing and Inspection Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Lee, H G [Department of Automotive Engineering, Daeduk College, Daejeon, 305-715 (Korea, Republic of)], E-mail: seungbok@inha.ac.kr

    2009-02-01

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  11. The dynamics analysis of a ferrofluid shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jie; Chang, Jianjun [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li, Decai, E-mail: dcli@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Yang, Xiaolong [School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006 (China)

    2016-03-15

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology. - Highlights: • We study a ferrofluid shock absorber. • The mechanical model of the flow of the ferrofluid has been built. • The theoretical model of the energy dissipation processes is developed. • The magnetic restoring force between the body and the magnets has been measured.

  12. Mechanic- and hydraulic shock-absorbers - layout, construction, operation experience

    International Nuclear Information System (INIS)

    Kluge, M.

    1981-01-01

    The problem lies in the protection of the flexible supported power plant components against undesired sudden movements. Various shock absorbing systems are at disposal in this case: Mechanical and hydraulic shock absorbers, whose functioning systems are shown in figures. The operation experience showed a series of deficiencies, as demonstrated on various figures. In order to avoid them, some important recommendations are given. Requirements and layout are demonstrated according to todays' state-of-the-art. The admissible stresses, resulting from the summary of various specifications for the analytical evidence will be described. Development and construction will be explained in detail by means of pictures with cross sections of original shock absorbers. Todays' construction characteristics will be summarized. The final remark includes a request for generally valid guidelines. (orig.) [de

  13. The precipitation synthesis of broad-spectrum UV absorber nanoceria

    International Nuclear Information System (INIS)

    Nurhasanah, Iis; Sutanto, Heri; Puspaningrum, Nurul Wahyu

    2013-01-01

    In this paper the possibility of nanoceria as broad-spectrum UV absorber was evaluated. Nanoceria were synthesized by precipitation process from cerium nitrate solution and ammonium hydroxide as precipitant agent. Isopropanol was mixed with water as solvent to prevent hard agglomeration. The structure of resulting nanoceria was characterized by x-ray diffractometer (XRD). The transparency in the visible light and efficiency of protection in UV A region were studied using ultraviolet-visible (UV - Vis) spectrophotometer. The results show that nanoceria possess good tranparency in visible light and high UV light absorption. The critical absorption wavelenght of 368 nm was obtained which is desirable for excellent broad-spectrum protection absorbers. Moreover, analysis of photodegradation nanoceria to methylene blue solution shows poor photocatalytic activity. It indicates that nanoceria suitable for used as UV absorber in personal care products

  14. Development of UV absorbing PET through Electron Irradiation

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Lee, Na Eun; Lim, Hyung San; Park, Yang Jeong; Cho, Sung Oh

    2017-01-01

    Experiment to increase UV absorbance through electron beam irradiation on PET was performed. Moreover, surface hardness and roughness of each sample were observed to find the key factor increasing UV absorbance. PET sheets were irradiated with an electron beam at various fluences. The irradiated samples, as well as pristine sample, were subjected to UV-visible spectral study(UV-Vis), pencil hardness test, and scanning electron microscopy(SEM) experiment. In this study, PET samples irradiated at several conditions were analyzed through various measurements. UV absorbance-another meaning of transmittance in this study- of irradiated PET sample increased compared with pristine sample as fluence was increased in UV-Visible spectroscopy experiment.

  15. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  16. Enhancement of acoustical performance of hollow tube sound absorber

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Azma, E-mail: azma.putra@utem.edu.my; Khair, Fazlin Abd, E-mail: fazlinabdkhair@student.utem.edu.my; Nor, Mohd Jailani Mohd, E-mail: jai@utem.edu.my [Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal Melaka 76100 Malaysia (Malaysia)

    2016-03-29

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  17. Preview control of vehicle suspension system featuring MR shock absorber

    International Nuclear Information System (INIS)

    Seong, M S; Choi, S B; Cho, M W; Lee, H G

    2009-01-01

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  18. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  19. A checkerboard selective absorber with excellent spectral selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: optyang@zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); School of Electrical, Computer, and Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Mo, Lei; Chen, Tuo [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Physics, Zhejiang University, Hangzhou 310027 (China); Forsberg, Erik [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); He, Sailing [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Electromagnetic Engineering, JORCEP, Roy Institute of Technology (KTH), S-100 44 Stockholm (Sweden)

    2015-11-14

    A selective absorber with excellent spectral selectivity is proposed and analyzed. The absorber is based on a germanium (Ge) checkerboard on top of a tantalum (Ta) substrate. At wavelengths shorter than the 1.2 μm cutoff, a very high absorption is achieved due to strong cavity resonances in the Ge nanosquares, and their interactions with adjacent nanocavities and the bottom Ta substrate. At longer wavelengths, absorption is greatly suppressed due to destructive interference between the transparent checkerboard layer and the highly reflective Ta substrate. To better describe the superior selectivity of our configuration, a new figure of merit (FOM) is introduced. We observe a FOM value of 0.88 compared to 0.69 for its planar counterpart. We also conduct a thermal analysis to verify the excellent selectivity of our absorber. A high temperature can be achieved and maintained, promising good potential for applications in solar thermophotovoltaic systems.

  20. Study the Characterization of Spectral Absorbance on Irradiated Milk Protein

    Science.gov (United States)

    Fohely, F.; Suardi, N.

    2018-04-01

    The milk has been adopted as a structural nature food for a long era since it is containing most of the growth factors, protective agents, and enzymes needed for the body. a few attempts have been conducted to treat the dairy products especially raw milk by the means of ionizing radiation. as its production has been an expanding industry for many years due to the high demands from the consumers worldwide, there is still some doubt about preserving these products by irradiation. In this work, a preliminary effort to describe the influences of ionizing radiation on raw milk’s protein will be devoted to measuring the spectral absorbance of the total protein (after subjected to varied radiation doses) by UV-VIS-NIR spectroscopy analysis. The absorbance spectrum then analyzed based on absorbance spectra of organic compounds. A comparison is made between the effects of different radiation doses to estimate the influence in milk’s structure.

  1. A reflective-backing-free metamaterial absorber with broadband response

    Directory of Open Access Journals (Sweden)

    Cuilian Xu

    2017-06-01

    Full Text Available In this paper, we propose a polarization-independent and broadband perfect infrared (IR metamaterial absorber (MA without reflective backing. The proposed absorber is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones which can absorb 80% EM wave from 50.70 to 81.87THz, while transmit 80% EM wave from 0 to 37.71THz. With the decreasing of frequency, the transmissivity increases, which is close to 100% from 0 to 5THz. We can broaden the absorption bandwidth of the MA by cascading multi-layers truncated cones. Furthermore, the proposed IR MA promises to be one desirable stealth material for radar-IR compatibility.

  2. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Taiman Kadni; Noriah Mod Ali

    2002-01-01

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  3. Filtration: Novel Absorber Evaluation Club aims at standardized testing

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the past few years a number of novel absorber materials, both organic and inorganic, have appeared on the market - some claiming to achieve very large decontamination factors for metal ions, including those having radioactive isotopes. Several of these materials have been tested by individual companies in the nuclear industry and some have shown promise as decontaminants for radioactive waste streams. Unfortunately, the results obtained for the treatment of a particular waste stream cannot be applied directly to the many and diverse waste streams generated throughout the nuclear industry. A unified and standardized testing programme making use of available expertise is necessary to provide a fair and meaningful comparison. In November 1988, representatives of the United Kingdom nuclear industry agreed to form the Novel Absorber Evaluation Club to assess absorber materials and to undertake the necessary work to identify the extent and rate of adsorption of radionuclides by such materials from a set of typical reference waste streams. (author)

  4. A neutron-absorbing porcelain enamel for coating nuclear equipment

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1988-01-01

    In 1985, nuclear safety analyses showed that under upset conditions, strict administrative controls were necessary to limit access to a new processing vessel for enriched uranium service at the Savannah River Plant (SRP). In order to increase the level of nuclear safety associated with that vessel, the traditional methods of incorporating neutron absorbers (borated stainless steel, boral, cadmium foil, etc.) were reviewed, however, process conditions did not permit their use. A neutron-absorbing porcelain enamel containing large amounts of cadmium and boron was developed as a safe, cost-effective alternative to traditional neutron-absorbing methods. Several pieces of coated process equipment have been installed or are planned for installation at SRP

  5. Absorber rod bundle actuator in a pressurized water nuclear reactor

    International Nuclear Information System (INIS)

    Martin, J.; Peletan, R.

    1984-01-01

    The invention concerns an absorber rod bundle actuator in a pressurized water reactor with spectral shift control. The device comprises two coaxial control bars. The inner bar is integral with the absorber rod bundle; it has an enlarged zone which acts as a proton under pressure difference across an annular seal which can be radially expanded, the pressure difference allowing to the absorber rod bundles actuating on the piston. When a pressure difference is applied, the seal expands radially by a sufficient amount to make sealing contact with the zone of larger diameter in the outer bar. The invention applies more particularly to reactors with spectral shift control using bundles of fertile rods [fr

  6. Absorbed dose rate meter for β-ray

    International Nuclear Information System (INIS)

    Bingo, K.

    1977-01-01

    The absorbed dose of β-ray depends on the energy of β-rays and the epidermal thickness of tissue in interest. In order to measure the absorbed dose rate at the interested tissue directly, the ratio of counting rate to absorbed dose should be constant independent of β-ray energy. In this purpose, a thin plastic scintillator was used as a detector with a single channel analyzer. The pulse height distribution, obtained using the scintillator whose thickness is less than the range of β-rays, shows a peak at a particular pulse height depending on the thickness of scintillator used. This means an increase of the number of pulses at lower pulse height. The lower level of discrimination and window width of the single channel analyzer are chosen according to the epidermal thickness of the tissue. In the experiment, scintillators of 0.5, 1, 2, 3, 5 and 10 mm thick were tested. It was found that desirable pulse height distribution, to obtain a constant dose sensitivity, could be obtained using the 2 mm thick scintillator. The sensitivity of the absorbed dose rate meter is constant within +-15% for β-ray with maximum energy from 0.4 to 3.5 MeV, when the absorbed dose rate for skin (epidermal thickness 7mg/cm 2 ) is measured. In order to measure the dose rate for a hand (epithermal thickness 40mg/cm 2 ) the lower level of discrimination is changed to be higher and at the same time the window width is also changed. Combining these techniques, one can get an absorbed dose rate meter for the tissue dose of various thickness, which has the constant dose sensitivity within +-15% for β-rays with maximum energy from 0.4 to 3.5 MeV

  7. Integration of regenerative shock absorber into vehicle electric system

    Science.gov (United States)

    Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-03-01

    Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.

  8. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-01-01

    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  9. Absorbent products for incontinence: 'treatment effects' and impact on quality of life.

    Science.gov (United States)

    Getliffe, Kathryn; Fader, Mandy; Cottenden, Alan; Jamieson, Katharine; Green, Nicholas

    2007-10-01

    This study aimed to determine how the use and characteristics of absorbent products for incontinence impact on women's quality of life, and to examine the concept of 'treatment effects' in the context of pad use. Key pad performance characteristics were identified from the literature and focus group work. Semi-structured interviews with 99 women with light incontinence were used to investigate the impact of pad use on women's quality of life, including both positive and negative 'treatment effects', and to rank pad characteristics by their importance. Achieving effective and discrete containment of urine was the dominant factor impacting on women's lives. Sub-themes embraced physical effects, psychological impact and social functioning. The five pad characteristics ranked most important for day time use were: 'to hold urine, to contain smell, to stay in place, discreteness, and comfort when wet. For night use discreteness was replaced by to keep skin dry'. High levels of reported anxiety were associated with perceived risk of poor pad performance, lack of discreteness and need for complex regimes for pad management. Insufficient attention has been paid to the balance between the beneficial and negative treatment effects of absorbent pads to date. Existing continence-related quality of life measures are not designed for conditions where change in symptoms is not an outcome measure. The study findings provide the basis for developing a more sensitive, patient-oriented, quality of life measure for pad-users which can aid product selection, new product development and inform future evaluative comparisons between products/products and treatments. This paper illustrates the complex influence on quality of life caused by using absorbent pads to contain incontinence. It raises awareness of the importance of careful selection of the most appropriate pad for each individual to minimize unfavourable side effects, and the need for a new quality of life measure designed for pad-users.

  10. Calculation of absorbed dose in water by chemical Fricke dosimetry

    International Nuclear Information System (INIS)

    Rodrigues, Adenilson Paiva; Meireles, Ramiro Conceicao

    2016-01-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  11. Dual band metamaterial perfect absorber based on Mie resonances

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bi, Ke [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhao, Qian [State Key Lab of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2016-08-08

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.

  12. Parametric study on the performance of automotive MR shock absorbers

    Science.gov (United States)

    Gołdasz, J.; Dzierżek, S.

    2016-09-01

    The paper contains the results of a parametric study to explore the influence of various quantities on the performance range of semi-active automotive shock absorbers using the magnetorheological (MR) fluid under steady-state and transient excitations. The analysis was performed with simulated data and using a standard single-tube shock absorber configuration with a single-gap MR valve. Additionally, the impact of material variables and valves geometry was examined as the parameters were varied and its dynamic range studied.

  13. Bistability By Self-Reflection In A Saturable Absorber

    Science.gov (United States)

    Roso-Franco, Luis

    1987-01-01

    Propagation of laser light through a saturable absorber is theoretically studied. Computed steady state solutions of the Maxwell equations describing the unidimensional propagation of a plane monochromatic wave without introducing the slowly-varying envelope approximation are presented showing how saturation effects can influence the absorption of the field. At a certain range of refractive index and extintion coefficients, computed solutions display a very susprising behaviour, and a self-reflected wave appears inside the absorber. This can be useful for a new kind of biestable device, similar to a standard bistable cavity but with the back mirror self-induced by the light.

  14. Characterization of selective solar absorber under high vacuum.

    Science.gov (United States)

    Russo, Roberto; Monti, Matteo; di Giamberardino, Francesco; Palmieri, Vittorio G

    2018-05-14

    Total absorption and emission coefficients of selective solar absorbers are measured under high vacuum conditions from room temperature up to stagnation temperature. The sample under investigation is illuminated under vacuum @1000W/m 2 and the sample temperature is recorded during heat up, equilibrium and cool down. During stagnation, the absorber temperature exceeds 300°C without concentration. Data analysis allows evaluating the solar absorptance and thermal emittance at different temperatures. These in turn are useful to predict evacuated solar panel performances at operating conditions.

  15. Absorbing boundary conditions for Einstein's field equations

    Energy Technology Data Exchange (ETDEWEB)

    Sarbach, Olivier [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, Cd. Universitaria. C. P. 58040 Morelia, Michoacan (Mexico)

    2007-11-15

    A common approach for the numerical simulation of wave propagation on a spatially unbounded domain is to truncate the domain via an artificial boundary, thus forming a finite computational domain with an outer boundary. Absorbing boundary conditions must then be specified at the boundary such that the resulting initial-boundary value problem is well posed and such that the amount of spurious reflection is minimized. In this article, we review recent results on the construction of absorbing boundary conditions in General Relativity and their application to numerical relativity.

  16. Role of the Absorbing Area in Chaotic Synchronization

    DEFF Research Database (Denmark)

    Maistrenko, Yu.L.; Maistrenko, V.L.; Popovich, A.

    1998-01-01

    When two identical chaotic oscillators interact, one or more intervals of coupling parameters generally exist in which the synchronized state is weakly stable, and its basin of attraction is riddled with holes that are repelled from it. The paper discusses the role of the absorbing area for the e......When two identical chaotic oscillators interact, one or more intervals of coupling parameters generally exist in which the synchronized state is weakly stable, and its basin of attraction is riddled with holes that are repelled from it. The paper discusses the role of the absorbing area...

  17. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar....... The emphasis of this paper is on the signal-to-noise ratio of the detection and its relation to the sensitivity. Two absorbance cells with an optical path length of 100 μm and 1000 μm were characterized and compared in terms of sensitivity, limit of detection and effective path length for measurements...

  18. Power Absorption by Closely Spaced Point Absorbers in Constrained Conditions

    DEFF Research Database (Denmark)

    De Backer, G.; Vantorre, M.; Beels, C.

    2010-01-01

    The performance of an array of closely spaced point absorbers is numerically assessed in a frequency domain model Each point absorber is restricted to the heave mode and is assumed to have its own linear power take-off (PTO) system Unidirectional irregular incident waves are considered......, representing the wave climate at Westhinder on the Belgian Continental Shelf The impact of slamming, stroke and force restrictions on the power absorption is evaluated and optimal PTO parameters are determined For multiple bodies optimal control parameters (CP) are not only dependent on the incoming waves...

  19. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  20. Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays

    Science.gov (United States)

    Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos

    2010-01-01

    Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.

  1. ASCA observations of the composite warm absorber in NGC 3516

    OpenAIRE

    ESPEY, BRIAN RUSSELL

    1996-01-01

    PUBLISHED We obtained X-ray spectra of the Seyfert 1 galaxy NGC 3516 in 1995 March using the Japanese X-ray satellite, ASCA. Simultaneous far-UV observations were obtained with the Hopkins Ultraviolet Telescope on the Astro-2 shuttle mission. The ASCA spectrum shows a lightly absorbed power law of energy index 0.78. The low-energy absorbing column is significantly less than previously seen. Prominent O VII and O VIII absorption edges are visible, but, consistent with the much lower total a...

  2. Absorber Model for CO2 Capture by Monoethanolamine

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine......, and their impact on the model's prediction is compared. The model has been successfully applied to CO2 absorber packed columns and validated against pilot plant data with good agreement....

  3. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  4. A randomised controlled trial of absorbable versus non-absorbable sutures for skin closure after open carpal tunnel release.

    LENUS (Irish Health Repository)

    Theopold, C

    2012-05-01

    We compared the aesthetic outcome of scars after closure of open carpal tunnel incisions with either absorbable 4-0 Vicryl Rapide or non-absorbable 4-0 Novafil. Patients were recruited in a randomized controlled trial and scars were scored at 6 weeks using a modified Patient and Observer Scar Assessment Scale. Scores demonstrated differences only for pain, vascularity and cross-hatching between both groups, though none of these were statistically significant. The dissolving and falling out of Vicryl Rapide was significantly more comfortable than removal of 4-0 Novafil sutures, assessed on a numerical analogue scale. There was no difference in infection rate between both study groups, supporting overall the use of Vicryl Rapide for the closure of palmar hand incisions, in light of the convenience and cost savings associated with absorbable sutures.

  5. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.

    Science.gov (United States)

    Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng

    2015-01-14

    Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.

  6. Geometric radiation exchange factors for axial radiative transfer in an LWR core filled with absorbing-emitting gases

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.

    1984-01-01

    A reactor core filled with an emitting-absorbing mixture (like steam, hydrogen gas and fission gases) is considered. Analysis is provided to evaluate axial radiative heat exchange of a rod bundle with a nonuniform axial temperature distribution. The necessary radiation exchange shape factors (geometric mean absorptance, emittance and transmittance) between segments of the complex rod bundle arrangement are presented. They are applicable to arbitrary sizes of segments, well suited for numerical computations

  7. A POPULATION OF WEAK METAL-LINE ABSORBERS SURROUNDING THE MILKY WAY

    International Nuclear Information System (INIS)

    Richter, Philipp; Charlton, Jane C.; Fangano, Alessio P. M.; Bekhti, Nadya Ben; Masiero, Joseph R.

    2009-01-01

    We report on the detection of a population of weak metal-line absorbers in the halo or nearby intergalactic environment of the Milky Way. Using high-resolution ultraviolet absorption-line spectra of bright quasars (QSO) obtained with the Space Telescope Imaging Spectrograph (STIS), along six sight lines we have observed unsaturated, narrow absorption in O I and Si II, together with mildly saturated C II absorption at high radial velocities (|v LSR | = 100-320 km s -1 ). The measured O I column densities lie in the range N(O I) 14 cm -2 implying that these structures represent Lyman limit Systems and sub-Lyman limit System with H I column densities between 10 16 and 3 x 10 18 cm -2 , thus below the detection limits of current 21 cm all-sky surveys of high-velocity clouds (HVCs). The absorbers apparently are not directly associated with any of the large high column density HVC complexes, but rather represent isolated, partly neutral gas clumps embedded in a more tenuous, ionized gaseous medium situated in the halo or nearby intergalactic environment of the Galaxy. Photoionization modeling of the observed low ion ratios suggests typical hydrogen volume densities of n H > 0.02 cm -3 and characteristic thicknesses of a several parsec down to subparsec scales. For three absorbers, metallicities are constrained in the range of 0.1-1.0 solar, implying that these gaseous structures may have multiple origins inside and outside the Milky Way. Using supplementary optical absorption-line data, we find for two other absorbers Ca II/O I column-density ratios that correspond to solar Ca/O abundance ratios. This finding indicates that these clouds do not contain significant amounts of dust. This population of low column density gas clumps in the circumgalactic environment of the Milky Way is indicative of the various processes that contribute to the circulation of neutral gas in the extended halos of spiral galaxies. These processes include the accretion of gas from the

  8. Trapped in imidazole: how to accumulate multiple photoelectrons on a black-absorbing ruthenium complex.

    Science.gov (United States)

    Zedler, Linda; Kupfer, Stephan; de Moraes, Inês Rabelo; Wächtler, Maria; Beckert, Rainer; Schmitt, Michael; Popp, Jürgen; Rau, Sven; Dietzek, Benjamin

    2014-03-24

    Ruthenium dyes incorporating a 4H-imidazole chromophore as a ligand exhibit a spectrally broad absorption in the UV/Vis region. Furthermore, they show the ability to store two electrons within the 4H-imidazole ligand. These features render them promising molecular systems, for example, as inter- or intramolecular electron relays. To optimize the structures with respect to their electron-storage capability, it is crucial to understand the impact of structural changes accompanying photoinduced charge transfer in the electronic intermediates of multistep electron-transfer processes. The photophysical properties of these (reactive) intermediates might impact the function of the molecular systems quite substantially. However, the spectroscopic study of short-lived intermediates in stepwise multielectron-transfer processes is experimentally challenging. To this end, this contribution reports on the electrochemical generation of anions identical to intermediate structures and their spectroscopic characterization by in situ resonance Raman and UV/Vis spectroelectrochemistry and computational methods. Thereby, an efficient two-electron pathway to the 4H-imidazole electron-accepting ligand is identified. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application

    Science.gov (United States)

    Agarwal, Sajal; Prajapati, Y. K.

    2018-04-01

    Present study is done to analyze a nano absorber for thermo-photovoltaic cell application. Optical absorbance of two-dimensional materials is exploited to achieve high absorbance. It is found that few alternating layers of graphene/transition metal dichalcogenide provide high absorbance of electromagnetic wave in visible as well as near infrared region. Four transition metal dichalcogenides are considered and found that most of these provide perfect absorbance for almost full considered wavelength range i.e. 200-1000 nm. Demonstrated results confirm the extended operating region and improved absorbance of the proposed absorber in comparison to the existing absorbers made of different materials. Further, absorber performance is improved by using thin layers of gold and chromium. Simple geometry of the proposed absorber also ensures easy fabrication.

  10. UV-absorbing compounds in subarctic herbarium bryophytes

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)]. E-mail: satu.huttunen@oulu.fi; Lappalainen, N.M. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland); Turunen, J. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)

    2005-01-01

    The UV-B-absorbing compounds of herbarium specimens of 10 subarctic bryophyte species collected during the years 1926-1996 and available at the Botanical Museum, University of Oulu, were studied. We studied whether herbarium specimens reflect changes in the past radiation climate through their methanol-extractable compounds. The order of gametophytes based on the average amount of total compounds (sum of A{sub 280-320nm}) per mass from the lowest to the highest was Polytrichum commune, Pleurozium schreberi, Hylocomium splendens, Sphagnum angustifolium, Dicranum scoparium, Funaria hygrometrica, Sphagnum fuscum, Sphagnum warnstorfii, Sphagnum capillifolium and Polytrichastrum alpinum, and the amount of UV-B-absorbing compounds per specific surface area correlated with the summertime daily global radiation and latitude. P. alpinum, F. hygrometrica and three Sphagnum species seem to be good indicators for further studies. The amount of UV-B-absorbing compounds revealed no significant trends from the 1920s till the 1990s, with the exception of S. capillifolium, which showed a significant decreasing trend. - UV-B-absorbing compounds in subarctic herbarium bryophytes indicate the radiation climate of the collecting site and time.

  11. Perpetual pavement – absorbing stress and functional maintenance

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2017-03-01

    Full Text Available Perpetual Pavement combines the well documented smoothness and safety advantages of asphalt with an advanced, multi-layer paving design process, that with routine maintenance, extends the useful life of a roadway. Perpetual provides long lasting road and smoothness for the construction purposes. This study has the design key points of perpetual pavement based on the idea of life cycle, which has a new direction for the new highway construction, reconstruction and expansion. First, the structure of long life pavement design is studied to analyze the effect of stress absorbing layer. Second, researches on stress absorbing layer from the aspects of raw materials, mix proportion are implemented. Third, the design index of stress absorbing layer is determined by the shear strength test. The results show that the design idea of composite perpetual pavement can be realized by reasonable design of the stress absorbing layer and carrying out the surface functional maintenance can ensure the pavement to avoid structural damage in the operation stage.

  12. Progress in absorber R and D for muon cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.M. E-mail: kaplan@fnal.gov; Black, E.L.; Boghosian, M.; Cassel, K.W.; Johnson, R.P.; Geer, S.; Johnstone, C.J.; Popovic, M.; Ishimoto, S.; Yoshimura, K.; Bandura, L.; Cummings, M.A.; Dyshkant, A.; Hedin, D.; Kubik, D.; Darve, C.; Kuno, Y.; Errede, D.; Haney, M.; Majewski, S.; Reep, M.; Summers, D

    2003-05-01

    A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups.

  13. Selective solar absorber coating research at the CSIR (South Africa)

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-05-01

    Full Text Available A sol-gel technique has been established at a laboratory scale for low cost production of high efficient selective solar absorbers comprising a composite material of nano-structured carbon in a nickel oxide matrix. In order for these materials...

  14. Solar energy utilization by solar cells and superblack absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, D; Selders, M

    1975-10-31

    A review is presented of the physical principles responsible for the characteristics of solar cells, with particular reference to Si homojunction and CdS--Cu/sub 2/S thin film devices. Electric power generation from solar cells still appears uncompetitive economically except in special circumstances, but heating from solar energy using selective absorbers with low reemission is more promising.

  15. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    2017-01-20

    Jan 20, 2017 ... influence of profile width and super-Gaussian exponent of the profile on temperature distribution are investigated. Consequently, the profile width turns out to have a greater influence on the temperature compared to the type of the profile. Keywords. Side-pumped laser rod; pump cavity; absorbed pump ...

  16. The effect of absorber on scintillation spectrum of γ ray

    International Nuclear Information System (INIS)

    Shen Ji; Ye Yunxiu; Chen Ziyu; Wang Dayong; Ye Zhenyu; Zheng Zhong

    2002-01-01

    The scattering of γ ray in absorber affects the shape of spectrum with decreased peak-to-total ratio and peak-to-Compton ratio. Calculation using a simplified model verified this trend. Several groups of experimental data yield an empirical formula. Its potential application is also discussed

  17. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    Influence of absorbed pump profile on the temperature distribution within a diode side-pumped laser rod ... Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran; Institute of Optics and Laser, Malek-ashtar University of Technology, Shahin Shahr, Postal Code: 83145/115, Iran; Department of ...

  18. Energy-harvesting shock absorber with a mechanical motion rectifier

    Science.gov (United States)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  19. Lightweight aluminum shock absorbers; Leichtbau-Stossdaempfer aus Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Kusche, R. [Serienentwicklung, ThyssenKrupp Bilstein GmbH, Ennepetal (Germany)

    2004-12-01

    One way in which the automotive industry is striving to reduce costs and environmental impact is by continuously lowering the fuel consumption of vehicles. To achieve this objective, lightweight materials are increasingly being used in automotive design. Increasing demands are also being made on shock absorber suppliers to reduce weight. (orig.)

  20. Shock Producers and Shock Absorbers in the Crisis

    OpenAIRE

    Sinn, Hans-Werner

    2009-01-01

    It is not surprising that the U.S. has been by far the world’s largest shock producer in this crisis. The big shock absorbers on the other hand were Japan, Russia and Germany, whose exports shrank more than their imports.

  1. Plumbing system shock absorbers as a source of Legionella pneumophila.

    Science.gov (United States)

    Memish, Z A; Oxley, C; Contant, J; Garber, G E

    1992-12-01

    Water distribution systems have been demonstrated to be a major source of nosocomial legionellosis. We describe an outbreak in our institution in which a novel source of Legionella pneumophila was identified in the plumbing system. After an outbreak of 10 cases of legionellosis in our hospital, recommended measures including superheating of the hot water to 80 degrees C, hyperchlorination to 2 ppm, and flushing resulted in no new cases in the following 5 years. Recently, despite these control measures, three new cases occurred. Surveillance cultures of shower heads and water tanks were negative; cultures of tap water samples remained positive. This prompted a search for another reservoir. Shock absorbers installed within water pipes to decrease noise were suspected. One hundred twenty-five shock absorbers were removed and cultured. A total of 13 (10%) yielded heavy growth of L. pneumophila (serogroup 1). Since their removal, no new cases have been found and the percentage of positive results of random tap water culture has dropped from 20% to 5%. This is the first report that identifies shock absorbers as a possible reservoir for L. pneumophila. We recommend that institutions with endemic legionellosis assess the water system for possible removal of shock absorbers.

  2. Absorbed fractions for alpha particles in ellipsoidal volumes

    International Nuclear Information System (INIS)

    Amato, Ernesto; Baldari, Sergio; Italiano, Antonio

    2013-01-01

    Internal dosimetry of alpha particles is gaining attention due to the increasing applications in cancer treatment and also for the assessment of environmental contamination from radionuclides. We developed a Monte Carlo simulation in GEANT4 in order to calculate the absorbed fractions for monoenergetic alpha particles in the energy interval between 0.1 and 10 MeV, uniformly distributed in ellipsoids made of soft tissue. For each volume, we simulated a spherical shape, three oblate and three prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a ‘generalized radius’ was found; and the dependence of the fit parameters on the alpha energy is discussed and fitted by parametric functions. With the proposed formulation, the absorbed fraction for alpha particles in the energy range explored can be calculated for volumes and for ellipsoidal shapes of practical interest. This method can be applied to the evaluation of absorbed fraction from alpha-emitting radionuclides. The contribution to the deposited energy coming from electron and photon emissions can be accounted for exploiting the specific formulations previously introduced. As an example of application, the dosimetry of 213 Bi and its decay chain in ellipsoids is reported. (paper)

  3. Towards a new understanding of absorbing reading experiences

    DEFF Research Database (Denmark)

    Kuijpers, Moniek; Hakemulder, Frank; Bálint, Katalin

    2017-01-01

    When reading literary narratives, we assume that readers can get absorbed in the story world and in the story’s artifice. Since most absorption research focuses primarily on popular media, virtually no attention has been paid to the possibility that literary devices such as deviation could elicit...

  4. Evaluation of the absorbed dose in odontological computerized tomography

    International Nuclear Information System (INIS)

    Legnani, Adriano; Schelin, Hugo R.; Rocha, Anna Silvia P.S. da; Khoury, Helen J.

    2011-01-01

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  5. Development of evanescent wave absorbance-based fibre-optic ...

    Indian Academy of Sciences (India)

    potential human health risk and may lead to death in young children and adults ... tive measures for disease outbreak are necessary, because of the recent biothreat, ... optical fibres in chemical sensing and biosensing are reviewed in detail in [12–19]. ... systematic development of these evanescent wave absorbance-based ...

  6. Quantification of Mycosphaerella fijiensis in vitro growth by absorbance readings

    Directory of Open Access Journals (Sweden)

    Mileidy Cruz-Martín

    2013-10-01

    Full Text Available The slow growth of Mycosphaerella fijiensis Morelet in synthetic and semi-synthetic media as well as the characteristics of their colonies makes the use of traditional methods for evaluating the fungal growth are inadequate and impractical. Therefore, it requires a method to quantify growth in small volumes of substance and in short periods of time. The aim of this study was to quantify the M. fijiensis growth, through absorbance readings on the time, of mycelial suspensions obtained from cultures in liquid medium. Mycelial dry weight of the pathogen grown in liquid culture in flasks of 250 ml capacity and the absorbance in 96 well plates was compared. Similar procedure was used to evaluate the effect of bacterial culture filtrates with in vitro antifungal activity against M. fijiensis. A linear relationship between absorbance at 595 nm of fungal growth in liquid culture medium with respect to the dry mass was found. Absorbance readings using 96-well plates were possible to quantify the M. fijiensis mycelial suspensions growth in liquid culture. Also, there may be applied to assess the growth inhibition of the pathogen for bacterial culture filtrates with results at 48 h incubation. Key words: antifungal activity assay, biomass, DO595

  7. Desorption of absorbed iron in bean root and leaf tissues

    International Nuclear Information System (INIS)

    Jooste, J.H.; De Bruyn, J.A.

    1979-01-01

    The effect of different desorption media on the amount of absorbed Fe (from a solution of FeCl 3 in 0,5 mM CaCl 2 ) retained by leaf discs and excised root tips of bean plants was investigated. Attempts were also made to determine the effect of desorption on the intracellular distribution of Fe. Desorption in water or an FeCl 3 solution had no pronounced effect on the amount of absorbed Fe retained by either the leaf or root tissues. However, Na 2 -EDTA was able to desorb a considerable portion of the absorbed Fe, especially in root tissue. This applies to Fe absorbed from solutions of FeCl 3 and Fe-EDDHA. Desorption by the chelate removed Fe from practically all the different particulate fractions of both root and leaf tissues, but desorption following the longer absorption periods resulted in an increase in the Fe content of the 'soluble' fraction. The possibility that Na 2 -EDTA causes an increased permeability of cell membranes seems likely. The view that removal of Ca by the chelate causes this increase in permeability could not be confirmed [af

  8. Selective wave-transmitting electromagnetic absorber through composite metasurface

    Science.gov (United States)

    Sun, Zhiwei; Zhao, Junming; Zhu, Bo; Jiang, Tian; Feng, Yijun

    2017-11-01

    Selective wave-transmitting absorbers which have one or more narrow transmission bands inside a wide absorption band are often demanded in wireless communication and radome applications for reducing the coupling between different systems, improving anti-jamming capability, and reducing antennas' radar cross section. Here we propose a feasible method that utilizing composite of two metasurfaces with different polarization dependent characteristics, one works as electromagnetic polarization rotator and the other as a wideband polarization dependent electromagnetic wave absorber. The polarization rotator produces a cross polarization output in the wave-transmitting band, while preserves the polarization of the incidence outside the band. The metasurface absorber works for certain linear polarization with a much wider absorption band covering the wave-transmitting frequency. When combining these two metasurfaces properly, the whole structure behaves as a wideband absorber with a certain frequency transmission window. The proposal may be applied in radome designs to reduce the radar cross section of antenna or improving the electromagnetic compatibility in communication devices.

  9. Studies with Water Absorbing Polymers: II Nitrogen Retention ...

    African Journals Online (AJOL)

    Agrogel is a water absorbing polymer that swells and forms gelatinous mass with water. The mass can retain water and nutrients and release it slowly over time. These characteristics have stimulated interest in their use, especially for greenhouse crop production, where watering is frequent resulting in leaching of soil ...

  10. A high absorbance material for solar collectors' applications

    International Nuclear Information System (INIS)

    Oliva, A I; Maldonado, R D; Díaz, E A; Montalvo, A I

    2013-01-01

    In this work, we proposed a low cost material to be used as an excellent absorber for solar collectors, to increase its thermal efficiency by the high capacity to absorb solar radiation. The material, known as 'smoke black' (soot) can be obtained by the incomplete combustion of organic materials, such as the oxygen-acetylene, paraffin, or candles. A comparative analysis between the optical properties (reflectance, absorbance, and emissivity) measured on three covered copper surfaces (without paint, with a commercial matte black paint, and with smoke black) shows amazing optical results for the smoke black. Reflectance values of the smoke black applied over copper surfaces improves 56 times the values obtained from commercial black paints. High values of emissivity (E=0.9988) were measured on the surface covered with smoke black by spectrophotometry in the UV-VIS range, which represents about 7% of increment as compared with the value obtained for commercial black paints (E=0.938). The proposed high absorbance material can be easily applied on any kind of surfaces at low cost.

  11. New urea-absorbing polymers for artificial kidney machines

    Science.gov (United States)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr.

    1975-01-01

    Etherified polymer is made from modified cellulose derivative which is reacted with periodate. It will absorb 2 grams of urea per 100 grams of polymer. Indications are that polymers could be used to help remove uremic wastes in artificial kidneys, or they could be administered orally as therapy for uremia.

  12. non absorbable sutures in the urinary bladder resulting

    African Journals Online (AJOL)

    The vesical calculus. Urol Clin North AM. 2000, 27:333-346. 3. Evans JW, Chapple CR, Ralph DJ, Millory EJ: Bladder calculus formation as a complication of the Stamey procedure. Br J Urol 1990,. 65:580-582. 4. Sheng-Tsun Su, He-Fu Haung, Shu-Fen. Chang. Encrusted Bladder stone on Non- absorbable sutures after a ...

  13. Energy-harvesting shock absorber with a mechanical motion rectifier

    International Nuclear Information System (INIS)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-01-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges. (paper)

  14. Absorber design for a Scheffler-Type Solar Concentrator

    International Nuclear Information System (INIS)

    Ruelas, José; Palomares, Juan; Pando, Gabriel

    2015-01-01

    Highlights: • Receiver and absorber design methodology based in a solar image in the focal surface. • Stirling absorber dimensions based in a solar image in the focal surface of a STSC. • Comparative study of a solar image in the focal surface from different optical model. • A Monte-Carlo ray-tracing method was used to set STSC cavity receiver aperture. - Abstract: Ray tracing software, digital close range photogrammetry and the Monte-Carlo ray-tracing method have proven to be precise and efficient measurement techniques for the assessment of the shape accuracies of solar concentrators and their components. This paper presents a new method and results for the geometric aspect of a focal image for a Scheffler-Type Solar Concentrator (STSC) using ray tracing, digital close range photogrammetry and the Monte-Carlo ray-tracing method to establish parameters that allow for the design of the most suitable absorber and receiver geometry for coupling the STSC to a Stirling engine. The results of the ray tracing software, digital close range photogrammetry and Monte-Carlo ray tracing technique in STSC are associated with a Stirling receiver. When using the method to perform simulations, we found that the most suitable solar image geometry has an elliptical shape and area of 0.0065 m 2 on average. Although this result is appropriate, the geometry of the receiver is modified to fit an absorber and cavity receiver to improve the heat transfer by radiation

  15. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  16. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.

    2014-01-01

    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equa...

  17. Gas compressor with side branch absorber for pulsation control

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Scrivner, Christine M [San Antonio, TX; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  18. Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability.

    Science.gov (United States)

    Lihe Zhang; Jianwu Ai; Bowen Jiang; Huchuan Lu; Xiukui Li

    2018-02-01

    In this paper, we propose a bottom-up saliency model based on absorbing Markov chain (AMC). First, a sparsely connected graph is constructed to capture the local context information of each node. All image boundary nodes and other nodes are, respectively, treated as the absorbing nodes and transient nodes in the absorbing Markov chain. Then, the expected number of times from each transient node to all other transient nodes can be used to represent the saliency value of this node. The absorbed time depends on the weights on the path and their spatial coordinates, which are completely encoded in the transition probability matrix. Considering the importance of this matrix, we adopt different hierarchies of deep features extracted from fully convolutional networks and learn a transition probability matrix, which is called learnt transition probability matrix. Although the performance is significantly promoted, salient objects are not uniformly highlighted very well. To solve this problem, an angular embedding technique is investigated to refine the saliency results. Based on pairwise local orderings, which are produced by the saliency maps of AMC and boundary maps, we rearrange the global orderings (saliency value) of all nodes. Extensive experiments demonstrate that the proposed algorithm outperforms the state-of-the-art methods on six publicly available benchmark data sets.

  19. Lateral ring metal elastic wheel absorbs shock loading

    Science.gov (United States)

    Galan, L.

    1966-01-01

    Lateral ring metal elastic wheel absorbs practically all shock loading when operated over extremely rough terrain and delivers only a negligible shock residue to associated suspension components. The wheel consists of a rigid aluminum assembly to which lateral titanium ring flexible elements with treads are attached.

  20. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Pitts, M.L.

    2000-01-01

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers

  1. variation of reverberation time with quantity of absorbers in an ...

    African Journals Online (AJOL)

    DJFLEX

    broadcasting and recording studios, reverberation time can be simply controlled to achieve desired results. KEY WORDS: ..... Positions and Actual sizes and Numbers of. Absorbers Used. Measured. Reverberation. Times (s). Calculated with. Sabine Formula. Calculated with. Arau-Puchades. Formula. 500. (Hz). 1000. (Hz).

  2. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  3. Conceptual basis for calculations of absorbed-dose distributions

    International Nuclear Information System (INIS)

    Sinclair, W.K.; Rossi, H.H.; Alsmiller, R.G.; Berger, M.J.; Kellerer, A.M.; Roesch, W.C.; Spencer, L.V.; Zaider, M.A.

    1991-01-01

    The effects of radiation on matter are initiated by processes in which atoms and molecules of the medium are ionized or excited. Over a wide range of conditions, it is an excellent approximation to assume that the average number of ionizations and excitations is proportional to the amount of energy imparted to the medium by ionizing radiation in the volume of interest. The absorbed dose, that is, the average amount of energy imparted to the medium per unit mass, is therefore of central importance for the production of radiation effects, and the calculation of absorbed-dose distributions in irradiated media is the focus of interest of the present report. It should be pointed out, however, that even though absorbed dose is useful as an index relating absorbed energy to radiation effects, it is almost never sufficient; it may have to be supplemented by other information, such as the distributions of the amounts of energy imparted to small sites, the correlation of the amounts of energy imparted to adjacent sites, and so on. Such quantities are termed stochastic quantities. Unless otherwise stated, all quantities considered in this report are non-stochastic. 266 refs., 11 figs., 2 tabs

  4. UV-absorbing compounds in subarctic herbarium bryophytes

    International Nuclear Information System (INIS)

    Huttunen, S.; Lappalainen, N.M.; Turunen, J.

    2005-01-01

    The UV-B-absorbing compounds of herbarium specimens of 10 subarctic bryophyte species collected during the years 1926-1996 and available at the Botanical Museum, University of Oulu, were studied. We studied whether herbarium specimens reflect changes in the past radiation climate through their methanol-extractable compounds. The order of gametophytes based on the average amount of total compounds (sum of A 280-320nm ) per mass from the lowest to the highest was Polytrichum commune, Pleurozium schreberi, Hylocomium splendens, Sphagnum angustifolium, Dicranum scoparium, Funaria hygrometrica, Sphagnum fuscum, Sphagnum warnstorfii, Sphagnum capillifolium and Polytrichastrum alpinum, and the amount of UV-B-absorbing compounds per specific surface area correlated with the summertime daily global radiation and latitude. P. alpinum, F. hygrometrica and three Sphagnum species seem to be good indicators for further studies. The amount of UV-B-absorbing compounds revealed no significant trends from the 1920s till the 1990s, with the exception of S. capillifolium, which showed a significant decreasing trend. - UV-B-absorbing compounds in subarctic herbarium bryophytes indicate the radiation climate of the collecting site and time

  5. Complexity explained

    CERN Document Server

    Erdi, Peter

    2008-01-01

    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  6. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  7. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  8. Magnetic graphene enabled tunable microwave absorber via thermal control

    Science.gov (United States)

    Quan, L.; Qin, F. X.; Li, Y. H.; Estevez, D.; Fu, G. J.; Wang, H.; Peng, H.-X.

    2018-06-01

    By synthesizing nitrogen-doped graphene (NG) via a facile thermal annealing method, a fine control of the amount and location of doped nitrogen as well as the oxygen-containing functional groups is achieved with varying annealing temperature. The favorable magnetic properties have been achieved for N-doped rGO samples obtained at two temperatures of all NG samples, i.e., 500 °C and 900 °C with saturation magnetization of 0.63 emu g‑1 and 0.67 emu g‑1 at 2 K, respectively. This is attributed to the optimized competition of the N-doping and reduction process at 500 °C and the dominated reduction process at 900 °C. NG obtained at 300 °C affords the best overall absorbing performance: when the absorber thickness is 3.0 mm, the maximum absorption was ‑24.6 dB at 8.51 GHz, and the absorption bandwidth was 4.89 GHz (7.55–12.44 GHz) below ‑10 dB. It owes its large absorbing intensity to the good impedance match and significant dielectric loss. The broad absorption bandwidth benefits from local fluctuations of dielectric responses contributed by competing mechanisms. Despite the significant contribution from materials loss to the absorption, the one quarter-wavelength model is found to be responsible for the reflection loss peak positions. Of particular significance is that an appropriate set of electromagnetic parameters associated with reasonable reduction is readily accessible by convenient control of annealing temperature to modulate the microwave absorbing features of graphene. Thus, NG prepared by thermal annealing promises to be a highly efficient microwave absorbent.

  9. Patient absorbed radiation doses estimation related to irradiation anatomy; Estimativa de dose absorvida pelo paciente relacionada a anatomia irradiada

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes, E-mail: prof.flavio@gmail.com, E-mail: amanda-a-soares@hotmail.com, E-mail: gabriellygkahl@gmail.com [Instituto Federal de Eduacao, Ciencia e Tecnologia de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector.

  10. The Potential of Coconut Shell Powder (CSP) and Coconut Shell Activated Carbon (CSAC) Composites as Electromagnetic Interference (EMI) Absorbing Material

    International Nuclear Information System (INIS)

    Siti Nurbazilah Abdul Jabal; Seok, Y.B.; Hoon, W.F.

    2016-01-01

    Agriculture waste is potentially useful as an alternative material to absorb and attenuate electromagnetic interference (EMI). This research highlights the use of coconut shell powder (CSP) and coconut shell activated carbon (CSAC) as raw materials with epoxy resin and amine hardener composite to absorb microwave signals over frequency of 1 - 8 GHz. In order to investigate the suitability of these raw materials as EMI absorbing material, carbon composition of the raw materials is determined through CHNS Elemental Analysis. The surface morphology of the raw materials in term of porosity is investigated by using TM3000 Scanning Electron Microscope (SEM). The complex permittivity of the composites is determined by using high temperature dielectric probe in conjunction with Network Analyzer. From the result, the Carbon% of CSP and CSAC is 46.70 % and 84.28 % respectively. In term of surface morphology, the surface porosity of CSP and CSAC is in the range of 2 μm and 1 μm respectively. For the dielectric properties, the dielectric constant and the dielectric loss factor for CSP and CSAC is 4.5767 and 64.8307 and 1.2144 and 13.8296 respectively. The materials more potentially useful as substitute materials for electromagnetic interference (EMI) absorbing are discussed. (author)

  11. Covariant differential complexes of quantum linear groups

    International Nuclear Information System (INIS)

    Isaev, A.P.; Pyatov, P.N.

    1993-01-01

    We consider the possible covariant external algebra structures for Cartan's 1-forms (Ω) on G L q (N) and S L q (N). Our starting point is that Ω s realize an adjoint representation of quantum group and all monomials of Ω s possess the unique ordering. For the obtained external algebras we define the differential mapping d possessing the usual nilpotence condition, and the generally deformed version of Leibnitz rules. The status of the known examples of G L q (N)-differential calculi in the proposed classification scheme and the problems of S L q (N)-reduction are discussed. (author.). 26 refs

  12. Air-Leak Effects on Ear-Canal Acoustic Absorbance

    Science.gov (United States)

    Rasetshwane, Daniel M.; Kopun, Judy G.; Gorga, Michael P.; Neely, Stephen T.

    2015-01-01

    Objective: Accurate ear-canal acoustic measurements, such as wideband acoustic admittance, absorbance, and otoacoustic emissions, require that the measurement probe be tightly sealed in the ear canal. Air leaks can compromise the validity of the measurements, interfere with calibrations, and increase variability. There are no established procedures for determining the presence of air leaks or criteria for what size leak would affect the accuracy of ear-canal acoustic measurements. The purpose of this study was to determine ways to quantify the effects of air leaks and to develop objective criteria to detect their presence. Design: Air leaks were simulated by modifying the foam tips that are used with the measurement probe through insertion of thin plastic tubing. To analyze the effect of air leaks, acoustic measurements were taken with both modified and unmodified foam tips in brass-tube cavities and human ear canals. Measurements were initially made in cavities to determine the range of critical leaks. Subsequently, data were collected in ears of 21 adults with normal hearing and normal middle-ear function. Four acoustic metrics were used for predicting the presence of air leaks and for quantifying these leaks: (1) low-frequency admittance phase (averaged over 0.1–0.2 kHz), (2) low-frequency absorbance, (3) the ratio of compliance volume to physical volume (CV/PV), and (4) the air-leak resonance frequency. The outcome variable in this analysis was the absorbance change (Δabsorbance), which was calculated in eight frequency bands. Results: The trends were similar for both the brass cavities and the ear canals. ΔAbsorbance generally increased with air-leak size and was largest for the lower frequency bands (0.1–0.2 and 0.2–0.5 kHz). Air-leak effects were observed in frequencies up to 10 kHz, but their effects above 1 kHz were unpredictable. These high-frequency air leaks were larger in brass cavities than in ear canals. Each of the four predictor variables

  13. Electromagnetic absorbing property of the flaky carbonyl iron particles by chemical corrosion process

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dianliang, E-mail: 272895980@qq.com [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Liu, Ting; Zhou, Li [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Yonggang [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China)

    2016-12-01

    The flaky carbonyl iron particles (CIPs) were prepared using a milling process at the first step, then the chemical corrosion process was done to optimize the particle shape. The particle morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz and the reflection loss (RL) was calculated. The results showed that the saturation magnetization value of the CIPs decreased as the CIPs was corroded to the small flakes in chemical corrosion process. The diffraction peaks of the single α-Fe existed in the XRD pattern of CIPs, and the characteristic peaks was more obvious and the intensity of the diffraction pattern was lower by corrosion. The permittivity and the permeability of the corroded milling CIPs was a little larger than the milling CIPs, it was due to the larger aspect ratio based on the fitting calculation process. At thickness 0.6 mm and 0.8 mm, the corroded milling CIPs composite had the better absorbing property than the other two samples. The frequency band (RL<−5 dB) could be widened to 8.96–18 GHz at 0.6 mm and 5.92–18 GHz at 0.8 mm, and RL less than −8 dB began to exist in 8.96–14.72 GHz at 0.8 mm. - Graphical abstract: The property of absorber using corrosion process could be enhanced. - Highlights: • The chemical corrosion process was done to optimize the particle shape. • The permittivity and permeability of corroded milling CIPs increased. • The aspect ratio of flaky CIPs increased in the corrosion process. • The corroded milling CIPs composite had the better absorbing property.

  14. Development of CIGS2 solar cells with lower absorber thickness

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S.; Dhere, Neelkanth G. [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Rd., Cocoa, FL 32922 (United States); Moutinho, Helio [National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO 80401 (United States)

    2009-09-15

    The availability and cost of materials, especially of indium can be a limiting factor as chalcopyrite based thin-film solar cells advance in their commercialization. The required amounts of metals can be lowered by using thinner films. When the thickness of the film decreases, there is possibility of remaining only in the small grain region because the coalescence of grains does not have an opportunity to enhance the grain size to the maximum. Solar cell performance in smaller grain chalcopyrite absorber deteriorates due to larger fraction of grain boundaries. Efforts are being made to reduce the thickness while maintaining the comparable performance. This work presents a study of preparation, morphology and other material properties of CIGS2 absorber layers with decreasing thicknesses up to 1.2 {mu}m and its correlation with the device performance. Encouraging results were obtained demonstrating that reasonable solar cell efficiencies (>10%) can be achieved even for thinner CIGS2 thin-film solar cells. (author)

  15. Metal–insulator–metal light absorber: a continuous structure

    International Nuclear Information System (INIS)

    Yan, M

    2013-01-01

    A type of light absorber made of continuous layers of metal and dielectric films is studied. The metal films can have thicknesses close to their skin depths in the wavelength range concerned, which allows for both light transmission and reflection. Resonances induced by multiple reflections in the structure, when combined with the inherent lossy nature of metals, result in strong absorption spectral features. An eigen-mode analysis is carried out for the plasmonic multilayer nanostructures which provides a generic understanding of the absorption features. Experimentally, the calculation is verified by a reflection measurement with a representative structure. Such an absorber is simple to fabricate. The highly efficient absorption characteristics can be potentially deployed for optical filter designs, sensors, accurate photothermal temperature control in a micro-environment and even for backscattering reduction of small particles, etc. (paper)

  16. Fuelling study of CANDU reactors using neutron absorber poisoned fuel

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.J.; Chan, P.K.; Bonin, H.W., E-mail: s25815@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    A comparative fuelling study is conducted to determine the potential gain in operating margin for CANDU reactors incurred by implementing a change to the design of the conventional 37-element natural uranium (NU) fuel. The change involves insertion of minute quantities of neutron absorbers, Gd{sub 2}O{sub 3} and Eu{sub 2}O{sub 3}, into the fuel pellets. The Reactor Fuelling Simulation Program (RFSP) is used to conduct core-following simulations, for the regular 37-element NU fuel, which is to be used as control for comparison. Preliminary results are presented for fuelling with the regular 37-element NU fuel, which indicate constraints on fuelling that may be relaxed with addition of neutron absorbers. (author)

  17. Absorbed bone marrow dose in certain dental radiographic techniques

    International Nuclear Information System (INIS)

    White, S.C.; Rose, T.C.

    1979-01-01

    The absorbed dose of radiation in the bone marrow of the region of the head and neck was measured during intraoral, panoramic, and cephalometric radiography. Panoramic radiography results in a dose a fifth or less than that from an intraoral survey. The use of rectangular collimation reduces the bone marrow absorbed dose from an intraoral survey by about 60%. Comparison of the doses from dental radiography with natural environmental radiation shows that an intraoral set of films results in the same total dose to the bone marrow as 65 days of background exposure. The use of rectangular collimation reduces this value to 25 days. Panoramic radiography results in significantly less irradiation, as it reduces the value to 14 days or fewer. Dental radiography thus involves exposures in the range of variation of natural environmental background values

  18. Absorbed dose assessment in newborns during x-ray examinations

    Science.gov (United States)

    Taipe, Patricia K.; Berrocal, Mariella J.; Carita, Raúl F.

    2012-02-01

    Often a newborn presents breathing problems during the early days of life, i.e. bronchopneumonia, wich are caused in most of cases, by aspirating a mixture of meconium and amniotic fluid. In these cases, it is necessary to make use of a radiograph, requested by the physician to reach a diagnosis. This paper seeks to evaluate the absorbed doses in neonates undergoing a radiograph. For this reason we try to simulate the real conditions in a X-ray room from Lima hospitals. With this finality we perform a simulation made according a questionnaire related to technical data of X-ray equipment, distance between the source and the neonate, and its position to be irradiated. The information obtained has been used to determine the absorbed dose by infants, using the MCNP code. Finally, the results are compared with reference values of international health agencies.

  19. Absorbent agents for clean-up of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Waldmann, J.J.

    1993-01-01

    A method is described for absorbing liquid hydrocarbon from a liquid hydrocarbon-contaminated substrate comprising applying to said contaminated substrate an effective amount of a chemical absorbent composition of formula: A m B n C p wherein A m is an acid leached bentonite in a form of hydrous silicate of alumina modified by a hydrophobic alkyl (C 12 -C 24 ) amine which has been double protonized by an aliphatic acid with C 1 -C 18 carbon atoms in which m = 0 to 100% by weight of the composition; B n is a modified aminoplast resin comprised of cyanoguanidine-melamine-urea-formaldehyde in a foam form in which n is 0 to 100% by weight; and C p is a siliceous support-modified hydrophobic material in which p is 0 to 100% by weight; provided that at least one of m and n is a positive numerical value

  20. Seeking new growth hotspots in absorbing foreign direct investment

    Institute of Scientific and Technical Information of China (English)

    裴长洪

    2009-01-01

    In recent years, China’s service industries have absorbed an increasing amount of foreign direct investment (FDI); foreign investors have taken wholly foreign-owned enterprise (WFOE) as the most preferred vehicle of making investment in China; free ports have become a major source of FDI inflows to China; China’s FDI inflows as a percentage of global FDI inflows have been in decline. In the export-oriented or import-substitution manufacturing industries, China still needs to vigorously absorb FDI in the future. In addition, China should continue opening its infrastructure and social service industries. It is therefore imperative to further improve the institutional and policy environment for foreign investment utilization.

  1. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  2. Photon spectrum and absorbed dose in brain tumor.

    Science.gov (United States)

    Vega-Carrillo, Hector Rene; Silva-Sanchez, Angeles; Rivera-Montalvo, Teodoro

    2016-11-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is and 15.7 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 37.1 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Photon spectrum and absorbed dose in brain tumor

    International Nuclear Information System (INIS)

    Silva S, A.; Vega C, H. R.; Rivera M, T.

    2015-10-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  4. Beam test of ferrite absorber in TRISTAN MR

    International Nuclear Information System (INIS)

    Tajima, T.; Asano, K.; Furuya, T.; Ishi, Y.; Kijima, Y.; Mitsunobu, S.; Sennyu, K.; Takahashi, T.

    1996-06-01

    A study on the effect of beams on the ferrite absorber was performed using TRISTAN MR. The tested absorber consists of a 300 mm-diam. copper pipe with 4 mm-thick ferrite inner layer, which was fabricated with Hot Isostatic Press (HIP) technique. No spark, damage, or degradation were observed up to the highest available single bunch current of 4.4 mA, i.e. 2.8x10 11 electrons per bunch, which is 8.5 times higher than that of KEKB low energy ring. The loss factor showed significant increase with bunch shortening, e.g. 2.6 V/pC at 4 mm was about 40% higher than the value predicted by the calculation assuming Gaussian bunch and no incoming power from outside of the chamber. (author)

  5. Tuned mass absorbers on damped structures under random load

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2008-01-01

    the mass ratio alone, and the damping can be determined subsequently. Only approximate results are available for the influence of damping in the original structure, typically in the form of series expansions. In the present paper it is demonstrated that for typical mass ratios in the order of a few percent......A substantial literature exists on the optimal choice of parameters of a tuned mass absorber on a structure excited by a force or by ground acceleration with random characteristics in the form of white noise. In the absence of structural damping the optimal frequency tuning is determined from...... for the response variance of a structure with initial damping in terms of the mass ratio and both damping ratios. Within this format the optimal tuning of the absorber turns out to be independent of the structural damping, and a simple explicit expression is obtained for the equivalent total damping....

  6. A transformation technique to treat strong vibrating absorbers

    International Nuclear Information System (INIS)

    Sahni, D.C.; Garis, N.S.; Pazsit, I.

    1998-06-01

    Calculation of the neutron noise, induced by small amplitude vibrations of a strong absorber, is a difficult task because the traditional linearization technique cannot be applied. Two methods, based on two different representations of the absorber, were developed earlier to solve the problem. In both methods the rod displacements are described by a Taylor expansion, such that the boundary condition needs only to be considered at the surface of a static rod. Only one of the methods is applicable in two dimensions. In this paper an alternative method is developed and used for the solution of the problem. The essence of the method is a variable transformation by which the moving boundary is transformed into a static one without Taylor expansion. The corresponding equations are solved in a linear manner and the solution is transformed back to the original parameter space. The method is equally applicable in one and two dimensions. The solutions are in complete agreement with those of the previous methods

  7. Laser pushing or pulling of absorbing airborne particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chuji, E-mail: cw175@msstate.edu; Gong, Zhiyong [Mississippi State University, Starkville, Mississippi 39759 (United States); Pan, Yong-Le; Videen, Gorden [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States)

    2016-07-04

    A single absorbing particle formed by carbon nanotubes in the size range of 10–50 μm is trapped in air by a laser trapping beam and concurrently illuminated by another laser manipulating beam. When the trapping beam is terminated, the movement of the particle controlled by the manipulating beam is investigated. We report our observations of light-controlled pushing and pulling motions. We show that the movement direction has little relationship with the particle size and manipulating beam's parameters but is dominated by the particle's orientation and morphology. With this observation, the controllable optical manipulation is now able to be generalized to arbitrary particles, including irregularly shaped absorbing particles that are shown in this work.

  8. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  9. Conical Refraction Bottle Beams for Entrapment of Absorbing Droplets.

    Science.gov (United States)

    Esseling, Michael; Alpmann, Christina; Schnelle, Jens; Meissner, Robert; Denz, Cornelia

    2018-03-22

    Conical refraction (CR) optical bottle beams for photophoretic trapping of airborne absorbing droplets are introduced and experimentally demonstrated. CR describes the circular split-up of unpolarised light propagating along an optical axis in a biaxial crystal. The diverging and converging cones lend themselves to the construction of optical bottle beams with flexible entry points. The interaction of single inkjet droplets with an open or partly open bottle beam is shown implementing high-speed video microscopy in a dual-view configuration. Perpendicular image planes are visualized on a single camera chip to characterize the integral three-dimensional movement dynamics of droplets. We demonstrate how a partly opened optical bottle transversely confines liquid objects. Furthermore we observe and analyse transverse oscillations of absorbing droplets as they hit the inner walls and simultaneously measure both transverse and axial velocity components.

  10. Some comments on the concept of absorbed dose

    International Nuclear Information System (INIS)

    Alvarez R, J.T.

    1998-12-01

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity dε divided by dm, where dε is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted ε. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  11. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  12. Absorbed dose from traversing spherically symmetric, Gaussian radioactive clouds

    International Nuclear Information System (INIS)

    Thompson, J.M.; Poston, J.W.

    1999-01-01

    If a large radioactive cloud is produced, sampling may require that an airplane traverse the cloud. A method to predict the absorbed dose to the aircrew from penetrating the radioactive cloud is needed. Dose rates throughout spherically symmetric Gaussian clouds of various sizes, and the absorbed doses from traversing the clouds, were calculated. Cloud size is a dominant parameter causing dose to vary by orders of magnitude for a given dose rate measured at some distance. A method to determine cloud size, based on dose rate readings at two or more distances from the cloud center, was developed. This method, however, failed to resolve the smallest cloud sizes from measurements made at 1,000 m to 2,000 m from the cloud center

  13. Role of cytogenetic techniques in biological dosimetry of absorbed radiation

    International Nuclear Information System (INIS)

    Rao, B.S.

    2016-01-01

    In most of the radiation accidents, physical dosimetric information is rarely available. Further, most of the accidental exposures are non-uniform involving either partial body or localized exposure to significant doses. In such situations, physical dosimetry does not provide reliable dose estimate. It has now been realized that biological dosimetric techniques can play an important role in the assessment of absorbed dose. In recent years, a number of biological indicators of radiation have been identified. These include the kinetics of onset and persistence of prodromal syndromes (radiation sickness), cytogenetic changes in peripheral blood lymphocytes, hematological changes, biochemical indicators, ESR spectroscopy of biological samples, induction of gene mutations in red blood cells, cytogenetic and physiological changes in skin and neurophysiological changes. In general, dosimetric information is derived by a combination of several different methods, as they have potential to serve as prognostic indicators. The role of cytogenetic techniques in peripheral blood lymphocytes (PBL) as biological indicators of absorbed radiation is reviewed here

  14. Some comments on the concept of absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1998-12-15

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity d{epsilon} divided by dm, where d{epsilon} is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted {epsilon}. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  15. Absorbing phase transitions in deterministic fixed-energy sandpile models

    Science.gov (United States)

    Park, Su-Chan

    2018-03-01

    We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010), 10.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.

  16. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  17. [The role of plastic shock absorbers in dental implantation].

    Science.gov (United States)

    Szücs, A; Divinyi, T; Belina, K; Vörös, G

    1999-01-01

    The mechanical behaviour of different plastics (PE, PP, PI, PA, ABS, POM) was examined by static and dynamic loading. Detection of microdeformations and photoelastic stress analysis served as the examination method. According to the results, polyethylene is unsuitable, however the other plastics, with clauses, are suitable as shock absorbers. Apart from the mechanical investigation photoelastic stress analysis also revealed the benefit of osseointegration in force transmission to the bone.

  18. Shock Absorbers Save Structures and Lives during Earthquakes

    Science.gov (United States)

    2015-01-01

    With NASA funding, North Tonawanda, New York-based Taylor Devices Inc. developed fluidic shock absorbers to safely remove the fuel and electrical connectors from the space shuttles during launch. The company is now employing the technology as seismic dampers to protect structures from earthquakes. To date, 550 buildings and bridges have the dampers, and not a single one has suffered damage in the wake of an earthquake.

  19. Safety implications of anomalous effects of neutron absorbers on criticality

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1987-04-01

    A number of ''anomalies'' in nuclear criticality have been disclosed in recent years, and as new data have become available additional anomalies have come to light. Application of existing data, without familiarity with the anomalies could lead to diminished criticality control, or more costly less efficient control. As neutron absobers are frequently used for criticality control, this paper briefly presents and discusses six apparent anomalies pertaining to the effect of neutron absorbers on the criticality of fissionable material

  20. Optimization of X-ray Absorbers for TES Microcalorimeters

    Science.gov (United States)

    Iyomoto, Naoko; Sadleir, John E.; Figueroa-Feliciano, Enectali; Saab, Tarek; Bandler, Simon; Kilbourne, Caroline; Chervenak, James; Talley, Dorothy; Finkbeiner, Fred; Brekosky, Regis

    2004-01-01

    We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.

  1. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  2. Analysis and simulation of centrifugal pendulum vibration absorbers

    OpenAIRE

    Smith, Emma

    2015-01-01

    When environmental laws are constricted and downsizing of engines has become the reality of the vehicle industry, there needs to be a solution for the rise in torsion vibrations in the drivetrain. These increased levels of torsion vibrations are mostly due to excitations from the firing pulses, which in turn have become increased due to higher cylinder pressures. One of the solutions for further dampening the system is to add a centrifugal pendulum absorber to the flywheel, and predicting the...

  3. Absorbed radiation by various tissues during simulated endodontic radiography

    International Nuclear Information System (INIS)

    Torabinejad, M.; Danforth, R.; Andrews, K.; Chan, C.

    1989-01-01

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures

  4. Benchmark solution of contemporary PWR integral fuel burnable absorbers

    International Nuclear Information System (INIS)

    Stucker, D.L.; Hone, M.J.; Holland, R.A.

    1993-01-01

    This paper presents a closely controlled benchmark solution of the two major contemporary pressurized water reactor integral burnable absorber designs: zirconium diboride (ZrB 2 ) and gadolinia (Gd 2 O 3 ). The comparison is accomplished using self-generating equilibrium cycles with equal energy, equal discharge burnup, and equal safety constraints. The reference plant for this evaluation is a 3411-MW(thermal) Westinghouse four-loop nuclear steam supply system operating with an inlet temperature of 285.9 degrees C, a core coolant mass now rate of 16877.3 kg/s, and coolant pressure of 15.5 MPa. The reactor consists of 193 VANTAGE 5H fuel assemblies that are discharged at a region average burnup of 48.4 GWd/tonne U. Each fuel assembly contains a natural uranium axial blanket 15.24 cm long at the top and the bottom of the fuel rod. The burnable absorber rods are symmetrically radially dispersed within the fuel assembly such that intrabundle power peaking is minimized. The burnable absorber material for both ZrB 2 and Gd 2 O 3 is axially zoned to the central 304.8 cm of the absorber-bearing fuel rods. The fuel management was constrained such that the thermal and safety limitations of F δH q -5 /degrees C were simultaneously achieved. The maximum long-term operating soluble boron concentration was also limited to 446 effective full-power days (EFPDs) including 14 EFPDs of power coastdown were assumed

  5. Linear accelerator with x-ray absorbing insulators

    International Nuclear Information System (INIS)

    Rose, P.H.

    1975-01-01

    Annular insulators for supporting successive annular electrodes in a linear accelerator have embedded x-ray absorbing shield structures extending around the accelerating path. The shield members are disposed to intercept x-ray radiation without disrupting the insulative effect of the insulator members. In preferred forms, the structure comprises a plurality of annular members of heavy metal disposed in an x-ray blocking array, spaced from each other by the insulating substance of the insulator member. (auth)

  6. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    Powell, G.F.; Harper, P.V.; Reft, C.S.; Chen, C.T.; Lathrop, K.A.

    1986-01-01

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO 2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO 2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm 3 ). 15 references, 7 figures, 6 tables

  7. Numerical Modeling of a Wave Energy Point Absorber

    DEFF Research Database (Denmark)

    Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning

    2009-01-01

    The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....

  8. Multilayer detector for measuring absorbed dose in skin

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method of skin dosimetry using multilayer dosimeters is described that allows the skin-depth distribution of absorbed dose to be estimated. A method of quantitative estimation and prediction of the degree of skin radiation damage using a three-layer dosimeter is demonstrated. Dosimeters are holders of tissue-equivalent material that contain photographic film, a scintillator, thermoluminophor, or any other radiation-sensitive element

  9. The Efficacy of Polydioxanone Monofilament Absorbable Suture for Tracheal Anastomosis

    OpenAIRE

    Kawahara, Katsunobu; Yamasaki, Naoya; Yamamoto, Satoshi; Nagayasu, Takeshi; Kusano, Hiroyuki; Akamine, Shinji; Takahashi, Takao; Tomita, Masao

    1994-01-01

    To evaluate the efficacy of polydioxanon absorbable suture for tracheal anastomoses, we performed an experimental study using dose. Eight adult mongrel dogs underwent sleeve resection of the mediastinal trachea. A length of ten to twelve cartilage rings was resected. An end-to-end anastomosis was performed using either interrupted or continuous running 4-0 polydioxanone (PDS) suture. There was no detectable difference bronchoscopically, microangiografically, or histologically, in tracheal ana...

  10. Neutron absorber qualification and acceptance testing from the designer's perspective

    International Nuclear Information System (INIS)

    Bracey, W.; Chiocca, R.

    2004-01-01

    Starting in the mid 1990's, the USNRC began to require less than 100% credit for the 10B present in fixed neutron absorbers spent fuel transport packages. The current practice in the US is to use only 75% of the specified 10B in criticality safety calculations unless extensive acceptance testing demonstrates both the presence of the 10B and uniformity of its distribution. In practice, the NRC has accepted no more than 90% credit for 10B in recent years, while other national competent authorities continue to accept 100%. More recently, with the introduction of new neutron absorber materials, particularly aluminum / boron carbide metal matrix composites, the NRC has also expressed expectations for qualification testing, based in large part on Transnuclear's successful application to use a new composite material in the TN-68 storage / transport cask. The difficulty is that adding more boron than is really necessary to a metal has some negative effects on the material, reducing the ductility and the thermal conductivity, and increasing the cost. Excessive testing requirements can have the undesired effect of keeping superior materials out of spent fuel package designs, without a corresponding justification based on public safety. In European countries and especially in France, 100% credit has been accepted up to now with materials controls specified in the Safety Analysis Report (SAR): Manufacturing process approved by qualification testing Materials manufacturing controlled under a Quality Assurance system. During fabrication, acceptance testing directly on products or on representative samples. Acceptance criteria taking into account a statistical uncertainty corresponding to 3σ. The original and current bases for the reduced 10 B credit, the design requirements for neutron absorber materials, and the experience of Transnuclear and Cogema Logistics with neutron absorber testing are examined. Guidelines for qualification and acceptance testing and process controls

  11. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  12. Control rod drive mechanism with shock absorber for nuclear reactor

    International Nuclear Information System (INIS)

    Chevereau, G.

    1989-01-01

    The mechanism usable in a PWR has a shaft carrying the bar vertically displaceable in the reactor internals and a dash pot with a hydraulic cylinder and a piston. The cylinder has a large diameter perforated upper section to the cylinder, a small diameter lower section, a piston traversed by the control rod sized to fit into the upper section and forced downwards when the control descends. The shock absorbing chamber is defined between the piston and the upper section [fr

  13. Wave-Structure Interactions on Point Absorbers - an experimental study

    DEFF Research Database (Denmark)

    Jakobsen, Morten Møller

    used in the case studies is a pitching point absorber (Wavestar). The central part of the thesis deals with the challenges, choices, and experi- ences gained during the Ph.D. The more in-depth technical details and results are presented in peer-reviewed publications and technical reports. The chal...... that combines waves and current in a meaningful way. The method needs to be inexpensive, easy to implement and reduce the turbulence without distorting the incident waves in a detrimental way....

  14. Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.

    Science.gov (United States)

    Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin

    2016-07-01

    Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pneumatic Adaptive Absorber: Mathematical Modelling with Experimental Verification

    Directory of Open Access Journals (Sweden)

    Grzegorz Mikułowski

    2016-01-01

    Full Text Available Many of mechanical energy absorbers utilized in engineering structures are hydraulic dampers, since they are simple and highly efficient and have favourable volume to load capacity ratio. However, there exist fields of applications where a threat of toxic contamination with the hydraulic fluid contents must be avoided, for example, food or pharmacy industries. A solution here can be a Pneumatic Adaptive Absorber (PAA, which is characterized by a high dissipation efficiency and an inactive medium. In order to properly analyse the characteristics of a PAA, an adequate mathematical model is required. This paper proposes a concept for mathematical modelling of a PAA with experimental verification. The PAA is considered as a piston-cylinder device with a controllable valve incorporated inside the piston. The objective of this paper is to describe a thermodynamic model of a double chamber cylinder with gas migration between the inner volumes of the device. The specific situation considered here is that the process cannot be defined as polytropic, characterized by constant in time thermodynamic coefficients. Instead, the coefficients of the proposed model are updated during the analysis. The results of the experimental research reveal that the proposed mathematical model is able to accurately reflect the physical behaviour of the fabricated demonstrator of the shock absorber.

  16. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    Science.gov (United States)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  17. Low back pain: conservative treatment with artificial shock absorbers.

    Science.gov (United States)

    Wosk, J; Voloshin, A S

    1985-03-01

    A new method of conservative treatment for low back pain (LBP) was studied by follow-up investigation of 382 patients during the last five years. The attempt to reduce repetitive impulsive intervertebral impact in the troublesome S1-L5-4 area by significant improvement of the foot's attenuational capacity through artificial viscoelastic shock absorbing was prompted by the authors' work on decreased capability of LBP spines to attenuate axially propagated walking stresses. Viscoelastic shoe inserts were used in addition to light flexible shoes as artificial shock absorbing devices. Maximal amplitudes of bone oscillation during walking were reduced by about 40% by the viscoelastic inserts. Rapid and surprisingly significant improvement of pain syndrome and patient mobility occurred in about 80% of the patients. The accelerographic patterns recorded on a sacrum of patient with LBP were unusual for a healthy subject; they usually disappeared after treatment in LBP cases. Results suggested that poor walking impact attenuation was a true cause for prolonging intervertebral structures overstrain and consequent degeneration. It seemed logical that as spine damage could be explained primarily by prolonged impulsive overstrain, treatment must include viscoelastic inserts which increase foot shock absorbing capacity and help cushion the spine.

  18. Absorbed dose in fibrotic microenvironment models employing Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zambrano Ramírez, O.D.; Rojas Calderón, E.L.; Azorín Vega, E.P.; Ferro Flores, G.; Martínez Caballero, E.

    2015-01-01

    The presence or absence of fibrosis and yet more, the multimeric and multivalent nature of the radiopharmaceutical have recently been reported to have an effect on the radiation absorbed dose in tumor microenvironment models. Fibroblast and myofibroblast cells produce the extracellular matrix by the secretion of proteins which provide structural and biochemical support to cells. The reactive and reparative mechanisms triggered during the inflammatory process causes the production and deposition of extracellular matrix proteins, the abnormal excessive growth of the connective tissue leads to fibrosis. In this work, microenvironment (either not fibrotic or fibrotic) models composed of seven spheres representing cancer cells of 10 μm in diameter each with a 5 μm diameter inner sphere (cell nucleus) were created in two distinct radiation transport codes (PENELOPE and MCNP). The purpose of creating these models was to determine the radiation absorbed dose in the nucleus of cancer cells, based on previously reported radiopharmaceutical retain (by HeLa cells) percentages of the 177 Lu-Tyr 3 -octreotate (monomeric) and 177 Lu-Tyr 3 -octreotate-AuNP (multimeric) radiopharmaceuticals. A comparison in the results between the PENELOPE and MCNP was done. We found a good agreement in the results of the codes. The percent difference between the increase percentages of the absorbed dose in the not fibrotic model with respect to the fibrotic model of the codes PENELOPE and MCNP was found to be under 1% for both radiopharmaceuticals. (authors)

  19. Absorbable stent: focus on clinical applications and benefits

    Directory of Open Access Journals (Sweden)

    Gonzalo N

    2012-02-01

    Full Text Available Nieves Gonzalo, Carlos MacayaInterventional Cardiology, Cardiovascular Institute. Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clinico San Carlos, Madrid, SpainAbstract: Coronary stents have improved very significantly the immediate and long-term results of percutaneous coronary interventions. However, once the vessel has healed, the scaffolding function of the stent is no longer needed, and the presence of a permanent metallic prosthesis poses important disadvantages. This has led to the idea of creating new devices that are able to provide mechanical support for a determined period and then disappear from the vessel, allowing its natural healing and avoiding the risks associated with having a permanent metallic cage, such as stent thrombosis. Absorbable stents currently appear as one of the most promising fields in interventional cardiology. The present article will review the available clinical evidence regarding these devices at present and their future perspectives.Keywords: absorbable stent, bioresorbable stent, absorb, percutaneous coronary intervention

  20. Integration of a neutral absorber for the LHC point 8

    CERN Document Server

    Santamaria, A; Alemany, R; Burkhardt, H; Cerutti, F

    2014-01-01

    The LHCb detector will be upgraded during the second long shutdown (LS2) of the LHC machine, in order to increase its statistical precision significantly. The upgraded LHCb foresees a peak luminosity of LHL = 1-21033cm-2s-11, with a pileup of ~5. This represents ten times more luminosity and five times more pile up than in the present LHC. With these conditions, the pp-collisions and beam losses will produce a non-negligeable beam-induced energy deposition in the interaction region. More precisely, studies [1] have shown that the energy deposition will especially increase on the D2 recombination dipole, which could bring them close to their safety thresholds. To avoid this, the placement of a minimal neutral absorber has been proposed. This absorber will have the same role as the TAN in the high luminosity Interaction Regions (IR) 1 and 5. This study shows the possible dimensions and location of this absorber, and how it would reduce both the peak power density and total heat load.

  1. Neutron absorbing article and method for manufacture thereof

    International Nuclear Information System (INIS)

    Forsyth, P.F.; Mcmurtry, C.H.; Naum, R.G.

    1980-01-01

    A composite, neutron absorbing, coated article, suitable for installation in storage racks for spent nuclear fuel and for other neutron absorbing applications, includes a backing member, preferably of flexible material such as woven fiberglass cloth, a synthetic organic polymeric coating or a plurality of such coatings on the backing member, preferably of cured phenolic resin, such as phenol formaldehyde or trimethylolphenol formaldehyde and boron carbide particles held to the backing member by the cured coating or a plurality of such coatings. Also within the invention is a method for the manufacture of the neutron absorbing coated article and the use of such an article. In a preferred method the backing member is first coated on both sides thereof with a filling coating of thermosettable liquid phenolic resin, which is then partially cured to solid state, one side of the backing member is then coated with a mixture of thermosettable liquid resin and finely divided boron carbide particles and the resin is partially cured to solid state, the other side is coated with a similar mixture, larger boron carbide particles are applied to it and the resin is partially cured to solid state, such side of the article is coated with thermosettable liquid phenolic resin, the resin is partially cured to solid state and such resin, including previously applied partially cured resins, is cured to final cross-linked and permanently set form

  2. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Wireless device for activation of an underground shock wave absorber

    Science.gov (United States)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  4. A new neutron absorber material for criticality control

    International Nuclear Information System (INIS)

    Wells, Alan H.

    2007-01-01

    A new neutron absorber material based on a nickel metal matrix composite has been developed for applications such as the Transport, Aging, and Disposal (TAD) canister for the Yucca Mountain Project. This new material offers superior corrosion resistance to withstand the more demanding geochemical environments found in a 300,000 year to a million year repository. The lifetime of the TAD canister is currently limited to 10,000 years, reflecting the focus of current regulations embodied in 10 CFR 63. The use of DOE-owned nickel stocks from decommissioned enrichment facilities could reduce the cost compared to stainless steel/boron alloy. The metal matrix composite allows the inclusion of more than one neutron absorber compound, so that the exact composition may be adjusted as needed. The new neutron absorber material may also be used for supplementary criticality control of stored or transported PWR spent fuel by forming it into cylindrical pellets that can be inserted into a surrogate control rod. (authors)

  5. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  6. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  7. Multiple-channel ultra-violet absorbance detector for two-dimensional chromatographic separations.

    Science.gov (United States)

    Lynch, Kyle B; Yang, Yu; Ren, Jiangtao; Liu, Shaorong

    2018-05-01

    In recent years, much research has gone into developing online comprehensive two-dimensional liquid chromatographic systems allowing for high peak capacities in comparable separation times to that of one-dimensional liquid chromatographic systems. However, the speed requirements in the second dimension (2nd-D) still remain one challenge for complex biological samples due to the current configuration of two column/two detector systems. Utilization of multiple 2nd-D columns can mitigate this challenge. To adapt this approach, we need a multiple channel detector. Here we develop a versatile multichannel ultraviolet (UV) light absorbance detector that is capable of simultaneously monitoring separations in 12 columns. The detector consists of a deuterium lighthouse, a flow cell assembly (a 13-channel flow cell fitted with a 13-photodiode-detection system), and a data acquisition and monitoring terminal. Through the use of a custom high optical quality furcated fiber to improve light transmission, precise machining of a flow cell to reduce background stray light through precision alignment, and sensitive electronic circuitry to reduce electronic noise through an active low pass filter, the background noise level is measured in the tens of µAU. We obtain a linear dynamic range of close to three orders of magnitude. Compared to a commercialized multichannel UV light absorbance detector like the Waters 2488 UV/Vis, our device provides an increase in channel detection while residing within the same noise region and linear range. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Dynamical Behavior of a Pseudoelastic Vibration Absorber Using Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Hugo De S. Oliveira

    2017-01-01

    Full Text Available The tuned vibration absorber (TVA provides vibration reduction of a primary system subjected to external excitation. The idea is to increase the number of system degrees of freedom connecting a secondary system to the primary system. This procedure promotes vibration reduction at its design forcing frequency but two new resonance peaks appear introducing critical behaviors that must be avoided. The use of shape memory alloys (SMAs can improve the performance of the classical TVA establishing an adaptive TVA (ATVA. This paper deals with the nonlinear dynamics of a passive pseudoelastic tuned vibration absorber with an SMA element. In this regard, a single degree of freedom elastic oscillator is used to represent the primary system, while an extra oscillator with an SMA element represents the secondary system. Temperature dependent behavior of the system allows one to change the system response avoiding undesirable responses. Nevertheless, hysteretic behavior introduces complex characteristics to the system dynamics. The influence of the hysteretic behavior due to stress-induced phase transformation is investigated. The ATVA performance is evaluated by analyzing primary system maximum vibration amplitudes for different forcing amplitudes and frequencies. Numerical simulations establish comparisons of the ATVA results with those obtained from the classical TVA. A parametric study is developed showing the best performance conditions and this information can be useful for design purposes.

  9. Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Thompson, M.G.; Marinelli, C.; Chu, Y.

    Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance.......Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance....

  10. Innovative energy absorbing devices based on composite tubes

    Science.gov (United States)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  11. Absorbed dose optimization in the microplanar beam radiotherapy

    International Nuclear Information System (INIS)

    Company, F.Z.; Jaric, J.; Allen, B.J.

    1996-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate, small divergence and sharply defined microbeam margins permit investigation of the application of an array of closely spaced, parallel or converging microbeams for radiotherapy. The proposed technique takes advantage of the repair mechanism hypothesis of capillary endothelial cells between alternate microbeam zones, which regenerates the lethally irradiated capillaries. Unlike a pencil beam, more accurate dose calculation, beam width and spacing are essential to minimise radiation damage to normal tissue cells outside the target. The absorbed dose between microbeam zones should be kept below the threshold for irreversible radiation damage. Thus the peak-to-valley ratio for the dose distribution should be optimized. The absorbed dose profile depends on the energy of the incident beam and the composition and density of the medium. Using Monte Carlo computations, the radial absorbed dose of single 24 x 24 μm 2 cross-section X-ray beams of different energies in a tissue/lung/tissue phantom was investigated. The results indicated that at 100 keV, closely spaced square cross-sectional microbeams can be applied to the lung. A bundle of parallel 24 μm-wide planar microbeams spaced at 200 μm intervals provides much more irradiation coverage of tissue than is provided by a bundle of parallel, square cross-sectional microbeam, although the former is associated with much smaller Peak (maximum absorbed dose on the beam axis) -to-Valley ( minimum interbeam absorbed dose ) ratios than the latter. In this study the lateral and depth dose of single and multiple microplanar beams with beam dimensions of width 24 μm and 48 μm and height 2-20 cm with energy of 100 keV in a tissue/lung/tissue phantom are investigated. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (2 x 2 cm 2 to 20 x 20 cm 2 square cross section) with a 150 μm 200 μm and

  12. Absorbers for combined heating and cooling permit new concepts; Absorber zum Kuehlen und Heizen gestatten neue Konzepte

    Energy Technology Data Exchange (ETDEWEB)

    Stadelmann, M. [Verband der Schweizerischen Gasindustrie, Zurich (Switzerland)

    1998-05-01

    Direct-fuelled absorption-type refrigerators are recently being used not only for cold generation but also for heat generation with a flow temperature of 80 C. They can cool, heat, or cool and heat simultaneously, eah with a 50% share. This opens up new fields of application, either as a stand-alone system or combined with a gas engine cogeneration unit and absorber for cold generation. Two examples are presented, i.e. a hotel and a shopping mall. (orig.) [Deutsch] Direktbefeuerte Absorptionskaeltemaschinen erzeugen neuerdings nicht nur Kaelte, sondern auch Heizungswaerme mit 80 C Vorlauftemperatur. Sie koennen kuehlen, heizen oder - bis je 50% der Leistung - beides gleichzeitig. Der Teillastwirkungsgrad beim Kuehlbetrieb ist hoeher als bekannt. Das eroeffnet neue Moeglichkeiten des Einsatzes solcher Geraete, sei es allein oder zusammen mit Gasmotor-BHKW und Absorber zur Kaelteerzeugung. Zwei Beispiele - ein Hotel und ein Einkaufszentrum - werden vorgestellt. (orig.)

  13. ABSORBABLE IRON IN BREAD: PROCEDURES OF ITS AUGMENTATION

    Directory of Open Access Journals (Sweden)

    M SABZEVARY

    2001-12-01

    Full Text Available Introduction: As many as 35 percent of the world population suffer from some degree of iron deficiency anemia. According to recent reports published by WHO and ICN (International Congress of Nutrition 20-40 percent of women are suffering from iron deficiency. Iron deficiency anemia is caused by lack of intake of the necessary doses of Fe+2 called Heme. The recommended intake dose is 10-17 mg Fe + 2/day. In Iran, bread is the main source of daily iron intake. However, the iron content of bread is Fe+3 which is not absorbable. The objectives of this study is to determine the levels of absorbable iron (Fe + 2 in two common types of Iranian bread and identify the means of raising these to an adequate levels.
    Methods: Random sampling method together with the normal distribution curve was employed in testing 120 samples of flour and bread. Quantification was carried out on each sample in duplicate using spectrophotometer at 510 mu, micrometer wave length. The effect of three organic acids (lactic ascorbic and acetic acid converting of Fe+3 to Fe + 2 was investigated. Two groups of bread was tested. One group was baked in tratitional oven (Noon-e-Tanoori and the second group through the common Iranian hot rotating iron plate baking machine (Noon-e-Machini.
    Results: Our results showed that the amount of absorbable Fe+2 in breads baked in rotatory oven (Noon-e-Tanoori is 0.8 ± 0.32 mg and the amount of unabsorbable Fe+3 in dried bread is 2.34 ± 0.25 mg/100 gm while the amount of absorbable Fe + 2 baked in traditional ovens is only 0.3±0.11 mg versus of unabsorbable Fe  + 3 1.9±0.13 mg/100 gm of dried bread. Meanwhile it was found that lactic and ascorbic acids can convert Fe+3 to Fe+2. Therefore, addition of one of these two acids to bread can catalyze conversion of unabsorbable Fe+3 to absorbable Fe + 2.
    Discussion: On the average an Iranian consumes 370 gm of

  14. Combinatorial development of Cu2SnS3 as an earth abundant photovoltaic absorber

    Science.gov (United States)

    Baranowski, Lauryn L.

    The development of high efficiency, earth abundant photovoltaic absorbers is critical if photovoltaics are to be implemented on the TW scale. Although traditional thin films absorbers such as Cu(In,Ga)Se2 and CdTe have achieved over 20% device efficiencies, the ultimately scalability of these devices may be limited by elemental scarcity and toxicity issues. To date, the most successful earth abundant thin film absorber is Cu2ZnSn(S,Se) 4, which has achieved 12.6% efficiency as of 2014. However, chemical complexity and disorder issues with this material have made the path to higher efficiency CZTSSe devices unclear. As a result, many researchers are now exploring alternative earth abundant absorber materials. In this thesis, we apply our "rapid development" methodology to the exploration of alternative photovoltaic absorbers. The rapid development (RD) methodology, consisting of exploration, research, and development stages, uses complementary theory and experiment to assess candidate materials and down-select in each stage. The overall result is that, in the time span of ~2-3 years, we are able to rapidly go from tens of possible absorber materials to 1-2 working PV device prototypes. Here, we demonstrate the RD approach as applied to the Cu-Sn-S system. We begin our investigation of the Cu-Sn-S system by evaluating the thermodynamic stability, electrical transport, electronic structure, and optical and defect properties of candidate materials using complementary theory and experiment. We find that Cu2SnS3 is the most promising absorber candidate because of its strong optical absorption, tunable doping, and wide stability range. Our other candidate compounds suffer from serious flaws that preclude them from being successful photovoltaic absorbers, including too high experimental conductivity (Cu4SnS4), or poor hole transport and low absorption coefficient (Cu4Sn7S16). Next, we investigate the doping and defect physics of Cu2SnS 3. We identify the origins of the

  15. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    Science.gov (United States)

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  16. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  17. A contribution to the investigation of the heat load of shock absorbers of semi-active suspensions in motor vehicles

    Directory of Open Access Journals (Sweden)

    Miroslav D. Demić

    2013-10-01

    Full Text Available Dynamic simulation, based on modeling, has a significant role during the process of vehicle development. It is especially important in the first stages of vehicle design, when relevant vehicle parameters are to be defined. Shock absorbers as executive parts of vehicle semi-active suspension systems suffer thermal loads, which may result in damage and degradation of ther characteristics. Therefore,this paper shows an attempt to analyze converting of mechanical work into heat by using the dynamic simulation method. Introduction Shock absorbers are integral elements of semi-active suspension systems for vehicles (hereinafter SASS. They directly affect the active vehicle safety. The role of shock absorbers is to absorb mechanical vibrations transferred from the road and to ensure the safety of passengers in a vehicle. The kinetic energy of vehicle vibrations transforms into mechanical work or heat in shock absorbers. In practice, in the first stage of vehicle development, the shock absorber parameters are chosen from the condition of damping vibrations of vehicles, but their thermal shock loads should be also taken into account. Motor vehicles have complex dynamic characteristics manifested by spatial movement, parameters change during operation, a number of disturbing influences, backlash, friction, hysteresis, etc. The above-mentioned dynamic phenomena, especially vibration, lead to fatigue of driver and users, reduce the life of the vehicle and its systems, etc. The main objective of the system is to reduce the reliance of the above-mentioned negative effects, improving the vehicle behavior on the road and allow the exploitation of vehicles in a wide range of service conditions. Classical systems cannot satisfiy these conditions, so there was a need to introduce new suspension systems with controlled characteristics (briefly called "semi-active", or "active" systems. Oscillatory model of vehicle The differential equations of vibratory motion of

  18. Application of the extended completeness relation to the absorbing boundary condition

    International Nuclear Information System (INIS)

    Iwasaki, Masataka; Otani, Reiji; Ito, Makoto

    2015-01-01

    The strength function of the linear response by the external field is calculated in the formalism of the absorbing boundary condition (ABC). The dipole excitation of a schematic two-body system is treated in the present study. The extended completeness relation, which is assumed on the analogy of the formulation in the complex scaling method (CSM), is applied to the calculation of the strength function. The calculation of the strength function is successful in the present formalism and hence, the extended completeness relation seems to work well in the ABC formalism. The contributions from the resonance and the non-resonant continuum are also analyzed according to the decomposition of the energy levels in the extended completeness relation. (author)

  19. Study on the millimeter-wave scale absorber based on the Salisbury screen

    Science.gov (United States)

    Yuan, Liming; Dai, Fei; Xu, Yonggang; Zhang, Yuan

    2018-03-01

    In order to solve the problem on the millimeter-wave scale absorber, the Salisbury screen absorber is employed and designed based on the RL. By optimizing parameters including the sheet resistance of the surface resistive layer, the permittivity and the thickness of the grounded dielectric layer, the RL of the Salisbury screen absorber could be identical with that of the theoretical scale absorber. An example is given to verify the effectiveness of the method, where the Salisbury screen absorber is designed by the proposed method and compared with the theoretical scale absorber. Meanwhile, plate models and tri-corner reflector (TCR) models are constructed according to the designed result and their scattering properties are simulated by FEKO. Results reveal that the deviation between the designed Salisbury screen absorber and the theoretical scale absorber falls within the tolerance of radar Cross section (RCS) measurement. The work in this paper has important theoretical and practical significance in electromagnetic measurement of large scale ratio.

  20. Liver Regeneration After Portal Vein Embolization Using Absorbable and Permanent Embolization Materials in a Rabbit Model

    NARCIS (Netherlands)

    van den Esschert, Jacomina W.; van Lienden, Krijn P.; Alles, Lindy K.; van Wijk, Albert C.; Heger, Michal; Roelofs, Joris J.; van Gulik, Thomas M.

    2012-01-01

    Objective: To compare the safety and hypertrophy response after portal vein embolization (PVE) using 2 absorbable and 3 permanent embolization materials. Background: Portal vein embolization is used to increase future remnant liver volume preoperatively. Application of temporary, absorbable