WorldWideScience

Sample records for monomers ag2x agx

  1. Mechanism of nitric acid generation on Ag-X Zeolite

    International Nuclear Information System (INIS)

    Kanazawa, T.; Kishimoto, T.; Haseba, S.; Mitoh, Y.; Itoh, S.; Nakai, I.

    1983-01-01

    When Ag-X Zeolite is used for the removal of iodine from the off gas streams of nuclear facilities, it is possible that nitric acid is formed on Ag-X Zeolite from co-existing nitrogen dioxide and water vapor. If nitric acid is formed on the surface of Ag-X zeolite, Ag-X zeolite is damaged and is not able to operate for a long time. When Ag-X zeolite is used in NO 2 -O 2 -H 2 O mixture, the nitric acid generation reaction is varied, depending upon the reaction temperature, and concentration of NO 2 and H 2 O. At a temperature of more than 40 deg. C, however, only the surface reaction will be progressed on the zeolite surface. The generation of nitric acid solution on the zeolite can be forecasted through the relationship between the concentration of nitric acid solution, equilibrium vapor pressure of H 2 O, and equilibrium vapor pressure of HNO 3 . Concerning the surface reaction caused on the zeolite, the adsorption water reacts on NO 2 , and the resulting HNO 3 is adsorbed firmly by the zeolite, which is thought to interfere with the surface reaction for generation of the HNO 3 . When the adsorption bed is long, the time required for adsorbed HNO 3 to saturate is increased in proportion to the bed length

  2. Removal of I by adsorption with AgX (Ag-impregnated X Zeolite) from high-radioactive seawater waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Lee, Keun Young; Kim, Kwang Wook; Kim, Hyung Ju; Kim, Ik Soo; Chung, Dong Yong; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study aimed to the adsorption-removal of high- radioactive iodide (I) contained in the initially generated high-radioactive seawater waste (HSW), with the use of AgX (Ag-impregnated X zeolite). Adsorption of I by AgX (hereafter denoted as AgX-I adsorption) was increased by increasing the Ag-impregnated concentration in AgX, and its concentration was suitable at about 30 wt%. Because of AgCl precipitation by chloride ions contained in seawater waste, the leaching yields of Ag from AgX (Ag-impregnated concentration : about 30-35 wt%) was less than those in distilled water (< 1 mg/L). AgX-I adsorption was above 99% in the initial iodide concentration (Ci) of 0.01-10 mg/L at m/V (ratio of weight of adsorbent to solution volume)=2.5 g/L. This shows that efficient removal of I is possible. AgX-I adsorption was found to be more effective in distilled water than in seawater waste, and the influence of solution temperature was insignificant. Ag-I adsorption was better described by a Freundlich isotherm rather than a Langmuir isotherm. AgX-I adsorption kinetics can be expressed by a pseudo-second order rate equation. The adsorption rate constants (k2) decreased by increasing Ci, and conversely increased by increasing the ratio of m/V and the solution temperature. This time, the activation energy of AgX-I adsorption was about 6.3 kJ/mol. This suggests that AgX-I adsorption is dominated by physical adsorption with weaker bonds. The evaluation of thermodynamic parameters (a negative Gibbs free energy and a positive Enthalpy) indicates that AgX-I adsorption is a spontaneous reaction (forward reaction), and an endothermic reaction indicating that higher temperatures are favored.

  3. Development of high efficiency filtered containment venting system by using AgX

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Fujii, Yasuhiro; Chiba, Go; Tsuji, Masashi; Ishii, Tasuku

    2014-01-01

    Fukushima Daiichi NPP accident would be terminated, if sufficient accident countermeasures, such as water proof door, mobile power, etc. In case of Europe, it had already installed the heat removal system and filtered containment venting system (FCVS) from the lessons of TMI and Chernobyl Accidents. Decay heat removal system and CV spray cooling system with FCVS are ensured by using mobile generators and heat exchangers to keep the ultimate heat sink even in any natural disaster, such as large earthquake, big tsunami, sudden flooding etc. In this paper we introduce high decontamination factor FCVS that used Silver Zeolite named AgX, developed by Rasa Industries, Ltd. Hokkaido University has tested wet type FCVS using venturi scrubber in water pool and dry type FCVS using metallic filter for 1st stage, and AgX for 2nd stage. Since the AgX needs super heat steam, it is possible to heat up steam by heat exchanger. It is confirmed by TRAC analysis. (author)

  4. Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3

    Science.gov (United States)

    Zhang, Min; Wei, Zhan-Tao

    2018-03-01

    Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.

  5. Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3

    Science.gov (United States)

    Zhang, Min; Wei, Zhan-Tao

    2018-05-01

    Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.

  6. Opposite effect of photocorrosion on photocatalytic performance among various AgxMyOz/TiO2 (M = C, P) photocatalysts: A novel effective method for preparing Ag/TiO2 composite

    Science.gov (United States)

    Feng, Caixia; Pang, Yuhua; Wang, Yan; Sun, Mingming; Zhang, Chenyan; Zhang, Ling; Zhou, Yanmei; Li, Deliang

    2016-07-01

    Three kinds of hybrids, Ag2CO3/TiO2, Ag2C2O4/TiO2 and Ag3PO4/TiO2 comprising of P25-TiO2 and silver-containing photocatalyst, (together coded as AgxMyOz/TiO2 (M = C, P)) were prepared via a facile precipitation method. The photocatalytic activity and stability of the as-prepared AgxMyOz/TiO2 was compared by monitoring the oxidation of propylene under visible light irradiation. Results showed that both Ag2CO3/TiO2 and Ag2C2O4/TiO2 exhibit perfect performance with a high propylene degradation removal rate of 88% and 78%, respectively, during four successive experimental runs. On the contrary, for Ag3PO4/TiO2, the photocatalytic activity gradually declines to 8% from 32% under the same conditions. In order to explore the reason for the above remarkable difference in activity and stability over AgxMyOz/TiO2, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV-vis diffuse reflectance spectroscopy (DRS) were used to investigate the change of AgxMyOz/TiO2 before and after irradiation. It was found that three silver-containings, Ag2CO3, Ag2C2O4 and Ag3PO4 on the surface of TiO2, all experienced photo-corrosion to various extents during irradiation process. Surprisingly, the effect of photo-corrosion on visible light activity and stability among various AgxMyOz/TiO2 is very different. For both Ag2CO3 and Ag2C2O4, they are easily decomposed into metallic Ag and CO2, and gaseous CO2 escaped from catalyst leaving silver nanoparticles on the surface of TiO2 resulted in the formation of plasmonic photocatalyst Ag/TiO2. The synergetic effect between surface plasma resonance of silver and interfacial electron transfer over the obtained Ag/TiO2 heterojunctions is in favor of the superior photocatalytic performance under visible light. While for Ag3PO4/TiO2, Ag3PO4 on the surface of TiO2 is partially photo-decomposed into Ag and phosphorus oxide and the phosphorus oxide covering on the surface of undecomposed Ag3PO4/TiO2 deactivates its photocatalytic performance

  7. Effects of composition modulation on the luminescence properties of Eu(3+) doped Li1-xAgxLu(MoO4)2 solid-solution phosphors.

    Science.gov (United States)

    Cheng, Fangrui; Xia, Zhiguo; Molokeev, Maxim S; Jing, Xiping

    2015-11-07

    Double molybdate scheelite-type solid-solution phosphors Li1-xAgxLu1-y(MoO4)2:yEu(3+) were synthesized by the solid state reaction method, and their crystal structures and luminescence properties were investigated in detail. The composition modulation and structural evolution of this series of samples were studied and the selected AgEu(MoO4)2, AgLu(MoO4)2, LiLu(MoO4)2 and LiEu(MoO4)2 phases were analyzed based on the Rietveld refinement. Depending on the variation of the Li/Ag ratio in Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors, the difference in the luminescence properties of Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors was ascribed to two factors, one reason could be assigned to the coupling effect and the nonradiative transition between the energy levels of LixAg1-xLu(MoO4)2 matrices and the activator Eu(3+), another could be due to the near ultraviolet energy absorption and transmission efficiency between the charge-transfer (CT) band of O(2-)-Mo(6+) and the 4f → 4f emissive transitions of Eu(3+). The ultraviolet-visible diffuse reflection spectra (UV-vis DRS) and Raman spectra analysis were also used to verify the above mechanism.

  8. LaCu6-xAgx : A promising host of an elastic quantum critical point

    Science.gov (United States)

    Poudel, L.; Cruz, C. de la; Koehler, M. R.; McGuire, M. A.; Keppens, V.; Mandrus, D.; Christianson, A. D.

    2018-05-01

    Structural properties of LaCu6-xAgx have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P21 / c) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu6-xAgx decrease with Ag composition until the monoclinic phase is completely suppressed at xc = 0.225 . All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu6-xAgx .

  9. Fabrication of AgX-loaded Ag2CO3 (X = Cl, I) composites and their efficient visible-light-driven photocatalytic activity

    International Nuclear Information System (INIS)

    Xu, Hui; Zhu, Jiaxiang; Song, Yongxiu; Zhu, Tingting; Zhao, Wenkai; Song, Yanhua; Da, Zulin; Liu, Chengbao; Li, Huaming

    2015-01-01

    Highlights: • The novel AgX/Ag 2 CO 3 composites have been synthesized by ion exchange reaction. • AgX/Ag 2 CO 3 exhibit higher photoactivity and stability than that of Ag 2 CO 3 . • The band structure of AgX/Ag 2 CO 3 is beneficial to improve the photoactivity. - Abstract: The novel visible-light-driven AgX/Ag 2 CO 3 (X = Cl, I) hybrid materials were synthesized by ion exchange reaction. The physical and chemical properties of the catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), diffuse-reflection spectra (DRS) and photocurrent techniques. The as-prepared AgX/Ag 2 CO 3 (X = Cl, I) composites showed higher photocatalytic activity than that of the pure Ag 2 CO 3 photocatalyst under visible light irradiation (λ ⩾ 400 nm) in the process of methylene blue (MB) degradation. The optimal mass percentage of AgCl and AgI in the AgX/Ag 2 CO 3 (X = Cl, I) composite was 20.54 wt% and 40 wt%, respectively. The enhancement of photocatalytic activity was attributed to the suitable band potential between AgX and Ag 2 CO 3 , which was beneficial to increase the separation efficiency of electrons and holes. Besides, the photocatalytic mechanism of AgX/Ag 2 CO 3 (X = Cl, I) composites was also proposed

  10. Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light.

    Science.gov (United States)

    Shi, Huixian; Chen, Jiangyao; Li, Guiying; Nie, Xin; Zhao, Huijun; Wong, Po-Keung; An, Taicheng

    2013-08-14

    A series of novel well-defined Ag/AgX (X = Cl, Br, I) loaded carbon nanotubes (CNTs) composite photocatalysts (Ag/AgX-CNTs) were fabricated for the first time via a facile ultrasonic assistant deposition-precipitation method at the room temperature (25 ± 1 °C). X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption-desorption analysis, scanning electron microscopy, and ultraviolet-visible light absorption spectra analysis were used to characterize the structure, morphology, and optical properties of the as-prepared photocatalysts. Results confirmed the existence of the direct interfacial contact between Ag/AgX nanoparticles and CNTs, and Ag/AgX-CNTs nanocomposites exhibit superior absorbance in the visible light (VL) region owing to the surface plasmon resonance (SPR) of Ag nanoparticles. The fabricated composite photocatalysts were employed to remove 2,4,6-tribromophenol (TBP) in aqueous phase. A remarkably enhanced VL photocatalytic degradation efficiency of Ag/AgX-CNTs nanocomposites was observed when compared to that of pure AgX or CNTs. The photocatalytic activity enhancement of Ag/AgX-CNTs was due to the effective electron transfer from photoexcited AgX and plasmon-excited Ag(0) nanoparticles to CNTs. This can effectively decrease the recombination of electron-hole pairs, lead to a prolonged lifetime of the photoholes that promotes the degradation efficiency.

  11. Influence of alternative cations distribution in AgxLi96-x-LSX on dehydration kinetics and its selective adsorption performance for N2 and O2

    Science.gov (United States)

    Panezai, Hamida; Sun, Jihong; Jin, Xiaoqi

    2016-12-01

    Adsorption characteristics of pure gases N2 and O2 on various silver exchanged low silica X-type (AgxLi96-x-LSX) zeolites were investigated. The equilibrium adsorption isotherms of N2 and O2 were measured at 273 and 298 K. Textual and structural properties of parent and resultant AgxLi96-x-LSX were characterized by XRD, BET surface area, and SEM techniques. Kinetics of their thermal dehydration were studied by exploiting thermogravimetric and differential data (TG-DTG) obtained at three heating rates (5, 10 and 15 K) using two model-free (Kissinger and Flynn-Wall-Ozawa) and one model fitting (Coats-Redfern) methods. Forty one mechanism functions were used to evaluate kinetic triplet (activation energy, frequency factor, and most probable mechanism/model) for different stages of dehydration. Results revealed that the impact of very small content of silver on the adsorption of N2 is pronounced and attributed to weak chemical bonds formed between N2 and Ag+ clusters due to strong adsorption of N2 at low pressure, whereas O2 adsorption is affected to a negligible extent. In addition, the N2/O2 adsorption selectivity shows unexpected low values for Ag87.08Li7.94Na0.98-LSX with higher Ag+ content (91.00 %), which might be due to low crystalline water content as well as Ag+ clusters located at SIII sites. N2 adsorption strongly depends on temperature as higher adsorption occurs at low temperature 273 K as compared to 298 K.

  12. CO Oxidation by Subnanometer AgxAu3–x Supported Clusters via Density Functional Theory Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R.; Sementa, Luca; Barcaro, Giovanni; Vajda, S.; Apra, Edoardo; Fortunelli, Alessandro

    2012-09-07

    The activity of AgxAu3–x/MgO(100) clusters in CO oxidation is investigated computationally via systematic sampling techniques. It is found that these subnanometer species transform after ligand adsorption into reaction complexes which catalyze CO oxidation through a variety of different mechanisms, occurring via both Langmuir–Hinshelwood and Eley–Rideal paths and in some cases directly involving the oxide support. The alloyed Ag2Au1 cluster is proposed as the best catalyst in terms of efficiency and robustness.

  13. Structural and superconducting properties of YBa2Cu3-xMxOy (M=Ag, Al

    Directory of Open Access Journals (Sweden)

    S Falahati

    2009-08-01

    Full Text Available   Samples of YBa2Cu3-xAgxOy with x=0, 0.1, 0.15, 0.2, 0.3 and samples of YBa2Cu3-xAlxOy with x=0, 0.01, 0.02, 0.03 and 0.045 are prepared by the sol-gel method. Structural and superconducting properties of samples are studied by electrical resistivity (R-T, X-ray diffraction (XRD and scanning electron microscopy (SEM. All the samples show transition to superconducting state and the transition temperatures of the samples increased with increasing Ag doping up to x=0.15. R-T measurements show a small decrease of TC (zero with increasing Al doping up to x=0.02, and followed by a faster decrease with increasing doping concentration. YBCO grains are better linked with increasing Ag doping. So, Ag has positive effects in superconducting properties of YBCO. The crystal structure of samples was refined by MAUD. These results show tha, Ag is substituted for Cu(1 in YBCO. According to these analysis, we introduce x=0.15 as the optimum value for doping concentration .

  14. Liquid -to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available We report results from molecular dynamics (MD studies concerning the microscopic structure of the ternary, bulk metallic glass-forming Cu55-x Zr45Agx (x=0,10,20 alloys using tight-binding potentials. Understanding of the nature of Glass Forming Ability (GFA of studied alloys, GFA parameters, glass transition temperature (T-g, melting temperature (T-m, reduced glass transition temperature (T-g/T-m, the supercooled liquid region and other parameters were simulated and compared with experiments. The computed pair distribution functions reproduce well experimental x-ray data of Inoue and co-workers. Structure analysis of the Cu-Zr-Ag alloy based on MD simulation will be also presented

  15. Elastic, vibration and thermodynamic properties of Cu1‑x Ag x InTe2 (x = 0, 0.25, 0.5, 0.75 and 1) chalcopyrite compounds via first principles

    Science.gov (United States)

    Zhong, Yuhan; Wang, Peida; Mei, Huayue; Jia, Zhenyuan; Cheng, Nanpu

    2018-06-01

    CuInTe2 chalcopyrite compound is widely used in the fields of optoelectronics and pyroelectricity, and doping atoms can further improve the physical properties of the CuInTe2 compound. For all we know, this is the first time that the elastic behaviors and lattice dynamical properties of Ag-doped CuInTe2 compounds with the tetragonal system are determined theoretically. The elastic, lattice dynamical and thermal properties of Cu1‑x Ag x InTe2 (x = 0, 0.25, 0.5, 0.75 and 1) compounds have been investigated by using density functional theory. The obtained elastic constants of Cu1‑x Ag x InTe2 compounds indicate that these compounds are mechanically stable and elastic anisotropic. The anisotropy of the {001} plane is more obvious than those of the {100} and {010} planes. Additionally, with increasing Ag doping concentrations, the bulk and shear moduli of Cu1‑x Ag x InTe2 compounds decrease and their toughness improves. The phonon spectra and density of states reveal that Cu (or Ag) atoms in Cu1‑x Ag x InTe2 compounds form chemical bonds with Te atoms, and Cu-Te bonds are gradually replaced by Ag-Te bonds with increasing Ag doping concentration. Vibration modes of Cu1‑x Ag x InTe2 compounds at the {{Γ }} point in the Brillouin zone show that each Cu1‑x Ag x InTe2 (x = 0 and 1) crystal includes five irreducible representations (A1, A2, B1, B2 and E). As for Cu1‑x Ag x InTe2 (x = 0.25, 0.5 and 0.75) compounds, each crystal has three irreducible representations (A, B and E). The atomic displacements of several typical phonon modes in CuInTe2 crystals have been analyzed to deepen the understanding of lattice vibrations in Cu1‑x AgxInTe2 compounds. With increasing Ag doping concentration, the Debye temperatures of Cu1‑x Ag x InTe2 compounds decrease, while their heat capacities increase.

  16. Effect of heavy Ag doping on the physical properties of ZnO

    Science.gov (United States)

    Hou, Qingyu; Zhao, Chunwang; Jia, Xiaofang; Xu, Zhenchao

    2018-04-01

    The band structure, density of state and absorption spectrum of Zn1‑xAgxO (x = 0.02778, 0.04167) were calculated. Results indicated that a higher doping content of Ag led to a higher total energy, lower stability, higher formation energy, narrower bandgap, more significant red shift of the absorption spectrum, higher relative concentration of free hole, smaller hole effective mass, lower mobility and better conductivity. Furthermore, four types of model with the same doping content of double Ag-doped Zn1‑xAgxO (x = 0.125) but different manners of doping were established. Two types of models with different doping contents of double Ag-doped Zn1‑xAgxO (x = 0.0626, 0.0833) but the same manner of doping, were also established. Under the same doping content and different ordering occupations in Ag double doping, the doped system almost caused magnetic quenching upon the nearest neighbor -Ag-O-Ag- bonding at the direction partial to the a- or b-axis. Upon the next-nearest neighbor of -Ag-O-Zn-O-Ag- bonding at the direction partial to the c-axis, the total magnetic moment of the doped system increased, and the doped system reached a Curie temperature above the room-temperature. All these results indicated that the magnetic moments of Ag double-doped ZnO systems decreased with increased Ag doping content. Within the range of the mole number of the doping content of 0.02778-0.04167, a greater Ag doping content led to a narrower bandgap of the doped system and a more significant red shift in the absorption spectrum. The absorption spectrum of the doped ZnO system with interstitial Ag also shows a red shift.

  17. Silver nanoparticles from silver halide photography to plasmonics

    CERN Document Server

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  18. Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2).

    Science.gov (United States)

    Rahmouni, H; Smari, M; Cherif, B; Dhahri, E; Khirouni, K

    2015-06-14

    This study presents the electrical properties, complex impedance analysis and dielectrical behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Transport measurements indicate that all the samples have a semiconductor-like behavior. The metal-semiconductor transition is not observed across the whole temperature range explored [80 K-700 K]. At a specific temperature, a saturation region was marked in the σ (T) curves. We obtained a maximum σdc value at ambient temperature with the introduction of 20% Ag content. Two hopping models were applied to study the conduction mechanism. We found that activation energy (Ea) related to ac-conductivity is lower than the Ea implicated in dc-conductivity. Complex impedance analysis confirms the contribution of grain boundary to conductivity and permits the attribution of grain boundary capacitance evolution to the temperature dependence of the barrier layer width. From the temperature dependence of the average normalized change (ANC), we deduce the temperature at which the available density of trapped charge states vanishes. Such a temperature is close to the temperature at which the saturation region appears in σ(T) curves. Moreover, complex impedance analysis (CIA) indicates the presence of electrical relaxation in materials. It is noteworthy that relaxation species such as defects may be responsible for electrical conduction. The dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites has a Debye-like relaxation with a sharp decrease in the real part of permittivity at a frequency where the imaginary part of permittivity (ε'') and tg δ plots versus frequency demonstrate a relaxation peak. The Debye-like relaxation is explained by Maxwell-Wagner (MW) polarization. Experimental results are found to be in good agreement with the Smit and Wijn theory.

  19. Performance test of silver ion-exchanged zeolite for the removal of gaseous radioactive methyl iodide at high temperature condition

    International Nuclear Information System (INIS)

    Byung-Seon Choi; Geun-Il Park; Jung-Won Lee; Ho-Yeon Yang; Seung-Kon Ryu

    2003-01-01

    Performance tests of silver ion-exchanged zeolite (AgX) adsorbent for the control of radioiodine gas generated from a high-temperature process were carried out using both non-radioactive and a radioactive methyl iodide tracers. From the identification of SEM-EDAX analysis, an experimental result of silver ion-exchanged ratio containing 10∼30 wt% of Ag was fit to that calculated by the weight increment, and it was confirmed that the silver was uniformly distributed inside the pores of the adsorbent. Demonstration test of AgX-10 adsorbent using radioactive methyl iodide tracer was performed. The removal efficiency of radioiodine with AgX-10 in the temperature ranges of 150 to 300 deg C was in the ranges of 99.9% to 99.99%, except for 300 deg C. The influence of the long-term weathering and the poisoning with NO 2 gas (200 ppm) on adsorption capacity of AgX-10 was also analyzed. The removal efficiency of radioactive methyl iodide by AgX-10 weathered for 14 weeks was 99.95%. Long-term poisoning test showed that the adsorption efficiency of methyl iodide started to decrease after 10 weeks, and the removal efficiency of radioiodine by AgX-10, poisoned for 16 weeks, was 99% (DF=100). (author)

  20. FLUX PINNING EFFECTS IN Ag-DOPED YBCO (123 SUPERCONDUCTOR

    Directory of Open Access Journals (Sweden)

    Madelen Pérez

    2010-07-01

    Full Text Available Polycrystalline samples of Ag+-doped YBCO (123 (YBa2 (Cu1-xAgx3O7-δwith 0≤x≤0.3 were produced by solid state reaction method. The Ag- doped YBCO samples showed higher critical current densities (Jc with a Jc maximum for samples doped with x=0.05. This behavior can be assigned to an increase of pinning forces. The irreversibility temperature (Tirr, also increased in doped samples as a function of Ag content, with the highest temperature for the sample doped with x=0.05, wich correlates well with the observed Jc increasing. However, samples doped with x>0.05 displayed a decreasing of electrical properties (less Tirr, less Jc, etc. atributed to an excess of Ag in the grain boundaries which, reduces the grain sizes and increases the number of weak- links.

  1. Structural Defects of Silver Hollandite, Ag(x)Mn8O(y), Nanorods: Dramatic Impact on Electrochemistry.

    Science.gov (United States)

    Wu, Lijun; Xu, Feng; Zhu, Yimei; Brady, Alexander B; Huang, Jianping; Durham, Jessica L; Dooryhee, Eric; Marschilok, Amy C; Takeuchi, Esther S; Takeuchi, Kenneth J

    2015-08-25

    Hollandites (OMS-2) are an intriguing class of sorbents, catalysts, and energy storage materials with a tunnel structure permitting one-dimensional insertion and deinsertion of ions and small molecules along the c direction. A 7-fold increase in delivered capacity for Li/AgxMn8O16 electrochemical cells (160 versus 23 mAh/g) observed upon a seemingly small change in silver content (x ∼1.1 (L-Ag-OMS-2) and 1.6 (H-Ag-OMS-2)) led us to characterize the structure and defects of the silver hollandite material. Herein, Ag hollandite nanorods are studied through the combined use of local (atomic imaging, electron diffraction, electron energy-loss spectroscopy) and bulk (synchrotron based X-ray diffraction, thermogravimetric analysis) techniques. Selected area diffraction and high resolution transmission electron microscopy show a structure consistent with that refined by XRD; however, the Ag occupancy varies significantly even within neighboring channels. Both local and bulk measurements indicate a greater quantity of oxygen vacancies in L-Ag-OMS-2, resulting in lower average Mn valence relative to H-Ag-OMS-2. Electron energy loss spectroscopy shows a lower Mn oxidation state on the surface relative to the interior of the nanorods, where the average Mn valence is approximately Mn(3.7+) for H-Ag-OMS-2 and Mn(3.5+) for L-Ag-OMS-2 nanorods, respectively. The higher delivered capacity of L-Ag-OMS-2 may be related to more oxygen vacancies compared to H-Ag-OMS-2. Thus, the oxygen vacancies and MnO6 octahedra distortion are assumed to open the MnO6 octahedra walls, facilitating Li diffusion in the ab plane. These results indicate crystallite size and surface defects are significant factors affecting battery performance.

  2. The Effect of Ag Addition on the Enhancement of the Thermal and Mechanical Properties of CuZrAl Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Tsan-Man Chung

    2016-09-01

    Full Text Available In this study, the thermal and mechanical properties of Cu50−xZr43Al7Agx (x = 0, 3, 4, 5, 6 bulk metallic glasses (BMGs are investigated by using an X-ray diffractometer (XRD, a differential scanning calorimeter (DSC, differential thermal analysis (DTA, a Vickers hardness tester, a material test system (MTS, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Cu50−xZr43Al7Agx (x = 0, 3, 4, 5, 6 BMGs were made by arc-melting and an injection casting process. The results revealed that the glass transition temperature (Tg and the crystallization temperature (Tx of CuZrAl alloy decreased with the Ag addition. Hence, the supercooled liquid region and γ of Cu45Zr43Al7Ag5 alloy increased to 76 K and 0.42, respectively. The thermal stability and glass forming ability of CuZrAlAg BMG alloys were enhanced by the microalloyed Ag content. The room temperature compressive fracture strength and strain measured of Cu47Zr43Al7Ag3 were about 2200 MPa and 2.1%, respectively. The distribution of vein patterns and the formation of nanocrystalline phases on the fracture surface of Cu47Zr43Al7Ag3 alloy can be observed by SEM and TEM to be significant, indicating a typical ductile fracture behavior and an improved plasticity of alloys with the addition of microalloyed Ag from 0 to 6 atom %.

  3. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    DEFF Research Database (Denmark)

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao Jackie

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied......, indicating a significant improvement compared with the non-doped CuAlO2 sample...

  4. Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1 - 5, 147) and monometallic Au and Ag low-energy surfaces*

    Science.gov (United States)

    Gould, Anna L.; Catlow, C. Richard A.; Logsdail, Andrew J.

    2018-02-01

    Density functional theory calculations have been performed to investigate the use of CO as a probe molecule for the determination of the structure and composition of Au, Ag and AuAg nanoparticles. For very small nanoclusters (x = 1 - 5), the CO vibrational frequencies can be directly correlated to CO adsorption strength, whereas larger 147-atom nanoparticles show a strong energetic preference for CO adsorption at a vertex position but the highest wavenumbers are for the bridge positions. We also studied CO adsorption on Au and Ag (100) and (111) surfaces, for a 1 monolayer coverage, which proves to be energetically favourable on atop only and bridge positions for Au (100) and atop for Ag (100); vibrational frequencies of the CO molecules red-shift to lower wavenumbers as a result of increased metal coordination. We conclude that CO vibrational frequencies cannot be solely relied upon in order to obtain accurate compositional analysis, but we do propose that elemental rearrangement in the core@shell nanoclusters, from Ag@Au (or Au@Ag) to an alloy, would result in a shift in the CO vibrational frequencies that indicate changes in the surface composition. Contribution to the Topical Issue "Shaping Nanocatalysts", edited by Francesca Baletto, Roy L. Johnston, Jochen Blumberger and Alex Shluger.Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80280-7

  5. Synthesis and Characterization of Ag-Ag2O/TiO2@polypyrrole Heterojunction for Enhanced Photocatalytic Degradation of Methylene Blue

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-05-01

    Full Text Available Hybrid multi-functional nanomaterials comprising two or more disparate materials have become a powerful approach to obtain advanced materials for environmental remediation applications. In this work, an Ag-Ag2O/TiO2@polypyrrole (Ag/TiO2@PPy heterojunction has been synthesized by assembling a self-stabilized Ag-Ag2O (p type semiconductor (denoted as Ag and polypyrrole (π-conjugated polymer on the surface of rutile TiO2 (n type. Ag/TiO2@PPy was synthesized through simultaneous oxidation of pyrrole monomers and reduction of AgNO3 in an aqueous solution containing well-dispersed TiO2 particles. Thus synthesized Ag/TiO2@PPy was characterized using X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, and UV-Vis diffuse reflectance spectroscopy (UV-vis DSR. The photocatalytic activity of synthesized heterojunction was investigated for the decomposition of methylene blue (MB dye under UV and visible light irradiation. The results revealed that π-conjugated p-n heterojunction formed in the case of Ag/TiO2@PPy significantly enhanced the photodecomposition of MB compared to the p-n type Ag/TiO2 and TiO2@PPy (n-π heterojunctions. A synergistic effect between Ag-Ag2O and PPy leads to higher photostability and a better electron/hole separation leads to an enhanced photocatalytic activity of Ag/TiO2@PPy under both UV and visible light irradiations.

  6. The structure and band gap design of high Si doping level Ag1−xGa1−xSixSe2 (x=1/2)

    International Nuclear Information System (INIS)

    Zhang, Shiyan; Mei, Dajiang; Du, Xin; Lin, Zheshuai; Zhong, Junbo; Wu, Yuandong; Xu, Jingli

    2016-01-01

    Ag 1−x Ga 1−x Si x Se 2 solutions with high Si doping level (x=1/2) are considered and new compound AgGaSiSe 4 has been synthesized. It crystallizes in space group Aea2 and possesses very long axis of a=63.06(1)Å. The three-dimensional framework in AgGaSiSe 4 is composed of AgSe 3 trigonal planar units, AgSe 4 tetrahedra and MSe 4 (M=Si, Ga) tetrahedra. AgGaSiSe 4 is a congruently melting compound with the melt temperature of 759 °C. The diffuse reflectance measurements reveal the band gap of 2.63 eV in AgGaSiSe 4 and the value is 0.33 eV larger than that of Ag 3 Ga 3 SiSe 8 (2.30 eV). - Graphical abstract: The Ag 1−x Ga 1−x Si x Se 2 with high Si doping level (x=1/2) has been studied and the new compound AgGaSiSe 4 was synthesized for the first time. AgGaSiSe 4 crystallizes in a new structure type in space group Aea2 and adopts a three-dimensional framework consisting of AgSe 3 trigonal planar units, AgSe 4 tetrahedra and MSe 4 (M=Si, Ge) tetrahedra. Display Omitted - Highlights: • Study of Ag 1−x Ga 1−x Si x Se 2 with high Si doping level (x=1/2). • Successful synthesis of new compound named AgGaSiSe 4 . • AgGaSiSe 4 crystallizes in space group Aea2 and adopts a three-dimensional framework. • The energy band gap of AgGaSiSe 4 is enlarged compared with Ag 3 Ga 3 SiSe 8 .

  7. The Effect of (Ag, Ni, Zn-Addition on the Thermoelectric Properties of Copper Aluminate

    Directory of Open Access Journals (Sweden)

    Jianxiao Xu

    2010-01-01

    Full Text Available Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied. The addition of Ag and Zn was found to enhance the formation of CuAlO2 phase and to increase the electrical conductivity. The addition of Ag or Ag and Ni on the other hand decreases the electrical conductivity. The highest power factor of 1.26 × 10-4 W/mK2 was obtained for the addition of Ag and Zn at 1,060 K, indicating a significant improvement compared with the non-doped CuAlO2 sample.

  8. Using 13X, LiX, and LiPdAgX zeolites for CO_2 capture from post-combustion flue gas

    International Nuclear Information System (INIS)

    Chen, S.J.; Zhu, M.; Fu, Y.; Huang, Y.X.; Tao, Z.C.; Li, W.L.

    2017-01-01

    Highlights: • We synthesized a novel adsorbent named LiPdAgX zeolite. • CCS was proposed from microstructure, selectivity and separation factor of zeolite. • The static and flowing adsorption using CO_2/N_2 mixture on X zeolites were studied. • LiPdAgX zeolite required less energy for regeneration compared to 13X and MEA. • LiPdAgX zeolite can effectively capture CO_2 from post-combustion flue gas. - Abstract: This work investigates the application of X zeolites for capturing CO_2 from post-combustion flue gas. LiX and LiPdAgX zeolites were prepared by an ion-exchange method using 13X zeolite. X-ray diffraction analysis showed that all samples exhibited characteristic peaks of X zeolites, where the peak intensities increased in the order: LiPdAgX > LiX > 13X. The enhanced intensity of the diffraction peaks can increase the activity of the X zeolites and improve their adsorption performance. Scanning electron microscopy imaging showed that the intergranular pore canals of LiPdAgX zeolite were more concentrated. Pore structure analysis indicated that addition of Li"+ to the 13X zeolite enhanced the specific surface areas and pore volumes of the zeolites. Among the 13X, LiX, and LiPdAgX zeolites, LiPdAgX showed the highest CO_2/N_2selectivity, where the difference in the CO_2 adsorption capacity was due to differences in the number of adsorption sites and thermal conductivities of the X zeolites. The CO_2 breakthrough time increased in succession for the 13X, LiX, and LiPdAgX zeolites. The CO_2/N_2 separation factor of the LiPdAgX zeolite was twice that of the 13X zeolite at a CO_2 concentration of 20 vol.%. The temperature variations during the adsorption process were used to determine the regeneration energy and adsorption capacity of the X zeolites. LiPdAgX zeolite required less energy for regeneration than 13X zeolite and MEA. After regeneration, the separation factor of LiPdAgX zeolite remained at 6.38 for 20 vol.% CO_2 in the flue gas. Therefore, LiPdAgX

  9. Two crystal structures of Ag sup + -and Tl sup + -exchanged zeolite X, Ag sub 2 sub 7 Tl sub 6 sub 5 -X and Ag sub 2 sub 3 Tl sub 6 sub 9 -X

    CERN Document Server

    Kim, S Y; Kim, Y

    2002-01-01

    Two crystal structures of dehydrated Ag sup + -and Tl sup + -exchanged zeolite X (Ag sub 2 sub 7 Tl sub 6 sub 5 -X and Ag sub 2 sub 3 Tl sub 6 sub 9 -X) have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21(1) .deg. C (a = 24.758(4) A, a = 24.947(4) A, respectively). Their structures were refined to the final error indices R sub 1 = 0.055 and wR sub 2 = 0.057 with 375 reflections, and R sub 1 = 0.058 and wR sub 2 = 0.057 with 235 reflections, respectively, for which I> 3 sigma(I). In the structure of Ag sub 2 sub 7 Tl sub 6 sub 5 -X, 27 Ag sup + ions were found at two crystallographic sites: 15 Ag sup + ions at site I at the center of the hexagonal prism and the remaining 12 Ag sup + ions at site II' in the sodalite cavity. Sixty-five Tl sup + ions were located at three crystallographic sites: 20 Tl sup + ions at site II opposite single six-rings in the supercage, 18 Tl sup + ions at site I' in the sodalite cavity opposite the D6Rs, and the remaining 27 Tl sup ...

  10. A PdAg bimetallic nanocatalyst for selective reductive amination of nitroarenes.

    Science.gov (United States)

    Li, Linsen; Niu, Zhiqiang; Cai, Shuangfei; Zhi, Yun; Li, Hao; Rong, Hongpan; Liu, Lichen; Liu, Lei; He, Wei; Li, Yadong

    2013-08-07

    Herein we have identified an optimal catalyst, Pd1Ag1.7, for the tandem reductive amination between nitroarenes and aldehydes (selectivity > 93%). Key to the success is the ability to control the compositions of the investigational Pd1-xAgx (x = 0-1) catalysts, as well as the clear composition dependent activity/selectivity trend observed in this study. This catalyst features a wide substrate scope, excellent recyclability, activity and selectivity under ambient conditions.

  11. A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1-xSe x)2 nanocrystals

    KAUST Repository

    Bai, Tianyu

    2014-01-01

    A facile solution-phase route for the preparation of AgInSe2 nanocrystals was developed by using silver nitrate, indium stearate, and oleylamine-selenium (OAm-Se) as precursors. The evolution process of the AgInSe2 nanocrystals is discussed in detail and different reaction conditions all have a great impact on the growth and morphology of the nanocrystals. Alloyed AgIn(S1-xSex)2 nanocrystals with controlled composition across the entire range (0 ≤ x ≤ 1) was also successfully prepared by modulating the S/Se reactant mole ratio. X-ray diffraction (XRD), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were used to confirm that the alloyed AgIn(S1-xSex)2 nanocrystals are homogeneous. The UV-vis absorption spectra revealed that the band gap energies of the alloyed AgIn(S1-xSex)2 nanocrystals could be continuously tuned by increasing the Se content. © The Royal Society of Chemistry 2014.

  12. Monomer functionalized silica coated with Ag nanoparticles for enhanced SERS hotspots

    Science.gov (United States)

    Newmai, M. Boazbou; Verma, Manoj; Kumar, P. Senthil

    2018-05-01

    Mesoporous silica (SiO2) spheres are well-known for their excellent chromatographic properties such as the relatively high specific surface, large pore volume, uniform particle size, narrow pore size distribution with favorable pore connectivity; whereas the noble metal Ag nanoparticles have unique size/shape dependant surface plasmon resonance with wide ranging applications. Thus, the desire to synchronize both their properties for specific applications has naturally prompted research in the design and synthesis of core-shell type novel nanoAg@mesoSiO2 nanocomposites, which display potential utility in applications such as photothermal therapy, photocatalysis, molecular sensing, and photovoltaics. In the present work, SiO2 spheres were carefully functionalized with the monomer, N-vinyl pyrrolidone (NVP), which cohesively controls the uniform mass transfer of Ag+ metal ions, thereby enabling its sequential reduction to zerovalent Ag (in the presence of slightly excess NaOH) by electron transfer from nucleophilic attack of the NVP vinyl group by the water molecules even under ambient conditions. Complete metal nanoshell coverage of the silica surface was obtained after multiple Ag deposition cycles, as systematically confirmed from the BET, TEM, optical and FTIR characterization. Our present Ag-coated silica spheres were directly utilized as viable SERS substrates with high sensitivity in contrast with other long chain polymer/surfactant coated silica spheres, owing to the presence of significant number of nanogaps enhanced SERS 'hotspots', which were methodically analyzed utilizing two example analytes, such as crystal violet (CV) and calendula officinalis (CaF).

  13. The structure and band gap design of high Si doping level Ag{sub 1−x}Ga{sub 1−x}Si{sub x}Se{sub 2} (x=1/2)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shiyan [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Mei, Dajiang, E-mail: meidajiang718@pku.edu.cn [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Du, Xin [Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Lin, Zheshuai [Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Chinese Academy of Sciences, Beijing 100190 (China); Zhong, Junbo [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Wu, Yuandong, E-mail: wuyuandong2013@outlook.com [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Xu, Jingli [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2016-06-15

    Ag{sub 1−x}Ga{sub 1−x}Si{sub x}Se{sub 2} solutions with high Si doping level (x=1/2) are considered and new compound AgGaSiSe{sub 4} has been synthesized. It crystallizes in space group Aea2 and possesses very long axis of a=63.06(1)Å. The three-dimensional framework in AgGaSiSe{sub 4} is composed of AgSe{sub 3} trigonal planar units, AgSe{sub 4} tetrahedra and MSe{sub 4}(M=Si, Ga) tetrahedra. AgGaSiSe{sub 4} is a congruently melting compound with the melt temperature of 759 °C. The diffuse reflectance measurements reveal the band gap of 2.63 eV in AgGaSiSe{sub 4} and the value is 0.33 eV larger than that of Ag{sub 3}Ga{sub 3}SiSe{sub 8} (2.30 eV). - Graphical abstract: The Ag{sub 1−x}Ga{sub 1−x}Si{sub x}Se{sub 2} with high Si doping level (x=1/2) has been studied and the new compound AgGaSiSe{sub 4} was synthesized for the first time. AgGaSiSe{sub 4} crystallizes in a new structure type in space group Aea2 and adopts a three-dimensional framework consisting of AgSe{sub 3} trigonal planar units, AgSe{sub 4} tetrahedra and MSe{sub 4} (M=Si, Ge) tetrahedra. Display Omitted - Highlights: • Study of Ag{sub 1−x}Ga{sub 1−x}Si{sub x}Se{sub 2} with high Si doping level (x=1/2). • Successful synthesis of new compound named AgGaSiSe{sub 4}. • AgGaSiSe{sub 4} crystallizes in space group Aea2 and adopts a three-dimensional framework. • The energy band gap of AgGaSiSe{sub 4} is enlarged compared with Ag{sub 3}Ga{sub 3}SiSe{sub 8}.

  14. The effects of substituting Ag for In on the magnetoresistance and magnetocaloric properties of Ni-Mn-In Heusler alloys

    Directory of Open Access Journals (Sweden)

    Sudip Pandey

    2016-05-01

    Full Text Available The effect of substituting Ag for In on the structural, magnetocaloric, and thermomagnetic properties of Ni50Mn35In15−xAgx (x = 0.1, 0.2, 0.5, and 1 Heusler alloys was studied. The magnitude of the magnetization change at the martensitic transition temperature (TM decreased with increasing Ag concentration. Smaller magnetic entropy changes (ΔSM were observed for the alloys with larger Ag concentrations and the martensitic transition shifted to higher temperature. A shift of TM by about 25 K to higher temperature was observed for an applied hydrostatic pressure of P = 6.6 kbar with respect to ambient pressure. A large drop in resistivity was observed for large Ag concentration. The magnetoresistance was dramatically suppressed due to an increase in the disorder of the system with increasing Ag concentration. Possible mechanisms responsible for the observed behavior are discussed.

  15. Partial substitution of Zn Effects on the Structural and Electrical Properties of High Temperature Hg0.95Ag0.05Ba2Ca2Cu3O8+δ Superconductors

    Science.gov (United States)

    Abed, Noor S.; Fathi, Sabah J.; Jassim, Kareem A.; Mahdi, Shatha H.

    2018-05-01

    The effect of the Ag partial substitution at Hg site in HgOδ layer and Zn partial substitution at Ca site in CaO layer on the structure,Tc,electrical properties, and oxygen content for Hg-1223 have been studied. Bulk polycrystalline Hg1-xAgxBa2Ca2-yZnyCu3O8+δ compound samples with x=0.05 and y=0.0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3, are synthesized by a solid state reaction process. Structural properties are studied by using X-ray powder pattern, the high temperature phase superconductor (Hg-1223) of the tetragonal structure didn't change with the partial substitution of Zn and Ag ions, lattice parameters c,c/a are established to vary with Ag and Zn- substitution. The surface morphology has been studied by using atomic force microscopes (AFM), showed that all specimens have good crystalline and homogeneous surface. Also give a best nano size value is 75.72 nm at x=0.05 and y=0.3. Four probe technique is used to measure Tc. The Tc were found to be increases from 129 K to 147 K and oxygen content were found to be increases with increasing Zn. In addition, dielectric properties (dielectric constant, dielectric loss factor, and the alternating electrical conductivity) are characterized directly by relating with Ag and Zn concentration.

  16. Effect of Mixed Glass Former on Ionic Conductivity of Silver Boron Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O-(B2O3:WO3)

    International Nuclear Information System (INIS)

    Dehariya, Harsha; Kumar, R; Polu, A R

    2012-01-01

    The idea to explore new 'Superionic Electrolytes', 'Fast ionic conductors' is due to their tremendous potential applications in solid state electrochemical devices viz. solid state batteries, fuel cells, sensors, super capacitors. Superionic glasses have attracted great deal of attention due to their several advantageous over their crystalline counterparts such as high ionic conductivity, easy preparation, wide selection of compositions, isotropic properties and high stability etc [4-7]. Large numbers of silver ion based glasses have been reported in the literature for the glassy system of AgI:Ag2O: MxOy (MxOy = B2O3, SiO2, P2O5, GeO2, V2O5, As2O5, CrO3, SeO2, MoO3 and TeO3 etc many of them shows high silver ion conductivity [8]. Ion transport behavior of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O(B2O3:WO3)], where 0 ≤ x ≤ 1 in molar wt% prepared by melt quench technique were reported. The new host [0.75AgI:0.25AgCl] was used as a better alternate in place of conventional host salt AgI. Conductivity measurement were carried out on this glass system as a function of frequency from 50 Hz to 5 MHz, over a temperature range of 27 C to 200 C, for different compositions by Impedance spectroscopy. The composition 0.7[0.75AgI:0.25AgCl]: 0.3[Ag2O(B2O3:WO3)] shows the highest conductivity of the order of σrt ∼ 2.76x10-2 S/cm, referred to as the Optimum Conducting Composition (OCC). The enhancement in the conductivity has been obtained by mixed former effect. XRD result shows that the system is completely amorphous. Temperature dependence of conductivity of all compositions were studied and reported. Activation energies (Ea) were also evaluated from the slope of .Log(σ) vs 1000/T, Arrhenius plots.

  17. AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    González, J.O. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450, México (Mexico); Shaji, S.; Avellaneda, D. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450, México (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León, México (Mexico); Castillo, A.G.; Roy, T.K. Das [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450, México (Mexico); and others

    2013-05-15

    Highlights: ► AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films were formed by heating Na{sub 2}SeSO{sub 3} dipped Sb{sub 2}S{sub 3}/Ag layers. ► S/Se ratio was varied by changing the dipping time in Na{sub 2}SeSO{sub 3} solution. ► Characterized the films using XRD, XPS, SEM, Optical and electrical measurements. ► Band gap engineering of 1−1.1 eV for x = 0.51 and 0.52 respectively. ► PV Glass/FTO/CdS/AgSb(S{sub x}Se{sub 1−x}){sub 2}/C were prepared showing V{sub oc} = 410 mV, J{sub sc} = 5.7 mA/cm{sup 2}. - Abstract: Silver antimony sulfoselenide (AgSb(S{sub x}Se{sub 1−x}){sub 2}) thin films were prepared by heating glass/Sb{sub 2}S{sub 3}/Ag layers after selenization using sodium selenosulphate solution. First, Sb{sub 2}S{sub 3} thin films were deposited on glass substrates from a chemical bath containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3}. Then Ag thin films were thermally evaporated onto glass/Sb{sub 2}S{sub 3}, followed by selenization by dipping in an acidic solution of Na{sub 2}SeSO{sub 3}. The duration of selenium dipping was varied as 30 min and 2 h. The heating condition was at 350 °C for 1 h in vacuum. Analysis of X-ray diffraction pattern of the thin films formed after heating showed the formation of AgSb(S{sub x}Se{sub 1−x}){sub 2}. Morphology and elemental analysis were done by scanning electron microscopy and energy dispersive X-ray detection. Depth profile of composition of the thin films was performed by X-ray Photoelectron Spectroscopy. The spectral study showed the presence of Ag, Sb, S, and Se, and the corresponding binding energy analysis confirmed the formation of AgSb(S{sub x}Se{sub 1−x}){sub 2}. Photovoltaic structures (PV) were prepared using AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films as absorber and CdS thin films as window layers on FTO coated glass substrates. The PV structures were heated at 60–80 °C in air for 1 h to improve ohmic contact. Analysis of J–V characteristics of the PV structures showed V

  18. Characterization of Ag-doped vanadium oxide (AgxV2O5) thin film for cathode of thin film battery

    International Nuclear Information System (INIS)

    Hwang, H.S.; Oh, S.H.; Kim, H.S.; Cho, W.I.; Cho, B.W.; Lee, D.Y.

    2004-01-01

    The effect of silver co-sputtering on the characteristics of amorphous V 2 O 5 films, grown by dc reactive sputtering, is investigated. The co-sputtering process influences the growth mechanism as well as the characteristics of the V 2 O 5 films. X-ray diffraction (XRD), Inductively coupled plasma-atomic emission spectrometry (ICP-AES), field emission-scanning electron microscopy (FE-SEM), Fourier transform infrared spectrometry (FT-IR) and X-ray photoelectron spectrometry (XPS) results indicate that the microstructure of the V 2 O 5 films is affected by the rf power of the co-sputtered silver. In addition, an all-solid-state thin film battery with full cell structure of Li/LiPON/Ag x V 2 O 5 /Pt has been fabricated. It is found that the silver co-sputtered V 2 O 5 cathode film exhibits better cycle performance than an undoped one

  19. Effect of Mixed Glass Former on Ionic Conductivity of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O-{B2O3:WO3}

    Science.gov (United States)

    Dehariya, Harsha; Kumar, R.; Polu, A. R.

    2012-05-01

    The idea to explore new 'Superionic Electrolytes', "Fast ionic conductors" is due to their tremendous potential applications in solid state electrochemical devices viz. solid state batteries, fuel cells, sensors, super capacitors. Superionic glasses have attracted great deal of attention due to their several advantageous over their crystalline counterparts such as high ionic conductivity, easy preparation, wide selection of compositions, isotropic properties and high stability etc [4-7]. Large numbers of silver ion based glasses have been reported in the literature for the glassy system of AgI:Ag2O: MxOy (MxOy = B2O3, SiO2, P2O5, GeO2, V2O5, As2O5, CrO3, SeO2, MoO3 & TeO3 etc many of them shows high silver ion conductivity [8]. Ion transport behavior of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O{B2O3:WO3}], where 0 <= x <= 1 in molar wt% prepared by melt quench technique were reported. The new host [0.75AgI:0.25AgCl] was used as a better alternate in place of conventional host salt AgI. Conductivity measurement were carried out on this glass system as a function of frequency from 50 Hz to 5 MHz, over a temperature range of 27°C to 200°C, for different compositions by Impedance spectroscopy. The composition 0.7[0.75AgI:0.25AgCl]: 0.3[Ag2O{B2O3:WO3}] shows the highest conductivity of the order of σrt ~ 2.76 × 10-2 S/cm, referred to as the Optimum Conducting Composition (OCC). The enhancement in the conductivity has been obtained by mixed former effect. XRD result shows that the system is completely amorphous. Temperature dependence of conductivity of all compositions were studied & reported. Activation energies (Ea) were also evaluated from the slope of .Log(σ) vs 1000/T, Arrhenius plots.

  20. Pressure dependence of Raman modes in the chalcopyrite quaternary alloy AgxCu1-xGaS2

    International Nuclear Information System (INIS)

    Choi, In-Hwan; Yu, Peter Y.

    2000-01-01

    Raman scattering in the chalcopyrite quaternary alloy Ag x Cu 1-x GaS 2 has been studied under high pressure (up to 7 GPa) and at low temperature (50 K) using a diamond anvil high pressure cell for alloy concentrations x=1, 0.75, 0.5, 0.25 and 0. This has allowed us to determine the dependence of their zone-center phonon modes on both pressure and alloy concentration. The resultant phonon pressure coefficients are helpful in understanding the nature of the phonon modes in these chalcopyrites

  1. Preparation and electrochemical performance of AgxLi1-xV3O8

    International Nuclear Information System (INIS)

    Sun Junli; Jiao Lifang; Yuan Huatang; Liu Li; Wei Xin; Miao Yanli; Yang Lin; Wang Yongmei

    2009-01-01

    We report here the preparation of Ag-doped LiV 3 O 8 for use as a cathode material in rechargeable lithium ion batteries. Synthesis was carried out by sol-gel methods and low temperature calcination using V 2 O 5 wet gel, LiOH.H 2 O, and AgNO 3 as raw materials. The product was characterized by X-ray diffraction (XRD), and its electrochemical behavior as a cathode material was studied by galvanostatic charge-discharge, cyclic voltammetry, and ac impedance techniques. The experimental results show that Ag-doped LiV 3 O 8 cathodes have greater initial discharge capacity than undoped cathode. And those Ag-doped LiV 3 O 8 electrodes, especially Ag 0.04 Li 0.96 V 3 O 8 , show the best long-life cycling performance. All of the doped powders show better stability at the 2.6 V plateau efficiency, due to their more stable cell impedance

  2. Piezoelectric and opto-electrical properties of silver-doped ZnO nanorods synthesized by low temperature aqueous chemical method

    Directory of Open Access Journals (Sweden)

    E. S. Nour

    2015-07-01

    Full Text Available In this paper, we have synthesized Zn1−xAgxO (x = 0, 0.03, 0.06, and 0.09 nanorods (NRs via the hydrothermal method at low temperature on silicon substrate. The characterization and comparison between the different Zn1−xAgxO samples, indicated that an increasing Ag concentration from x = 0 to a maximum of x = 0.09; All samples show a preferred orientation of (002 direction with no observable change of morphology. As the quantity of the Ag dopant was changed, the transmittances, as well as the optical band gap were decreased. X-ray photoelectron spectroscopy data clearly indicate the presence of Ag in ZnO crystal lattice. A nanoindentation-based technique was used to measure the effective piezo-response of different concentrations of Ag for both direct and converse effects. The value of the piezoelectric coefficient (d33 as well as the piezo potential generated from the ZnO NRs and Zn1−xAgxO NRs was found to decrease with the increase of Ag fraction. The finding in this investigation reveals that Ag doped ZnO is not suitable for piezoelectric energy harvesting devices.

  3. Synthesis and antibacterial evaluation of calcinated Ag-doped nano-hydroxyapatite with dispersibility.

    Science.gov (United States)

    Furuzono, Tsutomu; Motaharul, Mazumder; Kogai, Yasumichi; Azuma, Yoshinao; Sawa, Yoshiki

    2015-05-01

    Dispersible hydroxyapatite (HAp) nanoparticles are very useful for applying a monolayer to implantable medical devices using the nano-coating technique. To improve tolerance to infection on implanted medical devices, silver-doped HAp (Ag-HAp) nanoparticles with dispersiblity and crystallinity were synthesized, avoiding calcination-induced sintering, and evaluated for antibacterial activity. The Ca10-xAgx(PO4)6(OH)2 with x = 0 and 0.2 were prepared by wet chemical processing at 100°C. Before calcination at 700°C for 2 h, two kinds of anti-sintering agents, namely a Ca(NO3)2 (Ca salt) and a polyacrylic acid/Ca salt mixture (PAA-Ca), were used. Escherichia coli was used to evaluate the antibacterial activity of the nanopowder. When PAA-Ca was used as an anti-sintering agent in calcination to prepare the dispersible nanoparticles, strong metallic Ag peaks were observed at 38.1° and 44.3° (2θ) in the X-ray diffraction (XRD) profile. However, the Ag peak was barely observed when Ca salt was used alone as the anti-sintering agent. Thus, using Ca salt alone was more effective for preparation of dispersible Ag-HAp than PAA-Ca. The particle average size of Ag-HAp with 0.5 mol% of Ag content was found to be 325 ± 70 nm when the formation of large particleaggregations was prevented, as determined by dynamic light scattering instrument. The antibacterial activity of the Ag-HAp nanoparticles possessing 0.5 mol% against E. coli was greater than 90.0%. Dispersible and crystalline nano Ag-HAp can be obtained by using Ca salt alone as an anti-sintering agent. The nanoparticles showed antibacterial activity.

  4. Valor Nutritivo de Silagens de Híbridos de Sorgo (Sorghum bicolor (L. Moench sob Doses Crescentes de Adubação Nutritive Value of Five Sorghum Hybrids (Sorghum bicolor (L. Moench Silages under Increasing Fertilization Levels

    Directory of Open Access Journals (Sweden)

    Magno José Duarte Cândido

    2002-02-01

    Full Text Available Avaliou-se o valor nutritivo das silagens de cinco híbridos de sorgo (AG2002, AG2005E, AGX202, AGX213 e AGX215, cultivados sob doses crescentes de adubação (tratamento sem adubação, 0,5; 1,0; e 2,0 vezes a recomendação de adubação, consistindo de 0; 45,5; 91; e 182 kg/ha de N; 0; 49; 98; e 196 kg/ha de P2O5 ; e 0; 14; 28; e 56 kg/ha de K2O, além de 0; 42; 84; e 168 kg/ha de S, respectivamente, advindos da utilização de sulfato de amônio em cobertura, adotando-se o esquema fatorial 5x4 no delineamento em blocos casualizados, com quatro repetições. O plantio foi realizado no dia 06.11.1997, e as parcelas foram colhidas com os grãos no estádio farináceo. De cada parcela útil retirou-se uma amostra para enchimento dos silos experimentais, que, após 60 dias, foram abertos e amostrados novamente para se proceder à pré-secagem e às determinações do valor nutritivo (PB, fração fibrosa e DIVMS. Os dados foram interpretados por análise de variância e regressão, desdobrando-se a interação híbrido x adubo independentemente da sua significância. Os fatores qualitativos foram comparados, utilizando-se o teste de Tukey. Os modelos foram escolhidos, baseando-se na significância dos coeficientes de regressão, utilizando o teste de "t", Student, a 10% de probabilidade, e no coeficiente de determinação. O valor nutritivo das silagens diferiu entre os híbridos, observando-se maior valor nutritivo para a silagem do AG2005E, enquanto as silagens do AG2002 e do AGX213 apresentaram maior produção de nutrientes por unidade de área. O valor nutritivo das silagens foi afetado pelas doses de recomendação de adubação, embora de forma inconsistenteThe nutritive value of five sorghum hybrids (AG-2002, AG-2005E, AG-X202, AG-X213 and AG-X215 silages, cultivated under increasing fertilization levels (control, 0.5, 1.0, and 2.0 times of the recommended fertilization, corresponding to 0, 45.5, 91, and 182 kg/ha N; 0, 49, 98, and 196 kg

  5. X-ray spectroscopy results for the pristine nanosilver solution and solution after undergoing the specific usage scenario

    Data.gov (United States)

    U.S. Environmental Protection Agency — The results demonstrate the Ag 3d5/2-3/2 spectrum of the pristine AgNPs. Furthermore, the XAS spectra from the analysis of the nanosilver solution (ASAP-AGX-32)...

  6. Microstructure, Mechanical and Tribological Properties of Ag/Bi2Sr2CaCu2O x Self-lubricating Composites

    Science.gov (United States)

    Tang, Hua; Zhang, Du; Wang, Yuqi; Zhang, Yi; Ji, Xiaorui; Song, Haojie; Li, Changsheng

    2014-01-01

    Ag/Bi2Sr2CaCu2O x self-lubricating composites were successfully fabricated by a facile powder metallurgy method. The structure and morphology of the as-synthesized composites and the worn surface after tribometer testing are characterized by using X-ray diffraction and scanning electron microscopy together with energy dispersive spectrometry. The results indicated that self-lubricating composites are composed of superconductor phase and Ag phase. Moreover, the effects of Ag on mechanical and tribological properties of the novel composites were investigated. The friction test results showed that the friction coefficient of the pure Bi2212 against stainless steel is about 0.40 at ambient temperature and abruptly decreases to about 0.17 when the temperature is cooled to 77 K. The friction coefficients of the composites from room temperature to high temperature were lower and more stable than those of pure Bi2Sr2CaCu2O x . When the content of Ag is 10 wt.%, the Ag/Bi2Sr2CaCu2O x composites exhibited excellent tribological performance, the improved tribological properties are attributed to the formation of soft metallic Ag films at the contacted zone of the composites.

  7. Phase diagrams of two dimensional Pd{sub x}Ag{sub 1-x}/Pd(111) and Pt{sub x}Ag{sub 1-x}/Pt(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Engstfeld, Albert K.; Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2011-07-01

    The distribution of Ag and Pd or Pt in Ag{sub x}Pd{sub 1-x}/Pd(111) and Ag{sub x}Pt{sub 1-x}/Pt(111) surface alloys was studied by high resolution UHV-STM. The alloys were prepared by evaporating Ag on the respective substrate and subsequent annealing to 800 K. From quantitative 2D atom distributions we can show that AgPt tends towards two dimensional clustering and AgPd towards a 'quasi' random distribution, with small deviations for low and high coverages. From effective pair interactions, we are able to calculate the surface mixing energy and determine 2D phase diagrams. Furthermore we will elucidate whether the size mismatch or the differences in the intermetallic bonding are the dominant factor for the respective distribution in the surface alloy.

  8. Photochemical modification of magnetic properties in organic low-dimensional conductors

    International Nuclear Information System (INIS)

    Naito, Toshio; Kakizaki, Akihiro; Wakeshima, Makoto; Hinatsu, Yukio; Inabe, Tamotsu

    2009-01-01

    Magnetic properties of organic charge transfer salts Ag(DX) 2 (DX=2,5-dihalogeno-N,N'-dicyanoquinonediimine; X=Cl, Br, I) were modified by UV irradiation from paramagnetism to diamagnetism in an irreversible way. The temperature dependence of susceptibility revealed that such change in magnetic behavior could be continuously controlled by the duration of irradiation. The observation with scanning electron microprobe revealed that the original appearance of samples, e.g. black well-defined needle-shaped shiny single crystals, remained after irradiation irrespective of the irradiation conditions and the duration. Thermochemical analysis and X-ray diffraction study demonstrated that the change in the physical properties were due to (partial) decomposition of Ag(DX) 2 to AgX, which was incorporated in the original Ag(DX) 2 lattices. Because the physical properties of low-dimensional organic conductors are very sensitive to lattice defects, even a small amount of AgX could effectively modify the electronic properties of Ag(DX) 2 without making the original crystalline appearance collapse. - Graphical abstract: By UV irradiation with appropriate masks, a part of single crystal of organic conductors irreversibly turned diamagnetic retaining their original crystalline shapes.

  9. Thermodynamic properties of solid solutions in the system Ag2S–Ag2Se

    International Nuclear Information System (INIS)

    Pal’yanova, G.A.; Chudnenko, K.V.; Zhuravkova, T.V.

    2014-01-01

    We have summarized experimental data on the phase diagram of the system Ag 2 S–Ag 2 Se. Standard thermodynamic functions of four solid solutions in this system have been calculated using the model of regular and subregular solutions: a restricted fcc solid solution γ-Ag 2 S-Ag 2 S 1−x Se x (x 2 S–Ag 2 Se, monoclinic solid solution (α) from Ag 2 S to Ag 2 S 0.4 Se 0.6 , and orthorhombic solid solution (α) from Ag 2 S 0.3 Se 0.7 to the Ag 2 Se. G mix and S mix have been evaluated using the subregular model for asymmetric solution for the region Ag 2 S 0.4 Se 0.6 –Ag 2 S 0.3 Se 0.7 . The thermodynamic data can be used for modeling in complex natural systems and in matters of semiconductor materials

  10. Híbridos de Sorgo (Sorghum bicolor (L. Moench Cultivados sob Níveis Crescentes de Adubação: Rendimento, Proteína Bruta e Digestibilidade in Vitro Sorghum (Sorghum bicolor (L. Moench Hybrids Cultivated under Increasing Fertilization Levels: Yield, Crude Protein and in Vitro Digestibility

    Directory of Open Access Journals (Sweden)

    Miguel Marques Gontijo Neto

    2002-07-01

    Full Text Available Objetivou-se com este trabalho avaliar o rendimento forrageiro, os teores de proteína bruta (PB e a digestibilidade in vitro de matéria seca (DIVMS de cinco híbridos de sorgo forrageiro (AG-2002, AG-2005E, AG-X202, AG-X213 e AG-X215, cultivados sob quatro níveis de adubação NPK. Utilizou-se o delineamento em blocos casualizados, em um esquema fatorial 5 x 4 com quatro repetições. Os híbridos avaliados apresentaram altas produções médias de MS/ ha e resposta linear positiva, em função da adubação, ressalvando a alta produtividade (15,47 t/ha nas parcelas sem adubação, em função da fertilidade do solo e das condições climáticas. Os híbridos apresentaram respostas diferenciadas quanto aos teores de PB, em função da adubação, predominando respostas quadráticas, determinando o comportamento quadrático da produção de proteína bruta. A DIVMS e a produção de matéria seca digestiva apresentaram respostas lineares positivas em função da adubação, sendo a produção de matéria seca digestível fortemente correlacionada (0,91** com o aumento da produção de MS/ha.The objective of this research was to evaluate the forage yield, crude protein (CP contents and dry matter (DM in vitro digestibility of five forage sorghum hybrids (AG-2002, AG-2005E, AG-X202, AG-X213 e AG-X215, cultivated under four NPK fertilization levels. A randomized blocks design, in a 5 x 4 factorial scheme, with four replicates, was used. The evaluated hybrids showed high average DM/ha yield and positive linear answer in function of fertilization, except for the high productivity (15.47 t/ha in the plots without fertilization, in function of soil fertilization and climatic conditions. The hybrids showed different answers for the CP contents, according to the fertilization, in a quadratic way, determining the quadratic behavior for the crude protein yield. IVDMD and digestive dry matter yield showed positive linear answers in function of

  11. Ag on Ge(111): 2D x-ray structure analysis of the #sq root#3 x #sq root#3 superstructure

    DEFF Research Database (Denmark)

    Dornisch, D.; Moritz, W.; Schulz, H.

    1992-01-01

    We have studied the Ag/Ge(111) square-root 3 x square-root 3 superstructure by grazing-incidence X-ray diffraction. In our structural analysis we find striking similarities to the geometry of Au on Si(111). The Ag atoms form trimer clusters with an Ag-Ag distance of 2.94 +/- 0.04 angstrom...

  12. Flower-like Ag/AgCl microcrystals: Synthesis and photocatalytic activity

    International Nuclear Information System (INIS)

    Daupor, Hasan; Wongnawa, Sumpun

    2015-01-01

    Silver/silver chloride (Ag/AgCl) composites with a novel flower-like morphology were prepared via a hot precipitation assisted by the vinyl acetate monomer (VAM) route. An aqueous solution of AlCl 3 was mixed with the vinyl acetate monomer and acetic acid before adding a AgNO 3 solution at a temperature of 100 °C. The octapod shaped flower-like Ag/AgCl particles (or “flower-like Ag/AgCl” hereinafter) has eight petals each of which was about 7–11 μm in length. The flower-like octapods were formed by preferential overgrowth along the <111> directions of the cubic seeds. Detailed studies of the growth process at different AlCl 3 concentrations revealed that the concave cube developed into a Rubik's cube where eight corners grew further into the flower-like structures. The VAM and acetic acid concentration strongly affected the growth of the Ag/AgCl to the flower-like structure and their optimum concentrations were determined. The morphologies of these particles were carefully examined by scanning electron microscopy (SEM). The crystal structures and orientation relationship were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–visible diffused reflectance spectroscopy (DRS). The flower-like Ag/AgCl microcrystals were tested for their photocatalytic degradation of orange G dye (OG) catalyzed by visible light. From comparative test runs, the flower-like Ag/AgCl exhibited better photocatalytic activity than simple and commercial Ag/AgCl particles. - Highlights: • Interesting transformation of microcrystals Ag/AgCl from concave cube via Rubik's cube to flower-like shape. • The first to use VAM as morphology control reagent. • High photocatalytic activity under visible light irradiation

  13. Selective Oxidation of Styrene to Benzaldehyde by Co-Ag Codoped ZnO Catalyst and H2O2 as Oxidant

    Directory of Open Access Journals (Sweden)

    Abderrazak Aberkouks

    2018-01-01

    Full Text Available Various ratio of Co-Ag supported on ZnO have been evaluated in the selective catalytic oxidation of styrene to benzaldehyde, using H2O2 as an oxidant. The catalysts were prepared by a sol-gel process and were characterized using XRD, FT-IR, TG-DTG, BET, and SEM/EDX. The performance of the prepared catalyst was investigated under different parameters such as solvent, temperature, substrate/oxidant molar ratios, reaction time, and doping percent. The Zn1−x−yAgxCoyO catalysts exhibit a good activity and a high selectivity towards benzaldehyde (95% with the formation of only 5% of acetophenone.

  14. Transformaciones de fase en aleaciones Zn-22%Al-2%Cu y Zn-22%Al-2%Cu-X (X = 1, 2 y 3%Ag envejecidas isotérmicamente

    Directory of Open Access Journals (Sweden)

    Flores-Ramos, Alfredo

    2014-12-01

    Full Text Available The study of phase transformations that take place in Zn-22%Al-2%Cu and Zn-22%Al-2%Cu-X (X = 1, 2 and 3%Ag alloys was carried out using X-Ray Diffraction (XRD and Scanning Electron Microscopy (SEM. Alloys were homogenized at 350 °C during 10 days and quenched at ~2 °C. Subsequently, samples were aged at 200 °C for different times. The initial microstructure consists in a matrix of fine equiaxial grains of α and η phases for all the alloys. Besides isolated particles of ε and Φ were observed without and with Ag addition, respectively. During the aging, the four phase reaction, α + ε→η + τ’, takes place to obtain the equilibrium η, α and τ’ phases. However, the Ag addition promotes the formation of the Φ phase, which retards or inhibits the four phase reaction. The stability of the Φ phase is obtained with 3%Ag, which could improve the dimensional stability of the alloy for future industrial applications.En el presente estudio sobre las transformaciones de fase en las aleaciones Zn-22%Al-2%Cu y Zn-22%Al-2%Cu-X (X = 1, 2 y 3%Ag se utilizó Difracción de Rayos X (DRX y Microscopía Electrónica de Barrido (MEB. Las aleaciones fueron homogeneizadas a 350 °C durante 10 días, templadas a ~2 °C y posteriormente envejecidas a 200 °C durante diferentes tiempos. Todas las aleaciones ensayadas presentaron una microestructura inicial formada por una matriz de granos finos y equiaxiales de las fases α y η. Además, para las aleaciones sin Ag se observa la presencia de partículas de la fase ε (CuZn4 y de Φ ((Ag, Cu Zn4 en las que se adicionó Ag. Durante el envejecido, ocurre la reacción de cuatro fases, α + ε→η + τ’, para obtener las fases de equilibrio η, α y τ’. Sin embargo, la adición de Ag promueve la formación de la fase Φ, la cual retarda e incluso inhibe la reacción de cuatro fases. La estabilidad de la fase Φ se obtiene con 3%Ag, lo que podría mejorar la estabilidad dimensional de la aleación para

  15. thermal, electrical and structural characterization of fast ion conducting glasses (Ag Br)x(AgPO)1-x

    International Nuclear Information System (INIS)

    Kartini, E.; Yufus, S.; Priyanto, T; Indayaningsih, N; Collins, M F

    2001-01-01

    Fast ion conducting glasses are of considerable technological interest because of their possible application in batteries, sensors, and displays. One of the main scientific challenges is to explain how the disordered structure of the glass is related to the high ionic conductivity that can be achieved at ambient temperature. Fast ion conducting glasses (AgBr) x (AgPO3) 1- x with x=0.0; 0.2; 0.3; 0.4; 0.5; 0.7; and 0.85 were prepared by rapid quenching. The studies of structure, thermal property and electrical conductivity have been made. The X-ray diffraction patterns of this system show that the sample are glasses for x 0.5. The neutron diffraction data shows that all AgBr doped glasses exhibit a strong and relatively sharp diffraction peak at anomalously low momentum transfer value, Q∼ 0.7 Α - 1. The low Q-peak is not observed in AgPO 3 glass, and in the X-ray data. The results of electrical conductivity show that the conduction is essentially ionic and due to silver ions alone. The logarithm of the ionic conductivity increases with increasing AgBr mole fraction, and reaches maximum for x = 0.5. The thermal property results measured by differential scanning calorimetric show that the temperatures of the glass transition, the crystallization and the melt reach minimum for the glass with composition x 0.5. We conclude that there appears to be a relation between higher conductivity at ambient temperature, and the low Q-peak. Based on this investigation a better fast ion conducting glass proposed is (AgBr) 0 .5(AgPO 3 ) 0 .5 with the conductivity of 8 x 10 - 5 S/cm

  16. Model and experimental investigation of frequency conversion in AgGaGexS2(1+x) (x = 0, 1) crystals

    International Nuclear Information System (INIS)

    Wang Tiejun; Kang Zhihui; Zhang Hongzhi; Feng Zhishu; Jiang Yun; Gao Jinyue; Andreev, Yury M; Lanskii, Gregory V; Shaiduko, Anna V

    2007-01-01

    Analysis of available and developed data on phase matching in AgGaGe x S 2(1+x) (x = 0, 1) crystals is carried out. Nanosecond AgGaS 2 type I optical parametric oscillator with a continuously tunable range 2.65-5.29 μm is demonstrated pumped by a Q-switched Nd : YAG laser. An output pulse energy of up to 0.56 mJ at 4 μm is recorded. Phase matching of second harmonic generation in both crystals is represented. Best sets of Sellmeier equations for two crystals are determined

  17. Anomalous Hall effect and magnetoresistance behavior in Co/Pd1−xAgx multilayers

    KAUST Repository

    Guo, Z. B.

    2013-02-13

    In this paper, we report anomalous Hall effect (AHE) correlated with the magnetoresistance behavior in [Co/Pd1-xAg x]n multilayers. For the multilayers with n = 6, the increase in Ag content from x = 0 to 0.52 induces the change in AHE sign from negative surface scattering-dominated AHE to positive interface scattering-dominated AHE, which is accompanied with the transition from anisotropy magnetoresistance (AMR) dominated transport to giant magnetoresistance (GMR) dominated transport. For n = 80, scaling analysis with Rs ∝ρ xx γ yields γ ∼ 3.44 for x = 0.52 which presents GMR-type transport, in contrast to γ ∼ 5.7 for x = 0 which presents AMR-type transport. © 2013 American Institute of Physics.

  18. A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1-xSe x)2 nanocrystals

    KAUST Repository

    Bai, Tianyu; Li, Chunguang; Li, Feifei; Zhao, Lan; Wang, Zhaorui; Huang, He; Chen, Cailing; Han, Yu; Shi, Zhan; Feng, Shouhua

    2014-01-01

    in detail and different reaction conditions all have a great impact on the growth and morphology of the nanocrystals. Alloyed AgIn(S1-xSex)2 nanocrystals with controlled composition across the entire range (0 ≤ x ≤ 1) was also successfully prepared

  19. Electrical conductivity studies in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites

    Science.gov (United States)

    Studenyak, I. P.; Neimet, Yu. Yu.; Kranjčec, M.; Solomon, A. M.; Orliukas, A. F.; Kežionis, A.; Kazakevičius, E.; Šalkus, T.

    2014-01-01

    Compositional, frequency, and temperature studies of impedance and electrical conductivity in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites were performed. Frequency range from 10 Hz to 3 × 109 Hz and temperature interval 300-400 K were used for the measurements. Compositional dependences of electrical conductivity and activation energy are analyzed; the most substantial changes are observed with the transition from (Ag3AsS3)0.4(As2S3)0.6 glass to (Ag3AsS3)0.5(As2S3)0.5 composite. With increase of Ag3AsS3 content, the investigated materials are found to have crystalline inclusions and show the two-phase composite nature. Addition of Ag3AsS3 leads to the increase of electrical conductivity whereas the activation energy decreases.

  20. Development and Application of TiO2 Nanoparticles Coupled with Silver Halide

    Directory of Open Access Journals (Sweden)

    Xiaojia Wan

    2014-01-01

    Full Text Available Titanium dioxide (TiO2 is proposed to be effective photocatalyst for wastewater treatment, air purification, and self-cleaning ability, because of its strong oxidation and superhydrophilicity. In order to conquer the limits of TiO2, a variety of methods have been used. This paper presents a critical review of novel research and achievements in the modification of TiO2 nanoparticles with silver halide (AgX, X=Cl, Br, I, which aims at enhancing the visible light absorption and photosensitivity. Herein we study the synthesis, physical and chemical properties, and the mechanism of this composite photocatalyst.

  1. Thermal Co-Decomposition of Silver Acetylacetonate and Tin (II) Hexafluoroacetylacetonate: Formation of Carbonaceous Ag/AgxSn(x=4 and 6.7)/SnO2 Composites

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Duchek, P.; Urbanová, Markéta; Pokorná, Dana; Bezdička, Petr; Jakubec, Ivo; Pola, M.; Čerstvý, R.; Kovářík, T.; Galíková, Anna; Pola, Josef

    2013-01-01

    Roč. 566, AUG 20 (2013), s. 92-99 ISSN 0040-6031 Grant - others:GA MŠK(CZ) CZ1.05/2.1.00/03.0088 Institutional support: RVO:67985858 ; RVO:61388980 Keywords : co-decomposition * thermal gravimetric analysis * Ag-Sn intermetallic compounds Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.105, year: 2013

  2. Nanostructured Iron and Manganese Oxide Electrode Materials for Lithium Batteries: Influence of Chemical and Physical Properties on Electrochemistry

    Science.gov (United States)

    Durham, Jessica L.

    The widespread use of portable electronics and growing interest in electric and hybrid vehicles has generated a mass market for batteries with increased energy densities and enhanced electrochemical performance. In order to address a variety of applications, commercially fabricated secondary lithium-ion batteries employ transition metal oxide based electrodes, the most prominent of which include lithium nickel manganese cobalt oxide (LiNixMn yCo1-x-yO2), lithium iron phosphate (LiFePO4), and lithium manganese oxide (LiMn 2O4). Transition metal oxides are of particular interest as cathode materials due to their robust framework for lithium intercalation, potential for high energy density, and utilization of earth-abundant elements (i.e. iron and manganese) leading to decreased toxicity and cost-effective battery production on industrial scales. Specifically, this research focuses on MgFe2O4, AgxMn8O16, and AgFeO 2 transition metal oxides for use as electrode materials in lithium-based batteries. The electrode materials are prepared via co-precipitation, reflux, and hydrothermal methods and characterized by several techniques (XRD, SEM, BET, TGA, DSC, XPS, Raman, etc.). The low-temperature syntheses allowed for precise manipulation of structural, compositional, and/or functional properties of MgFe2O4, AgxMn8 O16, and AgFeO2 which have been shown to influence electrochemical behavior. In addition, advanced in situ and ex situ characterization techniques are employed to study the lithiation/de-lithiation process and establish valid redox mechanisms. With respect to both chemical and physical properties, the influence of MgFe2O4 particle size and morphology on electrochemical behavior was established using ex situ X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) imaging. Based on composition, tunneled AgxMn8O16 nanorods, prepared with distinct Ag+ contents and crystallite sizes, display dramatic differences in ion-transport kinetics due to

  3. Sputtering of two-phase AgxCuγ alloys

    International Nuclear Information System (INIS)

    Bibic, N.; Milosavljevic, M.; Perusko, D.; Wilson, I.H.

    1992-01-01

    Elemental sputtering yields from two phase AgCu alloys were measured for 20, 40 and 50 at % Ag. Argon ion bombardment energies were in the range 35-55 keV and the ion dose was 1 x 10 19 ions cm -2 . The sputtering yield for silver was found to be considerably below what was expected by simple selective sputtering of a two component alloy. Analysis by electron probe X-ray microanalysis and scanning electron microscopy of the eroded surface indicated that surface diffusion of copper from copper rich grains and geometrical constraints in the dense cone forest on Cu/Ag eutectic regions combine to reduce the sputtering yield for silver. (author)

  4. Structure of AgxNa1-xPO3 glasses by neutron diffraction and reverse Monte Carlo modelling

    International Nuclear Information System (INIS)

    Hall, Andreas; Swenson, Jan; Karlsson, Christian; Adams, Stefan; Bowron, Daniel T

    2007-01-01

    We have performed structural studies of mixed mobile ion phosphate glasses Ag x Na 1-x PO 3 using diffraction experiments and reverse Monte Carlo simulations. This glass system is particularly interesting as a model system for investigations of the mixed mobile ion effect, due to its anomalously low magnitude in the system. As for previously studied mixed alkali phosphate glasses, with a much more pronounced mixed mobile ion effect, we find no substantial structural alterations of the phosphorous-oxygen network and the local coordination of the mobile cations. Furthermore, the mobile Ag + and Na + ions are randomly mixed with no detectable preference for either similar or dissimilar pairs of cations. However, in contrast to mixed mobile ion systems with a very pronounced mixed mobile ion effect, the two types of mobile ions have, in this case, very similar local environments. For all the studied glass compositions the average Ag-O and Na-O distances in the first coordination shell are determined to be 2.5 ± 0.1 and 2.5 ± 0.1 A, and the corresponding average coordination numbers are approximately 3.2 and 3.7, respectively. The similar local coordinations of the two types of mobile ions suggests that the energy mismatch for a Na + ion to occupy a site that previously has been occupied by a Ag + ion (and vice versa) is low, and that this low energy mismatch is responsible for the anomalously weak mixed mobile ion effect

  5. Improvement in the properties of Ag-doped YBa2Cu3O7-x grain boundary Josephson junctions

    International Nuclear Information System (INIS)

    Bolanos, G.; Baca, E.; Osorio, J.; Prieto, P.

    2000-01-01

    Ag-doped YBa 2 Cu 3 O 7-x (YBCO) thin films using 5 to 20 wt% Ag-doped YBCO targets have been grown by a DC sputtering technique on SrTiO 3 bicrystals. Critical currents of 4 to 5 x 10 6 A/cm 2 at 77 K were measured in YBCO films doped with 5 wt% Ag which has been found to be higher than the value of 1 x 10 6 A/cm 2 measured in undoped samples. The normal resistivity decreases by a doping of 5 wt% Ag and increases for higher Ag concentrations. The critical temperature, T c , of the Ag-YBCO films remained unchanged at 92 K as in the undoped YBCO samples. An I c R n product of 170 μV at 77 K was found in grain boundary Josephson junctions (GBJJs) with 5 wt% Ag, compared with the value of 100 μV measured in undoped samples at the same temperature. Current-voltage characteristics were measured in GBJJs, showing Shapiro steps under microwave radiation and Fraunhofer patterns with an external magnetic field. The improvement in the normal and superconducting properties of Ag-doped YBCO films has been interpreted using the De Genes model to establish that YBCO containing metallic Ag addition shows a superconductor-normal metal-superconductor (S-N-S) behavior, thereby the Ag-doping enhances the weak link behavior and is, therefore, appropriate for electronic applications. (orig.)

  6. Plasmonic Ag{sub 2}MoO{sub 4}/AgBr/Ag composite: Excellent photocatalytic performance and possible photocatalytic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongliao [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Zhang, Jinfeng, E-mail: zjf_y2004@126.com [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Lv, Jiali [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Liang, Changhao [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031 (China)

    2017-02-28

    Highlights: • Novel Ag{sub 2}MoO{sub 4}/AgBr/Ag photocatalyst was prepared. • Ag{sub 2}MoO{sub 4}/AgBr/Ag showed high photocatalytic activity. • Ag{sub 2}MoO{sub 4}/AgBr/Ag showed long reusable life. - Abstract: Plasmonic Ag{sub 2}MoO{sub 4}/AgBr/Ag composite is fabricated by in-situ ion exchange and reduction methods at room temperature. The samples are characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance (DRS), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM) and photoluminescence (PL) measurements. The results show that butterfly-like Ag{sub 2}MoO{sub 4} nanosheets served as the precursor, and Ag{sub 2}MoO{sub 4}/AgBr/Ag is formed in phase transformation with MoO{sub 4}{sup 2−} displaced by Br{sup −}. The ternary Ag{sub 2}MoO{sub 4}/AgBr/Ag composite photocatalysts show greatly enhanced photocatalytic activity in photodegrading methylene blue (MB) under visible light irradiation compared with AgBr and Ag{sub 2}MoO{sub 4}. The pseudo-first-order rate constant k{sub app} of Ag{sub 2}MoO{sub 4}/AgBr/Ag is 0.602 min{sup −1}, which is 11.6 and 18.3 times as high as that of AgBr and Ag{sub 2}MoO{sub 4}, respectively. Meanwhile, the efficiency of degradation still kept 90% after ten times cyclic experiments. Eventually, possible photocatalytic mechanism was proposed.

  7. AgSbSe2 and AgSb(S,Se)2 thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Garza, J.G.; Shaji, S.; Rodriguez, A.C.; Das Roy, T.K.; Krishnan, B.

    2011-01-01

    Silver antimony selenide (AgSbSe 2 ) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb 2 S 3 ), silver selenide (Ag 2 Se), selenium (Se) and silver (Ag). Sb 2 S 3 thin film was prepared from a chemical bath containing SbCl 3 and Na 2 S 2 O 3 , Ag 2 Se from a solution containing AgNO 3 and Na 2 SeSO 3 and Se thin films from an acidified solution of Na 2 SeSO 3 , at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 deg. C in vacuum (10 -3 Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe 2 or AgSb(S,Se) 2 depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe 2 /Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed V oc = 435 mV and J sc = 0.08 mA/cm 2 under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe 2 as an absorber material by a non-toxic selenization process is achieved.

  8. Interaction of Ag with YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Shamrai, V.F.; Efimov, Yu.V.; Frolova, T.M.; Myasnikova, E.A.; Postnikov, A.M.

    1992-01-01

    The aim of the work was to investigate the effect of Ag (0.3 to 20 mass%) on the structure, the composition and some superconducting and magnetic properties of Y-HTSC. The alloys were studied by scanning electron microscopy (in secondary and elastically backscattering electron mode) and X-ray diffraction analysis (DRON-2.0; CuKα-radiation). T c was measured by both resistive and inductive methods at T >> 77 K. The resistivity was determined by four-point technique (Ag solder) at 100 to 300 K and with 1 mA (operating current). Magnetic flux penetration was studied by a mechanical method in sound frequency interval. (orig./MM) [de

  9. Preparation and Characterization of γ-AgI in Superionic Composite Glasses (AgIx(AgPO31-x

    Directory of Open Access Journals (Sweden)

    S. Suminta

    2007-07-01

    Full Text Available The γ-AgI phase was stabilized at room temperature in the composites glasses (AgIx(AgPO31-x with x = 0.6 and 0.7 via rapid quenching of their molten mixture. The measurement of the crystal structure has been carried out using an X-ray Difractometer at the Physics Departement of Ibaraki University, Japan. The micro strain and crystal size are derived from Hall’s equation. The X-ray diffraction pattern shows some Bragg peaks that correspond to the crystalline γ-AgI. By increasing the concentration of AgI, the peak width becomes more narrow and the position shifts to the higher angle. This indicates that the crystalline size and microstrain are increasing. The increase of micro strain (η, and particle size (D will increase the ionic mobility, thus increasing the ionic conductivity. It is concluded that solidification process on melt AgI into glass matrix AgPO3 not only decreases the micro strain and the particle size, but it also increases the ionic conductivity.

  10. Avaliação de Diferentes Híbridos de Sorgo (Sorghum bicolor, L. Moench quanto aos Componentes da Planta e Silagens Produzidas Evaluation of Different Sorghum Hybrids (Sorghum bicolor, L. Moench Related to Plant Components and Produced Silages

    Directory of Open Access Journals (Sweden)

    Mikael Neumann

    2002-01-01

    Full Text Available O experimento foi conduzido com o objetivo de avaliar as características qualitativas dos componentes da planta e da silagem e as características de fermentação da silagem de diferentes híbridos de sorgo forrageiros AGX-213 e AG-2002 e de duplo propósito AGX-217 e AG-2005E. O componente panícula apresentou maiores teores de matéria seca (MS, proteína bruta (PB, matéria mineral (MM e digestibilidade in vitro da matéria seca (DIVMS e menores teores dos constituintes da parede celular da planta com relação aos componentes colmo e folhas. Não houve diferenças entre as silagens dos híbridos de sorgo para os teores de MM e DIVMS. A silagem do AG-2005E apresentou maior teor de MS (35,50%, PB (6,69%, extrato etéreo (2,28% e extrativos não-nitrogenados (58,56% frente aos demais genótipos. Não houve diferença entre as silagens para os teores de nitrogênio insolúvel na FDA. As silagens de híbridos de sorgo forrageiro (AGX-213 e AG-2002 apresentaram menor pH e teor de N-NH3 (% do N total em comparação aos híbridos de duplo propósito (AGX-217 e AG-2005E.The experiment was conducted with the purpose to evaluate the qualitative traits of the plant components and fermentation characteristics of silages from different sorghum hybrids AGX-213, AG-2002 (forage and AGX-217, AG-2005E (double purpose. The panicle component showed higher percentages of dry matter (DM, crude protein (CP, mineral material (MM and in vitro dry matter digestibility (IVDMD, and lower percentages of plant cell wall than the stems and leaves. No differences were observed among the sorghum silages for MM and IVDMD percentages. The AG-2005E silage showed higher contents of DM (35.5%, CP (6.69%, ether extract (2.28% and nitrogen-free extract (58.56% in comparison with the other genotypes. No difference was observed among the sorghum silages for acid detergent insoluble nitrogen (ADIN content. The silages of the forage hybrids (AGX-213 and AG-2002 showed lower pH and

  11. In-place testing of off-gas iodine filters

    International Nuclear Information System (INIS)

    Duce, S.W.; Tkachyk, J.W.; Motes, B.G.

    1980-01-01

    At the Idaho National Engineering Laboratory, both charcoal and silver zeolite (AgX) filters are used for radioactive iodine off-gas cleanup of reactor systems. These filters are used in facilities which are conducting research in the areas of reactor fuel failure, reactor fuel inspection, and loss of fluids from reactor vessels. Iodine retention efficiency testing of these filters is dictated by prudent safety practices and regulatory guidelines. A procedure for determining iodine off-gas filter efficiency in-place has been developed and tested on both AgX and charcoal filters. The procedure involves establishing sample points upstream and downstream of the filter to be tested. A step-by-step approach for filter efficiency testing is presented

  12. Thermodynamic modeling of the Na-X (X = Si, Ag, Cu, Cr systems

    Directory of Open Access Journals (Sweden)

    Hao D.

    2012-01-01

    Full Text Available The Na-X (X = Si, Ag, Cu, Cr systems have been critically reviewed and modeled by means of the CALPHAD approach. The two compounds, NaSi and Ag2Na, are treated as stoichiometric ones. By means of first-principles calculations, the enthalpies of formation at 0 K for the LT-NaSi (low temperature form of NaSi and Ag2Na have been computed to be -5210 and -29821.8 Jmol-1, respectively, with the desire to assist thermodynamic modeling. One set of self-consistent thermodynamic parameters is obtained for each of these binary systems. Comparisons between calculated and measured phase diagrams show that most of the experimental information can be satisfactorily accounted for by the present thermodynamic descriptions.

  13. High field magneto-transport study of YBa{sub 2}Cu{sub 3}O{sub 7}:Ag{sub x} (x = 0.00–0.20)

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Poonam; Pal, Anand; Awana, V.P.S, E-mail: awana@mail.npindia.org

    2014-02-15

    Highlights: •YBCO: Ag{sub x} composites. •High field magneto-transport. •The upper critical field. -- Abstract: We report high field (up to 13 T) magneto transport [ρ(T)H] of YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO):Ag{sub x} (x = 0.0, 0.1 and 0.2) composites. The transport properties are significantly improved by Ag doping on the insulating grain boundaries of YBCO. Pure and Ag diffused YBCO superconducting samples are synthesised through solid state reaction route. Both pure and Ag doped YBCO are superconducting at below 90 K. Though, the T{sub c} (ρ = 0) of YBCO:Ag samples under applied field of 13 T is around 65 K, the same is 45 K for pure YBCO under same applied field. The upper critical field [H{sub c2}(0)], being estimated from ρ(T)H is around 70 T for pristine sample, and is above 190 T for Ag doped samples. The boarding of the resistive transition under applied magnetic field is comparatively less and nearly single step for Ag doped samples, while the same is clearly two step and relatively much larger for the pristine YBCO. The resistive broadening is explained on the basis of changed inter-granular coupling and thermally activated flux flow (TAFF). The TAFF activation energy (U{sub 0}) is found to be linear with applied magnetic field for all the samples, but with nearly an order of magnitude less value for the Ag doped samples. Summarily, it is shown that inclusion of Ag significantly improves the superconducting performance of YBCO:Ag composites, in particular under applied field.

  14. SU-E-T-259: Particle Swarm Optimization in Radial Dose Function Fitting for a Novel Iodine-125 Seed

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X [University of Alabama at Birmingham, Birmingham, Al (United States); Duan, J; Popple, R; Huang, M; Shen, S; Brezovich, I [University of Alabama Birmingham, Birmingham, AL (United States); Cardan, R [UAB University of Alabama, Birmingham, Birmingham, AL (United States); Benhabib, S [University of Alabama at Birmingham, Birmingham, AL (United States)

    2014-06-01

    Purpose: To determine the coefficients of bi- and tri-exponential functions for the best fit of radial dose functions of the new iodine brachytherapy source: Iodine-125 Seed AgX-100. Methods: The particle swarm optimization (PSO) method was used to search for the coefficients of the biand tri-exponential functions that yield the best fit to data published for a few selected radial distances from the source. The coefficients were encoded into particles, and these particles move through the search space by following their local and global best-known positions. In each generation, particles were evaluated through their fitness function and their positions were changed through their velocities. This procedure was repeated until the convergence criterion was met or the maximum generation was reached. All best particles were found in less than 1,500 generations. Results: For the I-125 seed AgX-100 considered as a point source, the maximum deviation from the published data is less than 2.9% for bi-exponential fitting function and 0.2% for tri-exponential fitting function. For its line source, the maximum deviation is less than 1.1% for bi-exponential fitting function and 0.08% for tri-exponential fitting function. Conclusion: PSO is a powerful method in searching coefficients for bi-exponential and tri-exponential fitting functions. The bi- and tri-exponential models of Iodine-125 seed AgX-100 point and line sources obtained with PSO optimization provide accurate analytical forms of the radial dose function. The tri-exponential fitting function is more accurate than the bi-exponential function.

  15. Preparation of Ag{sub 2}O/Ag{sub 2}CO{sub 3}/MWNTs composite photocatalysts for enhancement of ciprofloxacin degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqin [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Jinze [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Huo, Pengwei, E-mail: huopw1@163.com [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang 212013 (China); Yan, Yongsheng [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Ag{sub 2}O/Ag{sub 2}CO{sub 3}/MWNTs were prepared by calcination of the obtained precipitate. • The holes were main contributor for the degradation processes of ciprofloxacin. • The synergistic effect enhanced the activity and stability of composites. - Abstract: The Ag{sub 2}O/Ag{sub 2}CO{sub 3}/multi-walled carbon nanotube (MWNTs) composite photocatalysts were prepared by calcination of the obtained precipitate. The structures and morphology of as-prepared composite photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, X-ray photoelectron spectroscopy (XPS). The Ag{sub 2}O/Ag{sub 2}CO{sub 3}/MWNTs composite photocatalysts exhibit higher degradation rate of ciprofloxacin (CIP) than the pure Ag{sub 2}CO{sub 3}, Ag{sub 2}O/Ag{sub 2}CO{sub 3} and Ag{sub 2}CO{sub 3}/MWNTs under visible light irradiation. The amount of loaded Ag{sub 2}CO{sub 3} onto MWNTs and calcined time for Ag{sub 2}CO{sub 3}/MWNTs were systematically investigated, and the optimal amount of loaded Ag{sub 2}CO{sub 3} and calcined time of Ag{sub 2}CO{sub 3}/MWNTs are 150 wt% and 10 min, respectively. The highest photocatalytic degradation rate of CIP could reach 76% under optimal conditions. The active species trapping experiments were also analyzed, the results show that the holes are main contributor for the degradation processes of CIP, furthermore the electrons, ·O{sub 2}{sup −} and ·OH are also crucially influenced the photocatalytic degradation processes of CIP. The possible photocatalytic processes of CIP with Ag{sub 2}O/Ag{sub 2}CO{sub 3}/MWNTs composite photocatalyst are also proposed.

  16. Room temperature synthesis and photocatalytic property of AgO/Ag2Mo2O7 heterojunction nanowires

    International Nuclear Information System (INIS)

    Hashim, Muhammad; Hu, Chenguo; Wang, Xue; Wan, Buyong; Xu, Jing

    2012-01-01

    Graphical abstract: The AgO nanoparticles are attached on the surface of the Ag 2 Mo 2 O 7 nanowires to form a heterojunction structure. The AgO nanoparticles start embedding into the nanowires with increasing reaction temperature or time. Highlights: ► AgO/Ag 2 Mo 2 O 7 heterojunction NWs were synthesized at room temperature for the first time. ► AgO particles embed into the Ag 2 Mo 2 O 7 NWs with increase in reaction time and temperature. ► The heterojunction NWs display much better photocatalytic activity than the none-heterojunction NWs. ► The catalytic mechanism was proposed. -- Abstract: AgO/Ag 2 Mo 2 O 7 heterojunction nanowires were synthesized at temperatures of 25 °C, 50 °C, 80 °C, and 110 °C, under magnetic stirring in solution reaction. The catalytic activity of AgO/Ag 2 Mo 2 O 7 nanowires was evaluated by the degradation of Rhodmine B dye under the irradiation of the simulated sunlight. The synthesized samples were characterized by X-ray diffractometer, energy dispersive spectrometry, X-ray photoelectron spectrometer, scanning electron microscopy, and transmission electron microscopy. The results show that the AgO nanoparticles are attached on the surface of the Ag 2 Mo 2 O 7 nanowires to form a heterojunction structure. The length of the nanowires is up to 10 μm and the size of the AgO nanoparticles is 10–20 nm. The length of nanowires increases with increasing reaction time and temperature while the AgO particles are gradually embedded into the nanowires. The photocatalytic activity is greatly improved for the AgO/Ag 2 Mo 2 O 7 heterojunction nanowires compared with that of the pure Ag 2 Mo 2 O 7 nanowires, indicating a remarkable role of AgO particles on the Ag 2 Mo 2 O 7 nanowires in the photodegradation.

  17. Effect of second introduced phase on magnetic and magnetotransport properties of (1-x)La0.7Sr0.3Mn0.9Co0.1O3/x% Ag (x=0%, 2%, 4%) nanocomposites

    Science.gov (United States)

    Shah, Hiral D.; Bhalodia, J. A.

    2018-05-01

    The structural, magnetic and magnetotransport properties of (1-x)La0.7Sr0.3Mn0.9Co0.1O3(LSMCO)/x% Ag (x=0%, 2%, 4%) nanocomposites were investigated to explore the role of second introduced phase. (1-x) LSMCO/x% Ag (x=0%, 2%, 4%) nanocomposites are prepared via solid-state reaction method. X-ray diffraction (XRD) and SEM analysis indicated that x% of Ag are not substituted into the main LSMCO phase and remains an additive to the second phase at grain boundaries [1]. The structural parameters and the reliability factors for all the samples were successfully determined by the Rietveld refinement. Magnetization and transport properties of (1-x)LSMCO/x% Ag nanocomposites have been reported. Resistivity of the composite samples increases with Ag content in comparison with the pure LSMCO, and suppressed with applied magnetic field in all the composite samples [2]. The metal-insulator transition (TMI) and accompanied paramagnetic-ferromagnetic transition (TC) temperatures decrease with increase in Ag content. The electrical resistivity of the experimental results is explored by theoretical model below TMI. The maximum MR was observed to be 55% in the x=4% sample at 5 K temperature under 7 T magnetic field, this value is larger than that of pure LSMCO (19% at 5 K and 7 T), which is encouraging for practical application. Summarily, the addition of Ag in LSMCO improves MR% values significantly due to the more grain boundary contribution and result in better physical properties of the parent manganite system.

  18. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit

    Science.gov (United States)

    Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang

    2017-11-01

    Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.

  19. Properties of Y Ba2 Cu3 O7-x-Ag prepared by the citrate technique

    International Nuclear Information System (INIS)

    Fonseca, Fabio Coral

    1996-01-01

    Y Ba 2 Cu 3 O 7-x (Y123) ceramic superconductor and YBa 2 Cu 3 O 7-x- Ag composite superconductors have been prepared by the citrate technique. Microstructural analysis has been done by X-ray diffractometry and optical ceramography. The superconducting behavior has been studied by 4 probe dc electrical resistivity in the 77 K - 140 K temperature range. Silver percolation in the ceramic matrix was studied by electrical resistivity measurements at room temperature; the percolation threshold was found to be approximately 25 vol. % (35.5 wt. %) Ag. Specimens with silver addition showed improvement in the flexural strength of the Y123 compound. The main results show that the critical temperatures does not depend on the silver content in the composite specimens, the normal state electrical behavior of the superconductor is affected by silver addition and approximately 3 wt. % (1.8 vol. %) Ag doping yields and optimized composite superconductor from the electrical, mechanical and microstructural pont of view, with platelet-like grain shapes. (author)

  20. Staging structures of the intercalation compounds Ag/sub x/TiS2

    International Nuclear Information System (INIS)

    Bardhan, K.K.; Kirczenow, G.; Jackle, G.; Irwin, J.C.

    1986-01-01

    An extensive investigation of the structure, and in particular the staging, of powdered samples of the intercalation compounds Ag/sub x/TiS 2 (0 0 C. The (T,x) phase diagram contains three phases: a high-x (dense) stage-1 phase, a stage-disordered phase, which at low x or high temperatures appears to become a pure low-x (dilute) stage-1 phase, and a simple stage-2 phase. On the high-x side of its stability region the stage-2 phase undergoes an apparent first-order transition to the dense stage-1 phase, but on the high-temperature side it proceeds continuously, through stage-disordered states, to a dilute stage-1 phase. On the low-x side of the stage-2 region there is also a dilute stage-1 phase. At sufficiently high temperatures a novel coexistence of the two stage-1 phases is observed. This is the first time that the high-temperature stability limit of the stage-2 region has been probed in any intercalation compound. The results are compared with recent theoretical models

  1. Effect of silver doping on infrared reflectance and Tc of superconducting GdBa2Cu(1 - x)3Ag3xO7

    International Nuclear Information System (INIS)

    Memon, A.; Khan, M.N.; Al-Dallal, S.; Tanner, D.B.; Porter, C.D.

    1990-01-01

    This paper reports on infrared reflectance of GdBa 2 Cu(1 - x) 3 Ag 3x O 7 ceramic superconductor with the composition of x = 0.025 and 0.05 performed in the frequency range of 100--5000 cm -1 . All the infrared active phonon modes allowed by the selection rules were observed in the reflection spectra of these compounds. The optical conductivity as calculated from K--K analysis further confirms the existence of these optical phonons. Besides the increase of the reflectivity in the silver doped samples, an extra phonon mode is observed, which is normally not seen at room temperature reflectance of GdBa 2 Cu 3 O 7 compounds. The four probe resistivity measurement show zero resistance at 88 K for x = 0, and 78 K for x = 0.025 in GdBa 2 Cu(1 - x) 3 Ag 3x O 7 compound

  2. Homogeneous-inhomogeneous models of Ag x (Ge0.25Se0.75)100-x bulk glasses

    International Nuclear Information System (INIS)

    Arcondo, B.; Urena, M.A.; Piarristeguy, A.; Pradel, A.; Fontana, M.

    2007-01-01

    Ge-Se system presents an extensive glass forming composition range even when different metals (Ag, Sb, Bi) are added. In spite that the addition of Ag (up to 30 at%) to Ge-Se does not affect substantially the glass forming tendency, it impacts significantly on the transport properties. (Ge 0.25 Se 0.75 ) 100- x Ag x is a fast ionic conductor with x≥8 at% whereas it is a semiconductor for x 0.25 Se 0.75 ) 100- x Ag x bulk samples. These results appear to sustain this model. However previous structural and thermal studies oppose it. Moessbauer spectrometry on samples (0≤x≤25) containing 0.5 at% of 57 Fe is performed at T≤300 K. The main contribution to the glasses spectra correspond to low spin Fe 2+ in octahedral coordination and high spin Fe 2+ in distorted octahedral environments. The relative population of both sites changes continuously as Ag concentration varies denoting that the change in the transport behavior obeys to a percolation phenomenon. The low temperature results are discussed with the aim to throw light on the controversy about the homogeneity-inhomogeneity of the studied bulk glasses

  3. Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants over Flower-Like Bi2O2CO3 Dotted with Ag@AgBr

    Directory of Open Access Journals (Sweden)

    Shuanglong Lin

    2016-10-01

    Full Text Available A facile and feasible oil-in-water self-assembly approach was developed to synthesize flower-like Ag@AgBr/Bi2O2CO3 micro-composites. The photocatalytic activities of the samples were evaluated through methylene blue degradation under visible light irradiation. Compared to Bi2O2CO3, flower-like Ag@AgBr/Bi2O2CO3 micro-composites show enhanced photocatalytic activities. In addition, results indicate that both the physicochemical properties and associated photocatalytic activities of Ag@AgBr/Bi2O2CO3 composites are shown to be dependent on the loading quantity of Ag@AgBr. The highest photocatalytic performance was achieved at 7 wt % Ag@AgBr, degrading 95.18% methylene blue (MB after 20 min of irradiation, which is over 1.52 and 3.56 times more efficient than that of pure Ag@AgBr and pure Bi2O2CO3, respectively. Bisphenol A (BPA was also degraded to further demonstrate the degradation ability of Ag@AgBr/Bi2O2CO3. A photocatalytic mechanism for the degradation of organic compounds over Ag@AgBr/Bi2O2CO3 was proposed. Results from this study illustrate an entirely new approach to fabricate semiconductor composites containing Ag@AgX/bismuth (X = a halogen.

  4. An experimental investigation of ionic transport properties in CuI-Ag2WO4 and CuI-Ag2CrO4 mixed systems

    International Nuclear Information System (INIS)

    Suthanthiraraj, S. Austin; Premchand, Y. Daniel

    2004-01-01

    The phenomenon of ionic transport in the case of two different mixed systems (CuI) (1-x) -(Ag 2 WO 4 ) x (0.15= (1-y) -(Ag 2 CrO 4 ) y (0.15= -3 Scm -1 for the composition (CuI) 0.45 -(Ag 2 WO 4 ) 0.55 and 1.1x10 -4 Scm -1 in the case of (CuI) 0.55 -(Ag 2 CrO 4 ) 0.45 at room temperature has been discussed in terms of the observed characteristics

  5. Understanding the Composition Dependence of the Fragility of AgI-Ag2O-MxOy Glassy Systems

    International Nuclear Information System (INIS)

    Aniya, M

    2011-01-01

    It has been reported that the fragility in the AgI-Ag 2 O-M x O y (M = B, Ge, P, Mo) system is determined by Ag 2 O-M x O y and does not depend on the amount of AgI. This is an interesting result and provides a hint to understand the nature of the glassy state of these materials. However, the origin of such behavior has not been sufficiently discussed. In the present report a model for the above behavior is presented. According to the model, the behavior arises from the solid like nature of the network formed by Ag 2 O-M x O y and the liquid like AgI which flow between the networks. The model is consistent with the structural model of superionic glasses proposed previously.

  6. First-principles calculations of dynamical and thermodynamic properties of cuprite doped with silver (Cu2(1‑x)Ag2xO)

    Science.gov (United States)

    Musari, A. A.; Joubert, D. P.; Adebayo, G. A.

    2018-04-01

    Cuprite (Cu2O) is a solid mineral and a compound whose simplicity of preparation, non toxic nature, low band gap and its abundance has made it a prospective candidate for the realisation of low cost photovoltaic applications. The present work successfully dopes Cuprite with Ag ({{{Cu}}}2(1-{{x})}{{{Ag}}}2{{x}}{{O}}) at different concentrations x = 0, 0.25, 0.5, 0.75 and 1, their first-principle calculations of their electronic, dynamical and thermodynamic properties have been investigated extensively within the generalised gradient approximation. Direct band gap energies at {{Γ }} are predicted for all the studied systems. A small bowing parameter for lattice constants ba and bulk modulus bB of 0.4245 \\mathring{{A}} and 0.8747 GPa were obtained when compared to Vegard’s law. The results of phonon dispersion when x = 0 and 1 indicate stability, these agree with available theoretical and experimental results while negative frequencies observed along the Brillouin zone for the doped systems when x = 0.25, 0.5 and 0.75 imply that they are dynamically unstable. The thermodynamic properties between 0 to 800 K were determined using the calculated phonon density of states within the harmonic approximation and the values of the specific heat capacity at constant volume at ambient temperature and the temperature at which lattice vibrations and thermal motion of electrons contribute to the constant volume specific heat capacity are presented for all the systems.

  7. LaCu6-xAgx: A promising host of an elastic quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, Lekh [ORNL; Dela Cruz, Clarina R. [ORNL; Koehler, Michael R. [University of Tennessee, Knoxville (UTK); McGuire, Michael A. [ORNL; Keppens, Veerle [University of Tennessee, Knoxville (UTK); Mandrus, David [ORNL; Christianson, Andrew D. [ORNL

    2018-05-01

    Structural properties of LaCu6-xAgx have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P2₁/C) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu6-xAgx decrease with Ag composition until the monoclinic phase is completely suppressed at xc=0.225. All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu6-xAgx.

  8. AgSbSe{sub 2} and AgSb(S,Se){sub 2} thin films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Garza, J.G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Shaji, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Facultad de Ingenieria Mecanica y Electrica, CIIDIT - Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Rodriguez, A.C.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Facultad de Ingenieria Mecanica y Electrica, CIIDIT - Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-10-01

    Silver antimony selenide (AgSbSe{sub 2}) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb{sub 2}S{sub 3}), silver selenide (Ag{sub 2}Se), selenium (Se) and silver (Ag). Sb{sub 2}S{sub 3} thin film was prepared from a chemical bath containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3}, Ag{sub 2}Se from a solution containing AgNO{sub 3} and Na{sub 2}SeSO{sub 3} and Se thin films from an acidified solution of Na{sub 2}SeSO{sub 3}, at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 deg. C in vacuum (10{sup -3} Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe{sub 2} or AgSb(S,Se){sub 2} depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe{sub 2}/Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed V{sub oc} = 435 mV and J{sub sc} = 0.08 mA/cm{sup 2} under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe{sub 2} as an absorber material by a non-toxic selenization process is achieved.

  9. Using Ag/Ag2O/SnO2 Nanocomposites to Remove Malachite Green by a Photocatalytic Process

    Science.gov (United States)

    Taufik, A.; Paramarta, V.; Prakoso, S. P.; Saleh, R.

    2017-03-01

    Silver/silver oxide/tin oxide nanocomposites of various weight ratios were synthesized using a microwave-assisted method. The Ag/Ag2O:SnO2 nanoparticle weight ratios used were 25:75, 50:50, and 75:25. All samples were characterized using X-ray diffraction, UV-Vis spectroscopy, Differential Scanning Calorimetry and Thermogravimetric Analysis (TGA). The Ag/Ag2O/SnO2 nanocomposites contained cubic structures provided by the Ag and Ag2O and tetragonal structures provided by the SnO2. The silver resulted in surface plasmon resonance (SPR) at a wavelength of about 435 nm. The silver oxide material was transformed into pure Ag at a temperature of about 370 °C The photocatalytic activity was tested on the degradation of malachite green (MG) from an aqueous solution. The results showed that Ag/Ag2O/SnO2 at a ratio of 50:50 exhibited the best photocatalytic performance for degrading MG under visible-light irradiation. The degradation of MG using Ag/Ag2O/SnO2 nanocomposites followed pseudo first-order kinetic reactions, and electron holes were found to be the main species acting on the degradation process.

  10. Atom distribution and interactions in Ag{sub x}Pt{sub 1-x} and Au{sub x}Pt{sub 1-x} surface alloys on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2009-07-01

    The atom distributions in Ag{sub x}Pt{sub 1-x}/Pt(111) and Au{sub x}Pt{sub 1-x}/Pt(111) surface alloys were studied by high resolution UHV-STM. These surfaces were prepared by submonolayer Ag (Au) metal deposition on Pt(111), followed by annealing at 900 K or 1000 K, respectively, which in both cases results in surface confined 2D alloys, with equilibrated distribution of the components. Both systems show a tendency towards two-dimensional clustering, which fits well to their known bulk immiscibility. Effective cluster interactions (ECIs) will be derived by a quantitative evaluation of the 2D atom distributions in the surface alloys. By comparing the ECIs for PtAg and PtAu on Pt(111), and considering that Ag and Au have almost similar lattice constants, the results allow conclusion on the physical origin of the tendency for clustering.

  11. The (AgInSe{sub 2}){sub 1-x}(VSe){sub x} system (0{<=}x{<=}0.5): X-ray diffraction and differential thermal analysis measurements

    Energy Technology Data Exchange (ETDEWEB)

    Duran, S.; Grima, P.; Quintero, M.; Ruiz, J. [Centro de Estudio en Semiconductores (C.E.S.), Dpto. Fisica, Fac. Ciencias, Universidad de Los Andes, Merida (Venezuela); Munoz, M. [Centro de Estudio en Semiconductores (C.E.S.), Dpto. Fisica, Fac. Ciencias, Universidad de Los Andes, Merida (Venezuela); Ceballos, L. [Laboratorio de Cristalografia, Dpto. Quimica, Fac. Ciencias, Universidad de Los Andes, Merida (Venezuela); Briceno, J.M. [Laboratorio de Analisis Quimico y Estructural (LAQUEM), Dpto. Fisica, Fac. Ciencias, Universidad de Los Andes, Merida (Venezuela); Romero, H. [Laboratorio de Magnetismo de Solidos, Dpto. Fisica, Fac. Ciencias, Universidad de Los Andes, Merida (Venezuela)

    2005-08-01

    Polycrystalline samples of the (AgInSe{sub 2}){sub 1-x}(VSe){sub x} system were prepared by the melt and anneal method. The anneal temperature was 900 K and the anneal time one month. The step composition was 0.1 and the weight of each sample approximately 1 g. Additionally, the composition x=1/3 was also prepared, since these alloys have been reported as electronic, i.e. definite compounds exist in the diagram at precise values of composition, one of them x=1/3. The stoichiometric relation of the samples was investigated by SEM technique. The experimental values, in average, are very close to the nominal values, all of them lying inside the interval of the experimental error ({+-}5%). X-Ray Diffraction (XRD) and Differential Thermal Analysis (DTA) techniques were used for characterization of the alloy samples. Guinier photographs were obtained for all the samples and unit cell parameters were calculated using the available software for indexation. The diffraction patterns show sharp lines indicating good thermal equilibrium of the samples. Transition temperatures obtained from DTA measurements were manually obtained from the T vs. T graph with the criteria that the transition occurs at the intersection of the base line with the slope of the thermal transition peak, as usually. From the analysis of the experimental results it was observed that the solid solubility of VSe in AgInSe{sub 2} is approximately 20%, i.e. the single-phase region exists in the composition range 0{<=}x<0.2, whereas for x>0.2 at least two phases coexist. A schematic T-x phase diagram is proposed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Crystallographic information of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys

    Directory of Open Access Journals (Sweden)

    Dongyan Liu

    2015-09-01

    Full Text Available The compositions and structures of thermodynamically stable or metastable precipitations in binary Mg-X (X=Sn, Y, Sc, Ag alloys are predicted using ab-initio evolutionary algorithm. The geometry optimizations of the predicted intermetallic compounds are carried out in the framework of density functional theory (DFT [1]. A complete list of the optimized crystallographic information (in cif format of the predicted intermetallic phases is presented here. The data is related to “Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys” by Liu et al. [2].

  13. Piezoelectric properties and thermal stability of (Na0.53K0.47-xAgx)Nb1-xSbxO3 ceramics

    International Nuclear Information System (INIS)

    Zheng, Limei; Wang, Jinfeng; Wang, Chunming; Gai, Zhigang; Wu, Qingzao; Zhang, Rui

    2011-01-01

    Many (K 1-x Na x )NbO 3 (KNN)-based ceramics with high piezoelectric performance exhibit undesirable strong temperature dependence due to the orthorhombic-tetragonal polymorphic phase transition near room temperature. In order to improve the temperature stability of the ceramics, many additives have been added into the KNN-based ceramics to shift T O-T down to below room temperature. Contrary to the previous approach (Na 0.53 K 0.47-x Ag x )Nb 1-x Sb x O 3 (NKANS) ceramics with T O-T well above room temperature have been prepared by a conventional solid-state reaction method. The density and the electrical properties are effectively improved by the addition of AgSbO 3 , and optimum piezoelectric properties are found in the ceramics with 0.05 ≤ x ≤ 0.07, with maximum k p ∝ 0.46 for NKANS5 and maximum d 33 ∝ 199 pC/N for NKANS7. More importantly, k p remains virtually almost unchanged up to the T O-T temperature (≥100 C), indicating that the NKANS ceramics exhibit a much improved piezoelectric thermal stability. The analyses suggest that both the high T O-T value and diffuse orthorhombic-tetragonal phase transition should be responsible for the good temperature stability. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Transformation from Ag@Ag{sub 3}PO{sub 4} to Ag@Ag{sub 2}SO{sub 4} hybrid at room temperature: preparation and its visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ting; Gao, Shanmin, E-mail: gaosm@ustc.edu; Wang, Qingyao; Xu, Hui [Ludong University, College of Chemistry and Materials Science (China); Wang, Zeyan; Huang, Baibiao, E-mail: bbhuang@sdu.edu.cn; Dai, Ying [Shandong University, State Key Laboratory of Crystal Materials (China)

    2017-02-15

    In the present study, Ag/Ag{sub 2}SO{sub 4} hybrid photocatalysts were obtained via a facile redox–precipitation reaction approach by using Ag@Ag{sub 3}PO{sub 4} nanocomposite as the precursor and KMnO{sub 4} as the oxidant. Multiple techniques, such as X-ray diffraction pattern (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and Brunauer–Emmett–Teller (BET), photocurrent and electrochemical impedance spectroscopy (EIS), were applied to investigate the structures, morphologies, optical, and electronic properties of as-prepared samples. The photocatalytic activities were evaluated by photodegradation of organic rhodamine B (RhB) and methyl orange (MO) under visible light irradiation. It was found that pure Ag{sub 2}SO{sub 4} can partially transform into metallic Ag during the photocatalytic degradation of organic pollutants, but the Ag/Ag{sub 2}SO{sub 4} hybrids can maintain its structure stability and show enhanced visible light photocatalytic activity because of the surface plasma resonance effect of the metallic Ag.

  15. Microstructure and adhesion strength of Sn-9Zn-1.5Ag-xBi (x = 0 wt% and 2 wt%)/Cu after electrochemical polarization in a 3.5 wt% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.-L. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chen, Y.-R.; Chang, K.-M. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Liu, C.-Y.; Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2008-08-11

    The microstructure and adhesion strength of the Sn-9Zn-1.5Ag-xBi (x = 0 wt% and 2 wt%)/Cu interface after electrochemical polarization have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and pull-off testing. The equilibrium potentials of Sn-9Zn-1.5Ag/Cu and Sn-9Zn-1.5Ag-2Bi/Cu are -1.31 V{sub sce} and -1.22 V{sub sce}, respectively, indicating that Sn-9Zn-1.5Ag-2Bi/Cu has a better corrosion resistance than that of Sn-9Zn-1.5Ag/Cu. The intermetallic compounds of Cu{sub 6}Sn{sub 5}, Cu{sub 5}Zn{sub 8} and Ag{sub 3}Sn are formed at the soldered interface between the Sn-9Zn-1.5Ag-xBi solder alloy and the Cu substrate. The scallop-shaped Cu{sub 6}Sn{sub 5} is close to the Cu substrate and the scallop-shaped Cu{sub 5}Zn{sub 8} is found at the interface in the solder matrix after soldering at 250 deg. C for 10 s. The corrosion products are ZnCl{sub 2}, SnCl{sub 2} and ZnO. On the other hand, pits are also formed on the surface of both solder alloys. The interfacial adhesion strength of the Sn-9Zn-1.5Ag/Cu and Sn-9Zn-1.5Ag-2Bi/Cu decreases from 8.27 {+-} 0.56 MPa and 12.67 {+-} 0.45 MPa to 4.78 {+-} 0.45 MPa and 8.14 {+-} 0.38 MPa, respectively, after electrochemical polarization in a 3.5 wt% NaCl solution. The fracture path of the Sn-9Zn-1.5Ag-2Bi/Cu is along the solder alloy/ZnO and solder/Cu{sub 6}Sn{sub 5} interfaces.

  16. The (AgInSe2)1-x(VSe)x system (0≤x≤0.5): X-ray diffraction and differential thermal analysis measurements

    International Nuclear Information System (INIS)

    Duran, S.; Grima, P.; Quintero, M.; Ruiz, J.; Munoz, M.; Ceballos, L.; Briceno, J.M.; Romero, H.

    2005-01-01

    Polycrystalline samples of the (AgInSe 2 ) 1-x (VSe) x system were prepared by the melt and anneal method. The anneal temperature was 900 K and the anneal time one month. The step composition was 0.1 and the weight of each sample approximately 1 g. Additionally, the composition x=1/3 was also prepared, since these alloys have been reported as electronic, i.e. definite compounds exist in the diagram at precise values of composition, one of them x=1/3. The stoichiometric relation of the samples was investigated by SEM technique. The experimental values, in average, are very close to the nominal values, all of them lying inside the interval of the experimental error (±5%). X-Ray Diffraction (XRD) and Differential Thermal Analysis (DTA) techniques were used for characterization of the alloy samples. Guinier photographs were obtained for all the samples and unit cell parameters were calculated using the available software for indexation. The diffraction patterns show sharp lines indicating good thermal equilibrium of the samples. Transition temperatures obtained from DTA measurements were manually obtained from the T vs. T graph with the criteria that the transition occurs at the intersection of the base line with the slope of the thermal transition peak, as usually. From the analysis of the experimental results it was observed that the solid solubility of VSe in AgInSe 2 is approximately 20%, i.e. the single-phase region exists in the composition range 0≤x 0.2 at least two phases coexist. A schematic T-x phase diagram is proposed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. SEM-EDS Observation of Structure Changes in Synthetic Zeolites Modified for CO2 Capture Needs

    Science.gov (United States)

    Wdowin, Magdalena; Panek, Rafal; Franus, Wojciech

    Carbon dioxide is the main greenhouse gas and its amount still increase in the atmosphere. Air pollution and greenhouse effect caused by CO2 emission have become a major threat to the environment on a global scale. Carbon dioxide sequestration (i.e. capture and consequently geological storage) is the key strategy within the portfolio of actions to reduce CO2 emission to the atmosphere. The most costly stage is capture of CO2, therefore there is a need to search new solutions of this technology. For this purpose it was examined Na-X synthetic zeolites, that were silver and PEI (polyethyleneimine) activated. SEM-EDS investigation enable to find a changes in structure of this materials after treatment. Where, as a result of silver activation from EDS analysis it is seen that Ag occur in Na-X structure, what indicate a substitution of Ag2+ for Na+ ions in crystal lattice. Analysing wt% the EDS analysis has shown that zeolite Na-X after silver impregnation becomes Ag-X zeolite. For Na-X-PEI activated it is observed a distinct organic compound in the form of coatings on Na-X crystals causing a sealing of pores in tested zeolite. Further examination of these materials concern determination of surface properties and experiments of CO2 sorption. But SEM-EDS analysis enable to determine the extent of activation, what is very important in determination of optimal conditions for such treatment in order to obtain better sorbent of CO2.

  18. Cytotoxicity of serum protein-adsorbed visible-light photocatalytic Ag/AgBr/TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Seo, Ji Hye; Jeon, Won Il; Dembereldorj, Uuriintuya; Lee, So Yeong; Joo, Sang-Woo

    2011-01-01

    Highlights: ► Photocytotoxicity of visible-light catalytic NPs was examined in vitro. ► Ag/AgBr/TiO 2 NPs were well internalized in cells after adsorption of serum proteins. ► Cell viability was decreased by 40–60% using ∼8 ppm NPs and 60 W/cm 2 visible light within 5 h. ► Mitochondria activity test indicated the reactive oxygen species for photo-destruction of cells. ► Ag/AgBr/TiO 2 NPs were found to eliminate xenograft tumors significantly in vivo. - Abstract: Photocytotoxicity of visible-light catalytic Ag/AgBr/TiO 2 nanoparticles (NPs) was examined both in vitro and in vivo. The Ag/AgBr/TiO 2 NPs were prepared by the deposition–precipitation method. Their crystalline structures, atomic compositions, and light absorption property were examined by X-ray diffraction (XRD) patterns, X-ray photoelectron (XPS) intensities, and ultraviolet-visible (UV–vis) diffuse reflectance spectroscopic tools. The Ag/AgBr/TiO 2 NPs appeared to be well internalized in human carcinoma cells as evidenced by transmission electron microscopy (TEM). The cytotoxicity of cetylmethylammonium bromide (CTAB) appeared to be significantly reduced by adsorption of serum proteins in the cellular medium on the NP surfaces. Two types of human cervical HeLa and skin A431 cancer cells were tested to check their viability after the cellular uptake of the Ag/AgBr/TiO 2 NPs and subsequent exposure to an illumination of visible light from a 60 W/cm 2 halogen lamp. Fluorescence images taken to label mitochondria activity suggest that the reactive oxygen species should trigger the photo-destruction of cancer cells. After applying the halogen light illumination for 50–250 min and ∼8 ppm (μg/mL) of photocatalytic Ag/AgBr/TiO 2 NPs, we observed a 40–60% selective decrease of cell viability. Ag/AgBr/TiO 2 NPs were found to eliminate xenograft tumors significantly by irradiating visible light in vivo for 10 min.

  19. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation

    Science.gov (United States)

    Li, Hongliang; Wang, Liangbing; Dai, Yizhou; Pu, Zhengtian; Lao, Zhuohan; Chen, Yawei; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Si, Rui; Ma, Chao; Zeng, Jie

    2018-05-01

    Exploring the interaction between two neighbouring monomers has great potential to significantly raise the performance and deepen the mechanistic understanding of heterogeneous catalysis. Herein, we demonstrate that the synergetic interaction between neighbouring Pt monomers on MoS2 greatly enhanced the CO2 hydrogenation catalytic activity and reduced the activation energy relative to isolated monomers. Neighbouring Pt monomers were achieved by increasing the Pt mass loading up to 7.5% while maintaining the atomic dispersion of Pt. Mechanistic studies reveal that neighbouring Pt monomers not only worked in synergy to vary the reaction barrier, but also underwent distinct reaction paths compared with isolated monomers. Isolated Pt monomers favour the conversion of CO2 into methanol without the formation of formic acid, whereas CO2 is hydrogenated stepwise into formic acid and methanol for neighbouring Pt monomers. The discovery of the synergetic interaction between neighbouring monomers may create a new path for manipulating catalytic properties.

  20. Low-cost spray-processed Ag{sub 1−x}Cu{sub x}InS{sub 2} nano-films: Structural and functional investigation within the Lattice Compatibility Theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Gherouel, D. [Unité de Physique des Dispositifs à Semi-conducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Yumak, A. [Physics Department, The Faculty of Arts and Science,Marmara University, 34722 Göztepe, Istanbul (Turkey); Znaidi, M. [Institut Préparatoire Aux Etudes d’Ingénieurs de Nabeul, Merazka, 8000 Nabeul (Tunisia); Bouzidi, A. [Unité de Physique des Dispositifs à Semi-conducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Boubaker, K., E-mail: mmbb11112000@yahoo.fr [Unité de Physique des Dispositifs à Semi-conducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Yacoubi, N. [Institut Préparatoire Aux Etudes d’Ingénieurs de Nabeul, Merazka, 8000 Nabeul (Tunisia); Amlouk, M. [Unité de Physique des Dispositifs à Semi-conducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia)

    2015-08-15

    Highlights: • Cu{sub x}Ag{sub 1−x}InS{sub 2} with a minimal lattice mismatch between absorbers and buffers. • The lattice compatibility for understanding silver–copper kinetics. • Controlled and enhanced spray pyrolisis method as a low-cost synthesis protocol. - Abstract: This work deals with some structural and optical investigations about Cu{sub x}Ag{sub 1−x}InS{sub 2} alloys sprayed films and the beneficial effect of copper incorporation in AgInS{sub 2} ternary matrices. The main purpose of this work is to obtain the band gap energy E{sub g} as well as different lattice parameters. The studied properties led to reaching minimum of lattice mismatch between absorber and buffer layers within solar cell devices. As a principal and original finding, the lattice compatibility between both silver and copper indium disulfide structures has been proposed as a guide for understanding kinetics of these materials crystallization.

  1. Directly coupled direct current superconducting quantum interference device magnetometers based on ramp-edge Ag:YBa2Cu3O7-x/PrBa2Cu3O7-x/Ag:YBa2Cu3O7-x junctions

    International Nuclear Information System (INIS)

    Jia, Q.X.; Yan, F.; Mombourquette, C.; Reagor, D.

    1998-01-01

    Directly coupled dc superconducting quantum interference device (SQUID) magnetometers on LaAlO 3 substrates were fabricated using ramp-edge superconductor/normal-metal/superconductor junctions, where Ag-doped YBa 2 Cu 3 O 7-x was used for the electrode and PrBa 2 Cu 3 O 7-x for the normal-metal barrier. A flux noise of 8x10 -6 Φ 0 Hz -1/2 at 10 kHz measured with a dc bias current was achieved at 75 K, which corresponded to a field sensitivity of 400fTHz -1/2 for a magnetometer with a pick-up loop area of 8.5mmx7.5mm. Most significantly, the noise floor increased at lower frequencies with a frequency dependence slightly less than 1/f. The field noise of the SQUID magnetometers increased by only 25% after cycling the devices from zero field to 500 mG. In a static earth close-quote s magnetic field background, the field noise of the SQUID magnetometers increased by less than a factor of 2. copyright 1998 American Institute of Physics

  2. Structural analysis of quaternary Se{sub 85−x}Sb{sub 10}In{sub 5}Ag{sub x} bulk glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rita, E-mail: reetasharma2012@gmail.com; Sharma, Shaveta; Kumar, Praveen; Chander, Ravi; Thangaraj, R.; Mian, M. [Semiconductors Laboratory, Department of Physics, GND University, Amritsar (India)

    2015-08-28

    The physical properties of chalcogenide semiconductor have attracted much attention recently due to their applications in optical recording media and inorganic resist due to photo induced structural transformations observed in these materials. The bulk samples of Se{sub 85-x}Sb{sub 10}In{sub 5}Ag{sub x} system are prepared by melt-quenching technique. X-ray diffraction technique and RAMAN spectroscopy have been used to study the role of Ag additive on the amorphous/crystalline nature and molecular structure of Se{sub 85}Sb{sub 10}In{sub 5} glassy alloys. The phases Sb{sub 2}Se{sub 3}, In-Sb and In{sub 2}Se{sub 3} has been observed by X-ray diffraction. The formation of AgInSe{sub 2} phase along with the enhancement in intensity has been observed with the Ag addition.Three bands observed by raman spectroscopy for Se85Sb10In5 are at 70 cm-1, 212cm-1 and 252cm-1. The formation of small bands up to wavenumber 188cm{sup -1} and shifting in second band along with the increase in intensity up to sample x=5 has been observed with the Ag addition. The enhancement in intensity in third band with Ag content has been observed.

  3. Molecular structure of virgin and Tg cycled (Ag2Se)x (AsSe)1-x bulk glasses

    Science.gov (United States)

    Wachtman, Jacob; Chen, Ping; Boochand, P.

    2009-03-01

    AsSe, the base glass (x = 0) in the titled ternary, is an interesting example of a chalcogenide that is partially de-mixed into As4Se4 molecules segregated from a connected AsSe network, with the latter determining glass network properties. Raman scattering reveals sharp modes of the Realgar molecules that are superimposed on broad modes coming from of the backbone. Upon Tg cycling virgin samples (as quenched melts), the concentration of de-mixed As4Se4 molecules decreases, suggesting that thermally induced polymerization occurs; molecules break up to form part of the connective tissue. Modulated DSC experiments reveal a broad exotherm near 140 ^oC in virgin samples, which becomes nearly extinct in Tg cycled samples. The exotherm may represent Realgar molecules nano-crystallizing as the temperature approaches Tg. Compositional trends in thermal parameters such as Tg(x), δCp(x), and the δHnr(x) as a function of Ag2Se content `x' of the glasses will be reported.

  4. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet; Zulfiqar, Sonia; Edhaim, Fatimah; Ruiperez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  5. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet

    2016-10-05

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  6. Shape-controlled synthesis of polypyrrole/Ag nanostructures in the presence of chitosan.

    Science.gov (United States)

    Feng, Xiaomiao; Huang, Haiping; Xu, Lin; Zhu, Jun-Jie; Hou, Wenhua

    2008-01-01

    Polypyrrole (PPy)-coated Ag nanoparticles and nanowires were fabricated through the redox reaction between pyrrole monomer and silver nitrate in the presence of chitosan. The morphologies, compositions, and electrochemical activities of PPy/Ag composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, and Cyclic voltammetry. The synthetic route employed here is simple and inexpensive and can be extended to prepare other conducting polymer/inorganic nanocomposites.

  7. Visualization of monomer and polymer inside porous stones by using X-ray tomography

    International Nuclear Information System (INIS)

    Brunetti, Antonio; Princi, Elisabetta; Vicini, Silvia; Pincin, Silvia; Bidali, Simone; Mariani, Alberto

    2004-01-01

    Estimate of sorption of liquid materials inside porous stones is an important parameter in industrial material testing and cultural heritage conservation. In the latter case, a suitable polymer can be used for both consolidation and conservation, it being applied either in the final form or as its parent monomer, which is subsequently allowed to polymerize in situ by the classical method or by frontal polymerization. However, the sorption of such materials through the stone is often difficult because of their viscosity and/or stone porosity. For this reason, the amount of monomer (or polymer) is a parameter of great interest in order to determine the extent of protection reachable by the treatment. In this paper a new methodology based on X-ray tomography is presented. The methodology makes use of a contrast agent added to the monomer that does not interact with its propagation inside the stone and allows to increase the absorption coefficient and so to observe the monomer inside the sample, which is finally frontally polymerized

  8. Synthesis and photoactivity of the highly efficient Ag species/TiO2 nanoflakes photocatalysts

    International Nuclear Information System (INIS)

    Liu Yong; Hu Juncheng; Li Jinlin

    2011-01-01

    Research highlights: → Highly efficient Ag species-TiO 2 nanoflakes catalyst was prepared. → The variety and relative amount of Ag species in TiO 2 can be well tuned. → The enhanced photocatalytic activity can be attributed to the Ag species. - Abstract: Ag species/TiO 2 nanoflakes photocatalysts with different relative contents (Ag + , Ag 2+ , Ag 0 ) have been successfully synthesized by a simple template-free synthetic strategy. X-ray photoelectron spectroscopy, X-ray diffraction, and UV-vis diffuse reflectance spectra indicated that the dopant ions (Ag + or Ag 2+ ) were partly incorporated into the titanium dioxide nanoflakes. Meanwhile, part of the silver ions migrated to the surface after the subsequent calcination and aggregated into ultra-small metallic Ag nanoclusters (NCs) (1-2 nm), which are well dispersed on the surface of TiO 2 nanoflakes. The photocatalytic activities of the Ag species/TiO 2 materials obtained were evaluated by testing the photodegradation of the azo dye reactive brilliant X-3B (X-3B) under near UV irradiation. Interestingly, it was found that the maximum photocatalytic efficiency was observed when Ag species coexisted in three valence states (Ag + , Ag 2+ , Ag 0 NCs), which was higher than that of Degussa P25. The high photocatalytic activity of the Ag species/TiO 2 can be attributed to the synergy effect of the three Ag species.

  9. Electronic structure of Co islands grown on the {radical}3 x {radical}3-Ag/Ge(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiao-Lan; Chou, Chi-Hao; Lin, Chun-Liang; Tomaszewska, Agnieszka; Fu, Tsu-Yi, E-mail: phtifu@phy.ntnu.edu.tw

    2011-09-30

    By means of room temperature scanning tunneling spectroscopy (RT STS), we have studied the electronic structure of two different Ag/Ge(111) phases as well as Co islands grown on the {radical}3 x {radical}3-Ag/Ge (111) forming either {radical}13 x {radical}13 or 2 x 2 patterns. The spectrum obtained from 4 x 4-Ag/Ge(111) structure shows the existence of a shoulder at 0.7 V which is also present in the electronic structure of the Ge(111)-c2 x 8 and indicates donation of Ge electrons to electronic states of the Ag-driven phase. However, this fact is not supported by the electronic spectrum taken from the {radical}3 x {radical}3-Ag/Ge (111). The complexity of the Co-{radical}13 x {radical}13 islands bonding with the substrate is mirrored by a large number of peaks in their electronic spectra. The spectra obtained from the Co-2 x 2 islands which had grown on the step differ from those taken from Co-2 x 2 islands located along the edge of the terrace by a number of peaks at negative sample bias. This discrepancy is elucidated in terms of dissimilarities of Co-substrate interaction accompanying Co islands growth on different areas of the stepped surface.

  10. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe2O4 nanocomposites

    International Nuclear Information System (INIS)

    Li, Xiaojuan; Tang, Duanlian; Tang, Fan; Zhu, Yunyan; He, Changfa; Liu, Minghua; Lin, Chunxiang; Liu, Yifan

    2014-01-01

    Highlights: • A plasmonic Ag/AgBr/ZnFe 2 O 4 photocatalyst has been successfully synthesized. • Ag/AgBr/ZnFe 2 O 4 nanocomposites exhibit high visible light photocatalytic activity. • Ag/AgBr/ZnFe 2 O 4 photocatalyst is stable and magnetically separable. - Abstract: A visible-light-driven plasmonic Ag/AgBr/ZnFe 2 O 4 nanocomposite has been successfully synthesized via a deposition–precipitation and photoreduction through a novel one-pot process. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy were employed to investigate the crystal structure, chemical composition, morphology, and optical properties of the as-prepared nanocomposites. The photocatalytic activities of the nanocomposites were evaluated by photodegradation of Rhodamine B (RhB) and phenol under visible light. The results demonstrated that the obtained Ag/AgBr/ZnFe 2 O 4 nanocomposites exhibited higher photocatalytic activity as compared to pure ZnFe 2 O 4 . In addition, the sample photoreduced for 20 min and calcined at 500 °C achieved the highest photocatalytic activity. Furthermore, the Ag/AgBr/ZnFe 2 O 4 nanocomposite has high stability under visible light irradiation and could be conveniently separated by using an external magnetic field

  11. Crystal Structure of AgBi2I7 Thin Films.

    Science.gov (United States)

    Xiao, Zewen; Meng, Weiwei; Mitzi, David B; Yan, Yanfa

    2016-10-06

    Synthesis of cubic-phase AgBi 2 I 7 iodobismuthate thin films and fabrication of air-stable Pb-free solar cells using the AgBi 2 I 7 absorber have recently been reported. On the basis of X-ray diffraction (XRD) analysis and nominal composition, it was suggested that the synthesized films have a cubic ThZr 2 H 7 crystal structure with AgBi 2 I 7 stoichiometry. Through careful examination of the proposed structure and computational evaluation of the phase stability and bandgap, we find that the reported "AgBi 2 I 7 " films cannot be forming with the ThZr 2 H 7 -type structure, but rather more likely adopt an Ag-deficient AgBiI 4 type. Both the experimental X-ray diffraction pattern and bandgap can be better explained by the AgBiI 4 structure. Additionally, the proposed AgBiI 4 structure, with octahedral bismuth coordination, removes unphysically short Bi-I bonding within the [BiI 8 ] hexahedra of the ThZr 2 I 7 model. Our results provide critical insights for assessing the photovoltaic properties of AgBi 2 I 7 iodobismuthate materials.

  12. Synthesis of β-AgVO3 nanowires decorated with Ag2CrO4, with improved visible light photocatalytic performance

    Science.gov (United States)

    Ouyang, Qi; Li, Zhonghua; Liu, Jiawen

    2018-05-01

    Silver chromate‑silver vanadate (Ag2CrO4/β-AgVO3) heterojunction composites are synthesized through a facile precipitation process. The Ag2CrO4/β-AgVO3 hybrids obtained exhibit better photocatalytic activity in degradation of RhB than both pure Ag2CrO4 and β-AgVO3 under visible light irradiation. The 20 wt% Ag2CrO4/β-AgVO3 heterojunction possesses the best photocatalytic ability for degrading RhB: 24.4 times that of pristine β-AgVO3 nanowires and 3.2 times that of individual Ag2CrO4 particles. The phase of the nanocomposites was analyzed using x-ray diffraction as well as x-ray photoelectron spectroscopy. Their morphology was observed via scanning electron microscopy and transmission electron microscopy. The improvement in photocatalytic performance is chiefly ascribed to the synergies between Ag2CrO4/β-AgVO3 heterostructure, which can enhance the light absorbance ability and also accelerate the separation and transfer of photoinduced electrons and holes under visible light irradiation; this is also confirmed by UV–vis diffuse reflection spectrometry and fluorescence emission spectra.

  13. Medium-range correlation of Ag ions in superionic melts of Ag{sub 2}Se and AgI by reverse Monte Carlo structural modelling-connectivity and void distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Shuta; Ohno, Satoru [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Ueno, Hiroki; Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Ohara, Koji; Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kawakita, Yukinobu [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2011-06-15

    High-energy x-ray diffraction measurements on molten Ag{sub 2}Se were performed. Partial structure factors and radial distribution functions were deduced by reverse Monte Carlo (RMC) structural modelling on the basis of our new x-ray and earlier published neutron diffraction data. These partial functions were compared with those of molten AgI. Both AgI and Ag{sub 2}Se have a superionic solid phase prior to melting. New RMC structural modelling for molten AgI was performed to revise our previous model with a bond-angle restriction to reduce the number of unphysical Ag triangles. The refined model of molten AgI revealed that isolated unbranched chains formed by Ag ions are the cause of the medium-range order of Ag. In contrast with molten AgI, molten Ag{sub 2}Se has 'cage-like' structures with approximately seven Ag ions surrounding a Se ion. Connectivity analysis revealed that most of the Ag ions in molten Ag{sub 2}Se are located within 2.9 A of each other and only small voids are found, which is in contrast to the wide distribution of Ag-void radii in molten AgI. It is conjectured that the collective motion of Ag ions through small voids is required to realize the well-known fast diffusion of Ag ions in molten Ag{sub 2}Se, which is comparable to that in molten AgI.

  14. The Ag2Se-HgSe-GeSe2 system and crystal structures of the compounds

    International Nuclear Information System (INIS)

    Parasyuk, O.V.; Gulay, L.D.; Romanyuk, Ya.E.; Olekseyuk, I.D.; Piskach, L.V.

    2003-01-01

    The phase diagram of the quasi-ternary Ag 2 Se-HgSe-GeSe 2 system at 298 K was investigated using X-ray phase analysis and metallography. The formation of five intermediate quaternary phases β (Ag ∼7.12-∼6.32 Hg ∼0.44-∼0.82 GeSe 6 ), γ (Ag ∼6.08-∼4.00 Hg ∼0.96-∼2.00 GeSe 6 ), δ (Ag 3.4 Hg 2.3 GeSe 6 ), ε (Ag2.24-∼2.00 Hg ∼2.88-∼3.00 GeSe 6 ) and ∼Ag 1.4 Hg 1.3 GeSe 6 was established. The crystal structure of the β-phase (for the Ag 6.504 Hg 0.912 GeSe 6 composition) was determined using X-ray single crystal diffraction. It crystallizes in a cubic structure (space group F4-bar 3m) with the lattice parameter a=1.09026(4) nm. The crystal structure of the δ-phase (Ag 3.4 Hg 2.3 GeSe 6 ) was determined using X-ray powder diffraction (space group F4-bar 3m, a=1.07767(8) nm). The crystal structure determination of the γ-phase (space group Pmn2 1 ) was performed for the compositions Ag 5.6 Hg 1.2 GeSe 6 , Ag 4.8 Hg 1.6 GeSe 6 and Ag 4 Hg 2 GeSe 6 using X-ray powder diffraction. The crystal structure of the LT-Hg 2 GeSe 4 compound (space group I4-bar , a=0.56786(2), c=1.12579(5) nm) was confirmed by powder diffraction also.

  15. Ag screen contacts to sintered YBa/sub 2/Cu/sub 3/O/sub x/ powder for rapid superconductor characterization

    International Nuclear Information System (INIS)

    Moreland, J.; Goodrich, L.F.

    1989-01-01

    The authors have developed a new method for making current contacts and voltage taps to YBa/sub 2/Cu/sub 3/O/sub x/ sintered pellets for rapid superconductor characterization. Ag wire screens are interleaved between calcined powder sections and then fired at 930 0 C to form a composite pellet for resistivity and critical current measurements. The Ag diffuses into the powder during the sintering process forming a proximity contact that is permeable to O/sub 2/. Contact surface resistivities (area-resistance product) range from 1 to 10μΩ-cm/sup 2/ at 77 K for the Ag-powder interface. In this configuration, current can be uniformly injected into the ends of the pellet through the bonded Ag screen electrodes. Also, Ag screen voltage contacts, which span a cross section of the pellet, may provide an ideal geometry for detecting voltage drops along the pellet, minimizing current transfer effects

  16. Effect of Ag film thickness on the optical and the electrical properties in CuAlO2/Ag/CuAlO2 multilayer films grown on glass substrates

    International Nuclear Information System (INIS)

    Oh, Dohyun; No, Young Soo; Kim, Su Youn; Cho, Woon Jo; Kwack, Kae Dal; Kim, Tae Whan

    2011-01-01

    Research highlights: The CuAlO 2 /Ag/CuAlO 2 multilayer films were grown on glass substrates using radio-frequency magnetron sputtering at room temperature. Effects of Ag film thickness on the optical and the electrical properties in CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates were investigated. X-ray diffraction patterns showed that the phase of the CuAlO 2 layer was amorphous. Atomic force microscopy images showed that Ag films with a thickness of a few nanometers had island structures. The morphology Ag films with a thickness of 8 nm was uniform. The morphology of the Ag films inserted in the CuAlO 2 films significantly affected the optical transmittance and the resistivity of the CuAlO 2 films deposited on glass substrates. The maximum transmittance of the CuAlO 2 /Ag/CuAlO 2 multilayer films with a thickness of 8 nm was 89.16%. The resistivity of the CuAlO 2 /Ag/CuAlO 2 multilayer films with an Ag film thickness of 18 nm was as small as about 2.8 x 10 -5 Ω cm. The resistivity of the CuAlO 2 /Ag/CuAlO 2 multilayer films was decreased as a result of the thermal annealing treatment. These results indicate that CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates hold promise for potential applications as TCO films in solar cells. - Abstract: Effects of Ag film thickness on the optical and the electrical properties in CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates were investigated. Atomic force microscopy images showed that Ag films with a thickness of a few nanometers had island structures. X-ray diffraction patterns showed that the phase of the CuAlO 2 layer was amorphous. The resistivity of the 40 nm-CuAlO 2 /18 nm-Ag/40 nm-CuAlO 2 multilayer films was 2.8 x 10 -5 Ω cm, and the transmittance of the multilayer films with an Ag film thickness of 8 nm was approximately 89.16%. These results indicate that CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates hold promise for potential applications as

  17. Oligonucleotides with 1,4-dioxane-based nucleotide monomers

    DEFF Research Database (Denmark)

    Madsen, Andreas S; Wengel, Jesper

    2012-01-01

    An epimeric mixture of H-phosphonates 5R and 5S has been synthesized in three steps from known secouridine 1. Separation of the epimers has been accomplished by RP-HPLC, allowing full characterization and incorporation of monomers X and Y into 9-mer oligonucleotides using H-phosphonates building...... blocks 5R and 5S, respectively. A single incorporation of either monomer X or monomer Y in the central position of a DNA 9-mer results in decreased thermal affinity toward both DNA and RNA complements (ΔT(m) = -3.5 °C/-3.5 °C for monomer X and ΔT(m) = -11.0 °C/-6.5 °C for monomer Y). CD measurements do...

  18. Preparation and characterization of Pd{sub x}Ag{sub y}/C electrocatalysts for ethanol electrooxidation reaction in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Li Guanglan [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Jiang Luhua [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Jiang Qian [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wang Suli [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Sun Gongquan, E-mail: gqsun@dicp.ac.cn [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2011-09-01

    Highlights: {center_dot} The effects of Pd or PdAg particle size and PdAg alloy degrees on the EOR activity are investigated. {center_dot} The Pd lattice constant of the PdAg increases with increasing the Ag content. {center_dot} The EOR activity of the PdAg/C presents a 'volcano' plot with increasing the Pd lattice constant. {center_dot} The optimal Pd/Ag atomic ratio locates between 2/1 and 3/1. {center_dot} The EOR activity of the PdAg/C increases with increasing the PdAg particle size from 3.4 to 5.2 nm. - Abstract: Carbon-supported bimetallic PdAg catalysts with Pd/Ag atomic ratios varying from 4/1 to 1/2 were prepared by an impregnation-reduction method. The impregnated black mixture was treated in H{sub 2}/N{sub 2} atmosphere at a temperature varying from 180 to 500 deg. C. The obtained Pd{sub x}Ag{sub y}/C catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV) and chronoamperometry (CA). XRD results show that the lattice constant of Pd is dilated, suggesting the formation of PdAg alloy. The lattice constant of Pd for the Pd{sub x}Ag{sub y}/C-500 (reduced at 500 deg. C by H{sub 2}) increases linearly and the average metal particle size decreases slightly from 6.8 to 5.1 nm with increasing Ag fractions from 20% to 67% in the PdAg composition. For Pd{sub x}Ag{sub y}/C catalysts with a certain specific Pd/Ag atomic ratio, e.g., Pd{sub 2}Ag{sub 1}/C, the dilated lattice constant of Pd is independent of the reducing temperature, indicating the alloy degree for the Pd{sub 2}Ag{sub 1}/C-t catalysts is comparable. The average metal particle size for the Pd{sub 2}Ag{sub 1}/C-t catalysts increases from 3.4 to 5.2 nm with H{sub 2} reduction temperature increasing from 180 to 500 deg. C. The potentiodynamic measurements on ethanol electrooxidation reaction (EOR) show that the catalytic activities for the Pd{sub x}Ag{sub y}/C-t catalysts toward the EOR are improved by alloying Pd with Ag. At

  19. Photoinduced formation of Ag nanoparticles on the surface of As2S3/Ag thin bilayer

    International Nuclear Information System (INIS)

    Binu, S; Khan, Pritam; Barik, A R; Sharma, Rituraj; Adarsh, K V; Golovchak, R; Jain, H

    2014-01-01

    In this article, we demonstrate the combined effect of photodoping and photoinduced-surface deposition in a bilayer of chalcogenide glass (ChG) and Ag as an alternative method to optically synthesize Ag nanoparticles (AgNP) on the surface of ChG. In our experiment, AgNP formation occurs through two distinct stages: In the first stage, Ag is transported through the As 2 S 3 layer as Ag + ions, and in the second stage Ag + ions are photo-deposited as AgNP. The ex situ x-ray photoelectron spectroscopy measurements and AFM observations show photoinduced Ag mass transport and the formation of AgNP. (paper)

  20. Investigation of the resistive switching in Ag{sub x}AsS{sub 2} layer by conductive AFM

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice, 532 10 Czech Republic (Czech Republic); Kutalek, Petr [Joint Laboratory of Solid State Chemistry of Institute of Macromolecular Chemistry Academy of Sciences of Czech Republic, v.v.i., and University of Pardubice, University of Pardubice, Studentska 573, Pardubice, 532 10 (Czech Republic); Knotek, Petr [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice, 532 10 Czech Republic (Czech Republic); Hromadko, Ludek; Macak, Jan M. [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, Pardubice, 53002 (Czech Republic); Wagner, Tomas, E-mail: tomas.wagner@upce.cz [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice, 532 10 Czech Republic (Czech Republic); Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, Pardubice, 53002 (Czech Republic)

    2016-09-30

    Highlights: • The resistive switching was studied from topological maps and spread current maps by conductive AFM. • Both surface particles and filaments were created under bias from conductive AFM. • The combination of topological map and spread current map proves the current did not flow through surface particles. • A model, consisting of interactions between charge carriers and Ag ions, were introduced to explain the experiment phenomena. - Abstract: In this paper, a study of resistive switching in Ag{sub x}AsS{sub 2} layer, based on a utilization of conductive atomic force microscope (AFM), is reported. As the result of biasing, two distinct regions were created on the surface (the conductive region and non-conductive region). Both were analysed from the spread current maps. The volume change, corresponding to the growth of Ag particles, was derived from the topological maps, recorded simultaneously with the current maps. Based on the results, a model explaining the mechanism of the Ag particle and Ag filament formation was proposed from the distribution of charge carriers and Ag ions.

  1. Study of the pseudo-ternary Ag2SAs2S3HgI2 vitreous system

    Science.gov (United States)

    Boidin, R.; Le Coq, D.; Cuisset, A.; Hindle, F.; Brubach, J.-B.; Michel, K.; Bychkov, E.

    2013-03-01

    Chalcogenide alloys in the Ag2SAs2S3HgI2 pseudo-ternary system were synthesized and their vitreous nature was verified by X-ray diffraction. The glass transition and crystallization temperatures (Tg and Tc), the density (d), and the total electrical conductivity (σ) were measured for all samples of three series, A, B, and C corresponding to (Ag2S)50-x/2(As2S3)50-x/2(HgI2)x, (Ag2S)y(As2S3)80-y(HgI2)20 and (Ag2S)z(As2S3)50(HgI2)50-z, respectively. The maximum of Tg was approximately 160 °C for glasses with low HgI2 content whereas the maximum of density (5.75 g cm-3) was obtained for the sample in the B-series with the highest Ag2S concentration (z=60 mol%). This composition also possesses the highest conductivity at 298 K (σ298 K≈10-3 S cm-1). Unexpectedly the conductivity of the A-series samples was observed to decrease as a function of the Ag2S content. The far-infrared transmission in the 100-600 cm-1 window range (3.3-18.2 THz, 100-16.6 μm) was also given for a few glass compositions highlighting the strong influence of the HgI2 content.

  2. Reducing strength prevailing at root surface of plants promotes reduction of Ag+ and generation of Ag(0/Ag2O nanoparticles exogenously in aqueous phase.

    Directory of Open Access Journals (Sweden)

    Peddisetty Pardha-Saradhi

    Full Text Available Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5-50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag(0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag(0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag(0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag(0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag(0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag(0, which generate Ag(0/Ag2O-NPs. Findings presented in this manuscript put

  3. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al2O3(0001) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-01-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al 2 O 3 (0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively

  4. Microstructure and adhesion strength of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

    International Nuclear Information System (INIS)

    Chang, T.-C.; Chou, S.-M.; Hon, M.-H.; Wang, M.-C.

    2006-01-01

    The microstructure and adhesion strength of the Sn-9Zn-xAg lead-free solders wetted on Cu substrates have been investigated by differential scanning calorimetry, optical microscopy, scanning electron microscopy, energy dispersive spectrometry and pull-off testing. The liquidus temperatures of the Sn-9Zn-xAg solder alloys are 222.1, 226.7, 231.4 and 232.9 deg. C for x = 2.5, 3.5, 5.0 and 7.5 wt%, respectively. A flat interface can be obtained as wetted at 350 deg. C at a rate of 11.8 mm/s. The adhesion strength of the Sn-9Zn-xAg/Cu interfaces decreases from 23.09 ± 0.31 to 12.32 ± 1.40 MPa with increasing Ag content from 2.5 to 7.5 wt% at 400 deg. C. After heat treatment at 150 deg. C, the adhesion strength of the Sn-9Zn-xAg/Cu interface decreases with increasing aging time

  5. Thermal expansion properties of Bi-2212 in Ag or an Ag-alloy matrix

    International Nuclear Information System (INIS)

    Tenbrink, J.; Krauth, H.

    1994-01-01

    The thermal expansion properties of polycrystalline Bi 2 Sr 2 Ca 1 Cu 2 O 8+x melt-processed bulk specimens, and Bi 2 Sr 2 Ca 1 Cu 2 O 8+x monocore as well as multifilamentary round wires in Ag or Ag-alloy matrix have been investigated over the temperature range from -150 to 800 degrees C. Although the thermal expansion of Bi 2 Sr 2 Ca 1 Cu 2 O 8+x is distinctly lower compared with Ag, the thermal expansion properties of the Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or AgNiMg-alloy composite conductors are essentially governed by the matrix material. The thermal expansion of the encountered oxide-dispersion-strengthened AgNiMg alloys is only slightly lower compared with that of pure Ag. Therefore the thermal expansion of all investigated Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or Ag-alloy composite wires was found to be close to that of pure Ag. The reason for this striking behaviour is shown to be related to a surprisingly low elastic modulus of the polycrystalline Bi-2212 wire cores of the order of 10 to a maximum 40 GPa. (author)

  6. Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution

    International Nuclear Information System (INIS)

    Richter, Andrew; Dergunov, Sergey; Ganus, Bill; Thomas, Zachary; Pingali, Sai Venkatesh; Urban, Volker S.; Liu, Yun; Porcar, Lionel; Pinkhassik, Eugene

    2011-01-01

    Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.

  7. Effect of Ag on the peritectic decomposition of Bi2Sr2CaCu2Ox

    International Nuclear Information System (INIS)

    Margulies, L.; Dennis, K.W.; Kramer, M.J.; McCallum, R.W.

    1995-01-01

    During the melt processing of superconducting wires and tapes a number of partial liquid phase regions are entered, and the type and amount of second phases that exist in the melt before cooling are critical in determining the microstructure of the final material. Decomposition pathway of Bi 2 Sr 2 CaCu 2 O x (Bi2212) with 0, 2, and 10 wt% Ag added was examined at 1 bar PO 2 by performing SAME/EDS analysis on oil quenched samples. A variety of quaternary phase diagrams were constructed to describe the evolution of the phase assemblage with temperature. At all Ag contents, Bi2212 first undergoes a peritectic reaction producing (Sr 1-x Ca x ) 14 Cu 24 O 41 (14,24), Bi 2 (Sr 1-x Ca x ) 4 O x (24x), and liquid

  8. Silver carbonate and stability in colloidal silver: A by-product of the electric spark discharge method

    International Nuclear Information System (INIS)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tien, Der-Chi

    2010-01-01

    Many methods of producing colloidal silver (CS) include the introduction of surfactants to improve the suspensivity of the silver particles. The electric spark discharge method (ESDM) which involves pulses of direct current being passed through a silver electrode submerged in deionized water has been shown to successfully produce colloidal silver in a stable suspension without the use of chemical additives. A by-product of the electric spark discharge method, a silver ion compound (AgX), is shown to be the cause of the high suspensivity of the silver nanoparticles (AgNPs). The silver ion compound has been identified as Ag 2 CO 3 using X-ray diffraction, and it has been determined that the Ag 2 CO 3 is formed during the electric spark discharge process through a reaction with atmospheric CO 2 . It has been shown that an Ag 2 CO 3 concentration of 10 ppm or more is sufficient to generate a stable suspension of silver particles. Because of the occurrence of Ag 2 CO 3 , the electric spark discharge method can produce stable colloidal silver.

  9. Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field

    Science.gov (United States)

    Zhang, L.; Ma, C. H.; Wang, J.; Li, S. G.; Li, Y.

    2014-12-01

    In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.

  10. Phase relations in the M2MoO4 - Ag2MoO4 - Hf(MoO4)2 (M=Li, Na) systems

    International Nuclear Information System (INIS)

    Bazarova, Zh.G.; Bazarov, B.G.; Balsanova, L.V.

    2002-01-01

    The M 2 MoO 4 - Ag 2 MoO 4 - Hf(MoO 4 ) 2 (M=Li, Na) systems were studied by X-ray diffraction and differential thermal analyses in the subsolidus area (450 - 500 Deg C) for the first time. The formation of the binary compound with the variable composition Li 4-x Hf 1+0.2x (MoO 4 ) 4 (0 ≤ x ≤ 0.6) in the Li 2 MoO 4 - Hf(MoO 4 ) 2 system and the ternary molybdates Li 4 Ag 2 Hf(MoO 4 ) 5 (S 1 ) and Na 2 Ag 2 Hf(MoO 4 ) 4 (S 2 ) was established and the thermal characteristics of the prepared compounds were examined. The new binary molybdate Ag 2 Hf(MoO 4 ) 3 was prepared by the reaction between Ag 2 MoO 4 and Hf(MoO 4 ) 2 [ru

  11. Measurement of excitation functions and isomeric ratios of the reactions 103Rh(3He, xn) sup(106-x)Ag where x=2, 3 and 4

    International Nuclear Information System (INIS)

    Borges, A.M.

    1981-01-01

    The excitation functions and isomer ratios for the reactions 103 Rh( 3 He, xn) sup(106-x)Ag, where x=2, 3 and 4, were measured with projectile Lab energy varying from 23 to 35 MeV. Since the half-life of sup(103m)Ag is equal to 5.7 s. the use of a recoil nucleous gas jet transport system became necessary. The values measured for the cross-sections were compared to those yielded by the ALICE code. The experimental isomer ratios are smaller than those calculated using the residual nucleus spin distribution obtained with the ALICE code. By-pass fractions as expected in this mass region were also obtained. (Author) [pt

  12. Phase formation in the Ag2O - MgO - MoO3 system and the crystal structure of new double molybdate Ag2Mg2(MoO4)3

    International Nuclear Information System (INIS)

    Tsyrenova, G.D.; Khajkina, E.G.; Khobrakova, Eh.T.; Solodovnikov, S.F.

    2001-01-01

    The phase correlations in subsolidus area of the Ag 2 O - MgO - MoO 3 system were studied, the Ag 2 MoO 4 - MgMoO 4 polythermal cross-section was investigated and its T-x diagram was constructed. X-ray diffraction and thermal analytic researches were conducted. The formation of the new double Ag 2 Mg 2 (MoO 4 ) 3 molybdates relating to the structural group Na 2 Mg 5 (MoO 4 ) 6 was established, and its structure (a=6.978(1), b=8.715(2), c=10.294(2) A, α=107.56(3) Deg, β=105.11(3) Deg, γ=103.68(3) Deg, Z=2, sp. gr. P 1-bar, R=0.038) was determined. The mixed carcass from the twin MgO 6 -octahedrons and MoO 4 -tetrahedrons, in which blankness the Ag atoms are arranged, stand out in the structure.The character of disordering in the part of Ag + is analogous to previously found one in the Ag 2 Zn 2 (MoO 4 ) 3 structure. The possible limits in the fields of homogeneity of silver-magnesium molybdate and its analogs, as well as the differences their structure from the structure of isotopic sodium-containing phases, are discussed [ru

  13. Ionic-to-Electronic Conductivity Crossover in CdTe-AgI-As2Te3 Glasses: An 110mAg Tracer Diffusion Study.

    Science.gov (United States)

    Kassem, M; Alekseev, I; Bokova, M; Le Coq, D; Bychkov, E

    2018-04-12

    Conductivity isotherms of (CdTe) x (AgI) 0.5- x/2 (As 2 Te 3 ) 0.5- x/2 glasses (0.0 ≤ x ≤ 0.15) reveal a nonmonotonic behavior with increasing CdTe content reminiscent of mixed cation effect in oxide and chalcogenide glasses. Nevertheless, the apparent similarity appears to be partly incorrect. Using 110m Ag tracer diffusion measurements, we show that semiconducting CdTe additions produce a dual effect: (i) decreasing the Ag + ion transport by a factor of ≈200 with a simultaneous increase of the diffusion activation energy and (ii) increasing the electronic conductivity by 1.5 orders of magnitude. Consequently, the conductivity minimum at x = 0.05 reflects an ionic-to-electronic transport crossover; the silver-ion transport number decreases by 3 orders of magnitude with increasing x.

  14. Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2'-Amino-α-l-LNA Adenine Monomers

    DEFF Research Database (Denmark)

    Andersen, Nicolai K; Anderson, Brooke A; Wengel, Jesper

    2013-01-01

    The development of conformationally restricted nucleotide building blocks continues to attract considerable interest because of their successful use within antisense, antigene, and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-l-LNA are two interesting examples...... (ONs) modified with 2'-amino-α-l-LNA adenine monomers W-Z. The synthesis of the target phosphoramidites 1-4 is initiated from pentafuranose 5, which upon Vorbrüggen glycosylation, O2'-deacylation, O2'-activation and C2'-azide introduction yields nucleoside 8. A one-pot tandem Staudinger....... ONs modified with pyrene-functionalized 2'-amino-α-l-LNA adenine monomers X-Z display greatly increased affinity toward DNA targets (ΔTm/modification up to +14 °C). Results from absorption and fluorescence spectroscopy suggest that the duplex stabilization is a result of pyrene intercalation...

  15. Facile Synthesis of Magnetic Photocatalyst Ag/BiVO4/Mn1−xZnxFe2O4 and Its Highly Visible-Light-Driven Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Taiping Xie

    2018-05-01

    Full Text Available Ag/BiVO4/Mn1−xZnxFe2O4 was synthesized with a dip-calcination in situ synthesis method. This work was hoped to provide a simple method to synthesis three-phase composite. The phase structure, optical properties and magnetic feature were confirmed by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectrometer (XPS, transmission electron microscopy (TEM, ultraviolet-visible diffuse reflectance spectrophotometer (UV-vis DRS, and vibrating sample magnetometer (VSM. The photocatalytic activity was investigated by Rhodamine B (RhB photo-degradation under visible light irradiation. The photo-degradation rate of RhB was 94.0~96.0% after only 60 min photocatalytic reaction under visible light irradiation, revealing that it had an excellent visible-light-induced photocatalytic activity. In the fifth recycle, the degradation rate of Ag/BiVO4/Mn1−xZnxFe2O4 still reached to 94.0%. Free radical tunnel experiments confirmed the dominant role of •O2− in the photocatalytic process for Ag/BiVO4/Mn1−xZnxFe2O4. Most importantly, the mechanism that multifunction Ag could enhance photocatalytic activity was explained in detail.

  16. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2-or 4-pyrenyl-functionalized O2 '-alkylated RNA monomers

    DEFF Research Database (Denmark)

    Karmakar, Saswata; Madsen, Andreas Stahl; Guenther, Dale C.

    2014-01-01

    '-alkylated uridine monomers X-Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA...

  17. α-K2AgF4: Ferromagnetism induced by the weak superexchange of different eg orbitals from the nearest neighbor Ag ions

    Science.gov (United States)

    Zhang, Xiaoli; Zhang, Guoren; Jia, Ting; Zeng, Zhi; Lin, H. Q.

    2016-05-01

    We study the abnormal ferromagnetism in α-K2AgF4, which is very similar to high-TC parent material La2CuO4 in structure. We find out that the electron correlation is very important in determining the insulating property of α-K2AgF4. The Ag(II) 4d9 in the octahedron crystal field has the t2 g 6 eg 3 electron occupation with eg x2-y2 orbital fully occupied and 3z2-r2 orbital partially occupied. The two eg orbitals are very extended indicating both of them are active in superexchange. Using the Hubbard model combined with Nth-order muffin-tin orbital (NMTO) downfolding technique, it is concluded that the exchange interaction between eg 3z2-r2 and x2-y2 from the first nearest neighbor Ag ions leads to the anomalous ferromagnetism in α-K2AgF4.

  18. α-K2AgF4: Ferromagnetism induced by the weak superexchange of different eg orbitals from the nearest neighbor Ag ions

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    2016-05-01

    Full Text Available We study the abnormal ferromagnetism in α-K2AgF4, which is very similar to high-TC parent material La2CuO4 in structure. We find out that the electron correlation is very important in determining the insulating property of α-K2AgF4. The Ag(II 4d9 in the octahedron crystal field has the t 2 g 6 e g 3 electron occupation with eg x2-y2 orbital fully occupied and 3z2-r2 orbital partially occupied. The two eg orbitals are very extended indicating both of them are active in superexchange. Using the Hubbard model combined with Nth-order muffin-tin orbital (NMTO downfolding technique, it is concluded that the exchange interaction between eg 3z2-r2 and x2-y2 from the first nearest neighbor Ag ions leads to the anomalous ferromagnetism in α-K2AgF4.

  19. Measurement of the energetics of metal film growth on a semiconductor: Ag/ Si(100)-2x1

    DEFF Research Database (Denmark)

    Starr, D.E.; Ranney, J.T.; Larsen, Jane Hvolbæk

    2001-01-01

    The first direct calorimetric measurements of the energetics of metal film growth on a semiconductor surface are presented. The heat of adsorption of Ag on Si(100)-(2 x 1) at 300 K decreases from similar to 347 to 246 kJ/mol with coverage in the first monolayer (ML) due to overlap of substrate...... strain from nearby Ag islands. It then rises quickly toward the bulk sublimation enthalpy (285 kJ/mol) as 3D particles grow. A wetting layer grows to 1.0 ML, but is metastable above similar to0.55 ML and dewets when kinetics permit. This may be common when adsorbate islands induce a large strain...

  20. New two-step synthesis of N-(2-ethylhexyl)-2,7-diiodocarbazole as a monomer for conjugated polymers

    Czech Academy of Sciences Publication Activity Database

    Výprachtický, Drahomír; Kmínek, Ivan; Pokorná, Veronika; Kaňková, Dana; Cimrová, Věra

    2013-01-01

    Roč. 16, č. 1 (2013), s. 31-37 ISSN 1385-772X R&D Projects: GA MŠk(CZ) 1M06031; GA ČR GAP106/12/0827 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : monomer synthesis * carbazole * ring closure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.210, year: 2013

  1. Structural and electric properties of AgGaTe{sub 2} layers prepared using mixed source of Ag{sub 2}Te and Ga{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Uruno, Aya [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Tokyo (Japan)

    2017-01-15

    AgGaTe{sub 2} layers were prepared on Si substrates by a closed space sublimation method using a mixed powder source of Ag{sub 2}Te and Ga{sub 2}Te{sub 3}. Ag{sub 2}Te buffer layer deposition was introduced to eliminate melt-back etching. The effect of the molar ratio of Ag{sub 2}Te and Ga{sub 2}Te{sub 3} in the mixed source on the crystallinity of the AgGaTe{sub 2} layer was investigated. The composition and the phase of the layer was found to change depending on the molar ratio in the deposits, which could be controlled by the source molar ratio along with the Ag{sub 2}Te buffer layer thickness. It was confirmed that (112) oriented uniform AgGaTe{sub 2} layer with an abrupt interface between AgGaTe{sub 2} and Si was formed after those parameters were tuned. The obtained layer exhibited the acceptor concentration of around 2.5 x 10{sup 16} cm{sup -3}. A solar cell was fabricated using the p-AgGaTe{sub 2}/n-Si heterojunction, and exhibited a conversion efficiency of 1.15%. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Improved current transport properties of post annealed Y1Ba2Cu3O7-x thin films using Ag doping

    DEFF Research Database (Denmark)

    Clausen, Thomas; Skov, Johannes; Jacobsen, Claus Schelde

    1996-01-01

    The influence of Ag doping on the transport properties of Y1Ba2Cu3O7–x thin films prepared by Y, BaF2, and Cu co-evaporation and optimized ex situ post annealing has been investigated. Both undoped and Ag doped films have values of Tc above 90 K, but Jc (77 K) is highly dependent on the nominal...... thickness (tnom) of the as-deposited film. For undoped films with tnom>106 A/cm2) decreases monotonically with increasing film thickness. Above 300 nm Jc (77 K) decreases rapidly to values below 5×105 A/cm2. Ag doped films with tnom>=200 nm have higher Jc (77 K) values than those of undoped films. Ag doped...... films have a maximum in Jc (77 K) around 250 nm. As for the undoped films, there is a large decrease in Jc (77 K) for Ag doped films with tnom>=300 nm. It was found that the higher values of Jc (77 K) for the Ag doped films were due to a better epitaxial growth of the YBCO compound. The low values of Jc...

  3. Silver Nanocube and Nanobar Growth via Anisotropic Monomer Addition and Particle Attachment Processes

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Dongdong [Physical; Wu, Zhigang [School; Song, Miao [Physical; Chun, Jaehun [Physical; Schenter, Gregory K. [Physical; Li, Dongsheng [Physical

    2018-01-11

    Understanding the growth mechanism of noble metal nanocrystals during solution synthesis is of significant importance for shape and property control. However, much remains unknown about the growth pathways of metal nanoparticles due to lack of direct observation. Using an in-situ transmission electron microscopy technique, we directly observed Ag nanocube and nanobar growth in aqueous solution through both classical monomer-by-monomer addition and non-classical particle attachment processes. During the particle attachment process, Ag nanocubes and nanobars formed via both oriented and non-oriented attachment. Our calculations, along with dynamics of the observed attachment, showed that van der Waals force overcame hydrodynamic and friction forces and drove the particles toward each other. During classical growth, an anisotropic growth was also revealed, and the resulting unsymmetrical shape constituted an intermediate state for Ag nanocube growth. We hypothesized that the temporary symmetry breaking resulted from different growth rates on {001} surfaces due to a local surface concentration variation caused by the imbalance between the consumption of Ag+ near the surface and the diffusion of Ag+ from bulk to surface.

  4. Neutral dipole-dipole dimers: A new field in science

    Science.gov (United States)

    Kosower, Edward M.; Borz, Galina

    2018-03-01

    Dimer formation with dipole neutralization produces species such as low polarity water (LPW) compatible with hydrophobic surfaces (Phys. Chem. Chem. Phys. 2015, 17, 24895-24900) Dimerization and dipole neutralization occurs for N-methylacetamide on polyethylene, a behavior drastically different from its contortions in acetonitrile on AgBr:AgCl planar crystals (AgX) (ChemPhysChem 2014, 15, 3598-3607). The weak infrared absorption of the amide dimer on polyethylene is shown experimentally. Dimerization of palmitic acid is shown along with some of the many ramifications for intracellular systems. Polyoligomers of water are present on polyethylene surfaces. Some high resolution spectra of three of the polyoligomers of water are shown along with a mechanistic scheme for polyoligomer formation and dissolution. The structures of some of the oligomers are known from spectroscopic studies of water on AgX. The scope of the article begins with PE, generally accepted as hydrophobic. The IR of PE revealed not only that water was present but that it appeared in two forms, oligomers (O) and polyoligomers (PO). How did we recognize what they were? These species had been observed as especially strong "marker" peaks in the spectra1 of water placed on planar AgX, a platform developed by Katzir and his coworkers [6]. But there was a problem: the proximity to PE of oligomers with substantial (calculated) dipole moments and thus polarity, including cyclic hexamers of water (chair and boat forms), the cyclic pentamer, the books I and II, and the cyclic trimer [7a]. Another link was needed, a role perfectly fit by the already cited low polarity water (LPW). The choice was experimentally supported by the detection of low intensity absorption in the bending region.Some important generalities flow from these results. What other dimers might be present in the biological or chemical world? Palmitic acid dimer (PAD) would be a candidate for decreasing the polarity of the acid (PA). Another

  5. Synthesis, structural, electronic and linear electro-optical features of new quaternary Ag2Ga2SiS6 compound

    Science.gov (United States)

    Piasecki, M.; Myronchuk, G. L.; Parasyuk, O. V.; Khyzhun, O. Y.; Fedorchuk, A. O.; Pavlyuk, V. V.; Kozer, V. R.; Sachanyuk, V. P.; El-Naggar, A. M.; Albassam, A. A.; Jedryka, J.; Kityk, I. V.

    2017-02-01

    For the first time phase equilibria and phase diagram of the AgGaS2-SiS2 system were successfully explored by differential thermal and X-ray phase analysis methods. Crystal structure of low-temperature (LT) modification of Ag2Ga2SiS6 (LT- Ag2Ga2SiS6) was studied by X-ray powder method and it belongs to tetragonal space group I-42d, with unit cell parameters a=5.7164(4) Å, c=9.8023(7) Å, V=320.32(7) Å3. Additional details regarding the crystal structure exploration are available at the web page Fachinformationszentrum Karlsruhe. X-ray photoelectron core-level and valence-band spectra were measured for pristine LT- Ag2Ga2SiS6 crystal surface. In addition, the X-ray photoelectron valence-band spectrum of LT-Ag2Ga2SiS6 was matched on a common energy scale with the X-ray emission S Kβ1,3 and Ga Kβ2 bands, which give information on the energy distribution of the S 3p and Ga 4p states, respectively. The presented X-ray spectroscopy results indicate that the valence S p and Ga p atomic states contribute mainly to the upper and central parts of the valence band of LT-Ag2Ga2SiS6, respectively, with a less significant contribution also to other valence-band regions. Band gap energy was estimated by measuring the quantum energy in the spectral range of the fundamental absorption. We have found that energy gap Eg is equal to 2.35 eV at 300 K. LT-Ag2Ga2SiS6 is a photosensitive material and reveals two spectral maxima on the curve of spectral photoconductivity spectra at λmax1 =590 nm and λmax2 =860 nm. Additionally, linear electro-optical effect of LT-Ag2Ga2SiS6 for the wavelengths of a cw He-Ne laser at 1150 nm was explored.

  6. Tunneling-recombination luminescence between Ag0 and Ag2+ in KCl:AgCl

    International Nuclear Information System (INIS)

    Delbecq, C.J.; Dexter, D.L.; Yuster, P.H.

    1978-01-01

    Appropriate treatment of a KCl:AgCl crystal results in the trapping of electrons as silver atoms, Ag 0 , and positive holes as AgCl 4 2- , Ag 2+ , centers. Optical excitation of Ag 0 in such a crystal at T 0 and Ag 2+ pairs, similar to the Ag 0 -Cl 2 - tunneling-recombination studies we previously reported. We have shown that Ag 2+ centers are involved in the emission process by preferentially orienting the anisotropic Ag 2+ at 6 K by excitation with polarized light and observing that the afterglow is polarized. Upon warming to 50 K, where the preferentially oriented Ag 2+ can change orientation, a strong reversal in the degree of polarization occurs which finally decays to zero. The characteristics of this luminescence can be understood if we assume: (i) a tunneling-recombination mechanism in which the orientation of the electric vector of the emitted radiation depends on the position of the Ag 0 relative to the Ag 2+ and (ii) the tunneling is anisotropic and depends on the location of the Ag 0 relative to the anisotropic Ag 2+ . The latter assumption is based on the tetragonal (d-like) symmetry of the Ag 2+ complex. Good quantitative agreement between theory and experiment has been obtained on the decay kinetics, the degree of polarization, and the polarization reversal

  7. Structural features of AgCaCdMg2(PO4)3 and AgCd2Mg2(PO4)3, two new compounds with the alluaudite-type structure, and their catalytic activity in butan-2-ol conversion

    International Nuclear Information System (INIS)

    Kacimi, Mohammed; Ziyad, Mahfoud; Hatert, Frederic

    2005-01-01

    AgCaCdMg 2 (PO 4 ) 3 and AgCd 2 Mg 2 (PO 4 ) 3 , two new compounds with the alluaudite-type structure, were synthesized by a solid state reaction in air at 750 deg. C. The X-ray powder diffraction pattern of AgCaCdMg 2 (PO 4 ) 3 indicates the presence of small amounts of (Ca, Mg) 3 (PO 4 ) 2 with the whitlockite structure, as impurity, whereas AgCd 2 Mg 2 (PO 4 ) 3 is constituted by pure alluaudite. The Rietveld refinements of the X-ray powder diffraction patterns indicate an ordered cationic distribution for AgCd 2 Mg 2 (PO 4 ) 3 , with Ag on A(2)', Cd on A(1) and M(1), and Mg on M(2), whereas a disordered distribution of Cd and Ca between the A(1) and M(1) sites is observed for AgCaCdMg 2 (PO 4 ) 3 . The catalytic properties of these compounds has been measured in reaction of butan-2-ol dehydrogenation. In the absence of oxygen, both samples exhibit poor dehydrogenation activity. All samples displayed no dehydration activity. Introduction of oxygen into the feed changed totally the catalytic behavior of the catalysts. The production of methyl ethyl ketone increases with time on stream and the reaction temperature. AgCaCdMg 2 (PO 4 ) 3 is more efficient than AgCd 2 Mg 2 (PO 4 ) 3

  8. Plasma-induced formation of flower-like Ag2O nanostructures

    International Nuclear Information System (INIS)

    Yang, Zen-Hung; Ho, Chun-Hsien; Lee, Szetsen

    2015-01-01

    Graphical abstract: Flower-like Ag 2 O nanostructures. - Highlights: • Flower-like Ag 2 O nanostructures were synthesized from Ag colloids using plasma. • XPS was used to monitor plasma treatment effect on Ag colloids. • SERS of methyl orange was used to monitor the plasma oxidation–reduction processes. • Photocatalytic degradation of methylene blue was performed using Ag 2 O. • Ag 2 O is a more efficient visible light photocatalyst than Ag colloids. - Abstract: Plasma treatment effect on Ag colloids was investigated using X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman scattering (SERS) techniques. XPS showed that O 2 plasma was critical in removing organic residues in Ag colloids synthesized using citric acid as a reducing agent. With O 2 plasma treatment, Ag colloids were also oxidized to form flower-like Ag 2 O nanostructures. The formation mechanism is proposed. The SERS spectral intensity of methyl orange (MO) adsorbed on Ag surface became deteriorated with O 2 plasma treatment. Followed by H 2 plasma treatment, the SERS intensity of MO on Ag regained, which indicated that Ag 2 O has been reduced to Ag. Nonetheless, the reduction by H 2 plasma could not bring Ag back to the original as-synthesized nanoparticle morphology. The flower-like nanostructure morphology still remained. The photocatalytic degradation reactions of methylene blue (MB) aqueous solutions were carried out using Ag colloids and Ag 2 O nanostructures. The results show that Ag 2 O is more efficient than Ag colloids and many other metal oxides for the photocatalytic degradation of MB in solution when utilizing visible light

  9. Glass formation in AgI:Ag2O:V2O5 and AgI:Ag2O:(V2O5+B2O3) systems

    International Nuclear Information System (INIS)

    Kaushik, R.; Hariharan, K.

    1988-01-01

    Transport properties of glasses in the system AgI:Ag 2 O: V 2 O 5 and AgI:Ag 2 O: (V 2 O 5 +B 2 O 3 ) have ben investigated. It was found that, at high AgI concentrations, the addition of another glass former (B 2 O 3 ) did not improve the conduction characteristics of the pure vanadate glasses, the best conducting composition of which had ambient temperature, ionic conductivity comparable to that of conventional liquid electrolytes. The highest conducting composition was used as an electrolyte in the study of silver solid state cells. The discharge characteristics of different cells fabricated with the glassy electrolyte, have been compared with those having the best conducting polycrystalline ompositions as electrolytes. 11 refs.; 4 figs.; 1 table

  10. Microstructure analyses and thermoelectric properties of Ag1−xPb18Sb1+yTe20

    International Nuclear Information System (INIS)

    Perlt, S.; Höche, Th.; Dadda, J.; Müller, E.; Bauer Pereira, P.; Hermann, R.; Sarahan, M.; Pippel, E.; Brydson, R.

    2012-01-01

    This study reports microstructural investigations of long-term annealed Ag 1−x Pb m Sb 1+y Te 2+m (m=18, x=y=0, hereinafter referred to as AgPb 18 SbTe 20 ) (Lead–Antimony–Silver–Tellurium, LAST-18) as well as of Ag 1−x Pb 18 Sb 1+y Te 20 , i.e. Ag-deficient and Sb-excess LAST-18 (x≠0,y≠0), respectively. Two different length scales are explored. The micrometer scale was evaluated by SEM to analyze the volume fraction and the number of secondary phases as well as the impact of processing parameters on the homogeneity of bulk samples. For AgPb 18 SbTe 20 , site-specific FIB liftout of TEM lamellae from thermoelectrically characterized samples was accomplished to investigate the structure on the nanometer scale. High-resolution TEM and energy-filtered TEM were performed to reveal shape and size distribution of nanoprecipitates, respectively. A hypothesis concerning the structure–property relationship is set out within the frame of a gradient annealing experiment. This study is completed by results dealing with inhomogeneities on the micrometer scale of Ag 1−x Pb 18 Sb 1+y Te 20 and its electronic properties. Highlights: ► SEM and TEM microstructure investigation of long-term annealed AgPb 18 SbTe 20 . ► SEM and thermoelectric studies on Ag 1−x Pb 18 Sb 1+y Te 20 . ► Discussion concerning structure–property relationship in long-term annealed AgPb 18 SbTe 20 . ► Correlation between Ag 1−x Pb 18 Sb 1+y Te 20 microscale structure and electronic properties.

  11. Influence of Cu substitution on the structural ordering, photocatalytic activity and photoluminescence emission of Ag3-2xCuxPO4 powders

    Science.gov (United States)

    Pereira, Wyllamanney da S.; Sczancoski, Júlio C.; Calderon, Yormary N. C.; Mastelaro, Valmor R.; Botelho, Gleice; Machado, Thales R.; Leite, Edson R.; Longo, Elson

    2018-05-01

    Materials presenting high photocatalytic performance and interesting photoluminescence emissions are promising candidates for photodegradation of organic pollutants discharged into natural waters as well as for development of new electro-optical devices, respectively. In this study, Ag3-2xCuxPO4 (x = 0.00, 0.01, 0.02, 0.04 and 0.08) powders were synthesized by the precipitation method. The long- and short-range structural ordering was affected when the copper (Cu) content was increased in the lattice, as identified by X-ray diffraction patterns, Fourier transform infrared spectroscopy and Raman spectroscopy, respectively. The field emission scanning electron microscope and transmission electron microscope revealed a particle system composed of irregular spherical-like microcrystals. The presence of Cu as well as its real amount in the samples were confirmed by means of X-ray photoelectron spectroscopy and inductively coupled plasma-atomic emission spectrometry, respectively. On increasing Cu level, a slight variation was noted on the photocatalytic activity of Ag3-2xCuxPO4 powders for degradation of rhodamine B under visible light irradiation. A photodegradation mechanism was proposed in details. The photoluminescence emissions were explained by electronic transitions involving intermediary energy levels in the band gap. The origin these energy levels was related to defects caused by the substitution of Ag by Cu in the crystalline structure.

  12. Effects of low-level Ag doping on Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Deis, T.A.; Eror, N.G.; Krishnaraj, P.; Prorok, B.C.; Lelovic, M.; Balachandran, U.

    1995-07-01

    Bi 2 Sr 2 CaCu 2 O 8 has been doped with silver, up to 10,000 ppm, in three ways: excess additions, substitution of Ag for Bi, and substitution of Ag for Sr. Effects of doping on the c-axis lattice parameter and critical temperature (T c ) were measured. Effects from doing were only observed in slow-cooled [10 degree/hr] oxygen equilibrated samples. Doping by excess additions caused a small decrease in T c and an increase in the c-axis length of the lattice. Doping by substitution, compared to excess Ag additions, caused a larger decrease in T c and higher c-axis values for doping levels up to 1,000 ppm. Doping by substitution at higher levels (1,000--10,000 ppm) caused T c to increase and the c-axis to decrease. Samples with similar substitutional doping levels exhibited comparable T c values and samples with Ag substituted for Sr consistently exhibited higher c-axis values than samples that had equivalent amounts of Ag substituted for Bi

  13. Silver(I) complexes of the weakly coordinating solvents SO(2) and CH(2)Cl(2): crystal structures, bonding, and energetics of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)].

    Science.gov (United States)

    Decken, Andreas; Knapp, Carsten; Nikiforov, Grigori B; Passmore, Jack; Rautiainen, J Mikko; Wang, Xinping; Zeng, Xiaoqing

    2009-06-22

    Pushing the limits of coordination chemistry: The most weakly coordinated silver complexes of the very weakly coordinating solvents dichloromethane and liquid sulfur dioxide were prepared. Special techniques at low temperatures and the use of weakly coordinating anions allowed structural characterization of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(Cl(2)CH(2))(2)][SbF(6)] (see figure). An investigation of the bonding shows that these complexes are mainly stabilized by electrostatic monopole-dipole interactions.The synthetically useful solvent-free silver(I) salt Ag[Al(pftb)(4)] (pftb=--OC(CF(3))(3)) was prepared by metathesis reaction of Li[Al(pftb)(4)] with Ag[SbF(6)] in liquid SO(2). The solvated complexes [Ag(OSO)][Al(pftb)(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)] were prepared and isolated by special techniques at low temperatures and structurally characterized by single-crystal X-ray diffraction. The SO(2) complexes provide the first examples of coordination of the very weak Lewis base SO(2) to silver(I). The SO(2) molecule in [Ag(OSO)][Al(pftb)(4)] is eta(1)-O coordinated to Ag(+), while the SO(2) ligands in [Ag(OSO)(2/2)][SbF(6)] bridge two Ag(+) ions in an eta(2)-O,O' (trans,trans) manner. [Ag(CH(2)Cl(2))(2)][SbF(6)] contains [Ag(CH(2)Cl(2))(2)](+) ions linked through [SbF(6)](-) ions to give a polymeric structure. The solid-state silver(I) ion affinities (SIA) of SO(2) and CH(2)Cl(2), based on bond lengths and corresponding valence units in the corresponding complexes and tensimetric titrations of Ag[Al(pftb)(4)] and Ag[SbF(6)] with SO(2) vapor, show that SO(2) is a weaker ligand to Ag(+) than the commonly used weakly coordinating solvent CH(2)Cl(2) and indicated that binding strength of SO(2) to silver(I) in the silver(I) salts increases with increasing size of the corresponding counteranion ([Al(pftb)(4)](-)>[SbF(6)](-)). The experimental findings are in good agreement with theoretical gas-phase ligand

  14. Optical spectra and band structure of Ag(x)Ga(x)Ge(1-x)Se2 (x = 0.333, 0.250, 0.200, 0.167) single crystals: experiment and theory.

    Science.gov (United States)

    Reshak, A H; Parasyuk, O V; Fedorchuk, A O; Kamarudin, H; Auluck, S; Chyský, J

    2013-12-05

    Theoretical and experimental studies of the Ag(x)Ga(x)Ge(1-x)Se2 (x = 0.333, 0.250, 0.200, 0.167) single crystals are performed. These crystals possess a lot of intrinsic defects which are responsible for their optoelectronic features. The theoretical investigations were performed by means of DFT calculations using different exchange-correlation potentials. The experimental studies were carried out using the modulated VUV ellipsometry for dielectric constants and birefringence studies. The comparison of the structure obtained from X-ray with the theoretically optimized structure is presented. The crucial role of the intrinsic defect states is manifested in the choice of the exchange correlation potential used. The data may be applicable for a large number of the ternary chalcogenides which are sensitive to the presence of the local disordered states near the band edges.

  15. Antibacterial, kinetics and bacteriolytic properties of silver(I) pyridinedicarboxylate compounds

    Energy Technology Data Exchange (ETDEWEB)

    Azócar, M. Ignacio, E-mail: manuel.azocar@usach.cl [Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Bernardo O' Higgins 3363, Santiago (Chile); Gómez, Grace; Velásquez, Carla; Abarca, Romina [Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Bernardo O' Higgins 3363, Santiago (Chile); Kogan, Marcelo J. [Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile. Advanced Center for Chronic Diseases (ACCDiS) (Chile); Páez, Maritza [Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Bernardo O' Higgins 3363, Santiago (Chile)

    2014-04-01

    Antibacterial properties of silver(I)-pyridinedicarboxylate compounds (with Pyridine-2,3-dicarboxylic(Lutidinic acid), pyridine-2,4-dicarboxylic (Quinolinic acid) and pyridine-2,5-dicarboxylic (Isocinchomeronic acid)) were studied against Escherichia coli, Listeria monocytogenes (ISP-65-08), Salmonella typhi and Staphylococcus aureus (ATCC 25923) using kinetics of grown inhibition, viability assays, minimum inhibitory concentration and optical microscopy. The 3 silver compounds were tested toward UV-radiation in order to characterize their light insensitivity for potential medical devices: UV-radiation curable polymers. Photophysical measurements show remarkable differences toward UV-radiation, which were explained based on their polymeric structures with multiple nature bonds between pyridinedicarboxylic ligands and Ag(I) centers. We found a bacteriolytic effect and differences in the antibacterial efficiency depending on the structure of the complexes and the nature of Ag-X (X = oxygen and nitrogen) bonds: AgQuinol > AgLutidin > AgIsocinchom. - Highlights: • Antibacterial efficiency of silver(I) complexes • Improving antimicrobial properties of silver(I) complexes • Insensitivity to air and UV light for medical devices • Broad-spectrum antibiotic ointment • Bacteriolytic mechanism of silver compounds.

  16. Evaluating x-ray detectors for radiographic applications: A comparison of nSCdS:Ag with Gd sub 2 O sub 2 S:Tb and Y sub 2 O sub 2 S:Tb screens

    CERN Document Server

    Kandarakis, I; Panayiotakis, G S; Nomicos, C D

    1997-01-01

    ZnSCdS:Ag was evaluated as a radiographic image receptor and was compared with Gd sub 2 O sub 2 S:Tb and Y sub 2 O sub 2 S:Tb phosphors often used in radiography. The valuation of a radiographic receptor was modelled as a three-step process: i) determination of light output intensity as related to the input radiation dose, (ii) determination of visible light characteristics with respect to radiographic optical detectors, and (iii) determination of image information transfer efficiency. The light intensity emitted per unit of x-ray exposure rate was measured and theoretically calculated for laboratory prepared screens with coating thicknesses from 20 to 220 mg cm sup - sup 2 and tube voltages rom 50 to 250 kVp. ZnSCdS:Ag light intensity was higher than that of d sub 2 O sub 2 S:Tb or Y sub 2 O sub 2 S:Tb for tube voltages less than 70 and 80 kVp respectively. ZnSCdS:Ag displayed the highest x-ray to light conversion efficiency (0.207) and had optical properties close to those of Gd sub 2 O sub 2 S:Tb nd Y sub ...

  17. Electrical characteristics for Sn-Ag-Cu solder bump with Ti/Ni/Cu under-bump metallization after temperature cycling tests

    Science.gov (United States)

    Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom

    2006-10-01

    Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.

  18. Systematic research on Ag2X (X = O, S, Se, Te) as visible and near-infrared light driven photocatalysts and effects of their electronic structures

    Science.gov (United States)

    Jiang, Wei; Wu, Zhaomei; Zhu, Yingming; Tian, Wen; Liang, Bin

    2018-01-01

    Four silver chalcogen compounds, Ag2O, Ag2S, Ag2Se and Ag2Te, can be utilized as visible-light-driven photocatalysts. In this research, the electronic structures of these compounds were analyzed by simulation and experiments to systematically reveal the relationship between photocatalytic performance and energetic structure. All four chalcogenides exhibited interesting photocatalytic activities under ultraviolet, visible and near-infrared light. However, their photocatalytic performances and stability significantly depended on the band gap width, and the valence band and conduct band position, which was determined by their composition. Increasing the X atomic number from O to Te resulted in the upward movement of the valence band top and the conduct band bottom, which resulted in narrower band gaps, a wider absorption spectrum, a weaker photo-oxidization capacity, a higher recombination probability of hole and electron pairs, lower quantum efficiency, and worse stability. Among them, Ag2O has the highest photocatalytic performance and stability due to its widest band gap and lowest position of VB and CB. The combined action of photogenerated holes and different radicals, depending on the different electronic structures, including anion ozone radical, hydroxide radical, and superoxide radical, was observed and understood. The results of experimental observations and simulations of the four silver chalcogen compounds suggested that a proper electronic structure is necessary to obtain a balance between photocatalytic performance and absorbable light region in the development of new photocatalysts.

  19. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Yeom, Jong-taek [Light Metal Division, Korea Institute of Materials Science (KIMS), Changwon 642-831 (Korea, Republic of); Kim, Jae-il [Materials Science and Engineering, University of Dong-A, Hadan-dong, Saha-gu, Busan 604-714 (Korea, Republic of); Nam, Tae-hyun, E-mail: tahynam@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-12-15

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (2-B19′ transformation. Solid solution hardening was an important factor for inducing the B2-R transformation in Ti–Ni–X (X = non-transition elements) alloys.

  20. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    International Nuclear Information System (INIS)

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun; Yeom, Jong-taek; Kim, Jae-il; Nam, Tae-hyun

    2013-01-01

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (< Hv 200) of the alloys displaying the B2-B19′ transformation. Solid solution hardening was an important factor for inducing the B2-R transformation in Ti–Ni–X (X = non-transition elements) alloys

  1. Hydrothermal Synthesis and Mechanism of Unusual Zigzag Ag2Te and Ag2Te/C Core-Shell Nanostructures

    Directory of Open Access Journals (Sweden)

    Saima Manzoor

    2014-01-01

    Full Text Available A single step surfactant-assisted hydrothermal route has been developed for the synthesis of zigzag silver telluride nanowires with diameter of 50–60 nm and length of several tens of micrometers. Silver nitrate (AgNO3 and sodium tellurite (Na2TeO3, are the precursors and polyvinylpyrrolidone (PVP is used as surfactant in the presence of the reducing agent, that is, hydrazine hydrate (N2H4·H2O. In addition to the zigzag nanowires a facile hydrothermal reduction-carbonization route is proposed for the preparation of uniform core-shell Ag2Te/C nanowires. In case of Ag2Te/C synthesis process the same precursors are employed for Ag and Te along with the ethylene glycol used as reducing agent and glucose as the carbonizing agent. Morphological and compositional properties of the prepared products are analyzed with the help of scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The detailed formation mechanism of the zigzag morphology and reduction-carbonization growth mechanism for core-shell nanowires are illustrated on the bases of experimental results.

  2. Structural Investigation of Photocatalyst Solid Ag1−xCuxInS2 Quaternary Alloys Sprayed Thin Films Optimized within the Lattice Compatibility Theory (LCT Scope

    Directory of Open Access Journals (Sweden)

    A. Colantoni

    2014-01-01

    Full Text Available CuxAg1−xInS2 solid thin films were fabricated through a low-cost process. Particular process-related enhanced properties lead to reaching a minimum of lattice mismatch between absorber and buffer layers within particular solar cell devices. First, copper-less samples X-ray diffraction analysis depicts the presence of AgInS2 ternary compound in chalcopyrite tetragonal phase with privileged (112 peak (d112=1.70 Å according to JCPDS 75-0118 card. Second, when x content increases, we note a shift of the same preferential orientation (112 and its value reaches 1.63 Å corresponding to CuInS2 chalcopyrite tetragonal material according to JCPDS 89-6095 file. Finally, the formation and stability of these quaternaries have been discussed in terms of the lattice compatibility in relation with silver-copper duality within indium disulfide lattice structure. Plausible explanations for the extent and dynamics of copper incorporation inside AgInS2 elaborated ternary matrices have been proposed.

  3. Step growth of an AB2 monomer, with cycle formation

    DEFF Research Database (Denmark)

    Cameron, Colin; Fawcett, Allan H.; Hetherington, Cecil R.

    1998-01-01

    A computer-based lattice model of the step growth reaction of an AB2 monomer, the next elaborate system after an AB monomer, has been devised that allows the simultaneous and explicit occurrence of inter- and intramolecular reactions of A and B groups of the flexible and moving molecules according...... with fractal characteristics. Growth stops when each molecule contains a cycle. For the model explored, in which six lattice sites are used for each monomer, the limiting value of the number average degree of polymerization, 〈x〉n,∞, is 14.6(±0.3) (after infinite time). The occurrence within the system of rings...... of m residues (m=1,2,3,...) is found to depend upon m and the extent of reaction of the A groups, pa, according to Rm=C0pm am-2.71, the constant C0 reflecting the structure of the lattice and the monomer, and being shown to determine the final degree of polymerization. The exponent of the integers m...

  4. Enhanced Jc's of YBa2Cu3O7-x-Ag ex situ annealed coevaporated films on LaAlO3 (100) substrates

    DEFF Research Database (Denmark)

    Clausen, Thomas; Ejrnæs, Mikkel; Olesen, Michael Wiinberg

    1995-01-01

    A 5x increase of the critical current density (J(c)) at 77 K was obtained by coating a coevaporated 500 nm thick Y, BaF2, Cu film with 50 nm Ag prior to the ex situ annealing. J(c) increased from 0.2 for uncoated samples to 1 MA/cm(2) for the Ag-coated sample without severely affecting the zero...... resistance transition temperature (T-c0). Scanning electron microscopy showed that the surface morphology was improved and that the normally observed trellislike structure was greatly reduced. By combining electron microscopy and sputter assisted Auger analysis it was found that the Ag nucleated in droplets...

  5. An approach for scalable production of silver (Ag) decorated WS2 nanosheets

    Science.gov (United States)

    Sumesh, C. K.; Kapatel, Sanni; Chaudhari, Arti

    2018-05-01

    In the Present study we report the synthesis of Ag nanoparticles (NPs) decorated WS2 nanosheets by sonochemical exfoliation followed by simple chemical reduction process at room temperature. The morphology and microstructure of the as-synthesized Ag-WS2 nanocomposite were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and optical absorption (UV-Vis.) spectroscopy. X-ray and TEM analysis shows the presence of Ag with significant peak over 38.08°, 44.22°, 64.37° and 77.33° at 2θ angle for (111), (200), (220) and (311) respectively. The Ag nanoparticles are randomly distributed throughout the surface of the WS2 nanosheets without undergoing further oxidation during the formation of composites. The formation of Ag-WS2 nanocomposites shows a clear blue shift in the absorption as we obtained the characteristics absorption valleys at 456, 536 and 631 nm from the UV Vis spectroscopy analysis compared to pure WS2 nanosheets. Henceforth a facile method for the Ag decoration on WS2 nanosheets was put forward and briefly discussed. The proposed synthesis method is very promising for the low cost and large-scale synthesis of other noble metal incorporation TMDC compounds.

  6. Silver Nanocube and Nanobar Growth via Anisotropic Monomer Addition and Particle Attachment Processes.

    Science.gov (United States)

    Xiao, Dongdong; Wu, Zhigang; Song, Miao; Chun, Jaehun; Schenter, Gregory K; Li, Dongsheng

    2018-01-30

    Understanding the growth mechanism of noble metal nanocrystals during solution synthesis is of significant importance for shape and property control. However, much remains unknown about the growth pathways of metal nanoparticles due to the lack of direct observation. Using an in situ transmission electron microscopy technique, we directly observed Ag nanocube and nanobar growth in an aqueous solution through both classical monomer-by-monomer addition and nonclassical particle attachment processes. During the particle attachment process, Ag nanocubes and nanobars were formed via both oriented and nonoriented attachment. Our calculations, along with the dynamics of the observed attachment, showed that the van der Waals force overcomes hydrodynamic and friction forces and drives the particles toward each other at separations of 10-100 nm in our experiments. During classical growth, anisotropic growth was also revealed, and the resulting unsymmetrical shape constituted an intermediate state for Ag nanocube growth. We hypothesized that the temporary symmetry breaking resulted from different growth rates on (001) surfaces due to a local surface concentration variation caused by the imbalance between the consumption of Ag + near the surface and the diffusion of Ag + from the bulk to the surface.

  7. Synthesis and photocatalytic properties of MgBi2O6 with Ag additions

    Science.gov (United States)

    Zhong, Liansheng; Hu, Chaohao; Zhu, Binqing; Zhong, Yan; Zhou, Huaiying

    2018-02-01

    Ag-doped MgBi2O6 photocatalysts were synthesized by the low temperature hydrothermal method in combination with heat treatment reaction using NaBiO3·2H2O, MgCl2·6H2O, and AgNO3 as raw materials. The products were characterized by using power X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Energy dispersive X-ray detector (EDS), and UV-Vis diffusion reflectance spectra. The photocatalytic activity of MgBi2O6 with Ag additions was evaluated by degrading MB (10 mg/L) under visible light irradiation (λ > 420 nm). The results showed that in comparison with pure MgBi2O6, the photocatalytic activity of MgBi2O6 with about 5% Ag concentration is increased by about 24% after 120 min reaction. The enhancement of catalytic activity of Ag-doped MgBi2O6 photocatalysts should be related to the band structure, morphology and larger specific surface area.

  8. X-ray enhancement of CsI:Eu{sup 2+} radioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Leblans, P., E-mail: paul.leblans@agfa.com [Agfa-HealthCare NV, Septestraat 27, B-2640 Mortsel (Belgium); Struye, L.; Elen, S.; Mans, I. [Agfa-HealthCare NV, Septestraat 27, B-2640 Mortsel (Belgium); Vrielinck, H.; Callens, F. [Electron Magnetic Resonance Research Group, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Gent (Belgium)

    2015-09-15

    CsI:Eu{sup 2+} needle crystal layers were produced by Physical Vapour Deposition (PVD). The luminescence properties were studied before and after thermal anneal. It was shown by Electron Paramagnetic Resonance (EPR) that annealing produces Eu{sup 2+} monomer centres, probably starting from Eu clusters in the needle crystalline layers. These centres seem structurally very similar to the Eu{sup 2+} monomer centres in annealed CsBr:Eu{sup 2+} needle layers. They give rise to a narrow luminescence band peaking at about 450 nm (2.76 eV) at room temperature, both under X-ray and UV excitation. The luminescence intensity of as-deposited layers is low. Annealing enhances photo- and radioluminescence on average by a factor of 1.5–3. Surprisingly, further sensitization of radioluminescence with a factor of up to 7 is possible by exposing the annealed needle layers to X-rays or UV, while in contrast, UV excited luminescence is slightly reduced. X-ray enhancement thus leads to a structured scintillator with a conversion efficiency of about 42,000 photons/MeV upon X-ray excitation. A similar radioluminescence enhancement is observed for annealed CsI:Eu{sup 2+} fine powder, but not for large single crystals or conglomerated polycrystals. The measurements and observations are consistent with Eu{sup 2+} monomer centres stabilized by water molecules. These molecules are incorporated via annealing, and that this happens when the morphology is such that water can diffuse throughout the volume of the crystals. The presence of stabilized Eu{sup 2+} monomers is necessary to enhance radioluminescence by X-ray exposure. A mechanism is proposed for the phenomenon.

  9. Ag/Pd core-shell nanoparticles by a successive method: Pulsed laser ablation of Ag in water and reduction reaction of PdCl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mottaghi, N. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ranjbar, M., E-mail: ranjbar@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Farrokhpour, H. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Khoshouei, M. [Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, Martinsried 82152 (Germany); Khoshouei, A.; Kameli, P.; Salamati, H. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Tabrizchi, M. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Jalilian-Nosrati, M. [Physics department, Central Azad University, Tehran 14676-86831 (Iran, Islamic Republic of)

    2014-02-15

    In this study Ag/Pd nanoparticles (NPs) have been fabricated by a successive method; first, colloids of Ag nanoparticles (NPs) have been prepared in water by pulsed laser ablation in liquid (PLAL) method. Then PdCl{sub 2} solution (up to 0.2 g/l) were added to the as-prepared or aged colloidal Ag NPs. Characterizations were done using UV–vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmissions electron microscopy (TEM) techniques. Spectroscopy data showed that surface plasmon resonance (SPR) peaks of as-prepared Ag NPs at about λ = 400 nm were completely extinguished after addition of PdCl{sub 2} solution while this effect was not observed when aged Ag NPs are used. XRD and XPS results revealed that by addition of the PdCl{sub 2} solution into the as-prepared Ag NPs, metallic palladium, and silver chloride composition products are generated. TEM images revealed that as a result of this reaction, single and core-shell nanoparticles are obtained and their average sizes are 2.4 nm (Ag) and 3.2 nm (Ag/Pd). The calculated d-spacing values form XRD data with observations on high magnification TEM images were able to explain the chemical nature of different parts of Ag/Pd NPs.

  10. Trivial topological phase of CaAgP and the topological nodal-line transition in CaAg (P1 -xA sx)

    Science.gov (United States)

    Xu, N.; Qian, Y. T.; Wu, Q. S.; Autès, G.; Matt, C. E.; Lv, B. Q.; Yao, M. Y.; Strocov, V. N.; Pomjakushina, E.; Conder, K.; Plumb, N. C.; Radovic, M.; Yazyev, O. V.; Qian, T.; Ding, H.; Mesot, J.; Shi, M.

    2018-04-01

    By performing angle-resolved photoemission spectroscopy and first-principles calculations, we address the topological phase of CaAgP and investigate the topological phase transition in CaAg (P1 -xA sx) . We reveal that in CaAgP, the bulk band gap and surface states with a large bandwidth are topologically trivial, in agreement with hybrid density functional theory calculations. The calculations also indicate that application of "negative" hydrostatic pressure can transform trivial semiconducting CaAgP into an ideal topological nodal-line semimetal phase. The topological transition can be realized by partial isovalent P/As substitution at x =0.38 .

  11. Fig .1. X-ray diffraction (XRD) patterns of Ag2Se-G-TiO2 composites.

    Indian Academy of Sciences (India)

    32

    SEM images of Ag2Se-G nanocomposites, (c)TiO2 nanoparticles and (d) SEM images of Ag2Se-. G-TiO2 .... Although photo-catalytic conversion of CO2 using solar energy is the most convenient route for the ..... based structure of graphene, the unpaired π electron merges with the metal nanoparticles, causing a shift in the ...

  12. Plasma-induced formation of flower-like Ag{sub 2}O nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zen-Hung; Ho, Chun-Hsien; Lee, Szetsen, E-mail: slee@cycu.edu.tw

    2015-09-15

    Graphical abstract: Flower-like Ag{sub 2}O nanostructures. - Highlights: • Flower-like Ag{sub 2}O nanostructures were synthesized from Ag colloids using plasma. • XPS was used to monitor plasma treatment effect on Ag colloids. • SERS of methyl orange was used to monitor the plasma oxidation–reduction processes. • Photocatalytic degradation of methylene blue was performed using Ag{sub 2}O. • Ag{sub 2}O is a more efficient visible light photocatalyst than Ag colloids. - Abstract: Plasma treatment effect on Ag colloids was investigated using X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman scattering (SERS) techniques. XPS showed that O{sub 2} plasma was critical in removing organic residues in Ag colloids synthesized using citric acid as a reducing agent. With O{sub 2} plasma treatment, Ag colloids were also oxidized to form flower-like Ag{sub 2}O nanostructures. The formation mechanism is proposed. The SERS spectral intensity of methyl orange (MO) adsorbed on Ag surface became deteriorated with O{sub 2} plasma treatment. Followed by H{sub 2} plasma treatment, the SERS intensity of MO on Ag regained, which indicated that Ag{sub 2}O has been reduced to Ag. Nonetheless, the reduction by H{sub 2} plasma could not bring Ag back to the original as-synthesized nanoparticle morphology. The flower-like nanostructure morphology still remained. The photocatalytic degradation reactions of methylene blue (MB) aqueous solutions were carried out using Ag colloids and Ag{sub 2}O nanostructures. The results show that Ag{sub 2}O is more efficient than Ag colloids and many other metal oxides for the photocatalytic degradation of MB in solution when utilizing visible light.

  13. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ozkendir, O. Murat, E-mail: ozkendir@gmail.com [Mersin University, Faculty of Technology, Energy Systems Engineering, Tarsus (Turkey); Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Cengiz, E. [Karadeniz Technical University, Faculty of Science, Department of Physics, Trabzon (Turkey); Yalaz, E. [Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Söğüt, Ö.; Ayas, D.H. [Kahramanmaraş Sütçü İmam Üniversitesi, Faculty of Science and Letters, Department of Physics, Kahramanmaraş (Turkey); Thammajak, B. Nirawat [Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, T. Suranaree, A. Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-05-15

    Highlights: • Crystal and electronic properties of bimetallic AgCu and AgAu alloy thin films were studied. • Both AgCu and AgAu bimetallic samples were determined to have cubic crystal geometry. • Strong influence of Cu and Au atoms on the electronic structure of the Ag atoms were determined. - Abstract: Crystal and electronic structure properties of bimetallic AgAu and AgCu alloy thin films were investigated by X-ray spectroscopic techniques. The aim of this study is to probe the influence of Au or Cu atoms on the electronic behaviors of Ag ions in bimetallic alloy materials that yields different crystal properties. To identify the mechanisms causing crystal phase transitions, study were supported by the collected EXAFS (Extended X-ray Absorption Fine Structure) data. Crystal structures of both Cu and Au doped bimetallic Ag samples were determined mainly in cubic geometry with “Fm3m” space group. Through the Ag–Au and Ag–Cu molecular interactions during bimetallic alloy formations, highly overlapped electronic levels that supports large molecular band formations were observed with different ionization states. Besides, traces of the d–d interactions in Au rich samples were determined as the main interplay in the broad molecular bond formations. The exact atomic locations and types in the samples were determined by EXAFS studies and supported by the performed calculations with FEFF scientific code.

  14. Development of the ReuseTechnology for Radioactive Waste from Nuclear Fuel Cycle - Development of the off-gas treatment technology

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, H. K.; Park, G. I.; Cho, I. H.; Choi, B. S.; Lee, K. W.; Jeong, M. S.

    1998-09-01

    Treatment technologies for noble gases and semi-volatile gases generated from nuclear fuel cycle process were evaluated, and the optimal process was selected based on process simplicity and safety of disposal. Evaluation of the adsorption capacity of methyl iodine on AgX(silver-impregnated zeolite) and AgS(silver-impregnated silica gel) at the temperature of 80-300 deg C was carried out, and adsorption performances of AgX and AgS were compared with that of activated carbon. CO 2 removal capacity using soda lime, activated carbon and 13X was investigated, and effect of relative humidity was identified. A preparation method of granular calcium hydroxide as a CO-2 removal sorbent using oyster-shells was characterized. This study involves the comparison of the adsorption capacities of Kr on natural or synthetic zeolites and activated carbon at high concentration and an analysis of humidity effect on water adsorption of natural-zeolite. It also was carried out that performance tests for reuse of activated carbon through desorption and re-impregnation process of TEDA/KI impregnated carbon as a removal sorbent for organic radio iodines. (author). 132 refs., 17 tabs., 29 figs

  15. Efficient visible light photocatalytic NO{sub x} removal with cationic Ag clusters-grafted (BiO){sub 2}CO{sub 3} hierarchical superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xin [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 40067 (China); Zhang, Wendong [Department of Scientific Research Management, Chongqing Normal University, Chongqing 401331 (China); Deng, Hua [State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Ni, Zilin [Department of Scientific Research Management, Chongqing Normal University, Chongqing 401331 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 40067 (China); Zhang, Yuxin, E-mail: zhangyuxin@cqu.edu.cn [College of Materials Science and Engineering, National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044 (China)

    2017-01-15

    Graphical abstract: The cationic Ag clusters-grafted (BiO){sub 2}CO{sub 3} hierarchical superstructures exhibits highly enhanced visible light photocatalytic air purification through an interfacial charge transfer process induced by Ag clusters. - Highlights: • Microstructural optimization and surface cluster-grafting were firstly combined. • Cationic Ag clusters were grafted on the surface of (BiO){sub 2}CO{sub 3} superstructures. • The Ag clusters-grafted BHS displayed enhanced visible light photocatalysis. • Direct interfacial charge transfer (IFCT) from BHS to Ag clusters was proposed. • The charge transfer process and the dominant reactive species were revealed. - Abstract: A facile method was developed to graft cationic Ag clusters on (BiO){sub 2}CO{sub 3} hierarchical superstructures (BHS) surface to improve their visible light activity. Significantly, the resultant Ag clusters-grafted BHS displayed a highly enhanced visible light photocatalytic performance for NOx removal due to the direct interfacial charge transfer (IFCT) from BHS to Ag clusters. The chemical and coordination state of the cationic Ag clusters was determined with the extended X-ray absorption fine structure (EXAFS) and a theoretical structure model was proposed for this unique Ag clusters. The charge transfer process and the dominant reactive species (·OH) were revealed on the basis of electron spin resonance (ESR) trapping. A new photocatalysis mechanism of Ag clusters-grafted BHS under visible light involving IFCT process was uncovered. In addition, the cationic Ag clusters-grafted BHS also demonstrated high photochemical and structural stability under repeated photocatalysis runs. The perspective of enhancing photocatalysis through combination of microstructural optimization and IFCT could provide a new avenue for the developing efficient visible light photocatalysts.

  16. H{sub 2} assisted NH{sub 3}-SCR over Ag/Al{sub 2}O{sub 3} for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Fogel, S.

    2013-05-15

    The up-coming strict emission legislation demands new and improved catalysts for diesel vehicle deNO{sub x}. The demand for low-temperature activity is especially challenging. H{sub 2}-assisted NH{sub 3}-SCR over Ag/Al{sub 2}O{sub 3} has shown a very promising low-temperature activity and a combination of Ag/Al{sub 2}O{sub 3} and Fe-BEA can give a high NO{sub x} conversion in a broad temperature window without the need to dose H{sub 2} at higher temperatures. The aim of this study has been to investigate the combined Ag/Al{sub 2}O{sub 3} and Fe-BEA catalyst system both at laboratory-scale and in full-scale engine bench testing. The catalysts were combined both in a sequential dual-bed layout and a dual-layer layout where the catalysts were coated on top of each other. The Ag/Al{sub 2}O{sub 3} catalyst was also investigated with the aim of improving the sulphur tolerance and low-temperature activity by testing different alumina-supports. A large focus of this study has been the preparation of monolithic catalyst bricks for the catalyst testing. A high SBET and higher Ag loading gave a high sulphur tolerance and activity. It was believed that the high S{sub BET} is needed to give a higher NH{sub 3} adsorption capacity, necessary for the SCR reaction. A higher Ag loading gives more Ag sites and probably a favourable Ag dispersion. Testing with sulphur gave an increased activity of the catalysts. Testing of monolithic catalysts showed a similar activity enhancement after a few standard test cycles. A change in the dispersion or state of Ag can be possible reasons for the activation seen and the activation was believed to be related to Ag and not the alumina. Small-scale laboratory testing showed that it was preferred to have Ag/Al{sub 2}O{sub 3} either upstream or as the outer layer of Fe-BEA. This was attributed to complete NH{sub 3} oxidation over Fe-BEA giving a deficit of NH{sub 3} over the Ag/Al{sub 2}O{sub 3} if it was placed downstream or as the inner layer

  17. New chalcogenide glasses in the CdTe-AgI-As{sub 2}Te{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M. [Univ. Picardie Jules Verne, F-80000 Amiens (France); Le Coq, D., E-mail: david.lecoq@univ-littoral.fr [Univ. Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EA 4493, F-59140 Dunkerque (France); Boidin, R.; Bychkov, E. [Univ. Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EA 4493, F-59140 Dunkerque (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Determination of the glass-forming region in the pseudo-ternary CdTe-AgI-As{sub 2}Te{sub 3} system. Black-Right-Pointing-Pointer Characterization of macroscopic properties of the new CdTe-AgI-As{sub 2}Te{sub 3} glasses. Black-Right-Pointing-Pointer Characterization of the total conductivity of CdTe-AgI-As{sub 2}Te{sub 3} glasses. Black-Right-Pointing-Pointer Comparison between the selenide and telluride equivalent systems. -- Abstract: Chalcogenide glasses in the pseudo-ternary CdTe-AgI-As{sub 2}Te{sub 3} system were synthesized and the glass-forming range was determined. The maximum content of CdTe in this glass system was found to be equal to 15 mol.%. The macroscopic characterizations of samples have consisted in Differential Scanning Calorimetry, density, and X-ray diffraction measurements. The cadmium telluride addition does not generate any significant change in the glass transition temperature but the resistance of binary AgI-As{sub 2}Te{sub 3} glasses towards crystallisation is estimated to be decreasing on the base of {Delta}T = T{sub x} - T{sub g} parameter. The total electrical conductivity {sigma} was measured by complex impedance spectroscopy. First, the CdTe additions in the (AgI){sub 0.5}(As{sub 2}Te{sub 3}){sub 0.5} host glass, (CdTe){sub x}(AgI){sub 0.5-x/2}(As{sub 2}Te{sub 3}){sub 0.5-x/2} lead to a conductivity decrease at x {<=} 0.05. Then, the behaviour is reversed at 0.05 {<=} x {<=} 0.15. The obtained results are discussed by comparison with the equivalent selenide system.

  18. Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Boomi, Pandi [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Prabu, Halliah Gurumallesh, E-mail: hgprabu2010@gmail.com [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Manisankar, Paramasivam [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Ravikumar, Sundaram [Department of Oceanography and Coastal Area Studies, School of Marine Sciences, Alagappa University, Thondi Campus 623 409, Tamil Nadu (India)

    2014-05-01

    Graphical abstract: - Highlights: • New method of synthesizing PANI-Ag-Au nanocomposite. • Surface Plasmon resonance and formation of composite at nano level were analyzed. • HR-TEM study revealed uniform distribution of nanoparticles. • PANI-Ag-Au nanocomposite exhibited good antibacterial activity. - Abstract: Pristine polyaniline (PANI), PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites have been successfully synthesized by chemical oxidative polymerization method using aniline as monomer, ammonium persulphate as oxidant and metal (Ag, Au and Ag-Au) colloids. UV-Vis analysis exhibited surface Plasmon resonances of Ag, Au, Ag-Au nanoparticles. FT-IR spectra revealed the shift in peak position of N-H stretching. X-ray diffraction (XRD) results confirm the presence of Ag, Au and Au-Ag nanoparticles. HR-TEM images show nanosizes of Ag, Au, Ag-Au and the incorporation of such nanoparticles into the PANI matrix. Pristine PANI, PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites were tested for antibacterial activity by agar well diffusion method. PANI-Ag-Au nanocomposite exhibited higher antibacterial activity against both gram-positive [Streptococcus sp. (MTCC 890), Staphylococcus sp. (MTCC 96)] and gram-negative bacteria [Escherichia coli (MTCC 1671) and Klebsiella sp. (MTCC 7407)] when compared with PANI-Ag nanocomposite, PANI-Au nanocomposite and pristine PANI. The novelty of this study is the polymer-bimetal synthesis and its antibacterial potential.

  19. One-pot synthesis of Ag-SiO2-Ag sandwich nanostructures

    International Nuclear Information System (INIS)

    Li Chaorong; Mei Jie; Li Shuwen; Lu Nianpeng; Wang Lina; Chen Benyong; Dong Wenjun

    2010-01-01

    Ag-SiO 2 -Ag sandwich nanostructures were prepared by a facile one-pot synthesis method. The Ag core, SiO 2 shell and Ag nanoparticle shell were all synthesized with polyvinylpyrrolidone, catalysed by ammonia, in the one-pot reaction. The polyvinylpyrrolidone, acting as a smart reducing agent, reduced the Ag + to Ag cores and Ag shells separately. Furthermore, the polyvinylpyrrolidone served as a protective agent to prevent the silver cores from aggregating. The SiO 2 shell and outer layer Ag nanoparticles were obtained when tetraethyl orthosilicate and ammonia were added to the silver core solution. Ammonia, acting as the catalyst, accelerated the hydrolysis of the tetraethyl orthosilicate to SiO 2 , which coated the silver cores. Furthermore, Ag(NH 3 ) 2 + ions were formed when aqueous ammonia was added to the solution, which increased the reduction capability. Then the polyvinylpyrrolidone reduced the Ag(NH 3 ) 2 + ions to small Ag nanoparticles on the surface of the Ag-SiO 2 and formed Ag-SiO 2 -Ag sandwich structures with a standard deviation of less than 4%. This structure effectively prevented the Ag nanoparticles on the silica surface from aggregating. Furthermore, the Ag-SiO 2 -Ag sandwich structures showed good catalysis properties due to the large surface area/volume value and activity of surface atoms of Ag particles.

  20. Synthesis and Characterization of Ag-Modified V2O5 Photocatalytic Materials

    Directory of Open Access Journals (Sweden)

    Dora Alicia Solis-Casados

    2017-01-01

    Full Text Available V2O5 powders modified with different theoretical silver contents (1, 5, 10, 15, and 20 wt% as Ag2O were obtained with acicular morphologies observed by scanning electron microscopy (SEM. Shcherbinaite crystalline phase is transformed into the Ag0.33V2O5 crystalline one with the incorporation and increase in silver content as was suggested by X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS analysis. With further increase in silver contents the Ag2O phase appears. Catalysts were active in photocatalytic degradation of malachite green dye under simulated solar light, which is one of the most remarkable facts of this work. It was found that V2O5-20Ag was the most active catalytic formulation and its activity was attributed to the mixture of coupled semiconductors that promotes the slight decrease in the rate of the electron-hole pair recombination.

  1. First-principles study of Sb adsorption on Ag(1 1 0)(2 x 2)

    International Nuclear Information System (INIS)

    Nie, J.L.; Xiao, H.Y.; Zu, X.T.; Gao Fei

    2006-01-01

    The adsorption of antimony atom on the Ag(1 1 0) surface has been studied within the density functional theory framework. It was turned out that Sb-Ag surface alloy was formed in which Sb atoms substitute Ag atom in the outermost layer and subsurface site absorption was not preferred, suggesting that Sb is well segregated to the surface. Geometric analysis showed that rumpling between substitutional Sb and Ag in the alloy surface is negligible. These results are found to agree well with the experimental finding of Nascimento et al. [Surf. Sci. 572 (2004) 337]. In addition, investigation of the diffusion of Ag atom on bare and Sb-covered Ag(1 1 0) surface showed that Ag adatoms will jump along the so call in-channel direction and Sb substitution has little effect on the diffusion of Ag adatoms on Ag(1 1 0) surface. Such diffusion behavior was found to be different from that of Ag adatoms on Ag(1 1 1) surface, where the diffusion energy barrier was reported to be significantly increased upon Sb substitution [Phys. Rev. Lett. 73 (1993) 2437

  2. Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te)

    International Nuclear Information System (INIS)

    Sharma, Sheetal; Verma, A.S.; Jindal, V.K.

    2014-01-01

    Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX 2 (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX 2 : X = S, Se, Te). In this study, we have used the accurate full potential linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C 11 , C 12 , C 13 , C 33 , C 44 and C 66 ). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures

  3. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    Science.gov (United States)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  4. The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants

    Science.gov (United States)

    Qiu, Teng; Xie, Huxiao; Zhang, Jiangru; Zahoor, Amad; Li, Xiaoyu

    2011-03-01

    Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac)2), and the Cu2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac)2-treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac)2 was established. As Cu(Ac)2 which served as the oxidant can also be replaced by AgNO3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu2+ is typical for the existence of Cu(I)-pyrrole coordinate structures with strong Cu(I)-N bond signal shown in XPS characterization.

  5. The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants

    International Nuclear Information System (INIS)

    Qiu Teng; Xie Huxiao; Zhang Jiangru; Zahoor, Amad; Li Xiaoyu

    2011-01-01

    Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac) 2 ), and the Cu 2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac) 2 -treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac) 2 was established. As Cu(Ac) 2 which served as the oxidant can also be replaced by AgNO 3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO 3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu 2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu 2+ is typical for the existence of Cu(I)–pyrrole coordinate structures with strong Cu(I)–N bond signal shown in XPS characterization.

  6. Precipitation of Ag2Te in the thermoelectric material AgSbTe2

    International Nuclear Information System (INIS)

    Sugar, Joshua D.; Medlin, Douglas L.

    2009-01-01

    The microstructure of AgSbTe 2 , prepared by solidification, is investigated using electron microscopy. During solidification and thermal treatment, the material separates into a two-phase mixture of a rocksalt phase, which is Ag 22 Sb 28 Te 50 , and silver telluride, Ag 2 Te. Ag 2 Te formation results either from eutectic solidification (large lamellar structures), or by solid-state precipitation (fine-scale particles). The crystal structure of the AgSbTe 2 phase determined by electron diffraction is consistent with a rocksalt structure that has a disordered cation sublattice. A preferred crystallographic orientation relationship at the interface between the matrix and the low-temperature monoclinic Ag 2 Te phase is defined and discussed. This orientation relationship is observed for both second-phase morphologies. In both cases, the orientation relationship originates from a topotactic (cube-on-cube) alignment of the Te sublattices in the initially cubic Ag 2 Te and the matrix at elevated temperature. This Te sublattice alignment is retained as the Ag 2 Te undergoes a cubic-to-monoclinic transformation during cooling. This orientation relationship is observed for both second-phase morphologies.

  7. Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite

    International Nuclear Information System (INIS)

    Radovanović, Željko; Jokić, Bojan; Veljović, Djordje; Dimitrijević, Suzana; Kojić, Vesna; Petrović, Rada; Janaćković, Djordje

    2014-01-01

    Hydroxyapatite (HAp) powders doped with Ag + or Cu 2+ were synthesized by a hydrothermal method in order to obtain biomaterial with an antimicrobial effect. The synthesis was performed with two contents of dopant (Ag + or Cu 2+ ) by considering both the antimicrobial activities and biocompatibility of the powders. The doped HAp was annealed at 1200 °C for 2 h with the intention of investigating the influence of doping with Ag + and Cu 2+ on the creation of the biphasic HAp/α-tricalcium phosphate (HAp/α-TCP) and determining the antimicrobial activity and biocompatibility of the obtained biphasic powders. Analyses of all powders, undoped and doped HAp and HAp/α-TCP, were performed by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and energy-dispersive X-ray spectroscopy (EDS). The in vitro antibacterial activities of the powders were evaluated against: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. All powders showed good antimicrobial activity but generally the powders of doped HAp/α-TCP had more uniform results against all pathogenic microorganisms than the powders of doped HAp. In vitro biocompatibility tests, MTT and DET, were used to evaluate the biocompatibility of Ag + - and Cu 2+ -doped HAp/α-TCP with MRC-5 human fibroblast cells. These tests confirmed that powders do not have a cytotoxic effect. The HAp/α-TCP powders doped with the lower content of Ag + and Cu 2+ showed especially good biocompatibility. Antimicrobial and biocompatibility tests recommend the Ag + - and Cu 2+ -doped HAp/α-TCP as promising material for use in reconstructive surgery of bone.

  8. Synthesis, structural, electronic and linear electro-optical features of new quaternary Ag{sub 2}Ga{sub 2}SiS{sub 6} compound

    Energy Technology Data Exchange (ETDEWEB)

    Piasecki, M., E-mail: m.piasecki@ajd.czest.pl [Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42-201 Czestochowa (Poland); Myronchuk, G.L. [Department of Solid State Physics, Lesya Ukrainka Eastern European National University, 13 Voli Ave., Lutsk 43025 (Ukraine); Parasyuk, O.V. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, 13 Voli Ave., Lutsk 43025 (Ukraine); Khyzhun, O.Y. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., Kyiv 03142 (Ukraine); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, 50 Pekarska Street, Lviv 79010 (Ukraine); Pavlyuk, V.V. [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya St., 79005 Lviv (Ukraine); Institute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Kozer, V.R.; Sachanyuk, V.P. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, 13 Voli Ave., Lutsk 43025 (Ukraine); El-Naggar, A.M. [Physics Department, Faculty of Science, Ain Shams University, Abassia, Cairo 11566 (Egypt); Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Albassam, A.A. [Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Jedryka, J.; Kityk, I.V. [Faculty of Electrical Engineering, Czestochowa University Technology, Armii Krajowej 17, Czestochowa (Poland)

    2017-02-15

    For the first time phase equilibria and phase diagram of the AgGaS{sub 2}–SiS{sub 2} system were successfully explored by differential thermal and X-ray phase analysis methods. Crystal structure of low-temperature (LT) modification of Ag{sub 2}Ga{sub 2}SiS{sub 6} (LРў- Ag{sub 2}Ga{sub 2}SiS{sub 6}) was studied by X-ray powder method and it belongs to tetragonal space group I-42d, with unit cell parameters a=5.7164(4) Å, c=9.8023(7) Å, V=320.32(7) Å{sup 3}. Additional details regarding the crystal structure exploration are available at the web page Fachinformationszentrum Karlsruhe. X-ray photoelectron core-level and valence-band spectra were measured for pristine LРў- Ag{sub 2}Ga{sub 2}SiS{sub 6} crystal surface. In addition, the X-ray photoelectron valence-band spectrum of LРў-Ag{sub 2}Ga{sub 2}SiS{sub 6} was matched on a common energy scale with the X-ray emission S Kβ{sub 1,3} and Ga Kβ{sub 2} bands, which give information on the energy distribution of the S 3p and Ga 4p states, respectively. The presented X-ray spectroscopy results indicate that the valence S p and Ga p atomic states contribute mainly to the upper and central parts of the valence band of LРў-Ag{sub 2}Ga{sub 2}SiS{sub 6}, respectively, with a less significant contribution also to other valence-band regions. Band gap energy was estimated by measuring the quantum energy in the spectral range of the fundamental absorption. We have found that energy gap Eg is equal to 2.35 eV at 300 K. LT-Ag{sub 2}Ga{sub 2}SiS{sub 6} is a photosensitive material and reveals two spectral maxima on the curve of spectral photoconductivity spectra at λ{sub max1} =590 nm and λ{sub max2} =860 nm. Additionally, linear electro-optical effect of LT-Ag{sub 2}Ga{sub 2}SiS{sub 6} for the wavelengths of a cw He-Ne laser at 1150 nm was explored. - Graphical abstract: Manuscript present the technology of growth and investigation of properties a new quaternary compound Ag{sub 2}Ga{sub 2}SiS{sub 6

  9. Coating stainless steel plates with Ag/TiO2 for chlorpyrifos decontamination

    Science.gov (United States)

    Abdel Fattah, Wafa I.; Gobara, Mohammed M.; El-Hotaby, Walid; Mostafa, Sherif F. M.; Ali, Ghareib W.

    2016-05-01

    Spray coatings of either nanosilver (Ag), titanium (TiO2) or nanosilver titanium (Ag/TiO2) on stainless steel substrates prepared by sol-gel process were successfully achieved. The efficiency of the Ag/TiO2 coat onto 316 stainless steel surface towards cloropyrifos degradation as a chemical warfare agent (CWA) was proved. The crystalline structure and morphological characterization, as well as surface roughness measurements, were assessed. X-ray diffraction results proved the crystalline TiO2 anatase phase. The uniform distribution of Ag along with TiO2 nanoparticles was evidenced through transmission electron microscopy and scanning electron microscopy mapping. The hydrophilic nature of individual Ag, TiO2 and Ag/TiO2 coats was proved by contact angle measurements. The loading of Ag nanoparticles influenced positively the Ag/TiO2 coats surface roughness. The photocatalytic cloropyrifos degradation achieved about 50% within one-hour post UV treatment proving, therefore, the promising Ag/TiO2 continued decontamination efficiency. In conclusion, tuning the physical and morphological properties of TiO2 coated on stainless steel surface could be significantly enhanced by Ag nanoparticles incorporation. The developed Ag/TiO2 coat could be conveniently applied as CWA decontaminant.

  10. Structural and optical properties of AgCl-sensitized TiO2 (TiO2 @AgCl prepared by a reflux technique under alkaline condition

    Directory of Open Access Journals (Sweden)

    V. A. Mu’izayanti

    Full Text Available Abstract The AgCl-sensitized TiO2 (TiO2@AgCl has been prepared from the precursor of TiO2-rutile type which on its surface adsorb chloride anion (Cl- and various amounts of silver using AgNO3 as starting material: AgNO3/(AgNO3+TiO2 mass ratio of 0.00, 1.14, 3.25, 6.38 and 10.32%. Reflux under alkaline condition was the employed technique. All samples were characterized by X-ray diffraction (XRD and diffuse reflectance UV-vis spectroscopy. The sample without the addition of AgNO3 was analyzed by scanning electron microscope and surface area analyzer. The morphology of the sample showed a distribution of microspheres of approximately 0.5 to 1.0 µm and the specific surface area was 68 m2/g. XRD patterns indicated that the sample without the addition of AgNO3 contained two types of TiO2: rutile (major and anatase (minor, whereas the samples with the addition of AgNO3 consisted of one phase of AgCl and two types of TiO2: rutile and anatase. The bandgaps of the samples were in the range of 2.97 to 3.24 eV, which were very close to the bandgap of intrinsic TiO2 powder. The presence of 0.8, 2.6 and 4.4 wt% of AgCl in each sample resulted in an additional bandgap in visible light region of 1.90, 1.94 and 2.26 eV, respectively, whereas the presence of 9.4 wt% of AgCl in the sample resulted in two bandgaps in visible light region of 1.98 and 1.88 eV.

  11. Interpretation of dc and ac conductivity of Ag2O–SeO2–MoO3 glass-nanocomposite-semiconductor

    International Nuclear Information System (INIS)

    Bhattacharya, Sanjib; Kundu, Ranadip; Das, Anindya Sundar; Roy, Debasish

    2015-01-01

    Highlights: • Polaron hopping. • Dc and ac conductivity. • Mott's model and Greave's model. • Ag 2 MoO 4 , Ag 2 Mo 2 O 7 and Ag 6 Mo 10 O 33 nanoparticles and SeO 3 and SeO 4 nanoclusters. • XRD and FESEM studies. - Abstract: A new type of semiconducting glass-nanocomposites 0.3Ag 2 O–0.7 (xMoO 3 –(1 − x) SeO 2 ) is prepared by melt-quenching route. The formation of Ag 2 MoO 4 , Ag 2 Mo 2 O 7 and Ag 6 Mo 10 O 33 nanoparticles and SeO 3 and SeO 4 nanoclusters in glass-nanocomposites has been confirmed from X-ray diffraction (XRD) and field emission scanning electron microscopic (FESEM) studies. Fourier transform infrared (FTIR) spectroscopy is employed to find out Se−O stretching vibration as well as stretching vibrations of Mo 2 O 7 2− ions. The dc conductivity of them is studied on the light of polaron hopping approach in a wide temperature range. At low temperatures, variable range hopping model (Mott's model) is employed to analyze the conductivity data. Greave's model is used to predict temperature dependent variable range hopping in the high temperature region. Frequency dependent ac conductivity is well explained on the basis of tunneling. I–V characteristics of the as-prepared samples have also been investigated

  12. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  13. Natural nanostructure and superlattice nanodomains in AgSbTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, Christopher E.; De Armas, Ricardo; Shao-Horn, Yang, E-mail: delaireoa@ornl.gov, E-mail: shaohorn@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Ma, Jie [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); May, Andrew F.; Delaire, Olivier, E-mail: delaireoa@ornl.gov, E-mail: shaohorn@mit.edu [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-04-14

    AgSbTe{sub 2} has long been of interest for thermoelectric applications because of its favorable electronic properties and its low lattice thermal conductivity of ∼0.7 W/mK. In this work, we report new findings from a high-resolution transmission electron microscopy study revealing two nanostructures in single crystal Ag{sub 1−x}Sb{sub 1+x}Sb{sub 2+x} (with x = 0, 0.1, 0.2); (i) a rippled natural nanostructure with a period of ∼2.5–5 nm and (ii) superlattice ordered nanodomains consistent with cation ordering predicted in previous density functional theory studies. These nanostructures, combined with point-defects, probably serve as sources of scattering for phonons, thereby yielding a low lattice thermal conductivity over a wide temperature range.

  14. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    Science.gov (United States)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  15. [Ag(NH3)2]Ag(OsO3N)2: a new nitridoosmate(VIII)

    International Nuclear Information System (INIS)

    Wickleder, M.S.; Pley, Martin

    2004-01-01

    Dark brown single crystals of [Ag(NH 3 ) 2 ]Ag(OsO 3 N) 2 were obtained from the reaction of Ag 2 CO 3 , OsO 4 , and NH 3 in aqueous solution. The crystal structure was solved in the monoclinic space group C2/m, with the following unit-cell dimensions: a=1962.5(3), b=633.1(1), c=812.6(1) pm, β=96.71(1) deg. The final reliability factor was R=0.0256 for 1034 reflections with I>2σ(I). Linear [Ag(NH 3 ) 2 ] + ions are present oriented perpendicular to the [010] direction, leading to short Ag + -Ag + distances of 316 pm. A second type of Ag + ions in the crystal structure present coordination number '6+1' and are surrounded by oxygen and nitrogen atoms of the nitridoosmate groups. Within the first of the two crystallographically distinguishable anions one can clearly differentiate between oxygen and nitrogen atoms while the second one exhibits a N/O disorder over two positions. The infrared spectrum of [Ag(NH 3 ) 2 ]Ag(OsO 3 N) 2 shows the typical absorptions which can be attributed to the complex anions and the NH 3 ligands

  16. Structural and Optical Properties of Chemical Bath Deposited Silver Oxide Thin Films: Role of Deposition Time

    Directory of Open Access Journals (Sweden)

    A. C. Nwanya

    2013-01-01

    Full Text Available Silver oxide thin films were deposited on glass substrates at a temperature of 50°C by chemical bath deposition technique under different deposition times using pure AgNO3 precursor and triethanolamine as the complexing agent. The chemical analysis based on EDX technique shows the presence of Ag and O at the appropriate energy levels. The morphological features obtained from SEM showed that the AgxO structures varied as the deposition time changes. The X-ray diffraction showed the peaks of Ag2O and AgO in the structure. The direct band gap and the refractive index increased as the deposition time increased and was in the range of 1.64–1.95 eV and 1.02–2.07, respectively. The values of the band gap and refractive index obtained indicate possible applications in photovoltaic and photothermal systems.

  17. Infrared Spectroscopy and Raman Scattering Studies on the Structure of Ag2O. B2O3. TeO2 Glass

    International Nuclear Information System (INIS)

    Thazin Myint; Soe Soe Thin; Pho Kaung; Sein Htoon

    2006-06-01

    Infrared spectroscopy investigation of silver - borate - tellurite glasses in the system 0.4 Ag2 O. 0.6 (x B2 O2. (1-x) TeO2) for various of x (0 < x < 1) has been performed in order to understand the glass modifying properties of the TeO2. In pure crystalline TeO2 spectra observed absorption bands at 780 cm-1 and 660 cm-1 have been ascribed to the stretching vibration of TeO bonds in the TeO4 units. In the glass 0.4 Ag2 O. 0.6 (x B2 O3. (1-x) TeO2) the bands at 700 cm-1 and 694 cm-1 are assigned to the symmetric breathing vibration of the boroxol group and the pentaborate one. The glasses show bands at 630 cm-1 which corresponds to the vibrations due to TeO4 units

  18. The superconductivity of Bi1.7Pb0.3Sr2-xAgxCa2Cu3Oy

    International Nuclear Information System (INIS)

    Yu, Y.

    1995-01-01

    It was discovered that the critical current density of BiSrCaCuO can be increased by cladding wires of this material with silver. Part of the cladding process is thermal annealing to 920 C. Although the empirical effects of this processing are well established, the effect of silver doping on T c and the structure of the lattice is not very clear. We studied this problem by substitution of Ag for Sr in BiSrCaCuO. The result reveals that T c0 of the sample increased to 99 K. (orig.)

  19. Synergetic effect of Ag_2O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO_2

    International Nuclear Information System (INIS)

    Chu, Haipeng; Liu, Xinjuan; Liu, Junying; Li, Jinliang; Wu, Tianyang; Li, Haokun; Lei, Wenyan; Xu, Yan; Pan, Likun

    2016-01-01

    Graphical abstract: Ag_2O/N-TiO_2 composites were synthesized via a co-precipitation method for visible light photocatalytic degradation of organic pollutions with excellent photocatalytic activity. - Highlights: • Ag_2O/N-TiO_2 composites were synthesized via a facile precipitation method. • Ag_2O/N-TiO_2 composites exhibited enhanced photocatalytic activity. • Ag_2O acts as co-catalyst to separate the photo-generated electron-hole pairs. - Abstract: A facile precipitation method was developed to synthesize the Ag_2O/N-TiO_2 composites. Their morphology, structure and photocatalytic performance in the degradation of methylene blue (MB) and phenol under visible light irradiation were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence spectroscopy and UV–vis absorption spectroscopy, respectively. The results show that the Ag_2O/N-TiO_2 composites exhibit excellent photocatalytic performance. The maximum degradation rates of MB and phenol are about 8.9 and 2.9 times that of pure N-TiO_2, respectively. The excellent photocatalytic performance is mainly ascribed to the synergetic effects of Ag_2O and N-TiO_2 including the increased light absorption and the reduced electron-hole pair recombination in N-TiO_2 with the presence of Ag_2O.

  20. Effects of coating process on the characteristics of Ag-SnO2 contact materials

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Zheng, J.; Li, S.L.

    2006-01-01

    Good wettability between the SnO 2 and silver matrix can improve the electrical contact performance of Ag-SnO 2 materials. In this work, Ag was deposited onto the surface of Ti-doped SnO 2 particles using chemical plating to enhance the wettability. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the Ag-coated SnO 2 particles. Scanning electron microscopy (SEM), conductivity tests, differential thermal analysis (DTA), and thermogravimetric analysis (TGA) were performed on the Ag-SnO 2 materials. Our results reveal that the chemical plating process can enhance the wettability between the Ti-doped SnO 2 particles and Ag matrix, and the Ag-coated SnO 2 particles are uniformly distributed in the Ag matrix. Both the thermal and electrical conductivity of the Ag-SnO 2 materials are significantly improved

  1. Synthesis and properties of new CdSe-AgI-As2Se3 chalcogenide glasses

    International Nuclear Information System (INIS)

    Kassem, M.; Le Coq, D.; Fourmentin, M.; Hindle, F.; Bokova, M.; Cuisset, A.; Masselin, P.; Bychkov, E.

    2011-01-01

    Research highlights: → Determination of the glass-forming region in the pseudo-ternary CdSe-AgI-As 2 Se 3 system. → Characterization of macroscopic properties of the new CdSe-AgI-As 2 Se 3 glasses. → Far infrared transmission of chalcogenide glasses. → Characterization of the total conductivity of CdSe-AgI-As 2 Se 3 glasses. -- Abstract: The glass-forming region in the pseudo-ternary CdSe-AgI-As 2 Se 3 system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (T g ), crystallisation (T x ), and melting (T m ) temperatures are reported and used to calculate their ΔT = T x - T g and their Hruby, H r = (T x - T g )/(T m - T x ), criteria. Evolution of the total electrical conductivity σ and the room temperature conductivity σ 298 was also studied. The terahertz transparency domain in the 50-600 cm -1 region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.

  2. Enhanced Photocatalytic Properties of Ag-Loaded N-Doped Tio2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Gao Dawei

    2018-03-01

    Full Text Available Highly ordered TiO2 nanotube (TiO2 NT arrays were prepared by anodic oxidizing method on the surface of the Ti substrate. Nitrogen-doped TiO2 nanotube (N-TiO2 NT arrays were carried out by ammonia solution immersion, and Ag nanoparticles loaded N-doped TiO2 nanotube (Ag/N-TiO2 NT arrays were obtained by successive ionic layer adsorption and reaction (SILAR technique. The samples were characterized by the X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FESEM, high-resolution transmission electron microscopy (HRTEM, photoluminescence (PL emission spectra, ultraviolet–visible (UV–vis diffuse reflectance spectroscopy (DRS. The result indicated that the diameter and wall thickness of the TiO2 NT are 100–120 and 20–30 nm, respectively. Moreover, the morphology and structure of the highly ordered TiO2 NTs were not affected by N-doping. Furthermore, Ag nanoparticles were evenly deposited on the surface of TiO2 NTs in the form of elemental silver. Finally, the photocatalytic activity of Ag/N-TiO2 NTs was evaluated by degradation of methyl orange (MO under visible-light irradiation. The Ag/N-TiO2 NTs exhibited enhanced photocatalytic properties, which could reach 95% after 90-min irradiation.

  3. Selective hydrodechlorination of 1,2-dichloroethane to ethylene over Pd-Ag/Al_2O_3 catalysts prepared by surface reduction

    International Nuclear Information System (INIS)

    Han, Yuxiang; Gu, Guangfeng; Sun, Jingya; Wang, Wenjuan; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2015-01-01

    Graphical abstract: - Highlights: • Surface reduction method was used for preparation of Pd-Ag(Cu) bimetallic catalysts. • Hydrodechlorination of 1,2-dichloroethane was investigated for production of ethylene. • Ag(Cu) selectively deposited on Pd surface during surface reduction process. • Ethylene selectivity was enhanced over Pd-Ag(Cu)/Al_2O_3 catalyst prepared by surface reduction. • Isolated Pd site is the key species for ethylene selectivity. - Abstract: Alumina supported Pd-Ag and (Cu) bimetallic catalysts (denoted as sr-Pd-Ag/Al_2O_3 or sr-Pd-Cu/Al_2O_3) with varied Pd/Ag (or Cu) ratios were prepared using the surface reduction method, and the gas-phase catalytic hydrodechlorination of 1,2-dichloroethane over the catalysts were investigated. For comparison, Pd-Ag bimetallic catalysts were prepared by the conventional co-impregnation method (denoted as im-Pd-Ag/Al_2O_3). The catalysts were characterized by N_2 adsorption, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and CO chemisorption. Characterization results indicated that surface reduction led to selective deposition of metallic Ag on the surface of Pd particles, while Pd and Ag just disorderly mixed in the catalyst prepared by impregnation method. Therefore, sr-Pd-Ag/Al_2O_3 exhibited a higher ethylene selectivity than im-Pd-Ag/Al_2O_3 for hydrodechlorination of 1,2-dichloroethane at a similar Ag loading amount. Moreover, among sr-Pd-Ag/Al_2O_3, sr-Pd-Cu/Al_2O_3 and im-Pd-Ag/Al_2O_3 catalysts, the ethylene selectivity decreased over these catalysts following the order: sr-Pd-Ag/Al_2O_3 > sr-Pd-Cu/Al_2O_3 > im-Pd-Ag/Al_2O_3. The present results indicate that surface reduction can be used as a potential method to synthesize catalyst with enhanced ethylene selectivity in hydrodechlorination of 1,2-dichloroethane.

  4. Effects of realgar on GSH synthesis in the mouse hippocampus: Involvement of system X{sub AG}{sup −}, system X{sub C}{sup −}, MRP-1 and Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanlei [Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122 (China); School of Basic Medical Sciences, North China University of Science and Technology, 46 Xinhua Road, Tangshan, Hebei 063009 (China); Chen, Mo; Zhang, Yinghua; Huo, Taoguang [Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122 (China); Fang, Ying [Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122 (China); School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77 Shenning1 Road, Double D Port, Dalian, Liaoning 116600 (China); Jiao, Xuexin [Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122 (China); Yuan, Mingmei [Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122 (China); School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122 (China); Jiang, Hong, E-mail: jianghong@mail.cmu.edu.cn [Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122 (China)

    2016-10-01

    Realgar is a type of mineral drug that contains arsenic and has neurotoxicity. Glutathione (GSH), which is the main antioxidant in the central nervous system, plays a key role in antioxidant defenses and the detoxification of arsenic. However, whether realgar interferes with the synthesis of GSH in the brain and the molecular mechanisms underlying its effects are largely unknown. Here, we used mouse models of exposure to realgar to show that realgar affects the synthesis of GSH in the hippocampus, leading to ultrastructural changes in hippocampal neurons and synapses and deficiencies in cognitive abilities, and that the mechanisms that cause this effect may be associated with alterations in the expression of system X{sub AG}{sup −}, system X{sub C}{sup −}, multidrug resistance-associated protein 1(MRP-1), nuclear factor E2-related factor 2 (Nrf2), γ-glutamylcysteine synthetase (γ-GCS), and the levels of glutamate (Glu) and cysteine (Cys) in the extracellular fluid. These findings provide a theoretical basis for preventing the drug-induced chronic arsenic poisoning in the nervous system that is triggered by realgar. - Highlights: • Realgar can induce neurotoxicity. • Realgar can modulate GSH levels in the hippocampus. • The mechanisms rely on expression changes of system X{sub AG}{sup −}, system X{sub C}{sup −}, MRP-1, Nrf2.

  5. Enhanced photodegradation activity of methyl orange over Ag2CrO4/SnS2 composites under visible light irradiation

    International Nuclear Information System (INIS)

    Luo, Jin; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao; Wu, Jingxia; Liang, Huiping

    2016-01-01

    Highlights: • Novel visible-light-driven Ag 2 CrO 4 /SnS 2 composites are synthesized. • Ag 2 CrO 4 /SnS 2 exhibits higher photocatalytic activity than pure Ag 2 CrO 4 and SnS 2 . • Ag 2 CrO 4 /SnS 2 exhibits excellent stability for the photodegradation of MO. • The possible photocatalytic mechanism was discussed in detail. - Abstract: Novel Ag 2 CrO 4 /SnS 2 composites were prepared by a simple chemical precipitation method and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The visible light photocatalytic tests showed that the Ag 2 CrO 4 /SnS 2 composites enhanced photocatalytic activities for the photodegradation of methyl orange (MO) under visible light irradiation (λ > 420 nm), and the optimum rate constant of Ag 2 CrO 4 /SnS 2 at a weight content of 1.0% Ag 2 CrO 4 for the degradation of MO was 2.2 and 1.5 times larger than that of pure Ag 2 CrO 4 and SnS 2 , respectively. The improved activity could be attributed to high separation efficiency of photogenerated electrons-hole pairs on the interface of Ag 2 CrO 4 and SnS 2 , which arised from the synergistic effect between Ag 2 CrO 4 and SnS 2 . Moreover, the possible photocatalytic mechanism with superoxide radical anions and holes species as the main reactive species in photocatalysis process was proposed on the basis of experimental results.

  6. Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs

    International Nuclear Information System (INIS)

    Wang Qingyao; Yang Xiuchun; Liu Dan; Zhao Jianfu

    2012-01-01

    Graphical abstract: The TiO 2 NTs were first treated with bi-functional mercaptoacetic acid linkers (HOOC–R–S). The –OH group on the surface of TiO 2 NT provides a strong affinity with the carboxylate group in the linker molecules. The thiol functional group in the linker molecules facilitates the binding with Ag from AgNO 3 solution. After Ag + ions were reduced by NaBH 4 , Ag nanoparticles formed by nucleation and growth. Highlights: ► Ag nanoparticles with an average diameter of 9.2 nm were filled in the TiO 2 nanotubes by a successive ionic layer adsorption and reaction (SILAR) technique. ► Bi-functional mercaptoacetic acid linkers were used to bind TiO 2 nanotubes with Ag nanoparticles. ► Ag nanoparticles modification of TiO 2 NTs largely enhanced the photocatalytic degradation of methyl orange under ultraviolet light irradiation. - Abstract: Ordered anatase TiO 2 nanotubes (TiO 2 NTs) on Ti substrate were synthesized by electrochemical anodization and subsequently vapor-thermal treatment. Ag nanoparticles were decorated on TiO 2 NTs by successive ionic layer adsorption and reaction (SILAR) technique. Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the characterization of surface morphology, phase composition, and microstructure of the original TiO 2 NTs, the vapor-thermally treated TiO 2 NTs and the Ag nanoparticles decorated TiO 2 NTs. The results indicate that vapor-thermal treatment favors to the transformation of amorphous TiO 2 into anatase phase. Increasing the SILAR cycle times favors to increase the loaded amounts of Ag nanoparticles in TiO 2 NTs. Ag nanoparticles are uniformly distributed in the TiO 2 NTs, and the SILAR process does not damage the ordered tubular structure. A possible formation mechanism of Ag/TiO 2 NTs has also been proposed. The

  7. Nano Ag@AgBr surface-sensitized Bi{sub 2}WO{sub 6} photocatalyst: oil-in-water synthesis and enhanced photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shuanglong; Liu, Li; Hu, Jinshan; Liang, Yinghua, E-mail: liangyh@heuu.edu.cn; Cui, Wenquan, E-mail: wkcui@163.com

    2015-01-01

    Graphical abstract: - Highlights: • The plasmatic Ag@AgBr surface-sensitized Bi{sub 2}WO{sub 6} composite photocatalysts. • Ag@AgBr greatly increased visible-light absorption for Bi{sub 2}WO{sub 6}. • The plasmonic photocatalysts exhibited enhanced activity for the degradation of MB, phenol and salicylic acid. - Abstract: Nano Ag@AgBr decorated on the surface of flower-like Bi{sub 2}WO{sub 6} (hereafter designated Ag@AgBr/Bi{sub 2}WO{sub 6}) were prepared via a facile oil-in-water self-assembly method. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), etc. The characterization results indicated that nano Ag@AgBr was observed to be evenly dispersed on the surface of Bi{sub 2}WO{sub 6}, and was approximately 20 nm in size. Ag@AgBr/Bi{sub 2}WO{sub 6} composites exhibited excellent UV–vis absorption, due to quantum dimension effect of Ag@AgBr, the surface plasmonic resonance (SPR) of Ag nanoparticles and the special flower-like structure of Bi{sub 2}WO{sub 6}. The photoelectrochemical measurement verified that the suitable band potential of Ag@AgBr and Bi{sub 2}WO{sub 6} and the existence of metal Ag resulted in the high efficiency in charge separation of the composite. The photocatalytic activities of the Ag@AgBr/Bi{sub 2}WO{sub 6} samples were examined under visible-light irradiation for the degradation of methylene blue (MB). The composite presented excellent photocatalytic activity due to the synergetic effect of Bi{sub 2}WO{sub 6}, AgBr, and Ag nanoparticles. The Ag@AgBr(20 wt.%)/Bi{sub 2}WO{sub 6} sample exhibited the best photocatalytic activity, degrading 95.03% MB after irradiation for 2 h, which was respectively 1.29 times and 1.28 times higher than that of Ag@AgBr and Bi{sub 2}WO{sub 6} photocatalyst. Meanwhile, phenol and salicylic acid were degraded to further prove the degradation ability of Ag@AgBr/Bi{sub 2

  8. Optical and structural properties of TiO2/Ti/Ag/TiO2 and TiO2/ITO/Ag/ITO/TiO2 metal-dielectric multilayers by RF magnetron sputtering for display application

    International Nuclear Information System (INIS)

    Lee, Jang-Hoon; Lee, Seung-Hyu; Hwangbo, Chang-Kwon; Lee, Kwang-Su

    2004-01-01

    Electromagnetic-interference (EMI) shielding and near-infrared (NIR) cutoff filters for plasma display panels, based on fundamental structures (ITO/Ag/ITO), (TiO 2 /Ti/Ag/TiO 2 ) and (TiO 2 /ITO/Ag/ITO/TiO 2 ), were designed and prepared by RF-magnetron sputtering. The optical, structural and electrical properties of the filters were investigated by using spectrophotometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy, atomic force microscopy and four-point-probe measurements. The results show that ITO films as the barriers and base layers lead to higher transmittance in the visible spectrum and smoother surface roughness than Ti metal barriers, while maintaining high NIR cutoff characteristics and chemical stability, which may be attributed to the lower absorption in the interfacial layers and better protection of the Ag layers by the ITO layers.

  9. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

    Science.gov (United States)

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-12-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

  10. Facile synthesis, structure, and properties of Ag{sub 2}S/Ag heteronanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, S. I., E-mail: sadovnikov@ihim.uran.ru; Gusev, A. I. [Ural Branch of the Russian Academy of Sciences, Institute of Solid State Chemistry (Russian Federation)

    2016-09-15

    Ag{sub 2}S/Ag heteronanostructure has been produced by a simple one-stage chemical deposition from aqueous solutions of silver nitrate, sodium sulfide, and sodium citrate with the use of monochromatic light irradiation. For simultaneous synthesis of Ag{sub 2}S and Ag nanoparticles, deposition has been performed from reaction mixtures with reduced sodium sulfide concentration. The size of Ag{sub 2}S and Ag nanoparticles is 45–50 and 15–20 nm, respectively. It is established that in the contact layer between silver sulfide and silver, nonconducting α-Ag{sub 2}S acanthite transforms into superionic β-Ag{sub 2}S argentite under the action of external electric field. The scheme of the operation of a resistive switch based on an Ag{sub 2}S/Ag heteronanostructure is proposed. The UV–Vis optical absorption spectra of colloidal solutions of Ag{sub 2}S/Ag heteronanostructures have been studied.Graphical Abstract.

  11. Continuous Synthesis of Ag/TiO2 Nanoparticles with Enhanced Photocatalytic Activity by Pulsed Laser Ablation

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2017-01-01

    Full Text Available A facile and environmental friendly synthesis strategy based on pulsed laser ablation has been developed for potential mass production of Ag-loaded TiO2 (Ag/TiO2 nanoparticles. By sequentially irradiating titanium and silver target substrates, respectively, with the same 1064 nm 100 ns fiber laser, Ag/TiO2 particles can be fabricated. A postannealing process leads to the crystallization of TiO2 to anatase phase with high photocatalytic activity. The phase composition, microstructure, and surface state of the elaborated Ag/TiO2 are characterized by X-ray diffraction (XRD, energy dispersive X-ray (EDX, field emission scanning electron microscope (FESEM, transmission electron microscope (TEM, and X-ray photoelectron spectroscopy (XPS techniques. The results suggest that the presence of silver clusters deposited on the surface of TiO2 nanoparticles. The nanostructure is formed through laser interaction with materials. Photocatalytic activity evaluation shows that silver clusters could significantly enhance the photocatalytic activity of TiO2 in degradation of methylene blue (MB under UV light irradiation, which is attributed to the efficient electron traps by Ag clusters. Our developed Ag/TiO2 nanoparticles synthesized via a straightforward, continuous, and green pathway could have great potential applications in photocatalysis.

  12. Ag-Modified In2O3 Nanoparticles for Highly Sensitive and Selective Ethanol Alarming

    Directory of Open Access Journals (Sweden)

    Jinxiao Wang

    2017-09-01

    Full Text Available Pure In2O3 nanoparticles are prepared by a facile precipitation method and are further modified by Ag. The synthesized samples are characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Raman and UV-Vis spectra. The results show the successful heterojunction formation between Ag and In2O3. Gas sensing property measurements show that the 5 mol % Ag-modified In2O3 sensor has the response of 67 to 50 ppm ethanol, and fast response and recovery time of 22.3 and 11.7 s. The response is over one magnitude higher than that of pure In2O3, which can be attributed to the enhanced catalytic activity of Ag-modified In2O3 as compared with the pure one. The mechanism of the gas sensor can be explained by the spillover effect of Ag, which enhances the oxygen adsorption onto the surface of In2O3 and thus give rise to the higher activity and larger surface barrier height.

  13. Photocatalytic properties of porous TiO2/Ag thin films

    International Nuclear Information System (INIS)

    Chang, C.-C.; Chen, J.-Y.; Hsu, T.-L.; Lin, C.-K.; Chan, C.-C.

    2008-01-01

    In this study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO 2 /Ag thin films were prepared after calcination at a temperature of 500 deg. C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO 2 films. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. When PS spheres of different sizes were introduced after calcination, the as-prepared TiO 2 films exhibited different porous structures. XRD results showed that all TiO 2 /Ag films exhibited a major anatase phase. The photodegradation of porous TiO 2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure

  14. Oligodeoxynucleotides containing 2'-amino-LNA nucleotides as constrained morpholino phosphoramidate and phosphorodiamidate monomers

    DEFF Research Database (Denmark)

    Kristensen, Kim Vejlegaard; Paul, Sibasish; Kosbar, Tamer

    2017-01-01

    Incorporation in a 2'→5' direction of a phosphorodiamidite 2'-amino-LNA-T nucleotide as the morpholino phosphoramidate and N,N-dimethylamino phosphorodiamidate monomers into six oligonucleotides is reported. Thermal denaturation studies showed that the novel 2'-amino-LNA-based morpholino monomers...

  15. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    Science.gov (United States)

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-01

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm - 2 and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  16. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    International Nuclear Information System (INIS)

    Yu Binyu; Guo Qiuquan; Yang Jun; Leung, Kar Man; Lau, Woon Ming

    2011-01-01

    TiO 2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO 2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO 2 and Ag-TiO 2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO 2 and TiO 2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO 2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag 0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm -2 and in the dark respectively. The synthesized Ag-TiO 2 thin films showed enhanced bactericidal activities compared to the neat TiO 2 nanofilm both in the dark and under UV illumination.

  17. Quantum Dot Sensitized Solar Cells Based on TiO2/AgInS2

    Science.gov (United States)

    Pawar, Sachin A.; Jeong, Jae Pil; Patil, Dipali S.; More, Vivek M.; Lee, Rochelle S.; Shin, Jae Cheol; Choi, Won Jun

    2018-05-01

    Quantum dot heterojunctions with type-II band alignment can efficiently separate photogenerated electron-hole pairs and, hence, are useful for solar cell studies. In this study, a quantum dot sensitized solar cell (QDSSC) made of TiO2/AgInS2 is achieved to boost the photoconversion efficiency for the TiO2-based system by varying the AgInS2 layer's thickness. The TiO2 nanorods array film is prepared by using a simple hydrothermal technique. The formation of a AgInS2 QD-sensitized TiO2-nanorod photoelectrode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The effect of the QD layer on the performance of the solar cell is studied by varying the SILAR cycles of the QD coating. The synthesized electrode materials are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy and solar cell performances. The results indicate that the nanocrystals have effectively covered the outer surfaces of the TiO2 nanorods. The interfacial structure of quantum dots (QDs)/TiO2 is also investigated, and the growth interface is verified. A careful comparison between TiO2/AgInS2 sensitized cells reveals that the trasfer of electrons and hole proceeds efficiently, the recombination is suppressed for the optimum thickness of the QD layer and light from the entire visible spectrum is utilised. Under AM 1.5G illumination, a high photocurrent of 1.36 mAcm-2 with an improved power conversion efficiency of 0.48% is obtained. The solar cell properties of our photoanodes suggest that the TiO2 nanorod array films co-sensitized by AgInS2 nanoclusters have potential applications in solar cells.

  18. Critical current anisotropy in Ag/(Pb,Bi){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} multifilamentary tapes: influence of self-magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Majoros, M [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava (Slovakia); Glowacki, B A [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom); Campbell, A M [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom)

    2001-06-01

    Two factors affect critical current anisotropy in multifilamentary Ag/(Pb,Bi){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} tapes - the intrinsic material anisotropy and the geometry. Experimental results on the magnetic field dependence and anisotropy of the critical current in a multifilamentary Ag/(Pb,Bi){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} tape after correction for self-magnetic field effects were found to fit the anisotropic Kim relation. Based on this relation a finite-element-method numerical code for solving the nonlinear Poisson equation for vector magnetic potential was adopted. It allowed the experimental data to be reproduced by back calculation and made possible the study of the interplay of self and external magnetic fields in different cases with well defined physical parameters of the material. The model was used to analyse the distribution of the critical current in individual filaments as well as to evaluate the influence of their geometrical arrangements on the critical current of the tape. The self-field critical current of an individual filament 'extracted' from the tape was compared with the critical current of the overall tape. The effect of the self-magnetic field on critical current distribution obtained by the cutting method was determined. The critical currents of the tapes with different cross sections were calculated and compared with experiments and the influence of the self-field was analysed. The anisotropic properties of a low anisotropy architecture of a multifilamentary Ag/(Pb,Bi){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} conductor were studied. The dependence of critical currents (normalized to self-field critical currents) on external magnetic field corrected for the self-field was found to follow nearly the same curves as those for tapes with different critical current densities (in the range 20-70 kA cm{sup -2} in a self-field), which makes the numerical model applicable to different tapes. (author)

  19. Ag K- and L3-edge XAFS study on Ag species in Ag/Ga2O3 photocatalysts

    International Nuclear Information System (INIS)

    Yamamoto, M; Yamamoto, N; Yoshida, T; Nomoto, T; Yamamoto, A; Yoshida, H; Yagi, S

    2016-01-01

    Ag loaded Ga 2 O 3 (Ag/Ga 2 O 3 ) shows photocatalytic activity for reduction of CO 2 with water. Ag L 3 -edge XANES and K-edge EXAFS spectra were measured for various Ag/Ga 2 O 3 samples, which suggested that structural and chemical states of Ag species varied with the loading amount of Ag and the preparation method. The Ag species were metallic Ag particles with an AgGaO 2 -like interface structure in the sample with high loading amount of Ag while predominantly Ag metal clusters in the sample with low loading amount of Ag. The XANES feature just above the edge represented the interaction between the Ag species and the Ga 2 O 3 surface, showing that the Ag metal clusters had more electrons in the d -orbitals by interacting with the Ga 2 O 3 surface, which would contribute the high photocatalytic activity. (paper)

  20. Thermoelectric properties of p-type Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2}

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kyunghan [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Center for Nanoparticle Research, Institute for Basic Science, (IBS), Seoul 151-742 (Korea, Republic of); Kong, Huijun; Uher, Ctirad [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Kanatzidis, Mercouri G., E-mail: m-kanatzidis@northwestern.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States)

    2016-10-15

    The thermoelectric properties of Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} (4≤m≤16, −0.1≤x≤0.3, 1/3≤y≤2/3, 0.2≤z≤0.4; Lead Antimony Silver Tellurium Tin, LASTT-m) compositions were investigated in the temperature range of 300 to ~670 K. All samples crystallize in the average NaCl-type structure without any noticeable second phase and exhibit very narrow bandgaps of <0.1 eV. We studied a range of m values, silver concentrations (x), Pb/Sn ratios (y), and antimony concentrations (z) to determine their effects on the thermoelectric properties. The samples were investigated as melt grown polycrystalline ingots. Varying the Ag contents, the Pb/Sn ratios, and the Sb contents off-stoichiometry allowed us to control the electrical conductivity, the Seebeck coefficient, and the thermal conductivity. The electrical conductivity tends to decrease with decreasing m values. The highest ZT of ~1.1 was achieved at ~660 K for Ag{sub 0.9}Pb{sub 5}Sn{sub 5}Sb{sub 0.8}Te{sub 12} mainly due to the very low lattice thermal conductivity of ~0.4 W/(m K) around 660 K. Also, samples with charge-balanced stoichiometries, Ag(Pb{sub 1−y}Sn{sub y}){sub m}SbTe{sub m+2}, were studied and found to exhibit a lower power factor and higher lattice thermal conductivity than the Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} compositions. - Graphical abstract: The Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} system defines a complex and flexible class of tunable thermoelectric class of materials with high performance.

  1. Enhanced photocatalytic activity of Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinjuan, E-mail: lxj669635@126.com [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Junying [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Chu, Haipeng [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Li, Jinliang; Yu, Wei [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Zhu, Guang [Anhui Key Laboratory of Spin Electron and Nanomaterials, Suzhou University, Suzhou 234000 (China); Niu, Lengyuan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Sun, Zhuo [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Sun, Chang Q. [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-08-30

    Graphical abstract: Bi{sub 2}O{sub 3}–Ag{sub 2}O composites were fabricated for visible light photocatalytic degradation of phenol with a high degradation rate of 92% for 60 min. - Highlights: • Bi{sub 2}O{sub 3}–Ag{sub 2}O composites were synthesized via a co-precipitation method. • The photocatalytic activity for the degradation of phenol is investigated. • A high degradation rate of 92% for 60 min is achieved under visible light irradiation. - Abstract: Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts were successfully synthesized via a co-precipitation method. The morphology, structure and photocatalytic performance in the degradation of phenol were characterized by using scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, electrochemical impedance spectra and UV–vis absorption spectroscopy, respectively. The results show that Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts exhibit enhanced photocatalytic performance in the degradation of phenol with a maximum degradation rate of 92% for 60 min under visible light irradiation compared with pure Bi{sub 2}O{sub 3} (57%), which is ascribed to the increase in light adsorption and the reduction in electron–hole pair recombination with the introduction of Ag{sub 2}O.

  2. The composite structure of mixed τ-(Ag, Cu)xV2O5 bronzes—Evidence for T dependant guest-species ordering and mobility

    Science.gov (United States)

    Hermes, Wilfred; Dollé, Mickaël; Rozier, Patrick; Lidin, Sven

    2013-03-01

    The complex structural behavior of τ-[AgCu]˜0.92V4O10 has been elucidated by single crystal X-ray diffraction and thermal analysis. The τ-phase region is apparently composed of several distinct phases and this study identifies at least three: τ1rt, τ2rt and τlt. τ1rt and τ2rt have slightly different compositions and crystal habits. Both phases transform to τlt at low temperature. The room temperature modification τ1rt crystallizes in an incommensurately modulated structure with monoclinic symmetry C2(0β1/2) [equivalent to no 5.4, B2(01/2γ) in the Intnl. Tables for Crystallography, Volume C] and the cell parameters a=11.757(4) Å, b=3.6942(5) Å c=9.463(2) Å β=114.62(2)° and the q-vector (0 0.92 1/2), but it is more convenient to transform this to a setting with a non-standard centering X=(1/2 1/2 0 0; 0 0 1/2 1/2; 1/2 1/2 1/2 1/2;) and an axial q vector (0 0.92 0). The structure features a vanadate host lattice with Cu and Ag guests forming an incommensurate composite. The structural data indicates perfect Ag/Cu ordering. At low temperature this modification is replaced by a triclinic phase characterized by two independent q-vectors. The τ2rt phase is similar to the low temperature modification τlt but the satellite reflections are generally more diffuse.

  3. Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions

    International Nuclear Information System (INIS)

    Chang, C.-C.; Lin, C.-K.; Chan, C.-C.; Hsu, C.-S.; Chen, C.-Y.

    2006-01-01

    In the present study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin coating technique. While, by introducing polystyrene (PS) microspheres, porous TiO 2 /Ag films were obtained after calcining at a temperature of 500 o C. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. After 500 o C calcination, the microstructure of PS-TiO 2 film without Ag addition exhibited a sponge-like microstructure while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Meanwhile, coalescence of nanocrystalline anatase-phase TiO 2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO 2 doped with 1 mol% Ag exhibited the best photocatalytic efficiency where 72% methylene blue can be decomposed after UV exposure for 12 h

  4. The negative temperature coefficient resistivities of Ag2S-Ag core–shell structures

    International Nuclear Information System (INIS)

    Yu, Mingming; Liu, Dongzhi; Li, Wei; Zhou, Xueqin

    2014-01-01

    In this paper, the conductivity of silver nanoparticle films protected by 3-mercaptopropionic acid (Ag/MPA) has been investigated. When the nanoparticles were annealed in air at 200 °C, they converted to stable Ag 2 S-Ag core–shell structures. The mechanism for the formation of the Ag 2 S-Ag core–shell structures along with the compositional changes and the microstructural evolution of the Ag/MPA nanoparticles during the annealing process are discussed. It is proposed that the Ag 2 S-Ag core–shell structure was formed through a solid-state reduction reaction, in which the Ag + ions coming from Ag 2 S were reduced by sulfonate species and sulfur ions. The final Ag 2 S-Ag films display an exponentially decreased resistivity with increasing temperature from 25 to 170 °C. The negative temperature coefficient resistivity of Ag 2 S-Ag films can be adjusted by changing the S/Ag molar ratio used for the synthesis of the Ag/MPA nanoparticles, paving the way for the preparation of negative temperature-coefficient thermistors via printing technology for use in the electronics.

  5. Ag doped (Bi1.6Pb0.4Sr2CaCu2O8+δ textured rods

    Directory of Open Access Journals (Sweden)

    Díez, J. C.

    2008-06-01

    Full Text Available In this work, superconducting samples of (Bi1.6Pb0.4Sr2CaCu2O8+δ with Ag additions have been studied. (Bi1.6Pb0.4Sr2CaCu2O8+δ + x wt.% Ag (with x = 0, 1 and 3 powders were synthesized using a sol-gel method. The obtained powders were used as precursors to fabricate long textured cylindrical bars through a floating zone melting method. A drastic change on the microstructure has been found when comparing with undoped Bi2Sr2CaCu2O8+δ samples. The results showed that electrical resistivity at room temperature, critical current as well as flexural strength are improved when Ag is added to these Pb doped samples, while critical temperature does not change. On the other hand, it has been found that samples with composition (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag shown E-I curves with very high sharpness values on the zone of the superconducting to normal transition, reaching n-values (E∼In as high as 45 at 65K.Se han preparado polvos cerámicos de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + x % Ag en peso (con x = 0, 1 y 3 mediante un proceso sol-gel. Estos polvos se han utilizado para fabricar precursores que se texturaron por medio del método de fusión zonal flotante. Se ha encontrado un gran cambio en la microestructura cuando se compara con muestras de composición pura Bi2Sr2CaCu2O8+δ. Tanto la resistividad eléctrica a temperatura ambiente, como la corriente crítica, así como la resistencia a flexión se mejoran cuando la Ag se adiciona a estas muestras dopadas con Pb, mientras que no se observa cambio en la temperatura crítica. Por otra parte, se ha encontrado que las muestras de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag presentan una gran pendiente de la curva E-I en la zona de transición entre el estado superconductor y el estado normal. Con estas composiciones, se han encontrado valores de n (E∼In de hasta 45 a 65K.

  6. Analysis of nanostructuring in high figure-of-merit Ag{sub 1-x}Pb{sub m}SbTe{sub 2+m} thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Bruce A; Harringa, Joel L [Materials and Engineering Physics Program, Ames Laboratory, Iowa State University Ames, IA (United States); Kramer, Matthew J [Materials Science and Engineering, Iowa State University Ames, IA (United States); Han, Mi-Kyung [Department of Chemistry, Northwestern University Evanston, IL (United States); Chung, Duck-Young [Material Science Division, Argonne National Laboratory, IL (United States); Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University Evanston, IL (United States); Material Science Division, Argonne National Laboratory, IL (United States)

    2009-04-23

    Thermoelectric materials based on quaternary compounds Ag{sub 1-x}Pb{sub m}SbTe{sub 2+m} exhibit high dimensionless figure-of-merit values, ranging from 1.5 to 1.7 at 700 K. The primary factor contributing to the high figure of merit is a low lattice thermal conductivity, achieved through nanostructuring during melt solidification. As a consequence of nucleation and growth of a second phase, coherent nanoscale inclusions form throughout the material, which are believed to result in scattering of acoustic phonons while causing only minimal scattering of charge carriers. Here, characterization of the nanosized inclusions in Ag{sub 0.53}Pb{sub 18}Sb{sub 1.2}Te{sub 20} that shows a strong tendency for crystallographic orientation along the {l_brace}001{r_brace} planes, with a high degree of lattice strain at the interface, consistent with a coherent interfacial boundary is reported. The inclusions are enriched in Ag relative to the matrix, and seem to adopt a cubic, 96 atom per unit cell Ag{sub 2}Te phase based on the Ti{sub 2}Ni type structure. In-situ high-temperature synchrotron radiation diffraction studies indicated that the inclusions remain thermally stable to at least 800 K. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Battery Relevant Electrochemistry of Ag7Fe3(P2O7)4 : Contrasting Contributions from the Redox Chemistries of Ag+ and Fe3+

    International Nuclear Information System (INIS)

    Zhang, Yiman; Marschilok, Amy C.; Stony Brook University, NY; Takeuchi, Esther S.

    2016-01-01

    Ag 7 Fe 3 (P 2 O 7 ) 4 is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag + ) forms metallic silver nanoparticles external to the crystals of Ag 7 Fe 3 (P 2 O 7 ) 4 via an electrochemical reduction displacement reaction, while the other cation (Fe +3 ) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag 7 Fe 3 (P 2 O 7 ) 4 is employed as cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this article, a bimetallic pyrophosphate material Ag 7 Fe 3 (P 2 O 7 ) 4 is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag 7 Fe 3 (P 2 O 7 ) 4 is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge–charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag 7 Fe 3 (P 2 O 7 ) 4 . Ag 7 Fe 3 (P 2 O 7 ) 4 exhibits good reversibility at the iron centers indicated by ~80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by ~70% capacity retention upon a 4-fold increase in current.

  8. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting

    2011-05-03

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.

  9. Precipitation of Ag{sub 2}Te in the thermoelectric material AgSbTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sugar, Joshua D. [Materials Physics Department, Sandia National Laboratories, Livermore, CA (United States)], E-mail: jdsugar@sandia.gov; Medlin, Douglas L. [Materials Physics Department, Sandia National Laboratories, Livermore, CA (United States)

    2009-06-10

    The microstructure of AgSbTe{sub 2}, prepared by solidification, is investigated using electron microscopy. During solidification and thermal treatment, the material separates into a two-phase mixture of a rocksalt phase, which is Ag{sub 22}Sb{sub 28}Te{sub 50}, and silver telluride, Ag{sub 2}Te. Ag{sub 2}Te formation results either from eutectic solidification (large lamellar structures), or by solid-state precipitation (fine-scale particles). The crystal structure of the AgSbTe{sub 2} phase determined by electron diffraction is consistent with a rocksalt structure that has a disordered cation sublattice. A preferred crystallographic orientation relationship at the interface between the matrix and the low-temperature monoclinic Ag{sub 2}Te phase is defined and discussed. This orientation relationship is observed for both second-phase morphologies. In both cases, the orientation relationship originates from a topotactic (cube-on-cube) alignment of the Te sublattices in the initially cubic Ag{sub 2}Te and the matrix at elevated temperature. This Te sublattice alignment is retained as the Ag{sub 2}Te undergoes a cubic-to-monoclinic transformation during cooling. This orientation relationship is observed for both second-phase morphologies.

  10. Synthesis and characterization of Ag doped TiO{sub 2} heterojunction films and their photocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Demirci, Selim, E-mail: selim.demirci@marmara.edu.tr [Marmara University, Department of Metallurgical and Materials Engineering, Kadiköy, 34722 Istanbul (Turkey); Dikici, Tuncay [Izmir Katip Celebi University, Department of Materials Science and Engineering, Cigli, 35620 Izmir (Turkey); Yurddaskal, Metin [Department of Metallurgical and Materials Engineering, Dokuz Eylul University, 35390 Izmir (Turkey); Center for Fabrication and Application of Electronic Materials, Dokuz Eylul University, 35390 Izmir (Turkey); Gultekin, Serdar [Department of Nanoscience and Nanoengineering, Dokuz Eylul University, 35390 İzmir (Turkey); Experimental Science Applications and Research Center, Celal Bayar University, 45140 Manisa (Turkey); Toparli, Mustafa; Celik, Erdal [Department of Metallurgical and Materials Engineering, Dokuz Eylul University, 35390 Izmir (Turkey); Department of Nanoscience and Nanoengineering, Dokuz Eylul University, 35390 İzmir (Turkey); Center for Fabrication and Application of Electronic Materials, Dokuz Eylul University, 35390 Izmir (Turkey)

    2016-12-30

    Highlights: • Ag doped TiO{sub 2} films were successfully synthesized by sol–gel spin coating method. • Ag in TiO{sub 2} lattice enters in intermediate states to decrease TiO{sub 2} bandgap energy. • Ag dopants increase the photoactivity and superhydrophilicity. • The degradation kinetics of methylene blue was studied. • The 0.7 mol% of Ag was found to be the optimum concentration. - Abstract: In this study, undoped and silver (Ag) doped titanium dioxide (TiO{sub 2}) films were successfully synthesized by sol-gel spin coating technique on the Si substrates. Photocatalytic activities of the TiO{sub 2} films with different Ag content were investigated for the degradation of methylene blue (MB) under UV light irradiation. The crystal phase structure, surface morphology, chemical and optical properties of Ag-doped TiO{sub 2} films were characterized using an X-ray diffractometer (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis spectrophotometer, and FTIR spectrophotometer. The results showed that the Ag-doped TiO{sub 2} films calcined at 500 °C had the crystalline anatase phases and the surface morphologies with some cracks. Ag substitution into TiO{sub 2} matrix enhanced the photocatalytic activity of TiO{sub 2} films under UV light irradiation as compared to the undoped TiO{sub 2} film. Furthermore, the results indicated that the 0.7% Ag doped TiO{sub 2} film exhibited a superior photocatalytic activity than that of undoped and other Ag-doped TiO{sub 2} films. This study demonstrated the potential of an application of Ag doped films to efficiently treat dissolved organic contaminants in water.

  11. Photoreduction of Ag{sup +} in Ag/Ag{sub 2}S/Au memristor

    Energy Technology Data Exchange (ETDEWEB)

    Mou, N.I.; Tabib-Azar, M., E-mail: azar.m@utah.edu

    2015-06-15

    Highlights: • The effect of illumination on the operating voltages and switching speed of Ag/Ag{sub 2}S/Au memristors is studied • Illumination decreased the average switching time from high to low resistance states by ∼19% and decreased the turn-off voltages dramatically from −0.8 V to −0.25 V. • Photo-induced reduction of silver in Ag{sub 2}S may be used in three dimensional optical memories that can be electronically read and reset. • Illumination changed sulfur's valency and modified its oxidation/reduction potential. - Abstract: Silver halides and chalcogenides are excellent memristor materials that have been extensively used in the past as photosensitive layers in photography. Here we examine the effect of illumination on the operating voltages and switching speed of Ag/Ag{sub 2}S/Au memristors using a green laser (473–523 nm). Our results indicate that illumination decreases the average switching time from high to low resistance states by ∼19% and decreases the turn-off voltages dramatically from −0.8 V to −0.25 V that we attribute to the change in sulfur valency and a photo-induced change in its oxidation/reduction potential. Photo-induced reduction of silver in Ag{sub 2}S may be used in three dimensional optical memories that can be electronically read and reset.

  12. Synthesis and Characterization of Highly Sensitive Hydrogen (H2 Sensing Device Based on Ag Doped SnO2 Nanospheres

    Directory of Open Access Journals (Sweden)

    Zhaorui Lu

    2018-03-01

    Full Text Available In this paper, pure and Ag-doped SnO2 nanospheres were synthesized by hydrothermal method and characterized via X-ray powder diffraction (XRD, field emission scanning electron microscopy (FESEM, energy dispersive spectroscopy (EDS, and X-ray photoelectron spectra (XPS, respectively. The gas sensing performance of the pure, 1 at.%, 3 at.%, and 5 at.% Ag-doped SnO2 sensing devices toward hydrogen (H2 were systematically evaluated. The results indicated that compared with pure SnO2 nanospheres, Ag-doped SnO2 nanospheres could not only decrease the optimum working temperature but also significantly improve H2 sensing such as higher gas response and faster response-recovery. Among all the samples, the 3 at.% Ag-doped SnO2 showed the highest response 39 to 100 μL/L H2 at 300 °C. Moreover, its gas sensing mechanism was discussed, and the results will provide reference and theoretical guidance for the development of high-performance SnO2-based H2 sensing devices.

  13. Effect of Pb and Ag additions on electrical properties Bi2Sr2Ca2Cu3Ox superconductive ceramics

    International Nuclear Information System (INIS)

    Reddi, B.V.; Uskov, E.M.

    1990-01-01

    The influence of Pb and Ag additions on the electrical properties of Bi 2 Sr 2 Ca 2 Cu 3 O x superconducting ceramics has been studied by Hall method. It was found that the Pb additions has more influence on the sample characteristics than Ag. It was found, that Hall EMF at 77 K equal to zero in the samples having some residue resistance

  14. In situ x-ray diffraction study on AgI nanowire arrays

    International Nuclear Information System (INIS)

    Wang Yinhai; Ye Changhui; Wang Guozhong; Zhang Lide; Liu Yanmei; Zhao Zhongyan

    2003-01-01

    The AgI nanowire arrays were prepared in the ordered porous alumina membrane by an electrochemical method. Transmission electron microscopy observation shows that the AgI nanowires are located in the channels of the alumina membrane. In situ x-ray diffractions show that the nanowire arrays possess hexagonal close-packed structure (β-AgI) at 293 K, orienting along the (002) plane, whereas at 473 K, the nanowire arrays possess a body-centered cubic structure (α-AgI), orienting along the (110) plane. The AgI nanowire arrays exhibit a negative thermal expansion property from 293 to 433 K, and a higher transition temperature from the β to α phase. We ascribe the negative thermal expansion behavior to the phase transition from the β to α phase, and the elevated transition temperature to the radial restriction by the channels of alumina membrane

  15. Fabrication of TiO{sub 2}/Ag{sub 2}O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bingkun, E-mail: liubk2015@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Mu, Lilong; Han, Bing [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Zhang, Jingtao [School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Shi, Hengzhen, E-mail: shihz@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China)

    2017-02-28

    Highlights: • TiO{sub 2}/Ag{sub 2}O composite photocatalyst was synthesized successfully. • The composites show better photocatalytic activity for MB under visible light. • The composites also possess good antibacterial properties. • The mechanism of enhanced photocatalytic activities was investigated. - Abstract: TiO{sub 2}/Ag{sub 2}O heterostructure prepared by a facile in situ precipitation route was used as an effective visible light-driven photocatalyst for degradation of methylene blue (MB) and inactivation of E. coli. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed that Ag{sub 2}O nanoparticles were well distributed on the surface of TiO{sub 2} microspheres. The TiO{sub 2}/Ag{sub 2}O composite with optimal mass ratio of TiO{sub 2} and Ag{sub 2}O displayed extremely good photodegradation ability and antibacterial capability under visible light irradiation, which was mainly ascribed to the synergistic effect between Ag{sub 2}O and TiO{sub 2,} including highly dispersed smaller Ag{sub 2}O particles, increased visible light absorption and efficient separation of photo-induced charge carriers. Meanwhile, the roles of the radical species in the photocatalysis process were investigated. Our results showed that the TiO{sub 2}/Ag{sub 2}O could be used as a dual functional material in water treatment of removing the organic pollutant and killing the bacterium at the same time.

  16. Particle growth mechanisms in Ag-ZrO2 and Au-ZrO2 granular films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Konstantinovic, Zorica; Muro, Montserrat Garcia del; Varela, Manuel; Batlle, Xavier; Labarta, AmIlcar

    2006-01-01

    Thin films consisting of Ag and Au nanoparticles embedded in amorphous ZrO 2 matrix were grown by pulsed laser deposition in a wide range of metal volume concentrations in the dielectric regime (0.08 Ag Au c (Ag)∼0.28 and x c (Au)∼0.52)

  17. Ultrafine Ag/MnO{sub x} nanowire-constructed hair-like nanoarchitecture: In situ synthesis, formation mechanism and its supercapacitive property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yonghe; Wang, Zhenyu; Zhang, Yuefei, E-mail: yfzhang@bjut.edu.cn

    2015-09-25

    Graphical abstract: In this work, novel hair-like (HL) nanoarchitectures constructed by ultrafine MnO{sub x} nanowires (∼7 nm) entrapped with Ag nanoparticle were first synthesized by facile in situ reaction between Ag nanowires and KMnO{sub 4}, and a following hydrothermal method. The as-prepared HL Ag/MnO{sub x} nanocomposites as electrode delivered a high specific capacitance and good cycle stability. - Highlights: • Ultrafine MnO{sub x} nanowires with Ag nanoparticle dispersed on were in situ prepared. • Kirkendall effect and Ostwald ripening mechanism ascribed to developed morphology. • Desirable specific capacitance and cyclability made it candidate for supercapacitors. - Abstract: Hair-like (HL) nanoarchitectures constructed by ultrafine MnO{sub x} nanowires (∼7 nm) with ultrafine Ag nanoparticles anchored on were synthesized by in situ facile reaction between silver (Ag) nanowires and potassium permanganate (KMnO{sub 4}), and followed by a following hydrothermal method. Based on a serious of time-dependent experiments, an orderly merged Kirkendall effect and dissolution-recrystallization (Ostwald ripening) mechanism were proposed for the formation of this novel morphology. The as-prepared HL Ag/MnO{sub x} nanocomposites as electrode exhibited a high specific capacitance (526 Fg{sup −1} at scan rate of 5 mV s{sup −1} and 450 Fg{sup −1} at current density of 0.1 Ag{sup −1}), good rate capability (ca. 45.5% retention with reference to 205 Fg{sup −1} at 50 times higher current density of 5 Ag{sup −1}) and desirable cycle stability (ranging from initial of 237 Fg{sup −1} to 185 Fg{sup −1} after 800 cycles and still maintaining 87% retention compared to 800th cycle after another 2800 cycles at current density of 2 Ag{sup −1}). Such desirable performance could be attributed to HL Ag/MnO{sub x} nanocomposites core (tubular nanosheets) with uniform dispersion of the ultrafine Ag nanoparticals provides a direct pathway for electron

  18. AgBr and g-C{sub 3}N{sub 4} co-modified Ag{sub 2}CO{sub 3} photocatalyst: A novel multi-heterostructured photocatalyst with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hua, E-mail: tanghua@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China); Chang, Shufang [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China); Tang, Guogang [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China); School of Chemistry and Materials Engineering, Zhenjiang College, Zhenjiang, Jiangsu Province 212003 (China); Liang, Wei [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China)

    2017-01-01

    Highlights: • Novel g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr nanocomposites were prepared by a facile method. • g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr-6% has superior activity in degradation of dyes. • The synergetic effect of g-C{sub 3}N{sub 4} and AgBr was the origin of the higher performance. • The photocatalytic mechanism of the g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr was proposed. - Abstract: Novel and highly efficient visible-light-driven g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr multi-heterostructured photocatalysts are achieved from the surface modification of g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3} with AgBr nanoparticles by a facile and efficient ion-exchange method. The as-prepared g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scaning electron microscopy (SEM) and UV–vis diffuse reflectance spectrometry (DRS). Compared with g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}, g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr hybrids exhibit enhanced the degradation activity for typical RhB, MB, and MO dyes under visible light excitation (>420 nm). Photoluminescence (PL), photo-induced current and electrochemical impedance spectroscopy (EIS) results demonstrate the g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr heterojunctions can effectively suppress the recombination of the generated electron–hole pairs. The higher photocatalytical performance of g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr can be ascribed to the efficient separation of photogenerated electron–hole pairs due to the formation of multi-heterojunctions, in which the Ag nanoparticles acted as the charge transmission bridge. In addition, the possible transferred and separated behavior of electron–hole pairs and photocatalytic mechanisms based on the experimental results are also proposed in detail.

  19. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition

    International Nuclear Information System (INIS)

    Xie Kunpeng; Sun Lan; Wang Chenglin; Lai Yuekun; Wang Mengye; Chen Hongbo; Lin Changjian

    2010-01-01

    A pulse current deposition technique was adopted to construct highly dispersed Ag nanoparticles on TiO 2 nanotube arrays which were prepared by the electrochemical anodization. The morphology, crystallinity, elemental composition, and UV-vis absorption of Ag/TiO 2 nanotube arrays were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). In particular, the photoelectrochemical properties and photoelectrocatalytic activity under UV light irradiation and the photocatalytic activity under visible light irradiation for newly synthesized Ag/TiO 2 nanotube arrays were investigated. The maximum incident photon to charge carrier efficiency (IPCE) value of Ag/TiO 2 nanotube arrays was 51%, much higher than that of pure TiO 2 nanotube arrays. Ag/TiO 2 nanotube arrays exhibited higher photocatalytic activities than the pure TiO 2 nanotube arrays under both UV and visible light irradiation. The photoelectrocatalytic activity of Ag/TiO 2 nanotube arrays under UV light irradiation was 1.6-fold enhancement compared with pure TiO 2 nanotube arrays. This approach can be used in synthesizing various metal-loaded nanotube arrays materials.

  20. A radiation-sensitive monomer of 2,4-hexadiyn-1,6-bis(p-toluene sulphonyl urethane) in PVA as a radiochromic film dosimeter

    Science.gov (United States)

    Soliman, Yasser S.; Abdel-Fattah, A. A.; Hamed, A. A.; Bayomi, A. M. M.

    2018-03-01

    A conjugated monomer 2,4-hexadiyn-1,6-bis(p-toluene sulphonyl urethane) (HDTU) was synthesized. Thereafter, it was incorporated into polyvinyl alcohol (PVA), and coated on self-adhesive sheet, thus to prepare film dosimeters. The monomer and films were analyzed using X-ray diffraction (XRD), FTIR spectroscopy and specular reflectance colorimetry. This monomer polymerizes in the films by radiation and turns progressively blue in proportion to absorbed dose, indicating the formation of π-conjugated colored poly-HDTU. Color development was investigated at 480 nm and 610 nm for dose monitoring ranging from 10 Gy to 15 kGy. HDTU in PVA film is highly ordered and crystalline and, upon irradiation, it forms a semi-crystalline polymer with nearly the same interplanar distances as the monomer, indicating the occurrence of topochemical polymerization. During irradiation, polymerization of the monomer is nearly independent of humidity in the range of 0-53% and temperature in the range of 25-45 °C. The uncertainty of this system is 5.16% at 95% confidence level.

  1. Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R.; Zhang, Chonghong; Gou, Jie

    2015-05-16

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti3SiC2/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including x-ray diffraction, electron backscatter diffraction, energy dispersive x-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti3SiC2 within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti3SiC2 was also observed. Cs out-diffusion and release from Ti3SiC2 occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  2. Nanostructured inorganic materials: Synthesis and associated electrochemical properties

    Science.gov (United States)

    Yau, Shali Zhu

    Synthetic strategy for preparing potential battery materials at low temperature was developed. Magnetite (Fe3O4), silver hollandnite (AgxMn8O16), magnesium manganese oxide (MgxMnO 2˙yH2O), and silver vanadium phosphorous oxide (Ag 2VO2PO4) were studied. Magnetite (Fe3O4) was prepared by coprecipitation induced by triethylamine from aqueous iron(II) and iron(III) chloride solutions of varying concentrations. Variation of the iron(II) and iron(III) concentrations results in crystallite size control of the Fe3O4 products. Materials characterization of the Fe3O4 samples is reported, including Brunauer-Emmitt-Teller (BET) surface area, x-ray powder diffraction (XRD), transmission electron microscopy (TEM), particle size, and saturation magnetization results. A strong correlation between discharge capacity and voltage recovery behavior versus crystallite size was observed when tested as an electrode material in lithium electrochemical cells. Silver hollandite (AgxMn8O16) was successfully synthesized through a low temperature reflux reaction. The crystallite size and silver content of AgxMn8O16 by varying the reactant ratio of silver permanganate (AgMnO4) and manganese sulfate monohydrate (MnSO4˙H2O). Silver hollandite was characterized by Brunauer-Emmitt-Teller (BET) surface area, inductively coupled plasma-optical emission (ICP-OES) spectrometry, helium pycnometry, simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), and x-ray powder diffraction (XRD). The crystallite size showed a strong correlation with silver content, BET surface area, and particle sizes. The silver hollandite cathode showed good discharge capacity retention in 30 cycles of discharge-charge. There were a good relationship between crystallite size and rate capability and pulse ability. Magnesium manganese oxide (MgxMnO2˙yH 2O) was made by redox reaction by mixing sodium hydroxide (NaOH), manganese sulfate monohydrate (MnSO4˙HO2), and potassium persulfate (K2S2O8

  3. Antimicrobial activity and biocompatibility of Ag{sup +}- and Cu{sup 2+}-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag{sup +}- and Cu{sup 2+}-doped hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Radovanović, Željko, E-mail: zradovanovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Jokić, Bojan; Veljović, Djordje; Dimitrijević, Suzana [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Kojić, Vesna [Oncology Institute of Vojvodina, Institutski put 4, 21204 Sremska Kamenica (Serbia); Petrović, Rada; Janaćković, Djordje [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia)

    2014-07-01

    Hydroxyapatite (HAp) powders doped with Ag{sup +} or Cu{sup 2+} were synthesized by a hydrothermal method in order to obtain biomaterial with an antimicrobial effect. The synthesis was performed with two contents of dopant (Ag{sup +} or Cu{sup 2+}) by considering both the antimicrobial activities and biocompatibility of the powders. The doped HAp was annealed at 1200 °C for 2 h with the intention of investigating the influence of doping with Ag{sup +} and Cu{sup 2+} on the creation of the biphasic HAp/α-tricalcium phosphate (HAp/α-TCP) and determining the antimicrobial activity and biocompatibility of the obtained biphasic powders. Analyses of all powders, undoped and doped HAp and HAp/α-TCP, were performed by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and energy-dispersive X-ray spectroscopy (EDS). The in vitro antibacterial activities of the powders were evaluated against: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. All powders showed good antimicrobial activity but generally the powders of doped HAp/α-TCP had more uniform results against all pathogenic microorganisms than the powders of doped HAp. In vitro biocompatibility tests, MTT and DET, were used to evaluate the biocompatibility of Ag{sup +}- and Cu{sup 2+}-doped HAp/α-TCP with MRC-5 human fibroblast cells. These tests confirmed that powders do not have a cytotoxic effect. The HAp/α-TCP powders doped with the lower content of Ag{sup +} and Cu{sup 2+} showed especially good biocompatibility. Antimicrobial and biocompatibility tests recommend the Ag{sup +}- and Cu{sup 2+}-doped HAp/α-TCP as promising material for use in reconstructive surgery of bone.

  4. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers

    KAUST Repository

    Pang, Maolin

    2010-08-11

    Ag2S and Ag are important functional materials that have received considerable research interest in recent years. In this work, we develop a solution-based synthetic method to combine these two materials into hollow/solid Ag2S/Ag heterodimers at room temperature. Starting from monodisperse Cu2O solid spheres, CuS hollow spheres can be converted from Cu2O through a modified Kirkendall process, and the obtained CuS can then be used as a solid precursor for preparation of the Ag2S/Ag heterodimers through ion exchange and photo-assisted reduction. We have found that formation of the Ag2S/Ag heterodimers is instantaneous, and the size of Ag nanocrystals on the hollow spheres of Ag2S can be controlled by changing the concentration and power of reducing agents in the synthesis. The growth of Ag nanoparticles on hollow spheres of Ag2S in the dimers is along the [111] direction of the silver crystal; the light absorption properties have also been investigated. Furthermore, coupling or tripling of Ag2S/Ag heterodimers into dumbbell-like trimers ((Ag 2S)2/Ag, linear) and triangular tetramers ((Ag 2S)3/Ag, coplanar) can also be attained at 60°C by adding the bidentate ligand ethylenediamine as a cross-linking agent. To test the applicability of this highly asymmetric dipolar composite, photocatalytic inactivation of Escherichia coli K-12 in the presence of the as-prepared Ag 2S/Ag heterodimers has been carried out under UV irradiation. The added Ag2S/Ag heterodimers show good chemical stability under prolonged UV irradiation, and no appreciable solid dissolution is found. Possible mechanisms regarding the enhanced antibacterial activity have also been addressed. © 2010 American Chemical Society.

  5. Compensation effect in H 2 permeation kinetics of PdAg membranes

    KAUST Repository

    Zeng, Gaofeng

    2012-08-30

    Knowledge about the (inter)dependence of permeation kinetic parameters on the stoichiometry of H 2-selective alloys is still rudimentary, although uncovering the underlying systematic correlations will greatly facilitate current efforts into the design of novel high-performance H 2 separation membranes. Permeation measurements with carefully engineered, 2-7 μm thick supported Pd 100-xAg x membranes reveal that the activation energy and pre-exponential factor of H 2 permeation laws vary systematically with alloy composition, and both kinetic parameters are strongly correlated for x ≤ 50. We show that this permeation kinetic compensation effect corresponds well with similar correlations in the hydrogen solution thermodynamics and diffusion kinetics of PdAg alloys that govern H 2 permeation rates. This effect enables the consistent description of permeation characteristics over wide temperature and alloy stoichiometry ranges, whereas hydrogen solution thermodynamics may play a role, too, as a yet unrecognized source of kinetic compensation in, for example, H 2-involving reactions over metal catalysts or hydrogenation/ dehydrogenation of hydrogen storage materials. © 2012 American Chemical Society.

  6. Synthesis and characterization of Ag/AgBrO{sub 3} photocatalyst with high photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Limin, E-mail: songlmnk@sohu.com [College of Environment and Chemical Engineering & State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387 (China); Li, Tongtong [College of Environment and Chemical Engineering & State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387 (China); Zhang, Shujuan [College of Science, Tianjin University of Science & Technology, Tianjin, 300457 (China)

    2016-10-01

    A new Ag/AgBrO{sub 3} photocatalyst was prepared by mixing aqueous solutions of AgNO{sub 3} and NaBrO{sub 3}. The catalyst’s structure and performance were investigated with X-ray powder diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The UV–vis absorption spectrum of Ag/AgBrO{sub 3} exhibits a band gap of 3.97 eV. The results show that the Ag/AgBrO{sub 3} semiconductor can be excited by ultraviolet–visible light. The photodegradation of Rhodamine B displayed much higher photocatalytic activity than that of N-doped TiO{sub 2} under the same experimental conditions. Moreover, ·OH and ·O{sub 2}{sup −} generated in the photocatalysis played a key role of the photodegradation of Rhodamine B. - Highlights: • Ag/AgBrO{sub 3} with higher photodegradation ability was synthesized. • ·OH and ·O{sub 2}{sup −} radicals were the main active species in the oxidation of RhB. • The possible reaction mechanism was discussed in details.

  7. File list: ALL.Emb.20.AllAg.2-4h_embryos [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.2-4h_embryos dm3 All antigens Embryo 2-4h embryos SRX127437,SRX482...X372808,SRX197573,SRX183890,SRX197576,SRX661062,SRX183886 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.20.AllAg.2-4h_embryos.bed ...

  8. CO oxidation catalyzed by ag nanoparticles supported on SnO/CeO2

    KAUST Repository

    Khan, Inayatali

    2015-01-01

    Ag-Sn/CeO2 catalysts were synthesized by the co-precipitation method with different Ag-Sn wt.% loadings and were tested for the oxidation of CO. The catalysts were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED) techniques. UV-Vis measurements were carried out to elucidate the ionic states of the silver particles, and the temperature-programmed reduction (TPR) technique was employed to check the reduction temperature of the catalyst supported on CeO2. There are peaks for silver crystallites in the X-ray diffraction patterns and the presence of SnO was not well evidenced by the XRD technique due to sintering inside the 3D array channels of CeO2 during the calcination process. The Ag-Sn/CeO2 (4%) catalyst was the most efficient and exhibited 100% CO oxidation at 100 °C due to small particle size and strong electronic interaction with the SnO/CeO2 support. © 2015 Sociedade Brasileira de Química.

  9. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    Science.gov (United States)

    Hoggett, J G; Kellett, G L

    1992-10-15

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity.

  10. Optical and structural properties of TiO{sub 2}/Ti/Ag/TiO{sub 2} and TiO{sub 2}/ITO/Ag/ITO/TiO{sub 2} metal-dielectric multilayers by RF magnetron sputtering for display application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang-Hoon; Lee, Seung-Hyu; Hwangbo, Chang-Kwon [Inha University, Incheon (Korea, Republic of); Lee, Kwang-Su [Quantum Photonic Science Research Center, Hanyang University, Seoul (Korea, Republic of)

    2004-03-15

    Electromagnetic-interference (EMI) shielding and near-infrared (NIR) cutoff filters for plasma display panels, based on fundamental structures (ITO/Ag/ITO), (TiO{sub 2}/Ti/Ag/TiO{sub 2}) and (TiO{sub 2}/ITO/Ag/ITO/TiO{sub 2}), were designed and prepared by RF-magnetron sputtering. The optical, structural and electrical properties of the filters were investigated by using spectrophotometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy, atomic force microscopy and four-point-probe measurements. The results show that ITO films as the barriers and base layers lead to higher transmittance in the visible spectrum and smoother surface roughness than Ti metal barriers, while maintaining high NIR cutoff characteristics and chemical stability, which may be attributed to the lower absorption in the interfacial layers and better protection of the Ag layers by the ITO layers.

  11. Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO{sub 2} NTs

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qingyao [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Yang Xiuchun, E-mail: yangxc@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Liu Dan; Zhao Jianfu [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China)

    2012-06-25

    Graphical abstract: The TiO{sub 2} NTs were first treated with bi-functional mercaptoacetic acid linkers (HOOC-R-S). The -OH group on the surface of TiO{sub 2} NT provides a strong affinity with the carboxylate group in the linker molecules. The thiol functional group in the linker molecules facilitates the binding with Ag from AgNO{sub 3} solution. After Ag{sup +} ions were reduced by NaBH{sub 4}, Ag nanoparticles formed by nucleation and growth. Highlights: Black-Right-Pointing-Pointer Ag nanoparticles with an average diameter of 9.2 nm were filled in the TiO{sub 2} nanotubes by a successive ionic layer adsorption and reaction (SILAR) technique. Black-Right-Pointing-Pointer Bi-functional mercaptoacetic acid linkers were used to bind TiO{sub 2} nanotubes with Ag nanoparticles. Black-Right-Pointing-Pointer Ag nanoparticles modification of TiO{sub 2} NTs largely enhanced the photocatalytic degradation of methyl orange under ultraviolet light irradiation. - Abstract: Ordered anatase TiO{sub 2} nanotubes (TiO{sub 2} NTs) on Ti substrate were synthesized by electrochemical anodization and subsequently vapor-thermal treatment. Ag nanoparticles were decorated on TiO{sub 2} NTs by successive ionic layer adsorption and reaction (SILAR) technique. Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the characterization of surface morphology, phase composition, and microstructure of the original TiO{sub 2} NTs, the vapor-thermally treated TiO{sub 2} NTs and the Ag nanoparticles decorated TiO{sub 2} NTs. The results indicate that vapor-thermal treatment favors to the transformation of amorphous TiO{sub 2} into anatase phase. Increasing the SILAR cycle times favors to increase the loaded amounts of Ag nanoparticles in TiO{sub 2} NTs. Ag nanoparticles are uniformly distributed in the TiO{sub 2} NTs, and

  12. Synergetic effect of Ag{sub 2}O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Haipeng [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Xinjuan, E-mail: lxj669635@126.com [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Junying [Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Jinliang [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Wu, Tianyang; Li, Haokun; Lei, Wenyan; Xu, Yan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China)

    2016-09-15

    Graphical abstract: Ag{sub 2}O/N-TiO{sub 2} composites were synthesized via a co-precipitation method for visible light photocatalytic degradation of organic pollutions with excellent photocatalytic activity. - Highlights: • Ag{sub 2}O/N-TiO{sub 2} composites were synthesized via a facile precipitation method. • Ag{sub 2}O/N-TiO{sub 2} composites exhibited enhanced photocatalytic activity. • Ag{sub 2}O acts as co-catalyst to separate the photo-generated electron-hole pairs. - Abstract: A facile precipitation method was developed to synthesize the Ag{sub 2}O/N-TiO{sub 2} composites. Their morphology, structure and photocatalytic performance in the degradation of methylene blue (MB) and phenol under visible light irradiation were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence spectroscopy and UV–vis absorption spectroscopy, respectively. The results show that the Ag{sub 2}O/N-TiO{sub 2} composites exhibit excellent photocatalytic performance. The maximum degradation rates of MB and phenol are about 8.9 and 2.9 times that of pure N-TiO{sub 2}, respectively. The excellent photocatalytic performance is mainly ascribed to the synergetic effects of Ag{sub 2}O and N-TiO{sub 2} including the increased light absorption and the reduced electron-hole pair recombination in N-TiO{sub 2} with the presence of Ag{sub 2}O.

  13. Effect of reactive monomer on PS-b-P2VP film.

    Science.gov (United States)

    Kim, H J; Shin, D M

    2014-08-01

    Poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) lamellar film which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 52 kg/mol-b-57 kg/mol and PS-b-P2VP film with reactive monomer (RM257) were prepared for photonic gel films. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic moiety of PS-b-P2VP, were obtained by exposing the spin coated film under chloroform vapor. The lamellar films were quaternized with 5 wt% of iodomethane diluted by n-hexane. We reported about the influence of reactive monomer on those photonic gel films. Added reactive monomer photonic gel film had higher absorbance than pure photonic gel films. As a result the photonic gel film with RM had more clear color. The lamellar films were swollen by DI water, ethanol (aq) and calcium carbonate solution. The band gaps of the lamellar films were drastically shifted to longer wavelength swollen by calcium carbonate solution. And the lamellar films were shifted to shorter wave length swollen by ethanol. So each lamellar film showed different color.

  14. AgBr/MgBi2O6 heterostructured composites with highly efficient visible-light-driven photocatalytic activity

    Science.gov (United States)

    Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying

    2018-06-01

    AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.

  15. Synthesis, structure and electrochemistry of Ag-modified LiMn2O4 cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhou Wenjia; He Benlin; Li Hulin

    2008-01-01

    Spinel lithium manganese oxide was prepared by sol-gel method and a series of Ag/LiMn 2 O 4 composites with different Ag additive contents were prepared by thermal decomposition of AgNO 3 added to the pure LiMn 2 O 4 powders. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX) and various electrochemical measurement methods were used to examine the structural and electrochemical characteristics of the Ag/LiMn 2 O 4 composite powders. Phase analysis showed that Ag particles were dispersed on the surface of LiMn 2 O 4 instead of entering the spinel structure. According to the electrochemical tests results, it is clearly to see that Ag additives efficiently improved the cycling stability, reversibility and high-rate discharge capacity of pristine LiMn 2 O 4 by increasing the electrical conductivity between LiMn 2 O 4 particles, decreasing the polarization of cathode and reducing the dissolution of Mn. Meanwhile the influence of the Ag additive contents on the electrochemical properties of the Ag/LiMn 2 O 4 composites is also investigated in detail

  16. Thermal expansion behavior of empressite, AgTe: A structural study by means of in situ high-temperature single-crystal X-ray diffraction

    International Nuclear Information System (INIS)

    Bindi, Luca

    2009-01-01

    The crystal structure of empressite, AgTe, a rare silver telluride, has been investigated by in situ X-ray single-crystal diffraction methods within the temperature range 298-463 K. AgTe remains orthorhombic, space group Pmnb (Pnma as standard), and shows only normal thermal expansion over the entire temperature range. The unit-cell parameters show a gradual increase with the increase of temperature. Slight adjustments in the geometry of Ag-tetrahedra and in the crystal-chemical environment of tellurium atoms occur in a continuous way without abrupt structural changes. The coefficients of thermal expansion along various axes are: α a = 1.5 x 10 -5 K -1 , α b = 3.0 x 10 -5 K -1 , α c = 2.2 x 10 -5 K -1 , and the bulk thermal expansion coefficient α V is 5.4 x 10 -5 K -1 for the temperature range 298-463 K

  17. Structural, electronic and optical properties of AgXY{sub 2}(X = Al, Ga, In and Y = S, Se, Te)

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Saeed; Din, Haleem Ud [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 119, Université de Tlemcen, Tlemcen 13000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, Mascara 29000 (Algeria); Naeemullah [Department of Physics, G.D.C. Darra Adam Khel, F.R. Kohat, KPK (Pakistan); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2014-12-25

    Highlights: • The compounds are studied by FP-LAPW method within mBJ approximation. • All of the studied materials show isotropic behavior. • All the compounds show direct band gap nature. • Bonding nature is mostly covalent among the studied compounds. • High absorption peaks and reflectivity ensures there utility in optoelectronic devices. - Abstract: The structural, electronic and optical properties of the ternary semiconducting compounds AgXY{sub 2} (X = Al, Ga, In and Y = S, Se, Te) in Heusler and chalcopyrite crystal phases have been investigated using the density functional theory (DFT) based on the full potential linear augmented plane wave (FP-LAPW) method. The calculated lattice constant and band gap values for AgXY{sub 2} in chalcopyrite phase are in good agreement with the available experimental data. Band structure calculations are performed using modified Becke–Johnson (mBJ) method which match closely with experimental data and yield better band gaps rather than those obtained by using generalized gradient approximation (GGA) and Engel–Vosko generalized gradient approximation (EV–GGA). Decrease in band gap is observed by changing cations X and Y from the top to bottom of periodic table. Chemical bonding trends are predicted through charge density plots and quantified by Bader’s analysis. Optical properties reveal that these compounds are suitable candidates for optoelectronic devices in the visible and ultraviolet (UV) regions.

  18. Elucidating the real-time Ag nanoparticle growth on α-Ag2WO4 during electron beam irradiation: experimental evidence and theoretical insights.

    Science.gov (United States)

    Pereira, Wyllamanney da Silva; Andrés, Juan; Gracia, Lourdes; San-Miguel, Miguel A; da Silva, Edison Z; Longo, Elson; Longo, Valeria M

    2015-02-21

    Why and how Ag is formed when electron beam irradiation takes place on α-Ag2WO4 in a vacuum transmission electron microscopy chamber? To find an answer, the atomic-scale mechanisms underlying the formation and growth of Ag on α-Ag2WO4 have been investigated by detailed in situ transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) studies, density functional theory based calculations and ab initio molecular dynamics simulations. The growth process at different times, chemical composition, size distribution and element distribution were analyzed in depth at the nanoscale level using FE-SEM, operated at different voltages (5, 10, 15, and 20 kV), and TEM with energy dispersive spectroscopy (EDS) characterization. The size of Ag nanoparticles covers a wide range of values. Most of the Ag particles are in the 20-40 nm range. The nucleation and formation of Ag on α-Ag2WO4 is a result of structural and electronic changes in the AgOx (x = 2,4, 6, and 7) clusters used as constituent building blocks of this material, consistent with metallic Ag formation. First principle calculations point out that Ag-3 and Ag-4-fold coordinated centers, located in the sub-surface of the (100) surface, are the most energetically favorable to undergo the diffusion process to form metallic Ag. Ab initio molecular dynamics simulations and the nudged elastic band (NEB) method were used to investigate the minimum energy pathways of these Ag atoms from positions in the first slab layer to outward sites on the (100) surface of α-Ag2WO4. The results point out that the injection of electrons decreases the activation barrier for this diffusion step and this unusual behavior results from the presence of a lower energy barrier process.

  19. Influence of Temperature on the Formation of Ag Complexed in a S2O32−–O2 System

    Directory of Open Access Journals (Sweden)

    Aislinn M. Teja-Ruiz

    2017-01-01

    Full Text Available Metallic elements of higher economic value, occurring in the mineralogy of Zimapán, are Pb, Zn, Cu, and Fe; said elements are sold as concentrates, which, even after processing, generally include significant concentrations of Mo, Cd, Sb, Ag, and As that can be recovered through different leaching methods. In this work, the influence of temperature in the complexation of silver contained in a concentrate of Zn using the technology of thiosulfate with oxygen injection was studied. Chemical and mineralogical characterization of the mineral concentrate from the state of Hidalgo, Mexico confirmed the existence of silver contained in a sulfide of silver arsenic (AgAsS2 by X-ray Diffraction (XRD. The results obtained by Atomic Absorption Spectrophotometry (AAS reported abundant metallic contents (% w/w (48% Zn, 10.63% Fe, 1.97% Cu, 0.84% Pb, 0.78% As, and 0.25% Ag. These results corroborate the presence of metallic sulfides such as pyrite, chalcopyrite, and wurtzite; this last species was identified as the matrix of the concentrate by X-ray Diffraction (XRD and Scanning Electron Microscopy-Energy-Dispersive X-ray Spectroscopy (SEM-EDS. Pourbaix diagrams were constructed for the AgAsS2–S2O32−–O2 system at different temperatures, which allowed the chemical reaction of leaching to be established, in addition to determining Eh-pH conditions in which to obtain silver in solution. The highest recoveries of the precious metal (97% Ag were obtained at a temperature of 333 K and [S2O32−] = 0.5 M. The formation of silver dithiosulfate complex (Ag(S2O323− was confirmed by the characterization of the leach liquors obtained from the experiments performed in the temperature range of 298 to 333 K using Fourier transform infrared spectroscopy (FTIR.

  20. Synthesis of Ag-TiO{sub 2} composite nano thin film for antimicrobial application

    Energy Technology Data Exchange (ETDEWEB)

    Yu Binyu; Guo Qiuquan; Yang Jun [Biomedical Engineering Graduate Program, University of Western Ontario, London, ON, N6A 5B9 (Canada); Leung, Kar Man [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 (Canada); Lau, Woon Ming [Surface Science Western, University of Western Ontario, London, ON, N6A 5B9 (Canada)

    2011-03-18

    TiO{sub 2} photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO{sub 2} nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO{sub 2} and Ag-TiO{sub 2} composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO{sub 2} and TiO{sub 2} films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO{sub 2} matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag{sup 0} state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm{sup -2} and in the dark respectively. The synthesized Ag-TiO{sub 2} thin films showed enhanced bactericidal activities compared to the neat TiO{sub 2} nanofilm both in the dark and under UV illumination.

  1. Metal Fe3+ ions assisted synthesis of highly monodisperse Ag/SiO2 nanohybrids and their antibacterial activity

    International Nuclear Information System (INIS)

    Zhang, Nianchun; Xue, Feng; Yu, Xiang; Zhou, Huihua; Ding, Enyong

    2013-01-01

    Graphical abstract: TEM images of the Ag/SiO 2 -2 nanohybrids. The homogeneous and more mono-disperse Ag nanoparticles deposit on SiO 2 spheres. Through this method, Ag nanoparticles are easily formed on the surface of SiO 2 compared to other methods. Highlights: ► We prepared homogeneous and mono-dispersed Ag/SiO 2 -2 nanohybrids by adding Fe 3+ ions. ► The Ag/SiO 2 -2 nanohybrids had core(SiO 2 )-shell(Ag) structure. ► The Ag/SiO 2 -2 nanohybrids exhibited excellent antibacterial activity against bacteria. ► The reaction temperature was lower and the yield of Ag/SiO 2 -2 nanohybrids were higher. - Abstract: Highly monodispersed Ag/SiO 2 nanohybrids with excellent antibacterial property were synthesized by using DMF as a reducing agent and employing an additional redox potential of metal Fe 3+ ion as a catalytic agent. The obtained Ag/SiO 2 -2 nanohybrids of about 240 nm were highly monodispersity and uniformity by adding trace Fe 3+ ions into the reaction which Ag + reacted with N,N-dimethyl formamide (DMF) at 70 °C. Compared to the conventional techniques, which need long time and high temperature for silica coating of Ag nanoparticles, this new method was capable of synthesizing monodispersed, uniform, high yield Ag/SiO 2 nanohybrids. The electron was transferred from the Fe 2+ ion to the Ag + ion to accelerate the nucleation of silver nanoparticles. The chemical structures, morphologies and properties of the Ag/SiO 2 nanohybrids were characterized by X-ray diffraction (XRD), (High-resolution, Scanning transmission) transmission electron microscopy (TEM, HRTEM and STEM), and X-ray photoelectron spectroscopy (XPS), and UV–vis spectroscopy (UV–vis) and test of antibacterial. The results demonstrated that the silver nanoparticles supported on the surface of SiO 2 spheres in Ag/SiO 2 -2 nanohybrids structure, the Ag nanoparticles were homogeneous and monodispersed. The results also indicated that the Ag/SiO 2 -2 nanohybrid had excellent antibacterial.

  2. High-temperature deformation of YBa2Cu3O7-δ with Ag additions

    International Nuclear Information System (INIS)

    Routbort, J.L.; Goretta, K.C.; Singh, J.P.

    1990-01-01

    The steady-state flow stress of YBa 2 Cu 3 O 7-δ containing 15 to 30 vol.% Ag has been measured in air at nearly constant compressive strain rates between 5 x 10 -6 and 1 x 10 -4 s -1 from 830 to 900 degrees C. Addition of Ag dramatically decreases the flow stress compared to that of the pure superconductor, but the stress exponents and the activation energy for deformation remain unchanged

  3. Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region

    International Nuclear Information System (INIS)

    Ren, Shoutian; Wang, Yingying; Wang, Benyang; Wang, Qiang; Zhao, Guoliang

    2015-01-01

    Sandwiched ZnO@Ag@Cu 2 O nanorod films were synthesized by successive electrodeposition, magnetron sputtering and the second electrodeposition. The as-synthesized composites were characterized by x-ray diffraction patterns, field emission scanning electron microscopy, low- and high-resolution transmission electron microscopy and a UV–vis spectrophotometer. Their photocatalytic performance was estimated by the degradation of a methyl orange solution under UV or visible-light irradiation, respectively. In the visible region, due to localized surface plasmon resonance absorption of Ag NPs, ZnO@Ag@Cu 2 O showed a significantly enhanced photocatalytic performance. The enhancement factor of Ag NPs on the catalytic performance of ZnO@Ag@Cu 2 O was estimated as a function of the Cu 2 O deposition time, and the corresponding enhancement mechanism was also evaluated by the monochromatic photocatalytic experiment and discrete dipole approximation simulation. In the UV region, due to the formation of a Schottky junction (e.g. Ag/ZnO, Ag/Cu 2 O), a limited enhanced photocatalytic performance was also realized for ZnO@Ag@Cu 2 O photocatalysts. (paper)

  4. Synthesis and properties of new CdSe-AgI-As{sub 2}Se{sub 3} chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M. [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France); Le Coq, D., E-mail: david.lecoq@univ-littoral.fr [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France); Fourmentin, M.; Hindle, F.; Bokova, M.; Cuisset, A.; Masselin, P.; Bychkov, E. [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France)

    2011-02-15

    Research highlights: {yields} Determination of the glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system. {yields} Characterization of macroscopic properties of the new CdSe-AgI-As{sub 2}Se{sub 3} glasses. {yields} Far infrared transmission of chalcogenide glasses. {yields} Characterization of the total conductivity of CdSe-AgI-As{sub 2}Se{sub 3} glasses. -- Abstract: The glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (T{sub g}), crystallisation (T{sub x}), and melting (T{sub m}) temperatures are reported and used to calculate their {Delta}T = T{sub x} - T{sub g} and their Hruby, H{sub r} = (T{sub x} - T{sub g})/(T{sub m} - T{sub x}), criteria. Evolution of the total electrical conductivity {sigma} and the room temperature conductivity {sigma}{sub 298} was also studied. The terahertz transparency domain in the 50-600 cm{sup -1} region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.

  5. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    Science.gov (United States)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  6. Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate-Ag2S-CdS semiconductors

    Science.gov (United States)

    Kornarakis, I.; Lykakis, I. N.; Vordos, N.; Armatas, G. S.

    2014-07-01

    Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster anions with different reduction potentials, such as PW12O403-, SiW12O404- and PMo12O403-, were employed as electron acceptors in these ternary heterojunction photocatalysts. Characterization by small-angle X-ray scattering, X-ray diffraction, transmission electron microscopy and N2 physisorption measurements showed hexagonal arrays of POM-Ag2S-CdS hybrid nanorods with large internal BET surface areas and uniform mesopores. The Keggin structure of the incorporated POM clusters was also verified by elemental X-ray spectroscopy microanalysis, infrared and diffuse-reflectance ultraviolet-visible spectroscopy. These new porous materials were implemented as visible-light-driven photocatalysts, displaying exceptional high activity in aerobic oxidation of various para-substituted benzyl alcohols to the corresponding carbonyl compounds. Our experiments show that the spatial separation of photogenerated electrons and holes at CdS through the potential gradient along the CdS-Ag2S-POM interfaces is responsible for the increased photocatalytic activity.Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster

  7. Fabrication of Ag{sub 2}O/TiO{sub 2} with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hai-Tao, E-mail: renhaitaomail@163.com; Yang, Qing

    2017-02-28

    Highlights: • Ag{sub 2}O/TiO{sub 2} was synthesized by a pH-induced chemical precipitation method. • Ag{sub 2}O/TiO{sub 2} showed good activities in the photocatalytic degradation of methyl orange. • Hydroxyl radicals played the predominant role in methyl orange photodegradation. - Abstract: Ag{sub 2}O/TiO{sub 2} composites synthesized in this study were applied into the photocatalytic degradation of methyl orange (MO) under UV and visible light irradiation. X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscope analysis demonstrated that Ag{sub 2}O nanoparticles were well distributed on the surface of TiO{sub 2} and the heterostructure of Ag{sub 2}O/TiO{sub 2} was formed. Compared with the pure TiO{sub 2} and Ag{sub 2}O, the 3% and 50% Ag{sub 2}O/TiO{sub 2} composite displayed much higher photocatalytic activities in MO degradation under UV and visible light irradiation, respectively. The degradation rate constant of 50% composite was 0.01508 min{sup −1} under visible light, which was almost 20.1 and 1.2 times more than that of the pure TiO{sub 2} and Ag{sub 2}O, respectively. Moreover, the formation of Ag(0) on the surface of Ag{sub 2}O under illumination contributed to the high stability of Ag{sub 2}O/TiO{sub 2} photocatalysts. It was also found that hydroxyl radicals during the photocatalytic process played the predominant role in MO degradation. The enhanced photochemical activities were attributed to the formation of the heterostructure between Ag{sub 2}O and TiO{sub 2}, the strong visible light absorption and the high separation efficiency of photogenerated electron–hole pairs resulted from the highly dispersed Ag{sub 2}O particles.

  8. Evaluation of the Antimicrobial Activity of Different Antibiotics Enhanced with Silver-Doped Hydroxyapatite Thin Films

    Directory of Open Access Journals (Sweden)

    Daniela Predoi

    2016-09-01

    Full Text Available The inhibitory and antimicrobial effects of silver particles have been known since ancient times. In the last few years, a major health problem has arisen due to pathogenic bacteria resistance to antimicrobial agents. The antibacterial activities of new materials including hydroxyapatite (HAp, silver-doped hydroxyapatite (Ag:HAp and various types of antibiotics such as tetracycline (T-HAp and T-Ag:HAp or ciprofloxacin (C-HAp and C-Ag:HAp have not been studied so far. In this study we reported, for the first time, the preparation and characterization of various thin films based on hydroxyapatite and silver-doped hydroxyapatite combined with tetracycline or ciprofloxacin. The structural and chemical characterization of hydroxyapatite and silver-doped hydroxyapatite thin films has been evaluated by X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR. The morphological studies of the HAp, Ag:HAp, T-HAp, T-Ag:HAp, C-HAp and C-Ag:HAp thin solid films were performed using scanning electron microscopy (SEM. In order to study the chemical composition of the coatings, energy dispersive X-ray analysis (EDX and glow discharge optical emission spectroscopy (GDOES measurements have been used, obtaining information on the distribution of the elements throughout the film. These studies have confirmed the purity of the prepared hydroxyapatite and silver-doped hydroxyapatite thin films obtained from composite targets containing Ca10−xAgx(PO46(OH2 with xAg = 0 (HAp and xAg = 0.2 (Ag:HAp. On the other hand, the major aim of this study was the evaluation of the antibacterial activities of ciprofloxacin and tetracycline in the presence of HAp and Ag:HAp thin layers against Staphylococcus aureus and Escherichia coli strains. The antibacterial activities of ciprofloxacin and tetracycline against Staphylococcus aureus and Escherichia coli test strains increased in the presence of HAp and Ag:HAp thin layers.

  9. Thermal expansion behavior of empressite, AgTe: A structural study by means of in situ high-temperature single-crystal X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bindi, Luca [Museo di Storia Naturale, sez. di Mineralogia, Universita di Firenze, Via La Pira 4, I-50121 Firenze (Italy)], E-mail: luca.bindi@unifi.it

    2009-04-03

    The crystal structure of empressite, AgTe, a rare silver telluride, has been investigated by in situ X-ray single-crystal diffraction methods within the temperature range 298-463 K. AgTe remains orthorhombic, space group Pmnb (Pnma as standard), and shows only normal thermal expansion over the entire temperature range. The unit-cell parameters show a gradual increase with the increase of temperature. Slight adjustments in the geometry of Ag-tetrahedra and in the crystal-chemical environment of tellurium atoms occur in a continuous way without abrupt structural changes. The coefficients of thermal expansion along various axes are: {alpha}{sub a} = 1.5 x 10{sup -5} K{sup -1}, {alpha}{sub b} = 3.0 x 10{sup -5} K{sup -1}, {alpha}{sub c} = 2.2 x 10{sup -5} K{sup -1}, and the bulk thermal expansion coefficient {alpha}{sub V} is 5.4 x 10{sup -5} K{sup -1} for the temperature range 298-463 K.

  10. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO46(OH2 nanoparticles (Ag:HAp-NPs for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  11. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    Science.gov (United States)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801

  12. Identification of Ag-acceptors in $^{111}Ag^{111}Cd$ doped ZnTe and CdTe

    CERN Document Server

    Hamann, J; Deicher, M; Filz, T; Lany, S; Ostheimer, V; Strasser, F; Wolf, H; Wichert, T

    2000-01-01

    Nominally undoped ZnTe and CdTe crystals were implanted with radioactive /sup 111/Ag, which decays to /sup 111/Cd, and investigated by photoluminescence spectroscopy (PL). In ZnTe, the PL lines caused by an acceptor level at 121 meV are observed: the principal bound exciton (PBE) line, the donor-acceptor pair (DAP) band, and the two-hole transition lines. In CdTe, the PBE line and the DAP band that correspond to an acceptor level at 108 meV appear. Since the intensities of all these PL lines decrease in good agreement with the half-life of /sup 111/Ag of 178.8 h, both acceptor levels are concluded to be associated with defects containing a single Ag atom. Therefore, the earlier assignments to substitutional Ag on Zn- and Cd-lattice sites in the respective II-VI semiconductors are confirmed. The assignments in the literature of the S/sub 1/, S /sub 2/, and S/sub 3/ lines in ZnTe and the X/sub 1//sup Ag/, X/sub 2 //sup Ag//C/sub 1//sup Ag/, and C/sub 2//sup Ag/ lines in CdTe to Ag- related defect complexes are ...

  13. Enhanced photocathodic protection performance of Ag/graphene/TiO2 composite for 304SS under visible light

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Liu, Xueqing; Qian, Zhouhai; Hou, Baorong

    2017-06-01

    Ag and graphene co-sensitized TiO2 composites were successfully fabricated and used as photoanodes for photogenerated cathodic protection of 304 stainless steel (304SS) under visible light. Graphene films was firstly deposited onto the TiO2 nanotube (NT) films via cyclic voltammetric electrodeposition. Ag/graphene/TiO2 films were then fabricated via dipping and photoreduction method. The morphology, composition and optical response of the Ag/graphene/TiO2 NT composites were characterized by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, UV-vis diffusion reflectance spectroscopy, respectively. The photocathodic protection performance of the Ag/graphene/TiO2 composites were systematically studied through open-circuit potential and potentiodynamic polarization measurements in 3.5 wt% NaCl solution under visible light (λ > 400 nm). The composites exhibited enhanced photogenerated cathodic protection performance for 304SS under visible light irradiation compared to pure TiO2. Graphene and Ag have a synergistic effect on the enhancement of photocathodic protection performance of TiO2. The composites prepared with 30-cycle graphene film and 15 mM AgNO3 solution showed the optimal corrosion protection performance.

  14. Synthesis of AgI/Bi2MoO6 nano-heterostructure with enhanced visible-light photocatalytic property

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2018-04-01

    Full Text Available A novel nano-heterostructure of AgI/Bi2MoO6 photocatalyst was successfully synthesized via a facile deposition-precipitation method. The samples were systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoemission spectroscopy, UV–Vis absorption spectroscopy, and photoluminescence spectra. While sole Bi2MoO6 or AgI showed poor activity toward photocatalytic rhodamine B degradation, the nano-heterostructure was found with superior performance. The AgI/Bi2MoO6 composite with an optimal content of 20 wt% AgI exhibited the highest photocatalytic degradation rate. Rhodamine B was totally degraded within 75 min visible-light irradiation. Moreover, the hybrid photocatalyst also showed a fairly good stability for several-cycle reuse. This study indicates that the AgI/Bi2MoO6 nano-heterostructure can be used as an effective candidate for photocatalytic degradation of organic pollutants. Keywords: Heterostructure, Photocatalyst, RhB-degradation

  15. The mutual diffusion coefficient for (meth)acrylate monomers as determined with a nuclear microprobe

    International Nuclear Information System (INIS)

    Leewis, Christian M.; Mutsaers, Peter H.A.; Jong, Arthur M. de; Ijzendoorn, Leo J. van; Voigt, Martien J.A. de; Ren, Min Q.; Watt, Frank; Broer, Dirk J.

    2004-01-01

    The value of the mutual diffusion coefficient D V of two acrylic monomers is determined with nuclear microprobe measurements on a set of polymer films. These films have been prepared by allowing the monomers to diffuse into each other for a certain time and subsequently applying fast ultraviolet photo-polymerization, which freezes the concentration profile. The monomer diffusion profiles are studied with a scanning 2.1 MeV proton microprobe. Each monomer contains a marker element, e.g., Cl and Si, which are easily detected with proton induced x-ray emission. From the diffusion profiles, it is possible to determine the mutual diffusion coefficient. The mutual diffusion coefficient is dependent of concentration, which is concluded from the asymmetry in the Cl- and Si-profiles. A linear dependence of the mutual diffusion coefficient on the composition is used as a first order approximation. The best fits are obtained for a value of b=(0.38±0.15), which is the ratio of the diffusion coefficient of 1,3-bis(3-methacryloxypropyl)-1, 1,3,3-tetramethyldisiloxane in pure 2-chloroethyl acrylate and the diffusion coefficient of 2-chloroethyl acrylate in pure 1,3-bis(3-methacryloxypropyl)-1,1,3,3-tetramethyldisiloxane. Under the assumption of a linear dependence of the mutual diffusion coefficient D V on monomer composition, it follows that D V =(2.9±0.6)·10 -10 m 2 /s at a 1:1 monomer ratio. With Flory-Huggins expressions for the monomer chemical potentials, one can derive approximate values for the individual monomer diffusion coefficients

  16. Photocatalytic performances and activities of Ag-doped CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhengru, E-mail: zhengruzhu@gmail.com [Research Center of Hydrology and Water Source, School of Urban and Environment, Liaoning Normal University, Dalian, 116029 (China); State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 (China); Li, Xinyong; Zhao, Qidong [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 (China); Li, Yonghua; Sun, Caizhi; Cao, Yongqiang [Research Center of Hydrology and Water Source, School of Urban and Environment, Liaoning Normal University, Dalian, 116029 (China)

    2013-08-01

    Graphical abstract: - Highlights: • CuFe{sub 2}O{sub 4} nanocrystals were synthesized by a co-precipitation method. • Ag/CuFe{sub 2}O{sub 4} catalyst was prepared by the wetness impregnation strategy. • The structural properties of Ag/CuFe{sub 2}O{sub 4} were investigated by XRD, TEM, DRS, and XPS techniques. • Ag/CuFe{sub 2}O{sub 4} has higher photocatalytic activity. - Abstract: In this work, CuFe{sub 2}O{sub 4} nanoparticles were synthesized by a chemical co-precipitation route. The Ag/CuFe{sub 2}O{sub 4} catalyst was prepared based on the CuFe{sub 2}O{sub 4} nanoparticles by the incipient wetness impregnation strategy, which showed excellent photoelectric property and catalytic activity. The structural properties of these samples were systematically investigated by X-ray powder diffraction (XRD), transmission electronic microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) techniques. The photo-induced charge separation in the samples was demonstrated by surface photovoltage (SPV) measurement. The photocatalytic degradation of 4-CP by the Ag/CuFe{sub 2}O{sub 4} and CuFe{sub 2}O{sub 4} samples were comparatively studied under xenon lamp irradiation. The results indicate that the Ag/CuFe{sub 2}O{sub 4} sample exhibited the higher efficiency for the degradation of 4-CP.

  17. Silver vanadium diphosphate Ag2VP2O8: Electrochemistry and characterization of reduced material providing mechanistic insights

    International Nuclear Information System (INIS)

    Takeuchi, Esther S.; Lee, Chia-Ying; Cheng, Po-Jen; Menard, Melissa C.; Marschilok, Amy C.; Takeuchi, Kenneth J.

    2013-01-01

    Silver vanadium phosphorous oxides (Ag w V x P y O z ) are notable battery cathode materials due to their high energy density and demonstrated ability to form in-situ Ag metal nanostructured electrically conductive networks within the cathode. While analogous silver vanadium diphosphate materials have been prepared, electrochemical evaluations of these diphosphate based materials have been limited. We report here the first electrochemical study of a silver vanadium diphosphate, Ag 2 VP 2 O 8 , where the structural differences associated with phosphorous oxides versus diphosphates profoundly affect the associated electrochemistry. Reminiscent of Ag 2 VO 2 PO 4 reduction, in-situ formation of silver metal nanoparticles was observed with reduction of Ag 2 VP 2 O 8 . However, counter to Ag 2 VO 2 PO 4 reduction, Ag 2 VP 2 O 8 demonstrates a significant decrease in conductivity upon continued electrochemical reduction. Structural analysis contrasting the crystallography of the parent Ag 2 VP 2 O 8 with that of the proposed Li 2 VP 2 O 8 reduction product is employed to gain insight into the observed electrochemical reduction behavior, where the structural rigidity associated with the diphosphate anion may be associated with the observed particle fracturing upon deep electrochemical reduction. Further, the diphosphate anion structure may be associated with the high thermal stability of the partially reduced Ag 2 VP 2 O 8 materials, which bodes well for enhanced safety of batteries incorporating this material. - Graphical abstract: Structure and galvanostatic intermittent titration-type test data for silver vanadium diphosphate, Ag 2 VP 2 O 8 . Highlights: ► First electrochemical study of a silver vanadium diphosphate, Ag 2 VP 2 O 8 . ► In-situ formation of Ag 0 nanoparticles was observed upon electrochemical reduction. ► Structural analysis used to provide insight of the electrochemical behavior

  18. Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates

    International Nuclear Information System (INIS)

    Bir, F.; Khireddine, H.; Touati, A.; Sidane, D.; Yala, S.; Oudadesse, H.

    2012-01-01

    Fluoridated hydroxyapatite (FHA, Ca 10 (PO 4 ) 6 (OH) 2-x F x where 0 2+ , Cu 2+ , Ag + ) substituted fluoridated hydroxyapatite coatings (M-FHA) were deposited on the surface of medical grade 316L stainless steel samples by electrochemical deposition technique. The FHA coatings were co-substituted with antibacterial ions (Zn 2+ , Cu 2+ or Ag + ) by co-precipitation and ion-exchange methods. Characterization studies of coatings from X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) showed that the obtained layers are monophase crystals FHA and did not contain any discernible crystalline impurity. The particles of all samples are of nano size that gives thin layers. The surface morphology, microstructure and Ca/P atomic ratio of the FHA coatings can be regulated by varying electrolyte temperature. This later affects the porosity of the coating surface and the chemical compositions of the deposits. Quantitative elemental analysis indicates that the copper, zinc and silver ions are incorporated into the Fluorohydroxyapatite. The antimicrobial effects of doped fluorohydroxyapatite coatings against pathogen bacterial strains Staphylococcus aureus were tested in liquid media. The results are promising and demonstrated that all doped FHA samples exhibit excellent antimicrobial activity “in vitro” against the microorganism, so the antimicrobial properties of the coatings developed are improved.

  19. Photoelectrochemical Performances and Potential Applications of TiO2 Nanotube Arrays Modified with Ag and Pt Nanoparticles

    International Nuclear Information System (INIS)

    Xu, Guangqing; Liu, Haipeng; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    TiO 2 nanotube arrays (NTAs) modified with Ag (Ag/TiO 2 ) and Pt (Pt/TiO 2 ) nanoparticles were fabricated by anodic oxidation combined with photoreduction and hydrothermal methods, respectively. Structures, element components and morphologies of TiO 2 , Ag/TiO 2 and Pt/TiO 2 NTAs were measured by X-ray diffraction diffractometer, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The photoeletrochemical performances of TiO 2 , Pt/TiO 2 and Ag/TiO 2 NTAs were characterized by cyclic voltammetry and amperometry in phosphate buffer solution in absence and presence of glucose. Modifications of Ag and Pt nanoparticles play different roles in the photoelectrochemical process and have different potential applications. Ag nanoparticles decrease the photocurrent in buffer solution but increase the photocurrent response to organic compounds, which is fit for electrochemical detection of organic compounds due to the low background photocurrent and high photocurrent response. Ag/TiO 2 NTAs achieve the best detection performance with sensitivity of 0.152 μA/μM and detection limit of 0.53 μM. On the contrary, Pt nanoparticles can enhance the photocurrent of TiO 2 NTAs in buffer solution but decrease the photocurrent response to organic compounds, which are benefit for photocatalytic water splitting but not for photoelectrochemical detection

  20. Tri-functional Fe2O3-encased Ag-doped ZnO nanoframework: magnetically retrievable antimicrobial photocatalyst

    Science.gov (United States)

    Karunakaran, Chockalingam; Vinayagamoorthy, Pazhamalai

    2016-11-01

    Fe2O3-encased ZnO nanoframework was obtained by hydrothermal method and was doped with Ag through photoreduction process. Energy dispersive x-ray spectroscopy, transmission electron microscopy (TEM), high resolution TEM, selected area electron diffractometry, x-ray diffractometry and Raman spectroscopy were employed for the structural characterization of the synthesized material. While the charge transfer resistance of the prepared nanomaterial is larger than those of Fe2O3 and ZnO the coercivity of the nanocomposite is less than that of hydrothermally obtained Fe2O3 nanostructures. Although Fe2O3/Ag-ZnO exhibits weak visible light absorption its band gap energy does not differ from that of ZnO. The photoluminescence of the fabricated nanoframework is similar to that of ZnO. The radiative recombination of charge carriers is slightly slower in Fe2O3/Ag-ZnO than in ZnO. The synthesized Fe2O3-encased Ag-doped ZnO, under UV A light, exhibits sustainable photocatalytic activity to degrade dye and is magnetically recoverable. Also, the Fe2O3/Ag-ZnO nanocomposite disinfects bacteria effectively in absence of direct illumination.

  1. A novel ZnO@Ag@Polypyrrole hybrid composite evaluated as anode material for zinc-based secondary cell

    OpenAIRE

    Jianhang Huang; Zhanhong Yang; Zhaobin Feng; Xiaoe Xie; Xing Wen

    2016-01-01

    A novel ZnO@Ag@Polypyrrole nano-hybrid composite has been synthesized with a one-step approach, in which silver-ammonia complex ion serves as oxidant to polymerize the pyrrole monomer. X-ray diffraction (XRD) and infrared spectroscopy (IR) show the existence of metallic silver and polypyrrole. The structure of nano-hybrid composites are characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which demonstrates that the surface of ZnO is decorated with n...

  2. Photoligation of self-assembled DNA constructs containing anthracene-functionalized 2'-amino-LNA monomers

    DEFF Research Database (Denmark)

    Pasternak, Karol; Pasternak, Anna; Gupta, Pankaj

    2011-01-01

    Efficient synthesis of a novel anthracene-functionalized 2'-amino-LNA phosphoramidite derivative is described together with its incorporation into oligodeoxynucleotides. Two DNA strands with the novel 2'-N-anthracenylmethyl-2'-amino-LNA monomers can be effectively cross-linked by photoligation...... at 366nm in various types of DNA constructs. Successful application of three differently functionalized 2'-amino-LNA monomers in self-assembled higher ordered structures for simultaneous cross-linking and monitoring of assembly formation is furthermore demonstrated....

  3. Pulse radiolysis study of monomer and dimer cations of styrene, 1-methylstyrene and 1,1'-diphenylethylene

    International Nuclear Information System (INIS)

    Mehnert, R.; Helmstreit, W.; Boes, J.; Brede, O.

    1977-01-01

    In pulse-irradiated solutions of styrene, 1-methylstyrene and 1,1'-diphenylethylene, the decay kinetics of the olefin monomer cations and the formation kinetics of the corresponding dimer cations have been studied at room temperature. The solutions were irradiated with 15-nsec 15-ampere pulses of 1-MeV electrons from an Elit-type accelerator. The total dose per pulse was approximately 10 krad. The monomer cations were generated with rate constants of about 10 11 M -1 sec -1 . From the time decay of the monomer light absorption and the growth in time of the dimer absorption rate constants for the dimer formation between 0.8x10 10 and 1.2x10 10 M -1 sec -1 have been determined. (T.I.)

  4. Self-trapped holes in alkali silver halide crystals

    International Nuclear Information System (INIS)

    Awano, T.; Ikezawa, M.; Matsuyama, T.

    1995-01-01

    γ-Ray irradiation at 77 K induces defects in M 2 AgX 3 (M=Rb, K and NH 4 ; X=Br and I) crystals. The irradiation induces self-trapped holes of the form of I 0 in the case of alkali silver iodides, and (halogen) 2 - and (halogen) 0 in the case of ammonium silver halides. The (halogen) 0 is weakly coupled with the nearest alkali metal ion or ammonium ion. It is able to be denoted as RbI + , KI + , NH 4 I + or NH 4 Br + . The directions of hole distribution of (halogen) 2 - and (halogen) 0 were different in each case of the alkali silver iodides, ammonium silver halides and mixed crystal of them. The (halogen) 0 decayed at 160 K in annealing process. The (halogen) 2 - was converted into another form of (halogen) 2 - at 250 K and this decayed at 310 K. A formation of metallic layers was observed on the crystal surface parallel with the c-plane of (NH 4 ) 2 AgI 3 irradiated at room temperature. (author)

  5. Thermoelectric properties of p-type pseudo-binary (Ag0.365Sb0.558Te) x -(Bi0.5Sb1.5Te3)1-x (x=0-1.0) alloys prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Cui, J.L.; Xue, H.F.; Xiu, W.J.; Jiang, L.; Ying, P.Z.

    2006-01-01

    In this paper, pseudo-binary (Ag 0.365 Sb 0.558 Te) x -(Bi 0.5 Sb 1.5 Te 3 ) 1- x (x=0-1.0) alloys were prepared using spark plasma sintering technique, and the composition-dependent thermoelectric properties were evaluated. Electrical conductivities range from 7.9x10 4 to 15.6x10 4 Ω -1 m -1 at temperatures of 507 and 318 K, respectively, being about 3.0 and 8.5 times those of Bi 0.5 Sb 1.5 Te 3 alloy at the corresponding temperatures. The optimal dimensionless figure of merit (ZT) of the sample with molar fraction x=0.025 reaches 1.1 at 478 K, whereas that of the ternary Bi 0.5 Sb 1.5 Te 3 alloy is 0.58 near room temperature. The results also reveal that a direct introduction of Ag 0.365 Sb 0.558 Te in the Bi-Sb-Te system is much more effective to the property improvement than naturally precipitated Ag 0.365 Sb 0.558 Te in the Ag-doped Ag-Bi-Sb-Te system. - Graphical abstract: The temperature dependence of the dimensionless thermoelectric figure of merit ZT for different (Ag 0.365 Sb 0.558 Te) x -(Bi 0.5 Sb 1.5 Te 3 ) 1- x (x=0-1.0) alloys prepared by spark plasma sintering

  6. Crystal structures of [SbF{sub 6}]{sup -} salts of di- and tetrahydrated Ag{sup +}, tetrahydrated Pd{sup 2+} and hexahydrated Cd{sup 2+} cations

    Energy Technology Data Exchange (ETDEWEB)

    Mazej, Zoran; Goreshnik, Evgeny [Jozef Stefan Institute, Ljubljana (Slovenia). Dept. of Inorganic Chemistry and Technology

    2017-07-01

    The [Ag(H{sub 2}O){sub 2}]SbF{sub 6}, is triclinic, P anti 1 (No. 2), with a=6.6419(3) Aa, b=7.6327(3) Aa, c=11.1338(3) Aa, α=95.492(3) , β=96.994(3) , γ=113.535(4) , V=507.13(4) Aa{sup 3} at 150 K, and Z=3. There are two crystallographically non-equivalent Ag{sup +} cations. The Ag1 is coordinated by two water molecules with Ag-OH{sub 2} distances equal to 2.271(2) Aa forming in that way a discrete linear [Ag(H{sub 2}O){sub 2}]{sup +} cation. Additionaly, it forms two short Ag..F contacts (2.630(2) Aa), resulting in AgO{sub 2}F{sub 2} plaquette, and four long ones (2 x 3.001(2) Aa and 2 x 3.095(2) Aa) with fluorine atoms located below and above the AgO{sub 2}F{sub 2} plaquette. The H{sub 2}O molecules bridge Ag2 atoms into {-[Ag(μ-OH_2)_2]-}{sub n} infinite chains, with Ag-O distances of 2.367(2)-2.466(2) Aa. The [Pd(H{sub 2}O){sub 4}](SbF{sub 6}){sub 2}.4H{sub 2}O is monoclinic, P2{sub 1}/a (No.14), with a=8.172(2) Aa, b=13.202(3) Aa, c=8.188(3) Aa, β=115.10(1) , V=799.9(4) Aa{sup 3} at 200 K, and Z=2. Its crystal structure can be described as an alternation of layers of [Pd(H{sub 2}O){sub 4}]{sup 2+} cations (interconnected by H{sub 2}O molecules) and [SbF{sub 6}]{sup -} anions. It represents the first example where [Pd(H{sub 2}O){sub 4}]{sup 2+} has been structurally determined in the solid state. Four oxygen atoms provided by H{sub 2}O molecules are in almost ideal square-planar arrangement with Pd-O bond lengths 2 x 2.004(5) Aa and 2 x 2.022(6) Aa. The [Cd(H{sub 2}O){sub 6}](SbF{sub 6}){sub 2}, is orthorhombic, Pnnm (No.58), with a=5.5331(2) Aa, b=14.5206(4) Aa, c=8.9051(3) Aa, V=715.47(4) Aa{sup 3} at 200 K, and Z=2. It consists of [Cd(H{sub 2}O){sub 6}]{sup 2+} cations and [SbF{sub 6}]{sup -} anions.

  7. Surface plasmon resonance induced reduction of high quality Ag/graphene composite at water/toluene phase for reduction of H2O2

    International Nuclear Information System (INIS)

    Zhang Fengjun; Zhang Kehua; Xie Fazhi; Liu Jin; Dong Hongfei; Zhao Wei; Meng Zeda

    2013-01-01

    Highlights: ► The Ag/graphene composites have been successfully synthesized in two-phase solvent. ► The surface plasmon resonance of Ag can reduce GO with high deoxygenation and low defect. ► The Ag particles were uniformly distributed on graphene surface. ► The Ag/graphene composites obtained show high superior electrical properties for reduction of H 2 O 2 . - Abstract: Surface plasmon resonance induced synthesis of Ag/graphene composites from Ag/graphene oxide (Ag/GO) in a two-phase (water–toluene) solvent was reported. Transmission electron microscopy (TEM) results revealed that the Ag nanoparticles with size of 5–8 nm were trimly distributed on reduced graphene oxide sheets. Raman and X-ray photoelectron spectroscopy (XPS) have demonstrated low defect density and high deoxygenation degree of graphene in Ag/graphene composite. The excellent structure and morphology of Ag/graphene composites contributed to superior electrical properties for reduction of H 2 O 2 .

  8. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, Karel; Rasmussen, Helge Kildahl

    2001-01-01

    temperature using synchrotron radiation. The icosahedral quasicrystal structure is retained up to the highest hydrostatic pressure used (approximately 28 GPa) and is reversible after decompression. The bulk modulus at zero pressure and its pressure derivative of the icosahedral Zr-Al-Ni-Cu-Ag quasicrystal......The effect of pressure on the structural stability of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals forming from a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass with a supercooled liquid region of 44 K has been investigated by in situ high-pressure angle-dispersive x-ray powder diffraction at ambient......-Al-Ni-Cu-Ag quasicrystals induced by pressure....

  9. In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} composite for enhanced and stable visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jiali [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Zhang, Jinfeng [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Lu, Luhua, E-mail: lhlu@cug.edu.cn [Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Liang, Changhao, E-mail: chliang@issp.ac.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 23003 (China); Geng, Lei; Wang, Zhongliao; Yuan, Guangyu; Zhu, Guangping [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China)

    2017-01-01

    Highlights: • Novel Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} ternary photocatalyst was prepared. • Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} showed enhanced catalytic activity. • Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} showed long reusable life. - Abstract: A novel hierarchical Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} ternary visible-light-driven photocatalyst was successfully synthesized by in situ doping Ag{sub 2}WO{sub 4} with Bi{sub 2}MoO{sub 6} nanosheets through a facile hydrothermal and photochemical process. The morphology, structure, optical performance and crystallinity of the products were measured by field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS), UV–vis diffuse reflectance spectroscopy (DRS) and X-ray diffraction (XRD). The results showed that Ag{sub 2}WO{sub 4}/Ag was uniformly dispersed on the surface of Bi{sub 2}MoO{sub 6} nanosheets. The photocatalytic performance of Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} heterostructures was evaluated by the degradation of methylene blue (MB) under 410 nm LED arrays. The ternary Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} nanocomposite exhibits higher photocatalytic activity than Bi{sub 2}MoO{sub 6} and Ag{sub 2}WO{sub 4}. The synergistic effect of Ag{sub 2}WO{sub 4} and Bi{sub 2}MoO{sub 6} could generated more heterojunctions which promoted photoelectrons transfer from Ag{sub 2}WO{sub 4} to Bi{sub 2}MoO{sub 6}, leading to the improvement of photocatalytic performance by photoelectrons-holes recombination suppression. At the same time, the surface plasmon resonance of Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} is another crucial reason for the high photocatalytic performance of organic pollutants degradation. And the 20 wt% Ag{sub 2}WO{sub 4}-loaded Bi{sub 2}MoO{sub 6} shows the optimal photocatalytic performance in the degradation of MB. In addition, the ternary composites can be easily reclaimed by precipitation and exhibits high stability of photocatalytic

  10. Neutral Guest Capture via Lewis Acid/Base Molecular Square Receptors. X-ray Crystal Structure of {Cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis- (PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)- ((-)OSO(2)CF(3))(6).

    Science.gov (United States)

    Whiteford, Jeffery A.; Stang, Peter J.; Huang, Songping D.

    1998-10-19

    Interaction of {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(L)M)]Ag(2)}(+6)((-)OSO(2)CF(3))(6), where M = Pt(II) or Pd(II) and L = dppp or 2PEt(3), with pyridine, pyrazine, phenazine, or 4,4'-dipyridyl ketone results in coordination Lewis acid/base host-guest assemblies via the "pi-tweezer effect" and mono or bis neutral guest coordination. All host-guest complexes are air stable microcrystalline solids with decomposition points greater than 170 degrees C. The homometallic Pt(II) receptors are more stable than the heteroaromatic Pt(II)-Pd(II) receptors toward heteratom-containing aromatic guests. The X-ray crystal structure of the host-guest complex {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)((-)OSO(2)CF(3))(6) is reported. The crystals with the empirical formula C(62)H(68)AgF(9)N(3)O(9)P(4)Pt(2)S(3) are triclinic P&onemacr; with a = 12.3919(8) Å, b = 17.160(1) Å, c = 18.932(1) Å, alpha = 90.892(1) degrees, beta = 97.127(1) degrees, gamma = 89.969(1) degrees, and Z = 2.

  11. EPR Structural Investigations on Ag2O-B2O3-CaO-P2O5 Vitreous System

    Directory of Open Access Journals (Sweden)

    Razvan Stefan

    2011-10-01

    Full Text Available Glass samples from vitreous system 1.5Ag2O98.5%[0.47B2O3(0.53-xCaOxP2O5] with 0  x  0.08 have been obtained by undercooled method. The magnetic species existing in glass powders have been highlighting by mean of electronic paramagnetic resonance (EPR. The resonance linewidth analysis reveal the interactions between magnetic ions.

  12. Large-scale synthesis of lead telluride (PbTe) nanotube-based nanocomposites with tunable morphology, crystallinity and thermoelectric properties

    Science.gov (United States)

    Park, Kee-Ryung; Cho, Hong-Baek; Song, Yoseb; Kim, Seil; Kwon, Young-Tae; Ryu, Seung Han; Lim, Jae-Hong; Lee, Woo-Jin; Choa, Yong-Ho

    2018-04-01

    A few millimeter-long lead telluride (PbTe) hollow nanofibers with thermoelectric properties was synthesized for the first time with high through manner via three-step sequential process of electrospinning, electrodeposition and cationic exchange reaction. As-synthesized electrospun Ag nanofibers with ultra-long aspect ratio of 10,000 were Te electrodeposited to obtain silver telluride nanotubes and underwent cationic exchange reaction in Pb(NO3)2 solution to obtain polycrystalline PbTe nanotubes with average diameter of 100 nm with 20 nm of wall thickness. Variation of the Ag-to-Pb ratio in the AgxTey-PbTe nanocomposites during the cationic exchange reaction enabled to control the thermoelectric properties of resulting 1D hollow nanofibers. The diameter of Ag nanofiber is the key factor to determine the final dimension of the PbTe nanotubes in the topotactic transformation and the content of Ag ion leads to the enhancement of thermoelectric properties in the AgxTey-PbTe nanocomposites. The synthesized 1D nanocomposite mats showed the highest value of Seebeck coefficient of 433 μV/K (at 300 K) when the remained Ag content was 30%, while the power factor reached highest to 0.567 μW/mK2 for the pure PbTe nanotubes. The enhancement of thermoelectric properties and the composite crystallinity are elucidated with relation to Ag contents in the resulting 1D nanocomposites.

  13. Synthesis and characterizations of spherical hollow composed of AgI nanoparticle using AgBr as the precursor

    International Nuclear Information System (INIS)

    Yang Ming; Zhou Kui

    2011-01-01

    Hollow spheres of AgI with an average radius of 100-200 nm have been prepared by a simple reaction between AgBr suspension and KI in the presence of gelatin. Gelatin played a decisive role as an inhibitor of the direct attack of I - ions to AgBr surfaces and coagulation of the growing AgI in producing the spherical AgI particles. The products were characterized by X-ray powder diffraction, transmission electron microscopy, UV-vis absorption spectroscopy and X-ray photoelectron spectra techniques. The band gaps are estimated to be 2.95 eV according to the results of optical measurements of the hollow spheres of AgI.

  14. Vertically oriented TiO(x)N(y) nanopillar arrays with embedded Ag nanoparticles for visible-light photocatalysis.

    Science.gov (United States)

    Jiang, Weitao; Ullah, Najeeb; Divitini, Giorgio; Ducati, Caterina; Kumar, R Vasant; Ding, Yucheng; Barber, Zoe H

    2012-03-27

    We present a straightforward method to produce highly crystalline, vertically oriented TiO(x)N(y) nanopillars (up to 1 μm in length) with a band gap in the visible-light region. This process starts with reactive dc sputtering to produce a TiN porous film, followed by a simple oxidation process at elevated temperatures in oxygen or air. By controlling the oxidation conditions, the band gap of the prepared TiO(x)N(y) can be tuned to different wavelength within the range of visible light. Furthermore, in order to inhibit carrier recombination to enhance the photocatalytic activity, Ag nanoparticles have been embedded into the nanogaps between the TiO(x)N(y) pillars by photoinduced reduction of Ag(+) (aq) irradiated with visible light. Transmission electron microscopy reveals that the Ag nanoparticles with a diameter of about 10 nm are uniformly dispersed along the pillars. The prepared TiO(x)N(y) nanopillar matrix and Ag:TiO(x)N(y) network show strong photocatalytic activity under visible-light irradiation, evaluated via degradation of Rhodamine B. © 2012 American Chemical Society

  15. Experimental study of the Ag-Sn-In phase diagram

    International Nuclear Information System (INIS)

    Vassilev, Gueorgui P.; Dobrev, Evgueni S.; Tedenac, Jean-Claude

    2005-01-01

    Combined metallographic, differential scanning calorimetry, X-ray and scanning electron microscopy studies have been performed using 27 ternary alloys. The microhardness of the α(Ag), ε(Ag 3 Sn) and ζ(Ag 4 Sn,Ag 3 In) phases has been measured. The ternary extension of the phase φ(Ag x In y Sn z , where x ∼ 0.36, y ∼ 0.61, z ∼ 0.03) has been revealed in some specimens, although the binary compound (AgIn 2 ) melts at 166 deg. C. This finding is attributed to the limited cooling rate. The solubility ranges of the solid solution and the intermetallic phases have been determined. The tin and the indium show approximately equal mutual solubility (around 2 at.%) in the ternary extensions of their Ag-Sn or Ag-In phases. The experimental data have been compared with a calculated isothermal section at 280 deg. C and with a vertical section at 2.5 at.% Ag. The thermal analyses have confirmed, in general, the temperatures of the invariant reactions in the Ag-Sn-In system as calculated by literature data

  16. Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria.

    Science.gov (United States)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Le Coustumer, Phillippe; Constantin, Liliana Violeta; Predoi, Daniela

    2012-06-21

    Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10-xAgx(PO4)6(OH)2, xAg = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for xAg = 0.05, a = b = 9.443 Å, c = 6.875 Å for xAg = 0.2, and a = b = 9.445 Å, c = 6.877 Å for xAg = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples (xAg = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of xAg in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth (P. stuartii).

  17. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Sari Fouad

    2012-12-01

    Full Text Available We reported in this work that the cationic copolymerization in one step takes place between carbon–carbon double-bond monomer styrene with cyclic monomer tetrahydrofuran. The comonomers studied belong to different families: vinylic and cyclic ether. The reaction is initiated with maghnite-H+ an acid exchanged montmorillonite as acid solid ecocatalyst. Maghnite-H+ is already used as catalyst for polymerization of many vinylic and heterocyclic monomers. The oxonium ion of tetrahydrofuran and carbonium ion of styrene propagated the reaction of copolymerization. The acetic anhydride is essential for the maintenance of the ring opening of tetrahydrofuran and the entry in copolymerization. The temperature was kept constant at 40°C in oil bath heating for 6 hours. A typical reaction product was analyzed by 1H-NMR, 13C-NMR and IR and the formation of the copolymer was confirmed. The reaction was proved by matched with analysis. The maghnite-H+ allowed us to obtain extremely pure copolymer in good yield by following a simples operational conditions. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 29th October 2012; Revised: 29th November 2012; Accepted: 29th November 2012[How to Cite: S. Fouad, M.I. Ferrahi, M. Belbachir. (2012. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 165-171. (doi:10.9767/bcrec.7.2.4074.165-171][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4074.165-171 ] | View in 

  18. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    Science.gov (United States)

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  19. Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.

  20. Multi-functional TiO{sub 2}/Si/Ag(Cr)/TiN{sub x} coatings for low-emissivity and hydrophilic applications

    Energy Technology Data Exchange (ETDEWEB)

    Loka, Chadrasekhar; Park, Kyoung Ryeol; Lee, Kee-Sun, E-mail: kslee@kongju.ac.kr

    2016-02-15

    Graphical abstract: - Highlights: • Multi-functional thin films were deposited by RF and DC magnetron sputtering. • High visible transmittance (∼85.5% at 550 nm) was achieved with low-e value 0.067. • Different bandgap concept was used to improve the hydrophilic properties. • Transparent, superhydropbilic films with water contact angle ∼5° were achieved. - Abstract: Multi-functional (coatings with some additional functional properties such as high transparency, antireflection, hydrophilicity and antifogging) coatings are indispensable for the modern energy saving systems. In this regard, we deposited TiO{sub 2}/Si/Ag(Cr)/TiN{sub x} multilayer thin films on soda-lime glass by using RF and DC magnetron sputtering to achieve a multi-functional thin film stack with the combination low-emissivity (low-e) and hydrophilicity properties in addition to the high transparency. Primary deposition of Ag(Cr)/TiN{sub x} was tried for the low-e effect and successfully obtained a very low emissivity value of 0.067, and then Si and TiO{sub 2} films with different bandgap were subsequently deposited to provide the hydrophilic properties. X-ray diffraction results revealed the anatase phase formation of TiO{sub 2} after annealing the films at 673 K by using the rapid thermal annealing system. Rutherford Backscattering Spectrometry (RBS) was carried out to determine the chemical composition and elemental depth distribution. The multilayer stack exhibited superhydrophilicity with a water contact angle of about 5° after irradiation by UV light. A Heterojunction film with wide and narrow bandgap semiconductor materials was effective to improve the hydrophilicity. The films exhibited a high visible transmittance (∼85.5%, at 550 nm) and low infrared transmittance (7%, at 2000 nm) including low-e and superhydrophilicity.

  1. Optimisation of Ag loading and alumina characteristics to give sulphur-tolerant Ag/Al2O3 catalyst for H2-assisted NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Fogel, Sebastian; Doronkin, Dmitry E.; Gabrielsson, Pär

    2012-01-01

    A series of Ag/Al2O3 catalysts with different alumina precursors and different Ag loadings were tested for H2 assisted NH3-SCR of NO. The catalysts were characterised (BET, XRD, NH3-TPD, ICP-OES, TEM and UV–vis spectroscopy) and tested as fresh catalyst, during long-term cycling tests with SO2 pr....... A higher Ag loading will affect the state of Ag by increasing the ratio of Ag-clusters and particles to highly dispersed Ag ions. SO2-poisoned Ag-clusters and particles can be regenerated by the high temperature treatment in the deNOx feed, highly dispersed Ag ions cannot....

  2. Fabrication, Characterization, and Antimicrobial Activity, Evaluation of Low Silver Concentrations in Silver-Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Costescu

    2013-01-01

    Full Text Available The aim of this study was the evaluation of (Ca10-xAgx(PO46(OH2 nanoparticles (Ag:HAp-NPs for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years as a major public health problem worldwide. In this paper, we report a comparison of the antimicrobial activity of low concentrations silver-doped hydroxyapatite nanoparticles. The silver-doped nanocrystalline hydroxyapatite powder was synthesized at 100°C in deionised water. The as-prepared Ag:Hap nanoparticles were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, FT-IR, and FT-Raman spectroscopy. X-ray diffraction (XRD studies demonstrate that powders obtained by coprecipitation at 100°C exhibit the apatite characteristics with good crystal structure, without any new phase or impurities found. FT-IR and FT-Raman spectroscopy revealed the presence of the various vibrational modes corresponding to phosphates and hydroxyl groups and the absence of any band characteristic to silver. The specific microbiological assays demonstrated that Ag:HAp-NPs exhibited antimicrobial features, but interacted differently with the Gram-positive, Gram-negative bacterial and fungal tested strains.

  3. Enhancement of fluorescence, photo-physical parameters and laser performance of pyrromethene (PM597) laser dye by Ag nanoparticles in different media

    Energy Technology Data Exchange (ETDEWEB)

    Alhijry, Ibraheem A. [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt); Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Faculty of Education, Department of Physics, Hajjah University, Hajjah (Yemen); Gadallah, A.-S. [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt); Abdelkader, H.I. [Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Abou Kana, Maram T.H., E-mail: mabou202@niles.edu.eg [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt)

    2016-03-15

    The effect of surface plasmon resonance (SPR) of silver nanoparticles (Ag NPs), exposure to radiation, on the optical and photo-physical properties of pyrromethene (PM597) laser dye in liquid and solid media was assessed. 2-hydroxyethyl methacrylate was used as homo-monomer and homo-polymer, while 2-hydroxyethyl methacrylate / methyl methacrylate were used as co-monomer and co-polymer hosts. Ag NPs was prepared and confirmed its size by high resolution transmission electron microscope (HRTEM), UV/vis absorption spectroscopy and also, theoretically by using Mie theory. The molar concentration of prepared NPs was C=3.39×10{sup −9} mol/L. 40% C (1.356×10{sup −9} mol/L) Ag NPs was found to have the optimum distance with (1×10{sup −4} mol/L PM597 in liquid medium and 1×10{sup −3} mol/L PM597 in solid medium) dye molecules according to Metal Enhancement Fluorescence (MEF) model. [40% C Ag NPs: 1×10{sup −3} mol/L PM597] complex samples had 3.12 cm{sup −1} and 3.89 cm{sup −1} gain values in homo-and co-polymer media, while parent PM597 dye had 2.5 cm{sup −1} and 3.45 cm{sup −1} gain values. Also, amplified spontaneous emission (ASE) value of complex samples was 0.455% and 0.538% in case of homo- and co-polymer respectively. While it was 0.4% and 0.457% in case of parent PM597 dye in the same sequent media. Finally, photo-stabilities of complex samples had higher values in co-monomer and co-polymer hosts compared with respect to their stabilities in homo-monomer and homo-polymer hosts.

  4. Enhancement of fluorescence, photo-physical parameters and laser performance of pyrromethene (PM597) laser dye by Ag nanoparticles in different media

    International Nuclear Information System (INIS)

    Alhijry, Ibraheem A.; Gadallah, A.-S.; Abdelkader, H.I.; Abou Kana, Maram T.H.

    2016-01-01

    The effect of surface plasmon resonance (SPR) of silver nanoparticles (Ag NPs), exposure to radiation, on the optical and photo-physical properties of pyrromethene (PM597) laser dye in liquid and solid media was assessed. 2-hydroxyethyl methacrylate was used as homo-monomer and homo-polymer, while 2-hydroxyethyl methacrylate / methyl methacrylate were used as co-monomer and co-polymer hosts. Ag NPs was prepared and confirmed its size by high resolution transmission electron microscope (HRTEM), UV/vis absorption spectroscopy and also, theoretically by using Mie theory. The molar concentration of prepared NPs was C=3.39×10 −9 mol/L. 40% C (1.356×10 −9 mol/L) Ag NPs was found to have the optimum distance with (1×10 −4 mol/L PM597 in liquid medium and 1×10 −3 mol/L PM597 in solid medium) dye molecules according to Metal Enhancement Fluorescence (MEF) model. [40% C Ag NPs: 1×10 −3 mol/L PM597] complex samples had 3.12 cm −1 and 3.89 cm −1 gain values in homo-and co-polymer media, while parent PM597 dye had 2.5 cm −1 and 3.45 cm −1 gain values. Also, amplified spontaneous emission (ASE) value of complex samples was 0.455% and 0.538% in case of homo- and co-polymer respectively. While it was 0.4% and 0.457% in case of parent PM597 dye in the same sequent media. Finally, photo-stabilities of complex samples had higher values in co-monomer and co-polymer hosts compared with respect to their stabilities in homo-monomer and homo-polymer hosts.

  5. Influence of temperature and precursor concentration on the synthesis of HDA-capped Ag{sub 2}Se nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mlambo, M. [Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050 (South Africa); Moloto, M.J., E-mail: makwenam@vut.ac.za [Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Moloto, N. [Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050 (South Africa); Mdluli, P.S. [Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125 (South Africa)

    2013-06-01

    Graphical abstract: The temperature effect on the growth and size of silver selenide nanoparticles with the size distribution and XRD patterns. Highlights: ► The HDA-capped Ag{sub 2}Se nanoparticles were synthesized via the colloidal route. ► Temperature and monomer concentration of the reaction were varied. ► The concentration as a factor influenced particles with a decrease observed as the amount of Ag{sup +} ion source is increased. ► Temperature has expected influence on the growth of particles resulting in increase as the temperature is increased. ► TEM images shows spherical particles and their orthorhombic phase from structural analysis by XRD. - Abstract: The size dependent of temperature and precursor concentration on the synthesis of hexadecylamine capped Ag{sub 2}Se nanoparticles via the colloidal route were studied using the combination of optical and structural analysis. The as-prepared Ag{sub 2}Se nanoparticles showed the quantum confinement with all the obtained absorption band edges blue-shifted from the bulk and their corresponding emission maxima displaying a red-shift from band edges characterised by UV–vis absorption and photoluminescence spectroscopy. The particle sizes were obtained from transmission electron microscopy analysis. The increase in precursor concentration resulted in a decrease in nanoparticle sizes. The increase in reaction temperature showed an increase in the nanoparticle sizes, when the critical temperature at 160 °C was reached, the nanoparticle sizes decreased.

  6. Influencia del contenido metálico sobre las constantes ópticas de laminas delgadas amorfas de composición As33S67 fotodopadas con Ag

    Directory of Open Access Journals (Sweden)

    Márquez, E.

    2000-08-01

    Full Text Available Agx(As0.33S0.67100-x amorphous chalcogenide thin films have been prepared by the process of photodissolution or photodoping, reaching silver concentrations of up to 16.5 at. %. The optical constants of the photodoped thin-film samples have been calculated from the envelopes of the transmission spectra, taken at normal incidence. The dispersion of the refractive index was analysed on the basis of the single-oscillator model proposed by Wemple and DiDomenico. This model allows obtaining structural information of the silver-photodoped layers from optical data. The optical absorption edge is described using the non-direct transition model suggested by Tauc, and a clear decrease of the optical gap of the photodoped product, with the silver content, has been found.Se han preparado láminas delgadas amorfas calcogenuras de composición Agx(As0.33S0.67100-x, mediante el fenómeno fotoinducido conocido como fotodisolución o fotodopaje, alcanzándose concentraciones de Ag en las muestras de hasta un 16.5 % at. Las constantes ópticas de las láminas fotodopadas, se han determinado haciendo uso de un método de caracterización basado en las envolventes de los espectros de transmisión óptica obtenidos en incidencia normal. El análisis de la dispersión del índice de refracción se ha realizado siguiendo el modelo propuesto por Wemple-DiDomenico, basado en la aproximación del oscilador armónico simple. Este modelo ha permitido obtener información estructural de las láminas fotodopadas, a partir de los resultados ópticos. El borde de absorción óptica de las láminas fotodopadas se ha analizado sobre la base del modelo de transición no directa propuesto por Tauc, encontrando una disminución del gap óptico del producto fotodopado, con el contenido de plata.

  7. Crystal structure of the alluaudite Ag{sub 2}Mn{sub 3}(VO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, Hamdi Ben; Essehli, Rachid; Belharouak, Ilias [Hamad Bin Khalifa Univ., Doha (Qatar). Qatar Environment and Energy Research Inst.; Shikano, Masahiro [National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan). Research Inst. of Electrochemical Energy

    2016-07-01

    The new compound Ag{sub 2}Mn{sub 3}(VO4){sub 3} was synthesized by hydrothermal and solid state reaction routes, and its crystal structure was determined from single-crystal X-ray diffraction data. Ag{sub 2}Mn{sub 3}(VO4){sub 3} crystallizes with a monoclinic symmetry, space group C2/c, with a=11.8968(11) Aa, b=13.2057(13) Aa, c=6.8132(7) Aa, β=111.3166(15) ( ) and V=997.16(17) Aa{sup 3} (Z=4). Its crystal refinement yielded the residual factors R(F)=0.0249 and wR(F{sup 2})=0.0704 for 95 parameters and 1029 independent reflections at a 3σ(I) level. Ag{sub 2}Mn{sub 3}(VO4){sub 3} can be considered as a new member of the AA{sup '}MM{sup '}{sub 2}(XO4){sub 3} alluaudite family. The specific arrangement of M and M{sup '} octahedral sites and of X tetrahedral sites gives rise to two different channels aligned along the crystallographic c-axis and containing the A and A{sup '} sites. The A, A{sup '}, M, and X sites are fully occupied by Ag{sup +}, Mn{sup 2+}, and V{sup 5+}, respectively; whereas a Mn{sup 2+}/Mn{sup 3+} mixture is observed in the M{sup '} site.

  8. Experimental and theoretical investigation on photocatalytic activities of 1D Ag/Ag2WO4 nanostructures

    Science.gov (United States)

    Liu, Danqing; Huang, Weicheng; Li, Long; Liu, Lu; Sun, Xiaojun; Liu, Bo; Yang, Bin; Guo, Chongshen

    2017-09-01

    Ag2WO4 is a significant photocatalyst that responds to UV light irradiation only, which greatly hinders it for further practical application for solar light. To address this problem, herein, 1D plasmonic Ag/Ag2WO4 photocatalysts have been fabricated by a successive process including hydrothermal synthesis to obtain Ag2WO4 followed by an additional in situ chemical-reduction process for Ag decoration. Then, the structural features, optical properties, and electronic structures of Ag2WO4 and Ag/Ag2WO4 nanowires were systematically investigated via a combination of theoretical calculations and experimental evidence. The plasmon-enhanced Ag/Ag2WO4 nanowires exhibited higher visible-light-driven photocatalytic activity, which performed a desired photodestruction ratio of 91.2% on methylene blue within 60 min and good stability in five cycles. The Ag decoration greatly facilitates visible-light harvesting and thus promotes photogenerated radical oxidation to dye, which is evidenced by the higher hydroxyl radical level of Ag/Ag2WO4 detected in the ESR test during the photocatalytic process. The theoretical calculation based on density functional theory indicates that Ag nanoparticles formed on the surface of Ag2WO4 could narrow the band gap of Ag2WO4. In addition, the surface plasmon resonance absorption effect and fast charge transfer effect in the metal-semiconductor system contribute to the photocatalytic performance of Ag/Ag2WO4.

  9. Evaluation of level of impregnation monomers in hydrotalcite

    International Nuclear Information System (INIS)

    Carmo, Danieli M. do; Machado, Jacson S.C.; Oliveira, Marcelo F.L.; Oliveira, Marcia G.; Soares, Bluma G.

    2011-01-01

    To evaluate the impregnation degree of 1,6-hexamethylene diisocyanate and 1,4-butanediol monomers in hydrotalcite clays it was prepared dispersions with mixing ratio 1:100 (clay/monomer), using the Ultraturrax and Ultrasound. Subsequently the samples were characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction. Swelling tests and Tyndall effect were used to illustrate the different dispersions. The results indicated a strong interaction between the hydrotalcite with 1,6-hexamethylene diisocyanate, favoring the formation of intercalated structures. (author)

  10. Photocatalytic degradation of textile dye direct orange 26 by using CoFe2O4/Ag2O

    International Nuclear Information System (INIS)

    Azhdari, F.; Mehdipour Ghazi, M.

    2016-01-01

    The magnetic and recyclable nanoparticles of CoFe 2 O 4 were synthesized by a reverse co-precipitation process. Sonication was used to couple the CoFe 2 O 4 surface with Ag 2 O. The characteristics and optical properties of the catalyst were studied by powder X-ray diffraction, UV–visible reflectance spectroscopy and scanning electron microscopy analyses. Pure CoFe 2 O 4 and CoFe 2 O 4 /Ag 2 O were utilized to determine the visible light photo catalytic degradation of Direct Orange 26. The effects of p H, the initial concentration of catalyst and initial dye concentration on the photo catalytic process were investigated. It was found that the presence of Ag 2 O remarkably improved the photo catalytic adsorption capacity and degradation efficiency of CoFe 2 O 4 /Ag 2 O when compared with the pure CoFe 2 O 4 . Moreover, due to the magnetic behavior of CoFe 2 O 4 , these coupled nanoparticles can be easily separated from the aqueous solution by applying an external magnetic field. The prepared Ag 2 O-modified CoFe 2 O 4 exhibited much higher (about 40%) photo catalytic activity than the unmodified one. The results showed that the loading of the Ag 2 O significantly improved the photo catalytic performance of the CoFe 2 O 4 in which the Ag 2 O acted as a charge carrier to capture the delocalized electrons.

  11. Monomers and Monomer Mixtures Used in Impregnation of Fibrous Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-10-15

    Some important properties of monomers and polymers in relation to their use for reinforcement of fibrous materials are listed. Some monomers and their properties important in impregnation of fibrous materials are also listed. In general it is not advantageous to use a pure monomer for impregnation but rather a mixture of monomers or a mixture of a monomer and a low molecular weight polymer such as unsaturated polyester. Some of these mixtures which have been well studied in connection with WPC are listed together with some of their properties when used in WPC. Other monomer mixtures may well come in question and other monomers can probably be used. For instance, it is reported from Japan that the cheap monomer ethyleneoxide, which cannot be polymerized by gamma radiation as such, can be polymerized (in bulk) as a mixture with methylmethacrylate. Good results with WPC have generally been obtained without swelling agents but more is grafted if some swelling agent is used, and it is possible that a swelling agent might be useful in the case of fibre-boards. Solvents, plasticizers, crosslinkable natural resins, aromatic chlorinated hydrocarbons, and retardants can be added, and with their use the properties of WPC can be widely modified. For example, a chlorinated wax can act as retardant, can reduce the total dose of radiation and can increase the flame resistance simultaneously.

  12. Electrical transport and temperature coefficient of resistance in polycrystalline La0.7−xAgxCa0.3MnO3 pellets: Analysis in terms of a phase coexistence transport model and phase separation model

    International Nuclear Information System (INIS)

    Phong, P.T.; Nguyen, L.H.; Manh, D.H.; Phuc, N.X.; Lee, I.-J.

    2013-01-01

    The temperature dependent resistivity and temperature coefficient of resistance of Ag doped La 0.7−x Ag x Ca 0.3 MnO 3 polycrystalline pellets (x=0, 0.05, 0.10, 0.15, and 0.20) are investigated. Ag substitution enhances the conductivity of this system. The Curie temperature also increases from 260 to 283 K with increasing Ag content. Using phase-coexistence transport model and phase separation model, we calculated the resistivity as a function of temperature and the temperature coefficient of resistivity (TCR) behavior. Comparing the calculated maximum TCR, we found that it is related to activation energy, transition temperature, and disorder in doped manganites. The relationship between the proposed TCR behavior and the transport parameters can suggest conditions improving TCR max of doped manganites for the use of the bolometric infrared detectors

  13. Phase equilibria, crystal chemistry, electronic structure and physical properties of Ag-Ba-Ge clathrates

    Energy Technology Data Exchange (ETDEWEB)

    Zeiringer, I.; Chen Mingxing [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Bednar, I.; Royanian, E.; Bauer, E. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Podloucky, R.; Grytsiv, A. [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Rogl, P., E-mail: peter.franz.rogl@univie.ac.at [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Effenberger, H. [Institute of Mineralogy and Crystallography, University of Vienna, A-1090 Wien (Austria)

    2011-04-15

    In the Ag-Ba-Ge system the clathrate type-{Iota} solid solution, Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y}, extends at 800 deg. C from binary Ba{sub 8}Ge{sub 43{open_square}3} ({open_square} is a vacancy) to Ba{sub 8}Ag{sub 5.3}Ge{sub 40.7}. For the clathrate phase (1 {<=} x {<=} 5.3) the cubic space group Pm3-bar n was established by X-ray powder diffraction and confirmed by X-ray single-crystal analyses of the samples Ba{sub 8}Ag{sub 2.3}Ge{sub 41.9{open_square}1.8} and Ba{sub 8}Ag{sub 4.4}Ge{sub 41.3{open_square}0.3}. Increasing the concentration of Ag causes the lattice parameters of the solid solution to increase linearly from a value of a = 1.0656 (x = 0, y = 3) to a = 1.0842 (x = 4.8, y = 0) nm. Site preference determination using X-ray refinement reveals that Ag atoms preferentially occupy the 6d site randomly mixed with Ge and vacancies, which become filled in the compound Ba{sub 8}Ag{sub 4.8}Ge{sub 41.2} when the Ag content increases. At 600 {sup o}C the phase region of the clathrate solution Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} becomes separated from the Ba-Ge boundary and extends from 6.6 to 9.8 at.% Ag. The compound Ba{sub 6}Ge{sub 25} (clathrate type-{Iota}X) dissolves at 800 {sup o}C a maximum of 1.5 at.% Ag. The homogeneity regions of the two ternary compounds BaAg{sub 2-x}Ge{sub 2+x} (ThCr{sub 2}Si{sub 2}-type, 0.2 {<=} x {<=} 0.7) and Ba(Ag{sub 1-x}Ge{sub x}){sub 2} (AlB{sub 2}-type, 0.65 {<=} x {<=} 0.75) were established at 800 deg. C. Studies of transport properties for the series of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} compounds evidenced that electrons are the predominant charge carriers with the Fermi energy close to a gap. Its position can be fine-tuned by the substitution of Ge by Ag atoms and by mechanical processing of the starting material, Ba{sub 8}Ge{sub 43}. The proximity of the electronic structure at Fermi energy of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} to a gap is also corroborated by density

  14. Controlling interface oxygen for forming Ag ohmic contact to semi-polar (1 1 -2 2) plane p-type GaN

    Science.gov (United States)

    Park, Jae-Seong; Han, Jaecheon; Seong, Tae-Yeon

    2014-11-01

    Low-resistance Ag ohmic contacts to semi-polar (1 1 -2 2) p-GaN were developed by controlling interfacial oxide using a Zn layer. The 300 °C-annealed Zn/Ag samples showed ohmic behavior with a contact resistivity of 6.0 × 10-4 Ω cm2 better than that of Ag-only contacts (1.0 × 10-3 Ω cm2). The X-ray photoemission spectroscopy (XPS) results showed that annealing caused the indiffusion of oxygen at the contact/GaN interface, resulting in the formation of different types of interfacial oxides, viz. Ga-oxide and Ga-doped ZnO. Based on the XPS and electrical results, the possible mechanisms underlying the improved electrical properties of the Zn/Ag samples are discussed.

  15. Photocatalytic oxidation removal of Hg"0 using ternary Ag/AgI-Ag_2CO_3 hybrids in wet scrubbing process under fluorescent light

    International Nuclear Information System (INIS)

    Zhang, Anchao; Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao; Xiang, Jun

    2017-01-01

    Highlights: • Ag/AgI-Ag_2CO_3 hybrids were employed for Hg"0 removal under fluorescent light. • Superoxide radical (·O_2"−) played a key role in Hg"0 removal. • NO exhibited a significant effect on Hg"0 removal in comparison to SO_2. • The mechanism for enhanced Hg"0 removal over Ag/AgI-Ag_2CO_3 was proposed. - Abstract: A series of ternary Ag/AgI-Ag_2CO_3 photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg"0 removal in a wet scrubbing reactor. The hybrids were characterized by N_2 adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg"0 removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg"0 removal. NO exhibited significant effect on Hg"0 removal in comparison to SO_2. Among these ternary Ag/AgI-Ag_2CO_3 hybrids, Ag/AgI(0.1)-Ag_2CO_3 showed the highest Hg"0 removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag_2CO_3 and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag"0 NPs). The trapping studies of reactive radicals showed that the superoxide radicals (·O_2"−) may play a key role in Hg"0 removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg"0 removal over Ag/AgI(0.1)-Ag_2CO_3 hybrid under fluorescent light was proposed.

  16. Improving g-C{sub 3}N{sub 4} photocatalysis for NO{sub x} removal by Ag nanoparticles decoration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yanjuan [Air Environmental Modelling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institutes, College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225 (China); Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Xiong, Ting; Ni, Zilin [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Liu, Jie [Air Environmental Modelling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institutes, College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225 (China); Dong, Fan, E-mail: dfctbu@126.com [Air Environmental Modelling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institutes, College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225 (China); Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Zhang, Wei, E-mail: andyzhangwei@163.com [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Ho, Wing-Kei [Department of Science and Environmental Studies, The Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Hong Kong (China)

    2015-12-15

    Graphical abstract: Ag/g-C{sub 3}N{sub 4} nanocomposites were prepared via a facile method for enhanced photocatalytic NO{sub x} removal due to surface plasmon resonance of Ag. - Highlights: • The Ag/g-C{sub 3}N{sub 4} nanocomposites were prepared using urea as the precursor. • The Ag/g-C{sub 3}N{sub 4} nanocomposites were applied in removal of NO{sub x} in air. • The Ag nanoparticles enhanced the photocatalytic activity of g-C{sub 3}N{sub 4}. • The surface plasmon resonance of Ag played a key role in photocatalysis. - Abstract: In order to overcome the intrinsic drawback of pristine g-C{sub 3}N{sub 4}, we prepared g-C{sub 3}N{sub 4} nanosheets with enhanced photocatalytic performance by Ag nanoparticles decoration using urea as the precursor. It was revealed that the monodispersed Ag nanoparticles were deposited on the surface of g-C{sub 3}N{sub 4} nanosheets. The Ag/g-C{sub 3}N{sub 4} nanocomposites were applied in removal of NO{sub x} in air under visible light irradiation. The results showed that the decoration of Ag nanoparticles not only enhanced the photocatalytic activity of g-C{sub 3}N{sub 4} nanosheets, but also benefited the oxidation of NO to final products. The increased visible light absorption arising from the surface plasmon resonance of Ag and improved separation and transfer of photoinduced carriers over Ag/g-C{sub 3}N{sub 4} composites were demonstrated by the UV–vis diffuse reflectance spectra and photoluminescence spectra, respectively. It was therefore proposed that the enhanced photocatalytic activity of Ag/g-C{sub 3}N{sub 4} composites could be attributed to the extended light response range and enhanced charge separation due to the introduction of Ag nanoparticles.

  17. Optical and electrical characterization of AgInS2 thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Calixto-Rodriguez, M.; Martinez, H.; Calixto, M.E.; Pena, Y.; Martinez-Escobar, Dalia; Tiburcio-Silver, A.; Sanchez-Juarez, A.

    2010-01-01

    Silver indium sulfide (AgInS 2 ) thin films have been prepared by spray pyrolysis (SP) technique using silver acetate, indium acetate, and N, N-dimethylthiourea as precursor compounds. Films were deposited onto glass substrates at different substrate temperatures (T s ) and Ag:In:S ratios in the starting solutions. Optical transmission and reflection as well as electrical measurements were performed in order to study the effect of deposition parameters on the optical and electrical properties of AgInS 2 thin films. X-ray diffraction measurements were used to identify the deposited compounds. It was found that different compounds such as AgInS 2 , Ag 2 S, In 2 O 3 , and In 2 S 3 can be grown only by changing the Ag:In:S ratio in the starting solution and T s . So that, by carefully selecting the deposition parameters, single phase AgInS 2 thin films can be easily grown. Thin films obtained using a molar ratio of Ag:In:S = 1:1:2 and T s = 400 o C, have an optical band gap of 1.9 eV and n-type electrical conductivity with a value of 0.3 Ω -1 cm -1 in the dark.

  18. The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared.

    Science.gov (United States)

    Zamiri, Reza; Abbastabar Ahangar, Hossein; Zakaria, Azmi; Zamiri, Golnoosh; Shabani, Mehdi; Singh, Budhendra; Ferreira, J M F

    2015-01-01

    In this paper a template-free precipitation method was used as an easy and low cost way to synthesize Ag2S semiconductor nanoparticles. The Kramers-Kronig method (K-K) and classical dispersion theory was applied to calculate the optical constants of the prepared samples, such as the reflective index n(ω) and dielectric constant ε(ω) in Far-infrared regime. Nanocrystalline Ag2S was synthesized by a wet chemical precipitation method. Ag2S nanoparticle was characterized by X-ray diffraction, Scanning Electron Microscopy, UV-visible, and FT-IR spectrometry. The refinement of the monoclinic β-Ag2S phase yielded a structure solution similar to the structure reported by Sadanaga and Sueno. The band gap of Ag2S nanoparticles is around 0.96 eV, which is in good agreement with previous reports for the band gap energy of Ag2S nanoparticles (0.9-1.1 eV). The crystallite size of the synthesized particles was obtained by Hall-Williamson plot for the synthesized Ag2S nanoparticles and it was found to be 217 nm. The Far-infrared optical constants of the prepared Ag2S semiconductor nanoparticles were evaluated by means of FTIR transmittance spectra data and K-K method. Graphical abstractThe Far-infrared optical constants of Ag2S semiconductor nanoparticles.

  19. Diffusion of Ag, Au and Cs implants in MAX phase Ti{sub 3}SiC{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin, E-mail: weilin.jiang@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States); Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R. [Pacific Northwest National Laboratory, Richland, WA (United States); Zhang, Chonghong; Gou, Jie [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China)

    2015-07-15

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti{sub 3}SiC{sub 2}), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti{sub 3}SiC{sub 2} has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti{sub 3}SiC{sub 2}/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including X-ray diffraction, electron backscatter diffraction, energy dispersive X-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti{sub 3}SiC{sub 2} within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti{sub 3}SiC{sub 2} was also observed. Cs out-diffusion and release from Ti{sub 3}SiC{sub 2} occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti{sub 3}SiC{sub 2} as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  20. RRR and thermal conductivity of Ag and Ag0.2wt%Mg alloy in Ag/Bi-2212 wires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pei [Fermilab; Ye, L. [North Carolina State U.; Jiang. J., Jiang. J. [Natl. High Mag. Field Lab.; Shen, T. [Fermilab

    2015-08-19

    The residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ~ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2wt%Mg) wires as well as the resistivity of Ag and Ag- 0.2wt%Mg in the state-of-the-art Ag/Bi-2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi-2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ~ 220 while the oxide-dispersion strengthened AgMg exhibits a RRR of ~ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn’t degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into the silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt%Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.

  1. Ag nanocrystals anchored CeO2/graphene nanocomposite for enhanced supercapacitor applications

    International Nuclear Information System (INIS)

    Vanitha, M.; Keerthi; Cao, P.; Balasubramanian, N.

    2015-01-01

    Highlights: • Quasi spherical Ag and CeO 2 nanoparticles were decorated on rGO matrix. • The Ag/CeO 2 /rGO nanocomposite exhibits specific capacitance of 710 F g −1 . • Ag plays an imperative role in improving the electrochemical performance. - Abstract: A novel ternary Ag decorated CeO 2 /reduced graphene oxide (rGO) nanocomposite was synthesized by a facile hydrothermal method with polyvinylpyrrolidone (PVP) as surface directing agent and was designed as an electrode material for supercapacitors application. The structure and morphology of the nanocomposites were analyzed by X-ray diffraction analysis (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The synergistic effect between the CeO 2 nanoparticles wrapped rGO matrix with Ag nanoparticles gives rise to a nanostructure, empowering the material with enhanced electrochemical performance. The electrochemical characterization was performed using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopic studies in 3 M KOH aqueous electrolyte. The nanocomposite electrode materials possess a high specific capacitance of 710.42 F g −1 at an applied current density of 0.2 A g −1 , which was nearly two fold higher than CeO 2 /rGO nanocomposite. This work endows a new route for building Ag/CeO 2 /rGO ternary nanocomposite which will have some impact on the exploitation of novel ternary electrode materials for supercapacitor applications

  2. The catalytic activity of Ag{sub 2}S-montmorillonites as peroxidase mimetic toward colorimetric detection of H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingyun, E-mail: qyliu@sdust.edu.cn [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Jiang, Yanling; Zhang, Leyou; Zhou, Xinpei [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Lv, Xintian [School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000 (China); Ding, Yanyuan; Sun, Lifang; Chen, Pengpeng [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Yin, Hailiang [Academy of Science & Technology, China University of Petroleum, Dongying 257061 (China)

    2016-08-01

    Nanocomposites based on silver sulfide (Ag{sub 2}S) and Ca-montmorillonite (Ca{sup 2+}-MMT) were synthesized by a simple hydrothermal method. The nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectra (FTIR). The as-prepared Ag{sub 2}S-MMT nanocomposites were firstly demonstrated to possess intrinsic peroxidase-like activity and could rapidly catalytically oxidize the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H{sub 2}O{sub 2} to produce a blue product which can be seen by the naked eye in only one minute. The experimental results revealed that the Ag{sub 2}S-MMT nanocomposites exhibit higher thermal durance. Based on the TMB–H{sub 2}O{sub 2} catalyzed color reaction, the Ag{sub 2}S-MMT nanocomposites were exploited as a new type of biosensor for detection and estimation of H{sub 2}O{sub 2} through a simple, cheap and selective colorimetric method. - Highlights: • Ag{sub 2}S – montmorillonites (MMT) was synthesized by a facile one step method. • The as-prepared Ag{sub 2}S-MMT nanocomposites firstly demonstrate to possess intrinsic peroxidase-like activity. • Ag{sub 2}S-MMT nanocomposites showed highly catalytic activity. • Ag{sub 2}S-MMT could rapidly catalytically oxidize substrates TMB in the presence of H{sub 2}O{sub 2} in 1 min. • The catalytic mechanism is from the generation of hydroxyl radical (·OH) decomposed from H{sub 2}O{sub 2}.

  3. AgI/Ag3PO4 hybrids with highly efficient visible-light driven photocatalytic activity

    International Nuclear Information System (INIS)

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-01-01

    Highlights: • AgI/Ag 3 PO 4 hybrid was prepared via an in situ anion-exchange method. • AgI/Ag 3 PO 4 displays the excellent photocatalytic activity under visible light. • AgI/Ag 3 PO 4 readily transforms to be Ag@AgI/Ag 3 PO 4 system. • h + and O 2 ·− play the major role in the AO 7 decolorization over AgI/Ag 3 PO 4 . • The activity enhancement is ascribed to a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag 3 PO 4 hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag 3 PO 4 photocatalysts displayed the higher photocatalytic activity than pure Ag 3 PO 4 and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag 3 PO 4 with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag 3 PO 4 readily transformed to be Ag@AgI/Ag 3 PO 4 system while the photocatalytic activity of AgI/Ag 3 PO 4 remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h + and O 2 ·− play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag 3 PO 4 hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI, in which Ag nanoparticles act as the charge separation center

  4. Structure of human insulin monomer in water/acetonitrile solution

    International Nuclear Information System (INIS)

    Bocian, Wojciech; Sitkowski, Jerzy; Bednarek, Elzbieta; Tarnowska, Anna; Kawecki, Robert; Kozerski, Lech

    2008-01-01

    Here we present evidence that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. An NMR-derived human insulin monomer structure in H 2 O/CD 3 CN, 65/35 vol%, pH 3.6 is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Acta Crystallogr. 2003 Sec. D59, 474) and with NMR structures in water and organic cosolvent. Detailed analysis using PFGSE NMR, temperature-dependent NMR, dilution experiments and CSI proves that the structure is monomeric in the concentration and temperature ranges 0.1-3 mM and 10-30 deg. C, respectively. The presence of long-range interstrand NOEs, as found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Starting from structures calculated by the program CYANA, two different molecular dynamics simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER V C), or including a generalized Born solvent model (AMBER G B)

  5. Reversible conversion between AgCl and Ag in AgCl-doped RSiO{sub 3/2}-TiO{sub 2} films prepared by a sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Go, E-mail: gokawamura@ee.tut.ac.jp [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Tsurumi, Yuuki [Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Sakai, Mototsugu; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan)

    2011-10-17

    Highlights: {center_dot} The reversible redox behavior between AgCl and Ag in RSiO{sub 3/2}-TiO{sub 2} film is studied. {center_dot} TiO{sub 2} component induces Cl to remain in the film after conversion of AgCl to Ag. {center_dot} The survival of Cl is essential for reconversion of Ag to AgCl. {center_dot} The film shows potential to be applied as rewritable holographic material. - Abstract: The reversible redox behavior exhibited by AgCl-doped organosilsesquioxane-titania gel films is studied. Films prepared by the sol-gel method show reversible color changes with blue laser irradiation and subsequent heat treatment, which is based on the formation of Ag and AgCl nanoparticles, respectively. Two-beam interference exposure experiments reveal that the films have potential to be applied as rewritable holographic materials. A large titania content is essential for the conversion of Ag to AgCl because it induces the Cl to remain near the Ag nanoparticles during blue laser irradiation, allowing the Cl to react with neighboring Ag nanoparticles to reform AgCl upon subsequent heat treatment.

  6. Structural elucidation of AgAsS2 glass by the analysis of clusters formed during laser desorption ionisation applying quadrupole ion trap time-of-flight mass spectrometry.

    Science.gov (United States)

    Mawale, Ravi Madhukar; Alberti, Milan; Zhang, Bo; Fraenkl, Max; Wagner, Tomas; Havel, Josef

    2016-03-15

    The structure of AgA(s)S2 glass, which has a broad range of applications, is still not well understood and a systematic mass spectrometric analysis of AgA(s)S2 glass is currently not available. Elucidation of the structure should help in the development of this material. The AgA(s)S2 glass was prepared by the melt-quenched technique. Laser desorption ionisation (LDI) using quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to follow the generation of Ag(m)As(n)S(x) clusters. The stoichiometry of the clusters generated was determined via collision-induced dissociation (CID) and modelling of isotopic patterns. The AgA(s)S2 glass was characterised by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. The LDI of AgA(s)S2 glass leads to the formation of unary (Ag+/− and As(3+)) species, 38 binary (As(n)S(x), Ag(m)S(x)), and 98 ternary (Ag(m)As(n)S(x)) singly charged clusters. The formation of silver-rich nano-grains during AgA(s)S2 glass synthesis has been identified using TEM analysis and also verified by QIT-TOFMS. TOFMS was shown to be a useful technique to study the generation of Ag(m)As(n)S(x )clusters. SEM, TEM and EDX analysis proved that the structure of AgA(s)S2 glass is ‘grain-like’ where grains are either: (1) Silver-rich ‘islands’ (Ag(m,) m up to 39) connected by arsenic and/or sulfur or arsenic sulfide chains or (2) silver sulfide (Ag2S)m (m = 9-20) clusters also similarly inter-connected. This obtained structural information may be useful for the development of ultra-high-density phase-change storage and memory devices using this kind of glass as a base.

  7. In situ thermal residual stress evolution in ultrathin ZnO and Ag films studied by synchrotron x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Renault, P.O., E-mail: Pierre.olivier.renault@univ-poitiers.fr [Institut P' , CNRS, Universite de Poitiers, UPR 3346, 86962 Futuroscope (France); Krauss, C.; Le Bourhis, E.; Geandier, G. [Institut P' , CNRS, Universite de Poitiers, UPR 3346, 86962 Futuroscope (France); Benedetto, A. [Saint-Gobain Recherche (SGR), 93303 Aubervilliers (France); Grachev, S.Y.; Barthel, E. [Lab. Surface du Verre et Interfaces (SVI), UMR-CNRS 125, 93303 Aubervilliers (France)

    2011-12-30

    Residual-stress evolution in sputtered encapsulated ZnO/Ag/ZnO stack has been studied in-situ by synchrotron x-ray diffraction when heat treated. The ZnO/Ag/ZnO stack encapsulated into Si{sub 3}N{sub 4} layers and deposited on (001) Si substrates was thermally heated from 25 Degree-Sign C to 600 Degree-Sign C and cooled down to 25 Degree-Sign C. X-ray diffraction 2D patterns captured continuously during the heat treatment allowed monitoring the diffraction peak shifts of both Ag (15 nm thick) and ZnO (10 nm and 50 nm thick) sublayers. Due to the mismatch between the coefficients of thermal expansion, the silicon substrate induced compressive thermal stresses in the films during heating. We first observed a linear increase of the compressive stress state in both Ag and ZnO films and then a more complex elastic-stress evolution starts to operate from about 100 Degree-Sign C for Ag and about 250 Degree-Sign C for ZnO. Thermal contraction upon cooling seems to dominate so that the initial compressive film stresses relax by about 300 and 700 MPa after thermal treatment for ZnO and Ag, respectively. The overall behavior is discussed in terms of structural changes induced by the heat treatment.

  8. Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures

    Science.gov (United States)

    Liu, Ruoyu; Hu, Peiguang; Chen, Shaowei

    2012-10-01

    Heterostructures based on Ag3PO4 nanoparticles and TiO2 nanobelts were prepared by a coprecipitation method. The crystalline structures were characterized by X-ray diffraction measurements. Electron microscopic studies showed that the Ag3PO4 nanoparticles and TiO2 nanobelts were in intimate contact which might be exploited to facilitate charge transfer between the two semiconductor materials. In fact, the heterostructures exhibited markedly enhanced photocatalytic activity as compared with unmodified TiO2 nanobelts or commercial TiO2 colloids in the photodegradation of methyl orange under UV irradiation. This was accounted for by the improved efficiency of interfacial charge separation thanks to the unique alignments of their band structures. Remarkably, whereas the photocatalytic activity of the heterostructure was comparable to that of Ag3PO4 nanoparticles alone, the heterostructures exhibited significantly better stability and reusability in repeated tests than the Ag3PO4 nanoparticles.

  9. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers

    KAUST Repository

    Pang, Maolin; Hu, Jiangyong; Zeng, Huachun

    2010-01-01

    of this highly asymmetric dipolar composite, photocatalytic inactivation of Escherichia coli K-12 in the presence of the as-prepared Ag 2S/Ag heterodimers has been carried out under UV irradiation. The added Ag2S/Ag heterodimers show good chemical stability under

  10. Ag nanodots decorated SiO2 coated ZnO core-shell nanostructure with enhanced luminescence property as potential imaging agent

    Science.gov (United States)

    Gupta, Jagriti; Barick, K. C.; Hassan, P. A.; Bahadur, Dhirendra

    2018-04-01

    Ag decorated silica coated ZnO nanocomposite (Ag@SiO2@ZnO NCs) has been synthesized by soft chemical approach. The physico-chemical properties of Ag@SiO2@ZnO NCs are investigated by various sophisticated characterization techniques such as X-ray diffraction, Transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible absorption and photoluminescent spectroscopy. X-ray diffraction confirms the phase formation of ZnO and Ag in nanocomposite. TEM micrograph clearly shows that Ag nanodots are well decorated over silica coated ZnO NCs. The photoluminescent study reveals the enhancement in the photoluminance property when the Ag nanodots are decorated over silica coated ZnO nanocomposite due to an electromagnetic coupling between excitons and plasmons. Furthermore, the photoluminescent property is an important tool for bio-imaging application, reveal that NCs give green and red emission after excitation with 488 and 535 nm. Therefore, low cytotoxicity and excellent fluorescence stability in vitro makes it a more suitable material for both cellular imaging and therapy for biomedical applications.

  11. ESR of Ag2+ ions in S2F2 crystal

    International Nuclear Information System (INIS)

    Zaripov, M.M.; Ulanov, V.A.; Falin, M.L.

    1989-01-01

    Experimental data on investigation of bivalent silver ions in S 2 F 2 crystals are presented. Due to the investigation of the grown crystals it is determined that centres of univalent silver ore formed in SrF 2 during crystal growth. X-ray irradiation at room temperature results in the transition of these centres in bivalent staes. Investigation of temperature dependence of ESR spectra type has allowed to make the conclusion about the presence of Jahn-Teller dynamic effect. Analysis of experimental data allows to develop a model of the investigated paramagnetic complex in S 2 F 2 crystal where Ag 2* ion has coordination polyhedron in the form of eight F - ion cube distorted by C 3 3 axis

  12. Effect of radiation combined with Chinese medicinal monomers on Me180 cells

    International Nuclear Information System (INIS)

    Geng Chuanying; Xu Bo; Li Hongyan; Chen Zhihua; Xia Qisheng; Xu Mei; Liu Xuan; Xiang Qing; Liu Yufeng

    2009-01-01

    Objective: To observe the effect of radiation treatment combined with Chinese medicinal monomers on the proliferation function, telomerase activity, expressions of apoptosis- and proliferation-related genes of Me180 cells. Methods: Me180 cells were cultured in the medium with oleanolic acid, curcumin and allicin. The survival rates of cells were detected by the methods of MTT, the telomerase activity by the method of telomeric repeat amplification protocol (TRAP) and the apoptosis -and proliferation-related genes by the method of reverse transeriptase-PCR. Me180 cells were cultured in the medium with Chinese medicinal monomers, and exposed to X-ray irradiation and the survival rates were detected. Results: The results of MTY showed that survival rates of tumor cells exposed to X rays in combination with oleanolic acid, curcumin and allicin were decreased significantly(t=2.81, 4.16, and 3.42, P<0.05). Chinese medicinal monomers inhibited the telomerase activity of MelS0 cells and the inhibiting function changed with time. At 16 h, the telomerase activities of MelS0 cells administered with oleanolic acid and allicin were reduced markedly (t=5.11 and 5.29, P<0.05). After 48 h, the telomerase activities returned to the normal level. The gene expressions of p21 and p16 in Me180 cells treated with oleanolic acid were 2.43 and 2.78 times higher than the control, respectively, while those of cyclin D1 and CDK4 were 56% and 41% of the control, respectively. Conclusions: Chinese medicinal monomers could effectively kill tumor cells, inhibit the telomerase activity and the expression of proliferation-related genes, and enhance the radiosensitivity of tumor cells. (authors)

  13. Improved solar-driven photocatalytic performance of Ag_2CO_3/(BiO)_2CO_3 prepared in-situ

    International Nuclear Information System (INIS)

    Zhong, Junbo; Li, Jianzhang; Huang, Shengtian; Cheng, Chaozhu; Yuan, Wei; Li, Minjiao; Ding, Jie

    2016-01-01

    Highlights: • Ag_2CO_3/(BiO)_2CO_3 photocatalysts were prepared in-situ. • The photo-induced charge separation rate has been greatly increased. • The photocatalytic activity has been greatly promoted. - Abstract: Ag_2CO_3/(BiO)_2CO_3 composites have been fabricated in-situ via a facile parallel flaw co-precipitation method. The specific surface area, structure, morphology, and the separation rate of photo-induced charge pairs of the photocatalysts were characterized by Brunauer–Emmett–Teller (BET) method, X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy(DRS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and surface photovoltage (SPV) spectroscopy, respectively. XRD patterns and DRS demonstrated that Ag_2CO_3 has no effect on the crystal phase and bandgap of (BiO)_2CO_3. The existence of Ag_2CO_3 in the composites enhances the separation rate of photo-induced charge pairs of the photocatalysts. The photocatalytic performance of Ag_2CO_3/(BiO)_2CO_3 was evaluated by the decolorization of methyl orange (MO) aqueous solution under simulated solar irradiation. It was found that the simulated solar-induced photocatalytic activity of Ag_2CO_3/(BiO)_2CO_3 copmposites was significantly improved, which was mainly attributed to the enhanced surface area and the separation rate of photo-induced charge pairs.

  14. An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission.

    Science.gov (United States)

    Lei, Zhen; Guan, Zong-Jie; Pei, Xiao-Li; Yuan, Shang-Fu; Wan, Xian-Kai; Zhang, Jin-Yuan; Wang, Quan-Ming

    2016-08-01

    A red-near-IR dual-emissive nanocluster with the composition [Au10 Ag2 (2-py-C≡C)3 (dppy)6 ](BF4 )5 (1; 2-py-C≡C is 2-pyridylethynyl, dppy=2-pyridyldiphenylphosphine) has been synthesized. Single-crystal X-ray structural analysis reveals that 1 has a trigonal bipyramidal Au10 Ag2 core that contains a planar Au4 (2-py-C≡C)3 unit sandwiched by two Au3 Ag(dppy)3 motifs. Cluster 1 shows intense red-NIR dual emission in solution. The visible emission originates from metal-to-ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3 Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2-pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time-dependent density functional theory (TD-DFT) calculation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Recovery of Ag from used X-ray films by enzyme hydrolysis gelatine membrane; Zerachin maku no sanso kasui bunkai ni yoru shiyozumi X sen film kara no gin no kaishu

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, H [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1994-09-05

    The recovery of Ag from used X-ray films was tested by enzyme hydrolysis of gelatine films. The gelatine films of used X-ray films fixed on the bottom surface of a agitation bath type batch reactor were first hydrolyzed with protease B21-2. As a result, the hydrolysis rate was dependent on the diffusion rate of enzyme or decomposed products in liquid films and the enzyme reaction rate on the gelatine film surface, while it was independent of the existence of Ag particles. Based on these results, the models for a hydrolysis reaction mechanism and an isolation mechanism of Ag particles were derived. The tubular reactor of 4,800 cm{sup 3} in capacity with inner agitating blades was next prepared, and used X-ray film tips fed from a hopper were continuously hydrolyzed while agitating. As a result, the experimental result well agreed with the model calculation one, and Ag particles were separated completely at 37{degree}C, 9.1 rpm in blade revolution and more than 600 Unit/mL in enzyme content. 4 refs., 3 figs.

  16. Chemically deposited In2S3–Ag2S layers to obtain AgInS2 thin films by thermal annealing

    International Nuclear Information System (INIS)

    Lugo, S.; Peña, Y.; Calixto-Rodriguez, M.; López-Mata, C.; Ramón, M.L.; Gómez, I.; Acosta, A.

    2012-01-01

    Highlights: ► We obtained polycrystalline silver indium sulfide thin films through the annealing of chemically deposited In 2 S 3 –Ag 2 S films. ► According to XRD chalcopyrite structure of AgInS 2 was obtained. ► AgInS 2 thin film has a band gap of 1.86 eV and a conductivity value of 1.2 × 10 −3 (Ω cm) −1 . - Abstract: AgInS 2 thin films were obtained by the annealing of chemical bath deposited In 2 S 3 –Ag 2 S layers at 400 °C in N 2 for 1 h. According to the XRD and EDX results the chalcopyrite structure of AgInS 2 has been obtained. These films have an optical band gap, E g , of 1.86 eV and an electrical conductivity value of 1.2 × 10 −3 (Ω cm) −1 .

  17. Structural, morphological, optical and photocatalytic investigation of Ag-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Virender Singh; Tanwar, Amit [Department of Electronic Science, Kurukshetra University, Kurukshetra-136119 (India); Singh, Davender, E-mail: Davender-kadian@rediffmail.com; Maan, A. S. [Departments of Physics, Maharshi Dayanand University, Rohtak-124001 (India)

    2016-05-06

    The pure and Ag-doped TiO{sub 2} nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO{sub 2} and 8.86 nm for 6 mol % Ag doped TiO{sub 2}. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticles showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc’s plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticles showed that Ag-doped TiO{sub 2} degrades MB dye more efficiently than pure TiO{sub 2}.

  18. Electrochemical corrosion behaviour of lead-free Sn-8.5 Zn-X Ag-0.1 Al-0.5 Ga solder in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Mohanty, Udit Surya; Lin, K.-L.

    2005-01-01

    The electrochemical corrosion behaviour of Pb-free Sn-8.5 Zn-X Ag-0.1 Al-0.5 Ga solder in 3.5% NaCl solution was investigated by using potentiodynamic polarization methods, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) analysis. The results obtained from polarization studies showed that an increase in the Ag content from 0.1 to 1.5 wt% decreased the corrosion current density (I corr ) and shifted the corrosion potential (E corr ) towards more noble values. These changes were also reflected in the linear polarization resistance (LPR), corrosion rate, anodic Tafel slope (b A ) and the cathodic Tafel slope (b c ) values, respectively. Passivation behaviour was noted in the Sn-Zn-X Ag-Al-Ga solders with Ag content > 0.1 wt%. The oxides and hydroxides of zinc were responsible for the formation of passive film. Presence of Ag atoms in the oxide layer also improved the passivation behaviour of solders to a certain extent. X-ray photoelectron spectroscopy revealed that two different oxygen species were formed on the surface films, one was assigned to OH - in Zn(OH) 2 and the other to O 2 - in ZnO. XPS depth profile results revealed that the two species had different depth distribution in the films. SEM and EDX analyses confirmed SnCl 2 as the major corrosion product formed after the electrochemical experiments

  19. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid.

    Science.gov (United States)

    Mirzaee, Majid; Vaezi, Mohammadreza; Palizdar, Yahya

    2016-12-01

    Silver-doped hydroxyapatite (Ca10-xAgx(PO4)6(OH)2-x) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X=0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600°C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag(2+) and Ag(+), respectively. However, only about 2% of silver was in the Ag(0) state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO2. HAp and silver doped HAp (X=0.05) are regarded to be hydrophilic due to a large number of -OH groups on the surface. The sample with content of silver (x=0.05) also showed excellent antimicrobial efficacy (>99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Thermodynamics of the amalgam cells {l_brace}Cs-amalgam|CsX (m)|AgX|Ag{r_brace} (X=Cl, Br, I) and primary medium effects in (methanol+water) (acetonitrile+water), and (1,4-dioxane+water) solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Falciola, Luigi [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, I-20133 Milan (Italy)]. E-mail: luigi.falciola@unimi.it; Longoni, Giorgio [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, I-20133 Milan (Italy); Mussini, Patrizia R. [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, I-20133 Milan (Italy)]. E-mail: patrizia.mussini@unimi.it; Mussini, Torquato [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, I-20133 Milan (Italy)]. E-mail: torquato.mussini@unimi.it

    2006-06-15

    The potential difference E of the amalgam cell {l_brace}Cs{sub x}Hg{sub 1-x}|CsX (m)|AgX|Ag{r_brace} (X=Cl, Br, I) has been measured as a function of the mole fraction x{sub Cs} of Cs metal in amalgams and of the molality m of CsX in (methanol+water) (acetonitrile+water), and (1,4-dioxane+water) solvent mixtures containing up to 0.75 mass fraction of the organic component, at the temperature 298.15K. The respective standard molal potential differences E{sub m}{sup o} have been determined together with the relevant activity coefficients {gamma}{sub +}/- as functions of the CsX molality. The found E{sub m}{sup o} values show a parabolic decrease with increasing proportion of the organic component in the solvent mixture. Analysis of the relevant primary medium effects upon CsX shows that the CsX transfer from the standard state in water to the standard state in the (aqueous+organic) mixture is always unfavoured, and the acetonitrile is the least unfavoured co-solvent studied. Analysis of the primary medium effect upon CsI in terms of Feakins and French's theory leads to a primary hydration number close to zero, which is consistent with the results of supplementary EXAFS experiments on Cs{sup +} and I{sup -} in (acetonitrile+water) solvent mixtures.

  1. Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor

    International Nuclear Information System (INIS)

    Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jintae; Cho, Moo Hwan

    2013-01-01

    A novel nonenzymatic sensor for H 2 O 2 was developed based on an Ag@TiO 2 nanocomposite synthesized using a simple and cost effective approach with an electrochemically active biofilm. The optical, structural, morphological and electrochemical properties of the as-prepared Ag@TiO 2 nanocomposite were examined by UV–vis spectroscopy, X-ray diffraction, transmission electron microscopy and cyclic voltammetry (CV). The Ag@TiO 2 nanocomposite was fabricated on a glassy carbon electrode (GCE) and their electrochemical performance was analyzed by CV, differential pulse voltammetry and electrochemical impedance spectroscopy. The Ag@TiO 2 nanocomposite modified GCE (Ag@TiO 2 /GCE) displayed excellent performance towards H 2 O 2 sensing at − 0.73 V in the linear response range from 0.83 μM to 43.3 μM, within a detection limit and sensitivity of 0.83 μM and ∼ 65.2328 ± 0.01 μAμM −1 cm −2 , respectively. In addition, Ag@TiO 2 /GCE exhibited good operational reproducibility and long term stability. - Graphical abstract: Synthesis of Ag@TiO 2 nanocomposite by electrochemically active biofilm for H 2 O 2 sensing. - Highlights: • Electrochemically active biofilm (EAB) • EAB mediated synthesis of Ag@TiO 2 nanocomposite • Ag@TiO 2 nanocomposite modified glassy carbon electrode • Ag@TiO 2 /GCE for H 2 O 2 sensing • Nonenzymatic sensor for H 2 O 2

  2. Synthesis and characterization of TiO2/Ag/polymer ternary nanoparticles via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Park, Jung Tae; Koh, Joo Hwan; Seo, Jin Ah; Cho, Yong Soo; Kim, Jong Hak

    2011-01-01

    We report on the novel ternary hybrid materials consisting of semiconductor (TiO 2 ), metal (Ag) and polymer (poly(oxyethylene methacrylate) (POEM)). First, a hydrophilic polymer, i.e. POEM, was grafted from TiO 2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. These TiO 2 -POEM brush nanoparticles were used to template the formation of Ag nanoparticles by introduction of a AgCF 3 SO 3 precursor and a NaBH 4 aqueous solution for reduction process. Successful grafting of polymeric chains from the surface of TiO 2 nanoparticles and the in situ formation of Ag nanoparticles within the polymeric chains were confirmed using transmission electron microscopy (TEM), UV-vis spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). FT-IR spectroscopy also revealed the specific interaction of Ag nanoparticles with the C=O groups of POEM brushes. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the semiconductor, producing ternary hybrid inorganic-organic nanomaterials.

  3. Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone).

    Science.gov (United States)

    Chen, Aihua; Kamata, Kaori; Nakagawa, Masaru; Iyoda, Tomokazu; Haiqiao Wang, Haiqiao; Li, Xiaoyu

    2005-10-06

    We have recently demonstrated a one-step process to fabricate silver-polypyrrole (PPy) coaxial nanocables (Chen, A.; Wang, H.; Li, X. Chem. Commun. 2005, 14, 1863). The formation process of silver-PPy coaxial nanocables is discussed in this article. It was found from the results of TEM and SEM images that large numbers of silver atoms were formed when AgNO3 was added to a pyrrole solution. Then silver atoms transform to silver-PPy nanosheets with regular morphology, which will connect together to be more stable. Silver-PPy nanocables will be able to grow at the expense of the silver-PPy nanosheets. Poly(vinylpyrrolidone) (PVP) plays crucial roles in this process: as a capping agent to form silver nanowires, and as a dispersant of pyrrole monomers, which can influence the site at which pyrrole monomer exists. On the basis of experimental analysis, the possible mechanism was proposed. Because of the effect of PVP, silver ions and pyrrole monomers are apt to be adsorbed at the [111] and [100] facets of silver nanosheets, respectively. Obvious polymerization will take place on the boundary of the [111] and [100] facets. The PPy layer stays stable on the [100] facets. Meanwhile, newly formed silver atoms and silver nanosheets will further ripen and grow on the [111] facets. In a word, the morphology of final products and the formation process are determined by the reaction site between AgNO3 and the pyrrole monomer, which is influenced by PVP.

  4. Synthesis and characterizations of AgSCN nanospheres using AgCl as the precursor

    International Nuclear Information System (INIS)

    Yang Ming; Ma Jing

    2009-01-01

    Nanospheres of AgSCN with an average radius of 30-80 nm have been prepared by a simple reaction between AgCl suspension and KSCN in the presence of gelatin. Gelatin played a decisive role as an inhibitor of the direct attack of SCN - ions to AgCl surfaces and coagulation of the growing AgSCN in producing the spherical AgSCN nanoparticles. The products were characterized by X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectra techniques. The electrical conductivity of thin films of as-prepared AgSCN nanoparticles and polyethylene oxide (PEO) at room temperature was measured. The maximum value of electrical conductivity of as-prepared AgSCN-PEO was 1.53 x 10 -5 S cm -1 .

  5. Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor.

    Science.gov (United States)

    Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jintae; Cho, Moo Hwan

    2013-12-01

    A novel nonenzymatic sensor for H2O2 was developed based on an Ag@TiO2 nanocomposite synthesized using a simple and cost effective approach with an electrochemically active biofilm. The optical, structural, morphological and electrochemical properties of the as-prepared Ag@TiO2 nanocomposite were examined by UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy and cyclic voltammetry (CV). The Ag@TiO2 nanocomposite was fabricated on a glassy carbon electrode (GCE) and their electrochemical performance was analyzed by CV, differential pulse voltammetry and electrochemical impedance spectroscopy. The Ag@TiO2 nanocomposite modified GCE (Ag@TiO2/GCE) displayed excellent performance towards H2O2 sensing at -0.73 V in the linear response range from 0.83 μM to 43.3 μM, within a detection limit and sensitivity of 0.83 μM and ~65.2328±0.01 μA μM(-1) cm(-2), respectively. In addition, Ag@TiO2/GCE exhibited good operational reproducibility and long term stability. © 2013.

  6. Stable and metastable phases in reciprocal systems PbSe + Ag2I2 Ag2Se + PbI2 and PbSe + CdI2 = CdSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.

    2005-01-01

    Mutual system PbSe + Ag 2 I 2 = Ag 2 Se + PbI 2 is investigated. It is shown that diagonal Ag 2 Se-PbI 2 is stable. Liquidus surface and isothermal section at 633 K of phase diagram of PbSe-Ag 2 Se-PbI 2 system are built. Transformations directing to crystallization metastable ternary compound forming in PbSe-PbI 2 system and metastable polytype modifications of lead iodide in PbSe-Ag 2 Se-PbI 2 system at 620-685 K are studied. By hardening from molten state (1150-1220 K) new interstitial metastable phases crystallizing in CdCl 2 structural type are obtained in PbSe-Ag 2 Se-PbI 2 and PbSe + CdI 2 = CdSe + PbI 2 systems [ru

  7. Heterogeneous Ag-TiO2-SiO2 composite materials as novel catalytic systems for selective epoxidation of cyclohexene by H2O2.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available TiO2-SiO2 composites were synthesized using cetyl trimethyl ammonium bromide (CTAB as the structure directing template. Self-assembly hexadecyltrimethyl- ammonium bromide TiO2-SiO2/(CTAB were soaked into silver nitrate (AgNO3 aqueous solution. The Ag-TiO2-SiO2(Ag-TS composite were prepared via a precipitation of AgBr in soaking process and its decomposition at calcination stage. Structural characterization of the materials was carried out by various techniques including X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, N2 adsorption-desorption and ultraviolet visible spectroscopy (UV-Vis. Characterization results revealed that Ag particles were incorporated into hierarchical TiO2-SiO2 without significantly affecting the structures of the supports. Further heating-treatment at 723 K was more favorable for enhancing the stability of the Ag-TS composite. The cyclohexene oxide was the major product in the epoxidation using H2O2 as the oxidant over the Ag-TS catalysts. Besides, the optimum catalytic activity and stability of Ag-TS catalysts were obtained under operational conditions of calcined at 723 K for 2 h, reaction time of 120 min, reaction temperature of 353 K, catalyst amount of 80 mg, aqueous H2O2 (30 wt.% as oxidant and chloroform as solvent. High catalytic activity with conversion rate up to 99.2% of cyclohexene oxide could be obtainable in water-bathing. The catalyst was found to be stable and could be reused three times without significant loss of catalytic activity under the optimized reaction conditions.

  8. Microstructure and Mechanical Properties of Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca-x Y Alloys.

    Science.gov (United States)

    Kim, Yong-Ho; Yoo, Hyo-Sang; Son, Hyeon-Taek

    2018-09-01

    Magnesium and its alloys are potential candidates for many automotive and aerospace applications due to their low density and high specific strength. However, the use of magnesium as wrought products is limited because of its poor workability at ambient temperatures. Mg-Li alloys containing 5-11 wt.% Li exhibit a two-phase structure consisting of a α (hcp) Mg-rich phase and a β (bcc) Li-rich phase. Mg-Li alloys with Li content greater than 11 wt.% exhibit a single-phase structure consisting of only the β phase. In the present study, we studied the effects of Y addition on the microstructure and mechanical properties of Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca based alloys. The melt was maintained at 720 °C for 20 min and poured into a mold. Then, the as-cast Mg alloys were homogenized at 350 °C for 4 h and were hot-extruded onto a 4-mm-thick plate with a reduction ratio of 14:1. The as-cast Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca-xY (x 0, 1, 3, and 5 wt.%) alloys were composed of α-Mg, β-Li, γ-Mg2Zn3Li, I-Mg3YZn6, W-Mg3Y2Zn3, and X-Mg12YZn phases. By increasing the Y content from 0 to 5 wt.%, the composition of the W-Mg3Y2Zn3 phase increased. With increasing Y content, from 0 to 1, 3, and 5 wt.%, the average grain size and ultimate tensile of the as-extruded Mg alloys decreased slightly, from 8.4, to 3.62, 3.56, and 3.44 μm and from 228.92 to 215.57, 187.47, and 161.04 MPa, respectively, at room temperature.

  9. Avaliação da Silagem de Diferentes Híbridos de Sorgo (Sorghum bicolor, L. Moench por meio do Desempenho de Novilhos de Corte Confinados

    Directory of Open Access Journals (Sweden)

    Neumann Mikael

    2001-01-01

    Full Text Available Este experimento foi conduzido com o objetivo de estudar os parâmetros relativos ao consumo de alimentos, ganho de peso, conversão alimentar e eficiência energética de novilhos de corte em confinamento, alimentados com quatro dietas contendo silagem de híbridos de sorgo de comportamento agronômico diferenciado: AGX-213 e AG-2002 (forrageiro, AGX-217 e AG-2005E (duplo propósito. Foram utilizados 48 novilhos com idade média de 19 meses e peso médio inicial de 316 kg. A relação volumoso:concentrado foi de 63:37, para todas as dietas testadas. Não houve interação entre fonte de volumoso e período de avaliação em confinamento. A silagem do híbrido AG-2005E propiciou maior consumo de matéria seca e energia digestível, ganho de peso médio diário e melhor conversão alimentar frente aos demais genótipos testados. A análise de contraste mostrou que a inclusão de silagens de sorgo forrageiro (AGX-213 e AG-2002 à dieta alimentar causou redução significativa de 8,84 e 12,11% no consumo voluntário de matéria seca e energia digestível, respectivamente, frente às silagens de sorgo de duplo propósito (AGX-217 e AG-2005E. Animais alimentados com silagem de sorgo com características de duplo propósito apresentaram maior ganho de peso médio diário (1,163 contra 0,943 kg e foram mais eficientes na transformação de matéria seca e energia digestível consumida em ganho de peso vivo (PV (7,65 contra 8,73 kg de MS/kg de PV e 19,76 contra 21,84 Mcal/kg de PV.

  10. Effect of reactive monomer on PS-b-P2VP film with UV irradiation

    Science.gov (United States)

    Kim, H. J.; Shin, D. M.

    2012-03-01

    Poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) lamellar film which is hydrophobic block hydrophilic polyelectrolyte block polymer of 52 kg/mol -b- 57 kg/mol and PS-b-P2VP film with reactive monomer (RM257) were prepared for photonic gel films. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic part of PS-b-P2VP. We reported about the influence of reactive monomer on those photonic gel films. Added reactive monomer photonic gel film had higher absorbance than pure photonic gel films. And band gaps of the lamellar films shifted by the time of UV light irradiation. That Photonic gel films were measured with the UV spectrophotometer. As a result the photonic gel film with reactive monomer had more clear color. The lamellar films were swollen by DI water, Ethyl alcohol (aq) and calcium carbonate solution. Since the domain spacing of dried photonic gel films were not showing any color in visible wavelength. The band gap of the lamellar films were drastically shifted to longer wavelength swollen by calcium carbonate solution (absorbance peak 565nm-->617nm). And the lamellar films were shifted to shorter wave length swollen by ethanol (absorbance peak 565nm-->497nm). So each Photonic gel film showed different color.

  11. Fabrication of visible-light-driven Ag/TiO{sub 2} heterojunction composites induced by shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chunxiao [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Chen, Pengwan, E-mail: pwchen@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Liu, Jianjun [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Yin, Hao [Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 612900, Sichuan Province (China); Gao, Xin; Mei, Xiaofeng [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-09-15

    Using metatitanic acid (H{sub 2}TiO{sub 3}) and silver nitrate (AgNO{sub 3}) as titanium precursor and silver source respectively, a visible-light responsible Ag/TiO{sub 2} heterojunction photocatalyst is successfully prepared by shock wave with detonation-driven flyer impact. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS) and photoluminescence (PL) emission spectra are employed to characterize the phase structure, morphology, chemical composition and optical property of the recovered samples. The results indicate the metatitanic acid transforms to pure rutile TiO{sub 2} phase by shock wave which possess large surface area. Ag nanoparticles cover on the surface of TiO{sub 2} uniformly and a nanojunction structure is formed efficiently, which play important roles as an electron-conduction bridge and in the surface plasmon resonance effect. Ag modification feasibly improves the separation efficiency for photoinduced electron–hole pairs and enhances the visible-light response. Furthermore, due to the further enhanced separation for photogenerated charges resulting from close interfacial contact of the hetero structure, the obtained Ag/TiO{sub 2} photocatalyst exhibit remarkably improved photocatalytic activities (88% within 2 h) than that of P25 and shock induced pure TiO{sub 2} for the degradation of Rhodamine B under simulated sunlight irradiation. The experimental result shows the shock loading is an effective method to get Ag/TiO{sub 2} photocatalyst and offers new ideas to fabricate other heterojunction composite materials. - Highlights: • Shock wave was a new method of material modification. • The Ag/TiO{sub 2} hetero structure was formed efficiently by shock loading. • The visible-light responsible sample showed an enhanced photocatalytic activity. • This work gave new ideas to fabricate other heterojunction materials.

  12. Ag and CdS nanoparticles co-sensitized TiO2 nanotubes for enhancing visible photoelectrochemical performance

    International Nuclear Information System (INIS)

    Wang Qingyao; Yang Xiuchun; Liu Dan; Chi Lina; Hou Junwei

    2012-01-01

    Highlights: ► Ag and CdS nanoparticles co-sensitized TiO 2 nanotubes were fabricated by the SILAR method. ► The co-sensitization expands the photoresponse range of TiO 2 NTs to 668.7 nm. ► Visible light photocurrents and photocatalytic activities of CdS–Ag/TiO 2 NTs were studied. ► The electron transfer mechanism of CdS–Ag/TiO 2 NTs was proposed. - Abstract: The Ag and CdS nanoparticles co-sensitization of TiO 2 nanotubes (CdS–Ag/TiO 2 NTs) were prepared by successive ionic layer adsorption and reaction (SILAR) technique. The phase composition, morphology and optical property were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis diffusion reflection spectroscopy (DRS). The co-modification of Ag and CdS nanoparticles expanded the photoresponse range of TiO 2 NTs from ultraviolet region to 668.7 nm, and the CdS–Ag/TiO 2 NTs prepared by SILAR deposition of 5 cycles exhibited higher visible photocurrent and stability against photocorrosion. The detailed electrons transfer mechanism of CdS–Ag/TiO 2 NTs was proposed, and photocatalytic activity toward degradation of methyl orange (MO) under visible-light irradiation was also investigated.

  13. Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires

    International Nuclear Information System (INIS)

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-01-01

    Graphical abstract: - Highlights: • Ag/AgVO 3 and pure AgVO 3 nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO 3 within 45 min. • Antibacterial activity of Ag/AgVO 3 demonstrated. - Abstract: Ag/AgVO 3 nanowires and AgVO 3 nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO 3 nanowires. The photocatalytic studies revealed that the Ag/AgVO 3 nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO 3 nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO 3 nanorods prove that in case of the Ag dispersed Ag/AgVO 3 nanowires, the enhanced antibacterial action is also due to contribution from the AgVO 3 support

  14. Preparation of AgBr@SiO{sub 2} core@shell hybrid nanoparticles and their bactericidal activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanyuan [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Yang, Lisu [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Henna Sports School, Zhengzhou 450045 (China); Zhao, Yanbao, E-mail: yanbaozhao@126.com [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Li, Binjie; Sun, Lei; Luo, Huajuan [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2013-04-01

    AgBr@SiO{sub 2} core@shell hybrid nanoparticles (NPs) were successfully prepared by sol-gel method. Their morphology and structure were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The hybrid NPs are predominantly spherical in shape, with an average diameter of 180–200 nm, and each NP contains one inorganic core. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the hybrid NPs were examined against Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli), respectively. Results indicated that the AgBr@SiO{sub 2} NPs had excellent antibacterial activity. - Highlights: ► Presents a novel antibacterial agent “AgBr@ SiO{sub 2} NPs”. ► AgBr@SiO{sub 2} hybrid NPs could provide long-term antimicrobial effect. ► AgBr@SiO{sub 2} hybrid NPs have excellent antibacterial activity.

  15. Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity

    Science.gov (United States)

    Arif Sher Shah, Md. Selim; Zhang, Kan; Park, A. Reum; Kim, Kwang Su; Park, Nam-Gyu; Park, Jong Hyeok; Yoo, Pil J.

    2013-05-01

    With growing interest in the photocatalytic performance of TiO2-graphene composite systems, the ternary phase of TiO2, graphene, and Ag is expected to exhibit improved photocatalytic characteristics because of the improved recombination rate of photogenerated charge carriers and potential contribution of the generation of localized surface plasmon resonance at Ag sites on a surface of the TiO2-graphene binary matrix. In this work, Ag-TiO2-reduced graphene oxide ternary nanocomposites were successfully synthesized by a simple solvothermal process. In a single-step synthetic procedure, the reduction of AgNO3 and graphene oxide and the hydrolysis of titanium tetraisopropoxide were spontaneously performed in a mixed solvent system of ethylene glycol, N,N-dimethylformamide and a stoichiometric amount of water without resorting to the use of typical reducing agents. The nanocomposites were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, along with different microscopic and spectroscopic techniques, enabling us to confirm the successful reduction of AgNO3 and graphite oxide to metallic Ag and reduced graphene oxide, respectively. Due to the highly facilitated electron transport of well distributed Ag nanoparticles, the synthesized ternary nanocomposite showed enhanced photocatalytic activity for degradation of rhodamine B dye under visible light irradiation.With growing interest in the photocatalytic performance of TiO2-graphene composite systems, the ternary phase of TiO2, graphene, and Ag is expected to exhibit improved photocatalytic characteristics because of the improved recombination rate of photogenerated charge carriers and potential contribution of the generation of localized surface plasmon resonance at Ag sites on a surface of the TiO2-graphene binary matrix. In this work, Ag-TiO2-reduced graphene oxide ternary nanocomposites were successfully synthesized by a simple solvothermal process. In a single-step synthetic procedure, the reduction

  16. Optical and photoelectrochemical studies on Ag{sub 2}O/TiO{sub 2} double-layer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan, E-mail: cli10@yahoo.com [Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan 11221 (China); Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan, Taiwan 32001 (China); Hsieh, J.H. [Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei, Taiwan 24301 (China); Cheng, J.C. [Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan 10608 (China); Huang, C.C. [Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan 11221 (China)

    2014-11-03

    When two different oxides films stacked together, if the absorption (upper) layer has both its conduction and valence bands more negatively lower than that of the layer underneath, then the photo-excited electrons can be forwarded to the underneath layer to become an effect of energy storage. Recent studies discovered that the double-layers of Cu{sub 2}O/TiO{sub 2} films possess such capacity. In order to investigate this specific phenomenon, we use a DC magnetron reactive sputtering to deposit a double-layer of Ag{sub 2}O/TiO{sub 2} films on glass substrate. The film thicknesses of the double-layer are 300 nm and 200 nm respectively. X-Ray diffraction (XRD), scanning electron microscope (SEM) and UV–VIS–NIR photospectrometer and photoluminance tests were used to study the structure, morphology, optical absorption and band gaps of the stacked films. From XRD and SEM, we can confirm the microstructures of each layer. The UV–VIS–NIR spectrum revealed that the optical absorption of Ag{sub 2}O/TiO{sub 2} fell in between the single film of Ag{sub 2}O and TiO{sub 2}. Further, two band gaps were estimated for Ag{sub 2}O/TiO{sub 2} films based on the Beer-Lambert law and Tauc plot. Photoluminance and photoelectrochemical tests indicated that delayed emission by electron-hole recombination and photoelectrical current was effectively support the mechanism of electrons transfer from Ag{sub 2}O to TiO{sub 2} at Ag{sub 2}O/TiO{sub 2} interface in the double-layer films. - Highlights: • A double-layer of Ag{sub 2}O/TiO{sub 2} films was deposited on glass substrate by sputtering. • XRD confirms the nanocrystalline structures of the stack deposited films. • UV–VIS–NIR spectroscopy shows the enhanced of optical absorption in Ag{sub 2}O/TiO{sub 2}. • Photoluminance and photoelectrochemical tests show electron-hole separation effect.

  17. Effects of doping in 25-atom bimetallic nanocluster catalysts for carbon–carbon coupling reaction of iodoanisole and phenylacetylene

    Directory of Open Access Journals (Sweden)

    Zhimin Li

    2016-10-01

    Full Text Available We here report the catalytic effects of foreign atoms (Cu, Ag, and Pt doped into well-defined 25-gold-atom nanoclusters. Using the carbon-carbon coupling reaction of p-iodoanisole and phenylacetylene as a model reaction, the gold-based bimetallic MxAu25−x(SR18 (–SR=–SCH2CH2Ph nanoclusters (supported on titania were found to exhibit distinct effects on the conversion of p-iodoanisole as well as the selectivity for the Sonogashira cross-coupling product, 1-methoxy-4-(2-phenylethynylbenzene. Compared to Au25(SR18, the centrally doped Pt1Au24(SR18 causes a drop in catalytic activity but with the selectivity retained, while the AgxAu25−x(SR18 nanoclusters gave an overall performance comparable to Au25(SR18. Interestingly, CuxAu25−x(SR18 nanoclusters prefer the Ullmann homo-coupling pathway and give rise to product 4,4′-dimethoxy-1,1′-biphenyl, which is in opposite to the other three nanocluster catalysts. Our overall conclusion is that the conversion of p-iodoanisole is largely affected by the electronic effect in the bimetallic nanoclusters’ 13-atom core (i.e., Pt1Au12, CuxAu13−x, and Au13, with the exception of Ag doping, and that the selectivity is primarily determined by the type of atoms on the MxAu12−x shell (M=Ag, Cu, and Au in the nanocluster catalysts.

  18. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    Science.gov (United States)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-01

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  19. Synthesis, characterization, and thermal stability of SiO2/TiO2/CR-Ag multilayered nanostructures

    Science.gov (United States)

    Díaz, Gabriela; Chang, Yao-Jen; Philipossian, Ara

    2018-06-01

    The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.

  20. Synthesis and antimicrobial evaluation of nanostructures ZrO2:AG against staphylococcus aureus by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Nova, C.V.; Reis, K.H.; Galico, D.A.; Venturini, J.; Pontes, F.M.L.; Pinheiro, A.L. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil); Longo, E. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Nanostructures of zirconia (ZrO2) has shown great prominence in the area of advanced materials and shows excellent properties such as chemical stability, mechanical strength, electrical and optical properties. When certain metals are supported on the compound, such as Fe, Ag, Au and Al, a potentiation of some properties, such as bactericide and fungicide can occur. Thus, this work deals with the synthesis and characterization of ZrO2 and ZrO2:Ag (1% and 10 % of Ag) nanostructures and the study of the influence of the antimicrobial activity against Staphylococcus aureus. X-ray powder diffractograms of the zirconia and silver with zirconia shown the formation of well defined peaks of tetragonal zirconia in all the samples. Although the ZrO2:Ag (10 % of Ag) shown the characteristics peaks of cubic silver, these peaks do not appear in ZrO2:Ag (1 % of Ag) due to the small amount of silver in comparison with zirconium. The crystal size was estimated by the Scherrer equation and the calculated values for zirconia were 12.84, 12.27 and 12.61 nm for ZrO2, ZrO2 : Ag (1%) and ZrO2 : Ag (10%) respectively and the silver crystal size was 8,09 nm. Diffuse reflectance of the silver particles shown a broad plasmon band at 405 and 424 nm for the ZrO2 : Ag (1%) and ZrO2 : Ag (10%). Antimicrobial assay demonstrated that ZrO2 showed a bacteriostatic effect (61 %) and the inclusion of the silver in the ZrO2 matrix enhanced this effect to 65-72 %. Both particles with different silver content shown similar effect {[ZrO2:Ag 1%] = [ZrO2:Ag 10%]>[ZrO2]}.(author)

  1. Enhanced photocatalysts based on Ag-TiO2 and Ag-N-TiO2 nanoparticles for multifunctional leather surface coating

    Directory of Open Access Journals (Sweden)

    Gaidau Carmen

    2016-01-01

    Full Text Available The Ag deposition on TiO2 nanoparticles (Ag-TiO2 NPs and N-TiO2 nanoparticles (Ag-N-TiO2 NPs has been made by electrochemical methodology in view of improved antibacterial properties and enhanced photocatalytic activity under visible light irradiation. The particle size in powder and in dispersion showed similar values and good stability in aqueous medium which made them suitable for use in leather surface covering for new multifunctional properties development. The diffuse reflectance spectra of Ag-TiO2 NPs, Ag-N-TiO2 NPs and TiO2 NPs have been investigated and correlated with their photocatalytic performances under UV and visible light against different silver concentrations. The leather surfaces treated with Ag-N-TiO2 NPs showed advanced self-cleaning properties under visible light exposure through the hydrophilic mechanism of organic soil decomposition. Moreover the bacterial sensitivity and proven fungitoxic properties of Ag-N-TiO2 NPs leads to the possibility of designing new multifunctional additives to extend the advanced applications for more durable and useable materials.

  2. Ag nanocrystals anchored CeO{sub 2}/graphene nanocomposite for enhanced supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Vanitha, M.; Keerthi [Department of Chemical Engineering, A.C Tech, Anna University, Chennai 600025 (India); Cao, P. [Department of Chemical and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand); Balasubramanian, N., E-mail: nbsbala@annauniv.edu [Department of Chemical Engineering, A.C Tech, Anna University, Chennai 600025 (India)

    2015-09-25

    Highlights: • Quasi spherical Ag and CeO{sub 2} nanoparticles were decorated on rGO matrix. • The Ag/CeO{sub 2}/rGO nanocomposite exhibits specific capacitance of 710 F g{sup −1}. • Ag plays an imperative role in improving the electrochemical performance. - Abstract: A novel ternary Ag decorated CeO{sub 2}/reduced graphene oxide (rGO) nanocomposite was synthesized by a facile hydrothermal method with polyvinylpyrrolidone (PVP) as surface directing agent and was designed as an electrode material for supercapacitors application. The structure and morphology of the nanocomposites were analyzed by X-ray diffraction analysis (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The synergistic effect between the CeO{sub 2} nanoparticles wrapped rGO matrix with Ag nanoparticles gives rise to a nanostructure, empowering the material with enhanced electrochemical performance. The electrochemical characterization was performed using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopic studies in 3 M KOH aqueous electrolyte. The nanocomposite electrode materials possess a high specific capacitance of 710.42 F g{sup −1} at an applied current density of 0.2 A g{sup −1}, which was nearly two fold higher than CeO{sub 2}/rGO nanocomposite. This work endows a new route for building Ag/CeO{sub 2}/rGO ternary nanocomposite which will have some impact on the exploitation of novel ternary electrode materials for supercapacitor applications.

  3. Antibacterial Activity Of ternary semiconductor compounds AgInSe2 Nanoparticles Synthesized by Simple Chemical Method

    Science.gov (United States)

    Shehab, A. A.; Fadaam, S. A.; Abd, A. N.; Mustafa, M. H.

    2018-05-01

    In this objective AgInSe2Nanoparticles (AgInSe2 NPs) were prepared by a simple chemical method (SCM). The optica structural l and morphological properties of the synthesized AgInSe2 NPs swere investigated by using UVVI absorption atomic force microscopy AFMmf, Fourier Transform Infrared Spectroscopy and x-ray diffraction. The resistance of bacteria represents a trouble and the outlook for the use of antibiotics in the future until now uncertain. Measures must be taken to decrease this problem. Antibacterial activity of the AgInSe2 nanoparticles were exposed against several pathogenic bacteriaa including Klebsiella pneumonia KPa, Staphylococcus aureus, Bacillus subtili, Enterobacter Cloacae and Esherichia Coliby. Using a good spread method the results showed that AgInSe2 NPs had inhibitory effect versus some pathogenic bacteria with suppression area 18, 14 and 17 mm for SAgInSe2 NPs had an inhibitory effect against S Bacillus Subtilis 11 mm K EnterobactercCloacae 12 mm.

  4. High-temperature thermoelectric properties of AgxYyCa2⋅ 8Co4O9 ...

    Indian Academy of Sciences (India)

    temperature thermoelectric properties of AgYCa2.8Co4O9 + ceramics. Youjin Zheng Hui Zhou Tengzhou Ma Guihong Zuo Hongtao Li Taichao Su Chunlei Wu Hailiang Huang Dan Wang Longcheng Yin. Volume 37 Issue 5 August 2014 pp 963- ...

  5. Synthesis of spindle-shaped AgI/TiO{sub 2} nanoparticles with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu; Gao, Minggang; Dai, Bin; Guo, Xuhong; Liu, Zhiyong; Peng, Banghua, E-mail: banghuapeng@hotmail.com

    2016-11-15

    Highlights: • Nanoporous spindle-shaped AgI/TiO{sub 2} was synthesized by the solvothermal approach. • The spindle-shaped TiO{sub 2} was an excellent support for loading nanoparticles, such as AgI, transferring electrons quickly from AgI, which is beneficial for stabilizing the AgI. • AgI/TiO{sub 2} nanoparticles showed enhanced absorption intensity in the visible region and exhibited excellent photocatalytic activity. - Abstract: A novel synthetic route has been developed to prepare silver iodide (AgI) loaded spindle-shaped TiO{sub 2} nanoparticles (NPs). The morphology and crystallinity characterization revealed that small AgI NPs, with an average diameter of 15 nm were dispersed on the surface and interior of nanoporous anatase TiO{sub 2} support. High-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET) surface area, Raman and X-ray photoelectron spectroscopy (XPS) were used to identify the nanoporous structure of TiO{sub 2} and the existence of AgI NPs. Diffuse reflectance spectra (DRS) showed that AgI/TiO{sub 2} composite exhibited a remarkable enhancement of visible light absorption, which is ascribed to the addition of AgI. For illustrating the superior property of this hybrid as photocatalyst, the degradation experiments were carried out for processing rhodamine B (RhB) solution under visible light irradiation and it was found that the photocatalytic activity was dramatically improved for AgI/TiO{sub 2} compared with nanoporous TiO{sub 2} and commercial P25 TiO{sub 2}. The enhanced photocatalytic properties could be attributed to the large surface area of porous TiO{sub 2}, good stability of AgI particles, and the effective charge separation due to the synergetic effect between AgI and TiO{sub 2} that can facilitate the separation of electron-hole pairs. Our novel composite based on nanoporous spindle-shaped TiO{sub 2} represents a promising new pathway for the design of high-performance photocatalysts for environmental

  6. Measurements of L shell X-ray yields of thick Ag target by 6–29 keV electron impact

    International Nuclear Information System (INIS)

    Zhao, J.L.; Tian, L.X.; Li, X.L.; An, Z.; Zhu, J.J.; Liu, M.T.

    2015-01-01

    In this paper, the L shell X-ray yields for a thick Ag target have been measured at incident electron energies of 6–29 keV. The experimental values are compared with the Monte Carlo simulation results that are obtained by using the PENELOPE code, in which the inner-shell ionization cross sections by electron impact calculated in the theoretical frame of distorted wave Born approximation are used. The experimental and simulation values are in agreement with ∼10% difference. Meanwhile, the L shell X-ray production cross sections are also obtained based on the measured L shell X-ray yields for a thick Ag target in this paper, and are compared with other experimental Ag L shell X-ray production cross section data by electron and positron impact measured previously and some theoretical models. Some factors that could affect these comparisons are also discussed in this paper. - Highlights: • We measured L shell X-ray yields of thick Ag target by 6–29 keV electrons. • Our measured X-ray yields are in good agreement with the MC results with ∼10%. • L shell production cross sections are obtained based on the measured X-ray yields. • L shell production cross sections obtained are in good agreement with theories

  7. Structure of human insulin monomer in water/acetonitrile solution

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, Wojciech; Sitkowski, Jerzy; Bednarek, Elzbieta [National Medicines Institute (Poland); Tarnowska, Anna; Kawecki, Robert [Institute of Organic Chemistry Polish Academy of Sciences (Poland); Kozerski, Lech [National Medicines Institute (Poland)], E-mail: lkoz@icho.edu.pl

    2008-01-15

    Here we present evidence that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. An NMR-derived human insulin monomer structure in H{sub 2}O/CD{sub 3}CN, 65/35 vol%, pH 3.6 is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Acta Crystallogr. 2003 Sec. D59, 474) and with NMR structures in water and organic cosolvent. Detailed analysis using PFGSE NMR, temperature-dependent NMR, dilution experiments and CSI proves that the structure is monomeric in the concentration and temperature ranges 0.1-3 mM and 10-30 deg. C, respectively. The presence of long-range interstrand NOEs, as found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Starting from structures calculated by the program CYANA, two different molecular dynamics simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER{sub V}C), or including a generalized Born solvent model (AMBER{sub G}B)

  8. Hierarchical Ag/AgCl-TiO{sub 2} hollow spheres with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu Long; Yin, Hao Yong [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Nie, Qiu Lin, E-mail: nieqiulin@hdu.edu.cn [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Wei Wei [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Yang; LiYuan, Qiu [College of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-01-01

    The hierarchical Ag/AgCl-TiO{sub 2} hollow spheres were synthesized by depositing Ag/AgCl nanoparticles on TiO{sub 2} hollow spheres via a precipitation photoreduction method, and they were further characterized using TGA, SEM, TEM, XRD, XPS, UV–vis DRS and photoelectric chemical analysis. The analysis showed that the hierarchical Ag/AgCl-TiO{sub 2} hollow spheres exhibited the highest photocatalytic activity, which was approximately 13 times higher than that of TiO{sub 2} hollow spheres. The high photocatalytic activity of the composites is due to efficient electron-hole pairs separation at the photocatalyst interfaces, and localized surface plasmon resonance of Ag nanoparticles formed on AgCl particles in the degradation reaction. - Highlights: • TiO{sub 2} hollow spheres were prepared by a sacrificial template method. • The hollow spheres were modified with Ag/AgCl to form the heterojunctions. • The modification may produce synergistic effect of LSPR and hollow structure. • Visible light photocatalytic activity was enhanced on this hollow catalyst. • The mechanism of the improved photocatalytic performance was discussed.

  9. The anomalous behaviour of Ag-Al2O3 Cermet electroformed devices

    International Nuclear Information System (INIS)

    Khan, M.S.R.

    2003-06-01

    Cermet coating consisting of silver particles in an aluminium oxide matrix were prepared on glass substrates by vacuum deposition. Variation of the circulating current with potential difference was obtained in evaporated Al/Ag-Al 2 O 3 /Cu sandwich structures, 100 to 200 nm thick containing 10 wt % Ag. It was observed that the investigated sandwich structures exhibit anomalous behaviour such as electroforming with Voltage-Controlled-Negative Resistance (VCNR) in vacuo of ∼ 4 x 10 -6 torr. The formed characteristics were explained on the basis of filamentary model. (author)

  10. Fabrication, characterization and photocatalytic properties of Ag/AgI/BiOI heteronanostructures supported on rectorite via a cation-exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yunfang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Jianzhang, E-mail: fangjzh@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China); Lu, Shaoyou [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Wu, Yan; Chen, Dazhi; Huang, Liyan [Institute of Engineering Technology of Guangdong Province, Key Laboratory of Water Environmental Pollution Control of Guangdong Province, Guangzhou 510440 (China); Xu, Weicheng; Zhu, Ximiao [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Zhanqiang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • Ag/AgI/BiOI-rectorite was prepared by twice cation-exchange process. • Ag/AgI/BiOI-rectorite photocatalyst possessed SPR and adsorption capacity. • Ag/AgI/BiOI-rectorite exhibited highly photocatalytic activity. • Trapped holes and ·O{sub 2}{sup −} were formed active species in the photocatalytic system. - Abstract: In this work, a new plasmonic photocatalyst Ag/AgI/BiOI-rectorite was prepared via a cation exchange process. The photocatalyst had been characterized by X-ray powder diffraction (XRD), Raman spectra, nitrogen sorption (BET), field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity, which was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation, was enhanced significantly by loading Ag/AgI/BiOI nanoparticles onto rectorite. The photogenerated holes and superoxide radical (·O{sub 2}{sup −}) were both formed as active species for the photocatalytic reactions under visible light irradiation. The existence of metallic Ag particles, which possess the surface plasmon resonance effect, acted as an indispensable role in the photocatalytic reaction.

  11. Plasmonic Ag-pillared rectorite as catalyst for degradation of 2,4-DCP in the H{sub 2}O{sub 2}-containing system under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yunfang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Jianzhang, E-mail: fangjzh@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China); Lu, Shaoyou [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Wu, Yan; Chen, Dazhi; Huang, Liyan [Institute of Engineering Technology of Guangdong Province, Key Laboratory of Water Environmental Pollution Control of Guangdong Province, Guangzhou 510440 (China); Cheng, Cong; Ren, Lu; Zhu, Ximiao [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Zhanqiang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China)

    2015-10-30

    Highlights: • The Ag-R catalyst was synthesized via a novel thermal decomposition method. • Ag-R catalyst possessed the synergistic effects of SPR and adsorption capacity. • The degradation of 2,4-DCP was evaluated in Ag-R/H{sub 2}O{sub 2}/visible light system. - Abstract: This study aims at photocatalytic degradation of 2,4-DCP with the assistance of H{sub 2}O{sub 2} in aqueous solution by a composite catalyst of Ag-rectorite. The catalysts were prepared via a novel thermal decomposition method followed after the cation-exchange process. The synthesized nano-materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface analyzer, Ultraviolet–visible light (UV–vis) absorption spectra, field-emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The different mechanisms of degradation process with or without visible light irradiation were discussed, respectively. Moreover, the degradation efficiency of 2,4-DCP wastewater under Ag-rectorite/H{sub 2}O{sub 2}/visible light system was investigated by series of experiments, concerning on effects of major operation factors, such as H{sub 2}O{sub 2} dosage and the initial pH value. The highest degradation rate was observed when adding 0.18 mL H{sub 2}O{sub 2} into 50 mL 2,4-DCP solution, and the optimal pH value was 4 for the reaction. Afterwards, total organic carbon (TOC) experiments were carried out to evaluate the mineralization ratio of 2,4-DCP.

  12. Investigation of AgInS2 thin films grown by coevaporation

    Science.gov (United States)

    Arredondo, C. A.; Clavijo, J.; Gordillo, G.

    2009-05-01

    AgInS2 thin films were grown on soda-lime glass substrates by co-evaporation of the precursors in a two-step process. X-ray diffraction (XRD) measurements indicated that these compounds grow in different phases and with different crystalline structure depending upon the deposition conditions. However, through a parameter study, conditions were found to grow thin films containing only the AgInS2 phase with chalcopyrite type structure. In samples containing a mixture of several phases, the contribution in percentage terms of each phase to the whole compound was estimated with the help of the PowderCell simulation package. It was also found that the AgInS2 films present p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and an energy band gap Eg of about 1.95 eV, indicating that this compound has good properties to perform as absorbent layer in thin film tandem solar cells. The effect of the deposition conditions on the optical and morphological properties was also investigated through spectral transmitance and atomic force microscopy (AFM) measurements.

  13. Optical and electrical characterization of AgInS{sub 2} thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Calixto-Rodriguez, M., E-mail: manuela@fis.unam.mx [Instituto de Ciencias Fisicas-Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210, Cuernavaca, Morelos (Mexico); Martinez, H. [Instituto de Ciencias Fisicas-Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210, Cuernavaca, Morelos (Mexico); Calixto, M.E. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-48, 72570, Puebla, Puebla (Mexico); Pena, Y. [Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba s/n, Ciudad Universitaria, 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Martinez-Escobar, Dalia [Centro de Investigacion en Energia-Universidad Nacional Autonoma de Mexico, 62580, Temixco, Morelos (Mexico); Tiburcio-Silver, A. [Instituto Tecnologico de Toluca-SEP, Apartado Postal 20, 52176, Metepec 3, Estado de Mexico (Mexico); Sanchez-Juarez, A. [Centro de Investigacion en Energia-Universidad Nacional Autonoma de Mexico, 62580, Temixco, Morelos (Mexico)

    2010-10-25

    Silver indium sulfide (AgInS{sub 2}) thin films have been prepared by spray pyrolysis (SP) technique using silver acetate, indium acetate, and N, N-dimethylthiourea as precursor compounds. Films were deposited onto glass substrates at different substrate temperatures (T{sub s}) and Ag:In:S ratios in the starting solutions. Optical transmission and reflection as well as electrical measurements were performed in order to study the effect of deposition parameters on the optical and electrical properties of AgInS{sub 2} thin films. X-ray diffraction measurements were used to identify the deposited compounds. It was found that different compounds such as AgInS{sub 2}, Ag{sub 2}S, In{sub 2}O{sub 3}, and In{sub 2}S{sub 3} can be grown only by changing the Ag:In:S ratio in the starting solution and T{sub s}. So that, by carefully selecting the deposition parameters, single phase AgInS{sub 2} thin films can be easily grown. Thin films obtained using a molar ratio of Ag:In:S = 1:1:2 and T{sub s} = 400 {sup o}C, have an optical band gap of 1.9 eV and n-type electrical conductivity with a value of 0.3 {Omega}{sup -1} cm{sup -1} in the dark.

  14. Activity, specificity, and probe design for the smallpox virus protease K7L.

    Science.gov (United States)

    Aleshin, Alexander E; Drag, Marcin; Gombosuren, Naran; Wei, Ge; Mikolajczyk, Jowita; Satterthwait, Arnold C; Strongin, Alex Y; Liddington, Robert C; Salvesen, Guy S

    2012-11-16

    The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.

  15. On the nature of citrate-derived surface species on Ag nanoparticles: Insights from X-ray photoelectron spectroscopy

    Science.gov (United States)

    Mikhlin, Yuri L.; Vorobyev, Sergey A.; Saikova, Svetlana V.; Vishnyakova, Elena A.; Romanchenko, Alexander S.; Zharkov, Sergey M.; Larichev, Yurii V.

    2018-01-01

    Citrate is an important stabilizing, reducing, and complexing reagent in the wet chemical synthesis of nanoparticles of silver and other metals, however, the exact nature of adsorbates, and its mechanism of action are still uncertain. Here, we applied X-ray photoelectron spectroscopy, soft X-ray absorption near-edge spectroscopy, and other techniques in order to determine the surface composition and to specify the citrate-related species at Ag nanoparticles immobilized from the dense hydrosol prepared using room-temperature reduction of aqueous Ag+ ions with ferrous ions and citrate as stabilizer (Carey Lea method). It was found that, contrary to the common view, the species adsorbed on the Ag nanoparticles are, in large part, products of citrate decomposition comprising an alcohol group and one or two carboxylate bound to the surface Ag, and minor unbound carboxylate group; these may also be mixtures of citrate with lower molecular weight anions. No ketone groups were specified, and very minor surface Ag(I) and Fe (mainly, ferric oxyhydroxides) species were detected. Moreover, the adsorbates were different at AgNPs having various size and shape. The relation between the capping and the particle growth, colloidal stability of the high-concentration sol and properties of AgNPs is briefly considered.

  16. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting; Polavarapu, Lakshminarayana; Xu, Qing Hua; Ji, Wei; Zeng, Hua Chun

    2011-01-01

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse Aux

  17. Pressure induced Ag{sub 2}Te polymorphs in conjunction with topological non trivial to metal transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zhang, S. J., E-mail: sjzhang@iphy.ac.cn, E-mail: jin@iphy.ac.cn; Yu, X. H.; Yu, R. C.; Jin, C. Q., E-mail: sjzhang@iphy.ac.cn, E-mail: jin@iphy.ac.cn; Dai, X.; Fang, Z. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Oganov, A. R. [Department of Geosciences, University of New York at Stony Brook (United States); Feng, W. X.; Yao, Y. G. [Department of Physics, Beijing Institute of Technology, Beijing (China); Zhu, J. L. [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Zhao, Y. S. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); South University of Science and Technology of China, Shenzhen, Guangdong (China)

    2016-08-15

    Silver telluride (Ag{sub 2}Te) is well known as superionic conductor and topological insulator with polymorphs. Pressure induced three phase transitions in Ag{sub 2}Te have been reported in previous. Here, we experimentally identified high pressure phase above 13 GPa of Ag{sub 2}Te by using high pressure synchrotron x ray diffraction method in combination with evolutionary crystal structure prediction, showing it crystallizes into a monoclinic structure of space group C2/m with lattice parameters a = 6.081Å, b = 5.744Å, c = 6.797 Å, β = 105.53°. The electronic properties measurements of Ag{sub 2}Te reveal that the topologically non-trivial semiconducting phase I and semimetallic phase II previously predicated by theory transformed into bulk metals for high pressure phases in consistent with the first principles calculations.

  18. Ag/AgCl Loaded Bi2WO6 Composite: A Plasmonic Z-Scheme Visible Light-Responsive Photocatalyst

    Directory of Open Access Journals (Sweden)

    Xiangchao Meng

    2016-01-01

    Full Text Available Hierarchical flower-like Bi2WO6 was successfully synthesized by facile hydrothermal method at low pH. And Ag/AgCl was loaded by photoreduction on its surface. As-prepared photocatalysts were characterized by various techniques. Bi2WO6 was successfully synthesized at a size of 2-3 μm. Depositing Ag/AgCl did not destroy the crystal structure, and both Ag+ and metallic Ag0 were found. The band gap of the composite was 2.57 eV, which indicates that visible light could be the activating irradiation. In the photocatalytic activity test, the composite with 10 wt% Ag/AgCl boasted the highest removal efficiency (almost 100% in 45 min. The significant enhancement can be attributed to the surface plasmon resonance (SPR effect and the establishment of heterostructures between Ag/AgCl and Bi2WO6. A possible mechanism of photocatalytic oxidation in the presence of Ag/AgCl-Bi2WO6 was proposed. This work sheds light on the potential applications of plasmonic metals in photocatalysis to enhance their activities.

  19. Effect of Core-Shell Ag@TiO2 Volume Ratio on Characteristics of TiO2-Based DSSCs

    Directory of Open Access Journals (Sweden)

    Ho Chang

    2014-01-01

    Full Text Available This paper aims to develop photoanode material required by dye-sensitized solar cells. The material prepared is in the form of Ag@TiO2 core-shell-type nanocomposites. This material is used to replace the titanium oxide powder commonly used in general DSSCs. The prepared Ag@TiO2 core-shell-type nanocomposites are mixed with Degussa P25 TiO2 in different proportions. Triton X-100 is added and polyethylene glycol (PEG at 20 wt% is used as a polymer additive. This study tests the particle size and material properties of Ag@TiO2 core-shell-type nanocomposites and measures the photoelectric conversion efficiency and IPCE of DSSCs. Experimental results show that the DSSC prepared by Ag@TiO2 core-shell-type nanocomposites can achieve a photoelectric conversion efficiency of 3.67%. When Ag@TiO2 core-shell-type nanocomposites are mixed with P25 nanoparticles in specific proportions, and when the thickness of the photoelectrode thin film is 28 μm, the photoelectric conversion efficiency can reach 6.06%, with a fill factor of 0.52, open-circuit voltage of 0.64V, and short-circuit density of 18.22 mAcm−2. Compared to the DSSC prepared by P25 TiO2 only, the photoelectric conversion efficiency can be raised by 38% under the proposed approach.

  20. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anamika [Department of Life Sciences, University of Mumbai, Santacruz (E), Mumbai 400 098 (India); Dutta, Dimple P., E-mail: dimpled@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ballal, A. [Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Fulekar, M.H. [School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382 030, Gujarat (India)

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  1. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films

    International Nuclear Information System (INIS)

    Thombare, J. V.; Fulari, V. J.; Rath, M. C.; Han, S. H.

    2013-01-01

    Polypyrrole (PPy) thin films were deposited on stainless steel and ITO coated glass substrate at a constant deposition potential of 0.8 V versus saturated calomel electrode (SCE) by using the electrochemical polymerization method. The PPy thin films were deposited at room temperature at various monomer concentrations ranging from 0.1 M to 0.3 M pyrrole. The structural and optical properties of the polypyrrole thin films were investigated using an X-ray diffractometer (XRD), FTIR spectroscopy, scanning electron microscopy (SEM), and ultraviolet—visible (UV—vis) spectroscopy. The XRD results show that polypyrrole thin films have a semi crystalline structure. Higher monomer concentration results in a slight increase of crystallinity. The polypyrrole thin films deposited at higher monomer concentration exhibit high visible absorbance. The refractive indexes of the polypyrrole thin films are found to be in the range of 1 to 1.3 and vary with monomer concentration as well as wavelength. The extinction coefficient decreases slightly with monomer concentration. The electrochemically synthesized polypyrrole thin film shows optical band gap energy of 2.14 eV. (semiconductor materials)

  2. Ozone decomposition on Ag/SiO2 and Ag/clinoptilolite catalysts at ambient temperature

    International Nuclear Information System (INIS)

    Nikolov, Penko; Genov, Krassimir; Konova, Petya; Milenova, Katya; Batakliev, Todor; Georgiev, Vladimir; Kumar, Narendra; Sarker, Dipak K.; Pishev, Dimitar; Rakovsky, Slavcho

    2010-01-01

    Silver modified zeolite (Bulgarian natural clinoptilolite) and Ag/silica catalysts were synthesized by ion exchange and incipient wet impregnation method respectively and characterized by different techniques. DC arc-AES was used for Ag detection. XRD spectra show that Ag is loaded over the surface of the SiO 2 sample and that after the ion-exchange process the HEU type structure of clinoptilolite is retained. UV-VIS (specific reflection at 310 nm) and IR (band at 695 cm -1 ) spectroscopy analysis proved that silver is loaded as a T-atom into zeolite channels as Ag + , instead of Na + , Ca 2+ , or K + ions, existing in the natural clinoptilolite form. The samples Ag/SiO 2 and Ag-clinoptilolite were tested as catalysts for decomposition of gas phase ozone. Very high catalytic activity (up to 99%) was observed and at the same time the catalysts remained active over time at room temperature.

  3. A novel Ni{sup 2+}-doped Ag{sub 3}PO{sub 4} photocatalyst with high photocatalytic activity and enhancement mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Song, Limin, E-mail: songlmnk@sohu.com [College of Environment and Chemical Engineering, State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Chen, Zewen; Li, Tongtong [College of Environment and Chemical Engineering, State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Zhang, Shujuan, E-mail: zhangshujuan@tust.edu.cn [College of Science, Tianjin University of Science & Technology, Tianjin, 300457 (China)

    2017-01-15

    Ni{sup 2+}-doped Ag{sub 3}PO{sub 4} (Ni{sup 2+}-Ag{sub 3}PO{sub 4}) photocatalysts with superhigh activity for photodegradation of organic pollutants were prepared by a simple hydrothermal method. The photocatalysts were characterized with X-ray powder diffractometry, transmission electron microscopy, ultraviolet–visible absorption spectroscopy, X-ray photoelectron spectroscopy, measurement of total organic carbon, and electron paramagnetic resonance spectrometry. The photocatalysts were evaluated by methyl orange (MO) photodegradation experiments under visible light irradiation (λ > 420 nm). Comparative analysis showed the optimal doping dosage was 0.05 mol/L Ni{sup 2+}. The optimal Ni{sup 2+}-Ag{sub 3}PO{sub 4} has an MO photodegradation rate constant four times larger than pure Ag{sub 3}PO{sub 4}. The photocatalytic ratio of 40 mg/L MO over the optimal Ni{sup 2+}-Ag{sub 3}PO{sub 4} after 10 min is 89%, which indicates excellent photocatalytic ability in high-concentration MO solutions. The Ni{sup 2+} doping into Ag{sub 3}PO{sub 4} can increase the level of band gap, and accelerate the utilization of photons and the separation of photo-generated charges. Therefore, the Ni{sup 2+} doping into Ag{sub 3}PO{sub 4} is responsible for the enhancement of photocatalytic ability. - Highlights: • Ni{sup 2+}-modified with higher photodegradation ability was synthesized. • ·OH radicals were the main active species in the oxidation of MO. • The doping of Ni{sup 2+} in Ag{sub 3}PO{sub 4} is responsible for the enhanced activity.

  4. Electrical mobility of silver ion in Ag2O-B2O3-P2O5-TeO2 glasses.

    Science.gov (United States)

    Sklepić, Kristina; Vorokhta, Maryna; Mošner, Petr; Koudelka, Ladislav; Moguš-Milanković, Andrea

    2014-10-16

    The effect of adding TeO(2) into (100 - x)[0.5Ag(2)O - 0.1B(2)O(3) - 0.4P(2)O(5)] - xTeO(2), with 0-80 mol % TeO(2) glass, on the structural changes and electrical properties has been investigated. DSC and thermodilatomery were used to study their thermal behavior, structure was studied by Raman spectroscopy, and electrical properties have been studied by impedance spectroscopy over a wide temperature and frequency range. The introduction of TeO(2) as a third glass former to the glass network causes the structural transformation from TeO(3) (tp) to TeO(4) (tbp) which contributes to the changes in conductivity. The glasses with low TeO(2) content show only a slow decrease in dc conductivity with addition of TeO(2) due to the increase of the number of nonbridging oxygens, which increases the mobility of Ag(+) ions. The steep decrease in conductivity for glasses containing more than 40 mol % TeO(2) is a result of decrease of the Ag(2)O content and stronger cross-linkage in glass network through the formation of more Te-(eq)O(ax)-Te bonds in TeO(4) tbp units. The glasses obey ac conductivity scaling with respect to temperature, implying that the dynamic process is not temperature dependent. On the other hand, the scaling of the spectra for different glass compositions showed the deviations from the Summerfield scaling because of the local structural disorder which occurs as a result of the structural modifications in the tellurite glass network.

  5. OBTAINING AND PROPERTIES OF AgInS2 FILMS

    Directory of Open Access Journals (Sweden)

    M. A. Abdullaev

    2016-01-01

    Full Text Available Aim. The aim is to obtain AgInS2 films and study their electrical and optical properties.Methods. The samples of thin AgInS2 films for measurement were obtained by the method of magnetron sputtering with direct current. The structure, phase and elemental composition were studied using DRON-2 X-ray diffractometer (СuKа - radiation and the microscope LEO-1450 with EDS attachment for X-ray microanalysis. The optical transmittance and absorption were examined using MDR-2 monochromator in the wavelength range of 400-800 nm with the Keitley electrometer and FD-10G; we applied the spectral resolution of ± 1 meV. The electrical conductivity, Hall effect was measured by the four-point probe method with indium ohmic contacts. Measurements were carried out in the temperature range of 77-400 K.Findings. We obtained indium disulfide and silver films with the thickness of up to 1 μm on quartz substrates by magnetron sputtering. It is shown that increasing the substrate temperature to about 450 0С allows to obtain single phase film with a chalcopyrite structure with a band gap of 1.88 eV and high absorption coefficient (>104см-1.Conclusions. The possibility of obtaining films in a wide range of the electrical resistance and variation of the electrical parameters at constant stoichiometry is of interest for efficient technologies of phototransduction.

  6. Photocatalytic oxidation removal of Hg{sup 0} using ternary Ag/AgI-Ag{sub 2}CO{sub 3} hybrids in wet scrubbing process under fluorescent light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Anchao, E-mail: aczhang@qq.com [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2017-01-15

    Highlights: • Ag/AgI-Ag{sub 2}CO{sub 3} hybrids were employed for Hg{sup 0} removal under fluorescent light. • Superoxide radical (·O{sub 2}{sup −}) played a key role in Hg{sup 0} removal. • NO exhibited a significant effect on Hg{sup 0} removal in comparison to SO{sub 2}. • The mechanism for enhanced Hg{sup 0} removal over Ag/AgI-Ag{sub 2}CO{sub 3} was proposed. - Abstract: A series of ternary Ag/AgI-Ag{sub 2}CO{sub 3} photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg{sup 0} removal in a wet scrubbing reactor. The hybrids were characterized by N{sub 2} adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg{sup 0} removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg{sup 0} removal. NO exhibited significant effect on Hg{sup 0} removal in comparison to SO{sub 2}. Among these ternary Ag/AgI-Ag{sub 2}CO{sub 3} hybrids, Ag/AgI(0.1)-Ag{sub 2}CO{sub 3} showed the highest Hg{sup 0} removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag{sub 2}CO{sub 3} and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag{sup 0} NPs). The trapping studies of reactive radicals showed that the superoxide radicals (·O{sub 2}{sup −}) may play a key role in Hg{sup 0} removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg{sup 0} removal over Ag/AgI(0.1)-Ag{sub 2}CO{sub 3} hybrid under fluorescent light was proposed.

  7. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO{sub 2} photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zielińska-Jurek, Anna, E-mail: annjurek@pg.gda.pl [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Wei, Zhishun [Catalysis Research Center, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan); Wysocka, Izabela [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Szweda, Piotr [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Kowalska, Ewa [Catalysis Research Center, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan)

    2015-10-30

    Graphical abstract: - Highlights: • Enhanced photocatalytic activity under visible light for bimetallic Ag-Pt/TiO{sub 2} was observed. • Phenol was removed efficiently after 60 min irradiation under Vis. • Most active sample contains fine Pt (1–3 nm) on TiO{sub 2}. • Ag/TiO{sub 2}, Ag-Pt/TiO{sub 2} revealed antimicrobial activity. - Abstract: Ag-Pt-modified TiO{sub 2} nanocomposites were synthesized using the sol–gel method. Bimetallic modified TiO{sub 2} nanoparticles exhibited improved photocatalytic activity under visible-light irradiation, better than monometallic Ag/TiO{sub 2} and Pt/TiO{sub 2} nanoparticles (NPs). All modified powders showed localized surface plasmon resonance (LSPR) in visible region. The photocatalysts’ characteristics by X-ray diffractometry (XRD), scanning transmission electron microscopy (STEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption (BET method for specific surface area) showed that sample with the highest photocatalytic activity had anatase structure, about 93 m{sup 2}/g specific surface area, maximum plasmon absorption at ca. 420 nm and contained small NPs of silver of 6 nm and very fine platinum NPs of 3 nm. The photocatalytic activity was estimated by measuring the decomposition rate of phenol in 0.2 mM aqueous solution under Vis and UV/vis light irradiation. It was found that size of platinum was decisive for the photocatalytic activity under visible light irradiation, i.e., the smaller Pt NPs were, the higher was photocatalytic activity. While, antimicrobial activities, estimated for bacteria Escherichia coli and Staphylococcus aureus, and pathogenic fungi belonging to Candida family, were only observed for photocatalysts containing silver, i.e., Ag/TiO{sub 2} and Ag-Pt/TiO{sub 2} nanocomposites.

  8. Fabrication and electrochemical properties of activated CNF/Cu x Mn1- x Fe2O4 composite nanostructures

    Science.gov (United States)

    Nilmoung, Sukanya; Sonsupap, Somchai; Sawangphruk, Montree; Maensiri, Santi

    2018-06-01

    This work reports the fabrication and electrochemical properties of activated carbon nanofibers composited with copper manganese ferrite (ACNF/Cu x Mn1- x Fe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8) nanostructures. The obtained samples were characterized by means of X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmett-Teller analyzer, thermal gravimetric analysis, X-ray photoemission spectroscopy, and X-ray absorption spectroscopy. The supercapacitive behavior of the electrodes is tested using cyclic voltammetery, galvanostatic charge-discharge and electrochemical impedance spectroscopy. By varying ` x', the highest specific capacitance of 384 F/g at 2 mV/s using CV and 314 F/g at 2 A/g using GCD are obtained for the x = 0.2 electrode. The second one of 235 F/g at 2 mV/s using CV and 172 F/g at 2 A/g using GCD are observed for x = 0.8 electrode. The corresponding energy densities are 74 and 41 Wh/kg, respectively. It is observed that the cyclic stability of the prepared samples strongly depend on the amount of carbon, while the specific capacitance was enhanced by the sample with nearly proportional amount between carbon and CuMnFe2O4. Such results may arise from the synergetic effect between CuMnFe2O4 and ACNF.

  9. Facile synthesis of Ag@CeO{sub 2} core–shell plasmonic photocatalysts with enhanced visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Linen; Fang, Siman [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Ge, Lei, E-mail: gelei08@sina.com [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Han, Changcun; Qiu, Ping; Xin, Yongji [Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China)

    2015-12-30

    Highlights: • Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized. • The Ag@CeO{sub 2} showed dramatic photocatalytic activity than pure CeO{sub 2}. • Improving activity is from a combination of SPR effect and hybrid effects. • The mechanism was proposed and confirmed by ESR and PL results. - Abstract: Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized via a green and facile template-free approach in aqueous solution. As-prepared samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (DRS), electron spin resonance (ESR) and photoluminescence spectroscopy (PL). The structures with different core shapes and controllable shell thickness exhibited unique optical properties. It is found that the nanoscale Ag@CeO{sub 2} core–shell photocatalysts exhibit significantly enhanced photocatalytic activities in the O{sub 2} evolution and MB dye degradation compared to pure CeO{sub 2} nanoparticals. The enhancement in photocatalytic activities can be ascribed to the localized surface plasmon resonance (SPR) of Ag cores. Moreover, larger active interfacial areas and contact between metal/semiconductor in the core–shell structure facilitate transfer of charge carriers and prolong lifetime of photogenerated electron-hole pairs. It is expected that the Ag@CeO{sub 2} core–shell structure may have great potential in a wider range of light-harvesting applications.

  10. Preparation of Ag@mSiO{sub 2} and Pt@mSiO{sub 2}nano composites using trioctylmethyl ammonium hydrogen phthalate (TOMAHP) ionic liquid as reaction medium

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Sujoy, E-mail: sujoyb@barc.gov.in [Chemical Engineering Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dasgupta, Kinshuk [Materials Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bahadur, Jitendra [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tewari, Raghavendra [Materials Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mazumder, Subhasish [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    A novel one step green chemistry approach utilizing trioctylmethyl ammonium hydrogen phthalate (TOMAHP), task specific ionic liquid has been attempted for synthesis of Ag and Pt nanoparticles supported on silica (Ag@mSiO{sub 2} and Pt@mSiO{sub 2}). Structure, size distribution and morphology of these nano-composite particles were evaluated using X-ray diffraction (XRD), transmission electron microscopy (TEM), small angle neutron scattering (SANS) as well as small angle X-ray scattering (SAXS) techniques. The XRD results show that Ag/Pt metal nanoparticles deposited on to SiO{sub 2} surface are face center cubic (fcc) in nature. The TEM and SAXS/SANS results show the morphology and size distributions of Ag and Pt nanoparticles loaded on to the surface of SiO{sub 2}. It has been found that Ag nanoparticles are well dispersed on to the SiO{sub 2} surface and are quite monodisperse in size, whereas Pt nanoparticles are quite polydisperse in size and forms aggregate or chain like structure on SiO{sub 2} surface containing primary nanoparticles of typical size range 3–7 nm. The stability of nanoparticles, which controls its dispersion on SiO{sub 2} substrate, has been discussed. - Graphical abstract: Mechanism for Ag@mSiO{sub 2} and Pt@mSiO{sub 2} nano composites in TOMAHP ionic liquid medium. - Highlights: • Novel methods for preparation of Pt@SiO{sub 2} and Ag@SiO{sub 2} nano composite in functionalized ionic liquid. • Pt@SiO{sub 2} and Ag@SiO{sub 2} nano composite are characterized using XRD, TEM as well as small angle x-ray scattering techniques. • The sizes of nano composite is <10 nm in size. • The method is simple one step, green chemical reduction method to prepare SiO{sub 2} support nano catalyst.

  11. Microstructures, mechanical properties and corrosion resistance of the Zr−xTi (Ag) alloys for dental implant application

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: cuiwf@atm.neu.edu.cn; Liu, N.; Qin, G.W.

    2016-06-15

    The Zr−xTi (Ag) alloys were designed for the application of dental implants. The microstructures of Zr−20Ti and Zr−40Ti alloy were observed using optical microscope and transmission electronic microscope. The hardness and compressive tests were performed to evaluate the mechanical properties of the Zr−xTi alloys. The electrochemical behavior of the Zr−xTi alloys with and without 6% Ag was investigated in the acidified artificial saliva containing 0.1% NaF (pH = 4). For comparison, the electrochemical behavior of cp Ti was examined in the same condition. The results show that the quenched Zr−20Ti and Zr−40Ti alloy exhibit acicular martensite microstructures containing twin substructure. They display good mechanical properties with the hardness of ∼330HV, the yield strength of ∼1000 MPa and the strain to fracture of ∼25% at room temperature. Adding 6% Ag to Zr−20Ti alloy enhances the passivity breakdown potential and the self-corrosion potential, but hardly affects the corrosion current density and the impedance modulus. 6% Ag in Zr−40Ti alloy distinctly increases pitting corrosion resistance, which is attributed the formation of thick, dense and stable passive film under the joint action of titanium and silver. In comparison with cp Ti, Zr−40Ti−6Ag alloy possesses the same good corrosion resistance in the rigorous oral environment as well as the superior mechanical properties. - Highlights: • The quenched Zr20Ti and Zr40Ti obtain acicular martensite microstructure. • Zr20Ti and Zr40Ti possess high hardness, strength and strain to fracture. • Increasing Ti content decreases corrosion current density. • Adding Ag enhances passivation breakdown potentials of Zr20Ti and Zr40Ti. • Zr40Ti6Ag has optimum mechanical properties and pitting corrosion resistance.

  12. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J. [IUPUI; (Purdue)

    2014-08-14

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  13. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Allard Jr, Lawrence Frederick [ORNL

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize the binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION

  14. A new method of preparation of AgBr/TiO{sub 2} composites and investigation of their photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Xing Yangyang; Li Rui; Li Qiuye, E-mail: lqybys@yahoo.com.cn; Yang Jianjun [Henan University, Key Laboratory for Special Functional Materials (China)

    2012-12-15

    Silver bromide/titanium dioxide composites were first prepared using titanic acid nanobelts (TAN) as the TiO{sub 2} source. First, TAN reacted with AgNO{sub 3} to prepare Ag-incorporated TAN by the ion-exchange method, and then AgBr/TAN was obtained after adding NaBr. Finally, AgBr/TAN was transformed to AgBr/TiO{sub 2} composites by calcination. The post-treated calcination would not only convert TAN to TiO{sub 2} (H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} {yields} 2H{sub 2}O + 2TiO{sub 2}), but also increase the effective contact between AgBr and TiO{sub 2}, further to improve the separation of photo-generated electron-holes. The advantage of this preparation method is the small particle size (ca. 10-20 nm) and well dispersion of AgBr on the surface of TiO{sub 2}, and close contact between AgBr and TiO{sub 2}. The effect of the different calcination temperature on the morphology, structure, and properties of AgBr/TiO{sub 2} composites was investigated in detail. The AgBr/TiO{sub 2} composites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), and ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS). Comparing with pure TAN, AgBr, and AgBr/P25 mixture, the AgBr/TiO{sub 2} composites exhibited enhanced photocatalytic activity in decomposition of methyl orange (MO) under visible light irradiation.

  15. Scintillation efficiency and X-ray imaging with the RE-Doped LuAG thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Tous, Jan; Blazek, Karel; Kucera, Miroslav; Nikl, Martin; Mares, Jiri A.

    2012-01-01

    Very thin scintillator imaging plates have recently become of great interest. In high resolution X-ray radiography, very thin scintillator layers of about 5–20 μm are used to achieve 2D-spatial resolutions below 1 μm. Thin screens can be prepared by mechanical polishing from single crystals or by epitaxial growth on single-crystal substrates using the Liquid Phase Epitaxy technique (LPE). Other types of screens (e.g. deposited powder) do no reach required spatial resolutions. This work compares LPE-grown YAG and LuAG scintillator films doped with different rare earth ions (Cerium, Terbium and Europium). Two different fluxes were used in the LPE growth procedure. These LPE films are compared to YAG:Ce and LuAG:Ce screens made from bulk single crystals. Relative light yield was detected by a highly sensitive CCD camera. Scintillator screens were excited by a micro-focus X-ray source and the generated light was gathered by the CCD camera’s optical system. Scintillator 2D-homogeneity is examined in an X-ray imaging setup also using the CCD camera.

  16. Interaction of vinyl chloride monomer exposure and hepatitis B viral infection on liver cancer.

    Science.gov (United States)

    Wong, Ruey-Hong; Chen, Pau-Chung; Wang, Jung-Der; Du, Chung-Li; Cheng, Tsun-Jen

    2003-04-01

    Vinyl-chloride monomer (VCM), a human carcinogen, has caused angiosarcoma of the liver. Recent studies have shown that VCM exposure is associated with hepatocellular cancer. In Taiwanese studies, the majority of VCM-exposed workers with liver cancer had history of hepatitis B virus (HBV) infection. To determine the role of HBV on the development of liver cancer in the VCM-exposed workers, we conducted a case-control study from a previously established polyvinyl chloride (PVC) cohort consisting of 4096 male workers from six PVC polymerization plants. A total of 18 patients with liver cancer, and 68 control subjects matched for age and specific plant of employment were selected. Detailed history of the participants that included alcohol consumption status, cigarette use, occupation, and family history of chronic liver disease were obtained using an interviewer-administered questionnaire. When the HBV surface antigen (HBsAg)-negative subjects without history of tank-cleaning were used as the reference, the HBsAg-negative subjects with history of tank-cleaning demonstrated a 4.0-fold greater risk of liver cancer (95% confidence interval: 95% CI = 0.2-69.1). The HBsAg carriers without history of tank-cleaning revealed a 25.7-fold greater risk of liver cancer (95% CI = 2.9-229.4). Whereas the HBsAg carriers with history of tank-cleaning revealed the greatest risk (matched odds ratio (ORm) 396.0, 95% CI = 22.6 -infinity) of developing liver cancer among subjects with different VCM-exposure status and HBsAg status categories. Further analysis showed the interaction term was significant (P < .01). Therefore, our results suggest an interaction between occupational VCM exposure and HBV infection for the development of liver cancer.

  17. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100°C

    Science.gov (United States)

    Ciobanu, Carmen Steluta; Massuyeau, Florian; Constantin, Liliana Violeta; Predoi, Daniela

    2011-12-01

    Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10- x Ag x (PO4)6(OH)2 ( x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp ( x = 0) and Ag:HAp ( x = 0.2). The Ag:Hap nanopowder showed higher inhibition.

  18. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Heng; Li Jingfeng; Nan Cewen; Zhou Min; Liu Weishu; Zhang Boping; Kita, Takuji

    2006-01-01

    Polycrystalline Ag n Pb m SbTe m+2n thermoelectric materials, whose compositions can be described as Ag 0.8 Pb 18+x SbTe 20 were prepared using a combined process of mechanical alloying and spark plasma sintering. Electric properties of the sintered samples with different Pb contents were measured from room temperature to 700 K. The maximum power factor of 1.766 mW/mK 2 was obtained at 673 K for the Ag 0.8 Pb 22 SbTe 20 sample, which corresponds to a high dimensionless figure of merit, ZT=1.37. This best composition is different from that reported before

  19. Chemically deposited In{sub 2}S{sub 3}-Ag{sub 2}S layers to obtain AgInS{sub 2} thin films by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, S. [Universidad Autonoma de Nuevo Leon, UANL, Fac. de Ciencias Quimicas, Av. Universidad S/N Ciudad Universitaria San Nicolas de Los Garza Nuevo Leon, C.P. 66451 (Mexico); Pena, Y., E-mail: yolapm@gmail.com [Universidad Autonoma de Nuevo Leon, UANL, Fac. de Ciencias Quimicas, Av. Universidad S/N Ciudad Universitaria San Nicolas de Los Garza Nuevo Leon, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Centro de Investigacion en Energia-Universidad Nacional Autonoma de Mexico, 62580, Temixco, Morelos (Mexico); Lopez-Mata, C. [Instituto Tecnologico de Chetumal, Av. Insurgentes No. 330, C.P. 77013, Col. David Gustavo Gtz., Chetumal, Quintana Roo (Mexico); Ramon, M.L. [Centro de Investigacion en Energia-Universidad Nacional Autonoma de Mexico, 62580, Temixco, Morelos (Mexico); Gomez, I.; Acosta, A. [Universidad Autonoma de Nuevo Leon, UANL, Fac. de Ciencias Quimicas, Av. Universidad S/N Ciudad Universitaria San Nicolas de Los Garza Nuevo Leon, C.P. 66451 (Mexico)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We obtained polycrystalline silver indium sulfide thin films through the annealing of chemically deposited In{sub 2}S{sub 3}-Ag{sub 2}S films. Black-Right-Pointing-Pointer According to XRD chalcopyrite structure of AgInS{sub 2} was obtained. Black-Right-Pointing-Pointer AgInS{sub 2} thin film has a band gap of 1.86 eV and a conductivity value of 1.2 Multiplication-Sign 10{sup -3} ({Omega} cm){sup -1}. - Abstract: AgInS{sub 2} thin films were obtained by the annealing of chemical bath deposited In{sub 2}S{sub 3}-Ag{sub 2}S layers at 400 Degree-Sign C in N{sub 2} for 1 h. According to the XRD and EDX results the chalcopyrite structure of AgInS{sub 2} has been obtained. These films have an optical band gap, E{sub g}, of 1.86 eV and an electrical conductivity value of 1.2 Multiplication-Sign 10{sup -3} ({Omega} cm){sup -1}.

  20. Tuning of Ag doped core−shell ZnO NWs/Cu2O grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Makhlouf, Houssin; Messaoudi, Olfa; Souissi, Ahmed; Ben Assaker, Ibtissem; Oueslati, Mihrez; Bechelany, Mikhael; Chtourou, Radhouane

    2015-01-01

    ZnO nanowires (NWs)/Cu 2 O–Ag core–shell nanostructures (NSs) have been synthesized by electrochemical deposition method on ITO-coated glass substrates in order to improve the efficiency of the type-II transition of core–shell ZnO NWs/Cu 2 O–Ag NSs. The morphologies of the obtained NSs were studied by scanning electron microscopy confirming the presence of core–shell NSs. The crystalline proprieties were analyzed by x-ray diffraction and micro-Raman measurement: wurtzite ZnO and cuprit Cu 2 O phase were founded. The presence of Ag content in core–shell NS was detected by EDX. Optical measurement reveals an additional contribution δE at about 1.72 eV attributed to the type-II interfacial transition between the valance band of cuprit−Cu 2 O and the conduction band of W−ZnO. The effect of the Ag doping into the type-II transition was investigated. A red shift of the type-II transition was detected according to the Ag concentration. These materials could have potential applications in photocatalytic and photovoltaic fields. (paper)

  1. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    International Nuclear Information System (INIS)

    Angelov, O; Stoyanova, D; Ivanova, I; Todorova, S

    2016-01-01

    The influence of Al 2 O 3 , Ag and Al 2 O 3 /Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al 2 O 3 and Ag targets or through sequential sputtering of Al 2 O 3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al 2 O 3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al 2 O 3 /Ag bilayer films (Al 2 O 3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida . A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida . (paper)

  2. The photovoltaic performance of Ag2S quantum dots-sensitized solar cells using plasmonic Au nanoparticles/TiO2 working electrodes

    Science.gov (United States)

    Badawi, Ali; Mostafa, Nasser Y.; Al-Hosiny, Najm M.; Merazga, Amar; Albaradi, Ateyyah M.; Abdel-Wahab, F.; Atta, A. A.

    2018-06-01

    The photovoltaic performance of silver sulfide (Ag2S) quantum dots-sensitized solar cells (QDSSCs) using different concentrations (0, 0.05, 0.1, 0.3 and 0.5 wt.%) of plasmonic Au nanoparticles (NPs)/titania (TiO2) electrodes has been investigated. Ag2S quantum dots (QDs) were adsorbed onto the Au NPs/titania electrodes using the successive ionic layer adsorption and reaction (SILAR) deposition technique. The morphological properties of the Au NPs and the prepared titania electrodes were characterized using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The energy-dispersive X-ray (EDX) spectra of the bare titania and Ag2S QDs-sensitized titania electrodes were recorded. The optical properties of the prepared Ag2S QDs-sensitized titania electrodes were measured using a UV-visible spectrophotometer. The estimated energy band gap of Ag2S QDs-sensitized titania electrodes is 1.96 eV. The photovoltaic performance of the assembled Ag2S QDSSCs was measured under 100 mW/cm2 solar illumination. The optimal photovoltaic parameters were obtained as follows: open circuit voltage Voc = 0.50 V, current density Jsc = 3.18 mA/cm2, fill factor (FF) = 0.35 and energy conversion efficiency η = 0.55% for 0.3 wt.% of Au NPs/titania electrode. These results are attributed to the enhancement in the absorption and decrease in the electron-hole pairs recombination rate. The open circuit voltage decay (OCVD) measurements of the assembled Ag2S QDSSCs were measured. The calculated electron lifetime (τ) in Ag2S QDSSCs with Au NPs/titania electrodes is at least one order of magnitude more than that with bare titania electrode. The cut-on-cut-off cycles of the solar illumination measurements show the rapid sensitivity and good reproducibility of the assembled Ag2S QDSSCs.

  3. Translocation, accumulation and distribution of 110mAg in carp

    International Nuclear Information System (INIS)

    Li Chuanzhao; Zhao Wenhu; Xu Shiming

    1995-01-01

    The experimental carp were raised in the water with 110m Ag specific activity of 3.7 x 10 2 Bq/L, 3.7 x 10 3 Bq/L, 3.7 x 10 4 Bq/L respectively. The carp were sampled after raising 1,2,3,5,7,9,12,15,18,21 and 23 days, and separated into scale, bone, muscle, gill, alimentary canal, heart and heptapancreas for measuring the radioactivity. The results showed that 110m Ag was absorbed rapidly by carp via gill and alimentary canal from water, and distributed into all parts of the body, mainly in soft tissue with blood circulation. 110m Ag accumulation of the body increased with the 110m Ag specific activity in the water in the same raising time. The accumulation of 110m Ag in gill, alimentary canal, heart, muscle and bone appeared mono-peak curves with raising time. There was a linear relationship between the specific activity of 110m Ag in heptapancreas and the carp's raising time in 110m Ag water. The concentration abilities for 110m Ag in all organs were in the order of heptapancreas>gill>alimentary>canal>heart>muscle>bone

  4. Synthesis of biocompatible AuAgS/Ag2S nanoclusters and their applications in photocatalysis and mercury detection

    International Nuclear Information System (INIS)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen; Liu, Fengping; Liu, Xuanyong

    2014-01-01

    In this paper, a facile approach for preparation of AuAgS/Ag 2 S nanoclusters was developed. The unique AuAgS/Ag 2 S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag 2 S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag 2 S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg 2+ and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag 2 S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.Graphical Abstract

  5. CITOGENETICA DE HIBRIDOS ENTRE TURNERA GRANDIDENTATA (4x Y T. SUBULATA Y T. SCABRA (2x (TURNERACEAE

    Directory of Open Access Journals (Sweden)

    Aveliano Fernández

    1993-01-01

    Full Text Available Turnera subulata y T.scabra, 2n = 2x = 10, se cruzaron con T.grandidentata, 2n = 4x = 20, y los híbridos obtenidos se estudiaron citológicamente para determinar la relación entre estas especies. Todos los híbridos presentaron 2n = 3x = 15 y meiosis irregular. En T.subulata x T.grandidentata se hallo una asociación cromosómica media de 4,28 univalentes, 4,16 bivalentes y 0,73 trivalentes. T.scabra x T.grandidentata tuvieron una asociación cromosómica media de 4,53 univalentes, 4,42 bivalentes, 0,53 trivalentes y 0.03 cuadrivalents. El estudio citogenético de estos híbridos indica que estas tres especies tienen el mismo genoma básico. Las fórmulas genómicas Asu Asu para T.subulata, Asc Asc para T.scabra y AgAgArAr para T.grandidentata fueron propuestas en trabajos anteriores. Las asociaciones y las configuraciones que se encuentran en los híbridos analizados en éste estudio avalan las fórmulas genómicas propuestas.

  6. Nonvolatile conductive filaments resistive switching behaviors in Ag/GaO{sub x} /Nb:SrTiO{sub 3}/Ag structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, P.G. [Beijing University of Posts and Telecommunications, State Key Laboratory of Information Photonics and Optical Communication, Beijing (China); Zhejiang Sci-Tech University, Center for Optoelectronics Materials and Devices, Hangzhou (China); Zhi, Y.S.; An, Y.H.; Guo, D.Y.; Tang, W.H.; Xiao, J.H. [Beijing University of Posts and Telecommunications, State Key Laboratory of Information Photonics and Optical Communication, Beijing (China); Wang, P.C. [Zhejiang Sci-Tech University, Center for Optoelectronics Materials and Devices, Hangzhou (China); Sun, Z.B. [Chinese Academy of Sciences, Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Beijing (China); Li, L.H. [State University of New York at Potsdam, Department of Physics, Potsdam, NY (United States)

    2016-07-15

    Ag/GaO{sub x} /NSTO/Ag structures were fabricated, and the electrical properties measurement results show that the device behaviors a unipolar resistance switching characteristic with bi-stable resistance ratio of three orders. In the positive voltage region, the dominant conducting mechanism of high resistance state obeys Poole-Frenkel emission rules, while in the negative region, that obeys space-charge-limited current mechanism. Both the I-V curves of ON and OFF states and temperature-dependent variation resistances indicate that the unipolar resistance switching behavior can be explained by the formation/rupture of conductive filaments, which composed of oxygen vacancies. The stable switching results demonstrated that the structure can be applied in resistance random access memory devices. (orig.)

  7. W18O49 nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst

    International Nuclear Information System (INIS)

    Sun Shibin; Chang Xueting; Dong Lihua; Zhang Yidong; Li Zhenjiang; Qiu Yanyan

    2011-01-01

    A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W 18 O 49 nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W 18 O 49 NRs sensors exhibit superior reducing gas-sensing properties to those of bare W 18 O 49 NRs, and they are highly selective and sensitive to NH 3 , acetone, and H 2 S with short response and recovery times. The Ag/AgCl/W 18 O 49 NRs photocatlysts also possess higher photocatalytic performance than bare W 18 O 49 NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W 18 O 49 NRs composite were proposed. - Graphical Abstract: The Ag/AgCl nanoparticles adhered well to the W 18 O 49 nanorod. The Ag could act as transfer center of the photoexcited carriers, prohibiting their recombinations in both W 18 O 49 and AgCl. Highlights: → Ag/AgCl/W 18 O 49 NRs were successfully obtained via a clean photochemical route. → The Ag/AgCl nanoparticles decorated on the W 18 O 49 NRs possessed cladding structure. → The Ag/AgCl/W 18 O 49 NRs exhibited excellent gas-sensing and photocatalytic properties.

  8. Low-temperature radiation-induced polymerization of vinyl monomers in the crystal matrix of polydimethyl siloxane

    International Nuclear Information System (INIS)

    Mujdinov, M.R.; Kiryukhin, D.P.; Barkalov, I.M.; Gol'danskij, V.I.

    1979-01-01

    It is shown that in the process of the slow cooling of vinyl monomer solution in dimethyl siloxane rubber (SKT mark) crystallization of SKT takes place, at that, considerable part of vinyl monomers (up to 70 wt. % of rubber) is sorbed in the pores of crystal matrix and it does not form its proper crystal phase. Slight anomalies in heat capacity in the 120-140 K range, the melting of non-sorbed part of MA and the melting of SKT + MA ''complex'' have been observed on the calorimetric curve at the SKT - methylacrylate (MA) system heating. In the process of heating such samples, irradiated at 77 K by γ-rays of 60 Co, heat evolution connected with sorbed monomer polarization, has been observed starting from 125-130 K. In the 140-200 K range already before MA and SKT melting intense polymerization takes place, which results in practically full monomer consumption and formation of graft copolymer. Radiation-chemical yield of monomer reduction reaches G(-M) approximately equal to 2x10 5 molecules for 100 eV, radiation yield of postpolymerization of crystal MA does not exceed G(-M) approximately equal to 50 molecules for 100 eV

  9. Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction as a highly efficient and stable visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chengbin, E-mail: chem_cbliu@hnu.edu.cn [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Cao, Chenghao [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Luo, Xubiao [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2015-03-21

    Graphical abstract: A unique Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction was fabricated by simple electrochemical method. The heterostructures exhibit high photocatalytic activity and excellent recycling performance. - Highlights: • Ag-bridged Ag{sub 2}O nanowire network self-stability structure. • Ag{sub 2}O nanowire network/TiO{sub 2} nanotube p–n heterojunction. • High visible light photocatalytic activity. • Highly stable recycling performance. - Abstract: A unique Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction (Ag–Ag{sub 2}O/TiO{sub 2} NT) was fabricated by simple electrochemical method. Ag nanoparticles were firstly electrochemically deposited onto the surface of TiO{sub 2} NT and then were partly oxidized to Ag{sub 2}O nanowires while the rest of Ag mother nanoparticles were located at the junctions of Ag{sub 2}O nanowire network. The Ag–Ag{sub 2}O/TiO{sub 2} NT heterostructure exhibited strong visible-light response, effective separation of photogenerated carriers, and high adsorption capacity. The integration of Ag–Ag{sub 2}O self-stability structure and p–n heterojunction permitted high and stable photocatalytic activity of Ag–Ag{sub 2}O/TiO{sub 2} NT heterostructure photocatalyst. Under 140-min visible light irradiation, the photocatalytic removal efficiency of both dye acid orange 7 (AO7) and industrial chemical p-nitrophenol (PNP) over Ag–Ag{sub 2}O/TiO{sub 2} NT reached nearly 100% much higher than 17% for AO7 or 13% for PNP over bare TiO{sub 2} NT. After 5 successive cycles under 600-min simulated solar light irradiation, Ag–Ag{sub 2}O/TiO{sub 2} NT remained highly stable photocatalytic activity.

  10. Bandgap Engineering of Lead-Free Double Perovskite Cs2 AgBiBr6 through Trivalent Metal Alloying.

    Science.gov (United States)

    Du, Ke-Zhao; Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B

    2017-07-03

    The double perovskite family, A 2 M I M III X 6 , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH 3 NH 3 PbI 3 . Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs 2 AgBiBr 6 as host, band-gap engineering through alloying of In III /Sb III has been demonstrated in the current work. Cs 2 Ag(Bi 1-x M x )Br 6 (M=In, Sb) accommodates up to 75 % In III with increased band gap, and up to 37.5 % Sb III with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs 2 Ag(Bi 0.625 Sb 0.375 )Br 6 . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of AgCl NPs: Physical, thermal, absorption and luminescence properties

    Science.gov (United States)

    Nurhafizah, H.; Rohani, M. S.

    2017-06-01

    Silver nanoparticles (AgCl NPs) are embedded in Er3+/Nd3+ co-doped lithium niobate tellurite glasses of the form (68-x)TeO2-15Li2CO3-15Nb2O5-1Er2O3-1Nd2O3-(x)AgCl with x = 1,2 and 3 mol% via conventional melt-quenching technique. The physical properties such as density, ionic packing density, refractive index and electronic polarizability are computed utilizing the usual method. The existence of AgCl NPs with an average size of 3.7 nm is confirmed using TEM analysis. Moreover, the thermal stability and Hruby criterion of the glass decreases as the AgCl NPs content increases. The direct optical band gap are found decrease as the AgCl NPs content increase, but both indirect optical band gap and Urbach energy are found increases as AgCl NPs content increases. The luminescence spectra shows two strong emission which is the purple emission at 436 nm and red emission at 724 nm which also been observed has strong quenching due to the AgCl NPs, Er3+/Nd3+ dopant and modifier, lithium niobate which possessed magnetic penetration. These glass compositions may be potential for various applications such as solid state devices including laser.

  12. Nuclear-physical properties of 105,106m,110mAg

    International Nuclear Information System (INIS)

    Popov, Yu. S.; Zakharova, L. V.; Sadulin, V. V.; Andreev, O. I.; Pakhomov, A. N.

    2005-01-01

    The nuclear-physical properties of the nuclides 105,106m,110m Ag, which are concomitant nuclides in reactor production of 103 Pd and 109 Cd used in metrology of ionizing radiations and in nuclear medicine, were studied. The following quantities were determined by semiconductor X-ray and γ-ray spectrometry: the parameter K α /K β of X-ray K radiation accompanying the decay of 110m Ag and the intensities of γ-ray quanta with the energies of 280 and 345 keV ( 105 Ag); 430, 451, and 512 keV ( 106m Ag); 658, 764, 885, 938, and 1384 keV ( 110m Ag). The half-lives determined using the above γ-ray lines are as follows: T 1/2 ( 105 Ag) = 41.2 ± 0.1 days; T 1/2 ( 106m Ag) = 8.30 ± 0.07 days. The errors are given for 95% confidence level [ru

  13. AGS intensity record

    International Nuclear Information System (INIS)

    Bleser, Ed

    1994-01-01

    As flashed in the September issue, this summer the Brookhaven Alternating Gradient Synchrotron (AGS) reached a proton beam intensity of 4.05 x 10 13 protons per puise, claimed as the highest intensity ever achieved in a proton synchrotron. It is, however, only two-thirds of the way to its final goal of 6 x 10 13 . The achievement is the resuit of many years of effort. The Report of the AGS II Task Force, issued in February 1984, laid out a comprehensive programme largely based on a careful analysis of the PS experience at CERN. The AGS plan had two essential components: the construction of a new booster, and major upgrades to the AGS itself.

  14. Deposition, structure, and properties of cermet thin films composed of Ag and Y-stabilized zirconia

    International Nuclear Information System (INIS)

    Wang, L.S.; Barnett, S.A.

    1992-01-01

    This paper reports that Ag 1-x [(Y 2 O 3 ) 0.1 (ZrO 2 ) 0.9 ] x (YSZ) cermet thin films have been deposited by reactive magnetron cosputtering from Ag and Zr/Y targets in Ar-O 2 mixtures. The deposition conditions were such that the YSZ component in the films was fully oxidized. The film densities varied from ∼75% to >85% as the total pressure was decreased from 20 to 5 mTorr. Film resistivities ρ varied with Ag volume fraction f Ag from 5 x 10 -6 Ω-cm to >10 9 Ω-cm. For f Ag Ag . For f Ag > 0.4, ρ decreased more gradually with increasing f Ag . ρ in annealed films ranged from 4 x 10 -4 Ω-cm for f Ag = 0.4 to 5 x 10 -6 Ω-cm for pure Ag. Long term (>100 h) annealing at ≥700 degrees C resulted in a gradual increase in cermet resistivity due to Ag evaporation and Ag segregation to surface islands. Both decomposition mechanisms were effectively suppressed due to Ag evaporation and Ag segregation to surface islands. Both decomposition mechanisms were effectively suppressed at up to 750 degrees C by depositing a 1 μm thick porous perovskite cap layer on the cermet. Complex impedance spectroscopy measurements in air of cermet electrodes on YSZ electrolytes gave interfacial resistances that were a factor of ∼6 lower than those of pure AG electrodes, e.g., 1.4 Ω-cm 2 at 750 degrees C. Ag-YSZ cermets thus have potential as high-conductivity, low-overpotential air electrode materials for solid-oxide electrochemical devices operating at temperatures ≤750 degrees C

  15. Effect of γ-radiation on electrical properties in glasses of AgI-Ag2O-V2O5-P2-O5 system

    International Nuclear Information System (INIS)

    El-Shaarawy, M.G.; Bayoumy, W.A.A.

    2004-01-01

    Five glasses of the AgI-Ag 2 O-V 2 O 5 -P 2 O 5 system exhibiting mixed electronic-ionic conduction were prepared and irradiated by γ-rays. The structures of the irradiated and unirradiated glasses were studied using density, FT-IR, X-ray diffraction (XRD), electron spin resonance (ESR) and scanning electron microscope (SEM). The electrical conductivity (σ), dielectric constant (ε') and dielectric loss (ε'') for the irradiated and unirradiated glasses are also investigated over a temperature range between 300-380 K and at a frequency from dc to 10 6 Hz. Both components of ionic σ i and electronic σ e conductivities were separated from the total conductivity σ tot =σ i + σ e using impedance spectroscopy method. The temperature dependencies of electronic and ionic conductivities as well as corresponding transference numbers were studied. The activation energy values E e and E i for both conduction processes were determined. The temperature dependence of ε' showed an increase in ε' with T. Each of ε' and ε'' was found to be dependent on the composition of the glass matrix. The effect of both γ-radiation and the framework composition of the glass on the electrical properties have been discussed. (author)

  16. Ozone decomposition on Ag/SiO{sub 2} and Ag/clinoptilolite catalysts at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, Penko, E-mail: penmail@mail.bg [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Genov, Krassimir; Konova, Petya [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Milenova, Katya; Batakliev, Todor; Georgiev, Vladimir [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Kumar, Narendra [Laboratory of Industrial Chemistry, Process Chemistry Centre, Abo Akademi University, Biskopsgatan 8, 20500 Abo/Turku (Finland); Sarker, Dipak K. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Pishev, Dimitar [University of Chemical Technology and Metallurgy, 1756 Sofia (Bulgaria); Rakovsky, Slavcho [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2010-12-15

    Silver modified zeolite (Bulgarian natural clinoptilolite) and Ag/silica catalysts were synthesized by ion exchange and incipient wet impregnation method respectively and characterized by different techniques. DC arc-AES was used for Ag detection. XRD spectra show that Ag is loaded over the surface of the SiO{sub 2} sample and that after the ion-exchange process the HEU type structure of clinoptilolite is retained. UV-VIS (specific reflection at 310 nm) and IR (band at 695 cm{sup -1}) spectroscopy analysis proved that silver is loaded as a T-atom into zeolite channels as Ag{sup +}, instead of Na{sup +}, Ca{sup 2+}, or K{sup +} ions, existing in the natural clinoptilolite form. The samples Ag/SiO{sub 2} and Ag-clinoptilolite were tested as catalysts for decomposition of gas phase ozone. Very high catalytic activity (up to 99%) was observed and at the same time the catalysts remained active over time at room temperature.

  17. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti–Ag and Nb–Ag thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, D., E-mail: damian.wojcieszak@pwr.edu.pl [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, M.; Kaczmarek, D. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, P. [Institute of Experimental Physics, University of Wrocław, Max Born 9, 50-204 Wrocław (Poland); Szponar, B. [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53–114 Wrocław (Poland); Domaradzki, J. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Kepinski, L. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2016-05-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti–Ag and Nb–Ag thin films have been carried out. Ti–Ag and Nb–Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti–Ag and Nb–Ag thin films were nanocrystalline. In the case of Ag–Ti film presence of AgTi{sub 3} and Ag phases was identified, while in the structure of Nb–Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb–Ag thin films was covered with Ag-agglomerates, while Ti–Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h. - Highlights: • Surface and biological properties of Ti–Ag and Nb–Ag thin films were examined. • Ag content was related to sputtering yields and nucleation of Ti and Nb. • For Nb–Ag film the agglomeration of silver at the surface was observed. • Composition and surface topography had an impact on antimicrobial properties. • Fine-grained surface was important in Ag ions release process.

  18. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti–Ag and Nb–Ag thin films

    International Nuclear Information System (INIS)

    Wojcieszak, D.; Mazur, M.; Kaczmarek, D.; Mazur, P.; Szponar, B.; Domaradzki, J.; Kepinski, L.

    2016-01-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti–Ag and Nb–Ag thin films have been carried out. Ti–Ag and Nb–Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti–Ag and Nb–Ag thin films were nanocrystalline. In the case of Ag–Ti film presence of AgTi_3 and Ag phases was identified, while in the structure of Nb–Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb–Ag thin films was covered with Ag-agglomerates, while Ti–Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h. - Highlights: • Surface and biological properties of Ti–Ag and Nb–Ag thin films were examined. • Ag content was related to sputtering yields and nucleation of Ti and Nb. • For Nb–Ag film the agglomeration of silver at the surface was observed. • Composition and surface topography had an impact on antimicrobial properties. • Fine-grained surface was important in Ag ions release process.

  19. Progress report on the analytical determination of Ag2+

    International Nuclear Information System (INIS)

    Van Alsenoy, V.

    1997-01-01

    The strong oxidising properties of Ag 2+ have been used in the chemical and nuclear industry to destroy organic waste. We aim to apply the process on radioactive graphite, organic resins and effluents. The reaction mechanisms have been studied, taking into account the thermodynamic and kinetic properties of the different reactions involved. For the experimental analysis of these reactions, the accurate analytical determination of all species involved, including Ag 2+ , is needed. The results of a systematic study of the volumetric quantification of Ag 2+ using Tl + and BrO 3 - , and of the spectrophotometric and polarographic quantification of Ag + and Ag 2+ are described. The influence of the nitric acid during the quantification of Tl + by titration with KBrO 3 is investigated and the optimal analytical conditions for our purposes were determined. The best analytical results were obtained when the titration was carried out with maximum 3 M HNO 3 and 0.5 M NaCl. When those conditions are used, the determination is accurate and reproducible. The prepared Ag 2+ solutions were analysed for Ag + using polarography with a platinum electrode. The benefits and the limitation of the polarographic measurement of Ag + using a platinum electrode are described. An indirect measurement was performed by the determination of Ce 4+ after reaction with Ce 3+ . The produced Ce 4+ was measured by direct spectrophotometry. In the future, the quantification of Ag 2+ by measuring the Ce 4+ concentration produced by the reaction with Ce 3+ , will also be verified using potentiometric titration with Fe 2+ . Ag 2+ can also be determined by the direct spectrophotometry. There is a region in which the absorbance of Ag 2+ changes linearly with the concentration. Further evaluation of the titrimetric, spectrophotometric and polarographic methods will continue, until two methods give comparable Ag 2+ concentrations, beginning with the potentiometric titration of Ce 4+ with Fe 2+

  20. Study on the Visible-Light Photocatalytic Performance and Degradation Mechanism of Diclofenac Sodium under the System of Hetero-Structural CuBi2O4/Ag3PO4 with H2O2

    Directory of Open Access Journals (Sweden)

    Xiaojuan Chen

    2018-03-01

    Full Text Available Two kinds of CuBi2O4/Ag3PO4 with different heterojunction structures were prepared based on the combination of hydrothermal and in-situ precipitation methods with surfactant additives (sodium citrate and sodium stearate, and their characteristics were systematically resolved by X-ray Diffraction (XRD, Brunauer–Emmett–Teller (BET, X-ray Photoelectron Spectroscopy (XPS, Scanning Electron Microscope (SEM/ High-resolution Transmission Electron Microscopy (HRTEM, UV-vis Diffuse Reflectance Spectra (DRS and Photoluminescence (PL. Meanwhile, the photocatalytic properties of the catalysts were determined for diclofenac sodium (DS degradation and the photocatalytic mechanism was also explored. The results indicate that both of the two kinds of CuBi2O4/Ag3PO4 exhibit higher photocatalytic efficiency, mineralization rate, and stability than that of pure CuBi2O4 or Ag3PO4. Moreover, the catalytic activity of CuBi2O4/Ag3PO4 can be further enhanced by adding H2O2. The free radical capture experiments show that in the pure CuBi2O4/Ag3PO4 photocatalytic system, the OH• and O2•− are the main species participating in DS degradation; however, in the CuBi2O4/Ag3PO4 photocatalytic system with H2O2, all OH•, h+, and O2•− take part in the DS degradation, and the contribution order is OH• > h+ > O2•−. Accordingly, the photocatalytic mechanism of CuBi2O4/Ag3PO4 could be explained by the Z-Scheme theory, while the catalysis of CuBi2O4/Ag3PO4 with H2O2 follows the heterojunction energy band theory.

  1. Mechanical alloying of the FeNi-Ag system

    International Nuclear Information System (INIS)

    Gonzalez, G.; Ibarra, D.; Ochoa, J.; Villalba, R.; Sagarzazu, A.

    2007-01-01

    The Fe-Ni-Ag system is of particular interest for its potential applications as soft magnetic granular material with small magnetic grains embedded in a non-magnetic metal matrix. Under equilibrium conditions: Fe-Ag and Ni-Ag are immiscible and Fe-Ni shows complete solubility. These materials are particularly important for magnetoresistivity properties. The properties of these alloys are closely related to their microstructure; therefore, a detailed study of the transformations occurring during milling was undertaken using pre-alloyed Fe x Ni 100-x (x = 30, 50 and 70) further milled with different Ag content to give the following alloys compositions (Fe x -Ni 100-x ) 100-y Ag y (y = 5, 20, 60). Consolidation of the mechanically alloyed powders by sintering at 950 o C was performed. Morphological and structural characterization of the sintered powders was carried out by scanning and transmission electron microscopy and X-ray diffraction. Fe 30 Ni 70 and Fe 50 Ni 50 formed ordered FeNi 3 compound. Fe 70 Ni 30 showed the formation of a mixture of γ-(Fe,Ni) and α-Fe(Ni) solid solutions. The mixture of these systems with Ag showed the metal solid solutions surrounded by Ag islands of Fe x Ni y -Ag, There was also evidence of Ag diffusing into the γ-(Fe,Ni). High Ag content (60%) shows formation of islands of FeNi surrounded by Ag. Sintering is always improved with the Ag content

  2. Luminal and parenteral TFF2 and TFF3 dimer and monomer in two models of experimental colitis in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Kissow, Hannelouise; Hare, Kristine

    2005-01-01

    % dextran sodium sulphate in the drinking water or by one intraperitoneal injection of mitomycin C, 3.75 mg/kg. TFF peptides were administered as subcutaneous injections or directly into the lumen via a catheter placed in the proximal colon. Treatments were saline, TFF2, TFF3 monomer or TFF3 dimer 5 mg......2 had positive effect only in DSS-induced colitis. The TFF3 monomer was without any effects in both models. Treatment effect was most pronounced in the middle part of the colon, closest to the tip of the catheter. Injected TFF peptides, especially the TFF3 monomer, aggravated the colitis score...... in both colitis models. CONCLUSIONS: Intracolonic administration of TFF3 dimer and TFF2 improves experimentally induced colitis in rats. The TFF3 monomer has no effect. Parenteral administration of TFF peptides aggravates the colitis especially the TFF3 monomer....

  3. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Szade, J. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Talik, E. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Zubko, M. [Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chórzow (Poland); Wasilkowski, D. [Department of Biochemistry, University of Silesia, Jagiellońska 28, 40-032 Katowice (Poland); Dulski, M. [Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chórzow (Poland); Balin, K. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); and others

    2016-07-15

    Metal ion in bimetallic nanoparticles has shown vast potential in a variety of applications. In this paper we show the results of physical and chemical investigations of powder Ag/Cu nanoparticles obtained by chemical synthesis. Transmission electron microscopy (TEM) experiment indicated the presence of bimetallic nanoparticles in the agglomerated form. The average size of silver and copper nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu) basing on the X-ray diffraction (XRD) data. X-ray photoelectron (XPS) and Raman spectroscopies revealed the existence of metallic silver and copper as well as Cu{sub 2}O and CuO being a part of the nanoparticles. Moreover, UV–Vis spectroscopy showed surface alloy of Ag and Cu while Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and Energy Dispersive X-ray Spectroscopy (EDX) showed heterogeneously distributed Ag structures placed on spherical Cu nanoparticles. The tests of antibacterial activity show promising killing/inhibiting growth behaviour for Gram positive and Gram negative bacteria. - Highlights: • Ag/Cu nanoparticles were obtained in the powder form. • The average size of nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu). • Ag/Cu powder nanoparticle shows promising antibacterial properties.

  4. Sensors based on Ag-loaded hematite (α-Fe2O3 nanoparticles for methyl mercaptan detection at room temperature

    Directory of Open Access Journals (Sweden)

    Daniel Garcia

    2017-06-01

    Full Text Available Sensors based on Ag/α-Fe2O3 nanoparticles have been prepared by the coprecipitation method for sensing methyl mercaptan at room temperature. X-ray diffraction patterns of samples matched perfectly with characteristic peaks of hematite with no peaks assigned to Ag even at the highest concentration. STEM images and EDX analysis revealed the presence of Ag nanoparticles (from 2 to 5 nm which were highly dispersed onto α-Fe2O3 surface with an Ag/Fe ratio from 0.014 to 0.099. The Ag nanoparticles were deposited on the hematite surface. Sensing tests of Ag-loaded hematite nanoparticles showed much higher response signal than the unmodified sensor. Hematite loaded with 3%(Wt Ag showed the highest response with a linear dependence from 20 to 80 ppm. The sensor also depicted a good selectivity and stability during 4 days with short recovery time. The high dispersion of reduced Ag evaluated by XPS analysis played an important chemical role in the sensing mechanism that favored the contact of CH3SH with oxygen.

  5. Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor

    Science.gov (United States)

    Anand, Kanica; Kaur, Jasmeet; Singh, Ravi Chand; Thangaraj, Rengasamy

    2017-08-01

    Pure and Ag-doped In2O3 nanoparticles are synthesized by the co-precipitation method and are characterized by X-ray diffraction, transmission electron microscopy and photoluminescence spectroscopy. Gas sensing properties of the sensors has been investigated towards methanol, ethanol, acetone and LPG at different operating temperatures. It is found that the sensor response magnitude of the 3% Ag-doped In2O3 nanoparticles sensors is higher to 50 ppm of ethanol at 300 °C, to acetone at 350 °C and to LPG at 400 °C. This is mainly attributed to the large number of oxygen vacancies and defects in doped sensors as corroborated by the photoluminescence studies.

  6. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO{sub 2} nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Peng, Feng, E-mail: cefpeng@scut.edu.cn

    2014-12-15

    Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent is explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.

  7. Vancomycin-functionalised Ag-TiO{sub 2} phototoxicity for bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wan Yi [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China); Zhang Dun, E-mail: zhangdun@ms.qdio.ac.cn [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China); Wang Yi; Qi Peng; Wu Jiajia; Hou Baorong [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China)

    2011-02-15

    Research highlights: {yields} A multivalent interaction between Van-Ag-TiO{sub 2} and SRB. {yields} Van-Ag-TiO{sub 2} allow for selective photokilling of pathogen. {yields} Van-Ag-TiO{sub 2} show certain bactericidal property in dark. - Abstract: This study reports on the synthesis of vancomycin (Van)-functionalised Ag-TiO{sub 2} nanoparticles and their enhanced bactericidal activities. Van-Ag-TiO{sub 2} nanoparticles were prepared by nanoparticle deposition and chemical cross-linking reactions. The catalysts showed high efficiency for the degradation of methylene blue under ultraviolet (UV) illumination. The photocatalytic inactivation of the sulphate-reducing bacteria, Desulfotomaculum, was also studied under UV light irradiation and in the dark using aqueous mixtures of Ag, Ag-SiO{sub 2}, Ag-TiO{sub 2}, and Van-Ag-TiO{sub 2}. The Van-Ag-TiO{sub 2} nanoparticles showed a capacity to target Van-sensitive bacteria. They also effectively prevented bacterial cell growth through the functionalised nanoparticles under UV irradiation for 1 h. To investigate the specificity of the catalyst phototoxicity, a Van-resistant bacteria, Vibrio anguillarum, was used as the negative control. The results indicated that Van-Ag-TiO{sub 2} nanoparticles had a higher selective phototoxicity for Van-sensitive bacteria. Therefore, the antibiotic molecule-functionalised core-shell nanoparticles allow for selective photokilling of pathogenic bacteria.

  8. Electrocatalytic activity and stability of Ag-MnOx/C composites toward oxygen reduction reaction in alkaline solution

    International Nuclear Information System (INIS)

    Wu, Qiumei; Jiang, Luhua; Qi, Luting; Yuan, Lizhi; Wang, Erdong; Sun, Gongquan

    2014-01-01

    Ag-MnO x /C composites were prepared using AgNO 3 and KMnO 4 as the precursors and Vulcan XC-72 as the support. The physical properties of the Ag-MnO x /C composites were investigated via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The activity and the stability of the series of Ag-MnO x /C composites toward the oxygen reduction reaction (ORR) in alkaline media were investigated through the electrochemical techniques. The results show that the main species MnO 2 and Ag 2 O in the fresh sample convert into Mn 3 O 4 and Ag(0), respectively, after the heat treatment in N 2 at 300 °C (Ag-MnO x /C-300). The Ag-MnO x /C-300 sample shows the highest activity toward the ORR, with the half-wave potential of the ORR shifting negatively only 0.035 V compared to that on the commercial 40 wt. % Pt/C (JM). The electron transfer number during the ORR on the Ag-MnO x /C composite increases with the value close to four after the heat treatment at 300 °C, which is mainly attributed to the formation of Ag(0), rather than Mn 3 O 4 . The heat treatment brings about a better catalytic stability of the composite, and no obviously negative shift takes place for the half-wave potential of the ORR on the Ag-MnO x /C-300 composite after 1000 cycles accelerated aging test. The maximum power density of the zinc-air battery with the Ag-MnO x /C-300 air electrode reaches up to 130 mW cm −2 , higher than those based on the Pd/C and Pt/C cathode catalysts, which shows that the Ag-MnO x /C-300 composite is a promising candidate as the catalyst for the air electrode

  9. Structural and spectroscopic properties of MITh2(PO4)32 (M = Cu+, Ag+, Na+, K+)

    International Nuclear Information System (INIS)

    Arsalane, S.; Ziyad, M.

    1996-01-01

    Phosphates of general formulae M I Th 2 (PO 4 ) 3 where M = Cu + and Ag + were synthesized using sol-gel type methods and Cu + /Ag + ion exchange. Their structures were investigated by X-ray diffraction, FTIR, and 31 P MAS NMR spectroscopies. AgTh 2 (PO 4 ) 3 and NaTh 2 (PO 4 ) 3 were found to be isostructural. Their 31 P NMR spectra exhibit three resonances agreeing with the noncentrosymmetric space group Cc to which they belong. On the other hand, CuTh 2 (PO 4 ) 3 does not show a real crystallographic resemblance with the other M I Th 2 (PO 4 ) 3 phosphates of this family. Its 31 P NMR spectrum is similar to that of KTh 2 (PO 4 ) 3 and exhibits two sharp resonances in good agreement with the C2/c space group. Nevertheless, the [PO 4 ] groups in this phosphate are highly distorted because of the linear coordination of the Cu + copper ions

  10. Thermodynamics of swelling of latex particles with two monomers

    NARCIS (Netherlands)

    Maxwell, I.A.; Kurja, J.; van Doremaele, G.H.J.; German, A.L.

    1992-01-01

    The partitioning of 2 monomers between the latex particle, monomer droplet, and aq. phases of an emulsion polymer latex are measured at satn. swelling of the latex particle phase (corresponding to intervals I and II of an emulsion polymn.). The monomer (Me acrylate, Bu acrylate, styrene) and polymer

  11. Heat Treatment Effect on Eu3+ Doped TeO2-BaO-Bi2O3 Glass Systems with Ag Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tomasz Lewandowski

    2017-01-01

    Full Text Available Glass systems of 73TeO2-4BaO-3Bi2O3-2Eu2O3-xAg (in molar ratio where x = 0, 1, 2, and 3 compositions have been successfully synthesized. Silver nanoparticles were obtained with the employment of heat treatment (HT procedure executed at 350°C. Glass transition temperatures of different compositions have been determined through DSC measurements. XRD results presented characteristic amorphous halo indicating lack of long range order in the samples. FTIR structural studies revealed that glass matrix is mainly composed of TeO3 and TeO4 species and is stable after different applied heat treatment times. X-ray photoelectron spectroscopy (XPS measurements confirmed that in selected samples part of Ag ions changed oxidation state to form Ag0 species. TEM measurements revealed nanoparticles of size in the range of 20–40 nm. UV-vis absorption results demonstrated characteristic transitions of Eu3+ ions. Additionally, UV-vis spectra of samples heat-treated for 6, 12, 24, and 48 hours presented bands related to silver nanoparticles. Photoluminescence (PL studies have been performed with excitation wavelength of λexc=395 nm. Obtained spectra exhibited peaks due to 5D0-7FJ (where J=2,3,4 and 5D1-7FJ (where J=1,2,3 transitions of Eu3+. Moreover, luminescence measurement indicated enhancement of rare earth ions emissions in several of the annealed samples. Increase of emission intensity of about 35% has been observed.

  12. Monomers capable of forming four hydrogen bridges and supramolecular polymers formed by copolymerization of these monomers with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers containing self-complementary quadruple hydrogen groups by copolymerizing monomers containing a quadruple hydrogen bonding group with one or more monomers of choice. The resulting polymers show unique new characteristics due to the presence of

  13. Structural and luminescent study of TeO2-BaO-Bi2O3-Ag glass system doped with Eu3+ and Dy3+ for possible color-tunable phosphor application

    Science.gov (United States)

    Lewandowski, Tomasz; Seweryński, Cezary; Walas, Michalina; Łapiński, Marcin; Synak, Anna; Sadowski, Wojciech; Kościelska, Barbara

    2018-05-01

    Tellurite glass systems of 73TeO2-4BaO-3Bi2O3-1Ag:xEu2O3-(2-x)Dy2O3 (where x = 0.5, 1, 1.5, 2 in molar ratio) composition have been successfully synthesized. In order to acquire Ag nanoparticles, materials have been heat treated at 350 °C in the air atmosphere. Structural properties of obtained samples were evaluated with various techniques. X-Ray Diffraction (XRD) measurements indicated that obtained materials are amorphous in nature. UV-vis results presented transitions characteristic to Dy3+ and Eu3+ ions. Additionally, X-Ray Photoelectron Spectroscopy (XPS) analysis indicated the presence of silver in metallic form. Photoluminescence measurements shown influence of Ag nanoparticles on emission characteristics. Simultaneous emission of Dy3+ and Eu3+ has been observed when samples were excited with λexc = 390 nm. Change of the emission color induced by heat treatment has been observed and described in case of x = 1 glass series. According to CIE results emission color changes as Eu/Dy ratio and heat treatment time are changed. Emission shifts from reddish-orange to yellowish white color. Obtained photoluminescence results confirm that synthesized materials are good candidates for color tunable phosphors.

  14. The anomalous behaviour of Ag-Al sub 2 O sub 3 Cermet electroformed devices

    CERN Document Server

    Khan, M S R

    2003-01-01

    Cermet coating consisting of silver particles in an aluminium oxide matrix were prepared on glass substrates by vacuum deposition. Variation of the circulating current with potential difference was obtained in evaporated Al/Ag-Al sub 2 O sub 3 /Cu sandwich structures, 100 to 200 nm thick containing 10 wt % Ag. It was observed that the investigated sandwich structures exhibit anomalous behaviour such as electroforming with Voltage-Controlled-Negative Resistance (VCNR) in vacuo of approx 4 x 10 sup - sup 6 torr. The formed characteristics were explained on the basis of filamentary model.

  15. AG, TL, and IRSL dosimetric properties in X-ray irradiated HPHT diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Tolano, M.I. [Programa de Posgrado, Departamento de Investigacion en Fisica, Universidad de Sonora, A. P. 5-088, Hermosillo, Sonora, 83190, Mexico (Mexico); Melendrez, R.; Lancheros-Olmos, J.C.; Soto-Puebla, D.; Chernov, V.; Pedroza-Montero, M.; Barboza-Flores, M. [Departamento de Investigacion en Fisica, Universidad de Sonora, A. P. 5-088, Hermosillo, Sonora, 83190, Mexico (Mexico); Castaneda, B. [Departamento de Fisica, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo, Sonora, 83000, Mexico (Mexico)

    2014-10-15

    HPHT diamonds have been studied for several years for their potential in different applications. In previous studies it has been found that the thermoluminescence (TL) glow curves of ''as-grown'' HPHT diamonds are non-reproducible. In this work, we study the afterglow (AG), thermoluminescent (TL), and optically stimulated luminescence (OSL) response of commercial samples of synthetic HPHT type-Ib diamond crystals exposed to X-ray irradiation (0.75 mA, 35 kV) at a dose rate of 0.624 Gy/s, after a high gamma ({sup 60}Co) dose irradiation of 500 kGy followed by a thermal treatment at 1073 K for 1 h in nitrogen atmosphere. Deconvolution of the TL glow curves shows four peaks, located around 379, 509, 561, and 609 K. The crystals exhibit evident AG recorded for 300 s immediately after X-ray irradiation, due to the thermal emptying of the traps responsible for the low-temperature TL peaks (below 400 K). The stimulation of irradiated crystals with 870-nm light, creates pronounced OSL and destroys all TL peaks with the exception of the high-temperature peak at 609 K. The dose responses of the integrated AG, TL, and OSL are linear in the range of 0.6-5 Gy and saturated at higher doses. The reproducibility of AG, TL, and OSL measurements is about 5%. The fading in the first hour of storage in dark conditions at RT of TL signal of HPHT diamond is mainly associated to the emptying of the traps responsible for the 379-K TL peaks. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Polymerization of impregnated monomer in wood by microwave irradiation

    International Nuclear Information System (INIS)

    Kawase, Kaoru; Hayakawa, Kiyoshi

    1976-01-01

    The manufacturing of a wood-plastic combination (WPC) by irradiation of microwave (2,450 and 915 +- 50 MHz) or gamma-ray was carried out. After the impregnation of dry woods (Hinoki: Chamaecyparis obtusa Endl., Buna: Acer mono Maxim., and Kaede: Fagus crenata Blume) with the mixture of the vinyl monomers and chemical reagents, the monomer in wood was polymerized by irradiation. In case of polymerization with microwave (2,450 MHz) the effect of oxygen was not recognized, but in the case of gamma-ray the rate of polymerization remarkably decreased in the presence of oxygen. The polymerization of various monomers was carried out also in the air, and the conversions of styrene, methyl-, ethyl-, n-propyl-, and n-butyl-methacrylate were 51.8 -- 89.1%, but that of vinyl acetate was lower (4.3 -- 8.2%). The conversion of monomers with irradiation of 915 MHz microwave was very low (2.6 -- 33.5%). The conversion of monomers increased when toluylene diisocyanate was added in the monomers. The percentage of extraction with hot benzene of WPC (chip) decreased by the addition of toluylene diisocyanate. It was concluded from C.H.N. analyses that the reaction took place among the wood, toluylene diisocyanate and methyl methacrylate. (auth.)

  17. Fluorescent oligonucleotides containing a novel perylene 2′-amino-α-L-LNA monomer: Synthesis and analytical potential

    DEFF Research Database (Denmark)

    Astakhova, Irina; Kumar, Santhosh T.; Wengel, Jesper

    2011-01-01

    efficiency of the resulting perylene-2'-amino-alpha-L-LNA monomer (T*) into synthetic oligonucleotides was significantly improved by replacement of the typically used 1H-tetrazole activator with pyridine hydrochloride. Generally, oligonucleotides containing monomer T* showed high binding affinity towards...... incorporations of monomers T* was quenched (quantum yield Phi(F) = 0.21) relative to duplexes of this probe with complementary DNA and RNA (Phi(F) = 0.42 and 0.35, respectively). On the contrary, a strong fluorescence quenching upon target binding was demonstrated by two short oligonucleotides of analogues...... sequences containing monomers T* at 5'- and 3'-terminal positions. We explain the hybridization-induced light-up effect observed for double-labeled probe by a reduction of fluorescence quenching due to precise positioning of the fluorophores within the double-stranded complexes. Furthermore, we propose...

  18. Structure and decomposition of the silver formate Ag(HCO2)

    International Nuclear Information System (INIS)

    Puzan, Anna N.; Baumer, Vyacheslav N.; Mateychenko, Pavel V.

    2017-01-01

    Crystal structure of the silver formate Ag(HCO 2 ) has been determined (orthorhombic, sp.gr. Pccn, a=7.1199(5), b=10.3737(4), c=6.4701(3)Å, V=477.88(4) Å 3 , Z=8). The structure contains isolated formate ions and the pairs Ag 2 2+ which form the layers in (001) planes (the shortest Ag–Ag distances is 2.919 in the pair and 3.421 and 3.716 Å between the nearest Ag atoms of adjacent pairs). Silver formate is unstable compound which decompose spontaneously vs time. Decomposition was studied using Rietveld analysis of the powder diffraction patterns. It was concluded that the diffusion of Ag atoms leads to the formation of plate-like metal particles as nuclei in the (100) planes which settle parallel to (001) planes of the silver formate matrix. - Highlights: • Silver formate Ag(HCO 2 ) was synthesized and characterized. • Layered packing of Ag-Ag pairs in the structure was found. • Decomposition of Ag(HCO 2 ) and formation of metal phase were studied. • Rietveld-refined micro-structural characteristics during decomposition reveal the space relationship between the matrix structure and forming Ag phase REPLACE with: Space relationship between the matrix structure and forming Ag phase.

  19. A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites

    International Nuclear Information System (INIS)

    Saravanan, P.; Padmanabha Raju, M.; Alam, Sarfaraz

    2007-01-01

    Synthesis of Ag nanoparticles containing polyacrylamide (PAm) hydrogel composites was performed by free-radical cross-linking polymerization of acrylamide monomer in an aqueous medium containing Ag + ions. The Ag nanoparticle/PAm composites exhibit faint yellow colour and are found to stable under ambient conditions, without undergoing oxidation. TEM micrographs reveal the presence of nearly spherical and well-separated Ag nanoparticles with diameters in the range of 4-7 nm. UV-vis studies apparently show the characteristic surface plasmon band at ∼415 nm, for the existence of Ag nanoparticles within the hydrogel matrix. The effect of varying Ag + ion concentration within the PAm hydrogels on the amount of formation of Ag nanoparticles, as well as on the bulk properties of hydrogel nanocomposites such as equilibrium swelling, optical and electrical properties are studied. The Ag/PAm hydrogel nanocomposites have higher swelling ratio and lower electron transfer resistance than its corresponding conventional hydrogel

  20. Investigation of AgInS{sub 2} thin films grown by coevaporation

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo, C A; Gordillo, G [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); J, Clavijo, E-mail: caarredondoo@unal.edu.c, E-mail: ggordillog@unal.edu.c [Departamento de Quimica, Universidad Nacional de Colombia, Bogota, Cr.30 N0 45-03 (Colombia)

    2009-05-01

    AgInS{sub 2} thin films were grown on soda-lime glass substrates by co-evaporation of the precursors in a two-step process. X-ray diffraction (XRD) measurements indicated that these compounds grow in different phases and with different crystalline structure depending upon the deposition conditions. However, through a parameter study, conditions were found to grow thin films containing only the AgInS{sub 2} phase with chalcopyrite type structure. In samples containing a mixture of several phases, the contribution in percentage terms of each phase to the whole compound was estimated with the help of the PowderCell simulation package. It was also found that the AgInS{sub 2} films present p-type conductivity, a high absorption coefficient (greater than 10{sub 4} cm{sub -1}) and an energy band gap Eg of about 1.95 eV, indicating that this compound has good properties to perform as absorbent layer in thin film tandem solar cells. The effect of the deposition conditions on the optical and morphological properties was also investigated through spectral transmitance and atomic force microscopy (AFM) measurements.

  1. Ag2CuMnO4: A new silver copper oxide with delafossite structure

    International Nuclear Information System (INIS)

    Munoz-Rojas, David; Subias, Gloria; Oro-Sole, Judith; Fraxedas, Jordi; Martinez, Benjamin; Casas-Cabanas, Montse; Canales-Vazquez, Jesus; Gonzalez-Calbet, Jose; Garcia-Gonzalez, Ester; Walton, Richard I.; Casan-Pastor, Nieves

    2006-01-01

    The use of hydrothermal methods has allowed the synthesis of a new silver copper mixed oxide, Ag 2 CuMnO 4 , the first example of a quaternary oxide containing both elements. It crystallizes with the delafossite 3R structure, thus being the first delafossite to contain both Ag and Cu. Synthesis conditions affect the final particle size (30-500nm). Powder X-ray diffraction Rietveld refinement indicates a trigonal structure (R3-bar m) and cell parameters a=2.99991A and c=18.428A, where Cu and Mn are disordered within the octahedral B positions in the plane and linearly coordinated Ag occupies de A position between layers. X-ray absorption near edge spectroscopy (XANES) for copper and manganese, and XPS for silver evidence +2, +4, and +1 oxidation states. The microstructure consists of layered particles that may form large twins showing 5nm nanodomains. Finally, magnetic measurements reveal the existence of ferromagnetic coupling yielding in-plane moments that align antiferromagnetically at lower temperatures. The singularity of the new phase resides on the fact that is an example of a bidimensional arrangement of silver and copper in an oxide that also shows clear bidimensionality in its physical properties. That is of special relevance to the field of high T c superconducting oxides, while the ferromagnetic coupling in a bidimensional system deserves itself special attention

  2. Determination of the X-ray mass absorption coefficient by measurement of the intensity of AgKα Compton scattered radiation

    International Nuclear Information System (INIS)

    Franzini, M.; Leoni, L.; Saitta, M.

    1976-01-01

    By utilizing a reflection geometry, an accurate mass absorption coefficient of a sample can be determined by measuring the Ag Kα Compton intensity. Intensities of Ag Kα Compton scattered radiation have been collected by using either the usual reflection geometry of a Philips PW 1450 automatic x-ray spectrometer or a more refined reflection geometry, achieved on a Philips PW 1540/10A manual x-ray spectrometer. The experimental results have shown that the relationship between the Ag Kα Compton intensity and the mass absorption is a logarithmic function. The experimental results are not in agreement with those reported in literature, but a theoretical explanation to account for this fact has not been achieved as yet. (author)

  3. Simple synthesis of ultra-long Ag2Te nanowires through solvothermal co-reduction method

    International Nuclear Information System (INIS)

    Xiao Feng; Chen Gang; Wang Qun; Wang Lin; Pei Jian; Zhou Nan

    2010-01-01

    Ultra-long single crystal β-Ag 2 Te nanowires with the diameter of about 300 nm were fabricated through a solvothermal route in ethylene glycol (EG) system without any template. The long single crystal wires were curves, with high purity, well-crystallized, and dislocation-free and characterized by using X-ray powder diffraction (XRD), Differential scanning calorimetry (DSC) analysis, X-ray photoelectron spectroscope (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high-resolution transmission microscopy (HRTEM). The detailed topotactic transformation process from particles into single crystal wires was studied. Furthermore, the electrical conductivity and Seebeck coefficient have been systematically studied between 300 and 600 K. - Graphical abstract: Ultra-long single crystal β-Ag 2 Te nanowires with the diameter of about 300 nm were fabricated by the solvothermal route in ethylene glycol (EG) system without any template. The diagram displays the variation of the phases and morphologies of products with different reaction time.

  4. Unveiling the Structural Evolution of Ag1.2Mn8O16 under Coulombically Controlled (De)Lithiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianping [Department; Hu, Xiaobing [Energy; Brady, Alexander B. [Department; Wu, Lijun [Energy; Zhu, Yimei [Energy; Takeuchi, Esther S. [Department; Energy; Department; Marschilok, Amy C. [Department; Department; Takeuchi, Kenneth J. [Department; Department

    2018-01-02

    MnO2 materials are considered promising cathode materials for rechargeable lithium, sodium, and magnesium batteries due to their earth abundance and environmental friendliness. One polymorph of MnO2, α-MnO2, has 2 × 2 tunnels (4.6 Å × 4.6 Å) in its structural framework, which provide facile diffusion pathways for guest ions. In this work, a silver-ion-containing α-MnO2 (Ag1.2Mn8O16) is examined as a candidate cathode material for Li based batteries. Electrochemical stability of Ag1.2Mn8O16 is investigated through Coulombically controlled reduction under 2 or 4 molar electron equivalents (e.e.). Terminal discharge voltage remains almost constant under 2 e.e. of cycling, whereas it continuously decreases under repetitive reduction by 4 e.e. Thus, detailed structural analyses were utilized to investigate the structural evolution upon lithiation. Significant increases in lattice a (17.7%) and atomic distances (~4.8%) are observed when x in LixAg1.2Mn8O16 is >4. Ag metal forms at this level of lithiation concomitant with a large structural distortion to the Mn–O framework. In contrast, lattice a only expands by 2.2% and Mn–O/Mn-Mn distances show minor changes (~1.4%) at x < 2. The structural deformation (tunnel breakage) at x > 4 inhibits the recovery of the original structure, leading to poor cycle stability at high lithiation levels. This report establishes the correlation among local structure changes, amorphization processes, formation of Ag0, and long-term cycle stability for this silver-containing α-MnO2 type material at both low and high lithiation levels.

  5. Tunable negative thermal expansion related with the gradual evolution of antiferromagnetic ordering in antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} (0 ≤ x ≤ 0.6)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J. C.; Tong, P., E-mail: tongpeng@issp.ac.cn; Lin, S.; Wang, B. S.; Song, W. H. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Tong, W.; Zou, Y. M. [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Y. P., E-mail: ypsun@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-02-23

    The thermal expansion and magnetic properties of antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} were reported. The substitution of Mn for Ag effectively broadens the temperature range of negative thermal expansion and drives it to cryogenic temperatures. As x increases, the paramagnetic (PM) to antiferromagnetic (AFM) phase transition temperature decreases. At x ∼ 0.2, the PM-AFM transition overlaps with the AFM to glass-like state transition. Above x = 0.2, two new distinct magnetic transitions were observed: One occurs above room temperature from PM to ferromagnetic (FM), and the other one evolves at a lower temperature (T{sup *}) below which both AFM and FM orderings are involved. Further, electron spin resonance measurement suggests that the broadened volume change near T{sup *} is closely related with the evolution of Γ{sup 5g} AFM ordering.

  6. Effects of monomer shape on the formation of aggregates from a power law monomer distribution

    International Nuclear Information System (INIS)

    Perry, J; Kimery, J; Matthews, L S; Hyde, T W

    2013-01-01

    The coagulation of dust aggregates is an important process in many physical systems such as the Earth's upper atmosphere, comet tails and protoplanetary discs. Numerical models which study the aggregation in these systems typically involve spherical monomers. There is evidence, however, via the polarization of sunlight in the interstellar medium, as well as optical and LIDAR observations of high-altitude particles in Earth's atmosphere (70–100 km), which indicate that dust monomers may not necessarily be spherical. This study investigates the influence of different ellipsoidal monomer shapes on the morphology of aggregates given various distributions of monomer sizes. Populations of aggregates are grown from a single monomer using a combination of ballistic particle–cluster aggregation and ballistic cluster–cluster aggregation regimes incorporating the rotation of monomers and aggregates. The resulting structures of the aggregates are then compared via the compactness factor, geometric cross-section and friction time. (paper)

  7. Structural characterization of AgGaTe{sub 2} layers grown on a- and c-sapphire substrates by a closed space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Uruno, Aya; Usui, Ayaka [Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2014-07-15

    AgGaTe{sub 2} layers were grown on a- and c-plane sapphire substrates by a closed space sublimation method with varying the source temperature. Grown films were evaluated by θ -2θ and pole figure measurements of X-ray diffraction. AgGaTe{sub 2} layers were grown to have strong preference for the (103) orientation. However, it was cleared the Ag{sub 5}Te{sub 3} was formed along with the AgGaTe{sub 2} when the layer was grown on c-plane sapphire. The orientation of the film was analyzed by using the pole figure, and resulted in AgGaTe{sub 2} without Ag{sub 5}Te{sub 3} layers could be grown on a-plane sapphire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. 细粒棘球绦虫AgB8/1-AgB8/2重组嵌合抗原表达系统的构建%Establishment of Echinococcus granulosus AgB8/1-AgB8/2 chimeric recombinant protein expression system

    Institute of Scientific and Technical Information of China (English)

    古力帕丽·麦曼提依明; 马海梅; 吾拉木·马木提; 陈洁; 陈璐; 丁剑冰; 马秀敏; 温浩

    2011-01-01

    目的 构建pET32a-AgB8/1-AgB8/2原核表达载体,并对其重组蛋白进行原核细胞表达.方法 从细粒棘球绦虫原头蚴中提取总RNA,反转录生成cDNA,以此cDNA为模板,用基因特异性引物分别扩增EgAgB8/1和EgAgB8/2基因编码其分泌型多肽的片段,经测序后,以此两条基因片段为依据,人工合成EgAgB8/1-EgAgB8/2嵌合抗原编码核酸序列,将其克隆至pUCm-T载体,测序鉴定其正确性.通过对pUCm-T/AgB8/1-AgB8/2重组质粒进行双酶切,将获得的AgB8/1-AgB8/2嵌合抗原编码核酸序列用定向克隆技术克隆至原核表达质粒pET32a上,测序鉴定插入片段正确后,转化至E.coli BL21(DE3)Lys S,IPTG初步诱导表达pET32a-AgB8/1-AgB8/2重组嵌合蛋白.用SDS-PAGE电泳分析鉴定重组蛋白的表达水平.结果 测序表明,AgB8/1-AgB8/2嵌合抗原编码核酸序列正方向插入至pET32a质粒.SDS-PAGE电泳分析显示,IPTG诱导后重组嵌合蛋白得到成功表达,在相对分子量约38 kD处有表达条带.结论 成功构建了pET32a-AgB8/1-AgB8/2原核表达质粒,并初步诱导表达出AgB8/1-AgB8/2嵌合重组蛋白,为进一步研究其免疫学特性奠定了基础.%In order to construct the pET32a-AgB8/1-AgB8/2 chimeric antigen prokaryotic expression recombinant plasmid and the expression of its recombinant protein, the total RNA was extracted from protoscoleces of Echinococcus granulosus,and reverse transcribed into cDNA, the cDNA encoding mature form of EgAgB8/land EgAgB8/2 antigen were amplified by PCR using gene specific primers.Based on the both gene fragments, a nucleotide sequence encoding EgAgB8/1-EgAgB8/2 chimeric antigen were artificially synthesized after sequence confirmation.The synthesized nucleotide sequence encoding EgAgB8/1-EgAgB8/2 chimeric antigen were conformed by sequencing after cloning into pUCm-T vector, then the target sequence was directionally ligated into pET32a plasmid after double digestion with restriction enzymes for prokaryotic

  9. Tailoring the light absorption of Ag-PZT thin films by controlling the growth of hexagonal- and cubic-phase Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi [Zhejiang University, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Hangzhou (China)

    2017-12-15

    PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l{sup -1}. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 x 10{sup 13} Hz (390-425 nm) to 8.4 x 10{sup 13} Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films. (orig.)

  10. UV-VIS absorption spectra of molten AgCl and AgBr and of their mixtures with group I and II halide salts

    Energy Technology Data Exchange (ETDEWEB)

    Greening, Giorgio G.W. [Technische Universitaet Darmstadt (Germany). Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie

    2015-07-01

    The UV-VIS absorption spectra of (Ag{sub 1-X}[Li-Cs, Ba]{sub X})Cl and of (Ag{sub 1-X}[Na, K, Cs]{sub X})Br at 823 K at the concentrations X=0.0, 0.1, 0.2 have been measured. The findings show that on adding the respective halides to molten silver chloride and silver bromide, shifts of the fundamental absorption edge to shorter wavelengths result. A correlation between the observed shifts and the expansion of the silver sub-lattice is found, which is valid for both silver halide systems studied in this work.

  11. Optical properties of Ag nanoclusters formed by irradiation and annealing of SiO{sub 2}/SiO{sub 2}:Ag thin films

    Energy Technology Data Exchange (ETDEWEB)

    Güner, S., E-mail: sguner@fatih.edu.tr [Department of Physics, Fatih University, 34500 Büyükçekmece, İstanbul (Turkey); Budak, S. [Department of Electrical Engineering and Computer Science, Alabama A and M University, Huntsville, AL 35810 (United States); Gibson, B. [Department of Physics, UAH, Huntsville, AL 35899 (United States); Ila, D. [Department of Chemistry and Physics, Fayetteville St. University, Fayetteville, NC 28301 (United States)

    2014-08-15

    Highlights: • Fabrication of films through the Reactive Electron Beam deposition technique. • Perfect and reproducible Ag nanoclustered host matrix. • Potential technological applicability in thermoelectric devices. - Abstract: We have deposited five periodic SiO{sub 2}/SiO{sub 2} + Ag multi-nano-layered films on fused silica substrates using physical vapor deposition technique. The co-deposited SiO{sub 2}:Ag layers were 2.7–5 nm and SiO{sub 2} buffer layers were 1–15 nm thick. Total thickness was between 30 and 105 nm. Different concentrations of Ag, ranging from 1.5 to 50 molecular% with respect to SiO{sub 2} were deposited to determine relevant rates of nanocluster formation and occurrence of interaction between nanoclusters. Using interferometry as well as in situ thickness monitoring, we measured the thickness of the layers. The concentration of Ag in SiO{sub 2} was measured with Rutherford Backscattering Spectrometry (RBS). To nucleate Ag nanoclusters, 5 MeV cross plane Si ion bombardments were performed with fluence varying between 5 × 10{sup 14} and 1 × 10{sup 16} ions/cm{sup 2} values. Optical absorption spectra were recorded in the range of 200–900 nm in order to monitor the Ag nanocluster formation in the thin films. Thermal annealing treatment at different temperatures was applied as second method to form varying size of nanoclusters. The physical properties of formed super lattice were criticized for thermoelectric applications.

  12. Target swapping in PLD: An efficient approach for CdS/SiO2 and CdS:Ag(1%)/SiO2 nanocomposite thin films with enhanced luminescent properties

    International Nuclear Information System (INIS)

    Saxena, Nupur; Kumar, Pragati; Gupta, Vinay

    2017-01-01

    A novel synthesis method for luminescent and by-products (like CdO) free CdS/SiO 2 and CdS:Ag(1%)/SiO 2 (i.e. 1%Ag doped CdS/SiO 2 ) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS, CdS:Ag(1%) and SiO 2 are used to deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposite thin films by swapping them at a frequency ratio of 2:8 laser pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO 2 in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (i.e. 2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS/ CdS:Ag(1%) nanocrystals in nanocomposite systems after annealing at 500 °C. Highly intense and broad red emission is achieved from CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites. The efficiencies of emission from pristine CdS:SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites are found to be enhanced by approximately two times as compared to sole nanocrystalline CdS and CdS:Ag(1%) thin films respectively and further enhanced upto 7 times on annealing the nanocomposite systems at 500 °C. - Graphical abstract: A modified synthesis method for luminescent and by-products (like CdO) free undoped &1% Ag doped CdS/SiO 2 (deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 ) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS or CdS:Ag(1%) and SiO 2 are used to deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposite thin films by swapping them at a frequency of 2:8 pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO 2 in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS nanocrystals in nanocomposite systems after annealing at 500 °C. Intense and broad red emission is achieved from deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites. The efficiency of

  13. Combination of Ag/Al2O3 and Fe-BEA for High-Activity Catalyst System for H2-Assisted NH3-SCR of NO x for Light-Duty Diesel Car Applications

    DEFF Research Database (Denmark)

    Fogel, S.; Doronkin, D. E.; Høj, J. W.

    2013-01-01

    Low-temperature active Ag/Al2O3 and high-temperature active Fe-BEA zeolite were combined and tested for H2-assisted NH3-selective catalytic reduction (SCR) of NO x . The catalysts were either washcoated onto separate monoliths that were placed up- or downstream of each other (dual-brick layout) o...

  14. Synthesis of Hydroxyapatite/Ag/TiO2 Nanotubes and Evaluation of Their Anticancer Activity on Breast Cancer Cell Line MCF-7

    Directory of Open Access Journals (Sweden)

    Sara Rahimnejad

    2016-06-01

    Full Text Available In this research, TiO2 nanotubes were synthesized by anodized oxidation method and were covered with a hydroxyapatite-silver nanoparticles using photodeposition and dip coating for loading silver nanoparticles and coated hydroxyapatite (HA. The morphological texture of TiO2 nanotube and Ag-HA nanoparticles on TiO2 nanotubes surface were studied by field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDAX analysis and X-ray diffraction (XRD. The MCF-7 cell lines were treated with concentrations 1, 10 and 100 µg/ml of TiO2 nanotubes and HA/Ag/TiO2 nanotube for 24 and 48h. Finally, the cell viability and IC50% were evaluated using MTT assay. The results show that the HA/Ag/TiO2 has more positive effect on enhancing the cell death compare to TiO2 nanotubes and also exerts a time and concentration-dependent inhibition effect on viability of MCF-7 cells

  15. Interfacial magnetic coupling between Fe nanoparticles in Fe–Ag granular alloys

    International Nuclear Information System (INIS)

    Alonso, J; Fdez-Gubieda, M L; Sarmiento, G; Chaboy, J; Boada, R; García Prieto, A; Haskel, D; Laguna-Marco, M A; Lang, J C; Meneghini, C; Fernández Barquín, L; Neisius, T; Orue, I

    2012-01-01

    The role of the interface in mediating interparticle magnetic interactions has been analysed in Fe 50 Ag 50 and Fe 55 Ag 45 granular thin films deposited by the pulsed laser deposition technique (PLD). These samples are composed of crystalline bcc Fe (2–4 nm) nanoparticles and fcc Ag (10–12 nm) nanoparticles, separated by an amorphous Fe 50 Ag 50 interface, occupying around 20% of the sample volume, as determined by x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), and high resolution transmission electron microscopy (HRTEM). Interfacial magnetic coupling between Fe nanoparticles is studied by dc magnetization and x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and Ag L 2,3 edges. This paper reveals that these thin films present two magnetic transitions, at low and high temperatures, which are strongly related to the magnetic state of the amorphous interface, which acts as a barrier for interparticle magnetic coupling.

  16. The production of 103Pd and 109Cd from a proton irradiated tandem natAg/natAg targets

    International Nuclear Information System (INIS)

    Ineza, C.; Mphahlele, J.

    2014-01-01

    This paper describes a new method for the production of 103 Pd and 109 Cd using the 66 MeV proton beam of iThemba LABS on a tandem natural silver target (Ag/Ag). The radiochemical separation of the Pd radionuclides ( 103 Pd, 100 Pd) from the bulk nat Ag was done using a Chelex-100 chelating resin column. The recovery of 103 Pd from the irradiated nat Ag target was found to be >98 % without any Ag or Rh impurities detected. The radiochemical separation of 109 Cd from the bulk nat Ag target was done by the precipitation of Ag ions by Cu followed by the separation of 109 Cd, traces of Ag, Cu 2+ and Rh using a AG1-X10 anion exchange resin column. The recovery yield of 109 Cd was >99 % without any Ag or Rh impurities detected. (author)

  17. Coupling of g proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor.

    Science.gov (United States)

    Redka, Dar'ya S; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V; Ellis, John; Ernst, Oliver P; Wells, James W

    2014-08-29

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5'-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[(3)H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the "ternary complex model"). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Fast preparation of Bi2GeO5 nanoflakes via a microwave-hydrothermal process and enhanced photocatalytic activity after loading with Ag nanoparticles

    International Nuclear Information System (INIS)

    Li, Zhao-Qian; Lin, Xin-Shan; Zhang, Lei; Chen, Xue-Tai; Xue, Zi-Ling

    2012-01-01

    Highlights: ► Bi 2 GeO 5 nanoflakes were successfully synthesized via a microwave-assisted solution-phase approach. ► Ag nanoparticles were deposited on the Bi 2 GeO 5 nanoflakes by a photoreduction procedure. ► Catalytic activity of the Ag/Bi 2 GeO 5 nanocomposite in the photo-degradation of rhodamine B (RhB) was much higher than that of pure Bi 2 GeO 5 . -- Abstract: In this work, a facile and rapid microwave-assisted hydrothermal route has been developed to prepare Bi 2 GeO 5 nanoflakes. Ag nanoparticles were subsequently deposited on the Bi 2 GeO 5 nanoflakes by a photoreduction procedure. The phases and morphologies of the products were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV–vis diffuse reflectance spectroscopy. Photocatalytic experiments indicate that such Ag/Bi 2 GeO 5 nanocomposite possesses higher photocatalytic activity for RhB degradation under UV light irradiation in comparison to pure Bi 2 GeO 5 . The amount of Ag in the nanocomposite affects the catalytic activity, and 3 wt% Ag showed the highest photodegradation efficiency. Moreover, the catalyst remains active after four consecutive tests. The present study provides a new strategy to design composite materials with enhanced photocatalytic activity.

  19. XPS and Ag L3-edge XANES characterization of silver and silver-gold sulfoselenides

    Science.gov (United States)

    Mikhlin, Yuri L.; Pal'yanova, Galina A.; Tomashevich, Yevgeny V.; Vishnyakova, Elena A.; Vorobyev, Sergey A.; Kokh, Konstantin A.

    2018-05-01

    Gold and silver sulfoselenides are of interest as materials with high ionic conductivity and promising magnetoresistive, thermoelectric, optical, and other physico-chemical properties, which are strongly dependent on composition and structure. Here, we applied X-ray photoelectron spectroscopy and Ag L3 X-ray absorption near-edge structure (XANES) to study the electronic structures of low-temperature compounds and solid solutions Ag2SxSe1-x (0 compounds; in particular, the Ag L3-edge peak is about 35% lower for AgAuS relative to Ag2S. At the same time, the Au 4f binding energy and, therefore, charge at Au(I) sites increase with increasing S content due to the transfer of electron density from Au to Ag atoms. It was concluded that the effects mainly originate from shortening of the metal-chalcogen and especially the Ausbnd Ag interatomic distances in substances having similar coordination geometry.

  20. Murmanite and lomonosovite as Ag-selective ionites: kinetics and products of ion exchange in aqueous AgNO3 solutions

    Science.gov (United States)

    Lykova, Inna S.; Chukanov, Nikita V.; Kazakov, Anatoliy I.; Tarasov, Viktor P.; Pekov, Igor V.; Yapaskurt, Vasiliy O.; Chervonnaya, Nadezhda A.

    2013-09-01

    Products and kinetics of ion exchange of heterophyllosilicate minerals lomonosovite and murmanite with aqueous AgNO3 solutions under low-temperature conditions have been studied using scanning electron microscopy, electron microprobe analysis, single-crystal X-ray diffraction, infrared spectroscopy, 23Na nuclear magnetic resonance spectroscopy and dynamic calorimetry. Both minerals show strong affinity for silver in cation exchange. Simplified formulae of Ag-exchanged forms of murmanite and lomonosovite are (Ag3.0Ca0.5Na0.5) (Ti,Nb,Mn,Fe)3.7-4 (Si2O7)2O4·4(H2O,OH) and (Ag8.2Na1.2Ca0.3) (Ti,Nb,Mn,Fe)3.9-4 (Si2O7)2 (PO4)1.9O4· xH2O, respectively. The reaction of ion exchange for murmanite follows the first-order kinetic model up to ca. 70-80 % conversion. The rate of the process is described by the equation k(h-1) = 107.64±0.60 exp[-(12.2 ± 0.9)·103/RT]. The average heat release value in the temperature range 39.4-72 °C is 230 J g-1. The cation exchange is limited by processes in solid state, most probably binding of silver.

  1. A Simple Method for the Preparation of TiO2 /Ag-AgCl@Polypyrrole Composite and Its Enhanced Visible-Light Photocatalytic Activity.

    Science.gov (United States)

    Yao, Tongjie; Shi, Lei; Wang, Hao; Wang, Fangxiao; Wu, Jie; Zhang, Xiao; Sun, Jianmin; Cui, Tieyu

    2016-01-01

    A novel and facile method was developed to prepare a visible-light driven TiO2 /Ag-AgCl@polypyrrole (PPy) photocatalyst with Ag-AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag-AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag-AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2 /Ag-AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible-light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag-AgCl nanoparticles and the PPy shell. Furthermore, the TiO2 /Ag-AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fabrication of graphene oxide enwrapped Z-scheme Ag{sub 2}SO{sub 3}/AgBr nanoparticles with enhanced visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yujuan; Liang, Chunyan; Xia, Yue, E-mail: xiayue_chem@126.com; Huang, Wei; Li, Zelin

    2017-02-28

    Highlights: • A novel GO/Ag{sub 2}SO{sub 3}/AgBr composite was prepared via a solution method. • It showed enhanced photocatalytic performance to degrade dyes under visible light irradiation. • Its photocatalytic ability was effectively maintained for 4 cycles without sacrificial reagents. - Abstract: A novel graphene oxide (GO) enwrapped Ag{sub 2}SO{sub 3}/AgBr (GO/Ag{sub 2}SO{sub 3}/AgBr) composite was fabricated through a facile solution approach via electrostatic interaction and precipitation transformation reaction for the first time. The results of XRD, Raman, SEM, TEM and XPS confirmed the structure, morphology and composition of the GO/Ag{sub 2}SO{sub 3}/AgBr composite very well. The Ag{sub 2}SO{sub 3}/AgBr nanoparticles were found to be encapsulated by GO sheets. The photocatalytic activity of the composite was investigated by the degradation of methyl orange (MO), rhodamine B (RhB) and methylene blue (MB) in water under visible light. The incorporation of GO sheets not only significantly enhanced the photocatalytic activity but also improved the reusability of Ag{sub 2}SO{sub 3}/AgBr nanoparticles. The photocatalytic ability of GO/Ag{sub 2}SO{sub 3}/AgBr can be maintained at a high level for 4 times cycle experiments. The trapping experiments confirmed that holes and superoxide ion radicals were the main active species responsible for the degradation reaction. A plasmonic Z-scheme photocatalytic mechanism was proposed to illustrate the possible transferred and separated behavior of electron-hole pairs among Ag, Ag{sub 2}SO{sub 3}, AgBr and GO quaternary system under visible light irradiation.

  3. Improved solar-driven photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} prepared in-situ

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Junbo, E-mail: junbozhong@163.com [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Li, Jianzhang, E-mail: lschmanuscript@163.com [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Huang, Shengtian; Cheng, Chaozhu; Yuan, Wei [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Li, Minjiao [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Sichuan Provincial Academician (Expert) Workstation, Sichuan University of Science and Engineering, Zigong 643000 (China); Ding, Jie [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-05-15

    Highlights: • Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} photocatalysts were prepared in-situ. • The photo-induced charge separation rate has been greatly increased. • The photocatalytic activity has been greatly promoted. - Abstract: Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} composites have been fabricated in-situ via a facile parallel flaw co-precipitation method. The specific surface area, structure, morphology, and the separation rate of photo-induced charge pairs of the photocatalysts were characterized by Brunauer–Emmett–Teller (BET) method, X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy(DRS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and surface photovoltage (SPV) spectroscopy, respectively. XRD patterns and DRS demonstrated that Ag{sub 2}CO{sub 3} has no effect on the crystal phase and bandgap of (BiO){sub 2}CO{sub 3}. The existence of Ag{sub 2}CO{sub 3} in the composites enhances the separation rate of photo-induced charge pairs of the photocatalysts. The photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} was evaluated by the decolorization of methyl orange (MO) aqueous solution under simulated solar irradiation. It was found that the simulated solar-induced photocatalytic activity of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} copmposites was significantly improved, which was mainly attributed to the enhanced surface area and the separation rate of photo-induced charge pairs.

  4. Physical properties of glasses in the Ag2GeS3-AgBr system

    Science.gov (United States)

    Moroz, M. V.; Demchenko, P. Yu.; Prokhorenko, S. V.; Moroz, V. M.

    2013-08-01

    Glasses have been prepared by quenching melts in the Ag2GeS3-AgBr system in a range of 0-53 mol % AgBr. The concentration dependences of density, microhardness, glass transition temperatures, and crystallization of alloys have been established. The conductivity of glasses has been investigated by the dc probe method in a range of 240-420 K. The models of the drift motion of silver and halogen ions have been proposed.

  5. The effect of Fe segregation on the photocatalytic growth of Ag nanoparticles on rutile TiO{sub 2}(001)

    Energy Technology Data Exchange (ETDEWEB)

    Busiakiewicz, Adam, E-mail: adambus@uni.lodz.pl [University of Lodz, Faculty of Physics and Applied Informatics, Department of Solid State Physics, Pomorska 149/153, 90-236, Łódź (Poland); Kisielewska, Aneta; Piwoński, Ireneusz [University of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Pomorska 163, 90-236, Łódź (Poland); Batory, Damian [Lodz University of Technology, Institute of Materials Science and Engineering, Stefanowskiego 1/15, 90-924, Łódź (Poland)

    2017-04-15

    Highlights: • Ag nanoparticles are grown photochemically on TiO{sub 2}(001). • Pristine TiO{sub 2}(001) and Fe/TiO{sub 2}(001) are compared. • The presence of segregated Fe strongly affects the growth Ag nanoparticles. • Abundant amount of Fe suppresses photocatalytic synthesis of AgNPs on TiO{sub 2}(001). - Abstract: The photocatalytic growth of silver nanoparticles (AgNPs) on rutile TiO{sub 2}(001) and Fe-modified rutile TiO{sub 2}(001) monocrystals was investigated. Various amount of Fe was segregated in a controlled way from the doped TiO{sub 2} substrates in ultra-high vacuum conditions resulting in low- medium- and high- content of Fe on TiO{sub 2} substrates. AgNPs were grown on pristine TiO{sub 2} and substrates containing Fe by photoreduction of Ag{sup +} ions under UV illumination. It was found that the size of AgNPs was larger on Fe/TiO{sub 2} than on TiO{sub 2} while the surface density exhibited the opposite behavior – a large number of AgNPs were present on the TiO{sub 2} surface but only a few AgNPs were visible on the Fe/TiO{sub 2} substrates. The reason for the differences in size and number of AgNPs on TiO{sub 2} and Fe/TiO{sub 2} is the limited access of Ag{sup +} to the TiO{sub 2} surface caused by the large number of Fe grains segregated onto the TiO{sub 2} surface. Another possible reason for the various AgNPs morphologies is alteration in the mechanism of Ag{sup +} photoreduction caused by iron present as Fe{sup 3+} ions and by newly formed AgNPs playing the role of electron traps. The surface elemental analysis of the investigated materials was performed with the use of X-ray photoelectron spectroscopy (XPS) and confirmed the composition of AgNPs/Fe/TiO{sub 2} systems. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed sizes, morphology and distribution of the nanostructures.

  6. Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity

    International Nuclear Information System (INIS)

    Jaafar, N.F.; Jalil, A.A.; Triwahyono, S.; Efendi, J.; Mukti, R.R.; Jusoh, R.; Jusoh, N.W.C.; Karim, A.H.; Salleh, N.F.M.; Suendo, V.

    2015-01-01

    Graphical abstract: - Highlights: • Ag 0 loaded on TiO 2 was prepared by a direct in situ electrochemical method. • 5 wt% Ag–TiO 2 demonstrated the best photocatalytic degradation of 2-CP. • Isomorphous substitution of Ag with Ti occurred to form Ti−O−Ag bonds. • Ag 0 and oxygen vacancies trapped electrons to enhance e–H + separation. • Substitution of Ag in the TiO 2 structure decreased the number of oxygen vacancies. - Abstract: Metallic Ag nanoparticles (Ag 0 ) were successfully activated using a direct in situ electrochemical method before being supported on TiO 2 . Catalytic testing showed that 5 wt% Ag–TiO 2 gave the highest photodegradation (94%) of 50 mg L −1 2-chlorophenol (2-CP) at pH 5 using 0.375 g L −1 catalyst within 6 h, while under similar conditions, 1 wt% and 10 wt% Ag–TiO 2 only gave 75% and 78% degradation, respectively. Characterization results illustrated that the photoactivity was affected by the amount of Ag 0 and oxygen vacancies which act as an electrons trap to enhance the electron–hole separation. While, the Ag−O−Ti bonds formation reduced the photoactivity. The degradation followed a pseudo-first order Langmuir–Hinshelwood model where adsorption was the controlling step. Study on the effect of scavengers showed that the hole (H + ) and hydroxyl radical (OH·) play important roles in the photodegradation. The regenerated photocatalyst was still stable after five cycling runs

  7. Sol-Gel-Assisted Microwave-Derived Synthesis of Anatase Ag/TiO2/GO Nanohybrids toward Efficient Visible Light Phenol Degradation

    Directory of Open Access Journals (Sweden)

    E. H. Alsharaeh

    2017-05-01

    Full Text Available Abstract: A simple microwave-assisted (MWI wet chemical route to synthesize pure anatase phase titanium dioxide (TiO2 nanoparticles (NPs is reported here using titanium tetrachloride (TiCl4 as starting material. The as-prepared TiO2 NPs were characterized by electron microscopy, X-ray diffraction, UV/visible absorption spectroscopy, and infrared and Raman spectroscopic techniques. Further modification of the anatase TiO2 NPs was carried out by incorporating plasmonic silver (Ag NPs and graphene oxide (GO in order to enhance the visible light absorption. The photocatalytic activities of the anatase TiO2, Ag/TiO2, and Ag/TiO2/GO nanocomposites were evaluated under both ultraviolet (UV and visible light irradiation using phenol as a model contaminant. The presence of Ag NPs was found to play a significant role to define the photocatalytic activity of the Ag/TiO2/GO nanocomposite. It was found that the Ag performed like a sink under UV excitation and stored photo-generated electrons from TiO2, whereas, under visible light excitation, the Ag acted as a photosensitizer enhancing the photocatalytic activity of the nanocomposite. The detailed mechanism was studied based on photocatalytic activities of Ag/TiO2/GO nanocomposites. Therefore, the as-prepared Ag/TiO2/GO nanocomposite was used as photocatalytic materials under both UV and visible light irradiation toward degradation of organic molecules.

  8. Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions

    International Nuclear Information System (INIS)

    Chen Sinnwen; Lee Wanyu; Hsu Chiaming; Yang Chingfeng; Hsu Hsinyun; Wu Hsinjay

    2011-01-01

    Research highlights: → Thermodynamic models of Sn-In and Sn-In-Ag are developed using the CALPHAD approach. → Reaction layer in the Sn-In-(Ag)/Ag couples at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. → Reactions in the Sn-20 wt%In-2.8 wt%Ag/Ag couples are faster than those in the Sn-20 wt%In/Ag couples. - Abstract: Experimental verifications of the Sn-In and Sn-In-Ag phase equilibria have been conducted. The experimental measurements of phase equilibria and thermodynamic properties are used for thermodynamic modeling by the CALPHAD approach. The calculated results are in good agreement with experimental results. Interfacial reactions in the Sn-In-(Ag)/Ag couples have been examined. Both Ag 2 In and AgIn 2 phases are formed in the Sn-51.0 wt%In/Ag couples reacted at 100 and 150 deg. C, and only the Ag 2 In phase is formed when reacted at 25, 50 and 75 deg. C. Due to the different growth rates of different reaction phases, the reaction layer at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. In the Sn-20.0 wt%In/Ag couples, the ζ phase is formed at 250 deg. C and ζ/AgIn 2 phases are formed at 125 deg. C. Compared with the Sn-20 wt%In/Ag couples, faster interfacial reactions are observed in the Sn-20.0 wt%In-2.8 wt%Ag/Ag couples, and minor Ag addition to Sn-20 wt%In solder increases the growth rates of the reaction phases.

  9. Structure and effects of silver nanoparticles on the surface of α-Ag{sub 2}-xWO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Gollino, Felipe; Silva, Alberico Borges Ferreira da, E-mail: felipe.gollino@gmail.com [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica; Longo, Elson [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Full text: This work has the aim to study the effects of nanoparticles in the interface of microstructures of silver tungstate and silver tungstate with Ag nanoparticles trying to understand the influence of them in the material. The rods of α-Ag{sub 2}WO{sub 4} were synthesized using a microwave assisted hydrothermal (MAH) method, the samples was divided in two groups, the first one was irradiated by an electron beam, promoting the Ag{sup +} ions inside of the crystal to the surface of the material as nanoparticles of Ag{sup 0}, this growth could be accompanied in situ by MEV-FEG. The other one was submitted by a thermal treatment with intention to oxidize the surface of material. The materials were characterized structurally by Raman and infrared spectroscopies, which give the information on the atomic bonds, showing the same pattern. The phase of the material, the atomic positions and the structure distortions were confirmed by DRX pattern with Rietveld refinement. The electronic behavior was study by UV-Vis-NIR spectroscopy by determining the bandgap, and in the absorption measures, they were exhibited plasmon bands feature of metallic nanoparticles. In EFM images can be seen that the nanoparticles created does not present greater electric potential related by the matrix of Ag{sub 2}WO{sub 4}, what induces that each nanoparticle do not change their charge carriers with the crystal. The XPS measurements were performed to analyze the composition, and can be notice that the peaks had different shifts for the matrix and the nanoparticle, but in the thermally treated did not show that, this behavior could be interpreted by an independent behavior. (author)

  10. Rational construction of Z-scheme Ag_2CrO_4/g-C_3N_4 composites with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Luo, Jin; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao

    2016-01-01

    Highlights: • Novel visible-light driven Ag_2CrO_4/g-C_3N_4 composites were synthesized. • Ag_2CrO_4/g-C_3N_4 exhibited enhanced visible-light photocatalytic activity. • The reasons for the enhanced photocatalytic activity were revealed. - Abstract: Novel visible-light driven Z-scheme Ag_2CrO_4/g-C_3N_4 composites with different contents of Ag_2CrO_4 were fabricated by a facile chemical precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy and photoelectrochemical measurements. Compared with individual g-C_3N_4 and Ag_2CrO_4, the Ag_2CrO_4/g-C_3N_4 composites displayed much larger photocatalytic activities for the photocatalytic degradation of methyl orange (MO) solution at room temperature under visible light irradiation (λ > 420 nm). Importantly, the optimum photodegradation rate constant of the Ag_2CrO_4/g-C_3N_4 composite at a theoretical weight content of 8.0% Ag_2CrO_4 for the photodegradation of MO was 0.0068 min"−"1, which was 5.7 and 4.3 times higher than that of pure g-C_3N_4 and Ag_2CrO_4, respectively. Such enormous enhancement in photocatalytic performance was predominantly ascribed to the efficient separation and transfer of photogenerated electrons and holes at the Ag_2CrO_4/g-C_3N_4 interface imparted through the Z-scheme electron transfer. Furthermore, radical trap experiments depicted that both the holes and superoxide radical anions were thought to dominate oxidative species of the Ag_2CrO_4/g-C_3N_4 composite for MO degradation under visible light irradiation. Ultimately, a tentative Z-scheme photodegradation mechanism was proposed. This work may be useful for the rational design of new types of Z-scheme photocatalysts and provide some illuminate insights into the Z-scheme transfer mechanism for application in energy

  11. Mid-IR and far-IR investigation of AgI-doped silver diborate glasses

    International Nuclear Information System (INIS)

    Hudgens, J.J.; Martin, S.W.

    1996-01-01

    The structures of xAgI+(1-x)Ag 22B 2 O 3 glasses, where 0.2≤x≤0.6, have been investigated using mid- and far-infrared spectroscopy. The mid-IR spectra revealed that in those glasses prepared using AgNO 3 as the starting material for Ag 2 O, the BO 4 - /BO 3 ratio is constant with increasing amounts of AgI as would be expected form the proposed behavior of AgI in these glasses. However, a survey of the literature revealed those glasses prepared from pure Ag 2 O show a strong linear dependence of the BO 4 - /BO 3 ratio on AgI content. Most probably, in those glasses prepared with Ag 2 O the Ag 2 O/B 2 O 3 ratio changes with AgI content due to the decomposition of Ag 2 O during melting. This different behavior is associated with AgNO 3 decomposing to Ag 2 O with heating followed by incorporation into the glassy network. For Ag 2 O used directly, it is proposed that it decomposes to Ag metal and O 2 (gas) with heating before it can be incorporated into the borate network. This latter behavior decreases with increasing AgI in the batch composition because AgI lowers the liquidus temperature of the melt considerably. The far-IR analysis of the AgI-doped silver diborate glasses suggests that there are three coordination environments for the Ag + ions; one with iodide anions and the other two with oxygen ions. It is proposed that the separate oxygen coordination environments for the Ag + ions arise from one with bridging oxygens of BO 4 - units, and the other with nonbridging oxygens on BO 3 - units. Furthermore, it is proposed that the Ag + ions in the iodide-ion environments progressively agglomerate into disordered regions of AgI, but do not form structures similar to α-AgI. (Abstract Truncated)

  12. SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Angelici

    2003-06-01

    Refractory 4,6-dimethyldibenzothiophene, which is difficult to remove from petroleum feedstocks, binds to the Ru in Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} by displacing the H{sub 2}O ligand. Thiophene, benzothiophene and dibenzothiophene (DBT) also react with Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} similarly. This binding ability of Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} has been used to remove over 50% of the DBT in simulated petroleum feedstocks by a biphasic extraction process. The extraction phase is readily regenerated by air-oxidation thereby completing a cyclic process that removes DBT from petroleum feedstocks. Solid phase extractants consisting of Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+}, CpRu(CO){sub 2}(BF{sub 4}), CpFe(CO){sub 2}(C{sub 4}H{sub 8}){sup +} and AgX (where X = BF{sub 4}{sup -}, PF{sub 6}{sup -} or NO{sub 3}{sup -}) adsorbed on silica have also been used to remove DBT and 4,6-Me{sub 2}DBT from simulated petroleum feedstocks. The AgX/silica adsorbents remove 90% of the DBT and 4,6-Me{sub 2}DBT and can be regenerated and re-used for multiple extractions, which makes these adsorbents of potential industrial use for the removal of refractory dibenzothiophenes from petroleum feedstocks.

  13. Preparation and characterization of graphene oxide/Ag{sub 2}CO{sub 3} photocatalyst and its visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiade; Wei, Longfu [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); School of Environment Engineering and Biology Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong Province (China); Fang, Wen [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002 (China); Xie, Yu, E-mail: xieyu_121@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi (China); Zhou, Wanqin; Zhu, Lihua [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China)

    2015-12-15

    Graphical abstract: - Highlights: • GO/Ag{sub 2}CO{sub 3} photocatalyst was prepared by liquid deposition process. • GO increase e{sup −}/h{sup +} pairs separation. • The production of ·OH and O{sub 2}·{sup −} radicals was promoted. • High photocatalytic activity and stability were obtained over GO/Ag{sub 2}CO{sub 3}. - Abstract: Graphene oxide (GO) was firstly fabricated from graphite powder by Hummers method. Then a series of GO/Ag{sub 2}CO{sub 3} composite photocatalysts (0.1% GO/Ag{sub 2}CO{sub 3}, 0.5%GO/Ag{sub 2}CO{sub 3}, 1%GO/Ag{sub 2}CO{sub 3}, 4%GO/Ag{sub 2}CO{sub 3}) were synthesized by a facile liquid deposition process. The produced products were characterized by powder X-ray diffraction (XRD), N{sub 2} physical adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscope (FT-IR), Raman spectra and UV–vis diffuse reflectance spectroscopy (UV–vis DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methyl orange (MO) under visible light irradiation. The influence of GO concentration on the photocatalytic activity of GO/Ag{sub 2}CO{sub 3} was investigated. The results showed that GO can be easily dispersed into Ag{sub 2}CO{sub 3}, producing well contacted GO/Ag{sub 2}CO{sub 3} composite. Coupling of trace GO largely enhanced the visible light absorption. Moreover, GO could suppress the growth of Ag{sub 2}CO{sub 3} grain crystals. With optimum GO content (0.5%), the degradation rate of MO is 85.37% after 120 min light irradiation, which Exhibits 1.53 times activity of that of pure Ag{sub 2}CO{sub 3}. More importantly, a large improvement in stability was obtained over the composite. The increase in photocatalytic activity and stability could be mainly attributed to the coupling of GO which increased the surface area and suppressed the recombination rate of e{sup −}/h{sup +} pairs.

  14. Structure and decomposition of the silver formate Ag(HCO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Puzan, Anna N., E-mail: anna_puzan@mail.ru; Baumer, Vyacheslav N.; Mateychenko, Pavel V.

    2017-02-15

    Crystal structure of the silver formate Ag(HCO{sub 2}) has been determined (orthorhombic, sp.gr. Pccn, a=7.1199(5), b=10.3737(4), c=6.4701(3)Å, V=477.88(4) Å{sup 3}, Z=8). The structure contains isolated formate ions and the pairs Ag{sub 2}{sup 2+} which form the layers in (001) planes (the shortest Ag–Ag distances is 2.919 in the pair and 3.421 and 3.716 Å between the nearest Ag atoms of adjacent pairs). Silver formate is unstable compound which decompose spontaneously vs time. Decomposition was studied using Rietveld analysis of the powder diffraction patterns. It was concluded that the diffusion of Ag atoms leads to the formation of plate-like metal particles as nuclei in the (100) planes which settle parallel to (001) planes of the silver formate matrix. - Highlights: • Silver formate Ag(HCO{sub 2}) was synthesized and characterized. • Layered packing of Ag-Ag pairs in the structure was found. • Decomposition of Ag(HCO{sub 2}) and formation of metal phase were studied. • Rietveld-refined micro-structural characteristics during decomposition reveal the space relationship between the matrix structure and forming Ag phase REPLACE with: Space relationship between the matrix structure and forming Ag phase.

  15. Synthesis and evaluation of optical and antimicrobial properties of Ag-SnO2 nanocomposites

    Science.gov (United States)

    Kumar Nair, Kishore; Kumar, Promod; Kumar, Vinod; Harris, R. A.; Kroon, R. E.; Viljoen, Bennie; Shumbula, P. M.; Mlambo, M.; Swart, H. C.

    2018-04-01

    We report on the sol-gel based room temperature synthesis of undoped SnO2 and Ag-SnO2 nanostructures. The synthesized nanostructures were characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, High-resolution transmission electron microscopy (HR-TEM) and UV-visible spectroscopy. The XRD pattern confirmed that the obtained nanostructures have a tetragonally rutile structure. No extra phase changes were observed after Ag doping. UV-visible spectroscopy measurements indicated that the band gap of 3.59 eV for pure SnO2 nanostructures, decreased to 3.39 eV after doping. TEM analysis showed that no regular shape morphology existed and some rod-shaped particles were also detected in the nanostructures. The antibacterial activity of the nanostructures against E. coli was evaluated and a continuous decrease of microbial count was observed. The microbial population decreased from 6 × 105 cfu/ml to 7 × 104 cfu/ml and 5 × 104 cfu/ml on SnO2 and Ag-SnO2 treatments, respectively. Thus, the nanostructures can be used for the biorational management of E. coli for waste water treatment before discharge.

  16. Synthesis of Ag or Pt Nanoparticles by Hydrolysis of Either Ag2Na or PtNa

    Directory of Open Access Journals (Sweden)

    Huabin Wang

    2008-01-01

    Full Text Available Ag and Pt nanoparticles have successfully been synthesized by hydrolysis of either Ag2Na or PtNa at room temperature. The oxidation of sodium in the Pt-Na pellets was much faster than that in the Ag-Na pellets since Pt is a catalyst for H2O formation reaction from hydrogen and oxygen at room temperature. The hydrolysis byproduct, NaOH, has a high solubility and easily is removed. This method offers a simple method of preparing transition metal nanoparticles. The Ag and Pt nanoparticles prepared by this method were crystalline in nature, and spherical in shape with a mean size of around 10 nm.

  17. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bicheng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Department of Science and Environmental Studies The Hong Kong Institute of Education, Tai Po, N.T., Hong Kong (China); Xia, Pengfei; Li, Yao [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Ho, Wingkei, E-mail: keithho@ied.edu.hk [Department of Science and Environmental Studies The Hong Kong Institute of Education, Tai Po, N.T., Hong Kong (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2017-01-01

    Highlights: • g-C{sub 3}N{sub 4} acted as a support for the in situ growth of β-Ag{sub 2}WO{sub 4}. • g-C{sub 3}N{sub 4} nanosheets inhibited the phase transformation of β-Ag{sub 2}WO{sub 4} to α-Ag{sub 2}WO{sub 4}. • g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4} exhibited a superior photocatalytic activity. • A direct Z-scheme photocatalytic mechanism could explain activity enhancement. - Abstract: Herein, a direct Z-scheme graphitic carbon nitride (g-C{sub 3}N{sub 4})/silver tungstate (Ag{sub 2}WO{sub 4}) photocatalyst was prepared by a facile in situ precipitation method using g-C{sub 3}N{sub 4} as a support and silver nitrate as a precursor. X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and elemental mapping demonstrated that β-Ag{sub 2}WO{sub 4} nanoparticles were evenly distributed on the surface of g-C{sub 3}N{sub 4} nanosheets, which acted as a support for the nucleation and growth of β-Ag{sub 2}WO{sub 4} and inhibited the phase transformation of metastable β-Ag{sub 2}WO{sub 4} to stable α-Ag{sub 2}WO{sub 4}. Photocatalytic experiments indicated that the g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4} nanocomposite photocatalyst displayed a better photocatalytic activity than pure g-C{sub 3}N{sub 4} and Ag{sub 2}WO{sub 4} toward the degradation of methyl orange. The enhanced photocatalytic performance of g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4} could be well explained by a direct Z-scheme photocatalytic mechanism. This mechanism was related to the efficient space separation of photogenerated electron–hole pairs and the great oxidation and reduction capabilities of the g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4} system. This work provided new insights into the design and fabrication of g-C{sub 3}N{sub 4}-based direct Z-scheme photocatalysts.

  18. Analysis of long-term monomer elution from bulk-fill and conventional resin-composites using high performance liquid chromatography.

    Science.gov (United States)

    Alshali, Ruwaida Z; Salim, Nesreen A; Sung, Rehana; Satterthwaite, Julian D; Silikas, Nick

    2015-12-01

    The aim of this study was to assess monomer elution from bulk-fill and conventional resin-composites stored in different media using high performance liquid chromatography (HPLC) for up to 3 months. Six bulk-fill (SureFil SDR, Venus Bulk Fill, X-tra base, Filtek Bulk Fill flowable, Sonic Fill, and Tetric EvoCeram Bulk Fill) and eight conventional resin-composites (Grandioso Flow, Venus Diamond Flow, X-Flow, Filtek Supreme XTE, Grandioso, Venus Diamond, TPH Spectrum, and Filtek Z250) were tested. Cylindrical samples (n=5) were immersed in water, 70% ethanol/water solution (70% E/W), and artificial saliva and stored at 37°C for 24h, 1 month, and 3 months. The storage solutions were analysed with HPLC. Data were analysed with repeated measures ANOVA, one-way ANOVA, and Tukey post hoc test at α=0.05. Monomers detected in water and artificial saliva were TEGDMA, DEGDMA, UDMA, and TCD-DI-HEA. No eluted monomers were detected from X-tra base and Sonic fill in these media. All monomers showed a variable extent of elution into 70% E/W with significantly higher amounts than those detected in water and artificial saliva. Significantly higher elution was detected from UDMA-BisEMA based composites compared to BisGMA and BisGMA-BisEMA based systems in 70% E/W. The rate of elution into different media varied between different monomers and was highly dependent on the molecular weight of the eluted compounds. Elution from bulk-fill resin-composites is comparable to that of conventional materials despite their increased increment thickness. Monomer elution is highly dependent on the hydrophobicity of the base monomers and the final network characteristics of the resin-matrix. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Ag-doped TiO2 hollow microspheres with visible light response by template-free route for removal of tetracycline hydrochloride from aqueous solution

    Science.gov (United States)

    Zhang, Jian; Li, Xuanhua; Peng, Meiling; Tang, Yuanyuan; Ke, Anqi; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2018-06-01

    In this study, Ag-doped TiO2 hollow microspheres were synthesized by a template-free route, and their photocatalytic performance and catalytic mechanism were investigated. The hollow microspheres were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy and UV–vis spectroscopy. Ag-doped hollow TiO2 microspheres exhibited excellent photocatalytic performance for tetracycline hydrochloride (TC) in water. TC degradation follows pseudo first-order kinetics, and hydroxyl radical (OH·) and holes (h+) were active substances in the photocatalytic reaction.

  20. Amorphous Fe-B alloys in B-Fe-Ag multilayers studied by magnetization and Mössbauer measurements

    DEFF Research Database (Denmark)

    Kiss, L. F.; Balogh, J.; Bujdoso, L.

    2011-01-01

    Bulk and local magnetic properties were studied in [1 nm B + 1 nm 57Fe + x nm Ag]5, x = 1, 2, 4, 5 and 10, multilayer samples. Although Ag does not mix with either of the other two elements the magnetic properties of the multilayers are strongly influenced by the Ag thickness below x = 5, whereas...

  1. AgInS{sub 2}-ZnS nanocrystals: Evidence of bistable states using light-induced electron paramagnetic resonance and photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Sonia S.; Renard, Olivier; Chevallier, Theo; Le Blevennec, Gilles [Laboratoire d' Innovation pour les Technologies des Energies Nouvelles et les Nanomateriaux, Departement de Technologie des Nano-Materiaux, Service d' Elaboration de Nanomateriaux, Laboratoire de Synthese et Integration des Nanomateriaux, CEA-Grenoble (France); Lombard, Christian; Pepin-Donat, Brigitte [Laboratoire Structure et Proprietes d' Architecture Moleculaire (UMR 5819) CEA-CNRS - UJF/INAC/CEA-Grenoble (France)

    2014-04-15

    The precursor (AgIn){sub x} Zn{sub 2(1-x)}(S{sub 2}CN(C{sub 2}H{sub 5}){sub 2}){sub 4} was used to prepared AgInS{sub 2}-ZnS nanocrystals with different compositions (x = 0.4 and x = 0.7) and with different time of reaction (10 min and 75 min). The photoluminescence features of the nanocrystals were addressed by combining steady-state spectroscopy and light-induced electron paramagnetic resonance. Both techniques showed the contribution of at least two components for the emission, previously assigned to surface and intrinsic states. Light-induced electron paramagnetic resonance allowed detection of the photocreation both of irreversible paramagnetic species that are likely responsible for the nano-crystals degradation assigned to surface states and of reversible paramagnetic species assigned to intrinsic states. Moreover, reversible bistable paramagnetic states were observed. This Letter provides a scheme that might be useful in addressing the well-known problem of aging of the nanocrystals. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles

    International Nuclear Information System (INIS)

    Hirose, Akio; Tatsumi, Hiroaki; Takeda, Naoya; Akada, Yusuke; Ogura, Tomo; Ide, Eiichi; Morita, Toshiaki

    2009-01-01

    The metal-to-metal bonding has been successfully achieved via the bonding process using Ag metallo-organic nanoparticles at a bonding temperature of around 300-, which can be alternative to the current microsoldering in electronics assembly using high-temperature solders. However, further reduction of bonding temperature and/or bonding pressure is needed. In the present research, a novel bonding process through in-situ formation of Ag nanoparticles instead of the filler material of the Ag metallo-organic nanoparticles has been developed. The Ag nanoparticles can form by the reduction of Ag 2 O particles. In this study, the Ag 2 O particles were mixed with triethylene glycol as a reducing agent to form a paste for bonding. The Au coated cylindrical specimens were bonded using the paste. The Ag nanoparticles formed at around 130 to 160 through the reduction process of Ag2O particles with triethylene glycol. The Ag nanoparticles were immediately sintered each other due to a great surface energy per volume. A transmission electron microscope observation revealed that the sintered Ag metallurgically bonded to the Au substrate at around 160 and a dense Ag layer formed after further heating. The tensile strength of the joint bonded at 250 under a bonding pressure of 5MPa was around 60MPa

  3. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells

    Science.gov (United States)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima

    2014-02-01

    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  4. Analysis of the residual strain change of Bi2212, Ag alloy and Ag during the heating and cooling process in Bi2212/Ag/Ag alloy composite wire

    International Nuclear Information System (INIS)

    Shin, J K; Ochiai, S; Okuda, H; Mukai, Y; Sugano, M; Sato, M; Oh, S S; Ha, D W; Kim, S C

    2008-01-01

    The residual strain change of Bi2212 and Ag during the cooling and heating process in the Bi2212/Ag/Ag alloy composite superconductor was studied. First, the residual strain of Bi2212 filaments at room temperature was measured by the x-ray diffraction method. Then, the Young's moduli of the constituents (Bi2212 filaments, Ag and Ag alloy) and yield strains of Ag and Ag alloy were estimated from the analysis of the measured stress-strain curve, based on the rule of mixtures. Also, the coefficient of thermal expansion of the Bi2212 filaments was estimated from the analysis of the measured thermal expansion curve of the composite wire. From the modeling analysis using the estimated property values and the residual strain of Bi2212 filaments, the changes of residual strain of Bi2212, Ag alloy and Ag with temperature during the cooling and heating process were revealed

  5. Microwave-assisted cationic ring-opening polymerization of a soy-based 2-oxazoline monomer

    NARCIS (Netherlands)

    Hoogenboom, R.; Wiesbrock, F.D.; Schubert, U.S.

    2005-01-01

    The microwave-assisted cationic ring-opening polymn. of a soy based 2-oxazoline monomer (SoyOx) is described. The microwave irradn. provides more efficient heating when compared to conventional heating and, in addn., the SoyOx was prepd. starting from a sustainable resource (soy beans). The

  6. Synthesis and Characterization of the Rubidium Thiophosphate Rb 6 (PS 5 )(P 2 S 10 ) and the Rubidium Silver Thiophosphates Rb 2 AgPS 4 , RbAg 5 (PS 4 ) 2 and Rb 3 Ag 9 (PS 4 ) 4

    KAUST Repository

    Alahmary, Fatimah S.; Davaasuren, Bambar; Khanderi, Jayaprakash; Rothenberger, Alexander

    2016-01-01

    The metal thiophosphates Rb2AgPS4 (2), RbAg5(PS4)2 (3), and Rb3Ag9(PS4)4 (4) were synthesized by stoichiometric reactions, whereas Rb6(PS5)(P2S10) (1) was prepared with excess amount of sulfur. The compounds crystallize as follows: 1 monoclinic, P21

  7. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation

    International Nuclear Information System (INIS)

    Chen Shifu; Zhao Wei; Liu Wei; Zhang Huaye; Yu Xiaoling; Chen Yinghao

    2009-01-01

    p-n junction photocatalyst p-CaFe 2 O 4 /n-Ag 3 VO 4 was prepared by ball milling Ag 3 VO 4 in H 2 O doped with p-type CaFe 2 O 4 . The structural and optical properties of the photocatalyst were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and UV-vis diffuse reflection spectrum (DRS). The photocatalytic activity was evaluated by photocatalytic degradation of methylene blue (MB) under visible light irradiation. The results showed that the photocatalytic activity of the p-CaFe 2 O 4 /n-Ag 3 VO 4 was higher than that of Ag 3 VO 4 . When the amount of doped p-CaFe 2 O 4 was 2.0 wt.% and the p-CaFe 2 O 4 /n-Ag 3 VO 4 was ball milled for 12 h, the photocatalytic degradation efficiency was 85.4%. Effect of ball milling time on the photocatalytic activity of the photocatalyst was also investigated. The mechanisms of the increase in the photocatalytic activity were discussed by the p-n junction principle.

  8. Visible-light photoactivity of plasmonic silver supported on mesoporous TiO2 nanoparticles (Ag-MTN) for enhanced degradation of 2-chlorophenol: Limitation of Ag-Ti interaction

    International Nuclear Information System (INIS)

    Jaafar, N.F.; Jalil, A.A.; Triwahyono, S.

    2017-01-01

    Highlights: • Ag 0 loaded on MTN was prepared by a direct in-situ electrochemical method. • The introduction of Ag 0 lowers the band gap and increases the number of OV and TSD. • Ag 0 acted as an electrons trapper and also a plasmonic sensitizer. • The formation of Ti-O-Ag in 10 wt% Ag-MTN decreased the amount of Ag 0 , TSD and OV. • 5 wt% Ag-MTN gave the highest percentage of photodegradation of 2-CP. - Abstract: Various weight loadings of Ag (1–10 wt.%) were introduced to mesoporous titania nanoparticles (MTN) via a direct in-situ electrochemical method. The catalysts were characterized by XRD, surface area analysis, FTIR, ESR, FESEM-EDX and TEM. Characterization results indicated that the introduction of Ag onto MTN decreased the particles size and band gap of the MTN while increasing the number of oxygen vacancies (OV) and Ti 3+ site defects (TSD). The activity performance of Ag-MTN on photodegradation of 2-chlorophenol (2-CP) under visible light irradiation was in the following order: 5 wt% Ag-MTN> 1 wt% Ag-MTN > MTN > 10 wt% Ag-MTN, with degradation percentages of 97, 88, 80 and 63%, respectively. The synergistic effect between Ag 0 and MTN seemed to play an important role in the system. The Ag0 acted as both an electron trap and a plasmonic sensitizer which suppressed the electron-hole recombination, while OV and TSD in the MTN accelerated the production of hydroxyl radicals for enhanced degradation of 2-CP. However, the formation of Ti-O-Ag in 10 wt% Ag-MTN was found to decrease the photoactivity due to the decrease in the formation of Ag 0 , TSD and OV as well as the increase in band gap energy. The photodegradation of 5 wt% Ag-MTN followed a pseudo-first-order Langmuir- Hinshelwood model and the catalyst was still stable after five cycles.

  9. Kinetic behaviour of graft copolymerisation of nitrogenous heterocyclic monomer onto EB-irradiated ETFE films

    International Nuclear Information System (INIS)

    Paveswari Sithambaranathan; Arshad Ahmad; Mohamed Mahmoud Nasef; Universiti Teknologi Malaysia Campus, Kuala Lumpur

    2015-01-01

    Kinetic behaviour of graft copolymerisation of a nitrogenous heterocyclic monomer, 4-vinylpyridine (4-VP), onto electron beam irradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) films was investigated in correlation with reaction parameters (absorbed dose, monomer concentration and reaction temperature). This was established by determination of initial polymerisation rate (r p0 ), characteristic radical recombination rate (γ) and delay time (t 0 ). The orders of the dependence of the initial rate of grafting on the absorbed dose and monomer concentration were found to be 2.28 and 3.49, respectively. The effect of temperature was investigated in the range of 50-70 deg C and the activation energy was determined. The incorporation of poly(4-VP) grafts and the accompanied chemical changes in the grafted ETFE films were monitored using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The results of the present study showed that a quantitative kinetic description for grafting of 4-VP onto ETFE can be established and the degree of grafting can be tuned by controlling the reaction parameters. (author)

  10. Topotactic synthesis, structure and magnetic properties of a new hexagonal polytype of silver cobaltate(III) AgCoO2

    International Nuclear Information System (INIS)

    Muguerra, Herve; Colin, Claire; Anne, Michel; Julien, Marc-Henri; Strobel, Pierre

    2008-01-01

    A new form of delafossite-type AgCoO 2+δ was prepared using ion exchange from Na 0.75 CoO 2 in molten AgNO 3 -NH 4 NO 3 at 175 deg. C. Its structure was determined by the Rietveld refinement from X-ray powder diffraction measurements (XRD) data; it is hexagonal, space group P6 3 /mmc, a=2.871 and c=12.222 A. Its structure differs from previously reported AgCoO 2 (R3-barm, 3R polytype) by the stacking of Co-O layers; in the new phase, the 2H stacking of the precursor Na 0.75 CoO 2 is consistent with a topotactic ion exchange of Na by Ag. The new phase is found to contain a slight oxygen excess (δ=0.06). Magnetic susceptibility measurements show the absence of magnetic transition and a weak Curie term, consistent with the non-magnetic character of Co 3+ ions. - Graphical abstract: Comparison of the structures of high-temperature AgCoO 2 (left, 3R structure) and of new AgCoO 2+∂ (IE) (right, 6H structure). The latter is obtained topotactically from Na 0.7 CoO 2 by ion exchange in molten nitrates. Detailed studies showed that AgCoO 2+∂ (IE) is slightly over-stoichiometric in oxygen (∂=0.06)

  11. Ag induced suppression of irradiation response in YBCO/Ag composite thin films

    International Nuclear Information System (INIS)

    Behera, D.; Mohanty, T.; Mohanta, D.; Patnaik, K.; Mishra, N.C.; Senapati, L.; Kanjilal, D.; Mehta, G.K.; Pinto, R.

    1999-01-01

    Practical application of cuprate superconductors in radiation environment demands that these systems remain insensitive to the irradiation induced defects. The cuprate superconductors however are many orders of magnitude more sensitive than the conventional low T c superconductors. To suppress the irradiation sensitivity of cuprates we consider a crystal engineering approach where metal ions as Ag is made to occupy inter and intra-granular sites of YBa 2 Cu 3 O 7 thin films. We show that superconducting and normal state properties of YBCO/Ag composite thin films prepared by laser ablation remain unchanged under 140 MeV Si ion irradiation up to fluence of 8 x 10 14 ions/cm 2 . The inter- and intra-granular occupancy of Ag is shown to induce microstructural modifications and rigidity to the CuO chains respectively which in turn lead to the radiation insensitivity of the composite films. (author)

  12. Ballistic electron emission spectroscopy on Ag/Si devices

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, A; Bobisch, C A; Matena, M; Moeller, R [Department of Physics, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47048 Duisburg (Germany)], E-mail: amin.bannani@uni-due.de

    2008-09-17

    In this work we report on ballistic electron emission spectroscopy (BEES) studies on epitaxial layers of silver grown on silicon surfaces, with either a Si(111)-(7 x 7) or Si(100)-(2 x 1) surface reconstruction. The experiments were done at low temperature and in ultra-high vacuum (UHV). In addition, BEES measurements on polycrystalline Ag films grown on hydrogen-terminated H:Si(111)-(1 x 1) and H:Si(100)-(2 x 1) surfaces were performed. The Schottky barrier heights were evaluated by BEES. The results are compared to the values for the barrier height reported for macroscopic Schottky diodes. We show that the barrier heights for the epitaxial films substantially differ from the values measured on polycrystalline Ag films, suggesting a strong effect of the interface on the barrier height.

  13. Synthesis of visible light driven cobalt tailored Ag2O/TiON nanophotocatalyst by reverse micelle processing for degradation of Eriochrome Black T

    KAUST Repository

    Hussain, Syed Tajammul

    2013-02-01

    An ultra efficient cobalt tailored silver and nitrogen co-doped titania (TiON/Ag2O/Co) visible nanophotocatalyst is successfully synthesized using modified reverse micelle processing. Composition, phase, distribution of dopants, functional group analysis, optical properties and morphology of synthesized materials are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) based techniques and others. Charge states of titanium (Ti) and silver are explored through core-loss electron energy loss spectroscopy (EELS) analysis and X ray photoelectron spectroscopy (XPS). Our characterization results showed that the synthesized nanophotocatalyst consisted of anatase phased qausispherical nanoparticles that exhibited homogeneous distribution of dopants, large surface area, high quantum efficiency and enhanced optical properties. At lower content of doped Co ions, the TiON/Ag2O responded with extraordinary photocatalytic properties. The cobalt tailored nanophotocatalyst showed remarkable activity against Eriochrome Black T (EBT). Moreover, comparative degradation behavior of EBT with TiON, Ag2O/TiON and Co/Ag2O/TiON is also investigated. © 2012 Elsevier Ltd.

  14. Synthesis of visible light driven cobalt tailored Ag2O/TiON nanophotocatalyst by reverse micelle processing for degradation of Eriochrome Black T

    KAUST Repository

    Hussain, Syed Tajammul; Rashid,; Anjum, Dalaver H.; Siddiqa, Asima; Badshah, Amin

    2013-01-01

    An ultra efficient cobalt tailored silver and nitrogen co-doped titania (TiON/Ag2O/Co) visible nanophotocatalyst is successfully synthesized using modified reverse micelle processing. Composition, phase, distribution of dopants, functional group analysis, optical properties and morphology of synthesized materials are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) based techniques and others. Charge states of titanium (Ti) and silver are explored through core-loss electron energy loss spectroscopy (EELS) analysis and X ray photoelectron spectroscopy (XPS). Our characterization results showed that the synthesized nanophotocatalyst consisted of anatase phased qausispherical nanoparticles that exhibited homogeneous distribution of dopants, large surface area, high quantum efficiency and enhanced optical properties. At lower content of doped Co ions, the TiON/Ag2O responded with extraordinary photocatalytic properties. The cobalt tailored nanophotocatalyst showed remarkable activity against Eriochrome Black T (EBT). Moreover, comparative degradation behavior of EBT with TiON, Ag2O/TiON and Co/Ag2O/TiON is also investigated. © 2012 Elsevier Ltd.

  15. Equilibrium phase diagram of the Ag-Au-Pb ternary system

    International Nuclear Information System (INIS)

    Hassam, S.; Bahari, Z.

    2005-01-01

    The phase diagram of the ternary system Ag-Au-Pb has been established using differential thermal analysis and X-ray powder diffraction analysis. Four vertical sections were studied: X Pb = 0.40, X Au /X Pb = 1/3, X Ag /X Au = 4/1 and X Ag /X Au = 1/1. Two ternary transitory peritectics and one ternary eutectic were characterized. A schematic representation of the ternary equilibria is given

  16. Cu-Zr-Ag bulk metallic glasses based on Cu8Zr5 icosahedron

    International Nuclear Information System (INIS)

    Xia Junhai; Qiang Jianbing; Wang Yingmin; Wang Qing; Dong Chuang

    2007-01-01

    Based on the cluster line criterion, the Ag addition into the Cu 8 Zr 5 cluster composition is investigated for the search of ternary Cu-Zr-Ag bulk metallic glasses with high glass forming abilities. Two initial binary compositions Cu 0.618 Zr 0.382 and Cu 0.64 Zr 0.36 are selected. The former one corresponds to a deep eutectic point; it is also the composition of the Cu 8 Zr 5 icosahedron, which is derived from the Cu 8 Zr 3 structure. The latter one, which can be regarded as the Cu 8 Zr 5 cluster plus a glue atom Cu, is the best glass-forming composition in the Cu-Zr binary system. Two composition lines (Cu 0.618 Zr 0.382 ) 1-x Ag x and (Cu 0.64 Zr 0.36 ) 1-x Ag x are thus constructed in the Cu-Zr-Ag system by linking these two compositions with the third constitute Ag. A series of Cu-Zr-Ag bulk metallic glasses are found with 2-8 at.% Ag contents in both composition lines. The optimum composition (Cu 0.618 Zr 0.382 ) 0.92 Ag 0.08 within the searched region with the highest T g /T l = 0.633, is located along the cluster line (Cu 0.618 Zr 0.382 ) 1-x Ag x , where the deep eutectic Cu 0.618 Zr 0.382 exactly corresponds to the dense packing cluster Cu 8 Zr 5 . The alloying mechanism is discussed in the light of atomic size and electron concentration factors

  17. Bandgap engineering of lead-free double perovskite Cs{sub 2}AgBiBr{sub 6} through trivalent metal alloying

    Energy Technology Data Exchange (ETDEWEB)

    Du, Ke-zhao; Mitzi, David B. [Department of Mechanical Engineering and Materials Science, and Department of Chemistry, Duke University, Durham, NC (United States); Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, OH (United States)

    2017-07-03

    The double perovskite family, A{sub 2}M{sup I}M{sup III}X{sub 6}, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH{sub 3}NH{sub 3}PbI{sub 3}. Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs{sub 2}AgBiBr{sub 6} as host, band-gap engineering through alloying of In{sup III}/Sb{sup III} has been demonstrated in the current work. Cs{sub 2}Ag(Bi{sub 1-x}M{sub x})Br{sub 6} (M=In, Sb) accommodates up to 75 % In{sup III} with increased band gap, and up to 37.5 % Sb{sup III} with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs{sub 2}Ag(Bi{sub 0.625}Sb{sub 0.375})Br{sub 6}. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Ag{sub 2}CdI{sub 4}: Synthesis, characterization and investigation the strain lattice and grain size

    Energy Technology Data Exchange (ETDEWEB)

    Ghanbari, Mojgan [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, I.R. (Iran, Islamic Republic of); Gholamrezaei, Sousan [Young Researchers Club, Arak Branch, Islamic Azad University, Arak (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, I.R. (Iran, Islamic Republic of)

    2016-05-15

    In this work the Ag{sub 2}CdI{sub 4} nanostructures have been synthesized via a solid state reaction from reaction of AgI and CdI{sub 2} as precursors. The effect of the mole ratio of precursors, time and temperature of reaction has been optimized to achieve the best product on morphology and purity. Nanostructures have been characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman (FT-IR) techniques, X-ray energy dispersive spectroscopy (EDS) and Ultraviolet spectroscopy (UVvis). The XRD patterns of nanostructures have been used to estimate the grain sizes and strain lattice. Grain size of nanostructures is in range of 5–17 nm and the strain of lattice is changed in range of 0.0024–0.014. The band gap of these nanostructures has been estimated by DRS spectrum about 5.4 eV. Raman spectroscopy has been confirmed the XRD results and show that the Ag{sub 2}CdI{sub 4} nanostructures have been synthesized. SEM and TEM images have been used for investigation of morphology of product. Results show that the best morphology and purity have been achieved in 12 h and 200 °C in 1:1 mol ratio of precursors. - Highlights: • Ag{sub 2}CdI{sub 4} nanostructures have been synthesized by low temperature solid state method. • The reaction has been optimized for purity, morphology, and grain size and strain lattice. • Effective parameters have been optimized such as time, temperature and mole ratio.

  19. Observation of a Ag protrusion on a Ag2S island using a scanning tunneling microscope

    Directory of Open Access Journals (Sweden)

    Takeo Ohno

    2015-01-01

    Full Text Available A silver sulfide (Ag2S island as an ionic conductor in resistive switching memories was formed and a protrusion of silver from the Ag2S formed by an electrochemical reaction was observed using a scanning tunneling microscope.

  20. Controllable Charge Transfer in Ag-TiO2 Composite Structure for SERS Application

    Directory of Open Access Journals (Sweden)

    Yaxin Wang

    2017-06-01

    Full Text Available The nanocaps array of TiO2/Ag bilayer with different Ag thicknesses and co-sputtering TiO2-Ag monolayer with different TiO2 contents were fabricated on a two-dimensional colloidal array substrate for the investigation of Surface enhanced Raman scattering (SERS properties. For the TiO2/Ag bilayer, when the Ag thickness increased, SERS intensity decreased. Meanwhile, a significant enhancement was observed when the sublayer Ag was 10 nm compared to the pure Ag monolayer, which was ascribed to the metal-semiconductor synergistic effect that electromagnetic mechanism (EM provided by roughness surface and charge-transfer (CT enhancement mechanism from TiO2-Ag composite components. In comparison to the TiO2/Ag bilayer, the co-sputtered TiO2-Ag monolayer decreased the aggregation of Ag particles and led to the formation of small Ag particles, which showed that TiO2 could effectively inhibit the aggregation and growth of Ag nanoparticles.