WorldWideScience

Sample records for monomeric molecular mass

  1. Interaction of Classical Platinum Agents with the Monomeric and Dimeric Atox1 Proteins: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Xiaolei Wang

    2013-12-01

    Full Text Available We carried out molecular dynamics simulations and free energy calculations for a series of binary and ternary models of the cisplatin, transplatin and oxaliplatin agents binding to a monomeric Atox1 protein and a dimeric Atox1 protein to investigate their interaction mechanisms. All three platinum agents could respectively combine with the monomeric Atox1 protein and the dimeric Atox1 protein to form a stable binary and ternary complex due to the covalent interaction of the platinum center with the Atox1 protein. The results suggested that the extra interaction from the oxaliplatin ligand–Atox1 protein interface increases its affinity only for the OxaliPt + Atox1 model. The binding of the oxaliplatin agent to the Atox1 protein might cause larger deformation of the protein than those of the cisplatin and transplatin agents due to the larger size of the oxaliplatin ligand. However, the extra interactions to facilitate the stabilities of the ternary CisPt + 2Atox1 and OxaliPt + 2Atox1 models come from the α1 helices and α2-β4 loops of the Atox1 protein–Atox1 protein interface due to the cis conformation of the platinum agents. The combinations of two Atox1 proteins in an asymmetric way in the three ternary models were analyzed. These investigations might provide detailed information for understanding the interaction mechanism of the platinum agents binding to the Atox1 protein in the cytoplasm.

  2. Folded-back solution structure of monomeric factor H of human complement by synchrotron X-ray and neutron scattering, analytical ultracentrifugation and constrained molecular modelling.

    Science.gov (United States)

    Aslam, M; Perkins, S J

    2001-06-22

    Factor H (FH) is a regulatory cofactor for the protease factor I in the breakdown of C3b in the complement system of immune defence, and binds to heparin and other polyanionic substrates. FH is composed of 20 short consensus/complement repeat (SCR) domains, for which the overall arrangement in solution is unknown. As previous studies had shown that FH can form monomeric or dimeric structures, X-ray and neutron scattering was accordingly performed with FH in the concentration range between 0.7 and 14 mg ml(-1). The radius of gyration of FH was determined to be 11.1-11.3 nm by both methods, and the radii of gyration of the cross-section were 4.4 nm and 1.7 nm. The distance distribution function P(r) showed that the overall length of FH was 38 nm. The neutron data showed that FH was monomeric with a molecular mass of 165,000(+/-17,000) Da. Analytical ultracentrifugation data confirmed this, where sedimentation equilibrium curve fits gave a mean molecular mass of 155,000(+/-3,000) Da. Sedimentation velocity experiments using the g*(s) derivative method showed that FH was monodisperse and had a sedimentation coefficient of 5.3(+/-0.1) S. In order to construct a full model of FH for scattering curve and sedimentation coefficient fits, homology models were constructed for 17 of the 20 SCR domains using knowledge of the NMR structures for FH SCR-5, SCR-15 and SCR-16, and vaccinia coat protein SCR-3 and SCR-4. Molecular dynamics simulations were used to generate a large conformational library for each of the 19 SCR-SCR linker peptides. Peptides from these libraries were combined with the 20 SCR structures in order to generate stereochemically complete models for the FH structure. Using an automated constrained fit procedure, the analysis of 16,752 possible FH models showed that only those models in which the 20 SCR domains were bent back upon themselves were able to account for the scattering and sedimentation data. The best-fit models showed that FH had an overall length

  3. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form.

    Science.gov (United States)

    Karst, Johanna C; Ntsogo Enguéné, V Yvette; Cannella, Sara E; Subrini, Orso; Hessel, Audrey; Debard, Sylvain; Ladant, Daniel; Chenal, Alexandre

    2014-10-31

    The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.

  4. Investigation of monomeric and oligomeric wine stilbenoids in red wines by ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Moss, Ryan; Mao, Qinyong; Taylor, Dennis; Saucier, Cédric

    2013-08-30

    Stilbenoids are secondary plant metabolites responsible for the protection of multiple plant species including grape vine from bacterial and fungal infection. Red wine has been shown to be a major source of these compounds in the human diet, where they display an array of health benefits. Providing a more complete profile of the stilbenoids present in red wine, this study detects 41 stilbenoid compounds, 23 of which have never before been detected in red wine. Red wine extracts were scanned using an ultra-high-performance liquid chromatograph coupled to a hybrid quadrupole time-of-flight mass analyzer. Multiple targeted MS/MS precursor ion scan experiments were performed using electrospray ionization operated in negative mode. Precursor ion masses were scanned for the monomeric and oligomeric stilbenoids, as well as modifications such as O-glycosylation, methoxylation and oxidation products of these compounds. Accurate mass precursor and characteristic product ions afforded partial structural elucidation and assignment of these compounds. A total of 41 (both known and novel) stilbenoids were detected in extracted red wine. In addition to the well-known monomeric stilbenes, several resveratrol-resveratrol homodimers (m/z 453.1344), resveratrol-piceatannol heterodimers (m/z 469.1293) and piceatannol-piceatannol homodimers (m/z 485.1236) were detected. Modified dimers of resveratrol including O-glycosylated (m/z 615.1872), methoxylated (m/z 485.1606) and oxidized (m/z 471.1449) dimers were also detected. Multiple trimers of resveratrol (m/z 679.1978) were detected for the first time in red wine, as well as some known and some novel stilbenoid tetramers (m/z 905.2604). In summary, 41 stilbenoids were detected in red wine, 23 for the first time. Both monomeric and oligomeric stilbenoids were partially identified and assigned by their accurate mass precursor ions and characteristic stilbenoid fragmentation patterns. Knowledge gained from these experiments contributes to

  5. Purified monomeric ligand.MD-2 complexes reveal molecular and structural requirements for activation and antagonism of TLR4 by Gram-negative bacterial endotoxins.

    Science.gov (United States)

    Gioannini, Theresa L; Teghanemt, Athmane; Zhang, DeSheng; Esparza, Gregory; Yu, Liping; Weiss, Jerrold

    2014-08-01

    A major focus of work in our laboratory concerns the molecular mechanisms and structural bases of Gram-negative bacterial endotoxin recognition by host (e.g., human) endotoxin-recognition proteins that mediate and/or regulate activation of Toll-like receptor (TLR) 4. Here, we review studies of wild-type and variant monomeric endotoxin.MD-2 complexes first produced and characterized in our laboratories. These purified complexes have provided unique experimental reagents, revealing both quantitative and qualitative determinants of TLR4 activation and antagonism. This review is dedicated to the memory of Dr. Theresa L. Gioannini (1949-2014) who played a central role in many of the studies and discoveries that are reviewed.

  6. Effect of the disulfide bond on the monomeric structure of human amylin studied by combined Hamiltonian and temperature replica exchange molecular dynamics simulations.

    Science.gov (United States)

    Laghaei, Rozita; Mousseau, Normand; Wei, Guanghong

    2010-05-27

    The human Islet amyloid polypeptide (hIAPP or amylin) is a 37-residue peptide hormone that is normally cosecreted with insulin by the pancreatic beta-cells. In patients with type 2 diabetes, hIAPP deposits as amyloid fibrils in the extracellular spaces of the pancreatic islets. Recent experimental studies show that the intramolecular disulfide bond between Cys2 and Cys7 plays a central role in the process of fibril formation. However, the effect of the disulfide bond on the intrinsic structural properties of monomeric hIAPP is yet to be determined. In this study, we characterize the atomic structure and the thermodynamics of full-length hIAPP in the presence and absence of a disulfide bond using extensive combined Hamiltonian and temperature replica exchange molecular dynamics simulations (HT-REMD) with a coarse grained protein force field. Our simulations show that HT-REMD is more efficient in sampling than temperature REMD. On the basis of a total simulation time of 28 mus, we find that, although native hIAPP (in the presence of a disulfide bond) essentially adopts a disordered conformation in solution, consistent with the signal measured by ultraviolet-circular dichroism (UV-CD) spectroscopy, it also transiently samples alpha-helical structure for residues 5-16. In comparison with the N-terminal region, the C-terminal region is highly disordered and populates a much lesser content of isolated beta-strand conformation for residues 22-26 and 30-35. Moreover, the absence of the disulfide bond greatly decreases the extent of helix formed throughout residues 5-9 in favor of random coil and beta-sheet structure. Implications of the stabilization of N-terminal helical structure by disulfide bond on the initialization of hIAPP amyloid formation are discussed.

  7. Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Davidson Michael W

    2008-03-01

    Full Text Available Abstract Background In the 15 years that have passed since the cloning of Aequorea victoria green fluorescent protein (avGFP, the expanding set of fluorescent protein (FP variants has become entrenched as an indispensable toolkit for cell biology research. One of the latest additions to the toolkit is monomeric teal FP (mTFP1, a bright and photostable FP derived from Clavularia cyan FP. To gain insight into the molecular basis for the blue-shifted fluorescence emission we undertook a mutagenesis-based study of residues in the immediate environment of the chromophore. We also employed site-directed and random mutagenesis in combination with library screening to create new hues of mTFP1-derived variants with wavelength-shifted excitation and emission spectra. Results Our results demonstrate that the protein-chromophore interactions responsible for blue-shifting the absorbance and emission maxima of mTFP1 operate independently of the chromophore structure. This conclusion is supported by the observation that the Tyr67Trp and Tyr67His mutants of mTFP1 retain a blue-shifted fluorescence emission relative to their avGFP counterparts (that is, Tyr66Trp and Tyr66His. Based on previous work with close homologs, His197 and His163 are likely to be the residues with the greatest contribution towards blue-shifting the fluorescence emission. Indeed we have identified the substitutions His163Met and Thr73Ala that abolish or disrupt the interactions of these residues with the chromophore. The mTFP1-Thr73Ala/His163Met double mutant has an emission peak that is 23 nm red-shifted from that of mTFP1 itself. Directed evolution of this double mutant resulted in the development of mWasabi, a new green fluorescing protein that offers certain advantages over enhanced avGFP (EGFP. To assess the usefulness of mTFP1 and mWasabi in live cell imaging applications, we constructed and imaged more than 20 different fusion proteins. Conclusion Based on the results of our

  8. Relative Molecular Mass Distribution of BG Resins

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Benzoguanamine-formaldehyde (BG-F) resins are a class of amino resins, which are important cross-linking agents for epoxy, alkyol and acrylic resins, etc. The cross-linking performance is the best one when the polymerization degree is 2-4. This paper discusses the effects of the pH value for polycondensation and the formaldehyde to benzoguanamine mole ratio in a methanol system, and compares the relative molecular mass distribution using the Flory statistics method.

  9. The molecular gas mass of M33

    CERN Document Server

    Gratier, P; Schuster, K; Rosolowsky, E; Boquien, M; Calzetti, D; Combes, F; Kramer, C; Henkel, C; Herpin, F; Israel., F; Koribalski, B S; Mookerjea, B; Tabatabaei, F S; Röllig, M; van der Tak, F F S; van der Werf, P; Wiedner, M

    2016-01-01

    [Abridged] Do some environments favor efficient conversion of molecular gas into stars? To answer this, we need to be able to estimate the H2 mass. Traditionally, this is done using CO and a few assumptions but the Herschel observations in the FIR make it possible to estimate the molecular gas mass independently of CO. Previous attempts to derive gas masses from dust emission suffered from biases. Generally, dust surface densities, HI column densities, and CO intensities are used to derive a gas-to-dust ratio (GDR) and the local CO intensity to H2 column density ratio (XCO), sometimes allowing for an additional CO-dark gas component (Kdark). We tested earlier methods, revealing degeneracies among the parameters, and then used a Bayesian formalism to derive the most likely values for each of the parameters mentioned above as a function of position in the nearby low metallicity spiral galaxy M33. The data are from the IRAM 30m CO(2-1) line, high-resolution HI and Herschel dust continuum observations. Solving fo...

  10. Quantification of the predominant monomeric catechins in baking chocolate standard reference material by LC/APCI-MS.

    Science.gov (United States)

    Nelson, Bryant C; Sharpless, Katherine E

    2003-01-29

    Catechins are polyphenolic plant compounds (flavonoids) that may offer significant health benefits to humans. These benefits stem largely from their anticarcinogenic, antioxidant, and antimutagenic properties. Recent epidemiological studies suggest that the consumption of flavonoid-containing foods is associated with reduced risk of cardiovascular disease. Chocolate is a natural cocoa bean-based product that reportedly contains high levels of monomeric, oligomeric, and polymeric catechins. We have applied solid-liquid extraction and liquid chromatography coupled with atmospheric pressure chemical ionization-mass spectrometry to the identification and determination of the predominant monomeric catechins, (+)-catechin and (-)-epicatechin, in a baking chocolate Standard Reference Material (NIST Standard Reference Material 2384). (+)-Catechin and (-)-epicatechin are detected and quantified in chocolate extracts on the basis of selected-ion monitoring of their protonated [M + H](+) molecular ions. Tryptophan methyl ester is used as an internal standard. The developed method has the capacity to accurately quantify as little as 0.1 microg/mL (0.01 mg of catechin/g of chocolate) of either catechin in chocolate extracts, and the method has additionally been used to certify (+)-catechin and (-)-epicatechin levels in the baking chocolate Standard Reference Material. This is the first reported use of liquid chromatography/mass spectrometry for the quantitative determination of monomeric catechins in chocolate and the only report certifying monomeric catechin levels in a food-based Standard Reference Material.

  11. Identification of the Phenol Functionality in Deprotonated Monomeric and Dimeric Lignin Degradation Products via Tandem Mass Spectrometry Based on Ion-Molecule Reactions with Diethylmethoxyborane

    Science.gov (United States)

    Zhu, Hanyu; Max, Joann P.; Marcum, Christopher L.; Luo, Hao; Abu-Omar, Mahdi M.; Kenttämaa, Hilkka I.

    2016-08-01

    Conversion of lignin into smaller molecules provides a promising alternate and sustainable source for the valuable chemicals currently derived from crude oil. Better understanding of the chemical composition of the resulting product mixtures is essential for the optimization of such conversion processes. However, these mixtures are complex and contain isomeric molecules with a wide variety of functionalities, which makes their characterization challenging. Tandem mass spectrometry based on ion-molecule reactions has proven to be a powerful tool in functional group identification and isomer differentiation for previously unknown compounds. This study demonstrates that the identification of the phenol functionality, the most commonly observed functionality in lignin degradation products, can be achieved via ion-molecule reactions between diethylmethoxyborane (DEMB) and the deprotonated analyte in the absence of strongly electron-withdrawing substituents in the ortho- and para-positions. Either a stable DEMB adduct or an adduct that has lost a methanol molecule (DEMB adduct-MeOH) is formed for these ions. Deprotonated phenols with an adjacent phenol or hydroxymethyl functionality or a conjugated carboxylic acid functionality can be identified based on the formation of DEMB adduct-MeOH. Deprotonated compounds not containing the phenol functionality and phenols containing an electron-withdrawing ortho- or para-substituent were found to be unreactive toward diethylmethoxyborane. Hence, certain deprotonated isomeric compounds with phenol and carboxylic acid, aldehyde, carboxylic acid ester, or nitro functionalities can be differentiated via these reactions. The above mass spectrometry method was successfully coupled with high-performance liquid chromatography for the analysis of a complex biomass degradation mixture.

  12. Identification of the Phenol Functionality in Deprotonated Monomeric and Dimeric Lignin Degradation Products via Tandem Mass Spectrometry Based on Ion-Molecule Reactions with Diethylmethoxyborane

    Science.gov (United States)

    Zhu, Hanyu; Max, Joann P.; Marcum, Christopher L.; Luo, Hao; Abu-Omar, Mahdi M.; Kenttämaa, Hilkka I.

    2016-11-01

    Conversion of lignin into smaller molecules provides a promising alternate and sustainable source for the valuable chemicals currently derived from crude oil. Better understanding of the chemical composition of the resulting product mixtures is essential for the optimization of such conversion processes. However, these mixtures are complex and contain isomeric molecules with a wide variety of functionalities, which makes their characterization challenging. Tandem mass spectrometry based on ion-molecule reactions has proven to be a powerful tool in functional group identification and isomer differentiation for previously unknown compounds. This study demonstrates that the identification of the phenol functionality, the most commonly observed functionality in lignin degradation products, can be achieved via ion-molecule reactions between diethylmethoxyborane (DEMB) and the deprotonated analyte in the absence of strongly electron-withdrawing substituents in the ortho- and para-positions. Either a stable DEMB adduct or an adduct that has lost a methanol molecule (DEMB adduct-MeOH) is formed for these ions. Deprotonated phenols with an adjacent phenol or hydroxymethyl functionality or a conjugated carboxylic acid functionality can be identified based on the formation of DEMB adduct-MeOH. Deprotonated compounds not containing the phenol functionality and phenols containing an electron-withdrawing ortho- or para-substituent were found to be unreactive toward diethylmethoxyborane. Hence, certain deprotonated isomeric compounds with phenol and carboxylic acid, aldehyde, carboxylic acid ester, or nitro functionalities can be differentiated via these reactions. The above mass spectrometry method was successfully coupled with high-performance liquid chromatography for the analysis of a complex biomass degradation mixture.

  13. The molecular gas mass of M 33

    Science.gov (United States)

    Gratier, P.; Braine, J.; Schuster, K.; Rosolowsky, E.; Boquien, M.; Calzetti, D.; Combes, F.; Kramer, C.; Henkel, C.; Herpin, F.; Israel, F.; Koribalski, B. S.; Mookerjea, B.; Tabatabaei, F. S.; Röllig, M.; van der Tak, F. F. S.; van der Werf, P.; Wiedner, M.

    2017-03-01

    Do some environments favor efficient conversion of molecular gas into stars? To answer this, we need to be able to estimate the H2 mass. Traditionally, this is done using CO observations and a few assumptions but the Herschel observations which cover the far-IR dust spectrum make it possible to estimate the molecular gas mass independently of CO and thus to investigate whether and how the CO traces H2. Previous attempts to derive gas masses from dust emission suffered from biases. Generally, dust surface densities, H i column densities, and CO intensities are used to derive a gas-to-dust ratio (GDR) and the local CO intensity to H2 column density ratio (XCO), sometimes allowing for an additional CO-dark gas component (Kdark). We tested earlier methods, revealing degeneracies among the parameters, and then used a sophisticated Bayesian formalism to derive the most likely values for each of the parameters mentioned above as a function of position in the nearby prototypical low metallicity (12 + log (O/H) 8.4) spiral galaxy M 33. The data are from the IRAM Large Program mapping in the CO(2-1) line along with high-resolution H i and Herschel dust continuum observations. Solving for GDR, XCO, and Kdark in macropixels 500 pc in size, each containing many individual measurements of the CO, H i, and dust emission, we find that (i) allowing for CO dark gas (Kdark) significantly improves fits; (ii) Kdark decreases with galactocentric distance; (iii) GDR is slightly higher than initially expected and increases with galactocentric distance; (iv) the total amount of dark gas closely follows the radially decreasing CO emission, as might be expected if the dark gas is H2 where CO is photodissociated. The total amount of H2, including dark gas, yields an average XCO of twice the galactic value of 2 × 1020 cm-2/ K km s-1, with about 55% of this traced directly through CO. The rather constant fraction of dark gas suggests that there is no large population of diffuse H2 clouds

  14. Mass spectrometry and photoelectron spectroscopy of o-, m-, and p-terphenyl cluster anions: the effect of molecular shape on molecular assembly and ion core character.

    Science.gov (United States)

    Mitsui, Masaaki; Ando, Naoto; Nakajima, Atsushi

    2008-06-26

    Mass spectrometry and photoelectron spectroscopy of o-, m-, and p-terphenyl cluster anions, (o-TP)n(-) (n = 2-100), (m-TP)n(-) (n = 2-100), and (p-TP)n(-) (n = 1-100), respectively, are conducted to investigate the effect of molecular shape on the molecular aggregation form and the resultant ion core character of the clusters. For (o-TP)n(-) and (m-TP)n(-), neither magic numbers nor discernible isomers are observed throughout the size range. Furthermore, their vertical detachment energies (VDEs) increase up to large n and depend linearly on n(-1/3), implying that they possess a three-dimensional (3D), highly reorganized structure encompassing a monomeric anion core. For (p-TP)n(-), in contrast, prominent magic numbers of n = 5, 7, 10, 12, and 14 are observed, and the VDEs show pronounced irregular shifts below n = 10, while they remain constant above n = 14 (isomer A). These results can be rationalized with two-dimensional (2D) orderings of p-TP molecules and different types of 2D shell closure at n = 7 and 14, the monomeric and multimeric anion core, respectively. Above n = 16, the new feature (isomer B) starts to appear at the higher binding side of isomer A, and it becomes dominant with n, while isomer A gradually disappears for larger sizes. In contrast to isomer A, the VDEs of isomer B continuously increase with the cluster size. This characteristic size evolution suggests that the transition to modified 2D aggregation forms from 2D ones occurs at around n = 20.

  15. Molecular line tracers of high-mass star forming regions

    NARCIS (Netherlands)

    Nagy, Zsofia; Van der Tak, Floris; Ossenkopf, Volker; Bergin, Edwin; Black, John; Faure, Alexandre; Fuller, Gary; Gerin, Maryvonne; Goicoechea, Javier; Joblin, Christine; Le Bourlot, Jacques; Le Petit, Franck; Makai, Zoltan; Plume, Rene; Roellig, Markus; Spaans, Marco; Tolls, Volker

    2013-01-01

    High-mass stars influence their environment in different ways including feedback via their FUV radiation. The penetration of FUV photons into molecular clouds creates Photon Dominated Regions (PDRs) with different chemical layers where the mainly ionized medium changes into mainly molecular. Differe

  16. On the masses of giant molecular cloud complexes

    Science.gov (United States)

    Stark, A. A.; Blitz, L.

    1978-01-01

    A method of mass estimation for molecular clouds is presented which is based on approximate balance in the outer cloud layers between the cloud's gravitation, the galactic tide, and internal pressure. The largest observed clouds, which have greatest linear extents of 100 pc, are found to have masses of at least 200,000 solar masses. The cloud masses cannot exceed this lower limit by more than a factor of 3, or the velocity distributions of disk stars would be more relaxed than is actually observed. This implied upper limit to cloud masses combined with the galactic tide may be related to the absence of clouds at galactocentric radii less than 4 kpc. If Sagittarius B2 is bound, its mass must be more than 50 million solar masses.

  17. Mass transport thermodynamics in nonisothermal molecular liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Semen N [Institute for Biochemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Schimpf, M E [Department of Chemistry and Biochemistry, Boise State University, Boise, ID (United States)

    2009-10-31

    Mass transport in a nonisothermal binary molecular mixture is systematically discussed in terms of nonequilibrium thermodynamics, which for the first time allows a consistent and unambiguous description of the process. The thermodynamic and hydrodynamic approaches are compared, revealing that nonequilibrium thermodynamics and physicochemical hydrodynamics yield essentially the same results for molecular systems. The applicability limits for the proposed version of the thermodynamic approach are determined for large particles. (methodological notes)

  18. Galaxy metallicities depend primarily on stellar mass and molecular gas mass

    Science.gov (United States)

    Bothwell, M. S.; Maiolino, R.; Cicone, C.; Peng, Y.; Wagg, J.

    2016-10-01

    Aims: We present an analysis of the behaviour of galaxies in a four-dimensional parameter space defined by stellar mass, metallicity, star formation rate, and molecular gas mass. We analyse a combined sample of 227 galaxies that draws from a number of surveys across the redshift range 0 90% of the sample at z 0) and covers >3 decades in stellar mass. Methods: Using principal component analysis, we demonstrate that galaxies in our sample lie on a 2D plane within this 4D parameter space, which is indicative of galaxies that exist in an equilibrium between gas inflow and outflow. Furthermore, we find that the metallicity of galaxies depends only on stellar mass and molecular gas mass. In other words, gas-phase metallicity has a negligible dependence on star formation rate once the correlated effect of molecular gas content is accounted for. Results: The well-known fundamental metallicity relation which describes a close and tight relationship between metallicity and SFR (at fixed stellar mass) is therefore entirely a by-product of the underlying physical relationship with molecular gas mass (through the Schmidt-Kennicutt relation).

  19. Fetus in fetu: molecular analysis of a fetiform mass.

    Science.gov (United States)

    Hing, A; Corteville, J; Foglia, R P; Bliss, D P; Donis-Keller, H; Dowton, S B

    1993-09-01

    Fetus-in-fetu is a rare condition presenting as a calcified intra-abdominal mass in the newborn infant. Over 50 cases of fetus-in-fetu have been reported since 1800. Karyotype analysis in 8 cases and protein polymorphisms in 4 documented identical findings in the host and fetiform mass. We report a case of fetus-in-fetu in a newborn female including cytogenetic and molecular studies of both the host and mass. Genotypic information from 7 polymerase chain reaction (PCR) assays representing 4 chromosomes demonstrates heterozygous and identical alleles in the infant and fetus-in-fetu at all loci studied. A review of the literature is provided including a discussion regarding the impact of molecular data on present hypotheses of fetus-in-fetu pathogenesis.

  20. Slow Unfolding of Monomeric Proteins from Hyperthermophiles with Reversible Unfolding

    Directory of Open Access Journals (Sweden)

    Atsushi Mukaiyama

    2009-03-01

    Full Text Available Based on the differences in their optimal growth temperatures microorganisms can be classified into psychrophiles, mesophiles, thermophiles, and hyperthermophiles. Proteins from hyperthermophiles generally exhibit greater stability than those from other organisms. In this review, we collect data about the stability and folding of monomeric proteins from hyperthermophilies with reversible unfolding, from the equilibrium and kinetic aspects. The results indicate that slow unfolding is a general strategy by which proteins from hyperthermophiles adapt to higher temperatures. Hydrophobic interaction is one of the factors in the molecular mechanism of the slow unfolding of proteins from hyperthermophiles.

  1. Galaxy metallicities depend primarily on stellar mass and molecular gas mass

    CERN Document Server

    Bothwell, M S; Cicone, C; Peng, Y; Wagg, J

    2016-01-01

    In this work we present an analysis of the behaviour of galaxies in a four-dimensional parameter space defined by stellar mass, metallicity, star formation rate, and molecular gas mass. We analyse a combined sample of 227 galaxies, which draws from a number of surveys across the redshift range 0 90% of the sample at z~0), and covers > 3 decades in stellar mass.Using Principle Component Analysis, we demonstrate that galaxies in our sample lie on a 2-dimensional plane within this 4D parameter space, indicative of galaxies that exist in an equilibrium between gas inflow and outflow. Furthermore, we find that the metallicity of galaxies depends only on stellar mass and molecular gas mass. In other words, gas-phase metallicity has a negligible dependence on star formation rate, once the correlated effect of molecular gas content is accounted for. The well-known `fundamental metallicity relation', which describes a close and tight relationship between metallicity and SFR (at fixed stellar mass) is therefore entire...

  2. mKikGR, a monomeric photoswitchable fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Satoshi Habuchi

    Full Text Available The recent demonstration and utilization of fluorescent proteins whose fluorescence can be switched on and off has greatly expanded the toolkit of molecular and cell biology. These photoswitchable proteins have facilitated the characterization of specifically tagged molecular species in the cell and have enabled fluorescence imaging of intracellular structures with a resolution far below the classical diffraction limit of light. Applications are limited, however, by the fast photobleaching, slow photoswitching, and oligomerization typical for photoswitchable proteins currently available. Here, we report the molecular cloning and spectroscopic characterization of mKikGR, a monomeric version of the previously reported KikGR that displays high photostability and switching rates. Furthermore, we present single-molecule imaging experiments that demonstrate that individual mKikGR proteins can be localized with a precision of better than 10 nanometers, suggesting their suitability for super-resolution imaging.

  3. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    Science.gov (United States)

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  4. Utilizing Ion-Mobility Data to Estimate Molecular Masses

    Science.gov (United States)

    Duong, Tuan; Kanik, Isik

    2008-01-01

    A method is being developed for utilizing readings of an ion-mobility spectrometer (IMS) to estimate molecular masses of ions that have passed through the spectrometer. The method involves the use of (1) some feature-based descriptors of structures of molecules of interest and (2) reduced ion mobilities calculated from IMS readings as inputs to (3) a neural network. This development is part of a larger effort to enable the use of IMSs as relatively inexpensive, robust, lightweight instruments to identify, via molecular masses, individual compounds or groups of compounds (especially organic compounds) that may be present in specific environments or samples. Potential applications include detection of organic molecules as signs of life on remote planets, modeling and detection of biochemicals of interest in the pharmaceutical and agricultural industries, and detection of chemical and biological hazards in industrial, homeland-security, and industrial settings.

  5. TRIMS: Validating T2 Molecular Effects for Neutrino Mass Experiments

    Science.gov (United States)

    Lin, Ying-Ting; Bodine, Laura; Enomoto, Sanshiro; Kallander, Matthew; Machado, Eric; Parno, Diana; Robertson, Hamish; Trims Collaboration

    2017-01-01

    The upcoming KATRIN and Project 8 experiments will measure the model-independent effective neutrino mass through the kinematics near the endpoint of tritium beta-decay. A critical systematic, however, is the understanding of the molecular final-state distribution populated by tritium decay. In fact, the current theory incorporated in the KATRIN analysis framework predicts an observable that disagrees with an experimental result from the 1950s. The Tritium Recoil-Ion Mass Spectrometer (TRIMS) experiment will reexamine branching ratio of the molecular tritium (T2) beta decay to the bound state (3HeT+). TRIMS consists of a magnet-guided time-of-flight mass spectrometer with a detector located on each end. By measuring the kinetic energy and time-of-flight difference of the ions and beta particles reaching the detectors, we will be able to distinguish molecular ions from atomic ones and hence derive the ratio in question.We will give an update on simulation software, analysis tools, and the apparatus, including early commissioning results. U.S. Department of Energy Office of Science, Office of Nuclear Physics, Award Number DE-FG02-97ER41020.

  6. Molecular dynamics of nanodroplet impact: The effect of the projectile’s molecular mass on sputtering

    Directory of Open Access Journals (Sweden)

    Fernan Saiz

    2016-06-01

    Full Text Available The impact of electrosprayed nanodroplets on ceramics at several km/s alters the atomic order of the target, causing sputtering, surface amorphization and cratering. The molecular mass of the projectile is known to have a strong effect on the impact phenomenology, and this article aims to rationalize this dependency using molecular dynamics. To achieve this goal, the article models the impact of four projectiles with molecular masses between 45 and 391 amu, and identical diameters and kinetic energies, 10 nm and 63 keV, striking a silicon target. In agreement with experiments, the simulations show that the number of sputtered atoms strongly increases with molecular mass. This is due to the increasing intensity of collision cascades with molecular mass: when the fixed kinetic energy of the projectile is distributed among fewer, more massive molecules, their collisions with the target produce knock-on atoms with higher energies, which in turn generate more energetic and larger numbers of secondary and tertiary knock-on atoms. The more energetic collision cascades intensify both knock-on sputtering and, upon thermalization, thermal sputtering. Besides enhancing sputtering, heavier molecules also increase the fraction of the projectile’s energy that is transferred to the target, as well as the fraction of this energy that is dissipated.

  7. Size separation of analytes using monomeric surfactants

    Science.gov (United States)

    Yeung, Edward S.; Wei, Wei

    2005-04-12

    A sieving medium for use in the separation of analytes in a sample containing at least one such analyte comprises a monomeric non-ionic surfactant of the of the general formula, B-A, wherein A is a hydrophilic moiety and B is a hydrophobic moiety, present in a solvent at a concentration forming a self-assembled micelle configuration under selected conditions and having an aggregation number providing an equivalent weight capable of effecting the size separation of the sample solution so as to resolve a target analyte(s) in a solution containing the same, the size separation taking place in a chromatography or electrophoresis separation system.

  8. Monomeric Friction Coefficient of Metalnanodispersible Polymeric Systems

    Directory of Open Access Journals (Sweden)

    B.B. Kolupayev

    2016-12-01

    Full Text Available Influence of a nanodispersible metal excipient in number of 0    5,0 vol.% Cu for the size of a monomeric friction coefficient of polyvinylchloride (PVC systems in temperature range 298  Т  (Tg + 10 K is investigated. It is shown that various types of coordination movements of building blocks are described by a friction coefficient which serves as a measure of influence of external fields and ingredients on viscoelastic behavior of a composite. The analysis of processes of a relaxation on the basis of the theory of flexible chains taking into account power and entropic factors is carried out.

  9. Molecular mass ranges of coal tar pitch fractions by mass spectrometry and size-exclusion chromatography.

    Science.gov (United States)

    Karaca, F; Morgan, T J; George, A; Bull, I D; Herod, A A; Millan, M; Kandiyoti, R

    2009-07-01

    A coal tar pitch was fractionated by solvent solubility into heptane-solubles, heptane-insoluble/toluene-solubles (asphaltenes), and toluene-insolubles (preasphaltenes). The aim of the work was to compare the mass ranges of the different fractions by several different techniques. Thermogravimetric analysis, size-exclusion chromatography (SEC) and UV-fluorescence spectroscopy showed distinct differences between the three fractions in terms of volatility, molecular size ranges and the aromatic chromophore sizes present. The mass spectrometric methods used were gas chromatography/mass spectrometry (GC/MS), pyrolysis/GC/MS, electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) and laser desorption time-of-flight mass spectrometry (LD-TOFMS). The first three techniques gave good mass spectra only for the heptane-soluble fraction. Only LDMS gave signals from the toluene-insolubles, indicating that the molecules were too involatile for GC and too complex to pyrolyze into small molecules during pyrolysis/GC/MS. ESI-FTICRMS gave no signal for toluene-insolubles probably because the fraction was insoluble in the methanol or acetonitrile, water and formic acid mixture used as solvent to the ESI source. LDMS was able to generate ions from each of the fractions. Fractionation of complex samples is necessary to separate smaller molecules to allow the use of higher laser fluences for the larger molecules and suppress the formation of ionized molecular clusters. The upper mass limit of the pitch was determined as between 5000 and 10,000 u. The pitch asphaltenes showed a peak of maximum intensity in the LDMS spectra at around m/z 400, in broad agreement with the estimate from SEC. The mass ranges of the toluene-insoluble fraction found by LDMS and SEC (400-10,000 u with maximum intensity around 2000 u by LDMS and 100-9320 u with maximum intensity around 740 u by SEC) are higher than those for the asphaltene fraction (200-4000 u with

  10. Study of molecular iodine-epoxy paint mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Belval-Haltier, E. [Inst. de Protection et Surete Nucleaire, IPSN, CEN Cadarache, St. Paul-lez-Durance (France)

    1996-12-01

    The mass transfer phenomena may have a significant influence on the quantity of I{sub 2} which could be released following a severe accident of a nuclear power plant and specially the mass transfer of iodine onto containment surfaces. So, the objective of the present work was to evaluate which phase limited the adsorption process of iodine onto gaseous epoxy paint under a range of conditions which may be relevant to a severe reactor accident. In this aim, a series of experiments was conducted in which the sorption kinetics of molecular iodine, labelled with {sup 131}I, was measured by monitoring continuously the accumulation of this species on the epoxy surface. For each test condition, the initial deposition velocity was determined and the corresponding gas phase mass transfer, kg, was estimated by using the heat transfer analogy for a laminar flow passing over a flat plate. Then, the surface reaction rate, Kr, was deduced from these two values. Experiments performed indicated that iodine adsorption onto epoxy paint is highly dependent on temperature, relative humidity of the carrier gas and moisture content of the painted coupon. In dry air flow conditions, the adsorption of iodine onto paint was found to increase with temperature and to be limited by the surface reaction rate, Kr. The I{sub 2} adsorption rate was found to increase with the humidity of carrier gas and in some studied conditions, the initial deposition velocity appeared to be controlled by gas phase mass transfer rather than surface interaction. The same phenomenon has been observed with an increase of the initial water content of the painted coupon. (author) 6 figs., 1 tab., 8 refs.

  11. Isolation and Characterization of Lewis Base Stabilized Monomeric Parent Stibanylboranes.

    Science.gov (United States)

    Marquardt, Christian; Hegen, Oliver; Hautmann, Matthias; Balázs, Gábor; Bodensteiner, Michael; Virovets, Alexander V; Timoshkin, Alexey Y; Scheer, Manfred

    2015-10-26

    The synthesis of the Lewis base stabilized monomeric parent compound of stibanylboranes, "H2 Sb-BH2 ", is reported. Through a salt metathesis route, the silyl-substituted compounds (Me3 Si)2 Sb-BH2 ⋅LB (LB=NMe3 , NHC(Me) ) were synthesized as representatives of derivatives with a Sb-B σ bond. Under very mild conditions, they could be transformed into the target compounds Me3 N⋅H2 B-HSb-BH2 ⋅NMe3 and H2 Sb-BH2 ⋅NHC(Me) , respectively. The products were characterized by X-ray structure analysis, NMR spectroscopy, IR spectroscopy, and mass spectrometry. DFT calculations give further insight into the stability and bonding of these unique compounds.

  12. Mass Spectral Molecular Networking of Living Microbial Colonies

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, Jeramie D.; Roach, Patrick J.; Alexandrov, Theodore; Heath, Brandi S.; Yang, Jane Y.; Kersten, Roland; vander Voort, Menno; Pogliano, Kit; Gross, Harald; Raaijmakers, Jos M.; Moore, Bradley S.; Laskin, Julia; Bandeira, Nuno; Dorrestein, Pieter C.

    2012-06-26

    Integrating the governing chemistry with the genomics and phenotypes of microbial colonies has been a "holy grail" in microbiology. This work describes a highly sensitive, broadly applicable, and costeffective approach that allows metabolic profiling of live microbial colonies directly from a Petri dish without any sample preparation. Nanospray desorption electrospray ionization mass spectrometry (MS), combined with alignment of MS data and molecular networking, enabled monitoring of metabolite production from live microbial colonies from diverse bacterial genera, including Bacillus subtilis, Streptomyces coelicolor, Mycobacterium smegmatis, and Pseudomonas aeruginosa. This work demonstrates that, by using these tools to visualize small molecular changes within bacterial interactions, insights can be gained into bacterial developmental processes as a result of the improved organization of MS/MS data. To validate this experimental platform, metabolic profiling was performed on Pseudomonas sp. SH-C52, which protects sugar beet plants from infections by specific soil-borne fungi [R. Mendes et al. (2011) Science 332:1097–1100]. The antifungal effect of strain SHC52 was attributed to thanamycin, a predicted lipopeptide encoded by a nonribosomal peptide synthetase gene cluster. Our technology, in combination with our recently developed peptidogenomics strategy, enabled the detection and partial characterization of thanamycin and showed that it is amonochlorinated lipopeptide that belongs to the syringomycin family of antifungal agents. In conclusion, the platform presented here provides a significant advancement in our ability to understand the spatiotemporal dynamics of metabolite production in live microbial colonies and communities.

  13. Classical electron ionization mass spectra in gas chromatography/mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Gordin, Alexander; Fialkov, Alexander B; Amirav, Aviv

    2008-09-01

    A major benefit of gas chromatography/mass spectrometry (GC/MS) with a supersonic molecular beam (SMB) interface and its fly-through ion source is the ability to obtain electron ionization of vibrationally cold molecules (cold EI), which show enhanced molecular ions. However, GC/MS with an SMB also has the flexibility to perform 'classical EI' mode of operation which provides mass spectra to mimic those in commercial 70 eV electron ionization MS libraries. Classical EI in SMB is obtained through simple reduction of the helium make-up gas flow rate, which reduces the SMB cooling efficiency; hence the vibrational temperatures of the molecules are similar to those in traditional EI ion sources. In classical EI-SMB mode, the relative abundance of the molecular ion can be tuned and, as a result, excellent identification probabilities and very good matching factors to the NIST MS library are obtained. Classical EI-SMB with the fly-through dual cage ion source has analyte sensitivity similar to that of the standard EI ion source of a basic GC/MS system. The fly-through EI ion source in combination with the SMB interface can serve for cold EI, classical EI-SMB, and cluster chemical ionization (CCI) modes of operation, all easily exchangeable through a simple and quick change (not involving hardware). Furthermore, the fly-through ion source eliminates sample scattering from the walls of the ion source, and thus it offers full sample inertness, tailing-free operation, and no ion-molecule reaction interferences. It is also robust and enables increased column flow rate capability without affecting the sensitivity.

  14. Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry

    Science.gov (United States)

    Giannoukos, Stamatios; Marshall, Alan; Taylor, Stephen; Smith, Jeremy

    2017-07-01

    The synthetic generation/coding and transmission of olfactory information over a gas stream or an odor network is a new and unexplored field. Application areas vary from the entertainment or advertisement industry to security and telemedicine. However, current technological limitations frustrate the accurate reproduction of decoded and transmitted olfactory data. This study describes the development, testing, and characterization of a novel odor emitter (OE) that is used to investigate the generation-encoding of gaseous standards with odorous characteristics with a regulatable way, for scent transmission purposes. The calibration and the responses of a developed OE were examined using a portable quadrupole mass spectrometer (MS). Experiments were undertaken for a range of volatile organic compounds (VOCs) at different temperatures and flow rates. Individual compounds and mixtures were tested to investigate periodic and dynamic transmission characteristics within two different size tubular containers for distances up to 3 m. Olfactory information transmission is demonstrated using MS as the main molecular sensor for odor detection and monitoring and for the first time spatial encryption of olfactory information is shown.

  15. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Maria Françoise Bayer

    2013-01-01

    Full Text Available In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma plays pivotal roles in the orchestration of development, defence responses and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialised domains of the endoplasmic reticulum and the plasma membrane. PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalisation or screening of random cDNAs, only few PD proteins had been conclusively identified and characterised. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on free PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD associated proteins.

  16. NBO, NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of 4-Chloro-3,5-Xylenol: A combined experimental and theoretical study

    Science.gov (United States)

    Arivazhagan, M.; Gayathri, R.

    2013-12-01

    In this work, a joint experimental (FTIR and FT-Raman) and theoretical (DFT and ab initio) study on the structure and the vibrations of 4-Chloro-3,5-Xylenol (CXL) are compared and analyzed. CXL is a chlorinated phenolic antiseptic which is a bactericide against most gram-positive bacteria. The first hyperpolarizability (β0) of this novel molecular system and related non-linear properties of CXL are calculated using HF/6-311++G(d,p) method on the finite-field approach. The energy and oscillator strength calculated using absorption spectra (UV-Vis spectrum), this spectral analysis confirms the charge transfer of the molecule. The theoretical 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge Including Atomic Orbital (GIAO) method, to analyze the molecular environment as well as the delocalization activities of electron clouds. The directly calculated ionization potential (IP), electron affinity (EA), electronegativity (χ), chemical hardness (η), first electron excitation energy (τ) and electrophilicity index (ω) as well as local reactivity (S) analyzed using HOMO and LUMO energies; the energy band gap are also determined. NBO analysis shows that charge in electron density(ED) in the σ* and π* antibonding orbitals and E(2) energies confirms the occurrence of ICT (Intramolecular Charge Transfer) within the molecule. Inter molecular hydrogen bonds exist between -OH group, give the evidence for the formation of dimer entities in the title molecule. The influences of chlorine atom, hydroxyl group and methyl group on the geometry of benzene and its normal modes of vibrations (monomer and dimer of CXL) have also been discussed. Finally the calculated results were applied to simulate Infrared and Raman spectra of the title molecule which show good agreement with observed spectra.

  17. NBO, NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of 4-Chloro-3,5-Xylenol: a combined experimental and theoretical study.

    Science.gov (United States)

    Arivazhagan, M; Gayathri, R

    2013-12-01

    In this work, a joint experimental (FTIR and FT-Raman) and theoretical (DFT and ab initio) study on the structure and the vibrations of 4-Chloro-3,5-Xylenol (CXL) are compared and analyzed. CXL is a chlorinated phenolic antiseptic which is a bactericide against most gram-positive bacteria. The first hyperpolarizability (β0) of this novel molecular system and related non-linear properties of CXL are calculated using HF/6-311++G(d,p) method on the finite-field approach. The energy and oscillator strength calculated using absorption spectra (UV-Vis spectrum), this spectral analysis confirms the charge transfer of the molecule. The theoretical (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge Including Atomic Orbital (GIAO) method, to analyze the molecular environment as well as the delocalization activities of electron clouds. The directly calculated ionization potential (IP), electron affinity (EA), electronegativity (χ), chemical hardness (η), first electron excitation energy (τ) and electrophilicity index (ω) as well as local reactivity (S) analyzed using HOMO and LUMO energies; the energy band gap are also determined. NBO analysis shows that charge in electron density(ED) in the σ(*) and π(*) antibonding orbitals and E((2)) energies confirms the occurrence of ICT (Intramolecular Charge Transfer) within the molecule. Inter molecular hydrogen bonds exist between -OH group, give the evidence for the formation of dimer entities in the title molecule. The influences of chlorine atom, hydroxyl group and methyl group on the geometry of benzene and its normal modes of vibrations (monomer and dimer of CXL) have also been discussed. Finally the calculated results were applied to simulate Infrared and Raman spectra of the title molecule which show good agreement with observed spectra.

  18. Synthesis and structural characterization of monomeric mercury(II) selenolate complexes derived from 2-phenylbenzamide ligands.

    Science.gov (United States)

    Patel, Saket; Meenakshi; Hodage, Ananda S; Verma, Ajay; Agrawal, Shailendra; Yadav, Abhimanyu; Kumar, Sangit

    2016-03-07

    Monomeric Hg(II) selenolate complexes derived from 2-phenylbenzamide ligands were prepared by oxidative addition of diselenides [{C6H4(CONR2)Se}2, R = Me, Et, iPr] to elemental Hg and reductive cleavage of the Se–N bond of isoselenazolone derivatives [(NO2)C6H3(CONSe)R, (R = allyl, nbutyl)] followed by the treatment with HgCl2. The complexes have been characterized by multinuclear NMR (1H, 13C and 77Se) spectroscopy and mass spectrometry which suggest the monomeric form of these in solution. The molecular structures of diselenides [C6H4(CONR2)Se]2 and mercury selenolates [Hg{(NO2)C6H3(CONH-C3H5) Se}2], [Hg{C6H4(CONiPr2)Se}2] and [Hg{C6H4(CONMe2)Se}2] were established by a single crystal X-ray diffraction study. Diselenides show strong intramolecular non-bonded Se⋯O interactions, which are influenced by the nature of C(O)NR̲2 and decrease with the sterically bulky alkyl substituent (Se⋯O =2.823 Å for R = di-Me, 2.760 Å for R = allyl, and 3.157 Å for R = di-iPr). Mercury complexes derived from less bulky 2-phenyl-N,N-dialkylbenzamide ligands associated with poor or no intramolecular nonbonded Hg⋯O interactions (4.91 Å for R = di-Me, 4.199 Å for R = allyl) and instead strong intermolecular Hg⋯O [2.792(3) and 2.820(4) Å] for di-Me and allyl and Hg⋯Se [3.3212(5) and 3.4076(8) Å] interactions were observed which lead to a dimeric form in the crystals. On the other hand, the mercury complex derived from the sterically bulky diisopropyl amide ligand shows a strong intramolecular non-bonded Hg⋯O (2.860 Å) interaction, adopts linear geometry and exists as a monomer. Thermogravimetric analysis (TGA) of the mercury selenolate complexes revealed two-step decomposition which leads to the formation of HgSe. The mercury selenolate complex 3c derived from the sterically bulky 2-phenyl-N,Ndiisopropylbenzamide ligand decomposed to give HgSe in the range of 220-300 °C.

  19. A critical analysis of the models connecting molecular mass distribution and shear viscosity functions

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Thermoplastics having various short and long-chain branches, characterized by the melt index measured at the processing temperature – according to their average molecular mass – can be processed using universal principles, independently of their chemical composition. The average molecular mass is the result of a molecular mass distribution, being the fingerprint of the chemical synthetic technology. The actual shape of the shear viscosity function aiming at the quantitative characterization of viscous flow, containing material-dependent parameters, depends on the ratio of high and low molecular mass fractions, the width of the molecular mass distribution function and on the number of short and long chain branches. This publication deals with the critical analysis of the mathematical methods of transforming these two curves of basic importance into each other.

  20. Preparation of high viscosity average molecular mass poly-L-lactide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-hua; RUAN Jian-ming; ZOU Jian-peng; ZHOU Zhong-cheng; SHEN Xiong-jun

    2006-01-01

    Poly-L-lactide(PLLA) was synthesized by ring-opening polymerization from high purity L-lactide with tin octoate as initiator, and characterized by means of infrared, and 1H-nuclear magnetic resonance. The influences of initiator concentration,polymerization temperature and polymerization time on the viscosity average molecular mass of PLLA were investigated. The effects of different purification methods on the concentration of initiator and viscosity average molecular mass were also studied. PLLA with a viscosity average molecular mass of about 50.5×104 was obtained when polymerization was conducted for 24 h at 140 ℃ with the molar ratio of monomer to purification initator being 12 000. After purification, the concentration of tin octoate decreases; however,the effect of different purification methods on the viscosity average molecular mass of PLLA is different, and the obtained PLLA is a typical amorphous polymeric material. The crystallinity of PLLA decreases with the increase of viscosity average molecular mass.

  1. Molecular chemistry and the missing mass problem in PNe

    CERN Document Server

    Kimura, Rafael K; Aleman, Isabel; 10.1051/0004-6361/201118429

    2012-01-01

    Detections of molecular lines, mainly from H2$ and CO, reveal molecular material in planetary nebulae. Observations of a variety of molecules suggest that the molecular composition in these objects differs from that found in interstellar clouds or in circumstellar envelopes. The success of the models, which are mostly devoted to explain molecular densities in specific planetary nebulae, is still partial, however. The present study aims at identifying the influence of stellar and nebular properties on the molecular composition of planetary nebulae by means of chemical models. A comparison of theoretical results with those derived from the observations may provide clues to the conditions that favor the presence of a particular molecule. A self-consistent photoionization numerical code was adapted to simulate cold molecular regions beyond the ionized zone. The code was used to obtain a grid of models and the resulting column densities are compared with those inferred from observations. Our models show that the i...

  2. Multistage modeling of protein dynamics with monomeric Myc oncoprotein as an example

    Science.gov (United States)

    Liu, Jiaojiao; Dai, Jin; He, Jianfeng; Niemi, Antti J.; Ilieva, Nevena

    2017-03-01

    We propose to combine a mean-field approach with all-atom molecular dynamics (MD) into a multistage algorithm that can model protein folding and dynamics over very long time periods yet with atomic-level precision. As an example, we investigate an isolated monomeric Myc oncoprotein that has been implicated in carcinomas including those in colon, breast, and lungs. Under physiological conditions a monomeric Myc is presumed to be an example of intrinsically disordered proteins that pose a serious challenge to existing modeling techniques. We argue that a room-temperature monomeric Myc is in a dynamical state, it oscillates between different conformations that we identify. For this we adopt the C α backbone of Myc in a crystallographic heteromer as an initial ansatz for the monomeric structure. We construct a multisoliton of the pertinent Landau free energy to describe the C α profile with ultrahigh precision. We use Glauber dynamics to resolve how the multisoliton responds to repeated increases and decreases in ambient temperature. We confirm that the initial structure is unstable in isolation. We reveal a highly degenerate ground-state landscape, an attractive set towards which Glauber dynamics converges in the limit of vanishing ambient temperature. We analyze the thermal stability of this Glauber attractor using room-temperature molecular dynamics. We identify and scrutinize a particularly stable subset in which the two helical segments of the original multisoliton align in parallel next to each other. During the MD time evolution of a representative structure from this subset, we observe intermittent quasiparticle oscillations along the C-terminal α helix, some of which resemble a translating Davydov's Amide-I soliton. We propose that the presence of oscillatory motion is in line with the expected intrinsically disordered character of Myc.

  3. Fucosylated high molecular mass but not non-fucosylated low molecular mass xyloglucans undergo an extensive depolymerization in cell walls of azuki bean epicotyls.

    Science.gov (United States)

    Arai, Kuninori; Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki

    2010-07-01

    Epicotyl cuttings of azuki bean were incubated with [14C]-glucose (Glc) or [3H]-fucose (Fuc), and the metabolism of radiolabeled polymers in the 24% KOH-extractable cell wall fraction was investigated. Applied 14C-Glc and (3)H-Fuc were predominantly incorporated into the glucan backbone and Fuc residue of xyloglucan molecules, respectively. On gel permeation chromatography, 14C-polymers consisted of a main peak (0.7-1.0 MDa) and shoulder peak (30 kDa). The pattern was similar to that of iodine-reactive xyloglucans in the fraction. On the other hand, 3H-polymers consisted of a single peak eluted around 0.7-1.0 MDa. The elution patterns of 14C- and 3H-polymers were constant during the incubation period, although incorporated radioactivity increased with time. In the pulse-chase experiment, the high molecular mass peaks (0.7-1.0 MDa) of both 14C- and 3H-polymers showed an extensive molecular mass downshift, but not the shoulder peak of 14C-polymers. These results indicate that xyloglucans in the fraction consist of two types of molecules; fucosylated high molecular mass polymers and non-fucosylated low molecular mass polymers. Azuki bean epicotyls may synthesize both types of xyloglucans independently, but only fucosylated xyloglucans undergo an active depolymerization in the cell wall.

  4. Heteroexpression and characterization of a monomeric isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680.

    Science.gov (United States)

    Wang, Ao; Cao, Zheng-Yu; Wang, Peng; Liu, Ai-Min; Pan, Wei; Wang, Jie; Zhu, Guo-Ping

    2011-08-01

    A monomeric NADP-dependent isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680 (SaIDH) was heteroexpressed in Escherichia coli, and the His-tagged enzyme was further purified to homogeneity. The molecular weight of SaIDH was about 80 kDa which is typical for monomeric isocitrate dehydrogenases. Structure-based sequence alignment reveals that the deduced amino acid sequence of SaIDH shows high sequence identity with known momomeric isocitrate dehydrogenase, and the coenzyme, substrate and metal ion binding sites are completely conserved. The optimal pH and temperature of SaIDH were found to be pH 9.4 and 45°C, respectively. Heat-inactivation studies showed that heating for 20 min at 50°C caused a 50% loss in enzymatic activity. In addition, SaIDH was absolutely specific for NADP+ as electron acceptor. Apparent Km values were 4.98 μM for NADP+ and 6,620 μM for NAD+, respectively, using Mn2+ as divalent cation. The enzyme performed a 33,000-fold greater specificity (kcat/Km) for NADP+ than NAD+. Moreover, SaIDH activity was entirely dependent on the presence of Mn2+ or Mg2+, but was strongly inhibited by Ca2+ and Zn2+. Taken together, our findings implicate the recombinant SaIDH is a divalent cation-dependent monomeric isocitrate dehydrogenase which presents a remarkably high cofactor preference for NADP+.

  5. Photoionization mass spectrometric studies of selected compounds in a molecular beam

    Energy Technology Data Exchange (ETDEWEB)

    Trott, W.M.

    1979-03-01

    Photoionization efficiency curves have been measured at moderate to high resolution for several species produced in supersonic molecular beams of acetone, acetone-d/sub 6/ and CS/sub 2/. The molecular beam photoionization mass spectrometer which has been assembled for this work is described. The performance of this instrument has been characterized by a number of experiments and calculations.

  6. Cyclodextrin--piroxicam inclusion complexes: analyses by mass spectrometry and molecular modelling

    Science.gov (United States)

    Gallagher, Richard T.; Ball, Christopher P.; Gatehouse, Deborah R.; Gates, Paul J.; Lobell, Mario; Derrick, Peter J.

    1997-11-01

    Mass spectrometry has been used to investigate the natures of non-covalent complexes formed between the anti-inflammatory drug piroxicam and [alpha]-, [beta]- and [gamma]-cyclodextrins. Energies of these complexes have been calculated by means of molecular modelling. There is a correlation between peak intensities in the mass spectra and the calculated energies.

  7. A century of progress in molecular mass spectrometry.

    Science.gov (United States)

    McLafferty, Fred W

    2011-01-01

    The first mass spectrum of a molecule was measured by J.J. Thomson in 1910. Mass spectrometry (MS) soon became crucial to the study of isotopes and atomic weights and to the development of atomic weapons for World War II. Its notable applications to molecules began with the quantitative analysis of light hydrocarbons during World War II. When I joined the Dow Chemical Company in 1950, MS was not favored by organic chemists. This situation improved only with an increased understanding of gaseous ion chemistry, which was obtained through the use of extensive reference data. Gas chromatography-MS was developed in 1956, and tandem MS was first used a decade later. In neutralization-reionization MS, an unusual, unstable species is prepared by ion-beam neutralization and characterized by reionization. Electrospray ionization of a protein mixture produces its corresponding ionized molecules. In top-down proteomics, ions from an individual component can be mass separated and subjected to collision-activated and electron-capture dissociation to provide extensive sequence information.

  8. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  9. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  10. An algorithm for mass matrix calculation of internally constrained molecular geometries.

    Science.gov (United States)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-28

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model.

  11. The Impact of Molecular Gas on Mass Models of Nearby Galaxies

    Science.gov (United States)

    Frank, B. S.; de Blok, W. J. G.; Walter, F.; Leroy, A.; Carignan, C.

    2016-04-01

    We present CO velocity fields and rotation curves for a sample of nearby galaxies, based on data from HERACLES. We combine our data with THINGS, SINGS, and KINGFISH results to provide a comprehensive sample of mass models of disk galaxies inclusive of molecular gas. We compare the kinematics of the molecular (CO from HERACLES) and atomic (H i from THINGS) gas distributions to determine the extent to which CO may be used to probe the dynamics in the inner part of galaxies. In general, we find good agreement between the CO and H i kinematics, with small differences in the inner part of some galaxies. We add the contribution of the molecular gas to the mass models in our galaxies by using two different conversion factors αCO to convert CO luminosity to molecular gas mass surface density—the constant Milky Way value and the radially varying profiles determined in recent work based on THINGS, HERACLES, and KINGFISH data. We study the relative effect that the addition of the molecular gas has on the halo rotation curves for Navarro-Frenk-White and the observationally motivated pseudo-isothermal halos. The contribution of the molecular gas varies for galaxies in our sample—for those galaxies where there is a substantial molecular gas content, using different values of αCO can result in significant differences to the relative contribution of the molecular gas and hence the shape of the dark matter halo rotation curves in the central regions of galaxies.

  12. How acidic are monomeric structural units of heparin?

    Science.gov (United States)

    Remko, Milan; Broer, Ria; Van Duijnen, Piet Th.

    2013-12-01

    Density functional theory methods with the B3LYP functional have been used to letter the acidity of carboxyl, O-sulfo and N-sulfo groups in six basic monomeric structural units of heparin (1-OMe ΔUA-2S, 1-OMe GlcN-S6S, 1,4-DiOMe GlcA, 1,4-DiOMe GlcN-S3S6S, 1,4-DiOMe IdoA-2S, and 1,4-DiOMe GlcN-S6S). The predicted gas-phase acidity of the acidic functional groups in the monomeric structural units of heparin is: O-sulfo > N-sulfo > carboxyl. The computed pKa values provide the same order of acidity as was observed in water solution. This implies that hydration does not change ordering of acidity of major acidic groups of monomeric structural units of heparin.

  13. Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Fujita, Yukiko; Naka, Takashi; Doi, Takeshi; Yano, Ikuya

    2005-05-01

    Direct estimation of the molecular mass of single molecular species of trehalose 6-monomycolate (TMM), a ubiquitous cell-wall component of mycobacteria, was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. When less than 1 microg TMM was analysed by MALDI-TOF mass spectrometry, quasimolecular ions [M+Na]+ of each molecular species were demonstrated and the numbers of carbons and double bonds (or cyclopropane rings) were determined. Since the introduction of oxygen atoms such as carbonyl, methoxy and ester groups yielded the appropriate shift of mass ions, the major subclasses of mycolic acid (alpha, methoxy, keto and wax ester) were identified without resorting to hydrolytic procedures. The results showed a marked difference in the molecular species composition of TMM among mycobacterial species. Unexpectedly, differing from other mycoloyl glycolipids, TMM from Mycobacterium tuberculosis showed a distinctive mass pattern, with abundant odd-carbon-numbered monocyclopropanoic (or monoenoic) alpha-mycolates besides dicyclopropanoic mycolate, ranging from C75 to C85, odd- and even-carbon-numbered methoxymycolates ranging from C83 to C94 and even- and odd-carbon-numbered ketomycolates ranging from C83 to C90. In contrast, TMM from Mycobacterium bovis (wild strain and BCG substrains) possessed even-carbon-numbered dicyclopropanoic alpha-mycolates. BCG Connaught strain lacked methoxymycolates almost completely. These results were confirmed by MALDI-TOF mass analysis of mycolic acid methyl esters liberated by alkaline hydrolysis and methylation of the original TMM. Wax ester-mycoloyl TMM molecular species were demonstrated for the first time as an intact form in the Mycobacterium avium-intracellulare group, M. phlei and M. flavescens. The M. avium-intracellulare group possessed predominantly C85 and C87 wax ester-mycoloyl TMM, while M. phlei and the rapid growers tested contained C80, C81, C82 and C83 wax ester

  14. The effect of molecular mass on the polymorphism and crystalline structure of isotactic polypropylene

    Directory of Open Access Journals (Sweden)

    2010-02-01

    Full Text Available This study is devoted to the investigation of the effect of molecular mass on the α-, β- and γ-crystallization tendency of isotactic polypropylene (iPP. The crystalline structure was studied by wide angle X-ray scattering (WAXS and by polarised light microscopy (PLM. The melting and crystallization characteristics were determined by differential scanning calorimetry (DSC. The results indicate clearly that iPP with low molecular mass crystallizes essentially in α-modification. However, it crystallizes in β-form in the presence of a highly efficient and selective β-nucleating agent. The α- and β-modifications form in wide molecular mass range. The decreasing molecular mass results in increased structural instability in both α- and β-modifications and consequently enhanced inclination to recrystallization during heating. The formation of γ-modification could not be observed, although some literature sources report that γ-form develops in iPP with low molecular mass.

  15. Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry

    Science.gov (United States)

    Leenheer, J.A.; Rostad, C.E.; Gates, Paul M.; Furlong, E.T.; Ferrer, I.

    2001-01-01

    Molecular weight distributions of fulvic acid from the Suwannee River, Georgia, were investigated by electrospray ionization/quadrupole mass spectrometry (ESI/QMS), and fragmentation pathways of specific fulvic acid masses were investigated by electrospray ionization/ion trap multistage tandem mass spectrometry (ESI/MST/MS). ESI/QMS studies of the free acid form of low molecular weight poly(carboxylic acid) standards in 75% methanol/25% water mobile phase found that negative ion detection gave the optimum generation of parent ions that can be used for molecular weight determinations. However, experiments with poly(acrylic acid) mixtures and specific high molecular weight standards found multiply charged negative ions that gave a low bias to molecular mass distributions. The number of negative charges on a molecule is dependent on the distance between charges. ESI/MST/MS of model compounds found characteristic water loss from alcohol dehydration and anhydride formation, as well as CO2 loss from decarboxylation, and CO loss from ester structures. Application of these fragmentation pathways to specific masses of fulvic acid isolated and fragmented by ESI/MST/MS is indicative of specific structures that can serve as a basis for future structural confirmation after these hypothesized structures are synthesized.

  16. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  17. WISDOM Project - II. Molecular gas measurement of the supermassive black hole mass in NGC 4697

    Science.gov (United States)

    Davis, Timothy A.; Bureau, Martin; Onishi, Kyoko; Cappellari, Michele; Iguchi, Satoru; Sarzi, Marc

    2017-07-01

    As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project, we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotating early-type galaxy NGC 4697. This estimate is based on Atacama Large Millimeter/submillimeter Array (ALMA) cycle-3 observations of the 12CO(2-1) emission line with a linear resolution of 29 pc (0.53 arcsec). We find that NGC 4697 hosts a small relaxed central molecular gas disc with a mass of 1.6 × 107 M⊙, co-spatial with the obscuring dust disc visible in optical Hubble Space Telescope imaging. We also resolve thermal 1 mm continuum emission from the dust in this disc. NGC 4697 is found to have a very low molecular gas velocity dispersion, σgas = 1.65^{+0.68}_{-0.65} km s-1. This seems to be partially because the giant molecular cloud mass function is not fully sampled, but other mechanisms such as chemical differentiation in a hard radiation field or morphological quenching also seem to be required. We detect a Keplerian increase of the rotation of the molecular gas in the very centre of NGC 4697, and use forward modelling of the ALMA data cube in a Bayesian framework with the KINematic Molecular Simulation (kinms) code to estimate an SMBH mass of (1.3_{-0.17}^{+0.18}) × 108 M⊙ and an i-band mass-to-light ratio of 2.14_{-0.05}^{+0.04} M⊙/L⊙ (at the 99 per cent confidence level). Our estimate of the SMBH mass is entirely consistent with previous measurements from stellar kinematics. This increases confidence in the growing number of SMBH mass estimates being obtained in the ALMA era.

  18. Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young Cabernet Sauvignon wines.

    Science.gov (United States)

    Han, Fu-Liang; Zhang, Wen-Na; Pan, Qiu-Hong; Zheng, Cheng-Rong; Chen, Hai-Yan; Duan, Chang-Qing

    2008-11-17

    Color is one of the key characteristics used to evaluate the sensory quality of red wine, and anthocyanins are the main contributors to color. Monomeric anthocyanins and CIELAB color values were investigated by HPLC-MS and spectrophotometry during fermentation of Cabernet Sauvignon red wine, and principal component regression (PCR), a statistical tool, was used to establish a linkage between the detected anthocyanins and wine coloring. The results showed that 14 monomeric anthocyanins could be identified in wine samples, and all of these anthocyanins were negatively correlated with the L*, b* and H*ab values, but positively correlated with a* and C*ab values. On an equal concentration basis for each detected anthocyanin, cyanidin-3-O-glucoside (Cy3-glu) had the most influence on CIELAB color value, while malvidin 3-O-glucoside (Mv3-glu) had the least. The color values of various monomeric anthocyanins were influenced by their structures, substituents on the B-ring, acyl groups on the glucoside and the molecular steric structure. This work develops a statistical method for evaluating correlation between wine color and monomeric anthocyanins, and also provides a basis for elucidating the effect of intramolecular copigmentation on wine coloring.

  19. Principal Component Regression Analysis of the Relation Between CIELAB Color and Monomeric Anthocyanins in Young Cabernet Sauvignon Wines

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2008-11-01

    Full Text Available Color is one of the key characteristics used to evaluate the sensory quality of red wine, and anthocyanins are the main contributors to color. Monomeric anthocyanins and CIELAB color values were investigated by HPLC-MS and spectrophotometry during fermentation of Cabernet Sauvignon red wine, and principal component regression (PCR, a statistical tool, was used to establish a linkage between the detected anthocyanins and wine coloring. The results showed that 14 monomeric anthocyanins could be identified in wine samples, and all of these anthocyanins were negatively correlated with the L*, b* and H*ab values, but positively correlated with a* and C*ab values. On an equal concentration basis for each detected anthocyanin, cyanidin-3-O-glucoside (Cy3-glu had the most influence on CIELAB color value, while malvidin 3-O-glucoside (Mv3-glu had the least. The color values of various monomeric anthocyanins were influenced by their structures, substituents on the B-ring, acyl groups on the glucoside and the molecular steric structure. This work develops a statistical method for evaluating correlation between wine color and monomeric anthocyanins, and also provides a basis for elucidating the effect of intramolecular copigmentation on wine coloring.

  20. A new approach to characterize biodegradation of organics by molecular mass distribution in landfill leachate.

    Science.gov (United States)

    Ha, Dong Yun; Cho, Soon Haing; Kim, Young Kwon; Leung, Solomon W

    2008-08-01

    This study provides biodegradability of organics in leachate according to their molecular mass distributions (10 KDa). Organics with molecular mass values lower than 0.5 KDa were the predominant species in the raw leachate filtrate, and the aerated lagoon process was very effective in treating these highly biodegradable organics; the Fenton's oxidation process was very effective in treating not-so-biodegradable organics with molecular mass values higher than 0.5 KDa, but a portion of these organics were converted into organics <0.5 KDa after Fenton's oxidation. An oxygen uptake measurement using a respirometer was more sensitive than a conventional biochemical oxygen demand measurement to evaluate bioactivities, especially when bioactivities were low.

  1. Homotropic cooperativity of monomeric cytochrome P450 3A4

    Energy Technology Data Exchange (ETDEWEB)

    Baas, Bradley J.; Denisov, Ilia G.; Sligar, Stephen G. (UIUC)

    2010-11-16

    Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.

  2. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    Full Text Available BACKGROUND: Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. PRINCIPAL FINDINGS: Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity. CONCLUSION: Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  3. Optical signatures of molecular particles via mass-selected cluster spectroscopy

    Science.gov (United States)

    Duncan, Michael A.

    1990-01-01

    A new molecular beam apparatus was developed to study optical absorption in cold (less than 100 K) atomic clusters and complexes produced by their condensation with simple molecular gases. In this instrument, ionized clusters produced in a laser vaporization nozzle source are mass selected and studied with photodissociation spectroscopy at visible and ultraviolet wavelengths. This new approach can be applied to synthesize and characterize numerous particulates and weakly bound complexes expected in planetary atmospheres and in comets.

  4. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kress, Joel David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Collins, Lee A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  5. Multimodal Molecular Mass Spectrometry Imaging : Development and Applications in Plant Biology and Forensic Toxicology

    OpenAIRE

    Porta, Tiffany

    2013-01-01

    This thesis focuses on the development of new analytical platforms for molecular mass spectrometry imaging and their applications in plant biology and forensic toxicology. So far, in drug metabolism or forensic toxicology, liquid chromatography with mass spectrometric detection is the technique of choice for analyzing drugs and metabolites in complex biological samples. LC-MS remains however challenging, because the development of appropriate sample preparation requires complex and time-consu...

  6. High sensitivity to mass-ratio variation in deep molecular potentials

    CERN Document Server

    Hanneke, D; Lane, D A

    2016-01-01

    Molecular vibrational transitions are prime candidates for model-independent searches for variation of the proton-to-electron mass ratio. Searches for present-day variation achieve highest sensitivity with deep molecular potentials. We identify several high-sensitivity transitions in the deeply bound ${\\rm O}_2^+$ molecular ion. These transitions are electric-dipole forbidden and thus have narrow linewidths. The most sensitive transitions take advantage of an accidental degeneracy between vibrational states in different electronic potentials. We suggest experimentally feasible routes to a measurement with uncertainty exceeding current limits on present-day variation in $m_p/m_e$.

  7. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    Science.gov (United States)

    Tonks, James P.; Galloway, Ewan C.; King, Martin O.; Kerherve, Gwilherm; Watts, John F.

    2016-08-01

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques.

  8. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, James P., E-mail: james.tonks@awe.co.uk [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk; King, Martin O. [AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Kerherve, Gwilherm [VACGEN Ltd, St. Leonards-On-Sea, East Sussex TN38 9NN (United Kingdom); Watts, John F. [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2016-08-15

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques.

  9. Black hole mass measurement using molecular gas kinematics: what ALMA can do

    Science.gov (United States)

    Yoon, Ilsang

    2017-04-01

    We study the limits of the spatial and velocity resolution of radio interferometry to infer the mass of supermassive black holes (SMBHs) in galactic centres using the kinematics of circum-nuclear molecular gas, by considering the shapes of the galaxy surface brightness profile, signal-to-noise ratios (S/Ns) of the position-velocity diagram (PVD) and systematic errors due to the spatial and velocity structure of the molecular gas. We argue that for fixed galaxy stellar mass and SMBH mass, the spatial and velocity scales that need to be resolved increase and decrease, respectively, with decreasing Sérsic index of the galaxy surface brightness profile. We validate our arguments using simulated PVDs for varying beam size and velocity channel width. Furthermore, we consider the systematic effects on the inference of the SMBH mass by simulating PVDs including the spatial and velocity structure of the molecular gas, which demonstrates that their impacts are not significant for a PVD with good S/N unless the spatial and velocity scale associated with the systematic effects are comparable to or larger than the angular resolution and velocity channel width of the PVD from pure circular motion. Also, we caution that a bias in a galaxy surface brightness profile owing to the poor resolution of a galaxy photometric image can largely bias the SMBH mass by an order of magnitude. This study shows the promise and the limits of ALMA observations for measuring SMBH mass using molecular gas kinematics and provides a useful technical justification for an ALMA proposal with the science goal of measuring SMBH mass.

  10. THE IMPACT OF MOLECULAR GAS ON MASS MODELS OF NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Frank, B. S.; Blok, W. J. G. de [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Walter, F. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Leroy, A. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Carignan, C., E-mail: frank@astron.nl [Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa)

    2016-04-15

    We present CO velocity fields and rotation curves for a sample of nearby galaxies, based on data from HERACLES. We combine our data with THINGS, SINGS, and KINGFISH results to provide a comprehensive sample of mass models of disk galaxies inclusive of molecular gas. We compare the kinematics of the molecular (CO from HERACLES) and atomic (H i from THINGS) gas distributions to determine the extent to which CO may be used to probe the dynamics in the inner part of galaxies. In general, we find good agreement between the CO and H i kinematics, with small differences in the inner part of some galaxies. We add the contribution of the molecular gas to the mass models in our galaxies by using two different conversion factors α{sub CO} to convert CO luminosity to molecular gas mass surface density—the constant Milky Way value and the radially varying profiles determined in recent work based on THINGS, HERACLES, and KINGFISH data. We study the relative effect that the addition of the molecular gas has on the halo rotation curves for Navarro–Frenk–White and the observationally motivated pseudo-isothermal halos. The contribution of the molecular gas varies for galaxies in our sample—for those galaxies where there is a substantial molecular gas content, using different values of α{sub CO} can result in significant differences to the relative contribution of the molecular gas and hence the shape of the dark matter halo rotation curves in the central regions of galaxies.

  11. Evolutionary Description of Giant Molecular Cloud Mass Functions on Galactic Disks

    Science.gov (United States)

    Kobayashi, Masato I. N.; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-02-01

    Recent radio observations show that giant molecular cloud (GMC) mass functions noticeably vary across galactic disks. High-resolution magnetohydrodynamics simulations show that multiple episodes of compression are required for creating a molecular cloud in the magnetized interstellar medium. In this article, we formulate the evolution equation for the GMC mass function to reproduce the observed profiles, for which multiple compressions are driven by a network of expanding shells due to H ii regions and supernova remnants. We introduce the cloud–cloud collision (CCC) terms in the evolution equation in contrast to previous work (Inutsuka et al.). The computed time evolution suggests that the GMC mass function slope is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC effect is limited only in the massive end of the mass function. In addition, we identify a gas resurrection channel that allows the gas dispersed by massive stars to regenerate GMC populations or to accrete onto pre-existing GMCs. Our results show that almost all of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60% contributes in inter-arm regions. Our results also predict that GMC mass functions have a single power-law exponent in the mass range environments across galactic disks.

  12. Determination of the Subunit Molecular Mass and Composition of Alcohol Dehydrogenase by SDS-PAGE

    Science.gov (United States)

    Nash, Barbara T.

    2007-01-01

    SDS-PAGE is a simple, rapid technique that has many uses in biochemistry and is readily adaptable to the undergraduate laboratory. It is, however, a technique prone to several types of procedural pitfalls. This article describes the use of SDS-PAGE to determine the subunit molecular mass and composition of yeast alcohol dehydrogenase employing…

  13. Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Bonatto, Cínthia C; Silva, Luciano P

    2015-06-01

    Chocolate authentication is a key aspect of quality control and safety. Matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of cells, tissues, and even food. The present study evaluated if MALDI-TOF MS analysis on low molecular mass profile may classify chocolate samples according to the cocoa content. The molecular profiles of seven processed commercial chocolate samples were compared by using MALDI-TOF MS. Some ions detected exclusively in chocolate samples corresponded to the metabolites of cocoa or other constituents. This method showed the presence of three distinct clusters according to confectionery and sensorial features of the chocolates and was used to establish a mass spectra database. Also, novel chocolate samples were evaluated in order to check the validity of the method and to challenge the database created with the mass spectra of the primary samples. Thus, the method was shown to be reliable for clustering unknown samples into the main chocolate categories. Simple sample preparation of the MALDI-TOF MS approach described will allow the surveillance and monitoring of constituents during the molecular profiling of chocolates. © 2014 Society of Chemical Industry.

  14. ACYLTRANSFERASE ACTIVITIES OF THE HIGH-MOLECULAR-MASS ESSENTIAL PENICILLIN-BINDING PROTEINS

    NARCIS (Netherlands)

    ADAM, M; DAMBLON, C; JAMIN, M; ZORZI, W; DUSART, [No Value; GALLENI, M; ELKHARROUBI, A; PIRAS, G; SPRATT, BG; KECK, W; COYETTE, J; GHUYSEN, JM; NGUYENDISTECHE, M; FRERE, JM

    1991-01-01

    The high-molecular-mass penicillin-binding proteins (HMM-PBPs), present in the cytoplasmic membranes of all eubacteria, are involved in important physiological events such as cell elongation, septation or shape determination. Up to now it has, however, been very difficult or impossible to study the

  15. Biomolecular Imaging Mass Spectrometry : mapping molecular distributions in cells and tissue sections

    NARCIS (Netherlands)

    Altelaar, A.F.M.

    2007-01-01

    Imaging mass spectrometry (IMS) allows the investigation of both identity and localization of the molecular content directly from tissue sections, single cells and many other surfaces. To further develop the application of IMS, different approaches to IMS will be described in this thesis and the spe

  16. Ratios of the molecular species of triacylglycerols in lesquerella (Physaria fendleri) oil estimated by mass spectrometry

    Science.gov (United States)

    The ratios of regioisomers of 72 molecular species of triacylglycerols (TAG) in lesquerella oil were estimated using the electrospray ionization mass spectrometry of the lithium adducts of TAG in the HPLC fractions of lesquerella oil. The ratios of ion signal intensities (or relative abundances) of ...

  17. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

    DEFF Research Database (Denmark)

    Hanrieder, Jørg; Wicher, Grzegorz; Bergquist, Jonas

    2011-01-01

    and straightforward methodology for direct characterization of rodent CNS glial cells using MALDI-MS-based intact cell mass spectrometry (ICMS). This molecular phenotyping approach enables monitoring of cell growth stages, (stem) cell differentiation, as well as probing cellular responses towards different...

  18. Conformational equilibria in monomeric alpha-synuclein at the single-molecule level.

    Directory of Open Access Journals (Sweden)

    Massimo Sandal

    2008-01-01

    Full Text Available Human alpha-Synuclein (alphaSyn is a natively unfolded protein whose aggregation into amyloid fibrils is involved in the pathology of Parkinson disease. A full comprehension of the structure and dynamics of early intermediates leading to the aggregated states is an unsolved problem of essential importance to researchers attempting to decipher the molecular mechanisms of alphaSyn aggregation and formation of fibrils. Traditional bulk techniques used so far to solve this problem point to a direct correlation between alphaSyn's unique conformational properties and its propensity to aggregate, but these techniques can only provide ensemble-averaged information for monomers and oligomers alike. They therefore cannot characterize the full complexity of the conformational equilibria that trigger the aggregation process. We applied atomic force microscopy-based single-molecule mechanical unfolding methodology to study the conformational equilibrium of human wild-type and mutant alphaSyn. The conformational heterogeneity of monomeric alphaSyn was characterized at the single-molecule level. Three main classes of conformations, including disordered and "beta-like" structures, were directly observed and quantified without any interference from oligomeric soluble forms. The relative abundance of the "beta-like" structures significantly increased in different conditions promoting the aggregation of alphaSyn: the presence of Cu2+, the pathogenic A30P mutation, and high ionic strength. This methodology can explore the full conformational space of a protein at the single-molecule level, detecting even poorly populated conformers and measuring their distribution in a variety of biologically important conditions. To the best of our knowledge, we present for the first time evidence of a conformational equilibrium that controls the population of a specific class of monomeric alphaSyn conformers, positively correlated with conditions known to promote the formation of

  19. Large Molecular Gas Reservoirs in Ancestors of Milky Way-Mass Galaxies 9 Billion Years Ago

    CERN Document Server

    Papovich, Casey; Glazebrook, Karl; Quadri, Ryan; Bekiaris, Georgios; Dickinson, Mark; Finkelstein, Steven; Fisher, David; Inami, Hanae; Livermore, Rachael; Spitler, Lee; Straatman, Caroline; Tran, Kim-Vy

    2016-01-01

    The gas accretion and star-formation histories of galaxies like the Milky Way remain an outstanding problem in astrophysics. Observations show that 8 billion years ago, the progenitors to Milky Way-mass galaxies were forming stars 30 times faster than today and predicted to be rich in molecular gas, in contrast with low present-day gas fractions ($<$10%). Here we show detections of molecular gas from the CO(J=3-2) emission (rest-frame 345.8 GHz) in galaxies at redshifts z=1.2-1.3, selected to have the stellar mass and star-formation rate of the progenitors of today's Milky Way-mass galaxies. The CO emission reveals large molecular gas masses, comparable to or exceeding the galaxy stellar masses, and implying most of the baryons are in cold gas, not stars. The galaxies' total luminosities from star formation and CO luminosities yield long gas-consumption timescales. Compared to local spiral galaxies, the star-formation efficiency, estimated from the ratio of total IR luminosity to CO emission,} has remained...

  20. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

    DEFF Research Database (Denmark)

    Hanrieder, Jørg; Wicher, Grzegorz; Bergquist, Jonas

    2011-01-01

    profiling of mammalian neural cells using direct analysis by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS analysis is rapid, sensitive, robust, and specific for large biomolecules in complex matrices. Here, we describe a newly developed...... and straightforward methodology for direct characterization of rodent CNS glial cells using MALDI-MS-based intact cell mass spectrometry (ICMS). This molecular phenotyping approach enables monitoring of cell growth stages, (stem) cell differentiation, as well as probing cellular responses towards different....... Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular...

  1. Are molecular outflows around high-mass stars driven by ionization feedback?

    CERN Document Server

    Peters, Thomas; Mac Low, Mordecai-Mark; Klessen, Ralf S; Banerjee, Robi

    2012-01-01

    The formation of massive stars exceeding 10 solar masses usually results in large-scale molecular outflows. Numerical simulations, including ionization, of the formation of such stars show evidence for ionization-driven molecular outflows. We here examine whether the outflows seen in these models reproduce the observations. We compute synthetic ALMA and CARMA maps of CO emission lines of the outflows, and compare their signatures to existing single-dish and interferometric data. We find that the ionization-driven models can only reproduce weak outflows around high-mass star-forming regions. We argue that expanding H II regions probably do not represent the dominant mechanism for driving observed outflows. We suggest instead that observed outflows are driven by the collective action of the outflows from the many lower-mass stars that inevitably form around young massive stars in a cluster.

  2. High molecular mass proteomics analyses of left ventricle from rats subjected to differential swimming training

    Directory of Open Access Journals (Sweden)

    Rocha Luiz A O

    2012-09-01

    Full Text Available Abstract Background Regular exercises are commonly described as an important factor in health improvement, being directly related to contractile force development in cardiac cells. In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG and three training groups (TG’s, with low, moderate and high intensity of exercises. In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG and three training groups (TG’s, with low, moderate and high intensity of exercises. Results Findings here reported demonstrated clear morphologic alterations, significant cellular injury and increased energy supplies at high exercise intensities. α-MyHC, as well proteins associated with mitochondrial oxidative metabolism were shown to be improved. α-MyHC expression increase 1.2 fold in high intensity training group when compared with control group. α-MyHC was also evaluated by real-time PCR showing a clear expression correlation with protein synthesis data increase in 8.48 fold in high intensity training group. Other myofibrillar protein, troponin , appear only in high intensity group, corroborating the cellular injury data. High molecular masses proteins such as MRS2 and NADH dehydrogenase, involved in metabolic pathways also demonstrate increase expression, respectily 1.5 and 1.3 fold, in response to high intensity exercise. Conclusions High intensity exercise demonstrated an increase expression in some high molecular masses myofibrilar proteins, α-MyHC and troponin. Furthermore this intensity also lead a significant increase of other high molecular masses proteins such as MRS2 and NADH dehydrogenase in comparison to low and moderate intensities. However, high intensity exercise also

  3. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    Science.gov (United States)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  4. A black-hole mass measurement from molecular gas kinematics in NGC4526.

    Science.gov (United States)

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2013-02-21

    The masses of the supermassive black holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionized-gas kinematics (in some spiral and early-type galaxies) and in rare objects that have central maser emission. Here we report that by modelling the effect of a black hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black-hole masses. We study the dynamics of the gas in the early-type galaxy NGC 4526, and obtain a best fit that requires the presence of a central dark object of 4.5(+4.2)(-3.1) × 10(8) solar masses (3σ confidence limit). With the next-generation millimetre-wavelength interferometers these observations could be reproduced in galaxies out to 75 megaparsecs in less than 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local Universe, many more than are accessible with current techniques.

  5. WISDOM project - I. Black hole mass measurement using molecular gas kinematics in NGC 3665

    Science.gov (United States)

    Onishi, Kyoko; Iguchi, Satoru; Davis, Timothy A.; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2017-07-01

    As a part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project, we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotator early-type galaxy NGC 3665. We obtained the Combined Array for Research in Millimeter Astronomy (CARMA) B and C array observations of the 12CO(J = 2 - 1) emission line with a combined angular resolution of 0.59 arcsec. We analysed and modelled the three-dimensional molecular gas kinematics, obtaining a best-fitting SMBH mass M_BH=5.75^{+1.49}_{-1.18} × 108 M⊙, a mass-to-light ratio at H-band (M/L)H = 1.45 ± 0.04 (M/L)⊙,H and other parameters describing the geometry of the molecular gas disc (statistical errors, all at 3σ confidence). We estimate the systematic uncertainties on the stellar M/L to be ≈0.2 (M/L)⊙,H, and on the SMBH mass to be ≈0.4 × 108 M⊙. The measured SMBH mass is consistent with that estimated from the latest correlations with galaxy properties. Following our older works, we also analysed and modelled the kinematics using only the major-axis position-velocity diagram, and conclude that the two methods are consistent.

  6. Synthesis and structure of monomeric, trimeric, and mixed phenylcyanamides.

    Science.gov (United States)

    Brand, Harald; Mayer, Peter; Schulz, Axel; Soller, Thomas; Villinger, Alexander

    2008-06-02

    In a new synthetic approach phenylcyanamide (Hpca) was synthesized by methylation of phenylthiourea followed by a basic work-up. All products along the synthetic route have been fully characterized by means of NMR, IR, and X-ray studies. The first structural report of neutral mixed crystals of phenylcyanamide containing monomeric and trimeric Hpca is presented. Examination of these intriguing mixed crystals revealed the formation of distinct layers of monomeric and trimeric Hpca. These layers are interconnected by weak hydrogen bonds. The trimer represents triphenylisomelamine, which readily isomerizes to the triphenylmelamine in the melt, in accord with computations at the B3LYP level, indicating an exothermic process (DeltaH = -49.4 kcal mol(-1)). Pure trimeric Hpca (triphenylisomelamine) was obtained either by recrystallization of the mixed crystals from boiling water or by trimerization of monomeric Hpca in isopropanol for 12 h under reflux conditions. For comparison tritylcyanamide (Htca) and potassium phenylcyanamide as an [18]crown-6 complex [K([18]crown-6)pca] have been synthesized, and the solid-state structures were determined using X-ray diffraction techniques. The thermal behavior was studied by thermo-analytical experiments. In agreement with the experimental results, computations predict an exothermic cyclotrimerization process for Hpca (DeltaH = -41.3 kcal mol(-1)).

  7. A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Fialkov, Alexander B; Moragn, Mati; Amirav, Aviv

    2011-12-30

    A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of

  8. The Impact of Molecular Gas on Mass Models of Nearby Galaxies

    CERN Document Server

    Frank, Bradley S; Walter, F; Leroy, A; Carignan, C

    2015-01-01

    We present CO velocity fields and rotation curves for a sample of nearby galaxies, based on data from the HERACLES survey. We combine our data with literature THINGS, SINGS and KINGFISH results to provide a comprehensive sample of mass models of disk galaxies inclusive of molecular gas. We compare the kinematics of the molecular (CO from HERACLES) and atomic (${\\rm H{\\scriptstyle I}}$ from THINGS) gas distributions to determine the extent to which CO may be used to probe the dynamics in the inner part of galaxies. In general, we find good agreement between the CO and ${\\rm H{\\scriptstyle I}}$ kinematics with small differences in the inner part of some galaxies. We add the contribution of the molecular gas to the mass models in our galaxies by using two different conversion factors $\\mathrm{\\alpha_{CO}}$ to convert CO luminosity to molecular gas mass surface density - the constant Milky Way value and the radially varying profiles determined in recent work based on THINGS, HERACLES and KINGFISH data. We study t...

  9. Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice

    DEFF Research Database (Denmark)

    Jall, Sigrid; Sachs, Stephan; Clemmensen, Christoffer

    2017-01-01

    . RESULTS: Our results show that GLP-1/GIP/glucagon triple agonism inhibits food intake and decreases body weight and body fat mass with comparable potency in male and female mice that have been matched for body fat mass. Treatment improved dyslipidemia in both sexes and reversed diet......OBJECTIVE: Obesity is a major health threat that affects men and women equally. Despite this fact, weight-loss potential of pharmacotherapies is typically first evaluated in male mouse models of diet-induced obesity (DIO). To address this disparity we herein determined whether a monomeric peptide...... mice and a cohort of fatmass-matched C57BL/6J male mice were treated for 27 days via subcutaneous injections with either the GLP-1/GIP/glucagon triagonist or PBS. A second cohort of C57BL/6J male mice was included to match the females in the duration of the high-fat, high-sugar diet (HFD) exposure...

  10. Structural features of lipoarabinomannan from Mycobacterium bovis BCG. Determination of molecular mass by laser desorption mass spectrometry.

    Science.gov (United States)

    Venisse, A; Berjeaud, J M; Chaurand, P; Gilleron, M; Puzo, G

    1993-06-15

    It was recently shown that mycobacterial lipoarabinomannan (LAM) can be classified into two types (Chatterjee, D., Lowell, K., Rivoire B., McNeil M. R., and Brennan, P. J. (1992) J. Biol. Chem. 267, 6234-6239) according to the presence or absence of mannosyl residues (Manp) located at the nonreducing end of the oligoarabinosyl side chains. These two types of LAM were found in a pathogenic Mycobacterium tuberculosis strain and in an avirulent M. tuberculosis strain, respectively, suggesting that LAM with Manp characterizes virulent and "disease-inducing strains." We now report the structure of the LAM from Mycobacterium bovis Bacille Calmette-Guérin (BCG) strain Pasteur, largely used throughout the world as vaccine against tuberculosis. Using an up-to-date analytical approach, we found that the LAM of M. bovis BCG belongs to the class of LAMs capped with Manp. By means of two-dimensional homonuclear and heteronuclear scalar coupling NMR analysis and methylation data, the sugar spin system assignments were partially established, revealing that the LAM contained two types of terminal Manp and 2-O-linked Manp. From the following four-step process: (i) partial hydrolysis of deacylated LAM (dLAM), (ii) oligosaccharide derivatization with aminobenzoic ethyl ester, (iii) HPLC purification, (iv) FAB/MS-MS analysis; it was shown that the dimannosyl unit alpha-D-Manp-(1-->2)-alpha-D-Manp is the major residue capping the termini of the arabinan of the LAM. In this report, LAM molecular mass determination was established using matrix-assisted UV-laser desorption/ionization mass spectrometry which reveals that the LAM molecular mass is around 17.4 kDa. The similarity of the LAM structures between M. bovis BCG and M. tuberculosis H37Rv is discussed in regard to their function in the immunopathology of mycobacterial infection.

  11. Spatially resolved atomic and molecular emission from the very low-mass star IRS54

    CERN Document Server

    Lopez, R Garcia; Weigelt, G; Nisini, B; Antoniucci, S

    2013-01-01

    Molecular outflows from very low-mass stars (VLMSs) and brown dwarfs (BDs) have been studied very little, and only a few objects have been directly imaged. Using VLT SINFONI K-band observations, we spatially resolved, for the first time, the H2 emission around IRS54, a ~0.1-0.2 Msun Class I source. The molecular emission shows a complex structure delineating a large outflow cavity and an asymmetric molecular jet. In addition, new [FeII] VLT ISAAC observations at 1.644um allowed us to discover the atomic jet counterpart which extends down to the central source. The outflow structure is similar to those found in low-mass Class I young stellar objects (YSOs) and Classical TTauri stars (CTTSs). However, its Lacc/Lbol ratio is very high (~80%), and the derived mass accretion rate is about one order of magnitude higher than in objects with similar mass, pointing to the young nature of the investigated source.

  12. Millimeter dust emission compared with other mass estimates in N11 molecular clouds in the LMC

    CERN Document Server

    Herrera, Cinthya N; Bolatto, Alberto D; Boulanger, Francois; Israel, Frank P; Rantakyro, Fredrik T

    2013-01-01

    CO and dust emission at millimeter wavelengths are independent tracers of cold interstellar matter, which have seldom been compared on the scale of GMCs in other galaxies. In this study, and for the first time in the Large Magellanic Cloud, we compute the molecular cloud masses from the mm emission of the dust and compare them with the masses derived from their CO luminosity and virial theorem. We present CO (J=1-0,2-1) and 1.2 mm continuum observations of the N11 star forming region in the LMC obtained with the SEST telescope and the SIMBA bolometer, respectively. We use the CO data to identify individual molecular clouds and measure their physical properties. The correlations between the properties of the N11 clouds are in agreement with those found in earlier studies in the LMC that sample a larger set of clouds and a larger range of cloud masses. For the N11 molecular clouds, we compare the masses estimated from the CO luminosity (Xco\\Lco), the virial theorem (Mvir) and the millimeter dust luminosity (L_d...

  13. Molecular Mass Characterization of Glycosaminoglycans with Different Degrees of Sulfation in Bioengineered Heparin Process by Size Exclusion Chromatography

    OpenAIRE

    Wang, Zhenyu; Zhang, Fuming; Dordick, Jonathan S.; Robert J Linhardt

    2012-01-01

    Different degrees of glycosaminoglycan sulfation result in their different charge densities. The charge density differences impact their migration behavior in polyacrylamide gel electrophoresis and size exclusion chromatography, two of the most common methods for determining relative molecular masses of polysaccharides. In this study, we investigated the feasibility of using commercially available heparin oligosaccharides as calibrants for measuring the relative molecular masses of intermedia...

  14. Detailed molecular characterization of castor oil ethoxylates by liquid chromatography multistage mass spectrometry.

    Science.gov (United States)

    Nasioudis, Andreas; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F

    2011-10-07

    The molecular characterization of castor oil ethoxylates (CASEOs) was studied by reverse-phase liquid chromatography (RPLC) mass spectrometry (MS) and multistage mass spectrometry (MS(n)). The developed RPLC method allowed the separation of the various CASEO components, and especially, the baseline separation of multiple nominal isobars (same nominal mass) and isomers (same exact mass). MS and MS(n) were used for the determination and structure elucidation of various structures and for the discrimination of the isobars and isomers. Different ionization techniques and adduct ions were also tested for optimization of the MS detection and the MS(n) fragmentation. A unique fragmentation pathway of ricinoleic acid is proposed, which can be used as a marker of the polymerization process and the topology of ethoxylation in the CASEO. In addition, characteristic neutral losses of ricinoleic acid reveal its (terminal or internal) position in the molecule.

  15. Imaging mass spectrometry: enabling a new age of discovery in biology and medicine through molecular microscopy.

    Science.gov (United States)

    Caprioli, Richard M

    2015-06-01

    Imaging mass spectrometry (IMS) has become a valuable tool for the production of molecular maps in samples ranging from solid inorganic materials to biologicals such as cells and tissues. The unique features of IMS are its ability to map a wide variety of different types of molecules, its superb molecular specificity, and its potential for discovery since no target-specific reagents are needed. IMS has made significant contributions in biology and medicine and promises to be a next generation tool in anatomic pathology.

  16. Asymptotic Giant Branch stars at low metallicity: the challenging interplay between mass loss and molecular opacities

    CERN Document Server

    Ventura, Paolo

    2010-01-01

    We investigate the main physical properties of low-metallicity Asymptotic Giant Branch stars, with the aim of quantifying the uncertainties that presently affect the predicted chemical yields of these stars, associated to mass loss and description of molecular opacities. We find that above a threshold mass, M ~ 3.5Msun for Z=0.001, the results are little dependent on the opacity treatment, as long as hot-bottom burning prevents the surface C/O ratio from exceeding unity; the yields of these massive AGB stars are expected to be mostly determined by the efficiency of convection, with a relatively mild dependence on the mass-loss description. A much higher degree of uncertainty is associated to the yields of less massive models, which critically depend on the adopted molecular opacities. An interval of masses exists, say 2.0-3.0Msun, (the exact range depends on mass loss), in which HBB may be even extinguished following the cooling produced by the opacity of C-bearing molecules. The yields of these stars are the...

  17. Alterations in molecular muscle mass regulators after 8 days immobilizing Special Forces mission

    DEFF Research Database (Denmark)

    Jespersen, J G; Mikkelsen, U R; Nedergaard, A

    2015-01-01

    In military operations, declined physical capacity can endanger the life of soldiers. During special support and reconnaissance (SSR) missions, Special Forces soldiers sustain 1-2 weeks full-body horizontal immobilization, which impairs muscle strength and performance. Adequate muscle mass...... and strength are necessary in combat or evacuation situations, which prompt for improved understanding of muscle mass modulation during SSR missions. To explore the molecular regulation of myofiber size during a simulated SSR operation, nine male Special Forces soldiers were biopsied in m. vastus lateralis pre...

  18. Impact of Winds from Intermediate-Mass Stars on Molecular Cloud Structure and Turbulence

    CERN Document Server

    Offner, S S R

    2015-01-01

    Observations of nearby molecular clouds detect "shells", which are likely caused by winds from young main sequence stars. However, the progenitors of these observed features are not well characterized and the mass-loss rates inferred from the gas kinematics are several orders of magnitude greater than those predicted by atomic line-driven stellar wind models. We use magnetohydrodynamic simulations to model winds launching within turbulent molecular clouds and explore the impact of wind properties on cloud morphology and turbulence. We find that winds do not produce clear features in turbulent statistics such as the Fourier spectra of density and momentum but do impact the Fourier velocity spectrum. The density and velocity distribution functions, especially as probed by CO spectral lines, strongly indicate the presence and influence of winds. We show that stellar mass-loss rates for individual stars must be $\\dot m_w \\gtrsim 10^{-7}$ Msun yr$^{-1}$, similar to those estimated from observations, to reproduce s...

  19. Formation of truncated proteins and high-molecular-mass aggregates upon soft illumination of photosynthetic proteins

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Campostrini, Natascia; Antonioli, Paolo

    2005-01-01

    Different spot profiles were observed in 2D gel electrophoresis of thylakoid membranes performed either under complete darkness or by leaving the sample for a short time to low visible light. In the latter case, a large number of new spots with lower molecular masses, ranging between 15,000 and 25......,000 Da, were observed, and high-molecular-mass aggregates, seen as a smearing in the upper part of the gel, appeared in the region around 250 kDa. Identification of protein(s) contained in these new spots by MS/MS revealed that most of them are simply truncated proteins deriving from native ones......, fragments, or aggregates. This resulted from the formation of extremely reactive oxygen species (ROS) that can derive by the exposure of chlorophyll binding proteins of photosynthetic apparatus to low-intensity light during laboratory manipulation of sample for electrophoresis runs....

  20. Therapeutic effect of DNA preparations varying in molecular mass on irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Mushkacheva, G.S.; Turdakova, V.A.; Rusina, T.N.; Luzanova, O.V.; Rogacheva, S.A.

    1979-12-01

    Studies were made of the therapeutic effect of rat thymus and spleen DNA as a function of its polymerization in experiments on Wistar rats exposed to radiation in doses of 750, 820, 840 and 875 R. Base preparations with a mean molecular mass of 34.10/sup 6/ dalton, mechanically degraded to 14.5.10/sup 6/, 9.2.10/sup 6/, 5.8.10/sup 6/, dalton and, by means of ultrasound, to 0.9.10/sup 6/ dalton were used. Preparations with average polymerism, with molecular mass of 5.5.10/sup 6/ to 13.10/sup 6/ dalton, had a marked therapeutic effect, increasing survival of irradiated animals by 15 to 25%, as compared to the irradiated control.

  1. Mesozoic mass extinctions and angiosperm radiation: does the molecular clock tell something new?

    Science.gov (United States)

    Ruban, Dmitry A.

    2012-03-01

    Angiosperms evolved rapidly in the late Mesozoic. Data from the genetic-based approach called ‘molecular clock’ permit an evaluation of the radiation of flowering plants through geological time and of the possible influences of Mesozoic mass extinctions. A total of 261 divergence ages of angiosperm families are considered. The radiation of flowering plants peaked in the Albian, early Campanian, and Maastrichtian. From the three late Mesozoic mass extinctions (Jurassic/Cretaceous, Cenomanian/Turonian, and Cretaceous/Palaeogene), only the Cretaceous/Palaeogene event coincided with a significant, abrupt, and long-term decline in angiosperm radiation. If their link will be further proven, this means that global-scale environmental perturbation precluded from many innovations in the development of plants. This decline was, however, not unprecedented in the history of the angiosperms. The implication of data from the molecular clock for evolutionary reconstructions is limited, primarily because this approach deals with only extant lineages.

  2. Pathology interface for the molecular analysis of tissue by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jeremy L Norris

    2016-01-01

    Full Text Available Background: Imaging mass spectrometry (IMS generates molecular images directly from tissue sections to provide better diagnostic insights and expand the capabilities of clinical anatomic pathology. Although IMS technology has matured over recent years, the link between microscopy imaging currently used by pathologists and MS-based molecular imaging has not been established. Methods: We adapted the Vanderbilt University Tissue Core workflow for IMS into a web-based system that facilitates remote collaboration. The platform was designed to perform within acceptable web response times for viewing, annotating, and processing high resolution microscopy images. Results: We describe a microscopy-driven approach to tissue analysis by IMS. Conclusion: The Pathology Interface for Mass Spectrometry is designed to provide clinical access to IMS technology and deliver enhanced diagnostic value.

  3. Variations in the molecular masses of the capsular exopolysaccharides amylovoran, pyrifolan and stewartan.

    Science.gov (United States)

    Schollmeyer, Martin; Langlotz, Christine; Huber, Anton; Coplin, David L; Geider, Klaus

    2012-04-01

    Erwinia amylovora, causing fire blight of apple, pear and some ornamentals, Erwinia pyrifoliae, causing Asian pear blight, and Pantoea stewartii, causing Stewart's wilt of sweet maize, synthesize capsular extracellular polysaccharides (EPSs) with a high molecular mass. The EPSs are virulence factors and form viscous aggregates, which participate in clogging vessels of infected plants and causing wilting. The sizes of EPSs produced under different environmental growth conditions were determined by analysis with large pore HPLC columns. Their molecular mass of ca. 5 MDa, when isolated from agar plates, decreases to ca. 1 MDa for E. amylovora amylovoran from freeze-dried supernatants from liquid cultures and to 2 MDa for freeze-dried preparations of P. stewartii stewartan. Size changes were also found following growth in various other media and for different strains. Stewartan, amylovoran and E. pyrifoliae pyrifolan were also shown to be completely degraded by a bacteriophage EPS depolymerase.

  4. ARE MOLECULAR OUTFLOWS AROUND HIGH-MASS STARS DRIVEN BY IONIZATION FEEDBACK?

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; Klessen, Ralf S. [Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Zentrum fuer Astronomie, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Klaassen, Pamela D. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024-5192 (United States); Banerjee, Robi, E-mail: tpeters@physik.uzh.ch [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2012-11-20

    The formation of massive stars exceeding 10 M {sub Sun} usually results in large-scale molecular outflows. Numerical simulations, including ionization, of the formation of such stars show evidence for ionization-driven molecular outflows. Here we examine whether the outflows seen in these models reproduce the observations. We compute synthetic ALMA and CARMA maps of CO emission lines of the outflows, and compare their signatures to existing single-dish and interferometric data. We find that the ionization-driven models can only reproduce weak outflows around high-mass star-forming regions. We argue that expanding H II regions probably do not represent the dominant mechanism for driving observed outflows. We suggest instead that observed outflows are driven by the collective action of the outflows from the many lower-mass stars that inevitably form around young massive stars in a cluster.

  5. MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery.

    Science.gov (United States)

    Gessel, Megan M; Norris, Jeremy L; Caprioli, Richard M

    2014-07-31

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) combines the sensitivity and selectivity of mass spectrometry with spatial analysis to provide a new dimension for histological analyses to provide unbiased visualization of the arrangement of biomolecules in tissue. As such, MALDI IMS has the capability to become a powerful new molecular technology for the biological and clinical sciences. In this review, we briefly describe several applications of MALDI IMS covering a range of molecular weights, from drugs to proteins. Current limitations and challenges are discussed along with recent developments to address these issues. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

  6. [Mass spectrometry of triterpene glycosides molecular complexation with purine bases of nucleic acids].

    Science.gov (United States)

    Lekar', A V; Vetrova, E V; Borisenko, N I; Iakovishin, L A; Grishkovets, V I

    2011-01-01

    The molecular complexation of adenine and guanine with hederagenin 3-O-alpha-L-rhamnopyranosyl-(1-->2)-O-alpha-L-arabinopyranoside (alpha-hederin) and its 28-O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (hederasaponin C) was investigated for the first time using the method of electrospray ionization mass spectrometry. Guanine forms complexes more diverse in composition than adenine.

  7. Development of Laser Desorption Imaging Mass Spectrometry Methods to Investigate the Molecular Composition of Latent Fingermarks

    Science.gov (United States)

    Lauzon, Nidia; Dufresne, Martin; Chauhan, Vinita; Chaurand, Pierre

    2015-06-01

    For a century, fingermark analysis has been one of the most important and common methods in forensic investigations. Modern chemical analysis technologies have added the potential to determine the molecular composition of fingermarks and possibly identify chemicals a suspect may have come into contact with. Improvements in analytical detection of the molecular composition of fingermarks is therefore of great importance. In this regard, matrix-assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) imaging mass spectrometry (IMS) have proven to be useful technologies for fingermark analysis. In these analyses, the choice of ionizing agent and its mode of deposition are critical steps for the identification of molecular markers. Here we propose two novel and complementary IMS approaches for endogenous and exogenous substance detection in fingermarks: sublimation of 2-mercaptobenzothiazol (2-MBT) matrix and silver sputtering.

  8. Mass Spectrometry Based Molecular 3D-Cartography of Plant Metabolites.

    Science.gov (United States)

    Floros, Dimitrios J; Petras, Daniel; Kapono, Clifford A; Melnik, Alexey V; Ling, Tie-Jun; Knight, Rob; Dorrestein, Pieter C

    2017-01-01

    Plants play an essential part in global carbon fixing through photosynthesis and are the primary food and energy source for humans. Understanding them thoroughly is therefore of highest interest for humanity. Advances in DNA and RNA sequencing and in protein and metabolite analysis allow the systematic description of plant composition at the molecular level. With imaging mass spectrometry, we can now add a spatial level, typically in the micrometer-to-centimeter range, to their compositions, essential for a detailed molecular understanding. Here we present an LC-MS based approach for 3D plant imaging, which is scalable and allows the analysis of entire plants. We applied this approach in a case study to pepper and tomato plants. Together with MS/MS spectra library matching and spectral networking, this non-targeted workflow provides the highest sensitivity and selectivity for the molecular annotations and imaging of plants, laying the foundation for studies of plant metabolism and plant-environment interactions.

  9. Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development.

    Science.gov (United States)

    Tokumoto, Hayato; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Hoson, Takayuki

    2002-04-01

    Cotton (Gossypium herbaceum L.) fiber development consists of a fiber elongation stage (up to 20 d post-anthesis) and a subsequent cell wall thickening stage. Cell wall analysis revealed that the extractable matrix (pectic and hemicellulosic) polysaccharides accounted for 30-50% of total sugar content in the fiber elongation stage but less than 3% in the cell wall thickening stage. By contrast, cellulose increased dramatically after the fiber elongation ceased. The amounts of extractable xyloglucans and arabinose- and galactose-containing polymers per seed increased in the early fiber elongation stage and decreased thereafter. The amounts of extractable acidic polymers and non-cellulosic beta-glucans (mainly composed of beta-1,3-glucans) increased in parallel with fiber elongation and then decreased. The molecular masses of extractable non-cellulosic beta-glucans, and arabinose- and galactose-containing polymers decreased during both fiber elongation and cell wall thickening stages. The molecular mass of extractable xyloglucans also decreased during the fiber elongation stage, but this decrease ceased during the cell wall thickening stage. Conversely, the molecular size of acidic polymers in the extractable pectic fraction increased during both stages. Thus, not only the amounts but also the molecular size of the extractable matrix polysaccharides showed substantial changes during cotton fiber development.

  10. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    Science.gov (United States)

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  11. Agarose and Polyacrylamide Gel Electrophoresis Methods for Molecular Mass Analysis of 5–500 kDa Hyaluronan

    Science.gov (United States)

    Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K.

    2011-01-01

    Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5–500 kDa have been investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffers systems were determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition, over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample, and calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa, at sample loads of 0.5 µg (for polyacrylamide) to 2.5 µg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150 kDa HA standard. PMID:21684248

  12. Addition-type polyimides from solutions of monomeric reactants

    Science.gov (United States)

    Delvigs, P.; Serafini, T. T.; Lightsey, G. R.

    1972-01-01

    The monomeric reactants approach was used to fabricate addition-type polyimide/graphite fiber composites with improved mechanical properties and thermal stability characteristics over those of composites derived from addition-type amide acid prepolymers. A screening study of 24 different monomer combinations was performed. The results of a more extensive investigation of a selected number of monomer combinations showed that the combination providing the best thermomechanical properties was 5-norbornene-2,3-dicarboxylic acid monomethyl ester/4,4'-methylenedianiline/3,3'4,4'-benzophenone tetracarboxylic acid dimethyl ester at a molar ratio of 2/3.09/2.09.

  13. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat.

    Science.gov (United States)

    Tian, Xiao; Azpurua, Jorge; Hine, Christopher; Vaidya, Amita; Myakishev-Rempel, Max; Ablaeva, Julia; Mao, Zhiyong; Nevo, Eviatar; Gorbunova, Vera; Seluanov, Andrei

    2013-07-18

    The naked mole rat (Heterocephalus glaber) displays exceptional longevity, with a maximum lifespan exceeding 30 years. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years. In addition to their longevity, naked mole rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer. Here we identify a mechanism responsible for the naked mole rat's cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high-molecular-mass hyaluronan (HA), which is over five times larger than human or mouse HA. This high-molecular-mass HA accumulates abundantly in naked mole-rat tissues owing to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signalling, as they have a higher affinity to HA compared with mouse or human cells. Perturbation of the signalling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high-molecular-mass HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, HYAL2, naked mole-rat cells become susceptible to malignant transformation and readily form tumours in mice. We speculate that naked mole rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species.

  14. Selenosugar determination in porcine liver using multidimensional HPLC with atomic and molecular mass spectrometry.

    Science.gov (United States)

    Lu, Ying; Pergantis, Spiros A

    2009-01-01

    A methodology based on liquid chromatography coupled online with atomic and molecular mass spectrometry was developed for identifying trace amounts of the selenosugar methyl 2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside (SeGalNAc) in porcine liver, obtained from an animal that had not received selenium supplementation. Sample preparation was especially critical for the identification of SeGalNAc by molecular mass spectrometry. This involved liver extraction using a Tris buffer, followed by sequential centrifugations. The resulting cytosolic fraction was pre-concentrated and the low molecular weight selenium (LMWSe) fraction obtained from a size exclusion column was collected, concentrated, and subsequently analyzed using a tandem dual-column HPLC-ICP-MS system which consisted of strong cation exchange (SCX) and reversed phase (RP) columns coupled in tandem. Hepatocytosolic SeGalNAc was tentatively identified by retention time matching and spiking. Its identity was further confirmed by using the same type of chromatography on-line with atmospheric pressure chemical ionization tandem mass spectrometry operated in the selected reaction monitoring (SRM) mode. Four SRM transitions, characteristic of SeGalNAc, were monitored and their intensity ratios determined in order to confirm SeGalNAc identification. Instrument limits of detection for SeGalNAc by SCX-RP HPLC-ICP-MS and SCX-RP HPLC-APCI-MS/MS were 3.4 and 2.9 μg Se L(-1), respectively. Selenium mass balance analysis revealed that trace amounts of SeGalNAc, 2.16±0.94 μg Se kg(-1) liver (wet weight) were present in the liver cytosol, corresponding to 0.4% of the total Se content in the porcine liver.

  15. Formation and evolution of molecular hydrogen in disk galaxies with different masses and Hubble types

    CERN Document Server

    Bekki, Kenji

    2014-01-01

    We investigate the physical properties of molecular hydrogen (H2) in isolated and interacting disk galaxies with different masses and Hubble types by using chemodynamical simulations with H2 formation on dust grains and dust growth and destruction in interstellar medium (ISM). We particularly focus on the dependences of H2 gas mass fractions (f_H2), spatial distributions of HI and H2, and local H2-scaling relations on initial halo masses (M_h), baryonic fractions (f_bary), gas mass fractions (f_g), and Hubble types. The principal results are as follows. The final f_H2 can be larger in disk galaxies with higher M_h, f_bary, and f_g. Some low-mass disk models with M_h smaller than 10^10 M_sun show extremely low f_H2 and thus no/little star formation, even if initial f_g is quite large (>0.9). Big galactic bulges can severely suppress the formation of H2 from HI on dust grains whereas strong stellar bars can not only enhance f_H2 but also be responsible for the formation of H2-dominated central rings. The projec...

  16. Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments

    CERN Document Server

    Novotný, O; Enss, C; Fleischmann, A; Gamer, L; Hengstler, D; Kempf, S; Krantz, C; Pabinger, A; Pies, C; Savin, D W; Schwalm, D; Wolf, A

    2015-01-01

    We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from $E\\approx13$ to 150~keV. For atoms we obtained absolute energy resolutions down to $\\Delta E \\approx 120$~eV and relative energy resolutions down to $\\Delta E/E\\approx10^{-3}$. We also studied in detail the MMC energy-response function to molecular projectiles of up to mass 56~u. We have demonstrated the capability of identifying neutral fragmentation products of these molecules by calorimetric mass spectrometry. We have modeled the MMC energy-response function for molecular projectiles and conclude that backscattering is the dominant source of the energy spread at the impact energies investigated. We have successfully demonstrated the use of a detector absorber coating to suppress such spreads. We briefly outline the use of MMC detectors in experiments on gas-phase collision reactions with neutral products. Our findings are of general interest fo...

  17. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Directory of Open Access Journals (Sweden)

    Aurélie A Albertini

    2012-02-01

    Full Text Available Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV glycoprotein G ectodomain (G(th, aa residues 1-422, the fragment that was previously crystallized. While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  18. General Formalism of Mass Scaling Approach for Replica-Exchange Molecular Dynamics and its Application

    Science.gov (United States)

    Nagai, Tetsuro

    2017-01-01

    Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and individual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method. The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD (V-REMD) method [P. H. Nguyen, https://doi.org/10.1063/1.3369626" xlink:type="simple">J. Chem. Phys. 132, 144109 (2010)] is presented. Numerical results are provided using a pilot system, demonstrating easier and more optimized applicability of the new version of V-REMD as well as the importance of adherence to the generalized velocity scaling rules. With the new formalism, more sound and efficient simulations will be performed.

  19. Signature of an Intermediate-Mass Black Hole in the Central Molecular Zone of Our Galaxy

    CERN Document Server

    Oka, Tomoharu; Miura, Kodai; Takekawa, Shunya

    2015-01-01

    We mapped the high-velocity compact cloud CO-0.40-0.22 in 21 molecular lines in the 3 mm band using the Nobeyama Radio Observatory 45 m radio telescope. Eighteen lines were detected from CO-0.40-0.22. The map of each detected line shows that this cloud has a compact appearance (d=~3 pc) and extremely broad velocity width (DV=~100 km/s). The mass and kinetic energy of CO-0.40-0.22 are estimated to be 10^{3.6} M_sun and 10^{49.7} erg, respectively. The representative position-velocity map along the major axis shows that CO-0.40-0.22 consists of an intense region with a shallow velocity gradient and a less intense high-velocity wing. Here, we show that this kinematical structure can be attributed to a gravitational kick to the molecular cloud caused by an invisible compact object with a mass of ~10^5 M_sun. Its compactness and the absence of counterparts at other wavelengths suggest that this massive object is an intermediate-mass black hole.

  20. Signature of an Intermediate-mass Black Hole in the Central Molecular Zone of Our Galaxy

    Science.gov (United States)

    Oka, Tomoharu; Mizuno, Reiko; Miura, Kodai; Takekawa, Shunya

    2016-01-01

    We mapped the high-velocity compact cloud CO-0.40-0.22 in 21 molecular lines in the 3 mm band using the Nobeyama Radio Observatory 45 m radio telescope. Eighteen lines were detected from CO-0.40-0.22. The map of each detected line shows that this cloud has a compact appearance (d ≃ 3 pc) and extremely broad velocity width (ΔV ≃ 100 km s-1). The mass and kinetic energy of CO-0.40-0.22 are estimated to be 103.6 M⊙ and 1049.7 erg, respectively. The representative position-velocity map along the major axis shows that CO-0.40-0.22 consists of an intense region with a shallow velocity gradient and a less intense high-velocity wing. Here, we show that this kinematical structure can be attributed to a gravitational kick to the molecular cloud caused by an invisible compact object with a mass of ˜105 M⊙. Its compactness and the absence of counterparts at other wavelengths suggest that this massive object is an intermediate-mass black hole.

  1. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2011-01-05

    Understanding of molecular composition and fundamental chemical transformations of organic aerosols (OA) during their formation and aging is both a major challenge and the area of greatest uncertainty in atmospheric research. Particularly little is known about fundamental relationship between the chemical composition and physicochemical properties of OA, their atmospheric history, evolution, and impact on the environment. Ambient soft-ionization methods combined with high-resolution mass spectrometry (HR-MS) analysis provide detailed information on the molecular content of OA that is pivotal for improved understanding of their complex composition, multi-phase aging chemistry, direct (light absorption and scattering) and indirect (aerosol-cloud interactions) effects on atmospheric radiation and climate, and health effects. The HR-MS methods can detect thousands of individual OA constituents at once, provide their elemental formulae from accurate mass measurements, and provide structural information based on tandem mass spectrometry. Integration with additional analytical tools, such as chromatography and UV/Vis absorption spectroscopy, makes it possible to further separate OA compounds by their polarity and ability to absorb solar radiation. The goal of this perspective is to describe modern HR-MS methods, review recent applications to field and laboratory studies of OA, and explain how the information obtained from HR-MS methods can be translated into improved understanding of OA chemistry.

  2. Optimized experimental workflow for tandem mass spectrometry molecular networking in metabolomics.

    Science.gov (United States)

    Olivon, Florent; Roussi, Fanny; Litaudon, Marc; Touboul, David

    2017-07-31

    New omics sciences generate massive amounts of data, requiring to be sorted, curated, and statistically analyzed by dedicated software. Data-dependent acquisition mode including inclusion and exclusion rules for tandem mass spectrometry is routinely used to perform such analyses. While acquisition parameters are well described for proteomics, no general rule is currently available to generate reliable metabolomic data for molecular networking analysis on the Global Natural Product Social Molecular Networking platform (GNPS). Following on from an exploration of key parameters influencing the quality of molecular networks, universal optimal acquisition conditions for metabolomic studies are suggested in the present paper. The benefit of data pre-clustering before initiating large datasets for GNPS analyses is also demonstrated. Moreover, an efficient workflow dedicated to Agilent Technologies instruments is described, making the dereplication process easier by unambiguously distinguishing isobaric isomers eluted at different retention times, annotating the molecular networks with chemical formulas, and giving access to semi-quantitative data. This specific workflow foreshadows future developments of the GNPS platform.

  3. Condensed-Phase Mass Fraction in a Supersonic Molecular Beam Containing Clusters

    Science.gov (United States)

    Knuth, Eldon L.; Toennies, J. Peter

    2008-12-01

    For a supersonic molecular beam containing clusters, a relatively general and simple conservation-of-energy procedure for deducing from time-of-flight measurements the fraction of the beam in the condensed phase is developed. The procedure is applied to measurements for 4He beams formed by expansions which approach the two-phase region either near the critical point or to the liquid side of the critical point. The deduced values of the mass fraction are correlated using a scaling parameter which was used previously for correlating mean values of cluster sizes formed via fragmentation in free-jet expansions of liquid 4He.

  4. Molecular depth profiling with cluster secondary ion mass spectrometry and wedges.

    Science.gov (United States)

    Mao, Dan; Wucher, Andreas; Winograd, Nicholas

    2010-01-01

    Secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by 40 keV C(60)(+) bombardment of a 395 nm thin film of Irganox 1010 doped with four delta layers of Irganox 3114. The wedge structure creates a laterally magnified cross section of the film. From an examination of the resulting surface, information about depth resolution, topography, and erosion rate can be obtained as a function of crater depth in a single experiment. This protocol provides a straightforward way to determine the parameters necessary to characterize molecular depth profiles and to obtain an accurate depth scale for erosion experiments.

  5. From molecular chaperones to membrane motors: through the lens of a mass spectrometrist

    Science.gov (United States)

    2017-01-01

    Twenty-five years ago, we obtained our first mass spectra of molecular chaperones in complex with protein ligands and entered a new field of gas-phase structural biology. It is perhaps now time to pause and reflect, and to ask how many of our initial structure predictions and models derived from mass spectrometry (MS) datasets were correct. With recent advances in structure determination, many of the most challenging complexes that we studied over the years have become tractable by other structural biology approaches enabling such comparisons to be made. Moreover, in the light of powerful new electron microscopy methods, what role is there now for MS? In considering these questions, I will give my personal view on progress and problems as well as my predictions for future directions. PMID:28202679

  6. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking

    DEFF Research Database (Denmark)

    Wang, Mingxun; Carver, Jeremy J.; Pevzner, Pavel

    2016-01-01

    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques...... are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization...... and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations...

  7. Mass transfer ranking of polylysine, poly-ornithine and poly-methylene-co-guanidine microcapsule membranes using a single low molecular mass marker

    Directory of Open Access Journals (Sweden)

    Rosinski Stefan

    2003-01-01

    Full Text Available On the long way to clinical transplantable hybrid systems, comprising of cells, acting as immuno-protected bioreactors microencapsulated in a polymeric matrix and delivering desired factors (proteins, hormones, enzymes etc to the patient's body, an important step is the optimization of the microcapsule. This topic includes the selection of a proper coating membrane which could fulfil, first of all, the mass transfer as well as biocompatibility, stability and durability requirements. Three different membranes from polymerised aminoacids, formed around exactly identical alginate gel cores, were considered, concerning their mass transport properties, as potential candidates in this task. The results of the evaluation of the mass ingress and mass transfer coefficient h for the selected low molecular mass marker, vitamin B12, in poly-L-lysine (HPLL poly-L-ornithine (HPLO and poly-methylene-co-guanidine hydrochloride (HPMCG membrane alginate microcapsules demonstrate the advantage of using the mass transfer approach to a preliminary screening of various microcapsule formulations. Applying a single marker and evaluating mass transfer coefficients can help to quickly rank the investigated membranes and microcapsules according to their permeability. It has been demonstrated that HPLL, HPLO and HPMCG microcapsules differ from each other by a factor of two concerning the rate of low molecular mass marker transport. Interesting differences in mass transfer through the membrane in both directions in-out was also found, which could possibly be related to the membrane asymmetry.

  8. Low-mass molecular dynamics simulation: A simple and generic technique to enhance configurational sampling

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yuan-Ping, E-mail: pang@mayo.edu

    2014-09-26

    Highlights: • Reducing atomic masses by 10-fold vastly improves sampling in MD simulations. • CLN025 folded in 4 of 10 × 0.5-μs MD simulations when masses were reduced by 10-fold. • CLN025 folded as early as 96.2 ns in 1 of the 4 simulations that captured folding. • CLN025 did not fold in 10 × 0.5-μs MD simulations when standard masses were used. • Low-mass MD simulation is a simple and generic sampling enhancement technique. - Abstract: CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal–isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277 K and 1 atm with the first folding event occurring as early as 66.1 ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal–isobaric MD simulations performed on commodity computers—an important step forward in quantitative biology.

  9. Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fooshee, David R.; Aiona, Paige K.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey; Baldi, Pierre

    2015-10-22

    Squalene is a major component of skin and plant surface lipids, and is known to be present at high concentrations in indoor dust. Its high reactivity toward ozone makes it an important ozone sink and a natural protectant against atmospheric oxidizing agents. While the volatile products of squalene ozonolysis are known, the condensed-phase products have not been characterized. We present an analysis of condensed-phase products resulting from an extensive oxidation of squalene by ozone probed by electrospray ionization (ESI) high-resolution mass spectrometry (HR-MS). A complex distribution of nearly 1,300 peaks assignable to molecular formulas is observed in direct infusion positive ion mode ESI mass spectra. The distribution of peaks in the mass spectra suggests that there are extensive cross-coupling reactions between hydroxy-carbonyl products of squalene ozonolysis. To get additional insights into the mechanism, we apply a Computational Brewing Application (COBRA) to simulate the oxidation of squalene in the presence of ozone, and compare predicted results with those observed by the HR-MS experiments. The system predicts over one billion molecular structures between 0-1450 Da, which correspond to about 27,000 distinct elemental formulas. Over 83% of the squalene oxidation products inferred from the mass spectrometry data are matched by the simulation. Simulation indicates a prevalence of peroxy groups, with hydroxyl and ether groups being the second-most important O-containing functional groups formed during squalene oxidation. These highly oxidized products of squalene ozonolysis may accumulate on indoor dust and surfaces, and contribute to their redox capacity.

  10. Molecular characterization of dissolved organic matter through a desalination process by high resolution mass spectrometry.

    Science.gov (United States)

    Cortés-Francisco, Nuria; Caixach, Josep

    2013-09-01

    The effect of different water treatments such as ultrafiltration (UF) and reverse osmosis (RO) on dissolved organic matter (DOM) is still unknown. Electrospray ionization Fourier transform orbitrap mass spectrometry has been used to provide valuable information of marine DOM evolution through a desalination process on a molecular scale. In the present manuscript, the characterization of four real composite water samples from a desalination pilot plant installed in the coast of Barcelona (Spain) has been carried out. The sampling was performed on each point of the pilot plant: raw seawater (RSW), UF effluent, brine RO and permeate RO. The mass spectra of the different samples show several thousand peaks, however for the present screening study, only the mass range m/z 200-500 and the main signals in this mass range (relative intensities ≥1%) have been considered. The analysis of RSW and UF samples reveal that there is little effect on DOM by the UF pilot. However, when the water is treated on the RO an important change on DOM has been observed. The recurring periodical patterns found in RSW and UF are lost in Permeate RO sample. Compounds with more aliphatic character, with higher H/C ratio (H/Cav 1.72) are present in the Permeate and some of them have been tentatively identified as fatty acids.

  11. Two-dimensional crystallization of monomeric bovine cytochrome c oxidase with bound cytochrome c in reconstituted lipid membranes.

    Science.gov (United States)

    Osuda, Yukiho; Shinzawa-Itoh, Kyoko; Tani, Kazutoshi; Maeda, Shintaro; Yoshikawa, Shinya; Tsukihara, Tomitake; Gerle, Christoph

    2016-06-01

    Mitochondrial cytochrome c oxidase utilizes electrons provided by cytochrome c for the active vectorial transport of protons across the inner mitochondrial membrane through the reduction of molecular oxygen to water. Direct structural evidence on the transient cytochrome c oxidase-cytochrome c complex thus far, however, remains elusive and its physiological relevant oligomeric form is unclear. Here, we report on the 2D crystallization of monomeric bovine cytochrome c oxidase with tightly bound cytochrome c at a molar ratio of 1:1 in reconstituted lipid membranes at the basic pH of 8.5 and low ionic strength.

  12. Millimeter dust continuum emission unveiling the true mass of giant molecular clouds in the Small Magellanic Cloud

    CERN Document Server

    Bot, C; Rubio, M; Rantakyro, F

    2007-01-01

    CO observations have been so far the best way to trace molecular gas in external galaxies, but at low metallicity the gas mass deduced could be largely underestimated. At present, the kinematic information of CO data cubes are used to estimate virial masses and trace the total mass of the molecular clouds. Millimeter dust emission can also be used as a dense gas tracer and could unveil H2 envelopes lacking CO. These different tracers must be compared in different environments. This study compares virial masses to masses deduced from millimeter emission, in two GMC samples: the local molecular clouds in our Galaxy and their equivalents in the Small Magellanic Cloud (SMC), one of the nearest low metallicity dwarf galaxy. In our Galaxy, mass estimates deduced from millimeter emission are consistent with masses deduced from gamma ray analysis and trace the total mass of the clouds. Virial masses are systematically larger (twice on average) than mass estimates from millimeter dust emission. This difference decreas...

  13. Large molecular mass materials in coal derived liquids by {sup 252}Cf-plasma and matrix assisted laser desorption mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Domin, M. [School of Pharmacy, London (United Kingdom). Dept. of Pharmaceutical and Biological Chemistry; Li, S.; Herod, A.A.; Larsen, J.W. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Chemistry; Lazaro, M.J.; Kandiyoti, R. [Imperial College, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    1997-12-31

    A Point of Ayr coal extract, its hydrocracked product and the pyridine solubles/insolubles of a coal tar pitch have been examined using {sup 252}Cf-plasma desorption-mass spectrometry (PDMS) and matrix assisted laser desorption-mass spectrometry (MALDI-MS). Comparison of molecular masses (MMs) between the coal extract and its hydrocracked product by PDMS indicated ranges of masses in the product to be considerably smaller, with number and weight average MMs reduced by approximately a factor of two. MALDI-mass spectra of the same samples indicated a greater reduction in mass. Similar comparison of the pyridine soluble/insoluble fractions of the coal tar pitch showed smaller differences by PD-MS than by MALDI-MS. (orig.)

  14. Light-induced structural changes in a monomeric bacteriophytochrome

    Directory of Open Access Journals (Sweden)

    Heikki Takala

    2016-09-01

    Full Text Available Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of the phytochrome photosensory core is sufficient to perform the light-induced structural changes. This implies that allosteric cooperation with the other monomer is not needed for structural activation. The dimeric arrangement may instead be intrinsic to the biochemical output domains of bacterial phytochromes.

  15. Characterization of the Partially Folded Monomeric Intermediate of Creatine Kinase

    Institute of Scientific and Technical Information of China (English)

    朴龙斗; 周海梦

    2002-01-01

    The importance of understanding the protein folding pathway and intermediates is well recognized on the basis of extensive studies of protein folding in vitro and in vivo. Creatine kinase (CK) is a typical model for studying unfolding and refolding of proteins due to several interesting properties. Recent studies on the folding of CK show that its partially folded monomeric intermediate is present kinetically and is stable at equilibrium. The present paper contains 33 References as a mini review to characterize the properties of CK from studies on the CK folding pathway. Characterization of these intermediates is an essential step toward understanding the mechanism of protein folding. Some well-determined schemes are suggested as protein folding models.

  16. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory

    CERN Document Server

    Malý, Pavel; van Grondelle, Rienk; Mančal, Tomáš

    2015-01-01

    We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of the lutein molecule Lut 1. The resulting description is valid over a broad range of timescales relevant for single molecule spectroscopy, i.e. from ps to minutes. Validity of these equations is demonstrated by comparing simulations of ensemble and single-molecule spectra of monomeric LHCII with experiments. Using a conformational change of the LHCII protein as a switching mechanism, the intensity and spectral time traces of individual LHCII complexes are simulated, and the experimental statistical distributions are reproduced. Based on our model, it is shown that with reasonable assumptions about its interaction with chlo...

  17. Mass Spectrometry-based Approaches to Understand the Molecular Basis of Memory

    Directory of Open Access Journals (Sweden)

    Arthur Henriques Pontes

    2016-10-01

    Full Text Available The central nervous system is responsible for an array of cognitive functions such as memory, learning, language and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS have enable the identification and quantification of thousand of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.

  18. Mass Spectrometry-based Approaches to Understand the Molecular Basis of Memory

    Science.gov (United States)

    Pontes, Arthur; de Sousa, Marcelo

    2016-10-01

    The central nervous system is responsible for an array of cognitive functions such as memory, learning, language and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS) have enable the identification and quantification of thousand of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS)-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.

  19. Biscuit melanoidins of different molecular masses protect human HepG2 cells against oxidative stress.

    Science.gov (United States)

    Martín, María Angeles; Ramos, Sonia; Mateos, Raquel; Rufián-Henares, José Angel; Morales, Francisco José; Bravo, Laura; Goya, Luis

    2009-08-26

    Soluble melanoidins from biscuits were enzymatically solubilized and isolated by sequential ultrafiltration and separated by molecular mass in three different fractions, below 3 kDa, between 3 and 10 kDa, and over 10 kDa; the latter was subsequently digested by simulating gastric plus pancreatic digestive conditions. The four fractions were investigated for their protective effect against an oxidative challenge in HepG2 cells. Pretreatment of cells for 20 h with 0.5-10 microg/mL of any of the four fractions prevented the increased cell damage evoked by the challenge but, except for the intermediate size fraction, did not suppress the increased reactive oxygen species. Antioxidant defenses were rapidly restored after the challenge, and the increase of the oxidative stress biomarker malondialdehyde was prevented by the pretreatment with all but the undigested high molecular mass fraction. The results show that treatment of HepG2 cells with concentrations of biscuit melanoidins within the expected physiological range confers on the cells a significant protection against an oxidative challenge.

  20. Sensitive Limits on the Water Abundance in Cold Low Mass Molecular Cores

    CERN Document Server

    Bergin, E A; Bergin, Edwin A.; Snell, Ronald L.

    2002-01-01

    We present SWAS observations of water vapor in two cold star-less clouds, B68 and Core D in rho Ophiuchus. Sensitive non-detections of the 1(10)-1(01) transition of o-H2O are reported for each source. Both molecular cores have been previously examined by detailed observations that have characterized the physical structure. Using these rather well defined physical properties and a Monte-Carlo radiation transfer model we have removed one of the largest uncertainties from the abundance calculation and set the lowest water abundance limit to date in cold low-mass molecular cores. These limits are < 3 x 10^{-8} (relative to H2) and < 8 x 10^{-9} in B68 and rho Oph D, respectively. Such low abundances confirm the general lack of ortho-water vapor in cold (T < 20 K) cores. Provided that the ortho/para ratio of water is not near zero, these limits are well below theoretical predictions and appear to support the suggestion that most of the water in dense low-mass cores is frozen onto the surfaces of cold dust...

  1. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    Science.gov (United States)

    Siposova, Katarina; Pospiskova, Kristyna; Bednarikova, Zuzana; Safarik, Ivo; Safarikova, Mirka; Kubovcikova, Martina; Kopcansky, Peter; Gazova, Zuzana

    2017-04-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe3O4-based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15-20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15-20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran).

  2. Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry.

    Science.gov (United States)

    Gonsior, Michael; Zwartjes, Matthew; Cooper, William J; Song, Weihua; Ishida, Kenneth P; Tseng, Linda Y; Jeung, Matthew K; Rosso, Diego; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2011-04-01

    Effluent dissolved organic matter (EfOM) collected from the secondary-treated wastewater of the Orange County Sanitation District (OCSD) located in Fountain Valley, California, USA was compared to natural organic matter collected from the Suwannee River (SRNOM), Florida using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Furthermore, the two different treatment processes at OCSD, activated sludge and trickling filter, were separately investigated. The blend of these two effluents was further evaluated after it had passed through the microfiltration process of the Advanced Water Purification Facility (AWPF) at Orange County Water District (OCWD). EfOM contained 872 different m/z peaks that were unambiguously assigned to exact molecular formulae containing a single sulfur atom and carbon, hydrogen and oxygen atoms (CHOS formulae). In contrast, the SRNOM sample only contained 152 CHOS formulae. The trend in CHO molecular compositions was opposite with 2500 CHO formulae assigned for SRNOM but only about 1000 for EfOM. The CHOS-derived mass peaks with highest abundances in EfOM could be attributed to surfactants such as linear alkyl benzene sulfonates (LAS), their co-products dialkyl tetralin sulfonates (DATS) and their biodegraded metabolites such as sulfophenyl carboxylic acids (SPC). The differences between the treatments were found minor with greater differences between sampling dates than treatment methods used.

  3. The structure of molecular clumps around high-mass young stellar objects

    CERN Document Server

    Fontani, F; Caselli, P; Olmi, L

    2002-01-01

    We have used the IRAM 30-m and FCRAO 14-m telescopes to observe the molecular clumps associated with 12 ultracompact (UC) HII regions in the J=6-5, 8-7 and 13-12 rotational transitions of methyl-acetylene (CH3C2H). Under the assumption of LTE and optically thin emission, we have derived temperature estimates ranging from 30 to 56 K. We estimate that the clumps have diameters of 0.2-1.6 pc, H_2 densities of 10^5-10^6 {cm^{-3}}, and masses of 10^2-2 10^4 M_\\odot. We compare these values with those obtained by other authors from different molecular tracers and find that the H_2 density and the temperature inside the clumps vary respectively like n_{H_2} ~ R^{-2.6} and T ~ R^{-0.5}, with R distance from the centre. We also find that the virial masses of the clumps are ~3 times less than those derived from the CH3C2H column densities: we show that a plausible explanation is that magnetic fields play an important role to stabilise the clumps, which are on the verge of gravitational collapse. Finally, we show that t...

  4. Early stages of insulin fibrillogenesis examined with ion mobility mass spectrometry and molecular modelling.

    Science.gov (United States)

    Cole, Harriet; Porrini, Massimiliano; Morris, Ryan; Smith, Tom; Kalapothakis, Jason; Weidt, Stefan; Mackay, C Logan; MacPhee, Cait E; Barran, Perdita E

    2015-10-21

    A prevalent type of protein misfolding causes the formation of β-sheet-rich structures known as amyloid fibrils. Research into the mechanisms of fibril formation has implications for both disease prevention and nanoscale templating technologies. This investigation into the aggregation of insulin utilises ion mobility mass spectrometry coupled with molecular modelling to identify and characterise oligomers formed during the 'lag' phase that precedes fibril growth. High resolution mass spectrometry and collision induced dissociation is used to unequivocally assign species as m/z coincident multimers or confomers, providing a robust analytical approach that supports the use of molecular dynamics to atomistically resolve the observed oligomers. We show that insulin oligomerises to form species In where 2 ≤ n ≤ 12 and within this set of oligomers we delineate over 60 distinct conformations, the most dominant of which are compact species. Modelling trained with experimental data suggests that the dominant compact dimers are enriched in β-sheet secondary structure and dominated by hydrophobic interactions, and provides a linear relationship between Rg and collision cross section. This approach provides detailed insight to the early stages of assembly of this much studied amyloidogenic protein, and can be used to inform models of nucleation and growth.

  5. Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria

    Science.gov (United States)

    McCormick, Sean P.; Moore, Michael J.; Lindahl, Paul A.

    2015-01-01

    Liquid chromatography was used with an on-line inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20 – 40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria had a mass of ca. 1100 Da and a concentration of ~ 2 μM. Mammalian mitochondria contained a second Mn species with a mass of ca. 2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ca. 580 Da; the concentration of Fe580 in mitochondria was ca. 100 μM. When mitochondria were isolated from fermenting cells in post-exponential phase, the mass of the dominant LMM Fe complex was ca. 1100 Da. Upon incubation, the intensity of Fe1100 declined and Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and 2 other Fe species (Fe2000 and Fe1100) at concentrations of ca. 50 μM each. The dominant LMM Zn species in mitochondria had a mass of ca. 1200 Da and a concentration of ca. 110 μM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ca. 5000 Da and a concentration in yeast mitochondria of ca. 16 μM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at ca. 1 μM concentration. Increasing Mn, Fe, Cu, and Zn concentrations 10 fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free GSH or GSSG. PMID:26018429

  6. Computational design and characterization of a monomeric helical dinuclear metalloprotein.

    Science.gov (United States)

    Calhoun, Jennifer R; Kono, Hidetoshi; Lahr, Steven; Wang, Wei; DeGrado, William F; Saven, Jeffery G

    2003-12-12

    The de novo design of di-iron proteins is an important step towards understanding the diversity of function among this complex family of metalloenzymes. Previous designs of due ferro (DF) proteins have resulted in tetrameric and dimeric four-helix bundles having crystallographically well-defined structures and active-site geometries. Here, the design and characterization of DFsc, a 114 residue monomeric four-helix bundle, is presented. The backbone was modeled using previous oligomeric structures and appropriate inter-helical turns. The identities of 26 residues were predetermined, including the primary and secondary ligands in the active site, residues involved in active site accessibility, and the gamma beta gamma beta turn between helices 2 and 3. The remaining 88 amino acid residues were determined using statistical computer aided design, which is based upon a recent statistical theory of protein sequences. Rather than sampling sequences, the theory directly provides the site-specific amino acid probabilities, which are then used to guide sequence design. The resulting sequence (DFsc) expresses well in Escherichia coli and is highly soluble. Sedimentation studies confirm that the protein is monomeric in solution. Circular dichroism spectra are consistent with the helical content of the target structure. The protein is structured in both the apo and the holo forms, with the metal-bound form exhibiting increased stability. DFsc stoichiometrically binds a variety of divalent metal ions, including Zn(II), Co(II), Fe(II), and Mn(II), with micromolar affinities. 15N HSQC NMR spectra of both the apo and Zn(II) proteins reveal excellent dispersion with evidence of a significant structural change upon metal binding. DFsc is then a realization of complete de novo design, where backbone structure, activity, and sequence are specified in the design process.

  7. Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study

    Science.gov (United States)

    Kourtchev, Ivan; Godoi, Ricardo H. M.; Connors, Sarah; Levine, James G.; Archibald, Alex T.; Godoi, Ana F. L.; Paralovo, Sarah L.; Barbosa, Cybelli G. G.; Souza, Rodrigo A. F.; Manzi, Antonio O.; Seco, Roger; Sjostedt, Steve; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Smith, James; Martin, Scot T.; Kalberer, Markus

    2016-09-01

    The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.

  8. Molecular characterization of low molecular weight dissolved organic matter in water reclamation processes using Orbitrap mass spectrometry.

    Science.gov (United States)

    Phungsai, Phanwatt; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2016-09-01

    Reclaimed water has recently become an important water source for urban use, but the composition of dissolved organic matter (DOM) in reclaimed water has rarely been characterized at the compound level because of its complexity. In this study, the transformation and changes in composition of low molecular weight DOM in water reclamation processes, where secondary effluent of the municipal wastewater treatment plant was further treated by biofiltration, ozonation and chlorination, were investigated by "unknown" screening analysis using Orbitrap mass spectrometry (Orbitrap MS). The intense ions were detected over an m/z range from 100 to 450. In total, 2412 formulae with various heteroatoms were assigned, and formulae with carbon (C), hydrogen (H) and oxygen (O) only and C, H, O and sulfur (S) were the most abundant species. During biofiltration, CHO-only compounds with relatively high hydrogen to carbon (H/C) ratio or with saturated structure were preferentially removed, while CHOS compounds were mostly removed. Ozonation induced the greatest changes in DOM composition. CHOS compounds were mostly decreased after ozonation while ozone selectively removed CHO compounds with relatively unsaturated structure and produced compounds that were more saturated and with a higher degree of oxidation. After chlorination, 168 chlorine-containing formulae, chlorinated disinfection by-products (DBPs), were additionally detected. Candidate DBP precursors were determined by tracking chlorinated DBPs formed via electrophilic substitution, half of which were generated during the ozonation.

  9. Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics.

    Science.gov (United States)

    Kreimer, Simion; Belov, Arseniy M; Ghiran, Ionita; Murthy, Shashi K; Frank, David A; Ivanov, Alexander R

    2015-06-05

    This review discusses extracellular vesicles (EVs), which are submicron-scale, anuclear, phospholipid bilayer membrane enclosed vesicles that contain lipids, metabolites, proteins, and RNA (micro and messenger). They are shed from many, if not all, cell types and are present in biological fluids and conditioned cell culture media. The term EV, as coined by the International Society of Extracellular Vesicles (ISEV), encompasses exosomes (30-100 nm in diameter), microparticles (100-1000 nm), apoptotic blebs, and other EV subsets. EVs have been implicated in cell-cell communication, coagulation, inflammation, immune response modulation, and disease progression. Multiple studies report that EV secretion from disease-affected cells contributes to disease progression, e.g., tumor niche formation and cancer metastasis. EVs are attractive sources of biomarkers due to their biological relevance and relatively noninvasive accessibility from a range of physiological fluids. This review is focused on the molecular profiling of the protein and lipid constituents of EVs, with emphasis on mass-spectrometry-based "omic" analytical techniques. The challenges in the purification and molecular characterization of EVs, including contamination of isolates and limitations in sample quantities, are discussed along with possible solutions. Finally, the review discusses the limited but growing investigation of post-translational modifications of EV proteins and potential strategies for future in-depth molecular characterization of EVs.

  10. Crystallization and preliminary crystallographic analysis of decameric and monomeric forms of C49S mutant thioredoxin-dependent AhpC from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Supangat [Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Seo, Kyung Hye; Furqoni, Ahmad [Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kwon, Young-Chul; Cho, Myung-Je; Rhee, Kwang-Ho [Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Lee, Sang Yeol; Lee, Kon Ho, E-mail: lkh@gsnu.ac.kr [Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2008-05-01

    Decameric and monomeric forms of recombinant C49S mutant AhpC from H. pylori have been crystallized. Diffraction data were collected to 2.8 and 2.25 Å, respectively. Cys49Ser mutant Helicobacter pylori alkyl hydroperoxide reductase (C49S HpAhpC) was purified under reducing conditions in monomeric and decameric forms. The monomeric form was crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.25 Å resolution and belonged to space group C2, with unit-cell parameters a = 245.8, b = 140.7, c = 189.5 Å, β = 127°, and contained 20 molecules in the asymmetric unit. A crystal of the decameric form was obtained by the microbatch crystallization method and diffracted to 2.8 Å resolution. It belonged to space group C222, with unit-cell parameters a = 257.5, b = 417.5, c = 95.6 Å. The structure of the monomeric form of C49S HpAhpC has been solved by the molecular-replacement method.

  11. Molecular Line Emission Towards High-Mass Clumps: The MALT90 Catalogue

    Science.gov (United States)

    Rathborne, J. M.; Whitaker, J. S.; Jackson, J. M.; Foster, J. B.; Contreras, Y.; Stephens, I. W.; Guzmán, A. E.; Longmore, S. N.; Sanhueza, P.; Schuller, F.; Wyrowski, F.; Urquhart, J. S.

    2016-07-01

    The Millimetre Astronomy Legacy Team 90 GHz survey aims to characterise the physical and chemical evolution of high-mass clumps. Recently completed, it mapped 90 GHz line emission towards 3 246 high-mass clumps identified from the ATLASGAL 870 μm Galactic plane survey. By utilising the broad frequency coverage of the Mopra telescope's spectrometer, maps in 16 different emission lines were simultaneously obtained. Here, we describe the first catalogue of the detected line emission, generated by Gaussian profile fitting to spectra extracted towards each clumps' 870 μm dust continuum peak. Synthetic spectra show that the catalogue has a completeness of > 95%, a probability of a false-positive detection of < 0.3%, and a relative uncertainty in the measured quantities of < 20% over the range of detection criteria. The detection rates are highest for the (1-0) transitions of HCO+, HNC, N2H+, and HCN (~77-89%). Almost all clumps (~95%) are detected in at least one of the molecular transitions, just over half of the clumps (~53%) are detected in four or more of the transitions, while only one clump is detected in 13 transitions. We find several striking trends in the ensemble of properties for the different molecular transitions when plotted as a function of the clumps' evolutionary state as estimated from Spitzer mid-IR images, including (1) HNC is relatively brighter in colder, less evolved clumps than those that show active star formation, (2) N2H+ is relatively brighter in the earlier stages, (3) that the observed optical depth decreases as the clumps evolve, and (4) the optically thickest HCO+ emission shows a `blue-red asymmetry' indicating overall collapse that monotonically decreases as the clumps evolve. This catalogue represents the largest compiled database of line emission towards high-mass clumps and is a valuable data set for detailed studies of these objects.

  12. Dietary flavonoid fisetin increases abundance of high-molecular-mass hyaluronan conferring resistance to prostate oncogenesis.

    Science.gov (United States)

    Lall, Rahul K; Syed, Deeba N; Khan, Mohammad Imran; Adhami, Vaqar M; Gong, Yuansheng; Lucey, John A; Mukhtar, Hasan

    2016-09-01

    We and others have shown previously that fisetin, a plant flavonoid, has therapeutic potential against many cancer types. Here, we examined the probable mechanism of its action in prostate cancer (PCa) using a global metabolomics approach. HPLC-ESI-MS analysis of tumor xenografts from fisetin-treated animals identified several metabolic targets with hyaluronan (HA) as the most affected. Efficacy of fisetin on HA was then evaluated in vitro and also in vivo in the transgenic TRAMP mouse model of PCa. Size exclusion chromatography-multiangle laser light scattering (SEC-MALS) was performed to analyze the molar mass (Mw) distribution of HA. Fisetin treatment downregulated intracellular and secreted HA levels both in vitro and in vivo Fisetin inhibited HA synthesis and degradation enzymes, which led to cessation of HA synthesis and also repressed the degradation of the available high-molecular-mass (HMM)-HA. SEC-MALS analysis of intact HA fragment size revealed that cells and animals have more abundance of HMM-HA and less of low-molecular-mass (LMM)-HA upon fisetin treatment. Elevated HA levels have been shown to be associated with disease progression in certain cancer types. Biological responses triggered by HA mainly depend on the HA polymer length where HMM-HA represses mitogenic signaling and has anti-inflammatory properties whereas LMM-HA promotes proliferation and inflammation. Similarly, Mw analysis of secreted HA fragment size revealed less HMM-HA is secreted that allowed more HMM-HA to be retained within the cells and tissues. Our findings establish that fisetin is an effective, non-toxic, potent HA synthesis inhibitor, which increases abundance of antiangiogenic HMM-HA and could be used for the management of PCa. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer

    Directory of Open Access Journals (Sweden)

    Stobiecki Maciej

    2009-07-01

    Full Text Available Abstract Background Mass spectrometric analysis of the blood proteome is an emerging method of clinical proteomics. The approach exploiting multi-protein/peptide sets (fingerprints detected by mass spectrometry that reflect overall features of a specimen's proteome, termed proteome pattern analysis, have been already shown in several studies to have applicability in cancer diagnostics. We aimed to identify serum proteome patterns specific for early stage breast cancer patients using MALDI-ToF mass spectrometry. Methods Blood samples were collected before the start of therapy in a group of 92 patients diagnosed at stages I and II of the disease, and in a group of age-matched healthy controls (104 women. Serum specimens were purified and the low-molecular-weight proteome fraction was examined using MALDI-ToF mass spectrometry after removal of albumin and other high-molecular-weight serum proteins. Protein ions registered in a mass range between 2,000 and 10,000 Da were analyzed using a new bioinformatic tool created in our group, which included modeling spectra as a sum of Gaussian bell-shaped curves. Results We have identified features of serum proteome patterns that were significantly different between blood samples of healthy individuals and early stage breast cancer patients. The classifier built of three spectral components that differentiated controls and cancer patients had 83% sensitivity and 85% specificity. Spectral components (i.e., protein ions that were the most frequent in such classifiers had approximate m/z values of 2303, 2866 and 3579 Da (a biomarker built from these three components showed 88% sensitivity and 78% specificity. Of note, we did not find a significant correlation between features of serum proteome patterns and established prognostic or predictive factors like tumor size, nodal involvement, histopathological grade, estrogen and progesterone receptor expression. In addition, we observed a significantly (p = 0

  14. The Bolocam Galactic Plane Survey. XIII. Physical Properties and Mass Functions of Dense Molecular Cloud Structures

    CERN Document Server

    Ellsworth-Bowers, Timothy P; Riley, Allyssa; Rosolowsky, Erik; Ginsburg, Adam; Evans, Neal J; Bally, John; Battersby, Cara; Shirley, Yancy L; Merello, Manuel

    2015-01-01

    We use the distance probability density function (DPDF) formalism of Ellsworth-Bowers et al. (2013, 2015) to derive physical properties for the collection of 1,710 Bolocam Galactic Plane Survey (BGPS) version 2 sources with well-constrained distance estimates. To account for Malmquist bias, we estimate that the present sample of BGPS sources is 90% complete above 400 $M_\\odot$ and 50% complete above 70 $M_\\odot$. The mass distributions for the entire sample and astrophysically motivated subsets are generally fitted well by a lognormal function, with approximately power-law distributions at high mass. Power-law behavior emerges more clearly when the sample population is narrowed in heliocentric distance (power-law index $\\alpha = 2.0\\pm0.1$ for sources nearer than 6.5 kpc and $\\alpha = 1.9\\pm0.1$ for objects between 2 kpc and 10 kpc). The high-mass power-law indices are generally $1.85 \\leq \\alpha \\leq 2.05$ for various subsamples of sources, intermediate between that of giant molecular clouds and the stellar ...

  15. Ambient low temperature plasma etching of polymer films for secondary ion mass spectrometry molecular depth profiling.

    Science.gov (United States)

    Muramoto, Shin; Staymates, Matthew E; Brewer, Tim M; Gillen, Greg

    2012-12-18

    The feasibility of a low temperature plasma (LTP) probe as a way to prepare polymer bevel cross sections for secondary ion mass spectrometry (SIMS) applications was investigated. Poly(lactic acid) and poly(methyl methacrylate) films were etched using He LTP, and the resulting crater walls were depth profiled using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to examine changes in chemistry over the depth of the film. ToF-SIMS results showed that while exposure to even 1 s of plasma resulted in integration of atmospheric nitrogen and contaminants to the newly exposed surface, the actual chemical modification to the polymer backbone was found to be chemistry-dependent. For PLA, sample modification was confined to the top 15 nm of the PLA surface regardless of plasma exposure dose, while measurable change was not seen for PMMA. The confinement of chemical modification to 15 nm or less of the top surface suggests that LTP can be used as a simple method to prepare cross sections or bevels of polymer thin films for subsequent analysis by surface-sensitive molecular depth profiling techniques such as SIMS, X-ray photoelectron spectroscopy (XPS), and other spatially resolved mass spectrometric techniques.

  16. Computer programs for the interpretation of low resolution mass spectra: Program for calculation of molecular isotopic distribution and program for assignment of molecular formulas

    Science.gov (United States)

    Miller, R. A.; Kohl, F. J.

    1977-01-01

    Two FORTRAN computer programs for the interpretation of low resolution mass spectra were prepared and tested. One is for the calculation of the molecular isotopic distribution of any species from stored elemental distributions. The program requires only the input of the molecular formula and was designed for compatability with any computer system. The other program is for the determination of all possible combinations of atoms (and radicals) which may form an ion having a particular integer mass. It also uses a simplified input scheme and was designed for compatability with any system.

  17. Millimeter dust continuum emission revealing the true mass of giant molecular clouds in the Small Magellanic Cloud

    Science.gov (United States)

    Bot, C.; Boulanger, F.; Rubio, M.; Rantakyro, F.

    2007-08-01

    Context: CO observations have been the best way so far to trace molecular gas in external galaxies, but in low metallicity environments the gas mass deduced could be largely underestimated due to enhanced photodissociation of the CO molecule. Large envelopes of H2 could therefore be missed by CO observations. Aims: At present, the kinematic information of CO data cubes are used to estimate virial masses and trace the total mass of the molecular clouds. Millimeter dust emission can also be used as a dense gas tracer and could unveil H2 envelopes lacking CO. These different tracers must be compared in different environments. Methods: This study compares virial masses to masses deduced from millimeter emission, in two GMC samples: the local molecular clouds in our Galaxy (10^4-105 M⊙), and their equivalents in the Small Magellanic Cloud (SMC), one of the nearest low metallicity dwarf galaxies. Results: In our Galaxy, mass estimates deduced from millimeter (FIRAS) emission are consistent with masses deduced from gamma ray analysis and therefore trace the total mass of the clouds. Virial masses are systematically larger (twice on average) than mass estimates from millimeter dust emission. This difference decreases toward high masses and has been reported in previous studies. This is not the case for SMC giant molecular clouds: molecular cloud masses deduced from SIMBA millimeter observations are systematically higher (twice on average for conservative values of the dust to gas ratio and dust emissivity) than the virial masses from SEST CO observations. The observed excess cannot be accounted for by any plausible change of dust properties. Taking a general form for the virial theorem, we show that a magnetic field strength of ~15 μG in SMC clouds could provide additional support for the clouds and explain the difference observed. Conclusions: We conclude that masses of SMC molecular clouds have so far been underestimated. Magnetic pressure may contribute significantly

  18. Investigation of naproxen drug using mass spectrometry, thermal analyses and semi-empirical molecular orbital calculation

    Directory of Open Access Journals (Sweden)

    M.A. Zayed

    2017-03-01

    Full Text Available Naproxen (C14H14O3 is a non-steroidal anti-inflammatory drug (NSAID. It is important to investigate its structure to know the active groups and weak bonds responsible for medical activity. In the present study, naproxen was investigated by mass spectrometry (MS, thermal analysis (TA measurements (TG/DTG and DTA and confirmed by semi empirical molecular orbital (MO calculation, using PM3 procedure. These calculations included, bond length, bond order, bond strain, partial charge distribution, ionization energy and heat of formation (ΔHf. The mass spectra and thermal analysis fragmentation pathways were proposed and compared to select the most suitable scheme representing the correct fragmentation pathway of the drug in both techniques. The PM3 procedure reveals that the primary cleavage site of the charged molecule is the rupture of the COOH group (lowest bond order and high strain which followed by CH3 loss of the methoxy group. Thermal analysis of the neutral drug reveals a high response to the temperature variation with very fast rate. It decomposed in several sequential steps in the temperature range 80–400 °C. These mass losses appear as two endothermic and one exothermic peaks which required energy values of 255.42, 10.67 and 371.49 J g−1 respectively. The initial thermal ruptures are similar to that obtained by mass spectral fragmentation (COOH rupture. It was followed by the loss of the methyl group and finally by ethylene loss. Therefore, comparison between MS and TA helps in selection of the proper pathway representing its fragmentation. This comparison is successfully confirmed by MO-calculation.

  19. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases.

    Science.gov (United States)

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2011-12-23

    Reversed-phase liquid chromatography (RPLC) is the foremost technique for the separation of analytes that have very similar chemical functionalities, but differ only in their molecular shape. This ability is crucial in the analysis of various mixtures with environmental and biological importance including polycyclic aromatic hydrocarbons (PAHs) and steroids. A large amount of effort has been devoted to studying this phenomenon experimentally, but a detailed molecular-level description remains lacking. To provide some insight on the mechanism of shape selectivity in RPLC, particle-based simulations were carried out for stationary phases and chromatographic parameters that closely mimic those in an experimental study by Sentell and Dorsey [J. Chromatogr. 461 (1989) 193]. The retention of aromatic hydrocarbons ranging in size from benzene to the isomeric PAHs of the formula C(18)H(12) was examined for model RPLC systems consisting of monomeric dimethyl octadecylsilane (ODS) stationary phases with surface coverages ranging from 1.6 to 4.2 μmol/m(2) (i.e., stationary phases yielding low to intermediate shape selectivity) in contact with a 67/33 mol% acetonitrile/water mobile phase. The simulations show that the stationary phase acts as a very heterogeneous environment where analytes with different shapes prefer different spatial regions with specific local bonding environments of the ODS chains. However, these favorable retentive regions cannot be described as pre-existing cavities because the chain conformation in these local stationary phase regions adapts to accommodate the analytes.

  20. Unraveling the benzocaine-receptor interaction at molecular level using mass-resolved spectroscopy.

    Science.gov (United States)

    Aguado, Edurne; León, Iker; Millán, Judith; Cocinero, Emilio J; Jaeqx, Sander; Rijs, Anouk M; Lesarri, Alberto; Fernández, José A

    2013-10-31

    The benzocaine-toluene cluster has been used as a model system to mimic the interaction between the local anesthetic benzocaine and the phenylalanine residue in Na(+) channels. The cluster was generated in a supersonic expansion of benzocaine and toluene in helium. Using a combination of mass-resolved laser-based experimental techniques and computational methods, the complex was fully characterized, finding four conformational isomers in which the molecules are bound through N-H···π and π···π weak hydrogen bonds. The structures of the detected isomers closely resemble those predicted for benzocaine in the inner pore of the ion channels, giving experimental support to previously reported molecular chemistry models.

  1. Molecular identification of Mucorales in human tissues: contribution of PCR electrospray-ionization mass spectrometry.

    Science.gov (United States)

    Alanio, A; Garcia-Hermoso, D; Mercier-Delarue, S; Lanternier, F; Gits-Muselli, M; Menotti, J; Denis, B; Bergeron, A; Legrand, M; Lortholary, O; Bretagne, S

    2015-06-01

    Molecular methods are crucial for mucormycosis diagnosis because cultures are frequently negative, even if microscopy suggests the presence of hyphae in tissues. We assessed PCR/electrospray-ionization mass spectrometry (PCR/ESI-MS) for Mucorales identification in 19 unfixed tissue samples from 13 patients with proven or probable mucormycosis and compared the results with culture, quantitative real-time PCR, 16S-23S rRNA gene internal transcribed spacer region (ITS PCR) and 18S PCR sequencing. Concordance with culture identification to both genus and species levels was higher for PCR/ESI-MS than for the other techniques. Thus, PCR/ESI-MS is suitable for Mucorales identification, within 6 hours, for tissue samples for which microscopy results suggest the presence of hyphae.

  2. The small molecular mass antifungal protein of Penicillium chrysogenum--a mechanism of action oriented review.

    Science.gov (United States)

    Hegedus, Nikoletta; Leiter, Eva; Kovács, Barbara; Tomori, Valéria; Kwon, Nak-Jung; Emri, Tamás; Marx, Florentine; Batta, Gyula; Csernoch, László; Haas, Hubertus; Yu, Jae-Hyuk; Pócsi, István

    2011-12-01

    The β-lactam producing filamentous fungus Penicillium chrysogenum secretes a 6.25 kDa small molecular mass antifungal protein, PAF, which has a highly stable, compact 3D structure and is effective against a wide spectrum of plant and zoo pathogenic fungi. Its precise physiological functions and mode of action need to be elucidated before considering possible biomedical, agricultural or food technological applications. According to some more recent experimental data, PAF plays an important role in the fine-tuning of conidiogenesis in Penicillium chrysogenum. PAF triggers apoptotic cell death in sensitive fungi, and cell death signaling may be transmitted through two-component systems, heterotrimeric G protein coupled signal transduction and regulatory networks as well as via alteration of the Ca(2+) -homeostasis of the cells. Possible biotechnological applications of PAF are also outlined in the review.

  3. Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium \\beta -decay

    CERN Document Server

    Lokhov, Alexey V

    2016-01-01

    Data analysis of the next generation effective antineutrino mass measurement experiment KATRIN requires reliable knowledge of systematic corrections. In particular, the width of the daughter molecular ion excitation spectrum rovibrational band should be known with a better then 1% precision. Very precise ab initio quantum calculations exist, and we compare them with the well known tritium molecule parameters within the framework of a phenomenological model. The rovibrational band width with accuracy of a few percent is interpreted as a result of the zero-point atomic oscillation in the harmonic potential. The Morse interatomic potential is used to investigate the impact of anharmonic atomic oscillations. The calculated corrections cannot account for the difference between the ab initio quantum calculations and the phenomenological model.

  4. Molecularly imprinted polymers as selective adsorbents for ambient plasma mass spectrometry.

    Science.gov (United States)

    Cegłowski, Michał; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2017-05-01

    The application of molecularly imprinted polymers (MIPs) as molecular scavengers for ambient plasma ionization mass spectrometry has been reported for the first time. MIPs were synthesized using methacrylic acid as functional monomer; nicotine, propyphenazone, or methylparaben as templates; ethylene glycol dimethacrylate as a cross-linker; and 2,2'-azobisisobutyronitrile as polymerization initiator. To perform ambient plasma ionization experiments, a setup consisting of the heated crucible, a flowing atmospheric-pressure afterglow (FAPA) plasma ion source, and a quadrupole ion trap mass spectrometer has been used. The heated crucible with programmable temperature allows for desorption of the analytes from MIPs structure which results in their direct introduction into the ion stream. Limits of detection, linearity of the proposed analytical procedure, and selectivities have been determined for three analytes: nicotine, propyphenazone, and methylparaben. The analytes used were chosen from various classes of organic compounds to show the feasibility of the analytical procedure. The limits of detections (LODs) were 10 nM, 10, and 0.5 μM for nicotine, propyphenazone, and methylparaben, respectively. In comparison with the measurements performed for the non-imprinted polymers, the values of LODs were improved for at least one order of magnitude due to preconcentration of the sample and reduction of background noise, contributing to signal suppression. The described procedure has shown linearity in a broad range of concentrations. The overall time of single analysis is short and requires ca. 5 min. The developed technique was applied for the determination of nicotine, propyphenazone, and methylparaben in spiked real-life samples, with recovery of 94.6-98.4%. The proposed method is rapid, sensitive, and accurate which provides a new option for the detection of small organic compounds in various samples. Graphical abstract The experimental setup used for analysis.

  5. Capillary Electrophoresis-Mass Spectrometry for the Analysis of Heparin Oligosaccharides and Low Molecular Weight Heparin.

    Science.gov (United States)

    Sun, Xiaojun; Lin, Lei; Liu, Xinyue; Zhang, Fuming; Chi, Lianli; Xia, Qiangwei; Linhardt, Robert J

    2016-02-01

    Heparins, highly sulfated, linear polysaccharides also known as glycosaminoglycans, are among the most challenging biopolymers to analyze. Hyphenated techniques in conjunction with mass spectrometry (MS) offer rapid analysis of complex glycosaminoglycan mixtures, providing detailed structural and quantitative data. Previous analytical approaches have often relied on liquid chromatography (LC)-MS, and some have limitations including long separation times, low resolution of oligosaccharide mixtures, incompatibility of eluents, and often require oligosaccharide derivatization. This study examines the analysis of glycosaminoglycan oligosaccharides using a novel electrokinetic pump-based capillary electrophoresis (CE)-MS interface. CE separation and electrospray were optimized using a volatile ammonium bicarbonate electrolyte and a methanol-formic acid sheath fluid. The online analyses of highly sulfated heparin oligosaccharides, ranging from disaccharides to low molecular weight heparins, were performed within a 10 min time frame, offering an opportunity for higher-throughput analysis. Disaccharide compositional analysis as well as top-down analysis of low molecular weight heparin was demonstrated. Using normal polarity CE separation and positive-ion electrospray ionization MS, excellent run-to-run reproducibility (relative standard deviation of 3.6-5.1% for peak area and 0.2-0.4% for peak migration time) and sensitivity (limit of quantification of 2.0-5.9 ng/mL and limit of detection of 0.6-1.8 ng/mL) could be achieved.

  6. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry.

    Science.gov (United States)

    Cheon, Dong Huey; Nam, Eun Ji; Park, Kyu Hyung; Woo, Se Joon; Lee, Hye Jin; Kim, Hee Cheol; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2016-01-01

    While human plasma serves as a great source for disease diagnosis, low-molecular-weight (LMW) proteome (mass spectrometry to analyze the LMW proteoforms present in four types of human plasma samples pooled from three healthy controls (HCs) without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. The LMW proteoforms were first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC 3.0. As a result, a total of 442 LMW proteins and cleaved products, including those with post-translational modifications and single amino acid variations, were identified. From additional comparative analysis of plasma samples without immunoaffinity depletion between HCs and colorectal cancer (CRC) patients via top-down approach, tens of LMW proteoforms, including platelet factor 4, were found to show >1.5-fold changes between the plasma samples of HCs and CRC patients, and six of the LMW proteins were verified by Western blot analysis.

  7. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain

  8. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation.

    Science.gov (United States)

    Golan, Amir; Ahmed, Musahid

    2012-10-30

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics(1-4). Fundamental studies of photoionization processes of biomolecules provide information about the electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water(1, 5-9). We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-dimethyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline(10) located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds(1). Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations(11, 12). By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn

  9. The FADE mass-stat: a technique for inserting or deleting particles in molecular dynamics simulations.

    Science.gov (United States)

    Borg, Matthew K; Lockerby, Duncan A; Reese, Jason M

    2014-02-21

    The emergence of new applications of molecular dynamics (MD) simulation calls for the development of mass-statting procedures that insert or delete particles on-the-fly. In this paper we present a new mass-stat which we term FADE, because it gradually "fades-in" (inserts) or "fades-out" (deletes) molecules over a short relaxation period within a MD simulation. FADE applies a time-weighted relaxation to the intermolecular pair forces between the inserting/deleting molecule and any neighbouring molecules. The weighting function we propose in this paper is a piece-wise polynomial that can be described entirely by two parameters: the relaxation time scale and the order of the polynomial. FADE inherently conserves overall system momentum independent of the form of the weighting function. We demonstrate various simulations of insertions of atomic argon, polyatomic TIP4P water, polymer strands, and C60 Buckminsterfullerene molecules. We propose FADE parameters and a maximum density variation per insertion-instance that restricts spurious potential energy changes entering the system within desired tolerances. We also demonstrate in this paper that FADE compares very well to an existing insertion algorithm called USHER, in terms of accuracy, insertion rate (in dense fluids), and computational efficiency. The USHER algorithm is applicable to monatomic and water molecules only, but we demonstrate that FADE can be generally applied to various forms and sizes of molecules, such as polymeric molecules of long aspect ratio, and spherical carbon fullerenes with hollow interiors.

  10. Low-mass molecular dynamics simulation: a simple and generic technique to enhance configurational sampling.

    Science.gov (United States)

    Pang, Yuan-Ping

    2014-09-26

    CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal-isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277K and 1atm with the first folding event occurring as early as 66.1ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal-isobaric MD simulations performed on commodity computers-an important step forward in quantitative biology. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  11. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography

    Science.gov (United States)

    Winter, Gregory T.; Wilhide, Joshua A.; LaCourse, William R.

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  12. CO isotope studies and mass of the Sagittarius B2 molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Lis, D.C.; Goldsmith, P.F.

    1989-02-01

    (C-13)O and (C-18)O observations of the central region of Sagittarius B2 are presented. A (C-13)O to (C-18)O abundance ratio of 9.0 + or - 1.9, consistent with the average ratio in the disk and other Galactic center sources, is obtained. Comparison of the (C-13)O column density based on the present data with H2 column density based on 1300 micron continuum data gives an upper limit of 10 to the -6th for the (C-13)O fractional abundance, a factor of two lower than the local value. The (C-12)O/H2 abundance ratio is a factor of six lower than the local value due to the lower (C-12)O to (C-13)O ratio. It is concluded that abundances of many molecular species in addition to the CO isotopes may be lower than in local clouds. The observations suggest a two-component structure for the cloud, with a constant density component and a component with density having a power-law dependence on the distance from cloud center. Values for the outer radius, total mass, and virial mass of the cloud are derived. 25 references.

  13. Increased molecular mass of hemicellulosic polysaccharides is involved in growth inhibition of maize coleoptiles and mesocotyls under hypergravity conditions.

    Science.gov (United States)

    Soga, K; Harada, K; Wakabayashi, K; Hoson, T; Kamisaka, S

    1999-09-01

    Elongation growth of dark grown maize (Zea mays L cv. Cross Bantam T51) coleoptiles and mesocotyls was suppressed by hypergravity at 30 g and above. Acceleration at 300 g significantly decreased the mechanical extensibility of cell walls of both organs. Hypergravity increased the amounts of hemicellulose and cellulose per unit length in mesocotyl walls, but not in coleoptile walls. The weight average molecular masses of hemicellulosic polysaccharides were also increased by hypergravity in both organs. On the other hand, the activities of beta-glucanases extracted from coleoptile and mesocotyl cell walls were decreased by hypergravity. These results suggest that the decreased activities of beta-glucanases by hypergravity cause an increase in the molecular mass of hemicellulosic polysaccharides of both organs. The upshift of molecular mass of hemicellulosic polysaccharides as well as the thickening of cell walls under hypergravity conditions seems to be involved in making the cell wall mechanically rigid, thereby inhibiting elongation growth of maize coleoptiles and mesocotyls.

  14. Molecular Mass Characterization of Glycosaminoglycans with Different Degrees of Sulfation in Bioengineered Heparin Process by Size Exclusion Chromatography.

    Science.gov (United States)

    Wang, Zhenyu; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2012-10-01

    Different degrees of glycosaminoglycan sulfation result in their different charge densities. The charge density differences impact their migration behavior in polyacrylamide gel electrophoresis and size exclusion chromatography, two of the most common methods for determining relative molecular masses of polysaccharides. In this study, we investigated the feasibility of using commercially available heparin oligosaccharides as calibrants for measuring the relative molecular masses of intermediates in a bioengineered heparin process that have different levels of sulfation. A size exclusion chromatography method was established that eliminates this charge density effect and allows the determination of relative molecular mass using a single calibration curve with heparin oligosaccharides calibrants. This is accomplished by overcoming the electrostatic interaction between the glycosaminoglycans and size exclusion chromatography stationary phase using high ionic strength mobile phase.

  15. Properties of monomeric paramyosin using a transient electric birefringence techniques.

    Science.gov (United States)

    DeLaney, D; Krause, S

    1976-01-01

    Paramyosin samples obtained from the chowder clam, Mercenaria mercenaria, by different extraction techniques were studied using transient electric birefringence techniques. The protein remain monomeric (unaggregated) in 1 mM buffer solution at pH 3.1 to 3.8 and near pH 10. At pH 3.2, the molecules obtained by different extraction techniques exhibit rotational diffusion constants that indicate a 5% difference in length between them, with the probable native form of paramyosin being the longer species. This difference in rotational diffusion constant disappears at higher pH, and, in addition, a large difference in dipole moment between the molecules observed at pH 3.2 also disappears at high pH. These results are used to hypothesize that the rodlike native paramyosin molecules have one or two partly flexible portions on their ends; at one end of each molecule this portion probably contains excess basic amino acids which are charged at low pH to account for the higher dipole moment of this form of paramyosin at these low pH values. At pH 3.2, these portions of the macromolecule are not flexible and act as stiff parts of the rodlike molecules, but they gradually become flexible at higher pH. Possible mechanisms for this change in flexibility are discussed.

  16. Labeling Monomeric Insulin with Renal-Clearable Luminescent Gold Nanoparticles.

    Science.gov (United States)

    Vinluan, Rodrigo D; Yu, Mengxiao; Gannaway, Melissa; Sullins, Justin; Xu, Jing; Zheng, Jie

    2015-12-16

    In the native physiological environment, inorganic nanoparticles (NPs) often induce nonspecific protein adsorption, which could significantly alter the function of the proteins they labeled. As a result, small fluorescent dyes are still widely used in the imaging of proteins in animals due to their minimal interference with protein function. Here, we used monomeric insulin as a model and compared its bioactivity before and after labeling with renal-clearable near-infrared-emitting gold NPs. These NPs were chosen because they have high resistance to serum protein adsorption and low nonspecific accumulation. We have found that a 1:1 insulin-NP ratio can be achieved, where the insulin-NPs show minimal serum protein binding with fully retained bioactivity comparable to that of unlabeled insulin. These results show a proof of concept that renal-clearable NPs can behave like small molecules in protein labeling without changing the individual protein's function, laying down a foundation for in vivo tracking of proteins with multimodality imaging techniques.

  17. Probing the molecular weight distributions of non-boiling petroleum fractions by Ag+ electrospray ionization mass spectrometry.

    Science.gov (United States)

    Roussis, Stilianos G; Proulx, Richard

    2004-01-01

    This work explores the possibility of Ag+ electrospray ionization mass spectrometry (ESI-MS) to determine the molecular weight distributions of non-boiling petroleum fractions. Information about the molecular weight distributions is needed for fundamental studies on the nature of heavy crude oils and bitumens and for the development of novel recovery and processing methods. The method does not depend on thermal processes for the introduction of the fractions into the gas phase of the mass spectrometer, which is a considerable advantage over most other ionization methods. The Ag+ electrospray mass spectra of the fractions analyzed by using a toluene/methanol/cyclohexane (60:28:12%) solvent system display bimodal distributions in the ranges m/z approximately 300 to approximately 3000 and m/z 3000 to approximately 20,000. The abundances of the high molecular weight peak distributions can be reduced by in-source collisional activation experiments. Comparisons with the results obtained for model heteroatom-containing compounds (molecular weight method in this study for the saturate, aromatic, and polar fractions in a bitumen are in qualitative agreement with published molecular weight average results obtained for Cold Lake bitumen fractions analyzed by conventional gel permeation chromatography and field desorption mass spectrometry. Further work is needed to study the nature of the bonds and the interactions of the molecules in the asphaltene fractions by Ag+ ESI-MS.

  18. Cluster secondary ion mass spectrometry and the temperature dependence of molecular depth profiles.

    Science.gov (United States)

    Mao, Dan; Wucher, Andreas; Brenes, Daniel A; Lu, Caiyan; Winograd, Nicholas

    2012-05-01

    The quality of molecular depth profiles created by erosion of organic materials by cluster ion beams exhibits a strong dependence upon temperature. To elucidate the fundamental nature of this dependence, we employ the Irganox 3114/1010 organic delta-layer reference material as a model system. This delta-layer system is interrogated using a 40 keV C(60)(+) primary ion beam. Parameters associated with the depth profile such as depth resolution, uniformity of sputtering yield, and topography are evaluated between 90 and 300 K using a unique wedge-crater beveling strategy that allows these parameters to be determined as a function of erosion depth from atomic force microscope (AFM) measurements. The results show that the erosion rate calibration performed using the known Δ-layer depth in connection with the fluence needed to reach the peak of the corresponding secondary ion mass spectrometry (SIMS) signal response is misleading. Moreover, we show that the degradation of depth resolution is linked to a decrease of the average erosion rate and the buildup of surface topography in a thermally activated manner. This underlying process starts to influence the depth profile above a threshold temperature between 210 and 250 K for the system studied here. Below that threshold, the process is inhibited and steady-state conditions are reached with constant erosion rate, depth resolution, and molecular secondary ion signals from both the matrix and the Δ-layers. In particular, the results indicate that further reduction of the temperature below 90 K does not lead to further improvement of the depth profile. Above the threshold, the process becomes stronger at higher temperature, leading to an immediate decrease of the molecular secondary ion signals. This signal decay is most pronounced for the highest m/z ions but is less for the smaller m/z ions, indicating a shift toward small fragments by accumulation of chemical damage. The erosion rate decay and surface roughness buildup

  19. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Samuel Lara-Gonzalez

    Full Text Available The dimeric nature of triosephosphate isomerases (TIMs is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.

  20. Hybrid Imaging Labels: Providing the Link Between Mass Spectrometry-Based Molecular Pathology and Theranostics

    Science.gov (United States)

    Buckle, Tessa; van der Wal, Steffen; van Malderen, Stijn J.M.; Müller, Larissa; Kuil, Joeri; van Unen, Vincent; Peters, Ruud J.B.; van Bemmel, Margaretha E.M.; McDonnell, Liam A.; Velders, Aldrik H.; Koning, Frits; Vanhaeke, Frank; van Leeuwen, Fijs W. B.

    2017-01-01

    Background: Development of theranostic concepts that include inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) imaging can be hindered by the lack of a direct comparison to more standardly used methods for in vitro and in vivo evaluation; e.g. fluorescence or nuclear medicine. In this study a bimodal (or rather, hybrid) tracer that contains both a fluorescent dye and a chelate was used to evaluate the existence of a direct link between mass spectrometry (MS) and in vitro and in vivo molecular imaging findings using fluorescence and radioisotopes. At the same time, the hybrid label was used to determine whether the use of a single isotope label would allow for MS-based diagnostics. Methods: A hybrid label that contained both a DTPA chelate (that was coordinated with either 165Ho or 111In) and a Cy5 fluorescent dye was coupled to the chemokine receptor 4 (CXCR4) targeting peptide Ac-TZ14011 (hybrid-Cy5-Ac-TZ4011). This receptor targeting tracer was used to 1) validate the efficacy of (165Ho-based) mass-cytometry in determining the receptor affinity via comparison with fluorescence-based flow cytometry (Cy5), 2) evaluate the microscopic binding pattern of the tracer in tumor cells using both fluorescence confocal imaging (Cy5) and LA-ICP-MS-imaging (165Ho), 3) compare in vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) after intravenous administration of hybrid-Cy5-Ac-TZ4011 in tumor-bearing mice. Finally, LA-ICP-MS-imaging (165Ho) was linked to fluorescence-based analysis of excised tissue samples (Cy5). Results: Analysis with both mass-cytometry and flow cytometry revealed a similar receptor affinity, respectively 352 ± 141 nM and 245 ± 65 nM (p = 0.08), but with a much lower detection sensitivity for the first modality. In vitro LA-ICP-MS imaging (165Ho) enabled clear discrimination between CXCR4 positive and negative cells, but fluorescence microscopy was required to determine the

  1. Substrate specificity of low-molecular mass bacterial DD-peptidases.

    Science.gov (United States)

    Nemmara, Venkatesh V; Dzhekieva, Liudmila; Sarkar, Kumar Subarno; Adediran, S A; Duez, Colette; Nicholas, Robert A; Pratt, R F

    2011-11-22

    The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD

  2. Conditions for homogeneous preparation of stable monomeric and oligomeric forms of activated Vip3A toxin from Bacillus thuringiensis.

    Science.gov (United States)

    Kunthic, Thittaya; Surya, Wahyu; Promdonkoy, Boonhiang; Torres, Jaume; Boonserm, Panadda

    2016-07-29

    Bacillus thuringiensis vegetative insecticidal proteins like Vip3A have been used for crop protection and to delay resistance to existing insecticidal Cry toxins. However, little is known about Vip3A's behavior or its mechanism of action, and a structural model is required. Herein, in an effort to facilitate future crystallization and functional studies, we have used the orthogonal biophysical techniques of light scattering and sedimentation to analyze the aggregation behavior and stability of trypsin-activated Vip3A toxin in solution. Both scattering and sedimentation data suggest that at pH 10 the toxin is monomeric and adopts an elongated shape, but after overnight incubation aggregation was observed at all pH values tested (5-12). The narrowest size distribution was observed at pH 7, but it was consistent with large oligomers of ~50 nm on average. The addition of β-D-glucopyranoside (OG) helped in achieving preparations that were stable and with a narrower particle size distribution. In this case, scattering was consistent with a 4-nm monomeric globular Vip3A form. After OG dialysis, 40-nm particles were detected, with a molecular weight consistent with homotetramers. Therefore, OG is proposed as the detergent of choice to obtain a Vip3A crystal for structural studies, either before (monomers) or after dialysis (tetramers).

  3. Very stable high molecular mass multiprotein complex with DNase and amylase activities in human milk.

    Science.gov (United States)

    Soboleva, Svetlana E; Dmitrenok, Pavel S; Verkhovod, Timofey D; Buneva, Valentina N; Sedykh, Sergey E; Nevinsky, Georgy A

    2015-01-01

    For breastfed infants, human milk is more than a source of nutrients; it furnishes a wide array of proteins, peptides, antibodies, and other components promoting neonatal growth and protecting infants from viral and bacterial infection. It has been proposed that most biological processes are performed by protein complexes. Therefore, identification and characterization of human milk components including protein complexes is important for understanding the function of milk. Using gel filtration, we have purified a stable high molecular mass (~1000 kDa) multiprotein complex (SPC) from 15 preparations of human milk. Light scattering and gel filtration showed that the SPC was stable in the presence of high concentrations of NaCl and MgCl2 but dissociated efficiently under the conditions that destroy immunocomplexes (2 M MgCl2 , 0.5 M NaCl, and 10 mM DTT). Such a stable complex is unlikely to be a casual associate of different proteins. The relative content of the individual SPCs varied from 6% to 25% of the total milk protein. According to electrophoretic and mass spectrometry analysis, all 15 SPCs contained lactoferrin (LF) and α-lactalbumin as major proteins, whereas human milk albumin and β-casein were present in moderate or minor amounts; a different content of IgGs and sIgAs was observed. All SPCs efficiently hydrolyzed Plasmid supercoiled DNA and maltoheptaose. Some freshly prepared SPC preparations contained not only intact LF but also small amounts of its fragments, which appeared in all SPCs during their prolonged storage; the fragments, similar to intact LF, possessed DNase and amylase activities. LF is found in human epithelial secretions, barrier body fluids, and in the secondary granules of leukocytes. LF is a protein of the acute phase response and nonspecific defense against different types of microbial and viral infections. Therefore, LF complexes with other proteins may be important for its functions not only in human milk.

  4. Combustion of butanol isomers - A detailed molecular beam mass spectrometry investigation of their flame chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, Patrick; Gueldenberg, Hanna; Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University (Germany); Yang, Bin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui (China); Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA (United States); Yuan, Tao; Qi, Fei [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui (China)

    2011-01-15

    The combustion chemistry of the four butanol isomers, 1-, 2-, iso- and tert-butanol was studied in flat, premixed, laminar low-pressure (40 mbar) flames of the respective alcohols. Fuel-rich ({phi} = 1.7) butanol-oxygen-(25%)argon flames were investigated using different molecular beam mass spectrometry (MBMS) techniques. Quantitative mole fraction profiles are reported as a function of burner distance. In total, 57 chemical compounds, including radical and isomeric species, have been unambiguously assigned and detected quantitatively in each flame using a combination of vacuum ultraviolet (VUV) photoionization (PI) and electron ionization (EI) MBMS. Synchrotron-based PI-MBMS allowed to separate isomeric combustion intermediates according to their different ionization thresholds. Complementary measurements in the same flames with a high mass-resolution EI-MBMS system provided the exact elementary composition of the involved species. Resulting mole fraction profiles from both instruments are generally in good quantitative agreement. In these flames of the four butanol isomers, temperature, measured by laser-induced fluorescence (LIF) of seeded nitric oxide, and major species profiles are strikingly similar, indicating seemingly analog global combustion behavior. However, significant variations in the intermediate species pool are observed between the fuels and discussed with respect to fuel-specific destruction pathways. As a consequence, different, fuel-specific pollutant emissions may be expected, by both their chemical nature and concentrations. The results reported here are the first of their kind from premixed isomeric butanol flames and are thought to be valuable for improving existing kinetic combustion models. (author)

  5. Molecular analysis of intact preen waxes of Calidris canutus (Aves : Scolopacidae) by gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Dekker, MHA; Piersma, T; Damste, JSS; Dekker, Marlèn H.A.; Sinninghe Damsté, Jaap S.

    2000-01-01

    The intact preen wax esters of the red knot Calidris canutus were studied with gas chromatography/mass spectrometry (GC/MS) and GC/MS/MS. In this latter technique, transitions from the molecular ion to fragment ions representing the fatty acid moiety of the wax esters were measured, providing additi

  6. SGCC successfully developed large-capacity sodium-sulfur monomeric battery

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Through many years' cooperation,SGCC and Shanghai Silicate Research Institute of Chinese Academy of Science successfully developed 650 ampere-hours capacity sodium-sulfur monomeric storage battery with the independent intellectual property right

  7. Amphiphile dependency of the monomeric and dimeric forms of acetylcholinesterase from human erythrocyte membrane.

    Science.gov (United States)

    Ott, P; Brodbeck, U

    1984-08-08

    Human erythrocyte membrane-bound acetylcholinesterase was converted to a monomeric species by treatment of ghosts with 2-mercaptoethanol and iodoacetic acid. After solubilization with Triton X-100, the reduced and alkylated enzyme was partially purified by affinity chromatography and separated from residual dimeric enzyme by sucrose density gradient centrifugation in a zonal rotor. Monomeric and dimeric acetylcholinesterase showed full enzymatic activity in presence of Triton X-100 whereas in the absence of detergent, activity was decreased to approx. 20% and 15%, respectively. Preformed egg phosphatidylcholine vesicles fully sustained activity of the monomeric species whereas the dimer was only 80% active. The results suggest that a dimeric structure is not required for manifestation of amphiphile dependency of membrane-bound acetylcholinesterase from human erythrocytes. Furthermore, monomeric enzyme appears to be more easily inserted into phospholipid bilayers than the dimeric species.

  8. Use of multiple picosecond high-mass molecular dynamics simulations to predict crystallographic B-factors of folded globular proteins.

    Science.gov (United States)

    Pang, Yuan-Ping

    2016-09-01

    Predicting crystallographic B-factors of a protein from a conventional molecular dynamics simulation is challenging, in part because the B-factors calculated through sampling the atomic positional fluctuations in a picosecond molecular dynamics simulation are unreliable, and the sampling of a longer simulation yields overly large root mean square deviations between calculated and experimental B-factors. This article reports improved B-factor prediction achieved by sampling the atomic positional fluctuations in multiple picosecond molecular dynamics simulations that use uniformly increased atomic masses by 100-fold to increase time resolution. Using the third immunoglobulin-binding domain of protein G, bovine pancreatic trypsin inhibitor, ubiquitin, and lysozyme as model systems, the B-factor root mean square deviations (mean ± standard error) of these proteins were 3.1 ± 0.2-9 ± 1 Å(2) for Cα and 7.3 ± 0.9-9.6 ± 0.2 Å(2) for Cγ, when the sampling was done for each of these proteins over 20 distinct, independent, and 50-picosecond high-mass molecular dynamics simulations with AMBER forcefield FF12MC or FF14SB. These results suggest that sampling the atomic positional fluctuations in multiple picosecond high-mass molecular dynamics simulations may be conducive to a priori prediction of crystallographic B-factors of a folded globular protein.

  9. Discovery of the Youngest Molecular Outflow associated with an Intermediate-mass protostellar Core, MMS-6/OMC-3

    CERN Document Server

    Takahashi, Satoko

    2011-01-01

    We present sub-arcsecond resolution HCN (4-3) and CO (3-2) observations made with the Submillimeter Array (SMA), toward an extremely young intermediate-mass protostellar core, MMS 6-main, located in the Orion Molecular Cloud 3 region (OMC-3). We have successfully imaged a compact molecular outflow lobe (~1500 AU) associated with MMS6-main, which is also the smallest molecular outflow ever found in the intermediate-mass protostellar cores. The dynamical time scale of this outflow is estimated to be <100 yr. The line width dramatically increases downstream at the end of the molecular outflow ({\\Delta}v~25 km s^{-1}), and clearly shows the bow-shock type velocity structure. The estimated outflow mass (~10^{-4} M_{sun}) and outflow size are approximately 2-4 orders and 1-3 orders of magnitude smaller, while the outflow force (~10^{-4} M_{sun} km s^{-1} yr^{-1}) is similar, as compared to the other molecular outflows studied in OMC-2/3. These results show that MMS 6-main is a protostellar core at the earliest e...

  10. Low-molecular-mass thiol compounds from a free-living highly pathogenic amoeba, Naegleria fowleri.

    Science.gov (United States)

    Ondarza, Raúl N; Iturbe, Angélica; Hernández, Eva; Hurtado, Gerardo

    2003-04-01

    Acid extracts labelled with the fluorescent reagent monobromobimane and separated by HPLC have enabled the detection of low-molecular-mass thiol compounds in Naegleria fowleri for the first time. The amounts detected are expressed in nmol/1 x 10(6) trophozoites cultivated at various stages of growth in the appropriate culture medium. N. fowleri is a highly pathogenic free-living amoeba, in which we found important thiol compounds, some of them in their reduced and oxidized forms. Unlike cysteine and glutathione, a number of these are not represented in normal human lymphocytes. Some of these thiol compounds from Naegleria must have their respective disulphide reductases, although the presence of thiol-disulphide exchange reactions must be considered. Ovothiol A, with antioxidant properties, is an example of a compound that is kept reduced by trypanothione in trypanosomatids, although no disulphide reductase for ovothiol A has yet been discovered. In our case we were unable to detect this biothiol in Naegleria. The presence of thiol compounds that seem to be particular to this pathogen and which are not present in human lymphocytes opens the possibility of searching for disulphide-reducing enzymes that can serve as drug targets.

  11. Diversity of Clonostachys species assessed by molecular phylogenetics and MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Abreu, Lucas M; Moreira, Gláucia M; Ferreira, Douglas; Rodrigues-Filho, Edson; Pfenning, Ludwig H

    2014-12-01

    We assessed the species diversity among 45 strains of Clonostachys from different substrates and localities in Brazil using molecular phylogenetics, and compared the results with the phenotypic classification of strains obtained from matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Phylogenetic analyses were based on beta tubulin (Tub), ITS-LSU rDNA, and a combined Tub-ITS DNA dataset. MALDI-TOF MS analyses were performed using intact conidia and conidiophores of strains cultivated on oatmeal agar and 4% malt extract agar. Six known species were identified: Clonostachys byssicola, Clonostachys candelabrum, Clonostachys pseudochroleuca, Clonostachys rhizophaga, Clonostachys rogersoniana, and Clonostachys rosea. Two clades and two singleton lineages did not correspond to known species represented in the reference DNA dataset and were identified as Clonostachys sp. 1-4. Multivariate cluster analyses of MALDI-TOF MS data classified the strains into eight clusters and three singletons, corresponding to the ten identified species plus one additional cluster containing two strains of C. rogersoniana that split from the other co-specific strains. The consistent results of MALDI-TOF MS supported the identification of strains assigned to C. byssicola and C. pseudochroleuca, which did not form well supported clades in all phylogenetic analyses, but formed distinct clusters in the MALDI-TOF dendrograms.

  12. Carbohydrate-rich high-molecular-mass antigens are strongly recognized during experimental Histoplasma capsulatum infection

    Directory of Open Access Journals (Sweden)

    Fabrine Sales Massafera Tristão

    2012-04-01

    Full Text Available INTRODUCTION: During histoplasmosis, Histoplasma capsulatum soluble antigens (CFAg can be naturally released by yeast cells. Because CFAg can be specifically targeted during infection, in the present study we investigated CFAg release in experimental murine histoplasmosis, and evaluated the host humoral immune response against high-molecular-mass antigens (hMMAg. >150 kDa, the more immunogenic CFAg fraction. METHODS: Mice were infected with 2.2x10(4 H. capsulatum IMT/HC128 yeast cells. The soluble CFAg, IgG anti-CFAg, IgG anti-hMMAg, and IgG-hMMAg circulating immune complexes (CIC levels were determined by enzymelinked immunosorbent assay, at days 0, 7, 14, and 28 post-infection. RESULTS: We observed a progressive increase in circulating levels of CFAg, IgG anti-CFAg, IgG anti-hMMAg, and IgG-hMMAg CIC after H. capsulatum infection. The hMMAg showed a high percentage of carbohydrates and at least two main immunogenic components. CONCLUSIONS: We verified for the first time that hMMAg from H. capsulatum IMT/HC128 strain induce humoral immune response and lead to CIC formation during experimental histoplasmosis.

  13. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry

    Science.gov (United States)

    Chandra, Subhash; Morrison, George H.

    1995-05-01

    The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.

  14. Molecular characterization and expression analysis of fat mass and obesity-associated gene in rabbit.

    Science.gov (United States)

    Xing, Jinyi; Jing, Wenqian; Jiang, Yunliang

    2013-12-01

    Fat mass and obesity-associated (FTO) gene codes for a nuclear protein of the AlkB related nonhaem iron and 2-oxoglutaratedependent oxygenase superfamily, and is involved in animal fat deposition and human obesity. In this work, the molecular characterization and expression features of rabbit (Oryctolagus cuniculus) FTO cDNA were analysed. The rabbit FTO cDNA with a size of 2158 bp was cloned, including 1515 bp of the open reading frame that encoded a basic protein of 504 amino acids. Homologous comparison indicated that the rabbit FTO shared 36.36-91.88% identity with those from other species and phylogenetic analysis showed that the rabbit FTO is closely related to human, but more distantly related to zebrafish. The New Zealand rabbit FTO mRNA was detected in all tissues examined, with the highest levels found in the spleen and the lowest found in the kidney. However, no significant differences were seen in cerebellum, corpora quadrigemina, medulla oblongata and cerebral cortex of commercial adult rabbits. Moreover, mRNA levels of FTO in liver tissues were significantly increased in lactating New Zealand rabbits compared with 70-day-old, 90-day-old and gestating rabbits (P rabbits than in 70-day-old rabbits (P rabbits were not significantly different (P > 0.05).

  15. Viscous-flow properties and viscosity-average molecular mass of orange peel pectin

    Institute of Scientific and Technical Information of China (English)

    周尽花; 吴宇雄; 沈志强

    2008-01-01

    The viscous-flow properties of pectin from the residue of orange peel after extraction of essential oil and flavonoid were studied and the viscosity-average molecular mass(Mv,ave) of this kind of pectin was determined.Experimental results show that Arrhenius viscous-flow equation can be applied to describing the effect of temperature on viscosity of this kind of orange peel pectin solutions with the average viscous-flow activation energy being 17.91 kJ/mol(depending on the concentration).Neither power equation,η =K1 cA1,nor exponential equation,η=K2exp(A2c) can describe the effect of concentration on viscosity of this kind of orange peel pectin solutions well.However,it seems that exponential equation model is more suitable to describe their relation due to its higher linear correlation coefficient.Schulz-Blaschke equation can be used to calculate the intrinsic viscosity of this kind of orange peel pectin.The Mv,ave of the orange peel pectin is 1.65×105 g/mol.

  16. Investigation into the Effect of Molds in Grasses on Their Content of Low Molecular Mass Thiols

    Directory of Open Access Journals (Sweden)

    Adam Nawrath

    2012-10-01

    Full Text Available The aim of this study was to investigate the effect of molds on levels of low molecular mass thiols in grasses. For this purpose, the three grass species Lolium perenne, Festulolium pabulare and Festulolium braunii were cultivated and sampled during four months, from June to September. The same species were also grown under controlled conditions. High-performance liquid chromatography with electrochemical detection was used for quantification of cysteine, reduced (GSH and oxidized (GSSG glutathione, and phytochelatins (PC2, PC3, PC4 and PC5. Data were statistically processed and analyzed. Thiols were present in all examined grass species. The effect of fungicide treatments applied under field conditions on the content of the evaluated thiols was shown to be insignificant. Species influenced (p < 0.05 PC3 and GSSG content. F. pabulare, an intergeneric hybrid of drought- and fungi-resistant Festuca arundinacea, was comparable in PC3 content with L. perenne and F. braunii under field conditions. Under controlled conditions, however, F. pabulare had higher (p < 0.05 PC3 content than did L. perenne and F. braunii. Under field conditions, differences between the evaluated species were recorded only in GSSG content, but only sampling in June was significant. F. pabulare had higher (p < 0.05 GSSG content in June than did L. perenne and F. braunii.

  17. Mapping of low molecular weight heparins using reversed phase ion pair liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Li, Daoyuan; Chi, Lequan; Jin, Lan; Xu, Xiaohui; Du, Xuzhao; Ji, Shengli; Chi, Lianli

    2014-01-01

    Low molecular weight heparins (LMWHs) are structurally complex, highly sulfated and negatively charged, linear carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. They are widely used as anticoagulant drugs possessing better bioavailability, longer half-life, and lower side effects than heparin. Comprehensive structure characterization of LMWHs is important for drug quality assurance, generic drug application, and new drug research and development. However, fully characterization of all oligosaccharide chains in LMWHs is not feasible for current available analytical technologies due to their structure complexity and heterogeneity. Fingerprinting profiling is an efficient way for LMWHs' characterization and comparison. In this work, we present a simple, sensitive, and powerful analytical approach for structural characterization of LMWHs. Two different LMWHs, enoxaparin and nadroparin, were analyzed using reversed phase ion pair electrospray ionization mass spectrometry (RPIP-ESI-MS). More than 200 components were identified, including major structures, minor structures, and process related impurities. This approach is robust for high resolution and complementary fingerprinting analysis of LMWHs.

  18. {sup 252}Cf plasma desorption and laser desorption mass spectrometry for the determination of molecular weight distribution of coal derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.R.; Bartle, K.D.; Ross, A.B.; Herod, A.A.; Kandiyoti, R.; Larsen, J.W. [University of Leeds, Leeds (United Kingdom). School of Chemistry

    1999-11-01

    A detailed knowledge of the molecular mass (MM) distribution in coal and its derived products is essential for a fundamental understanding of coal structure, and of the processes occurring during coal conversion. Fractionation using size exclusion chromatography (s.e.c.) using N-methyl-2-pyrrolidinone as the mobile phase has been applied to such materials and has provided improved MM distributions. Absolute calibration has been provided using matrix assisted laser desorption ionisation mass spectrometry (MAl.d.I.-m.s.). An alternative method of volatilising and ionising large molecules for mass spectrometry (m.s.) is {sup 252}Cf plasma desorption ({sup 252}Cf p.d.-m.s.). This involves the use of energetic fission fragments from the decay of {sup 252}Cf and produces mass spectra consisting predominantly of molecular ions from a range of polymers and biomolecules. This has been used by other workers to determine the molecular weight distribution of heavy distillation residues obtained from coal liquefaction processes either unfractionated or fractionated into broad fractions. Generally, a good agreement was obtained between values of MM determined by {sup 252}Cf p.d.-m.s. and s.e.c. A comparison is reported of MM distribution determined by {sup 252}Cf p.d.-m.s. and laser desorption mass spectrometry (l.d.-m.s.) for narrower fractions separated by s.e.c. from a coal tar pitch. 19 refs., 4 figs., 1 tab.

  19. Two Mass Distributions in the L 1641 Molecular Clouds: The Herschel connection of Dense Cores and Filaments in Orion A

    CERN Document Server

    Polychroni, D; Elia, D; Roy, A; Molinari, S; Martin, P; Andre, Ph; Turrini, D; Rygl, K L J; Benedettini, M; Busquet, G; di Giorgio, A M; Pestalozzi, M; Pezzuto, S; Arzoumanian, D; Bontemps, S; Di Francesco, J; Hennemann, M; Hill, T; Konyves, V; Menshchikov, A; Motte, F; Nguyen-Luong, Q; Peretto, N; Schneider, N; White, G

    2013-01-01

    We present the Herschel Gould Belt survey maps of the L\\,1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 Solar masses and drives the shape of the CMF at higher masses, which we fit with a power law of the form d$N$/dlog$M \\propto M^{-1.4\\pm0.4}$. The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 Solar masses and leads to a flattening of the CMF at masses lower than ~4 Solar masses. We postulate that this difference between the mass distributi...

  20. Complementary use of molecular and element-specific mass spectrometry for identification of selenium compounds related to human selenium metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Gammelgaard, Bente; Gabel-Jensen, Charlotte; Stuerup, Stefan; Hansen, Helle R. [University of Copenhagen, Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, Copenhagen (Denmark)

    2008-04-15

    The aim of this paper is to give an overview of analytical data on the identification of selenium compounds in biological samples with relevance for selenium metabolism. Only studies applying the combination of element-specific inductively coupled plasma mass spectrometry as well as molecular electrospray mass spectrometry detection have been included. Hence, selenium compounds are only considered identified if molecular mass spectra obtained by analysis of the authentic biological sample have been provided. Selenium compounds identified in selenium-accumulating plants and yeast are included, as extracts from such plants and yeast have been widely used for examination of the cancer-preventive effect of selenium in cell lines, animal models and human intervention trials. Hence, these selenium compounds are available for absorption and further metabolism. Identification of selenium metabolites in simulated gastric and intestinal juice, intestinal epithelial tissue, liver and urine is described. Hence, selenium metabolites identified in relation to absorption, metabolism and excretion are included. (orig.)

  1. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    Science.gov (United States)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  2. Detection and investigation of the molecular nature of low-molecular-mass copper ions in isolated rheumatoid knee-joint synovial fluid.

    Science.gov (United States)

    Naughton, D P; Knappitt, J; Fairburn, K; Gaffney, K; Blake, D R; Grootveld, M

    1995-03-20

    Low-molecular-mass copper(II) species have been detected and quantified in ultrafiltrates (n = 7) of rheumatoid synovial fluid (SF) by a highly-sensitive HPLC-based assay system with the ability to determine Cu(II) concentrations of ultrafiltrates resulted in complexation by histidine > alanine > formate > threonine > lactate > tyrosine > phenylalanine, their effectiveness in this context being in the given order. CD spectra of Cu(II)-treated samples of intact SF exhibited absorption bands typical of copper(II)-albumin complexes, in addition to a band attributable to a low-molecular-mass histidinate complex (lambda min 610 nm). Since both albumin and histidine are potent radical scavengers, these results indicate that any .OH radical generated from bound copper ions will be 'site-specifically' scavenged. Hence, low-molecular-mass copper complexes with the ability to promote the generation of .OH radical which can then escape from the metal ion co-ordination sphere (and in turn, cause damage to critical biomolecules) appear to be absent from inflammatory SF.

  3. Comparison of LAMP and PCR for molecular mass screening of sand flies for Leishmania martiniquensis infection

    Science.gov (United States)

    Tiwananthagorn, Saruda; Kato, Hirotomo; Yeewa, Ranchana; Muengpan, Amontip; Polseela, Raxsina; Leelayoova, Saovanee

    2017-01-01

    BACKGROUND Leishmaniasis caused by Leishmania martiniquensis infection has been reported in human and domestic animals of Martinique Island, Germany, Switzerland, USA, Myanmar and Thailand. The peculiar clinical features of disseminated cutaneous and visceral forms co-existence render the urgent need of specific diagnostic tool to identify the natural sand fly vectors for effective prevention and control strategies. Loop-mediated isothermal amplification (LAMP) of 18S rRNA gene as well as polymerase chain reaction (PCR) of minicircle kinetoplast DNA gene (PCR-mkDNA) have never been applied to detect L. martiniquensis and L. siamensis in sand fly vectors. OBJECTIVE The present study was aimed to validate malachite green-LAMP (MG-LAMP) and PCR-mkDNA techniques to detect L. martiniquensis in sand fly vectors, compared with the conventional PCR of internal transcribed spacer 1 (PCR-ITS1). METHODS We compared the validity of LAMP of 18S rRNA gene and PCR-mkDNA, to PCR-ITS1 in simulation model of L. martiniquensis infection in Sergentomyia gemmea sand flies. Attributable to the sensitivity and specificity, PCR-mkDNA was consecutively applied to detect L. martiniquensis in 380 female sand fly individuals captured in the newly identified affected region of Lamphun Province, Thailand. FINDINGS AND MAIN CONCLUSIONS Results showed that PCR-mkDNA could detect at least one promastigote per sand fly, which was 10-time superior to LAMP and PCR-ITS1. In addition, PCR-mkDNA was more specific, able to differentiate L. martiniquensis from other viscerotropic Leishmania species, such as L. siamensis, L. (L.) donovani, and L. (L.) infantum. Consecutively, mass screening of L. martiniquensis in 380 female sand fly individuals by PCR-mkDNA was implemented in a new affected area of Thailand where a patient with leishmaniasis/HIV co-infection resides; however Leishmania DNA was undetected. In conclusion, PCR-mkDNA is a promising tool for molecular mass screening of L. martiniquensis

  4. A Ten Billion Solar Mass Outflow of Molecular Gas Launched by Radio Bubbles in the Abell 1835 Brightest Cluster Galaxy

    CERN Document Server

    McNamara, B R; Nulsen, P E J; Edge, A C; Murray, N W; Main, R A; Vantyghem, A N; Combes, F; Fabian, A C; Salome, P; Kirkpatrick, C C; Baum, S A; Bregman, J N; Donahue, M; Egami, E; Hamer, S; O'Dea, C P; Oonk, J B R; Tremblay, G; Voit, G M

    2013-01-01

    We report ALMA Early Science observations of the Abell 1835 brightest cluster galaxy (BCG) in the CO (3-2) and CO (1-0) emission lines. We detect 5E10 solar masses of molecular gas within 10 kpc of the BCG. Its velocity width of ~130 km/s FWHM is too narrow to be supported by dynamical pressure. The gas may instead be supported in a rotating, turbulent disk oriented nearly face-on. The disk is forming stars at a rate of 100-180 solar masses per year. Roughly 1E10 solar masses of molecular gas is projected 3-10 kpc to the north-west and to the east of the nucleus with line of sight velocities lying between -250 km/s to +480 km/s with respect to the systemic velocity. Although inflow cannot be ruled out, the rising velocity gradient with radius is consistent with a broad, bipolar outflow driven by radio jets or buoyantly rising X-ray cavities. The molecular outflow may be associated with an outflow of hot gas in Abell 1835 seen on larger scales. Molecular gas is flowing out of the BCG at a rate of approximately...

  5. The effect of including molecular opacities of variable composition on the evolution of intermediate-mass AGB stars

    CERN Document Server

    Fishlock, C K; Stancliffe, R J

    2013-01-01

    Calculations from stellar evolutionary models of low- and intermediate-mass asymptotic giant branch (AGB) stars provide predictions of elemental abundances and yields for comparison to observations. However, there are many uncertainties that reduce the accuracy of these predictions. One such uncertainty involves the treatment of low-temperature molecular opacities that account for the surface abundance variations of C, N, and O. A number of prior calculations of intermediate-mass AGB stellar models that incorporate both efficient third dredge-up and hot bottom burning include a molecular opacity treatment which does not consider the depletion of C and O due to hot bottom burning. Here we update the molecular opacity treatment and investigate the effect of this improvement on calculations of intermediate-mass AGB stellar models. We perform tests on two masses, 5 M$_{\\odot}$ and 6 M$_{\\odot}$, and two metallicities, $Z~=~0.001$ and $Z~=~0.02$, to quantify the variations between two opacity treatments. We find t...

  6. Molecular characterization and expression analysis of fat mass and obesity-associated gene in rabbit

    Indian Academy of Sciences (India)

    Jinyi Xing; Wenqian Jing; Yunliang Jiang

    2013-12-01

    Fat mass and obesity-associated (FTO) gene codes for a nuclear protein of the AlkB related nonhaem iron and 2-oxoglutarate-dependent oxygenase superfamily, and is involved in animal fat deposition and human obesity. In this work, the molecular characterization and expression features of rabbit (Oryctolagus cuniculus) FTO cDNA were analysed. The rabbit FTO cDNA with a size of 2158 bp was cloned, including 1515 bp of the open reading frame that encoded a basic protein of 504 amino acids. Homologous comparison indicated that the rabbit FTO shared 36.36–91.88% identity with those from other species and phylogenetic analysis showed that the rabbit FTO is closely related to human, but more distantly related to zebrafish. The New Zealand rabbit FTO mRNA was detected in all tissues examined, with the highest levels found in the spleen and the lowest found in the kidney. However, no significant differences were seen in cerebellum, corpora quadrigemina, medulla oblongata and cerebral cortex of commercial adult rabbits. Moreover, mRNA levels of FTO in liver tissues were significantly increased in lactating New Zealand rabbits compared with 70-day-old, 90-day-old and gestating rabbits $(P \\lt 0.05)$. In contrast, FTO mRNA levels were significantly lower in longissimus dorsi muscle of 90-day-old New Zealand rabbits than in 70-day-old rabbits $(P \\lt 0.05)$. However, the expression levels of FTO in mammary gland and ovary of gestating and lactating rabbits were not significantly different $(P \\gt 0.05)$.

  7. High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization

    Science.gov (United States)

    Kundu, S.; Fisseha, R.; Putman, A. L.; Rahn, T. A.; Mazzoleni, L. R.

    2012-06-01

    The detailed molecular composition of laboratory generated limonene ozonolysis secondary organic aerosol (SOA) was studied using ultrahigh-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Approximately 1200 molecular formulas were identified in the SOA over the mass range of 140 to 850 Da. Four characteristic groups of high relative abundance species were observed; they indicate an array of accretion products that retain a large fraction of the limonene skeleton. The identified molecular formulas of each of the groups are related to one another by CH2, O and CH2O homologous series. The CH2 and O homologous series of the low molecular weight (MW) SOA (m/z z > 300) were found to constitute a significant number fraction of the identified SOA components. The formation of high MW compounds was evaluated by molecular formula trends, fragmentation analysis of select high MW compounds and a comprehensive reaction matrix including the identified low MW SOA, hydroperoxides and Criegee radicals as building blocks. Although the formation of high MW SOA may occur via a variety of radical and non-radical reaction channels, the combined approach indicates a greater importance of the non-condensation reactions over aldol and ester condensation reaction channels. Among these hemi-acetal reactions appear to be most dominant followed by hydroperoxide and Criegee reaction channels.

  8. A monomeric variant of insulin degrading enzyme (IDE loses its regulatory properties.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    Full Text Available BACKGROUND: Insulin degrading enzyme (IDE is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure. METHODOLOGY/PRINCIPAL FINDINGS: IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild type enzyme it displayed Michaelis-Menten kinetic behavior. With the substrate Abz-GGFLRKHGQ-EDDnp, monomeric IDE retained approximately 25% of the wild type activity. In contrast with the larger peptide substrates beta-endorphin and amyloid beta peptide 1-40, monomeric IDE retained only 1 to 0.25% of wild type activity. Unlike wild type IDE neither bradykinin nor dynorphin B-9 activated the monomeric variant of the enzyme. Similarly, monomeric IDE was not activated by polyphosphates under conditions in which the activity of wild type enzyme was increased more than 50 fold. CONCLUSIONS/SIGNIFICANCE: These findings serve to establish the dimer interface in IDE and demonstrate the requirement for an oligomeric form of the enzyme for its regulatory properties. The data support a mechanism where the binding of activators to oligomeric IDE induces a conformational change that cannot occur in the monomeric variant. Since a conformational change from a closed to a more open structure is likely the rate-determining step in the IDE reaction, the subunit induced conformational change likely shifts the structure of the oligomeric enzyme to a more open conformation.

  9. Identification of Intermediates in Pyridine Pyrolysis with Molecular-beam Mass Spectrometry and Tunable Synchrotron VUV Photoionization

    Institute of Scientific and Technical Information of China (English)

    Xin Hong; Taichang Zhang; Lidong Zhang; Fei Qi

    2009-01-01

    The pyrolysis of pyridine (5.26% pyridine in argon) was performed with tunable synchrotron vacuum ultraviolet photoionization and molecular-beam mass spectrometry technique at the temperature range of 1255-1765 K at 267 Pa. About 20 products and intermediates, containing major species H2, HCN, C2H2, C5H3N, C4H2, and C3H3N, were identified by near-threshold measurements of photoionization mass spectra and their mole fractions vs.temperatures were estimated. The major reaction pathways are analyzed based on the experimental observations.

  10. TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE HERSCHEL CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A

    Energy Technology Data Exchange (ETDEWEB)

    Polychroni, D. [Department of Astrophysics, University of Athens, Astronomy and Mechanics, Faculty of Physics, Panepistimiopolis, 15784 Zografos, Athens (Greece); Schisano, E.; Elia, D.; Molinari, S.; Turrini, D.; Rygl, K. L. J.; Benedettini, M.; Busquet, G.; Di Giorgio, A. M.; Pestalozzi, M.; Pezzuto, S. [Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Roy, A.; André, Ph.; Hennemann, M.; Hill, T.; Könyves, V. [Laboratoire AIM, CEA/IRFU CNRS/INSU Université Paris Diderot, Paris-Saclay, F-91191 Gif-sur-Yvette (France); Martin, P. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Di Francesco, J. [National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Arzoumanian, D. [IAS, CNRS (UMR 8617), Université Paris-Sud, Bâtiment 121, F-91400 Orsay (France); Bontemps, S., E-mail: dpolychroni@phys.uoa.gr [Université de Bordeaux, Laboratoire d' Astrophysique de Bordeaux, CNRS/INSU, UMR 5804, BP 89, F-33271, Floirac Cedex (France); and others

    2013-11-10

    We present Herschel survey maps of the L 1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of the dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there, is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 M {sub ☉} and drives the shape of the core mass function (CMF) at higher masses, which we fit with a power law of the form dN/dlogM∝M {sup –1.4±0.4}. The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 M {sub ☉} and leads to a flattening of the CMF at masses lower than ∼4 M {sub ☉}. We postulate that this difference between the mass distributions is due to the higher proportion of gas that is available in the filaments, rather than in the diffuse cloud.

  11. Hypergravity increases the molecular mass of xyloglucans by decreasing xyloglucan-degrading activity in azuki bean epicotyls.

    Science.gov (United States)

    Soga, K; Wakabayashi, K; Hoson, T; Kamisaka, S

    1999-06-01

    Elongation growth of dark-grown azuki bean (Vigna angularis Ohwi et Ohashi cv. Takara) epicotyls was suppressed by hypergravity at 30 x g and above. Acceleration at 300 x g significantly decreased the mechanical extensibility of cell walls. The amounts of cell wall polysaccharides (pectin, hemicellulose-II and cellulose) per unit length of epicotyls increased under the hypergravity condition. Hypergravity also increased the amounts and the weight-average molecular mass of xyloglucans in the hemicellulose-II fraction, while decreasing the activity of xyloglucan-degrading enzymes extracted from epicotyl cell walls. These results suggest that hypergravity increases the amounts and the molecular mass of xyloglucans by decreasing xyloglucan-degrading activity. Modification of xyloglucan metabolism as well as the thickening of cell walls under hypergravity conditions seems to be involved in making the cell wall mechanically rigid, thereby inhibiting elongation growth of azuki bean epicotyls.

  12. Effect of the molecular mass of tremella polysaccharides on accelerated recovery from cyclophosphamide-induced leucopenia in rats.

    Science.gov (United States)

    Jiang, Rui-Zhi; Wang, Ying; Luo, Hao-Ming; Cheng, Yan-Qiu; Chen, Ying-Hong; Gao, Yang; Gao, Qi-Pin

    2012-03-23

    The body of tremella were decocted with water, and hydrolyzed with 0.1 mol/L hydrochloric acid for different times, giving tremella polysaccharides with six molecular mass values. The structures of all the tremella polysaccharides had non-reducing terminals of β-D-pyranglucuronide, the backbone was composed of (1 → 3)-linked β-D-manno-pyranoside, and the side chain composed of (1 → 6)-linked β-D-xylopyranoside was attached to the C(2) of the backbone mannopyranoside. Immunomodulatory effect studies indicated that tremella polysaccharides increased the counts of leukocytes in the peripheral blood which were significantly lowered by cyclophosphamide, and the lower the molecular mass of the tremella polysaccharide, the better this effect was.

  13. Effect of the Molecular Mass of Tremella Polysaccharides on Accelerated Recovery from Cyclophosphamide-Induced Leucopenia in Rats

    Directory of Open Access Journals (Sweden)

    Qi-Pin Gao

    2012-03-01

    Full Text Available The body of tremella were decocted with water, and hydrolyzed with 0.1 mol/L hydrochloric acid for different times, giving tremella polysaccharides with six molecular mass values. The structures of all the tremella polysaccharides had non-reducing terminals of β-D-pyranglucuronide, the backbone was composed of (1→3-linked β-D-manno-pyranoside, and the side chain composed of (1→6-linked β-D-xylopyranoside was attached to the C2 of the backbone mannopyranoside. Immunomodulatory effect studies indicated that tremella polysaccharides increased the counts of leukocytes in the peripheral blood which were significantly lowered by cyclophosphamide, and the lower the molecular mass of the tremella polysaccharide, the better this effect was.

  14. The Relationship Between Molecular Gas, HI, and Star Formation in the Low-Mass, Low-Metallicity Magellanic Clouds

    CERN Document Server

    Jameson, Katherine E; Leroy, Adam K; Meixner, Margaret; Roman-Duval, Julia; Gordon, Karl; Hughes, Annie; Israel, Frank P; Rubio, Monica; Indebetouw, Remy; Madden, Suzanne C; Bot, Caroline; Hony, Sacha; Cormier, Diane; Pellegrini, Eric W; Galametz, Maud; Sonneborn, George

    2015-01-01

    The Magellanic Clouds provide the only laboratory to study the effect of metallicity and galaxy mass on molecular gas and star formation at high (~20 pc) resolution. We use the dust emission from HERITAGE Herschel data to map the molecular gas in the Magellanic Clouds, avoiding the known biases of CO emission as a tracer of H2. Using our dust-based molecular gas estimates, we find molecular gas depletion times of ~0.4 Gyr in the LMC and ~0.6 SMC at 1 kpc scales. These depletion times fall within the range found for normal disk galaxies, but are shorter than the average value, which could be due to recent bursts in star formation. We find no evidence for a strong intrinsic dependence of the molecular gas depletion time on metallicity. We study the relationship between gas and star formation rate across a range in size scales from 20 pc to ~1 kpc, including how the scatter in molecular gas depletion time changes with size scale, and discuss the physical mechanisms driving the relationships. We compare the metal...

  15. The signaling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii.

    Science.gov (United States)

    Ahumada-Manuel, Carlos Leonel; Guzmán, Josefina; Peña, Carlos; Quiroz-Rocha, Elva; Espín, Guadalupe; Núñez, Cinthia

    2017-02-01

    Azotobacter vinelandii is a soil bacterium that produces the polysaccharide alginate. In this work, we identified a miniTn5 mutant, named GG9, which showed increased alginate production of higher molecular mass, and increased expression of the alginate biosynthetic genes algD and alg8 when compared to its parental strain. The miniTn5 was inserted within ORF Avin07920 encoding a hypothetical protein. Avin07910, located immediately downstream and predicted to form an operon with Avin07920, encodes an inner membrane multi-domain signaling protein here named mucG. Insertional inactivation of mucG resulted in a phenotype of increased alginate production of higher molecular mass similar to that of mutant GG9. The MucG protein contains a periplasmic and putative HAMP and PAS domains, which are linked to GGDEF and EAL domains. The last two domains are potentially involved in the synthesis and degradation, respectively, of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP), a secondary messenger that has been reported to be essential for alginate production. Therefore, we hypothesized that the negative effect of MucG on the production of this polymer could be explained by the putative phosphodiesterase activity of the EAL domain. Indeed, we found that alanine replacement mutagenesis of the MucG EAL motif or deletion of the entire EAL domain resulted in increased alginate production of higher molecular mass similar to the GG9 and mucG mutants. To our knowledge, this is the first reported protein that simultaneous affects the production of alginate and its molecular mass.

  16. CAPILLARY ELECTROPHORETIC ANALYSIS OF LOW-MOLECULAR-MASS OF CA SPECIES IN PHLOEM SAP OF Ricinus communis L.

    OpenAIRE

    Fitri, Noor; Thiele, Björn; Günther, Klaus; Buchari, Buchari

    2010-01-01

    A capillary electrophoretic (CE) analysis with ultra-violet (UV) detection was performed for further separation of low-molecular-mass (LMM) calcium species in phloem sap of Ricinus communis L. Two different background electrolytes (BGE) were used for the separation; these are (1) hydrogen phosphate/dihydrogen phosphate buffer containing cetyltrimethylammonium bromide (CTAB) as an electro-osmotic flow (EOF) modifier, and (2) boric acid buffer containing CTAB. Various parameters affecting the a...

  17. Quantitation of drugs via molecularly imprinted polymer solid phase extraction and electrospray ionization mass spectrometry: benzodiazepines in human plasma

    OpenAIRE

    2011-01-01

    The association of solid phase extraction with molecularly imprinted polymers (MIP) and electrospray ionization mass spectrometry (ESI-MS) is applied to the direct extraction and quantitation of benzodiazepines in human plasma. The target analytes are sequestered by MIP and directly analyzed by ESI-MS. Due to the MIP highly selective extraction, ionic suppression during ESI is minimized; hence no separation is necessary prior to ESI-MS, which greatly increases analytical speed. Benzodiazepine...

  18. Dereplication of Flavonoid Glycoconjugates from Adenocalymma imperatoris-maximilianii by Untargeted Tandem Mass Spectrometry-Based Molecular Networking.

    Science.gov (United States)

    de Oliveira, Gibson Gomes; Carnevale Neto, Fausto; Demarque, Daniel Pecoraro; de Sousa Pereira-Junior, José Antônio; Sampaio Peixoto Filho, Rômulo César; de Melo, Sebastião José; da Silva Almeida, Jackson Roberto Guedes; Lopes, João Luiz Callegari; Lopes, Norberto Peporine

    2017-05-01

    The interpretation of large datasets acquired using high performance liquid chromatography coupled with tandem mass spectrometry represents one of the major challenges in natural products research. Here we propose the use of molecular networking to rapid identify the known secondary metabolites from untargeted MS/MS analysis of Adenocalymma imperatoris-maximilianii plant extracts. The leaves, stems and roots of A. imperatoris-maximilianii were extracted using different solvents according to Snyder selectivity triangle. The samples were analyzed by HPLC coupled with ion trap mass spectrometer in a collision-induced dissociation MS/MS configuration in both positive and negative electrospray ionization modes. Molecular networking simultaneously organized the spectra by cosine similarity. The chemical identification was performed based on the systematic study of the main fragmentation pathways observed for the resulting network. The untargeted tandem mass spectrometry-based molecular networking allowed for the identification of 63 metabolites, mainly mono-, di- and tri-, C- and/or O-glycosyl flavones. Molecular networking was capable not only to dereplicate known flavonoids, but also to point out related prenyl derivatives, described for the first time in Adenocalymma species. The gas-phase reaction route to form the characteristic [M-H2O-(30/60/90)](+) fragments in C-glycosyl flavones was suggested as sequential sugar ring opening followed by retro-aldol elimination involving aldose-ketose isomerization. The use of molecular networking with LC-CID-MS/MS assisted the identification of various isomeric and isobaric flavonoid glycoconjugates by establishing clusters according to the fragmentation similarities. Additionally, the proposed cross-ring sugar cleavages can contribute to the identification of C-glycosides by MS/MS analysis. Georg Thieme Verlag KG Stuttgart · New York.

  19. Molecular Structural Studies of Captopril Drug, Using Thermal Analysis, mass Spectral Fragmentation and Semi- empirical MO- Calculations

    Directory of Open Access Journals (Sweden)

    H. M. Arafa

    2014-12-01

    Full Text Available In this work captopril an antihypertensive (KPL drug, was investigated using thermal analysis (TA measurements (TG-DTA in comparison with electron impact (EI mass spectral (MS fragmentation at 70 eV. Semi-empirical molecular (MO calculations, using PM3 method in the neutral and positively charged forms of the drug. These include molecular geometry, bond order, charge distribution, heats of formation and ionization energy. The behavior of the drug under drug TA decomposition, reveal a moderate stability up to 160Co before a completely decomposition in the range 160-240 Co. The initial decomposition is due to COOH + CH3 loss, followed by SH loss. On the other hand, the molecular ion can easily fragmented by CO2 loss followed by SH loss. This is the best-selected pathway comparable with decomposition using TA. MO-Calculation is used to declare these observations.

  20. Treatise on the measurement of molecular masses with ion mobility spectrometry.

    Science.gov (United States)

    Valentine, Stephen J; Clemmer, David E

    2009-07-15

    The ability to separate isotopes by high-resolution ion mobility spectrometry techniques is considered as a direct means for determining mass at ambient pressures. Calculations of peak shapes from the transport equation show that it should be possible to separate isotopes for low-mass ions (ion mobility analyzers. The mass accuracy associated with this isotopic separation approach based on ion mobility separation is considered. Finally, we predict several isotopes that should be separable.

  1. Spatially resolved variations of the IMF mass normalization in early-type galaxies as probed by molecular gas kinematics

    Science.gov (United States)

    Davis, Timothy A.; McDermid, Richard M.

    2017-01-01

    We here present the first spatially resolved study of the initial mass function (IMF) in external galaxies derived using a dynamical tracer of the mass-to-light ratio (M/L). We use the kinematics of relaxed molecular gas discs in seven early-type galaxies (ETGs) selected from the ATLAS3D survey to dynamically determine M/L gradients. These M/L gradients are not very strong in the inner parts of these objects, and galaxies that do show variations are those with the highest specific star formation rates. Stellar population parameters derived from star formation histories are then used in order to estimate the stellar IMF mismatch parameter, and shed light on its variation within ETGs. Some of our target objects require a light IMF, otherwise their stellar population masses would be greater than their dynamical masses. In contrast, other systems seem to require heavier IMFs to explain their gas kinematics. Our analysis again confirms that IMF variation seems to be occurring within massive ETGs. We find good agreement between our IMF normalizations derived using molecular gas kinematics and those derived using other techniques. Despite this, we do not see find any correlation between the IMF normalization and galaxy dynamical properties or stellar population parameters, either locally or globally. In the future, larger studies which use molecules as tracers of galaxy dynamics can be used to help us disentangle the root cause of IMF variation.

  2. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression.

    Science.gov (United States)

    He, Fei; Liang, Na-Na; Mu, Lin; Pan, Qiu-Hong; Wang, Jun; Reeves, Malcolm J; Duan, Chang-Qing

    2012-02-07

    Originating in the grapes, monomeric anthocyanins in young red wines contribute the majority of color and the supposed beneficial health effects related to their consumption, and as such they are recognized as one of the most important groups of phenolic metabolites in red wines. In recent years, our increasing knowledge of the chemical complexity of the monomeric anthocyanins, their stability, together with the phenomena such as self-association and copigmentation that can stabilize and enhance their color has helped to explain their color representation in red wine making and aging. A series of new enological practices were developed to improve the anthocyanin extraction, as well as their color expression and maintenance. This paper summarizes the most recent advances in the studies of the monomeric anthocyanins in red wines, emphasizing their origin, occurrence, color enhancing effects, their degradation and the effect of various enological practices on them.

  3. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2012-02-01

    Full Text Available Originating in the grapes, monomeric anthocyanins in young red wines contribute the majority of color and the supposed beneficial health effects related to their consumption, and as such they are recognized as one of the most important groups of phenolic metabolites in red wines. In recent years, our increasing knowledge of the chemical complexity of the monomeric anthocyanins, their stability, together with the phenomena such as self-association and copigmentation that can stabilize and enhance their color has helped to explain their color representation in red wine making and aging. A series of new enological practices were developed to improve the anthocyanin extraction, as well as their color expression and maintenance. This paper summarizes the most recent advances in the studies of the monomeric anthocyanins in red wines, emphasizing their origin, occurrence, color enhancing effects, their degradation and the effect of various enological practices on them.

  4. B22 Glu Des-B30 Insulin: A Novel Monomeric Insulin

    Institute of Scientific and Technical Information of China (English)

    Hai-Juan DU; Jia-Hao SHI; Da-Fu CUI; You-Shang ZHANG

    2006-01-01

    Studies on monomeric insulin with reduced self-association are important in the development of insulin pharmaceutical preparations with rapid hypoglycemic action on patients with diabetes. Here we report a novel monomeric insulin, B22 Glu des-B30 insulin, prepared from a single chain insulin precursor with B22 Arg mutated to Glu, which was expressed in Pichia pastoris and converted to B22 Glu des-B30 insulin by tryptic digestion. It still retains 50% of the in vivo biological activity of porcine insulin and does not form a dimer even at a concentration of 10 mg/ml, showing that B22 Glu plays a key role in reducing the selfassociation of the insulin molecule without greatly reducing its biological activity. This novel monomeric insulin might have potential applications in the clinic.

  5. Determination of the Relative Atomic Masses of Metals by Liberation of Molecular Hydrogen

    Science.gov (United States)

    Waghorne, W. Earle; Rous, Andrew J.

    2009-01-01

    Students determine the relative atomic masses of calcium, magnesium, and aluminum by reaction with hydrochloric acid and measurement of the volume of hydrogen gas liberated. The experiment demonstrates stoichiometry and illustrates clearly that mass of the reagent is not the determinant of the amounts in chemical reactions. The experiment is…

  6. Determination of the Relative Atomic Masses of Metals by Liberation of Molecular Hydrogen

    Science.gov (United States)

    Waghorne, W. Earle; Rous, Andrew J.

    2009-01-01

    Students determine the relative atomic masses of calcium, magnesium, and aluminum by reaction with hydrochloric acid and measurement of the volume of hydrogen gas liberated. The experiment demonstrates stoichiometry and illustrates clearly that mass of the reagent is not the determinant of the amounts in chemical reactions. The experiment is…

  7. Diagnóstico bioquímico de la hiperprolactinemia monomérica Biochemical diagnosis of monomeric hyperprolactinemia

    Directory of Open Access Journals (Sweden)

    A. Rivero

    2011-08-01

    Full Text Available Fundamento. La prolactina se puede presentar bajo varias formas moleculares siendo la forma monomérica (PRLm la biológicamente activa. La presencia de macroprolactina (MPRL puede originar un falso diagnóstico de hiperprolactinemia debido a la interferencia en el procedimiento de medida. El objetivo ha sido desarrollar un protocolo que permita diagnosticar la hiperprolactinemia monomérica, que además sea complementario al procedimiento que detecta MPRL. Material y métodos. La población de referencia para PRLm estaba formada por 122 mujeres y 140 hombres aparentemente sanos a los que se les extrajo sangre para la cuantificación de PRL. Además, se recogieron 49 sueros (33 mujeres y 16 hombres hiperprolactinémicos. Se cuantificó PRL en todas las muestras en un Immulite 2000. La detección de MPRL y de PRLm se realizó tras precipitación con polietilenglicol. Se confirmó el resultado por cromatografía de filtración en gel. Para la obtención de los valores de referencia se siguieron las indicaciones del Panel de Expertos de la IFCC. Resultados. Los valores de referencia de PRLm fueron 3,4-26,6 μg/L y 4,6-16,4 μg/L en mujeres y varones, respectivamente. De los 49 pacientes hiperprolactinémicos, en el 57 % la concentración de PRLm tras PEG se encontraba fuera del intervalo de referencia previamente obtenido, confirmándose la presencia de hiperprolactinemia monomérica. Conclusiones. Se ha desarrollado e implantado un protocolo para la cuantificación de PRLm. La obtención de los valores de referencia de PRLm permite el diagnóstico de la hiperprolactinemia monomérica o activa de forma complementaria a la identificación de MPRL.Background. Prolactin can take several molecular forms of which the most biologically active is the monomeric form (PRLm. The presence of macroprolactin (MPRL can give rise to a false diagnosis of hyperprolactinemia due to interference in the measuring procedure. The aim was to develop a protocol that

  8. Mass estimates for very cold (< 8 K) gas in molecular cloud cores

    CERN Document Server

    Steinacker, Juergen; Beuther, Henrik; Henning, Thomas; Bacmann, Aurore

    2016-01-01

    The mass of prestellar cores is an essential ingredient to understand the onset of star formation in the core. The low level of emission from cold dust may keep parts of it hidden from observation. We aim to determine the fraction of core mass in the temperature range < 8 K that can be expected for typical low- and high-mass star formation regions. We calculate the dust temperature within standard spherically symmetric prestellar cores for a grid of density powerlaws in the outer core regions, core masses, and variation in the external multi-component radiation field. The dust is assumed to be composed of amorphous silicate and carbon, and variations of its optical properties are discussed. As measure for the distribution of cores and clumps, we use core mass functions derived for various environments. In view of the high densities in very cold central regions, dust and gas temperatures are assumed to be equal. We find that the fraction of mass with temperatures < 8 K in typical low- and high-mass cores...

  9. Spatially resolved variations of the IMF mass normalisation in early-type galaxies as probed by molecular gas kinematics

    CERN Document Server

    Davis, Timothy A

    2016-01-01

    We here present the first spatially-resolved study of the IMF in external galaxies derived using a dynamical tracer of the mass-to-light ratio. We use the kinematics of relaxed molecular gas discs in seven early-type galaxies (ETGs) selected from the ATLAS3D survey to dynamically determine mass-to-light ratio (M/L) gradients. These M/L gradients are not very strong in the inner parts of these objects, and galaxies that do show variations are those with the highest specific star formation rates. Stellar population parameters derived from star formation histories are then used in order to estimate the stellar initial mass function function (IMF) mismatch parameter, and shed light on its variation within ETGs. Some of our target objects require a light IMF, otherwise their stellar population masses would be greater than their dynamical masses. In contrast, other systems seem to require heavier IMFs to explain their gas kinematics. Our analysis again confirms that IMF variation seems to be occurring within massiv...

  10. Effect of OH depletion on measurements of the mass-to-flux ratio in molecular cloud cores

    CERN Document Server

    Tassis, K; Yorke, H W; Turner, N J

    2014-01-01

    The ratio of mass and magnetic flux determines the relative importance of magnetic and gravitational forces in the evolution of molecular clouds and their cores. Its measurement is thus central in discriminating between different theories of core formation and evolution. Here we discuss the effect of chemical depletion on measurements of the mass-to-flux ratio using the same molecule (OH) both for Zeeman measurements of the magnetic field and the determination of the mass of the region. The uncertainties entering through the OH abundance in determining separately the magnetic field and the mass of a region have been recognized in the literature. It has been proposed however that, when comparing two regions of the same cloud, the abundance will in both cases be the same. We show that this assumption is invalid. We demonstrate that when comparing regions with different densities, the effect of OH depletion in measuring changes of the mass-to-flux ratio between different parts of the same cloud can even reverse ...

  11. Urinary antihypertensive drug metabolite screening using molecular networking coupled to high-resolution mass spectrometry fragmentation

    OpenAIRE

    2016-01-01

    Introduction Mass spectrometry is the current technique of choice in studying drug metabolism. High-resolution mass spectrometry in combination with MS/MS gas-phase experiments has the potential to contribute to rapid advances in this field. However, the data emerging from such fragmentation spectral files pose challenges to downstream analysis, given their complexity and size. Objectives This study aims to detect and visualize antihypertensive drug metabolites in untargeted metabolomics expe...

  12. Secondary Ion Mass Spectrometry Imaging of Molecular Distributions in Cultured Neurons and Their Processes: Comparative Analysis of Sample Preparation

    Science.gov (United States)

    Tucker, Kevin R.; Li, Zhen; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2012-11-01

    Neurons often exhibit a complex chemical distribution and topography; therefore, sample preparation protocols that preserve structures ranging from relatively large cell somata to small neurites and growth cones are important factors in secondary ion mass spectrometry (SIMS) imaging studies. Here, SIMS was used to investigate the subcellular localization of lipids and lipophilic species in neurons from Aplysia californica. Using individual neurons cultured on silicon wafers, we compared and optimized several SIMS sampling approaches. After an initial step to remove the high salt culturing media, formaldehyde, paraformaldehyde, and glycerol, and various combinations thereof, were tested for their ability to achieve cell stabilization during and after the removal of extracellular media. These treatments improved the preservation of cellular morphology as visualized with SIMS imaging. For analytes >250 Da, coating the cell surface with a 3.2 nm-thick gold layer increased the ion intensity; multiple analytes previously not observed or observed at low abundance were detected, including intact cholesterol and vitamin E molecular ions. However, once a sample was coated, many of the lower molecular mass (cell stabilization with glycerol and 4 % paraformaldehyde. The sample preparation methods described here enhance SIMS imaging of processes of individual cultured neurons over a broad mass range with enhanced image contrast.

  13. Small-angle X-ray scattering as a useful supplementary technique to determine molecular masses of polyelectrolytes in solution.

    Science.gov (United States)

    Plazzotta, Beatrice; Diget, Jakob Stensgaard; Zhu, Kaizheng; Nyström, Bo; Pedersen, Jan Skov

    2016-10-01

    Determination of molecular masses of charged polymers is often nontrivial and most methods have their drawbacks. For polyelectrolytes, a new possibility for the determination of number-average molecular masses is represented by small-angle X-ray scattering (SAXS) which allows fast determinations with a 10% accuracy. This is done by relating the mass to the position of a characteristic peak feature which arises in SAXS due to the local ordering caused by charge-repulsions between polyelectrolytes. Advantages of the technique are the simplicity of data analysis, the independency from polymer architecture, and the low sample and time consumption. The method was tested on polyelectrolytes of various structures and chemical compositions, and the results were compared with those obtained from more conventional techniques, such as asymmetric flow field-flow fractionation, gel permeation chromatography, and classical SAXS data analysis, showing that the accuracy of the suggested method is similar to that of the other techniques. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1913-1917.

  14. A unified model for the maximum mass scales of molecular clouds, stellar clusters and high-redshift clumps

    Science.gov (United States)

    Reina-Campos, Marta; Kruijssen, J. M. Diederik

    2017-08-01

    We present a simple, self-consistent model to predict the maximum masses of giant molecular clouds (GMCs), stellar clusters and high-redshift clumps as a function of the galactic environment. Recent works have proposed that these maximum masses are set by shearing motions and centrifugal forces, but we show that this idea is inconsistent with the low masses observed across an important range of local-Universe environments, such as low-surface density galaxies and galaxy outskirts. Instead, we propose that feedback from young stars can disrupt clouds before the global collapse of the shear-limited area is completed. We develop a shear-feedback hybrid model that depends on three observable quantities: the gas surface density, the epicylic frequency and the Toomre parameter. The model is tested in four galactic environments: the Milky Way, the Local Group galaxy M31, the spiral galaxy M83 and the high-redshift galaxy zC406690. We demonstrate that our model simultaneously reproduces the observed maximum masses of GMCs, clumps and clusters in each of these environments. We find that clouds and clusters in M31 and in the Milky Way are feedback-limited beyond radii of 8.4 and 4 kpc, respectively, whereas the masses in M83 and zC406690 are shear-limited at all radii. In zC406690, the maximum cluster masses decrease further due to their inspiral by dynamical friction. These results illustrate that the maximum masses change from being shear-limited to being feedback-limited as galaxies become less gas rich and evolve towards low shear. This explains why high-redshift clumps are more massive than GMCs in the local Universe.

  15. Media optimization for elevated molecular weight and mass production of pigment-free pullulan.

    Science.gov (United States)

    Yu, Xiaoliu; Wang, Yulei; Wei, Gongyuan; Dong, Yingying

    2012-07-01

    In this study, an Aureobasidium pullulans SZU 1001 mutant, deficient in pigment production, was screened by complex UV and γ-ray mutagenesis. Medium composition optimization for increased pullulan molecular weight and production was conducted using this mutant. Six nutrients: yeast extract, (NH4)2SO4, K2HPO4, NaCl, MgSO4·7H2O and CaCl2 were detected within pullulan production in flasks. It is shown that NaCl and K2HPO4 have significant influences on molecular weight of pullulan, while yeast extract and (NH4)2SO4 significantly affect pullulan yield. To achieve a higher molecular weight and more efficient pullulan production, a response surface methodology approach was introduced to predict an optimal nutrient combination. A molecular weight of 5.74 × 10(6) and pullulan yield on glucose of 51.30% were obtained under batch pullulan fermentation with the optimized media, which increased molecular weight and pullulan production by 97.25% and 11.04%, respectively compared with the control media. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Searching molecular structure databases with tandem mass spectra using CSI:FingerID

    Science.gov (United States)

    Dührkop, Kai; Shen, Huibin; Meusel, Marvin; Rousu, Juho; Böcker, Sebastian

    2015-01-01

    Metabolites provide a direct functional signature of cellular state. Untargeted metabolomics experiments usually rely on tandem MS to identify the thousands of compounds in a biological sample. Today, the vast majority of metabolites remain unknown. We present a method for searching molecular structure databases using tandem MS data of small molecules. Our method computes a fragmentation tree that best explains the fragmentation spectrum of an unknown molecule. We use the fragmentation tree to predict the molecular structure fingerprint of the unknown compound using machine learning. This fingerprint is then used to search a molecular structure database such as PubChem. Our method is shown to improve on the competing methods for computational metabolite identification by a considerable margin. PMID:26392543

  17. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  18. The earliest phases of star formation - A Herschel key project. The thermal structure of low-mass molecular cloud cores

    CERN Document Server

    Launhardt, R; Schmiedeke, A; Henning, Th; Krause, O; Balog, Z; Beuther, H; Birkmann, S; Hennemann, M; Kainulainen, J; Khanzadyan, T; Linz, H; Lippok, N; Nielbock, M; Pitann, J; Ragan, S; Risacher, C; Schmalzl, M; Shirley, Y L; Stecklum, B; Steinacker, J; Tackenberg, J

    2013-01-01

    The temperature and density structure of molecular cloud cores are the most important physical quantities that determine the course of the protostellar collapse and the properties of the stars they form. Nevertheless, density profiles often rely either on the simplifying assumption of isothermality or on observationally poorly constrained model temperature profiles. With the aim of better constraining the initial physical conditions in molecular cloud cores at the onset of protostellar collapse, we initiated the Guaranteed Time Key Project (GTKP) "The Earliest Phases of Star Formation" (EPoS) with the Herschel satellite. This paper gives an overview of the low-mass sources in the EPoS project, including all observations, the analysis method, and the initial results of the survey. We study the thermal dust emission of 12 previously well-characterized, isolated, nearby globules using FIR and submm continuum maps at up to eight wavelengths between 100 micron and 1.2 mm. Our sample contains both globules with sta...

  19. Molecular identification of foreign inclusions in inflammatory tissue surrounding metal implants by Fourier transform laser microprobe mass spectrometry.

    Science.gov (United States)

    De Nollin, S; Poels, K; Van Vaeck, L; De Clerck, N; Bakker, A; Duwel, V; Vandevelde, D; Van Marck, E

    1997-01-01

    Fourier transform laser microprobe mass spectrometry (FT LMMS) is a novel technique for micro-analysis of solids with a lateral resolution in the 5 microns range. One of the major advantages of the technique is the capability to perform characterisation of the molecular composition of both organic and inorganic compounds. The information is directly deduced from the signals without the aid of reference spectra. FT LMMS was applied to the characterisation of black tissue fragments in a biopsy from a patient, in which a constrained condylar nodular knee system was implanted ten years ago. The tissue contained numerous foreign giant cells with a black non-birefringent pigment in their cytoplasm. FT LMMS analysis allowed us to detect directly by means of molecular signals, that the debris consisted primarily of titanium oxide and not metallic titanium, while the implant itself only contained titanium.

  20. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    Science.gov (United States)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.

    2006-05-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.

  1. Micellization of monomeric and poly-ω-methacryloyloxyundecyltrimethylammonium surfactants.

    Science.gov (United States)

    FitzGerald, Paul A; Chatjaroenporn, Khwanrat; Zhang, Xiaoli; Warr, Gregory G

    2011-10-04

    We have used small-angle neutron scattering to study how micelle morphology of the tail-polymerizable surfactants MUTAB and MUTAC (ω-methacryloyloxyundecyltrimethylammonium bromide and chloride) is affected by classic self-assembly modifiers such as temperature changes, salt addition, and counterion exchange, as a function of their conversion from monomer into polymer amphiphile in aqueous solution. Contrary to common assumptions about polymerized surfactants, these systems remain in dynamic equilibrium under all conditions examined and at all conversions (except for a small amount of high-molecular-weight precipitation by MUTAC). Counterintuitively, the polymerized methacrylate backbone has little influence on aggregate morphology, except for the formation of rod-like mixed micelles of polymerized and unpolymerized surfactant at intermediate conversions. The addition of salt produces a transition to rod-like micelles at all conversions except in the unpolymerized surfactant, which has some characteristics of an asymmetric bolaform surfactant and retains its spheroidal geometry under almost all conditions.

  2. A novel method to highly versatile monomeric PNA building blocks by multi component reactions

    NARCIS (Netherlands)

    Dömling, Alexander; Chi, Kai-Zu; Barrère, Mathieux

    1999-01-01

    A novel approach to monomeric PNA building blocks by a solution phase Ugi multi component reaction (MCR) is described. The reaction is easily performed in 96 well plates. The products precipitate from the reaction solution and are thus obtained in high yields and purity. Those products are not amena

  3. Monomeric G-proteins as signal transducers in airway physiology and pathophysiology

    NARCIS (Netherlands)

    Schaafsma, Dedmer; Roscioni, Sara S.; Meurs, Herman; Schmidt, Martina

    2008-01-01

    Monomeric G-proteins, also referred to as small GTPases, function as biological hubs being activated by extracellular stimuli and regulate downstream signalling events, which result in different cellular responses. The importance of these mechanisms is mirrored by the fact that several pathological

  4. Self-healing mechanism based on dispersed solid particles of various monomeric bismaleimides

    NARCIS (Netherlands)

    Turkenburg, D.H.; Fischer, H.R.

    2016-01-01

    In view of self-healing materials for high temperature applications we have studied the use of solid monomeric bismaleimide particles as embedded self-healing component dispersed in a host material. Below the self-healing activation temperature, bismaleimides remain inert while above it they may rap

  5. Monomeric red fluorescent protein variants used for imaging studies in different species

    NARCIS (Netherlands)

    Mueller-Taubenberger, Annette; Vos, Michel J.; Boettger, Angelika; Lasi, Margherita; Lai, Frank P. L.; Fischer, Markus; Rottner, Klemens

    2006-01-01

    Fluorescent proteins have proven to be excellent tools for live-cell imaging studies. In addition to green fluorescent protein (GFP) and its variants, recent progress was achieved in the development of monomeric red fluorescent proteins (mRFPs) that show improved properties in respect to maturation

  6. Monomeric and dendritic second generation Grubbs- and Hoveyda-Grubbs-type catalysts for olefin metathesis Metallodendrimers Special Issue

    NARCIS (Netherlands)

    Pijnenburg, Niels J M; Tomás-Mendivil, Eder; Mayland, Kimberley E.; Kleijn, Henk; Lutz, Martin; Spek, Anthony L.; Van Koten, Gerard; Klein Gebbink, Bert

    2014-01-01

    The synthesis and characterization of monomeric and dendritic Grubbs II and Hoveyda-Grubbs II-based complexes are reported. These complexes were synthesized via a route based on the connection of monomeric or dendritic N-alkyl-N′-mesitylimidazol-2-ylidene pre-ligands to Grubbs I or Hoveyda-Grubbs I

  7. Ultrastructural and molecular distinctions between the porcine inner cell mass and epiblast reveal unique pluripotent cell states

    DEFF Research Database (Denmark)

    Hall, V. J.; Jacobsen, Janus Valentin; Rasmussen, M. A.

    2010-01-01

    pluripotent cell population as it develops from the ICM to the late epiblast. The ultrastructural observations revealed that the outer cells of the ICM have a high nuclear:cytoplasmic ratio but are transcriptionally inactive and contain mitochondria with few cristae. In contrast, the epiblast cells have......Characterization of the pluripotent cell populations within the porcine embryo is essential for understanding pluripotency and self-renewal regulation in the inner cell mass (ICM) and epiblast. In this study, we perform detailed ultrastructural and molecular characterization of the developing...

  8. Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2009-09-09

    Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

  9. Assessing the regional impact of Indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling

    Directory of Open Access Journals (Sweden)

    G. Engling

    2014-01-01

    Full Text Available Biomass burning activities commonly occur in Southeast Asia (SEA, and are particularly intense in Indonesia during dry seasons. The effect of biomass smoke emissions on air quality in the city state of Singapore was investigated during a haze episode in October 2006. Substantially increased levels of airborne particulate matter (PM and associated chemical species were observed during the haze period. Specifically, the enhancement in the concentration of molecular tracers for biomass combustion such as levoglucosan by as much as two orders of magnitude and diagnostic ratios of individual organic compounds indicated that biomass burning emissions caused a regional smoke haze episode due to their long-range transport by prevailing winds. With the aid of air mass back trajectories and chemical mass balance modeling, large-scale forest and peat fires in Sumatra and Kalimantan were identified as the sources of the smoke aerosol, exerting a significant impact on air quality in downwind areas, such as Singapore.

  10. Assessing the regional impact of indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling

    Science.gov (United States)

    Engling, G.; He, J.; Betha, R.; Balasubramanian, R.

    2014-08-01

    Biomass burning activities commonly occur in Southeast Asia (SEA), and are particularly intense in Indonesia during the dry seasons. The effect of biomass smoke emissions on air quality in the city state of Singapore was investigated during a haze episode in October 2006. Substantially increased levels of airborne particulate matter (PM) and associated chemical species were observed during the haze period. Specifically, the enhancement in the concentration of molecular tracers for biomass combustion such as levoglucosan by as much as two orders of magnitude and the diagnostic ratios of individual organic compounds indicated that biomass burning emissions caused a regional smoke haze episode due to their long-range transport by prevailing winds. With the aid of air mass backward trajectories and chemical mass balance modeling, large-scale forest and peat fires in Sumatra and Kalimantan were identified as the sources of the smoke aerosol, exerting a significant impact on air quality in downwind areas, such as Singapore.

  11. Compositional Analysis of the High Molecular Weight Ethylene Oxide Propylene Oxide Copolymer by MALDI Mass Spectrometry

    CERN Document Server

    Houshia, Orwa Jaber

    2012-01-01

    The composition of narrow distribution poly ethylene oxide-propylene oxide copolymer (Mw ~ 8700 Da) was studied using matrix assisted laser desorption ionization (MALDI) mass spectrometry. The ethylene oxide-propylene oxide copolymer produced oligomers separated by 14 Da. The average resolving power over the entire spectrum was 28,000. Approximately 448 isotopically resolved peaks representing about 56 oligomers are identified. Although agreement between experimental and calculated isotopic distributions was strong, the compositional assignment was difficult. This is due to the large number of possible isobaric components. The purpose of this research is to resolve and study the composition of high mass copolymer such as ethylene oxide-propylene oxide.

  12. Monomeric yeast PCNA mutants are defective in interacting with and stimulating the ATPase activity of RFC.

    Science.gov (United States)

    Ionescu, Costin N; Shea, Kathleen A; Mehra, Rajendra; Prundeanu, Lucia; McAlear, Michael A

    2002-10-29

    Yeast PCNA is a homo-trimeric, ring-shaped DNA polymerase accessory protein that can encircle duplex DNA. The integrity of this multimeric sliding DNA clamp is maintained through the protein-protein interactions at the interfaces of adjacent subunits. To investigate the importance of trimer stability for PCNA function, we introduced single amino acid substitutions at residues (A112T, S135F) that map to opposite ends of the monomeric protein. Recombinant wild-type and mutant PCNAs were purified from E. coli, and they were tested for their properties in vitro. Unlike the stable wild-type PCNA trimers, the mutant PCNA proteins behaved as monomers when diluted to low nanomolar concentrations. In contrast to what has been reported for a monomeric form of the beta clamp in E. coli, the monomeric PCNAs were compromised in their ability to interact with their associated clamp loader, replication factor C (RFC). Similarly, monomeric PCNAs were not effective in stimulating the ATPase activity of RFC. The mutant PCNAs were able to form mixed trimers with wild-type subunits, although these mixed trimers were unstable when loaded onto DNA. They were able to function as weak DNA polymerase delta processivity factors in vitro, and when the monomeric PCNA-41 (A112T, S135F double mutant) allele was introduced as the sole source of PCNA in vivo, the cells were viable and healthy. These pol30-41 mutants were, however, sensitive to UV irradiation and to the DNA damaging agent methylmethane sulfonate, implying that DNA repair pathways have a distinct requirement for stable DNA clamps.

  13. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    Science.gov (United States)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the

  14. Deviations from Born-Oppenheimer mass scaling in spectroscopy and ultracold molecular physics

    CERN Document Server

    Lutz, Jesse J

    2016-01-01

    We investigate Born-Oppenheimer breakdown (BOB) effects (beyond the usual mass scaling) for the electronic ground states of a series of homonuclear and heteronuclear alkali-metal diatoms, together with the Sr$_2$ and Yb$_2$ diatomics. Several widely available electronic structure software packages are used to calculate the leading contributions to the total isotope shift for commonly occurring isotopologs of each species. Computed quantities include diagonal Born-Oppenheimer corrections (mass shifts) and isotopic field shifts. Mass shifts dominate for light nuclei up to and including K, but field shifts contribute significantly for Rb and Sr and are dominant for Yb. We compare the {\\em ab initio} mass-shift functions for Li$_2$, LiK and LiRb with spectroscopically derived ground-state BOB functions from the literature. We find good agreement in the values of the functions for LiK and LiRb at their equilibrium geometries, but significant disagreement with the shapes of the functions for all 3 systems. The diff...

  15. Alterations in molecular muscle mass regulators after 8 days immobilizing Special Forces mission

    DEFF Research Database (Denmark)

    Jespersen, J G; Mikkelsen, U R; Nedergaard, A;

    2015-01-01

    In military operations, declined physical capacity can endanger the life of soldiers. During special support and reconnaissance (SSR) missions, Special Forces soldiers sustain 1-2 weeks full-body horizontal immobilization, which impairs muscle strength and performance. Adequate muscle mass and st...... and post 8 days immobilizing restricted prone position. After immobilization, total mammalian target of rapamycin protein was reduced by 42% (P ...

  16. Ionisation in turbulent magnetic molecular clouds. I. Effect on density and mass-to-flux ratio structures

    Science.gov (United States)

    Bailey, Nicole D.; Basu, Shantanu; Caselli, Paola

    2017-05-01

    Context. Previous studies show that the physical structures and kinematics of a region depend significantly on the ionisation fraction. These studies have only considered these effects in non-ideal magnetohydrodynamic simulations with microturbulence. The next logical step is to explore the effects of turbulence on ionised magnetic molecular clouds and then compare model predictions with observations to assess the importance of turbulence in the dynamical evolution of molecular clouds. Aims: In this paper, we extend our previous studies of the effect of ionisation fractions on star formation to clouds that include both non-ideal magnetohydrodynamics and turbulence. We aim to quantify the importance of a treatment of the ionisation fraction in turbulent magnetised media and investigate the effect of the turbulence on shaping the clouds and filaments before star formation sets in. In particular, here we investigate how the structure, mass and width of filamentary structures depend on the amount of turbulence in ionised media and the initial mass-to-flux ratio. Methods: To determine the effects of turbulence and mass-to-flux ratio on the evolution of non-ideal magnetised clouds with varying ionisation profiles, we have run two sets of simulations. The first set assumes different initial turbulent Mach values for a fixed initial mass-to-flux ratio. The second set assumes different initial mass-to-flux ratio values for a fixed initial turbulent Mach number. Both sets explore the effect of using one of two ionisation profiles: step-like (SL) or cosmic ray only (CR-only). We compare the resulting density and mass-to-flux ratio structures both qualitatively and quantitatively via filament and core masses and filament fitting techniques (Gaussian and Plummer profiles). Results: We find that even with almost no turbulence, filamentary structure still exists although at lower density contours. Comparison of simulations shows that for turbulent Mach numbers above 2, there is

  17. Molecular shells in IRC+10216: tracing the mass loss history⋆,⋆⋆,⋆⋆⋆

    Science.gov (United States)

    Cernicharo, J.; Marcelino, N.; Agúndez, M.; Guélin, M.

    2015-01-01

    Thermally-pulsating AGB stars provide three-fourths of the matter returned to the interstellar medium. The mass and chemical composition of their ejecta largely control the chemical evolution of galaxies. Yet, both the mass loss process and the gas chemical composition remain poorly understood. We present maps of the extended 12CO and 13CO emissions in IRC+10216, the envelope of CW Leo, the high mass loss star the closest to the Sun. IRC+10216 is nearly spherical and expands radially with a velocity of 14.5 km s−1. The observations were made On-the-Fly with the IRAM 30 m telescope; their sensibility, calibration, and angular resolution are far higher than all previous studies. The telescope resolution at λ = 1.3 mm (11″ HPBW) corresponds to an expansion time of 500 yr. The CO emission consists of a centrally peaked pedestal and a series of bright, nearly spherical shells. It peaks on CW Leo and remains relatively strong up to rphot = 180″. Further out the emission becomes very weak and vanishes as CO gets photodissociated. As CO is the best tracer of the gas up to rphot, the maps show the mass loss history in the last 8000 yr. The bright CO shells denote over-dense regions. They show that the mass loss process is highly variable on timescales of hundreds of years. The new data, however, do not support previous claims of a strong decrease of the average mass loss in the last few thousand years. The over-dense shells are not perfectly concentric and extend farther to the N-NW. The typical shell separation is 800–1000 yr in the middle of the envelope, but seems to increase outwards. The shell-intershell brightness contrast is ≥3. All those key features can be accounted for if CW Leo has a companion star with a period ≃800 yr that increases the mass loss rate when it comes close to periastron. Higher angular resolution observations are needed to fully resolve the dense shells and measure the density contrast. The latter plays an essential role in our

  18. Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry.

    Science.gov (United States)

    Yamashita, Ryouhei; Tabata, Yumika; Iga, Erina; Nakao, Michiyasu; Sano, Shigeki; Kogure, Kentaro; Tokumura, Akira; Tanaka, Tamotsu

    2016-02-01

    Ceramide-1-phosphate (C1P) is a potential signaling molecule that modulates various cellular functions in animals. It has been known that C1P with different N-acyl lengths induce biological responses differently. However, molecular species profiles of the C1P in animal tissues have not been extensively examined yet. Here, we developed a method for determination of the molecular species of a C1P using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with Phos-tag, a phosphate capture molecule. The amounts of total C1P in skin, brain, liver, kidney and small intestine of mice were determined to be 344, 151, 198, 96 and 90 pmol/g wet weight, respectively. We found a C1P species having an α-hydroxypalmitoyl residue (h-C1P, 44 pmol/g wet weight) in mouse skin. The h-C1P was detected only in the skin, and not other tissues of mice. The same analysis was applied to sphingomyelin after conversion of sphingomyelin to C1P by Streptomyces chromofuscus phospholipase D. We found that molecular species profiles of sphingomyelin in skin, kidney and small intestine of mice were similar to those of C1P in corresponding tissues. In contrast, molecular species profiles of sphingomyelin in liver and brain were quite different from those of C1P in these tissues, indicating selective synthesis or degradation of C1P in these tissues. The method described here will be useful for detection of changes in molecular species profiles of C1P and sphingomyelin.

  19. Preparing oxidized fractions of polyvinyl alcohol of a given molecular mass

    Science.gov (United States)

    Zimin, Yu. S.; Kutlugil'dina, G. G.; Mustafin, A. G.

    2016-10-01

    The effect of two oxidizers (an oxygen-ozone mixture and hydrogen peroxide) on the kinetics of the oxidative degradation of polyvinyl alcohol in aqueous solutions is studied. Degradation of the polymer is proved not only by a reduction in the weight of oxidized fractions, but in the intrinsic viscosity of their aqueous solutions as well (and thus the average molecular weight of the resulting fractions). It is shown that the degree of the destructive reactions of polyvinyl alcohol grows along with the duration of the process, increasing the initial concentrations of H2O2 and raising the temperature. These results can be used in obtaining oxidized fractions of polyvinyl alcohol that have predetermined molecular weights.

  20. Mass Spectrometry-based Approaches to Understand the Molecular Basis of Memory

    OpenAIRE

    Arthur Henriques Pontes; Marcelo Valle de Sousa

    2016-01-01

    The central nervous system is responsible for an array of cognitive functions such as memory, learning, language and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not ...

  1. Mass Spectrometry-Based Approaches to Understand the Molecular Basis of Memory

    OpenAIRE

    Pontes, Arthur H.; Sousa, Marcelo V

    2016-01-01

    The central nervous system is responsible for an array of cognitive functions such as memory, learning, language, and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not...

  2. Low-Mass Star Formation: From Molecular Cloud Cores to Protostars and Protoplanetary Disks

    Science.gov (United States)

    Inutsuka, S.-I.; Machida, M.; Matsumoto, T.; Tsukamoto, Y.; Iwasaki, K.

    2015-05-01

    This review describes realistic evolution of magnetic field and rotation of the protostars, dynamics of outflows and jets, and the formation and evolution of protoplanetary disks. Recent advances in the protostellar collapse simulations cover a huge dynamic range from molecular cloud core density to stellar density in a self-consistent manner and account for all the non-ideal magnetohydrodynamical effects, such as Ohmic resistivity, ambipolar diffusion, and Hall current. We explain the emergence of the first core, i.e., the quasi-hydrostatic object that consists of molecular gas, and the second core, i.e., the protostar. Ohmic dissipation largely removes the magnetic flux from the center of a collapsing cloud core. A fast well-collimated bipolar jet along the rotation axis of the protostar is driven after the magnetic field is re-coupled with warm gas (˜103 K) around the protostar. The circumstellar disk is born in the "dead zone", a region that is de-coupled from the magnetic field, and the outer radius of the disk increases with that of the dead zone during the early accretion phase. The rapid increase of the disk size occurs after the depletion of the envelope of molecular cloud core. The effect of Hall current may create two distinct populations of protoplanetary disks.

  3. Solid state NMR studies of gels derived from low molecular mass gelators.

    Science.gov (United States)

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples.

  4. Metal salts for molecular ion yield enhancement in organic secondary ion mass spectrometry: a critical assessment.

    Science.gov (United States)

    Delcorte, A; Bertrand, P

    2005-04-01

    In a search for molecular ion signal enhancement in organic SIMS, the efficiency of a series of organic and inorganic salts for molecular cationization has been tested using a panel of nonvolatile molecules with very different chemical characteristics (leucine enkephalin, Irganox 1010, tetraphenylnaphthalene, polystyrene). The compounds used for cationization include alkali bromide and group Ib metal salts (XBr with X = Li, Na, K; CF3CO2Ag; AgNO3; [CH3COCH=C(O-)CH3]2Cu; AuCl3). Alkali ions, very good for polar molecule cationization, prove to be of limited interest for nonpolar molecules such as polystyrene. Silver trifluoroacetate displays excellent results for all the considered molecules, except for leucine enkephalin (which might be due to the use of different solvents for the analyte and the salt). Instead, silver nitrate mixed with leucine enkephalin in an ethanol solution provides intense molecular signals. The influence of the respective concentrations of analyte and salt in solution, of the silver trifluoroacetate solution stability, and of the sample microstructure on the secondary ion intensities are also investigated. The results of other combinations of analyte and salts are reported. Finally, the use of salts is critically compared to other sample preparation procedures previously proposed for SIMS analysis of large organic molecules.

  5. Solid state NMR studies of gels derived from low molecular mass gelators

    Science.gov (United States)

    Kolehmainen, E.

    2016-01-01

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples. PMID:27374054

  6. Molecular mass distribution and epitopes of the beta lactoglobulin submitted to hydrolysis pre-transglutaminase treatment

    Energy Technology Data Exchange (ETDEWEB)

    Villas-Boas, M.B.; Zollner, R.L.; Netto, F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Benede, S.; Molina, E. [Universidad Autonoma de Madrid (Spain)

    2012-07-01

    Full text: The {beta}-Lactoglobulin ({beta}-Lg) is a whey protein with important nutritional proper ties but very resistant to pepsin digestion and consequently highly antigenic. This protein can be modified by transglutaminase (TG) although it is required a pretreatment to increase their susceptibility to the TG action. In the present study the hydrolysis pre-TG treatment was used to improve the TG accessibility on {beta}-Lg and the MM distribution and antigenic fragments were evaluated. For pre-TG treatment, the {beta}-Lg (Davisco Inc.) was hydrolyzed with bromelain (3% of {beta}-Lg w/w in distilled water; 25 U enzyme g{sup 1} of substrate, pH 7.5, 240 min) and then polymerized by TG (7% hydrolysate, 10U TG g{sup 1} protein, 50 C/180 min). The samples were evaluated by SDS-PAGE/tricine and by RP-nanoUPLC (nanoAcquity UPLC, Waters) coupled with nano-electrospray tandem mass spectrometry on a Q-Tof Ultima API mass spectrometer (MicroMass/Waters) at LNBio. The products were also submitted to pepsin digestion and the peptide identification was performed by RP-HPLC-tandem mass spectrometry (RP-HPLC-MS/MS, Brucker) with support from CIAL. The {beta}-Lg hydrolysed by bromelain and polymerized by TG had a broad MM distribution. The intact mass analysis indicated that the non modified {beta}Lg -A showed 18.362 Da and the non modified {beta}Lg -B 18.274 Da, which is in agreement with the theoretical corresponding masses. The use of bromelain pre-TG treatment resulted in polymers with MM from 61.052 to 67.654 Da, although some non modified protein was still present. In addition, the non modified {beta}-Lg showed fragments that present high antigenicity (such as Leu{sub 95} - Leu{sub 104}, Asp{sub 95} - Phe{sub 105}, Tyr{sub 42} - Leu{sub 54}, lle{sub 29} - Val{sub 41}), previously identified as IgE-binding epitopes. After hydrolysis following by TG treatment the fragment Tyr{sub 42} - Leu{sub 54} was still present, however the other fragments that were observed in the non

  7. Weathering trend characterization of medium-molecular weight polycyclic aromatic disulfur heterocycles by Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Hegazi, Abdelrahman H; Fathalla, Eiman M; Andersson, Jan T

    2014-09-01

    Different weathering factors act to change petroleum composition once it is spilled into the environment. n-Alkanes, biomarkers, low-molecular weight polyaromatic hydrocarbons and sulfur heterocycles compositional changing in the environment have been extensively studied by different researchers and many parameters have been used for oil source identification and monitoring of weathering and biological degradation processes. In this work, we studied the fate of medium-molecular weight polycyclic aromatic disulfur heterocycles (PAS2Hs), up to ca. 900Da, of artificially weathered Flotta North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. It was found that PAS2Hs in studied crude oil having double bond equivalents (DBE) from 5 to 8 with a mass range from ca 316 to 582Da were less influenced even after six months artificial weathering experiment. However, compounds having DBEs 12, 11 and 10 were depleted after two, four and six months weathering, respectively. In addition, DBE 9 series was more susceptible to weathering than those of DBE 7 and 8.

  8. Metabolomic approach for identifying and visualizing molecular tissue markers in tadpoles of Xenopus tropicalis by mass spectrometry imaging

    Directory of Open Access Journals (Sweden)

    Naoko Goto-Inoue

    2016-09-01

    Full Text Available In developmental and cell biology it is crucial to evaluate the dynamic profiles of metabolites. An emerging frog model system using Xenopus tropicalis, whose genome sequence and inbred strains are available, is now ready for metabolomics investigation in amphibians. In this study we applied matrix-assisted laser desorption/ionization (MALDI-mass spectrometry imaging (MSI analysis to identify and visualize metabolomic molecular markers in tadpoles of Xenopus tropicalis. We detected tissue-specific peaks and visualized their distribution in tissues, and distinguished 19 tissues and their specific peaks. We identified, for the first time, some of their molecular localizations via tandem mass spectrometric analysis: hydrocortisone in artery, L-DOPA in rhombencephalon, taurine in eye, corticosterone in gill, heme in heart, inosine monophosphate and carnosine in muscle, dopamine in nerves, and phosphatidylethanolamine (16:0/20:4 in pharynx. This is the first MALDI-MSI study of X. tropicalis tadpoles, as in small tadpoles it is hard to distinguish and dissect the various organs. Furthermore, until now there has been no data about the metabolomic profile of each organ. Our results suggest that MALDI-MSI is potentially a powerful tool for examining the dynamics of metabolomics in metamorphosis as well as conformational changes due to metabolic changes.

  9. Low molecular mass GTP-binding proteins are secreted from mammary epithelial cells in association with lipid globules.

    Science.gov (United States)

    Ghosal, D; Ankrapp, D; Keenan, T W

    1993-07-01

    Secretion of milk lipid globules is achieved through encapsulation of triacylglycerol-rich lipid droplets in a specialized region of apical plasma membrane of mammary epithelial cells. A class of low molecular mass GTP-binding proteins were associated tightly with the lipid globule membrane, and these proteins appeared to change from peripheral to integral membrane proteins during intracellular growth and transit of lipid globule precursors. Inclusion of GTP or GTP gamma S in incubation medium stimulated secretion of lipids from primary cultures of permeabilized rat mammary epithelial cells. Six polypeptides with molecular masses between 28 and 21 kDa were detected by ability to bind GTP gamma S following separation of lipid-globule-associated proteins by SDS-PAGE and transblotting onto nitrocellulose. That all of these polypeptides were distinct immunologically from the archetype ras was evident from lack of immunoreactivity with p21 ras G-protein monoclonal antibody in Western blots. This monoclonal antibody bound to a 23 kDa polypeptide of lipid droplets that was not detected with the GTP gamma S binding assay. A 25 kDa component of milk lipid globules was a potent substrate for ADP-ribosylation by botulinum toxin C3, but cholera toxin was much less effective, suggesting that this component may belong to the rac class of G-proteins. The 21 kDa component was related immunologically to ADP ribosylation factor.

  10. TRACING EMBEDDED STELLAR POPULATIONS IN CLUSTERS AND GALAXIES USING MOLECULAR EMISSION: METHANOL AS A SIGNATURE OF THE LOW-MASS END OF THE IMF

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, Lars E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bergin, Edwin A., E-mail: lkristensen@cfa.harvard.edu [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States)

    2015-07-10

    Most low-mass protostars form in clusters, in particular high-mass clusters; however, how low-mass stars form in high-mass clusters and what the mass distribution is are still open questions both in our own Galaxy and elsewhere. To access the population of forming embedded low-mass protostars observationally, we propose using molecular outflows as tracers. Because the outflow emission scales with mass, the effective contrast between low-mass protostars and their high-mass cousins is greatly lowered. In particular, maps of methanol emission at 338.4 GHz (J = 7{sub 0}–6{sub 0} A{sup +}) in low-mass clusters illustrate that this transition is an excellent probe of the low-mass population. We present here a model of a forming cluster where methanol emission is assigned to every embedded low-mass protostar. The resulting model image of methanol emission is compared to recent ALMA observations toward a high-mass cluster and the similarity is striking: the toy model reproduces observations to better than a factor of two and suggests that approximately 50% of the total flux originates in low-mass outflows. Future fine-tuning of the model will eventually make it a tool for interpreting the embedded low-mass population of distant regions within our own Galaxy and ultimately higher-redshift starburst galaxies, not just for methanol emission but also water and high-J CO.

  11. Molecular simulation of evaporation mass flux during net evaporation/condensation

    Science.gov (United States)

    Kon, Misaki; Kobayashi, Kazumichi; Watanabe, Masao

    2016-11-01

    To examine the transport phenomena in a vapor-liquid two-phase system attributed to the phase change, a proper specification of the mass flux at a vapor-liquid interface is crucial. Since the mass flux induced by the phase change originates from the motion of molecules in the vicinity of the vapor-liquid interface, a continuum description such as the fluid dynamic based approach is inappropriate. An essential way to obtain this mass flux is the analysis of the Boltzmann equation with a certain boundary condition, that is, the kinetic boundary condition. In this study, we examined the definition and the estimation procedure of the evaporation coefficient, which is included in the kinetic boundary condition, at the vapor-liquid interface with phase change, especially at higher temperature for hard-sphere molecules. As the result, we confirmed that a conventional definition of the evaporation coefficient is accurate even if liquid temperature is higher. Moreover, we also confirmed that the evaporation coefficient is only the function of liquid temperature by counting the number of molecules passing through the two boundaries which are placed near the vapor-liquid interface.

  12. High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization

    Directory of Open Access Journals (Sweden)

    S. Kundu

    2012-06-01

    Full Text Available The detailed molecular composition of laboratory generated limonene ozonolysis secondary organic aerosol (SOA was studied using ultrahigh-resolution Fourier transform ion cyclotron resonance (FT-ICR mass spectrometry. Approximately 1200 molecular formulas were identified in the SOA over the mass range of 140 to 850 Da. Four characteristic groups of high relative abundance species were observed; they indicate an array of accretion products that retain a large fraction of the limonene skeleton. The identified molecular formulas of each of the groups are related to one another by CH2, O and CH2O homologous series. The CH2 and O homologous series of the low molecular weight (MW SOA (m/z < 300 are explained with a combination of functionalization and fragmentation of radical intermediates and reactive uptake of gas-phase carbonyls. They include isomerization and elimination reactions of Criegee radicals, reactions between alkyl peroxy radicals, and scission of alkoxy radicals resulting from the Criegee radicals. The presence of compounds with 10–15 carbon atoms in the first group (e.g. C11H18O6 provides evidence for SOA formation by the reactive uptake of gas-phase carbonyls during limonene ozonolysis. The high MW compounds (m/z > 300 were found to constitute a significant number fraction of the identified SOA components. The formation of high MW compounds was evaluated by molecular formula trends, fragmentation analysis of select high MW compounds and a comprehensive reaction matrix including the identified low MW SOA, hydroperoxides and Criegee radicals as building blocks. Although the formation of high MW SOA may occur via a variety of radical and non-radical reaction channels, the combined approach indicates a greater importance of the non-condensation reactions over aldol and ester condensation reaction channels. Among these hemi-acetal reactions appear to be most

  13. Small renal masses: The molecular markers associated with outcome of patients with kidney tumors 7 cm or less

    Science.gov (United States)

    Spirina, L. V.; Usynin, Y. A.; Kondakova, I. V.; Yurmazov, Z. A.; Slonimskaya, E. M.; Pikalova, L. V.

    2016-08-01

    The investigation of molecular mechanisms of tumor cell behavior in small renal masses is required to achieve the better cancer survival. The aim of the study is to find molecular markers associated with outcome of patients with kidney tumors 7 cm or less. A homogenous group of 20 patients T1N0M0-1 (mean age 57.6 ± 2.2 years) with kidney cancer was selected for the present analysis. The content of transcription and growth factors was determined by ELISA. The levels of AKT-mTOR signaling pathway components were measured by Western blotting analysis. The molecular markers associated with unfavorable outcome of patients with kidney tumors 7 cm or less were high levels of NF-kB p50, NF-kB p65, HIF-1, HIF-2, VEGF and CAIX. AKT activation with PTEN loss also correlated with the unfavorable outcome of kidney cancer patients with tumor size 7 cm or less. It is observed that the biological features of kidney cancer could predict the outcome of patients.

  14. Molecular line intensities as measures of cloud masses - I. Sensitivity of CO emissions to physical parameter variations

    CERN Document Server

    Bell, T A; Viti, S; Williams, D A

    2006-01-01

    A reliable estimate of the molecular gas content in galaxies plays a crucial role in determining their dynamical and star-forming properties. However, H2, the dominant molecular species, is difficult to observe directly, particularly in the regions where most molecular gas is thought to reside. Its mass is therefore commonly inferred by assuming a direct proportionality with the integrated intensity of the CO(J=1-0) emission line, using a CO-to-H2 conversion factor, X. Although a canonical value for X is used extensively in such estimates, there is increasing evidence, both theoretical and observational, that the conversion factor may vary by over an order of magnitude under conditions different to those of the local neighbourhood. In an effort to understand the influence of changing environmental conditions on the conversion factor, we derive theoretical estimates of X for a wide range of physical parameters using a photon-dominated region (PDR) time-dependent chemical model, benchmarking key results against...

  15. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    Science.gov (United States)

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-01

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  16. Mass Spectrometry Imaging of low Molecular Weight Compounds in Garlic (Allium sativum L.) with Gold Nanoparticle Enhanced Target.

    Science.gov (United States)

    Misiorek, Maria; Sekuła, Justyna; Ruman, Tomasz

    2017-06-13

    Garlic (Allium sativum) is the subject of many studies due to its numerous beneficial properties. Although compounds of garlic have been studied by various analytical methods, their tissue distributions are still unclear. Mass spectrometry imaging (MSI) appears to be a very powerful tool for the identification of the localisation of compounds within a garlic clove. Visualisation of the spatial distribution of garlic low-molecular weight compounds with nanoparticle-based MSI. Compounds occurring on the cross-section of sprouted garlic has been transferred to gold-nanoparticle enhanced target (AuNPET) by imprinting. The imprint was then subjected to MSI analysis. The results suggest that low molecular weight compounds, such as amino acids, dipeptides, fatty acids, organosulphur and organoselenium compounds are distributed within the garlic clove in a characteristic manner. It can be connected with their biological functions and metabolic properties in the plant. New methodology for the visualisation of low molecular weight compounds allowed a correlation to be made between their spatial distribution within a sprouted garlic clove and their biological function. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Stability of the proton-to-electron mass ratio tested with molecular spectroscopy using an optical link to frequency reference

    Energy Technology Data Exchange (ETDEWEB)

    Amy-Klein, Anne; Lopez, Olivier; Daussy, Christophe; Kefelian, Fabien; Chardonnet, Christian [LPL, CNRS, Universite Paris-13, Villetaneuse (France); Shelkovnikov, Alexander [LPL, CNRS, Universite Paris-13, Villetaneuse (France); Lebedev Physical Institute, Moscow (Russian Federation); Butcher, Robert J. [LPL, CNRS, Universite Paris-13, Villetaneuse (France); Cavendish Laboratory, Cambridge (United Kingdom); Jiang, Haifeng; Santarelli, Giorgio [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC (France)

    2010-07-01

    Time and frequency metrology has experienced a lot of developments since ten years leading to the possibility of many fundamental tests of physics, as, for example, the search for a temporal variation of fundamental constants. However these tests are limited to macroscopic resonators or atomic systems while molecular systems are still difficult to probe with a high sensitivity, since experiments on molecules lacks of absolute frequency measurements set-ups. In that context, we have developed an optical link between our lab and the LNE-SYRTE, which allows us to benefit from their frequency references. Using this link, we performed the first experimental comparison of a molecular clock to an atomic clock, which gives a direct line to the proton-to-electron mass ratio stability. Recently, we extended the frequency dissemination technique to non-dedicated fibers of the telecommunication network simultaneously carrying digital data from the Internet traffic. This is very challenging for the development of transcontinental atomic and molecular clocks comparisons.

  18. Albumin is synthesized in epididymis and aggregates in a high molecular mass glycoprotein complex involved in sperm-egg fertilization.

    Science.gov (United States)

    Arroteia, Kélen Fabíola; Barbieri, Mainara Ferreira; Souza, Gustavo Henrique Martins Ferreira; Tanaka, Hiromitsu; Eberlin, Marcos Nogueira; Hyslop, Stephen; Alvares, Lúcia Elvira; Pereira, Luís Antonio Violin Dias

    2014-01-01

    The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.

  19. Molecular characterization of monoterpene ozonolysis products using ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Kundu, S.; Fisseha, R.; Putman, A.; Rahn, T.; Mazzoleni, L. R.

    2010-12-01

    A detailed knowledge of the chemical composition of secondary organic aerosols (SOA) is required to better understand their roles in climate change, biogeochemical cycling and public health. The chemical composition of the SOA produced by the ozonolysis of limonene was investigated using electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry. SOA was generated in a 1.5 m3 teflon chamber with 500 ppb of limonene and 250 ppb of O3, without the presence of hydroxyl radical scavenger. We have identified approximately 1300-1500 molecular masses from negative-ion spectra in the range of 105 Putman et al., 2010). We will compare the chemical composition of limonene-SOA with that of α- and β-pinene-SOA. We will also discuss the MSn fragmentation behavior of major ions for the structural elucidation of the oligomers. Putman, A., J. Offenberg, R. Fisseha, T. Rahn, and L. R. Mazzoleni, Ultrahigh-resolution mass spectrometry of the complex secondary organic aerosol products from ozonolysis of α-pinene: Investigating oligomers, in preparation, 2010.

  20. An Evolutionary Model for Collapsing Molecular Clouds and Their Star Formation Activity. II. Mass Dependence of the Star Formation Rate

    CERN Document Server

    Zamora-Avilés, Manuel

    2013-01-01

    In a previous study, we presented a semi-analytical model for the regulation of the star formation rate (SFR) and efficiency (SFE) in which the molecular clouds (MCs) were assumed to be in gravitational collapse, and the SFR was instantaneously controlled by evaporation of the cloud material by massive-star ionization feedback. In this model, the main parameter controlling the evolution of the clouds was found to be the gas mass involved in the process and here we discuss various properties of the SFR and SFE as a function of the cloud masses, that can be compared with observations and implemented in numerical models of galactic evolution. Because the model neglects magnetic fields, supernova explosions, and radiation pressure, the results presented are upper limits. We find that $\\SFRavg$ and $\\SFEavg$ are well represented as functions of the maximum cloud mass by the fits $\\SFRavg \\approx 100 (1+\\Mmax/2 \\times 10^5 ~ \\Msun)^{2} ~ \\Msun \\Myr^{-1}$ and $\\SFEavg \\approx 0.024 (\\Mmax/10^5 ~ \\Msun)^{0.28}$, resp...

  1. Friction and wear properties of ultra-high molecular mass polyethylene reinforced with Al2O3 nano-particle

    Institute of Scientific and Technical Information of China (English)

    FAN Dong-li; XIONG Dang-sheng

    2004-01-01

    The ultra-high molecular mass polyethylene (UHMMPE) as an artificial joint acetabular material was filled with nano-powder of Al2O3 of various mass fractions. The effect of Al2O3 mass fraction on the hardness, wetting property and tribological properties of the Al2O3-UHMMPE composites under dry friction sliding against both stainless steel and Ti-6Al-4V alloy was investigated. The morphologies of the worn surfaces of composites were observed with optical microscope. The results show that, wetting property and wear resistance of the composites are improved by filling Al2O3, while the friction coefficient is decreased largely under dry friction as compared with that of the unfilled UHMMPE. This is attributed to the reinforcing function of the nano-powder of Al2O3 in the composites. The wear of UHMMPE is dominated by plowing, plastic deformation and fatigue wear; while the Al2O3-UHMMPE composites are characterized by the mild fatigue wear.

  2. Probing silicon substitution in molecular sieves by plasma desorption mass spectrometry

    Science.gov (United States)

    Van Stipdonk, M. J.; von Heimburg, S. L.; Schweikert, E. A.

    1998-10-01

    Plasma desorption was used to produce secondary ion mass spectra from samples of unsubstituted and substituted aluminum phosphate materials. The yield of fingerprint ions representative of silicon oxide solids indicates that the incorporation of silicon into the material during synthesis and following calcination occurs via the formation of silicon-rich islands. Complementary X-ray photoelectron data provide supporting evidence that the surface of the substituted aluminum phosphate material becomes silicon rich and phosphorus depleted. No changes in the unsubstituted and substituted material with respect to composition and phase were detected using powder X-ray diffraction.

  3. Intact molecular characterization of cord factor (trehalose 6,6'-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Fujita, Yukiko; Naka, Takashi; McNeil, Michael R; Yano, Ikuya

    2005-10-01

    Cord factor (trehalose 6,6'-dimycolate, TDM) is an unique glycolipid with a trehalose and two molecules of mycolic acids in the mycobacterial cell envelope. Since TDM consists of two molecules of very long branched-chain 3-hydroxy fatty acids, the molecular mass ranges widely and in a complex manner. To characterize the molecular structure of TDM precisely and simply, an attempt was made to determine the mycolic acid subclasses of TDM and the molecular species composition of intact TDM by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for the first time. The results showed that less than 1 microg mycolic acid methyl ester of TDM from nine representative species of mycobacteria and TDM from the same species was sufficient to obtain well-resolved mass spectra composed of pseudomolecular ions [M+Na]+. Although the mass ion distribution was extremely diverse, the molecular species of each TDM was identified clearly by constructing a molecular ion matrix consisting of the combination of two molecules of mycolic acids. The results showed a marked difference in the molecular structure of TDM among mycobacterial species and subspecies. TDM from Mycobacterium tuberculosis (H37Rv and Aoyama B) showed a distinctive mass pattern and consisted of over 60 molecular ions with alpha-, methoxy- and ketomycolate. TDM from Mycobacterium bovis BCG Tokyo 172 similarly showed over 35 molecular ions, but that from M. bovis BCG Connaught showed simpler molecular ion clusters consisting of less than 35 molecular species due to a complete lack of methoxymycolate. Mass ions due to TDM from M. bovis BCG Connaught and Mycobacterium kansasii showed a biphasic distribution, but the two major peaks of TDM from M. kansasii were shifted up two or three carbon units higher compared with M. bovis BCG Connaught. Within the rapid grower group, in TDM consisting of alpha-, keto- and wax ester mycolate from Mycobacterium phlei and Mycobacterium flavescens, the

  4. Environmental Forensics: Molecular Insight into Oil Spill Weathering Helps Advance High Magnetic Field FT-ICR Mass Spectrometry

    Science.gov (United States)

    McKenna, Amy

    2013-03-01

    The depletion of terrestrial global oil reserves has shifted oil exploration into offshore and ultra-deep water (> 5000 ft) oil reserves to meet global energy demands. Deep water reservoirs are currently in production in many parts of the world, including the Gulf of Mexico, but production is complicated by the water depth and thick salt caps that challenge reservoir characterization / production. The explosion aboard the Deepwater Horizon in April 2010 resulted in an estimated total release of ~5 million barrels (BP claims that they collected ~1M barrels, for a net release of 4 M) of light, sweet crude oil into the Gulf of Mexico and shifted attention toward the environmental risks associated with offshore oil production. The growing emphasis on deep water and ultra-deep water oil production poses a significant environmental threat, and increased regulations require that oil companies minimize environmental impact to prevent oil spills, and mitigate environmental damage when spills occur. Every oil spill is unique. The molecular transformations that occur to petroleum after contact with seawater depend on the physical and chemical properties of the spilled oil, environmental conditions, and deposition environment. Molecular-level knowledge of the composition, distribution, and total mass of released hydrocarbons is essential to disentangle photo- and bio-degradation, source identification, and long-term environmental impact of hydrocarbons released into the environment. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is unsurpassed in its ability to characterize complex mixtures at the level of elemental composition assignment. Only FT-ICR mass spectrometry can routinely achieve the required minimum resolving power necessary to elucidate molecular-level characterization of crude oil. Conversely, the spectral complexity of petroleum facilitates identification of systematic errors in the accumulation, transfer, excitation, and detection

  5. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Directory of Open Access Journals (Sweden)

    Debasish Paul

    2013-01-01

    Full Text Available Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.

  6. Molecular formation along the atmospheric mass loss of HD 209458 b and similar Hot Jupiters

    CERN Document Server

    Pinotti, Rafael

    2016-01-01

    The chemistry along the mass loss of Hot Jupiters is generally considered to be simple, consisting mainly of atoms, prevented from forming more complex species by the intense radiation field from their host stars. In order to probe the region where the temperature is low (T < 2000 K), we developed a 1D chemical and photochemical reaction model of the atmospheric mass loss of HD 209458 b, involving 56 species, including carbon chain and oxygen bearing ones, interacting through 566 reactions. The simulation results indicate that simple molecules like OH+, H2O+ and H3O+ are formed inside the region, considering that residual H2 survives in the exosphere, a possibility indicated by recent observational work. The molecules are formed and destroyed within a radial distance of less than 10^7 km, but the estimated integrated column density of OH+, a potential tracer of H2, is high enough to allow detection, which, once achieved, would indicate a revision of chemical models of the upper atmosphere of Hot Jupiters. ...

  7. Cellular Assays with a Molecular Endpoint Measured by SAMDI Mass Spectrometry.

    Science.gov (United States)

    Berns, Eric J; Cabezas, Maria D; Mrksich, Milan

    2016-07-01

    Cell-based, high-throughput screening (HTS) assays are increasingly important tools used in drug discovery, but frequently rely on readouts of gene expression or phenotypic changes and require development of specialized, labeled reporters. Here a cell-based, label-free assay compatible with HTS is introduced that can report quantitatively on enzyme activities by measuring mass changes of substrates with matrix-assisted laser desorption/ionization mass spectrometry. The assay uses self-assembled monolayers to culture cells on arrays presenting substrates, which serve as reporters for a desired enzyme activity. Each spot of cells is treated with a compound, cultured and lysed, enabling endogenous enzymes to act on the immobilized peptide substrate. It is demonstrated that the assay can measure protein tyrosine phosphatase (PTP) activity from as few as five cells and a screen is described that identifies a compound that reduces PTP activity in cell lysates. This approach offers a valuable addition to the methods available for cell-based screening.

  8. observations of hot molecular gas emission from embedded low-mass protostars

    DEFF Research Database (Denmark)

    Visser, R.; Kristensen, L. E.; Bruderer, S.

    2012-01-01

    Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eu/k = 4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces...... the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a power-law density structure and a bipolar outflow cavity. Three heating mechanisms are considered: passive heating...... such as luminosity and envelope mass. Results. The bulk of the gas in the envelope, heated by the protostellar luminosity, accounts for 3–10% of the CO luminosity summed over all rotational lines up to J = 40–39; it is best probed by low-J CO isotopologue lines such as C18O 2–1 and 3–2. The UV-heated gas and the C...

  9. Molecular characterization of Saccharomyces cerevisiae α-pheromone by mass spectrometry-based peptidomics.

    Science.gov (United States)

    Bener Aksam, Eda; Pinkse, Martijn W H; Verhaert, Peter D E M

    2013-05-01

    Using modern peptide analytical MS technology ('Peptidomics'), it is possible to analyze yeast α-pheromone both qualitatively and semi-quantitatively directly from conditioned cell culture media. MS/MS analysis shows both forms of α-pheromone (MFα and MFα') detectable and identifiable straight from WT supernatants. In addition to the mature intact α-pheromones, also post-translationally modified α-pheromone peptides and fragments thereof are found to be present in the culture medium. This molecular analytical technique is complementary to the recently described quantitation method by Rogers et al. (2012, FEMS Yeast Res. 12:668) based on ELISA. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Fluorescent dye labeled DNA size standards for molecular mass detection in visible/infrared range

    Directory of Open Access Journals (Sweden)

    Sreelakshmi Yellamaraju

    2011-01-01

    Full Text Available Abstract Background Targeting Induced Local Lesions in Genomes (TILLING is a high throughput reverse genetics tool which detects mismatches (single point mutations or small indels in large number of individuals of mutagenized populations. Currently, TILLING is intensively used for genomics assisted molecular breeding of several crop plants for desired traits. Most commonly used platform for mutation detection is Li-COR DNA Analyzer, where PCR amplified products treated with single strand mismatch specific nuclease are resolved on denaturing gels. The molecular size of any cut product can be easily estimated by comparing with IR dye labeled markers of known sizes. Similar fluorescent dye labeled size markers are also used for several genotyping experiments. Currently, commercially available size standards are expensive and are restricted up to only 700 bp which renders estimation of products of sizes greater than 700 bases inaccurate. Findings A simple protocol was developed for labeling 5' end of multiple DNA size markers with fluorescent dyes. This method involves cloning a pool of different size markers of DNA in a plasmid vector. PCR amplification of plasmid using IR dye labeled universal primers generates 5' fluorescent labeled products of various sizes. The size of products constituting the ladder can be customized as per the need. The generated size markers can be used without any further purification and were found to be stable up to one year at -20°C. Conclusions A simple method was developed for generating fluorescent dye labeled size standards. This method can be customized to generate different size standards as per experimental needs. The protocol described can also be adapted for developing labeled size standards for detection on platforms other than Li-COR i.e. other than infra red range of the spectrum.

  11. Novel algorithm for simultaneous component detection and pseudo-molecular ion characterization in liquid chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufeng; Wang, Xiaoan; Wo, Siukwan [School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Ho, Hingman; Han, Quanbin [School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong (China); Fan, Xiaohui [College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Zuo, Zhong, E-mail: joanzuo@cuhk.edu.hk [School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)

    2015-01-01

    Highlights: • Novel stepwise component detection algorithm (SCDA) for LC–MS datasets. • New isotopic distribution and adduct-ion models for mass spectra. • Automatic component classification based on adduct-ion and isotopic distributions. - Abstract: Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography–mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components’ features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA.

  12. Monomeric carbohydrates production from olive tree pruning biomass: modeling of dilute acid hydrolysis.

    Science.gov (United States)

    Puentes, Juan G; Mateo, Soledad; Fonseca, Bruno G; Roberto, Inês C; Sánchez, Sebastián; Moya, Alberto J

    2013-12-01

    Statistical modeling and optimization of dilute sulfuric acid hydrolysis of olive tree pruning biomass has been performed using response surface methodology. Central composite rotatable design was applied to assess the effect of acid concentration, reaction time and temperature on efficiency and selectivity of hemicellulosic monomeric carbohydrates to d-xylose. Second-order polynomial model was fitted to experimental data to find the optimum reaction conditions by multiple regression analysis. The monomeric d-xylose recovery 85% (as predicted by the model) was achieved under optimized hydrolysis conditions (1.27% acid concentration, 96.5°C and 138 min), confirming the high validity of the developed model. The content of d-glucose (8.3%) and monosaccharide degradation products (0.1% furfural and 0.04% 5-hydroxymethylfurfural) provided a high quality subtract, ready for subsequent biochemical conversion to value-added products.

  13. The Roles of Monomeric GTP-Binding Proteins in Macroautophagy in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Shu Yang

    2014-10-01

    Full Text Available Autophagy is a cellular degradation process that sequesters components into a double-membrane structure called the autophagosome, which then fuses with the lysosome or vacuole for hydrolysis and recycling of building blocks. Bulk phase autophagy, also known as macroautophagy, controlled by specific Atg proteins, can be triggered by a variety of stresses, including starvation. Because autophagy relies extensively on membrane traffic to form the membranous structures, factors that control membrane traffic are essential for autophagy. Among these factors, the monomeric GTP-binding proteins that cycle between active and inactive conformations form an important group. In this review, we summarize the functions of the monomeric GTP-binding proteins in autophagy, especially with reference to experiments in Saccharomyces cerevisiae.

  14. Tracing Embedded Stellar Populations in Clusters and Galaxies using Molecular Emission: Methanol as a Signature of the Low-Mass End of the IMF

    CERN Document Server

    Kristensen, L E

    2015-01-01

    Most low-mass protostars form in clusters, in particular high-mass clusters; however, how low-mass stars form in high-mass clusters and what the mass distribution is, are still open questions both in our own Galaxy and elsewhere. To access the population of forming embedded low-mass protostars observationally, we propose to use molecular outflows as tracers. Because the outflow emission scales with mass, the effective contrast between low-mass protostars and their high-mass cousins is greatly lowered. In particular, maps of methanol emission at 338.4 GHz (J=7_0 - 6_0 A+) in low-mass clusters illustrate that this transition is an excellent probe of the low-mass population. We here present a model of a forming cluster where methanol emission is assigned to every embedded low-mass protostar. The resulting model image of methanol emission is compared to recent ALMA observations toward a high-mass cluster and the similarity is striking: the toy model reproduces observations to better than a factor of two and sugge...

  15. High molecular weight glutenin subunits in some durum wheat cultivars investigated by means of mass spectrometric techniques.

    Science.gov (United States)

    Muccilli, Vera; Lo Bianco, Marisol; Cunsolo, Vincenzo; Saletti, Rosaria; Gallo, Giulia; Foti, Salvatore

    2011-11-23

    The primary structures of high molecular weight glutenin subunits (HMW-GS) of 5 Triticum durum Desf. cultivars (Simeto, Svevo, Duilio, Bronte, and Sant'Agata), largely cultivated in the south of Italy, and of 13 populations of the old spring Sicilian durum wheat landrace Timilia (Triticum durum Desf.) (accession nos. 1, 2, 3, 4, 7, 8, 9, 13, 14, 15, SG1, SG2, and SG3) were investigated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and reversed-phase high performance liquid chromatography/nanoelectrospray ionization mass spectrometry (RP-HPLC/nESI-MS/MS). M(r) of the intact proteins determined by MALDI mass spectrometry showed that all the 13 populations of Timilia contained the same two HMW-GS with 75.2 kDa and 86.4 kDa, whereas the other durum wheat cultivars showed the presence of the expected HMW-GS 1By8 and 1Bx7 at 75.1 kDa and 83.1 kDa, respectively. By MALDI mass spectrometry of the tryptic digestion peptides of the isolated HMW-GS of Timilia, the 1Bx and 1By subunits were identified as the NCBInr Acc. No AAQ93629, and AAQ93633, respectively. Sequence verification for HMW-GS 1Bx and 1By both in Simeto and Timilia was obtained by MALDI mass mapping and HPLC/nESI-MSMS of the tryptic peptides. The Bx subunit of Timila presents a sequence similarity of 96% with respect to Simeto, with differences in the insertion of 3 peptides of 5, 9, and 15 amino acids, for a total insertion of 29 amino acids and 25 amino acid substitutions. These differences in the amino acidic sequence account for the determined Δm of 3294 Da between the M(r) of the 1Bx subunits in Timilia and Simeto. Sequence alignment between the two By subunits shows 10 amino acid substitutions and is consistent with the Δm of 148 Da found in the MALDI mass spectra of the intact subunits.

  16. Fine blood vascular casting by monomeric methacrylate injection and microwave treatment

    OpenAIRE

    日根野谷, 仁

    1992-01-01

    A modified injection replica SEM method was introduced. Thorough injection of a resin mixture (monomeric metacrylate containing 1% benzoyl peroxide and 1% N, N-dimethylaniline) prior to the microwave treatment prepares good and fine blood vascular casts or replicas of brain, hypophysis, pineal body, thyroid gland and other organs. These casts sufficiently withstood ionbombardment and were useful for scanning electron microscopy. In this casting, preliminary perfusion fixation prior to the res...

  17. High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Romonosky, Dian E.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-03-19

    A significant fraction of atmospheric organic compounds is predominantly found in condensed phases, such as aerosol particles and cloud droplets. Many of these compounds are photolabile and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of aqueous droplets (hours) and particles (days). This paper presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d- limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features, and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx generated SOA had more unique visual appearance, and indicated a lower extent of products overlap. Furthermore, the fraction of nitrogen containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone driven oxidation. Comparison of the SOA constituents

  18. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Osto, Luca [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Cazzaniga, Stefano [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Bressan, Mauro [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Paleček, David [Lund Univ. (Sweden). Dept. of Chemical Physics; Židek, Karel [Lund Univ. (Sweden). Dept. of Chemical Physics; Niyogi, Krishna K. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst., Dept. of Plant and Microbial Biology; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Fleming, Graham R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry, Graduate Group in Applied Science and Technology; Zigmantas, Donatas [Lund Univ. (Sweden). Dept. of Chemical Physics; Bassi, Roberto [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Consiglio Nazionale delle Ricerche (CNR), Firenze (Italy). Istituto per la Protezione delle Piante (IPP)

    2017-04-10

    Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: Energy transfer to a lutein quencher in trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. Here, we conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. Finally, this latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.

  19. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    Science.gov (United States)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  20. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  1. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  2. First synthesis and structural determination of a monomeric, unsolvated lithium amide, LiNH(2).

    Science.gov (United States)

    Grotjahn, D B; Sheridan, P M; Al Jihad, I; Ziurys, L M

    2001-06-13

    Alkali metal amides typically aggregate in solution and the solid phase, and even in the gas phase. In addition, even in the few known monomeric structures, the coordination number of the alkali metal is raised by binding of Lewis-basic solvent molecules, with concomitant changes in structure. In contrast, the simplest lithium amide LiNH(2) has never been made in a monomeric form, even though its structure has been theoretically predicted several times. Here, the first experimental structural data for a monomeric, unsolvated lithium amide are determined using a combination of gas-phase synthesis and millimeter/submillimeter-wave spectroscopy. All data point to a planar structure for LiNH(2). The r(o) structure of LiNH(2) has a Li-N distance of 1.736(3) A, an N-H distance of 1.022(3) A, and a H-N-H angle of 106.9(1) degrees. These results are compared with theoretical predictions for LiNH(2), and experimental data for oligomeric, solid-phase samples, which could not resolve the question of whether LiNH(2) is planar or not. In addition, comparisons are made with revised gas-phase and solid-phase data and calculated structures of NaNH(2).

  3. The peroxisomal protein import machinery displays a preference for monomeric substrates.

    Science.gov (United States)

    Freitas, Marta O; Francisco, Tânia; Rodrigues, Tony A; Lismont, Celien; Domingues, Pedro; Pinto, Manuel P; Grou, Cláudia P; Fransen, Marc; Azevedo, Jorge E

    2015-04-01

    Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and transported by the shuttling receptor PEX5 to the peroxisomal membrane docking/translocation machinery, where they are translocated into the organelle matrix. Under certain experimental conditions this protein import machinery has the remarkable capacity to accept already oligomerized proteins, a property that has heavily influenced current models on the mechanism of peroxisomal protein import. However, whether or not oligomeric proteins are really the best and most frequent clients of this machinery remain unclear. In this work, we present three lines of evidence suggesting that the peroxisomal import machinery displays a preference for monomeric proteins. First, in agreement with previous findings on catalase, we show that PEX5 binds newly synthesized (monomeric) acyl-CoA oxidase 1 (ACOX1) and urate oxidase (UOX), potently inhibiting their oligomerization. Second, in vitro import experiments suggest that monomeric ACOX1 and UOX are better peroxisomal import substrates than the corresponding oligomeric forms. Finally, we provide data strongly suggesting that although ACOX1 lacking a peroxisomal targeting signal can be imported into peroxisomes when co-expressed with ACOX1 containing its targeting signal, this import pathway is inefficient.

  4. Treatment of iron deficiency anemia: are monomeric iron compounds suitable for parenteral administration?

    Science.gov (United States)

    Gupta, A; Crumbliss, A L

    2000-11-01

    Iron deficiency is the most common nutritional problem worldwide, especially in the developing countries. Oral iron supplementation programs have failed because of noncompliance and gastrointestinal toxicity, thereby necessitating parenteral administration of iron. For parenteral administration, only iron-carbohydrate complexes are currently used, because monomeric iron salts release free iron, thereby causing oxidant injury. However, iron-carbohydrate complexes also have significant toxicity, and they are expensive. We have proposed the hypothesis that monomeric iron salts can be safely administered by the parenteral route if iron is tightly complexed to the ligand, thereby causing clinically insignificant release of free iron, and the kinetic properties of the compound allow rapid transfer of iron to plasma transferrin. A detailed analysis of the physicochemical and kinetic properties reveals that ferric iron complexed to pyrophosphate or acetohydroxamate anions may be suitable for parenteral administration. We have demonstrated that infusion of ferric pyrophosphate into the circulation via the dialysate is safe and effective in maintaining iron balance in patients undergoing maintenance hemodialysis. Parenteral administration of monomeric iron compounds is a promising approach to the treatment of iron deficiency in the general population and merits further investigation.

  5. Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results.

    Science.gov (United States)

    Magrini, K A; Evans, R J; Hoover, C M; Elam, C C; Davis, M F

    2002-01-01

    The components of soil organic matter (SOM) and their degradation dynamics in forest soils are difficult to study and thus poorly understood, due to time-consuming sample collection, preparation, and difficulty of analyzing and identifying major components. As a result, changes in soil organic matter chemical composition as a function of age, forest type, or disturbance have not been examined. We applied pyrolysis molecular beam mass spectrometry (py-MBMS), which provides rapid characterization of SOM of whole soil samples. to the Tionesta soil samples described by Hoover, C.M., Magrini, K.A., Evans, R.J., 2002. Soil carbon content and character in an old growth forest in northwestern Pennsylvania: a case study introducing molecular beam mass spectrometry (PY-MBMS). Environmental Pollution 116 (Supp. 1), S269-S278. Our goals in this work were to: (1) develop and demonstrate an advanced, rapid analytical method for characterizing SOM components in whole soils, and (2) provide data-based models to predict soil carbon content and residence time from py-MBMS analysis. Using py-MBMS and pattern recognition techniques we were able to statistically distinguish among four Tionesta sites and show an increase in pyrolysis products of more highly decomposed plant materials at increasing sample depth. For example, all four sites showed increasing amounts of older carbon (phenolic and aromatic species) at deeper depths and higher amounts of more recent carbon (carbohydrates and lignin products) at shallower depths. These results indicate that this type of analysis could be used to rapidly characterize SOM for the purpose of developing a model, which could be used in monitoring the effect of forest management practices on carbon uptake and storage.

  6. A High Molecular-Mass Anoxybacillus sp. SK3-4 Amylopullulanase: Characterization and Its Relationship in Carbohydrate Utilization

    Directory of Open Access Journals (Sweden)

    Kian Mau Goh

    2013-05-01

    Full Text Available An amylopullulanase of the thermophilic Anoxybacillus sp. SK3-4 (ApuASK was purified to homogeneity and characterized. Though amylopullulanases larger than 200 kDa are rare, the molecular mass of purified ApuASK appears to be approximately 225 kDa, on both SDS-PAGE analyses and native-PAGE analyses. ApuASK was stable between pH 6.0 and pH 8.0 and exhibited optimal activity at pH 7.5. The optimal temperature for ApuASK enzyme activity was 60 °C, and it retained 54% of its total activity for 240 min at 65 °C. ApuASK reacts with pullulan, starch, glycogen, and dextrin, yielding glucose, maltose, and maltotriose. Interestingly, most of the previously described amylopullulanases are unable to produce glucose and maltose from these substrates. Thus, ApuASK is a novel, high molecular-mass amylopullulanase able to produce glucose, maltose, and maltotriose from pullulan and starch. Based on whole genome sequencing data, ApuASK appeared to be the largest protein present in Anoxybacillus sp. SK3-4. The α-amylase catalytic domain present in all of the amylase superfamily members is present in ApuASK, located between the cyclodextrin (CD-pullulan-degrading N-terminus and the α-amylase catalytic C-terminus (amyC domains. In addition, the existence of a S-layer homology (SLH domain indicates that ApuASK might function as a cell-anchoring enzyme and be important for carbohydrate utilization in a streaming hot spring.

  7. CHARACTERIZATION OF MOLECULAR MASS OF SIX WATER-SOLUBLE POLYSACCHARIDE-PROTEIN COMPLEXES FROM GANODERMA TSUGAE MYCELIUM

    Institute of Scientific and Technical Information of China (English)

    Yan-fei Peng; Li-na Zhang; Xiao-juan Xu; Li-guo Cheng

    2003-01-01

    Six water-soluble polysaccharide-protein complexes coded as GM1, GM2, GM3, GM4, GM5 and GM6 were isolated from the mycelium of Ganoderma tsugae by extracting with 0.2 mol/L phosphate buffer solution at 25, 40 and 80℃, water at 120℃, 0.5 mol/L aqueous NaOH solution at 25 and 65℃, consecutively. Their chemical components were analyzed by using IR, GC, HPLC and 13C-NMR, and some new results were obtained. The four samples GM1, GM2, GM3 and GM4 are heteropolysaccharide-protein complexes, in which, α-(1→3) linked D-glucose is the major monosaccharide while galactose, mannose and ribose are the secondary ones. GM5 and GM6 are β-(1→3)-D-glucan-protein complexes. The protein content increased from 32% to 69% with the progress of isolation. Weight-average molecular mass Mw and the intrinsic viscosity [rη] of the GM samples in 0.5 mol/L aqueous NaCl solution at 25℃ were measured systematically by laser light scattering (LLS), size exclusion chromatography (SEC) combined with LLS, and viscometry. The Mw of GM1 to GM6 are 35.5, 46.8, 58.9, 41.6, 3.3 and 22.0 x 104, respectively. The conformation and molecular mass of the two fractions of sample GM5 were characterized satisfactorily by SEC-LLS without further fractionation.

  8. AGE ESTIMATION AND MASS FUNCTIONS OF TTAURI STARS IN THE TAURUS AURIGA MOLECULAR CLOUD

    Directory of Open Access Journals (Sweden)

    I. Küçük

    2010-01-01

    Full Text Available En este trabajo se han calculado las funciones de masas en la actualidad (PDMF de las estrellas T-Tauri (TTS que est n en la fase evolutiva de presecuencia principal (PMS en el complejo de nubes moleculares de Taurus-Auriga. Con este n, mediante la aplicaci n de nuestro c digo modi cado de evoluci n estelar se utilizan modelos estelares en el intervalo de masa de 0:1 - 2:5 M para determinar la masa y la masa de edad de las TTS. La funci n de la masa obtenida se compara con la funci n de masa de Miller & Scalo (1979. La edad encontrada para las TTS es de alrededor de 1-3x10 6 a os y la funci n de masa es de aproximadamente 0.644-+0.348. De estos resultados, hemos calculado la tasa de formaci n estelar como de alrededor de 1.3 x 10-7 M a o-1 en esta regi n.

  9. Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein.

    Science.gov (United States)

    Tsuboi, Takashi; Kitaguchi, Tetsuya; Karasawa, Satoshi; Fukuda, Mitsunori; Miyawaki, Atsushi

    2010-01-01

    Although it is evident that only a few secretory vesicles accumulating in neuroendocrine cells are qualified to fuse with the plasma membrane and release their contents to the extracellular space, the molecular mechanisms that regulate their exocytosis are poorly understood. For example, it has been controversial whether secretory vesicles are exocytosed randomly or preferentially according to their age. Using a newly developed protein-based fluorescent timer, monomeric Kusabira Green Orange (mK-GO), which changes color with a predictable time course, here we show that small GTPase Rab27A effectors regulate age-dependent exocytosis of secretory vesicles in PC12 cells. When the vesicles were labeled with mK-GO-tagged neuropeptide Y or tissue-type plasminogen activator, punctate structures with green or red fluorescence were observed. Application of high [K(+)] stimulation induced exocytosis of new (green) fluorescent secretory vesicles but not of old (red) vesicles. Overexpression or depletion of rabphilin and synaptotagmin-like protein4-a (Slp4-a), which regulate exocytosis positively and negatively, respectively, disturbed the age-dependent exocytosis of the secretory vesicles in different manners. Our results suggest that coordinate functions of the two effectors of Rab27A, rabphilin and Slp4-a, are required for regulated secretory pathway.

  10. Rational design of a monomeric and photostable far-red fluorescent protein for fluorescence imaging in vivo.

    Science.gov (United States)

    Yu, Dan; Dong, Zhiqiang; Gustafson, William Clay; Ruiz-González, Rubén; Signor, Luca; Marzocca, Fanny; Borel, Franck; Klassen, Matthew P; Makhijani, Kalpana; Royant, Antoine; Jan, Yuh-Nung; Weiss, William A; Guo, Su; Shu, Xiaokun

    2016-02-01

    Fluorescent proteins (FPs) are powerful tools for cell and molecular biology. Here based on structural analysis, a blue-shifted mutant of a recently engineered monomeric infrared fluorescent protein (mIFP) has been rationally designed. This variant, named iBlueberry, bears a single mutation that shifts both excitation and emission spectra by approximately 40 nm. Furthermore, iBlueberry is four times more photostable than mIFP, rendering it more advantageous for imaging protein dynamics. By tagging iBlueberry to centrin, it has been demonstrated that the fusion protein labels the centrosome in the developing zebrafish embryo. Together with GFP-labeled nucleus and tdTomato-labeled plasma membrane, time-lapse imaging to visualize the dynamics of centrosomes in radial glia neural progenitors in the intact zebrafish brain has been demonstrated. It is further shown that iBlueberry can be used together with mIFP in two-color protein labeling in living cells and in two-color tumor labeling in mice.

  11. Functional alteration of a dimeric insecticidal lectin to a monomeric antifungal protein correlated to its oligomeric status.

    Directory of Open Access Journals (Sweden)

    Nilanjana Banerjee

    Full Text Available BACKGROUND: Allium sativum leaf agglutinin (ASAL is a 25-kDa homodimeric, insecticidal, mannose binding lectin whose subunits are assembled by the C-terminal exchange process. An attempt was made to convert dimeric ASAL into a monomeric form to correlate the relevance of quaternary association of subunits and their functional specificity. Using SWISS-MODEL program a stable monomer was designed by altering five amino acid residues near the C-terminus of ASAL. METHODOLOGY/PRINCIPAL FINDINGS: By introduction of 5 site-specific mutations (-DNSNN-, a β turn was incorporated between the 11(th and 12(th β strands of subunits of ASAL, resulting in a stable monomeric mutant ASAL (mASAL. mASAL was cloned and subsequently purified from a pMAL-c2X system. CD spectroscopic analysis confirmed the conservation of secondary structure in mASAL. Mannose binding assay confirmed that molecular mannose binds efficiently to both mASAL and ASAL. In contrast to ASAL, the hemagglutination activity of purified mASAL against rabbit erythrocytes was lost. An artificial diet bioassay of Lipaphis erysimi with mASAL displayed an insignificant level of insecticidal activity compared to ASAL. Fascinatingly, mASAL exhibited strong antifungal activity against the pathogenic fungi Fusarium oxysporum, Rhizoctonia solani and Alternaria brassicicola in a disc diffusion assay. A propidium iodide uptake assay suggested that the inhibitory activity of mASAL might be associated with the alteration of the membrane permeability of the fungus. Furthermore, a ligand blot assay of the membrane subproteome of R. solani with mASAL detected a glycoprotein receptor having interaction with mASAL. CONCLUSIONS/SIGNIFICANCE: Conversion of ASAL into a stable monomer resulted in antifungal activity. From an evolutionary aspect, these data implied that variable quaternary organization of lectins might be the outcome of defense-related adaptations to diverse situations in plants. Incorporation of m

  12. Functional alteration of a dimeric insecticidal lectin to a monomeric antifungal protein correlated to its oligomeric status.

    Science.gov (United States)

    Banerjee, Nilanjana; Sengupta, Subhadipa; Roy, Amit; Ghosh, Prithwi; Das, Kalipada; Das, Sampa

    2011-04-07

    Allium sativum leaf agglutinin (ASAL) is a 25-kDa homodimeric, insecticidal, mannose binding lectin whose subunits are assembled by the C-terminal exchange process. An attempt was made to convert dimeric ASAL into a monomeric form to correlate the relevance of quaternary association of subunits and their functional specificity. Using SWISS-MODEL program a stable monomer was designed by altering five amino acid residues near the C-terminus of ASAL. By introduction of 5 site-specific mutations (-DNSNN-), a β turn was incorporated between the 11(th) and 12(th) β strands of subunits of ASAL, resulting in a stable monomeric mutant ASAL (mASAL). mASAL was cloned and subsequently purified from a pMAL-c2X system. CD spectroscopic analysis confirmed the conservation of secondary structure in mASAL. Mannose binding assay confirmed that molecular mannose binds efficiently to both mASAL and ASAL. In contrast to ASAL, the hemagglutination activity of purified mASAL against rabbit erythrocytes was lost. An artificial diet bioassay of Lipaphis erysimi with mASAL displayed an insignificant level of insecticidal activity compared to ASAL. Fascinatingly, mASAL exhibited strong antifungal activity against the pathogenic fungi Fusarium oxysporum, Rhizoctonia solani and Alternaria brassicicola in a disc diffusion assay. A propidium iodide uptake assay suggested that the inhibitory activity of mASAL might be associated with the alteration of the membrane permeability of the fungus. Furthermore, a ligand blot assay of the membrane subproteome of R. solani with mASAL detected a glycoprotein receptor having interaction with mASAL. Conversion of ASAL into a stable monomer resulted in antifungal activity. From an evolutionary aspect, these data implied that variable quaternary organization of lectins might be the outcome of defense-related adaptations to diverse situations in plants. Incorporation of mASAL into agronomically-important crops could be an alternative method to protect them

  13. Use of Accelerator Mass Spectrometry in Human Health and Molecular Toxicology.

    Science.gov (United States)

    Enright, Heather A; Malfatti, Michael A; Zimmermann, Maike; Ognibene, Ted; Henderson, Paul; Turteltaub, Kenneth W

    2016-12-19

    Accelerator mass spectrometry (AMS) has been adopted as a powerful bioanalytical method for human studies in the areas of pharmacology and toxicology. The exquisite sensitivity (10(-18) mol) of AMS has facilitated studies of toxins and drugs at environmentally and physiologically relevant concentrations in humans. Such studies include risk assessment of environmental toxicants, drug candidate selection, absolute bioavailability determination, and more recently, assessment of drug-target binding as a biomarker of response to chemotherapy. Combining AMS with complementary capabilities such as high performance liquid chromatography (HPLC) can maximize data within a single experiment and provide additional insight when assessing drugs and toxins, such as metabolic profiling. Recent advances in the AMS technology at Lawrence Livermore National Laboratory have allowed for direct coupling of AMS with complementary capabilities such as HPLC via a liquid sample moving wire interface, offering greater sensitivity compared to that of graphite-based analysis, therefore enabling the use of lower (14)C and chemical doses, which are imperative for clinical testing. The aim of this review is to highlight the recent efforts in human studies using AMS, including technological advancements and discussion of the continued promise of AMS for innovative clinical based research.

  14. Molecular opacities for low-mass metal-poor AGB stars undergoing the Third Dredge Up

    CERN Document Server

    Cristallo, S; Lederer, M T; Aringer, B

    2007-01-01

    The concomitant overabundances of C, N and s-process elements are commonly ascribed to the complex interplay of nucleosynthesis, mixing and mass loss taking place in Asymptotic Giant Branch stars. At low metallicity, the enhancement of C and/or N may be up to 1000 times larger than the original iron content and significantly affects the stellar structure and its evolution. For this reason, the interpretation of the already available and still growing amount of data concerning C-rich metal-poor stars belonging to our Galaxy as well as to dwarf spheroidal galaxies would require reliable AGB stellar models for low and very low metallicities. In this paper we address the question of calculation and use of appropriate opacity coefficients, which take into account the C enhancement caused by the third dredge up. A possible N enhancement, caused by the cool bottom process or by the engulfment of protons into the convective zone generated by a thermal pulse and the subsequent huge third dredge up, is also considered....

  15. Density Profiles in Molecular Cloud Cores Associated with High-Mass Star-Forming Regions

    CERN Document Server

    Pirogov, Lev E

    2009-01-01

    Radial density profiles for the sample of dense cores associated with high-mass star-forming regions from southern hemisphere have been derived using the data of observations in continuum at 250 GHz. Radial density profiles for the inner regions of 16 cores (at distances $\\la 0.2-0.8$ pc from the center) are close on average to the $\\rho\\propto r^{-\\alpha}$ dependence, where $\\alpha=1.6\\pm 0.3$. In the outer regions density drops steeper. An analysis with various hydrostatic models showed that the modified Bonnor-Ebert model, which describes turbulent sphere confined by external pressure, is preferable compared with the logotrope and polytrope models practically in all cases. With a help of the Bonnor-Ebert model, estimates of central density in a core, non-thermal velocity dispersion and core size are obtained. The comparison of central densities with the densities derived earlier from the CS modeling reveals differences in several cases. The reasons of such differences are probably connected with the presen...

  16. observations of hot molecular gas emission from embedded low-mass protostars

    DEFF Research Database (Denmark)

    Visser, R.; Kristensen, L. E.; Bruderer, S.;

    2012-01-01

    the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a power-law density structure and a bipolar outflow cavity. Three heating mechanisms are considered: passive heating...... such as luminosity and envelope mass. Results. The bulk of the gas in the envelope, heated by the protostellar luminosity, accounts for 3–10% of the CO luminosity summed over all rotational lines up to J = 40–39; it is best probed by low-J CO isotopologue lines such as C18O 2–1 and 3–2. The UV-heated gas and the C......-type shocks, probed by 12CO 10–9 and higher-J lines, contribute 20–80% each. The model fits show a tentative evolutionary trend: the CO emission is dominated by shocks in the youngest source and by UV-heated gas in the oldest one. This trend is mainly driven by the lower envelope density in more evolved...

  17. Tracing molecular gas mass in extreme extragalactic environments: an observational study

    CERN Document Server

    Zhu, Ming; Xilouris, Emmanuel M; Kuno, Nario; Lisenfeld, Ute

    2009-01-01

    We present a new observational study of the CO(1-0) line emission as an H2 gas mass tracer under extreme conditions in extragalactic environments. Our approach is to study the full neutral interstellar medium (H2, HI and dust) of two galaxies whose bulk interstellar medium (ISM) resides in environments that mark (and bracket) the excitation extremes of the ISM conditions found in infrared luminous galaxies, the starburst NGC3310 and the quiescent spiral NGC157. Our study maintains a robust statistical notion of the so-called X factor (i.e. a large ensemble of clouds is involved) while exploring its dependency on the very different average ISM conditions prevailing within these two systems. These are constrained by fully-sampled CO(3-2) and CO(1-0) observations, at a matched beam resolution of Half Power Beam Width 15'', obtained with the JCMT the Nobeyama 45-m telescope, combined with sensitive 850 and 450 micron dust emission and HI interferometric images which allow a complete view of all the neutral ISM co...

  18. Microextraction by packed sorbent liquid chromatography with time-of-flight mass spectrometry of triazines employing a molecularly imprinted polymer.

    Science.gov (United States)

    Andrade, Felipe Nascimento; Santos-Neto, Álvaro José; Lanças, Fernando Mauro

    2014-11-01

    Molecularly imprinted polymers for the determination of triazines were synthesized by precipitation using atrazine as template, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker, and 2,2'-azobisisobutrynitrile as initiator. The polymers were characterized by infrared spectroscopy and scanning electron microscopy and packed in a device for microextraction by packed sorbent aiming for the preconcentration/cleanup of herbicides, such as atrazine, simazine, simetryn, ametryn, and terbutryn in corn samples. Liquid chromatography coupled with time-of-flight mass spectrometry was used for the separation and determination of the herbicides. The selectivity coefficient of molecularly imprinted polymers was compared with that of nonimprinted polymer for the binary mixtures of atrazine/propanil and atrazine/picloram, and the values obtained were 15.6 and 2.96, respectively. The analytical curve ranged from 10 to 80 μg/kg (r = 0.989) and the limits of detection and quantification in the corn matrices were 3.3 and 10 μg/kg, respectively. Intra- and interday precisions were Polymer synthesis was successfully applied to the cleanup and preconcentration of triazines from fortified corn samples with 91.1-109.1% of recovery.

  19. Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches.

    Science.gov (United States)

    Alibi, S; Ferjani, A; Gaillot, O; Marzouk, M; Courcol, R; Boukadida, J

    2015-09-01

    We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 97 Corynebacterium clinical in comparison to identification strains by Api Coryne and MALDI-TOF-MS using 16S rRNA gene and hypervariable region of rpoB genes sequencing as a reference method. C. striatum was the predominant species isolated followed by C. amycolatum. There was an agreement between Api Coryne strips and MALDI-TOF-MS identification in 88.65% of cases. MALDI-TOF-MS was unable to differentiate C. aurimucosum from C. minutissimum and C. minutissimum from C. singulare but reliably identify 92 of 97 (94.84%) strains. Two strains remained incompletely identified to the species level by MALDI-TOF-MS and molecular approaches. They belonged to Cellulomonas and Pseudoclavibacter genus. In conclusion, MALDI-TOF-MS is a rapid and reliable method for the identification of Corynebacterium species. However, some limits have been noted and have to be resolved by the application of molecular methods.

  20. Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tfaily, Malak M.; Chu, Rosalie K.; Tolic, Nikola; Roscioli, Kristyn M.; Anderton, Christopher R.; Pasa-Tolic, Ljiljana; Robinson, Errol W.; Hess, Nancy J.

    2015-05-19

    Soil organic matter (SOM) a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and predict accurately how terrestrial carbon fluxes will response to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soils with a wide range of C content. Our use of Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin poly phenolic compounds with O:C > 0.5; methanol has higher selectivity towards compounds characterized with low O:C < 0.5; and hexane, MeOH, ACN and water solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI-FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils.

  1. Investigation of gamma-ray irradiation on molecular structure, optical properties and mass attenuation coefficients of colloidal gold nanoparticles

    Science.gov (United States)

    Dehghani, Z.; Vejdani Noghreiyan, A.; Nadafan, M.; Majles Ara, M. H.

    2017-08-01

    In this research, colloidal gold NPs were synthesized by turkevich method. XRD spectrum after irradiation showed the different peaks but the most important distinctive was related to (111) peaks at (2θ = 38.41°) which give an indication that the structure is cubic. The Raman spectroscopy results indicated that the intensity of peaks with the wave number of 3450 cm-1was increased in the colloidal gold NPs irradiated due to improvement of the crystalline properties of colloidal gold NPs. SEM images showed significant changes in the morphology and size of gamma irradiated colloidal gold NPs. For 10 kGy dose, gamma-ray irradiated crystals, the optical absorption increases compared to that of before irradiation which may be the consequence of the formation of point defects due to gamma-rays. Comparing nonlinear studies, the magnitude of nonlinear refraction index, n2 and nonlinear absorption coefficient, β increase after gamma-ray irradiation. The measurement of mass attenuation coefficients result shows that the gamma-ray irradiation has an influence on radiation absorption coefficients of colloidal gold NPs. It is an evidence which shows that in addition to the atomic mass number of elements, the molecular structure may affect on the attenuation coefficients and nonlinear optical properties.

  2. A comparison of the Maillard reactivity of proline to other amino acids using pyrolysis-molecular beam mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Luc Moens; Robert J. Evans; Michael J. Looker; Mark R. Nimlos [National Bioenergy Center, Golden, CO (United States). National Renewable Energy Laboratory

    2004-08-01

    Maillard chemistry, or the low temperature condensation of amino acids and carbohydrates, is shown to be relevant to the practical regime of biomass pyrolysis and leads to dramatic changes in low-temperature volatile products and residual solid structure. Mixtures of amino acids and glucose were subjected to a two-temperature heating sequence (5 min each at 170 and 325{sup o}C) and the volatile products analyzed by molecular beam mass spectrometry. Significant volatile yield was observed from the mixtures at 170{sup o}C where neither amino acids nor glucose generated volatile material in the time frame studied. Proline was the most active of the amino acids studied. Volatile products at low temperature included the diketopiperazine, which were generated in higher yields than from proline alone. Also generated were Maillard condensation such as 1-(1{prime}-pyrrolidinyl)-2-propanone. These products were also generated at 325{sup o}C, but in addition, the mass spectra included evidence for the direct formation of nitrogen-containing aromatics. These observations are discussed in relation to known Maillard chemistry. 37 refs., 8 figs., 1 tab.

  3. Induction of antibodies against epitopes inaccessible on the HIV type 1 envelope oligomer by immunization with recombinant monomeric glycoprotein 120

    DEFF Research Database (Denmark)

    Schønning, Kristian; Bolmstedt, A; Novotny, J;

    1998-01-01

    An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected to...... immunogenic structures inaccessible on the envelope oligomer. The limited ability of recombinant gp120 vaccines to induce neutralizing antibodies against primary isolates may thus not exclusively reflect genetic variation.......An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected...

  4. Chemical reactions induced by high-velocity molecular impacts: challenges for closed-source mass spectrometry

    Science.gov (United States)

    Austin, Daniel

    2016-07-01

    Analysis of upper atmosphere composition using closed-source neutral mass spectrometers (e.g., Cassini INMS, MAVEN NGIMS) is subject to error due to chemical reactions caused by the high-velocity impacts of neutral molecules on the source surfaces. In addition to species traditionally considered "surface reactive" (e.g., O, N) it is likely that many or all impacting molecules are vibrationally excited to the point that chemical changes can occur. Dissociation, fragmentation, formation of radicals and ions, and other reactions likely obscure analysis of the native atmospheric composition, particularly of organic compounds. Existing techniques are not capable of recreating the relevant impact chemistry in the lab. We report on the development of a new capability allowing reactions of high-velocity neutrals impacting surfaces to be characterized directly. Molecules introduced into a vacuum chamber are impacted at several km/s by the surface of a high-speed rotor. These molecules subsequently impact multiple times on other surfaces within the vacuum chamber until they are thermalized, after which they are cryogenically collected and analyzed. Reaction pathways and thermodynamics for volatile compounds are then determined. We will present current results on this project, including data from low- and mid-range velocity experiments. This type of information is critical to clarify prior flight results and plan for future missions. Finally, we present a new type of inlet intended to significantly reduce fragmentation for impact velocities typical of a fly-by mission. Theoretical analysis indicates that this new inlet may reduce fragmentation by more than an order of magnitude for any encounter velocity.

  5. High field FT-ICR mass spectrometry for molecular characterization of snow board from Moscow regions.

    Science.gov (United States)

    Mazur, Dmitry M; Harir, Mourad; Schmitt-Kopplin, Philippe; Polyakova, Olga V; Lebedev, Albert T

    2016-07-01

    High field Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry analysis of eight snow samples from Moscow city allowed us to identify more than 2000 various elemental compositions corresponding to regional air pollutants. The hierarchical cluster analysis (HCA) of the data showed good concordance of three main groups of samples with the main wind directions. The North-West group (A1) is represented by several homologous CHOS series of aliphatic organic aerosols. They may form as a result of enhanced photochemical reactions including oxidation of hydrocarbons with sulfonations due to higher amount of SO2 emissions in the atmosphere in this region. Group A2, corresponding to the South-East part of Moscow, contains large amount of oxidized hydrocarbons of different sources that may form during oxidation in atmosphere. These hydrocarbons appear correlated to emissions from traffic, neighboring oil refinery, and power plants. Another family of compounds specific for this region involves CHNO substances formed during oxidation processes including NOx and NO3 radical since emissions of NOx are higher in this part of the city. Group A3 is rich in CHO type of compounds with high H/C and low O/C ratios, which is characteristic of oxidized hydrocarbon-like organic aerosol. CHNO types of compounds in A3 group are probably nitro derivatives of condensed hydrocarbons such as PAH. This non-targeted profiling revealed site specific distribution of pollutants and gives a chance to develop new strategies in air quality control and further studies of Moscow environment.

  6. Molecular characterization of ongoing enzymatic reactions in raw garlic cloves using extractive electrospray ionization mass spectrometry.

    Science.gov (United States)

    Zhang, Hua; Chingin, Konstantin; Zhu, Liang; Chen, Huanwen

    2015-03-03

    Characterization of enzymatic reactions occurring in untreated biological samples is of increasing interest. Herein, the chemical conversion of alliin to allicin, catalyzed by allinase, in raw garlic cloves has been followed in vivo by internal extractive electrospray ionization mass spectrometry (iEESI-MS). Both precursors and products of the enzymatic reaction were instantaneously extracted by infused solution running throughout the tissue and directly electrospray ionized on the edge of the bulk sample for online MS analysis. Compared to the room-temperature (+25 °C) scenario, the alliin conversion in garlic cloves decreased by (7.2 ± 1.4) times upon heating to +80 °C and by (5.9 ± 0.8) times upon cooling to -16 °C. Exposure of garlic to gentle ultrasound irradiation for 3 h accelerated the reaction by (1.2 ± 0.1) times. A 10 s microwave irradiation promoted alliin conversion by (1.6 ± 0.4) times, but longer exposure to microwave irradiation (90 s) slowed the reaction by (28.5 ± 7.5) times compared to the reference analysis. This method has been further employed to monitor the germination process of garlic. These data revealed that over a 2 day garlic sprouting, the allicin/alliin ratio increased by (2.2 ± 0.5) times, and the averaged degree of polymerization for the detected oligosaccharides/polysaccharides decreased from 11.6 to 9.4. Overall, these findings suggest the potential use of iEESI-MS for in vivo studies of enzymatic reactions in native biological matrices.

  7. The ATLAS(3D) project - XX. Mass-size and mass-Sigma distributions of early-type galaxies : bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    NARCIS (Netherlands)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-01-01

    In the companion Paper XV of this series, we derive accurate total mass-to-light ratios (M/L)(JAM) approximate to (M/L)(r = R-e) within a sphere of radius r = R-e centred on the galaxy, as well as stellar (M/L)(stars) (with the dark matter removed) for the volume-limited and nearly mass-selected (st

  8. Kinematic Structure of Molecular Gas around High-mass YSO, Papillon Nebula, in N159 East in the Large Magellanic Cloud: A New Perspective with ALMA

    Science.gov (United States)

    Saigo, Kazuya; Onishi, Toshikazu; Nayak, Omnarayani; Meixner, Margaret; Tokuda, Kazuki; Harada, Ryohei; Morioka, Yuuki; Sewiło, Marta; Indebetouw, Remy; Torii, Kazufumi; Kawamura, Akiko; Ohama, Akio; Hattori, Yusuke; Yamamoto, Hiroaki; Tachihara, Kengo; Minamidani, Tetsuhiro; Inoue, Tsuyoshi; Madden, Suzanne; Galametz, Maud; Lebouteiller, Vianney; Chen, C.-H. Rosie; Mizuno, Norikazu; Fukui, Yasuo

    2017-01-01

    We present the ALMA Band 3 and Band 6 results of 12CO(2-1), 13CO(2-1), H30α recombination line, free–free emission around 98 GHz, and the dust thermal emission around 230 GHz toward the N159 East Giant Molecular Cloud (N159E) in the Large Magellanic Cloud (LMC). LMC is the nearest active high-mass star-forming face-on galaxy at a distance of 50 kpc and is the best target for studing high-mass star formation. ALMA observations show that N159E is the complex of filamentary clouds with the width and length of ∼1 pc and several parsecs. The total molecular mass is 0.92 × 105 M⊙ from the 13CO(2-1) intensity. N159E harbors the well-known Papillon Nebula, a compact high-excitation H ii region. We found that a YSO associated with the Papillon Nebula has the mass of 35 M⊙ and is located at the intersection of three filamentary clouds. It indicates that the formation of the high-mass YSO was induced by the collision of filamentary clouds. Fukui et al. reported a similar kinematic structure toward two YSOs in the N159 West region, which are the other YSOs that have the mass of ≳35 M⊙. This suggests that the collision of filamentary clouds is a primary mechanism of high-mass star formation. We found a small molecular hole around the YSO in Papillon Nebula with a sub-parsec scale. It is filled by free–free and H30α emission. The temperature of the molecular gas around the hole reaches ∼80 K. It indicates that this YSO has just started the distruction of parental molecular cloud.

  9. Mass spectrometry based lipid(ome) analyzer and molecular platform: a new software to interpret and analyze electrospray and/or matrix-assisted laser desorption/ionization mass spectrometric data of lipids: a case study from Mycobacterium tuberculosis.

    Science.gov (United States)

    Sabareesh, Varatharajan; Singh, Gurpreet

    2013-04-01

    Mass Spectrometry based Lipid(ome) Analyzer and Molecular Platform (MS-LAMP) is a new software capable of aiding in interpreting electrospray ionization (ESI) and/or matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data of lipids. The graphical user interface (GUI) of this standalone programme is built using Perl::Tk. Two databases have been developed and constituted within MS-LAMP, on the basis of Mycobacterium tuberculosis (M. tb) lipid database (www.mrl.colostate.edu) and that of Lipid Metabolites and Pathways Strategy Consortium (LIPID MAPS; www.lipidmaps.org). Different types of queries entered through GUI would interrogate with a chosen database. The queries can be molecular mass(es) or mass-to-charge (m/z) value(s) and molecular formula. LIPID MAPS identifier also can be used to search but not for M. tb lipids. Multiple choices have been provided to select diverse ion types and lipids. Satisfying to input parameters, a glimpse of various lipid categories and their population distribution can be viewed in the output. Additionally, molecular structures of lipids in the output can be seen using ChemSketch (www.acdlabs.com), which has been linked to the programme. Furthermore, a version of MS-LAMP for use in Linux operating system is separately available, wherein PyMOL can be used to view molecular structures that result as output from General Lipidome MS-LAMP. The utility of this software is demonstrated using ESI mass spectrometric data of lipid extracts of M. tb grown under two different pH (5.5 and 7.0) conditions.

  10. Dense Molecular Gas in the First Galactic Quadrant: A New Distance Estimation Technique and the Molecular Cloud Clump Mass Function, Physical Properties, and Galactic Distribution from the Bolocam Galactic Plane Survey

    Science.gov (United States)

    Glenn, Jason; Ellsworth-Bowers, Timothy; Bolocam Galactic Plane Survey

    2015-01-01

    Large submillimeter and millimeter Galactic dust continuum surveys of the Milky Way, such as the Bolocam Galactic Plane Survey (BGPS), Hi-GAL, ATLAS-GAL, and JCMT-JPS cumulatively have discovered 105 cores, clumps, and other structures in Galactic molecular clouds. Robust distance measurements to these structures are needed to enable the large range of quantitative astrophysics that these surveys promise, such as physical properties of clumps, the clump mass function, and the three-dimensional distribution of dense gas and star formation in the Milky Way. We have developed a technique for deriving distances to continuum-identified molecular cloud clumps employing kinematic distances and a suite of distance estimators for breaking kinematic distance ambiguities. Application to the BGPS has yielded 3,700 distance probability density functions (DPDFs) and 1,800 well-constrained distances (typical σdist ≈ 0.5 kpc). These have been used to determine sizes and masses of molecular cloud clumps, derive the clump mass function, and map the three-dimensional distribution of dense gas in the first Galactic quadrant. Among the interesting results are a mass function intermediate between molecular clouds and the stellar initial mass function and inter-arm star formation. Next, we plan to apply the technique to Hi-GAL, which covers the entire Galactic plane and whose submilllimeter maps provide for temperature and bolometric luminosity measurements of cloud structures.

  11. MHOs toward HMOs: A Search for Molecular Hydrogen Emission-Line Objects toward High-mass Outflows

    Science.gov (United States)

    Wolf-Chase, Grace; Arvidsson, Kim; Smutko, Michael

    2017-07-01

    We present the results of a narrow-band near-infrared imaging survey for Molecular Hydrogen emission-line Objects (MHOs) toward 26 regions containing high-mass protostellar candidates and massive molecular outflows. We have detected a total of 236 MHOs, 156 of which are new detections, in 22 out of the 26 regions. We use H2 2.12 μm/H2 2.25 μm flux ratios, together with morphology, to separate the signatures of fluorescence associated with photo-dissociation regions (PDRs) from shocks associated with outflows in order to identify the MHOs. PDRs have typical low flux ratios of ˜1.5-3, while the vast majority of MHOs display flux ratios typical of C-type shocks (˜6-20). A few MHOs exhibit flux ratios consistent with expected values for J-type shocks (˜3-4), but these are located in regions that may be contaminated with fluorescent emission. Some previously reported MHOs have low flux ratios, and are likely parts of PDRs rather than shocks indicative of outflows. We identify a total of 36 outflows across the 22 target regions where MHOs were detected. In over half these regions, MHO arrangements and fluorescent structures trace features present in CO outflow maps, suggesting that the CO emission traces a combination of dynamical effects, which may include gas entrained in expanding PDRs as well as bipolar outflows. Where possible, we link MHO complexes to distinct outflows and identify candidate driving sources.

  12. Molecular composition of aged secondary organic aerosol generated from a mixture of biogenic volatile compounds using ultrahigh resolution mass spectrometry

    Directory of Open Access Journals (Sweden)

    I. Kourtchev

    2015-02-01

    Full Text Available Field observations over the past decade indicate that a significant fraction of organic aerosol in remote areas may contain highly oxidised molecules. Aerosol processing or further oxidation (ageing of organic aerosol has been suggested to be responsible for their formation through heterogeneous uptake of oxidants and multigenerational oxidation of vapours by OH radicals. In this study we investigated the influence of several ageing processes on the molecular composition of secondary organic aerosols (SOA using direct infusion and liquid chromatography ultrahigh resolution mass spectrometry. SOA was formed in simulation chamber experiments from ozonolysis of a mixture of four biogenic volatile organic compounds (BVOC: α-pinene, β-pinene, Δ3-carene and isoprene. The SOA was subsequently aged under three different sets of conditions: in the dark in the presence of residual ozone, with UV irradiation and OH radicals, and using UV light only. Among all studied conditions, only OH radical-initiated ageing was found to influence the molecular composition of the aerosol and showed an increase in carbon oxidation state (OSC and elemental O/C ratios of the SOA components. None of the ageing processes produced an observable effect on the oligomers formed from ozonolysis of the BVOC mixture, which were found to be equally abundant in both "fresh" and "aged" SOA. Additional experiments using α-pinene as the sole precursor demonstrated that oligomers are an important group of compounds in SOA produced from both ozonolysis and OH radical-initiated oxidation processes; however, a completely different set of oligomers is formed under these two oxidation regimes. SOA from the OH radical-initiated α-pinene oxidation had a significantly higher overall OSC and O/C compared to that from pure ozonolysis experiments confirming that the OH radical reaction is more likely to be responsible for the occurrence of highly oxidised species in ambient biogenic SOA.

  13. Associations between body mass index and molecular subtypes as well as other clinical characteristics of breast cancer in Chinese women

    Directory of Open Access Journals (Sweden)

    Chen FY

    2013-03-01

    Full Text Available Fei-Yu Chen, Hui-Ying Ou, Shou-Man Wang, Yu-Hui Wu, Guo-Jiao Yan, Li-Li Tang Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China Background: Several studies have shown a positive association between body mass index (BMI and the development of hormone receptor-positive breast cancer in postmenopausal women; however, the associations between BMI groups and molecular subtypes have yet to be well defined in premenopausal breast cancer patients. Methods: A total of 2465 female breast cancer patients diagnosed at our institution were recruited for this study. Clinicopathologic information (including age, body height and weight, as well as tumor subtypes and stages was collected; analyses of these characteristics and the associations between them were performed. Results: A total of 1951 cases were included in the study. The mean age was 47.3 years, the majority of patients were of normal weight, premenopausal, had stage 2 cancer, and did not present with positive nodes. The prevalence of the luminal A, luminal B, human epidermal growth factor receptor 2+, and triple-negative subtypes were 57.8%, 11.6%, 6.1%, and 24.5%, respectively. There were significant differences in the clinicopathologic features among BMI groups in premenopausal patients. The case-only odds ratio (OR analysis revealed that normal weight patients tended to have luminal B cancer (OR = 1.4, P = 0.206, and overweight and obese patients tended to have triple-negative cancer in premenopausal patients (OR = 2.8, OR = 3.7, respectively; P < 0.001. Conclusion: In Chinese women, breast cancer came with these characteristics: young mean age (premenopause, luminal A subtype, and the majority of them were within a normal weight range. In premenopausal patients, underweight patients tended to have luminal A, lower human epidermal growth factor receptor 2+ expression, stage 1 and no positive node cancer. However

  14. Influence of the microenvironment of thiol groups in low molecular mass thiols and serum albumin on the reaction with methylglyoxal.

    Science.gov (United States)

    Aćimović, Jelena M; Stanimirović, Bojana D; Todorović, Nina; Jovanović, Vesna B; Mandić, Ljuba M

    2010-10-06

    Methylglyoxal (MG), a reactive alpha-oxoaldehyde that is produced in higher quantities in diabetes, uremia, oxidative stress, aging and inflammation, reacts with the thiol groups (in addition to the amino and guanidino groups) of proteins. This causes protein modification, formation of advanced glycated end products (AGEs) and cross-linking. Low molecular mass thiols can be used as competitive targets for MG, preventing the reactions mentioned above. Therefore, this paper investigated how the microenvironment of the thiol group in low molecular mass thiols (cysteine, N-acetylcysteine (NAcCys), carboxymethylcysteine (CMC) and glutathione (GSH)) and human serum albumin (HSA) affected the thiol reaction with MG. The SH group reaction course was monitored by (1)H-NMR spectroscopy and spectrophotometric quantification. Changes in the HSA molecules were monitored by SDS-PAGE. The microenvironment of the SH group had a major effect on its reactivity and on the product yield. The reactivity of SH groups decreased in the order Cys>GSH>NAcCys. CMC did not react. The percentages of the reacted SH groups in the equilibrium state were almost equal, regardless of the ratio of thiol compound/MG (1:1, 1:2, 1:5): 38.1 + or - 0.9%; 38.2 + or - 0.7% and 39.0 + or - 0.8% for Cys; 26.5 + or - 0.6%; 26.6 + or - 2.6% and 27.4 + or - 2.5% for GSH; 10.8 + or - 0.9%; and 11.2 + or - 0.7% and 12.2 + or - 0.9% for NAcCys, respectively. Our results explain why substances containing alpha-amino-beta-mercapto-ethane as a pharmacophore are successful scavengers of MG. In equilibrium, HSA SH reacted in high percentages both with an insufficient amount and with an excess of MG (55% and 65%, respectively). An analysis of the hydrophobicity of the microenvironment of the SH group on the HSA surface showed that it could contribute to high levels of SH modification, leading to an increase in the scavenging activity of the albumin thiol.

  15. Monomeric banana lectin at acidic pH overrules conformational stability of its native dimeric form.

    Directory of Open Access Journals (Sweden)

    Javed M Khan

    Full Text Available Banana lectin (BL is a homodimeric protein categorized among jacalin-related family of lectins. The effect of acidic pH was examined on conformational stability of BL by using circular dichroism, intrinsic fluorescence, 1-anilino-8-napthalene sulfonate (ANS binding, size exclusion chromatography (SEC and dynamic light scattering (DLS. During acid denaturation of BL, the monomerization of native dimeric protein was found at pH 2.0. The elution profile from SEC showed two different peaks (59.65 ml & 87.98 ml at pH 2.0 while single peak (61.45 ml at pH 7.4. The hydrodynamic radii (R h of native BL was 2.9 nm while at pH 2.0 two species were found with R h of 1.7 and 3.7 nm. Furthermore at, pH 2.0 the secondary structures of BL remained unaltered while tertiary structure was significantly disrupted with the exposure of hydrophobic clusters confirming the existence of molten globule like state. The unfolding of BL with different subunit status was further evaluated by urea and temperature mediated denaturation to check their stability. As inferred from high Cm and ΔG values, the monomeric form of BL offers more resistance towards chemical denaturation than the native dimeric form. Besides, dimeric BL exhibited a Tm of 77°C while no loss in secondary structures was observed in monomers even up to 95°C. To the best of our knowledge, this is the first report on monomeric subunit of lectins showing more stability against denaturants than its native dimeric state.

  16. Plant small monomeric G-proteins (RAC/ROPs) of barley are common elements of susceptibility to fungal leaf pathogens, cell expansion and stomata development.

    Science.gov (United States)

    Pathuri, Indira Priyadarshini; Eichmann, Ruth; Hückelhoven, Ralph

    2009-02-01

    Small monomeric RAC/ROP GTPases act as molecular switches in signal transduction processes of plant development and stress responses. They emerged as crucial players in plant-pathogen interactions either by supporting susceptibility or resistance. In a recent publication, we showed that constitutively activated (CA) mutants of different barley (Hordeum vulgare) RAC/ROPs regulate susceptibility to barley fungal leaf pathogens of different life style in a contrasting way. This illustrates the distinctive signalling roles of RAC/ROPs for different plant-pathogen combinations. We also reported the involvement of RAC/ROPs in plant epidermis development in a monocotyledonous plant. Here we further discuss a failure of CA HvRAC/ROP-expressing barley to normally develop stomata.

  17. Isolation of monomeric photosystem II that retains the subunit PsbS.

    Science.gov (United States)

    Haniewicz, Patrycja; De Sanctis, Daniele; Büchel, Claudia; Schröder, Wolfgang P; Loi, Maria Cecilia; Kieselbach, Thomas; Bochtler, Matthias; Piano, Dario

    2013-12-01

    Photosystem II has been purified from a transplastomic strain of Nicotiana tabacum according to two different protocols. Using the procedure described in Piano et al. (Photosynth Res 106:221-226, 2010) it was possible to isolate highly active PSII composed of monomers and dimers but depleted in their PsbS protein content. A "milder" procedure than the protocol reported by Fey et al. (Biochim Biophys Acta 1777:1501-1509, 2008) led to almost exclusively monomeric PSII complexes which in part still bind the PsbS protein. This finding might support a role for PSII monomers in higher plants.

  18. Monomeric CH3: A Small, Stable Antibody Domain with Therapeutic Promise | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer Antibody domains are emerging as promising biopharmaceuticals because of their relatively small size compared to full-sized antibodies, which are too large to effectively penetrate tumors and bind to sterically restricted therapeutic targets. In an article published in The Journal of Biological Chemistry, Tianlei Ying, Ph.D., Dimiter Dimitrov, Ph.D., and their colleagues in the Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, reported their design of a novel antibody domain, monomeric CH3 (mCH3).

  19. The Beckman DxI 800 prolactin assay demonstrates superior specificity for monomeric prolactin.

    LENUS (Irish Health Repository)

    Byrne, Brendan

    2010-02-01

    Commercially available prolactin immunoassays detect macroprolactin to variable degrees. Best practice requires laboratories to assess the cross-reactivity of their prolactin assay with macroprolactin, and where appropriate, introduce a screen for the presence of macroprolactin. Our policy has been to reanalyse hyperprolactinaemic samples following polyethylene glycol (PEG) precipitation and to report the resultant value as the monomeric prolactin content of the sample. The goal of this study was to determine the need to continue PEG precipitation when prolactin measurements with the Wallac AutoDELFIA were replaced by the Beckman DxI 800.

  20. Effects of fruit and vegetable low molecular mass fractions on gene expression in gingival cells challenged with Prevotella intermedia and Actinomyces naeslundii

    NARCIS (Netherlands)

    Canesi, L.; Borghi, C.; Stauder, M.; Lingström, P.; Papetti, A.; Pratten, J.; Signoretto, C.; Spratt, D.A.; Wilson, M.; Zaura, E.; Pruzzo, C.

    2011-01-01

    Low molecular mass (LMM) fractions obtained from extracts of raspberry, red chicory, and Shiitake mushrooms have been shown to be an useful source of specific antibacterial, antiadhesion/coaggregation, and antibiofilm agent(s) that might be used for protection towards caries and gingivitis. In this

  1. Prevention of β-Glucosidase Inhibition by High Molecular Mass Compounds During Enzymatic Wine Aroma Enhancement Using a Hollow Fiber Reactor

    Directory of Open Access Journals (Sweden)

    Mirta Daz

    2014-01-01

    Full Text Available Enzyme activity and stability in a membrane reactor for wine aroma enhancement can be higher than when the enzyme is present in a free state since the catalyst would only be in contact with the low molecular mass components of this beverage. To test this hypothesis, the activity and stability of two commercial β-glucosidases were measured in the presence of Tannat wine and of its low molecular mass fraction (<10 kDa obtained by ultrafiltration. The relative activities of Endozym Rouge and Endozym β-split β-glucosidases were higher in this fraction (3.8 and 7.6 %, respectively than in the whole wine (0.9 and 5.6 %, respectively. Both enzymes were also more stable in the low molecular mass fraction. Endozym β-split β-glucosidase retained about 75 % of its initial activity after 14 days in the low molecular mass fraction, as contrasted with only 37.5 % in the wine. The ability of Endozym Rouge β-glucosidase to hydrolyze the synthetic substrate p-nitrophenylglucoside was examined in a simple batch membrane reactor. A rate of hydrolysis comparable to that obtained with the free Endozym Rouge β-glucosidase was reached. Finally, Endozym β-split β-glucosidase was used to hydrolyze the synthetic substrate in a hollow fiber membrane reactor and a substrate conversion near 58 % was achieved.

  2. Distribution analysis of ultra-high molecular mass poly(ethylene oxide) containing silica particles by size-exclusion chromatography with dual light-scattering and refractometric detection.

    Science.gov (United States)

    Porsch, Bedrich; Welinder, Anette; Körner, Anna; Wittgren, Bengt

    2005-03-18

    Two different size-exclusion chromatography (SEC) systems, connected in-line either to a low-angle light scattering (LALS) or to a multiangle light scattering (MALS) detector, are employed for determination of molecular mass distributions (MMD) of poly(ethylene oxide) (PEO) samples having a weight average molecular mass up to eight millions. The detrimental effect of the presence of strongly scattering silica particles in the samples on the light scattering signal can be eliminated using a suitable sample dissolution procedure utilizing silica solubility in aqueous mobile phase. The selection of flow-rate and sample concentration have a large impact on the obtained results. Hydrodynamic retardation phenomena and nonlinearity effects are shown to introduce severe errors in the molecular mass distributions unless flow-rate and sample concentration are kept at sufficiently low levels. Self-compensating ability of the dual detection in flow-rate effects is shown to be the main advantage here. A good agreement between the results obtained using LALS and MALS detection is found provided that a carefully selected angular extrapolation procedure is used in the case of MALS data. Thus, using carefully selected experimental conditions, SEC with light-scattering (LS) and refractometric detection proved to be an efficient technique for MMD characterisation also of ultra-high molecular mass (UHM) PEO polymers.

  3. Effects of fruit and vegetable low molecular mass fractions on gene expression in gingival cells challenged with Prevotella intermedia and Actinomyces naeslundii

    NARCIS (Netherlands)

    L. Canesi; C. Borghi; M. Stauder; P. Lingström; A. Papetti; J. Pratten; C. Signoretto; D.A. Spratt; M. Wilson; E. Zaura; C. Pruzzo

    2011-01-01

    Low molecular mass (LMM) fractions obtained from extracts of raspberry, red chicory, and Shiitake mushrooms have been shown to be an useful source of specific antibacterial, antiadhesion/coaggregation, and antibiofilm agent(s) that might be used for protection towards caries and gingivitis. In this

  4. Nucleation phenomena during molecular beam epitaxy of GaN observed by line-of-sight quadrupole mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Koblmueller, G.; Averbeck, R.; Riechert, H. [Infineon Technologies AG, Corporate Research Photonics, Otto-Hahn-Ring 6, 81739 Munich (Germany); Pongratz, P. [Vienna University of Technology, Institute of Solid State Physics, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria)

    2002-12-16

    We investigate nucleation and growth phenomena during molecular beam epitaxy of GaN on sapphire, 6H-SiC and GaN templates using in situ line-of-sight quadrupole mass spectrometry. Moreover, this method allows the quantitative study of nucleation phenomena by monitoring desorption processes. Heteroepitaxial growth of GaN on sapphire and 6H-SiC faces a high energy barrier to nucleation giving rise to a substantial Ga desorption during the initial phase of nucleation. The amount of initial Ga desorption in heteroepitaxy is independent of the chosen substrate material and is as high as 8 {+-} 1.5 nm equivalent GaN thickness. Once critical-sized islands have nucleated they grow three-dimensional (3D) leading to a quadratic increase of the GaN coverage and finally to a steady growth rate after coalescence, as also determined by Rutherford backscattering and atomic force microscopy. In contrast, homoepitaxy on Ga- and N-face GaN templates is distinguished by immediate nucleation. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  5. Molecular-level evidence provided by ultrahigh resolution mass spectrometry for oil-derived doc in groundwater at Bemidji, Minnesota.

    Science.gov (United States)

    Islam, Ananna; Ahmed, Arif; Hur, Manhoi; Thorn, Kevin; Kim, Sunghwan

    2016-12-15

    Dissolved organic matter samples extracted from ground water at the USGS Bemidji oil spill site in Minnesota were investigated by ultrahigh resolution mass spectrometry. Principle component analysis (PCA) of the elemental composition assignments of the samples showed that the score plots for the contaminated sites were well separated from those for the uncontaminated sites. Additionally, spectra obtained from the same sampling site 7 and 19 years after the spill were grouped together in the score plot, strongly suggesting a steady state of contamination within the 12year interval. The double bond equivalence (DBE) of Ox class compounds was broader for the samples from the contaminated sites, because of the complex nature of oil and the consequent formation of compounds with saturated and/or aromatic structures from the oxygenated products of oil. In addition, Ox class compounds with a relatively smaller number of x (x<8; x=number of oxygen) and OxS1 class compounds were more abundant in the samples from the contaminated sites, because of the lower oxygen and higher sulfur contents of the oil compared to humic substances. The molecular-level signatures presented here can be a fundamental basis for in-depth analysis of oil contamination. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. CAPILLARY ELECTROPHORETIC ANALYSIS OF LOW-MOLECULAR-MASS OF CA SPECIES IN PHLOEM SAP OF Ricinus communis L.

    Directory of Open Access Journals (Sweden)

    Noor Fitri

    2010-06-01

    Full Text Available A capillary electrophoretic (CE analysis with ultra-violet (UV detection was performed for further separation of low-molecular-mass (LMM calcium species in phloem sap of Ricinus communis L. Two different background electrolytes (BGE were used for the separation; these are (1 hydrogen phosphate/dihydrogen phosphate buffer containing cetyltrimethylammonium bromide (CTAB as an electro-osmotic flow (EOF modifier, and (2 boric acid buffer containing CTAB. Various parameters affecting the analysis, including the composition and pH of the BGE were systematically studied. The sensitivity, resolution, baseline noise, migration time of the species peaks, and reproducibility of the method were evaluated under optimised condition. At least 13 UV-active species were optimally separated within about ten minutes. The optimised measurement condition was also achieved using 10 mM hydrogen phosphate/10 mM dihydrogen phosphate containing 0.5 mM CTAB at pH 8.0 as BGE, and by applying voltage of ‑20 kV and temperature of 14°C. Evidently, the analytical method was successfully used for the separation of LMM calcium species in phloem sap of R. communis L.   Keywords: capillary electrophoresis, calcium species, phloem sap, Ricinus communis

  7. Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry.

    Science.gov (United States)

    Vrkoslav, Vladimír; Urbanová, Klára; Cvacka, Josef

    2010-06-18

    High chromatographic resolution of wax esters (WEs) was achieved by non-aqueous reversed-phase liquid chromatography on a Nova-Pak C18 column by optimising the acetonitrile/ethyl acetate mobile phase gradient. The retention behaviour of WEs was studied in this chromatographic system. The WEs eluted according to their equivalent carbon number (ECN) values; within the group of WEs with the identical ECN, the most unsaturated species tended to elute first. The isobaric WEs with different positions of the ester moiety were separated from each other whenever the lengths of the chains were sufficiently different. The methyl-branched esters eluted at shorter retention times than the straight-chained analogues, and the resolution among methyl-branched WEs depended on the position of the branching. The analytes were detected by atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) using data-dependent scanning. WEs provided simple full-scan spectra with abundant protonated molecules and low-intensity fragments. Collision-induced dissociation (CID) promoted identification of the WE molecular species. The responses of WEs were found to be dependent on the number of double bonds and on the alkyl-chain length; the limits of the detection ranged from 20micromol/L to 200nmol/L. The HPLC/APCI-MS was applied for the analysis of the WEs isolated from honeycomb beeswax, jojoba oil and human hair. Good agreement between reported results and the literature data was achieved, with several novel polyunsaturated WEs also being found.

  8. Bottom-up low molecular weight heparin analysis using liquid chromatography-Fourier transform mass spectrometry for extensive characterization.

    Science.gov (United States)

    Li, Guoyun; Steppich, Julia; Wang, Zhenyu; Sun, Yi; Xue, Changhu; Linhardt, Robert J; Li, Lingyun

    2014-07-01

    Low molecular weight heparins (LMWHs) are heterogeneous, polydisperse, and highly negatively charged mixtures of glycosaminoglycan chains prescribed as anticoagulants. The detailed characterization of LMWH is important for the drug quality assurance and for new drug research and development. In this study, online hydrophilic interaction chromatography (HILIC) Fourier transform mass spectrometry (FTMS) was applied to analyze the oligosaccharide fragments of LMWHs generated by heparin lyase II digestion. More than 40 oligosaccharide fragments of LMWH were quantified and used to compare LMWHs prepared by three different manufacturers. The quantified fragment structures included unsaturated disaccharides/oligosaccharides arising from the prominent repeating units of these LMWHs, 3-O-sulfo containing tetrasaccharides arising from their antithrombin III binding sites, 1,6-anhydro ring-containing oligosaccharides formed during their manufacture, saturated uronic acid oligosaccharides coming from some chain nonreducing ends, and oxidized linkage region oligosaccharides coming from some chain reducing ends. This bottom-up approach provides rich detailed structural analysis and quantitative information with high accuracy and reproducibility. When combined with the top-down approach, HILIC LC-FTMS based analysis should be suitable for the advanced quality control and quality assurance in LMWH production.

  9. Development and Validation of a Mass Spectrometry-Based Assay for the Molecular Diagnosis of Mucin-1 Kidney Disease.

    Science.gov (United States)

    Blumenstiel, Brendan; DeFelice, Matthew; Birsoy, Ozge; Bleyer, Anthony J; Kmoch, Stanislav; Carter, Todd A; Gnirke, Andreas; Kidd, Kendrah; Rehm, Heidi L; Ronco, Lucienne; Lander, Eric S; Gabriel, Stacey; Lennon, Niall J

    2016-07-01

    Mucin-1 kidney disease, previously described as medullary cystic kidney disease type 1 (MCKD1, OMIM 174000), is an autosomal dominant tubulointerstitial kidney disease recently shown to be caused by a single-base insertion within the variable number tandem repeat region of the MUC1 gene. Because of variable age of disease onset and often subtle signs and symptoms, clinical diagnosis of mucin-1 kidney disease and differentiation from other forms of hereditary kidney disease have been difficult. The causal insertion resides in a variable number tandem repeat region with high GC content, which has made detection by standard next-generation sequencing impossible to date. The inherently difficult nature of this mutation required an alternative method for routine detection and clinical diagnosis of the disease. We therefore developed and validated a mass spectrometry-based probe extension assay with a series of internal controls to detect the insertion event using 24 previously characterized positive samples from patients with mucin-1 kidney disease and 24 control samples known to be wild type for the variant. Validation results indicate an accurate and reliable test for clinically establishing the molecular diagnosis of mucin-1 kidney disease with 100% sensitivity and specificity across 275 tests called.

  10. Structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry and molecular dynamics simulations.

    Science.gov (United States)

    Borysik, Antoni J

    2015-09-01

    The structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry (IMS) and vacuum molecular dynamics (MD) simulations is reported. Direct evidence is provided for the ability of the surfactant dodecyl-β-D-maltoside (DDM) to prevent charge-induced unfolding of the membrane protein (PagP) in the gas-phase. Restraints obtained by IMS are used to map the surfactant positions onto the protein surface. Surfactants occupying more exposed positions at the apexes of the β-barrel structure are most in-line with the experimental observations. MD simulations provide additional evidence for this assembly organization through surfactant inversion and migration on the protein structure in the absence of solvent. Surfactant migration entails a net shift from apolar membrane spanning regions to more polar regions of the protein structure with the DDM molecule remaining attached to the protein via headgroup interactions. These data provide evidence for the role of protein-DDM headgroup interactions in stabilizing membrane protein structure from gas-phase unfolding.

  11. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes

    Science.gov (United States)

    Wu, Yue; Johnston, Murray V.

    2016-03-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 dimeric (700 Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH.

  12. Peptidylation for the determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-05-23

    Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.

  13. Regulation of activity of the yeast TATA-binding protein through intra-molecular interactions

    Indian Academy of Sciences (India)

    Perumal Vanathi; Anurag Kumar Mishra; Purnima Bhargava

    2003-06-01

    Dimerization is proposed to be a regulatory mechanism for TATA-binding protein (TBP) activity both in vitro and in vivo. The reversible dimer-monomer transition of TBP is influenced by the buffer conditions in vitro. Using in vitro chemical cross-linking, we found yeast TBP (yTBP) to be largely monomeric in the presence of the divalent cation Mg2+, even at high salt concentrations. Apparent molecular mass of yTBP at high salt with Mg2+, run through a gel filtration column, was close to that of monomeric yTBP. Lowering the monovalent ionic concentration in the absence of Mg2+, resulted in dimerization of TBP. Effect of Mg2+ was seen at two different levels: at higher TBP concentrations, it suppressed the TBP dimerization and at lower TBP levels, it helped keep TBP monomers in active conformation (competent for binding TATA box), resulting in enhanced TBP-TATA complex formation in the presence of increasing Mg2+. At both the levels, activity of the full-length TBP in the presence of Mg2+ was like that reported for the truncated C-terminal domain of TBP from which the N-terminus is removed. Therefore for full-length TBP, intra-molecular interactions can regulate its activity via a similar mechanism.

  14. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    Science.gov (United States)

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  15. Nortriptyline inhibits aggregation and neurotoxicity of alpha-synuclein by enhancing reconfiguration of the monomeric form.

    Science.gov (United States)

    Collier, Timothy J; Srivastava, Kinshuk R; Justman, Craig; Grammatopoulous, Tom; Hutter-Paier, Birgit; Prokesch, Manuela; Havas, Daniel; Rochet, Jean-Christophe; Liu, Fang; Jock, Kevin; de Oliveira, Patrícia; Stirtz, Georgia L; Dettmer, Ulf; Sortwell, Caryl E; Feany, Mel B; Lansbury, Peter; Lapidus, Lisa; Paumier, Katrina L

    2017-10-01

    The pathology of Parkinson's disease and other synucleinopathies is characterized by the formation of intracellular inclusions comprised primarily of misfolded, fibrillar α-synuclein (α-syn). One strategy to slow disease progression is to prevent the misfolding and aggregation of its native monomeric form. Here we present findings that support the contention that the tricyclic antidepressant compound nortriptyline (NOR) has disease-modifying potential for synucleinopathies. Findings from in vitro aggregation and kinetics assays support the view that NOR inhibits aggregation of α-syn by directly binding to the soluble, monomeric form, and by enhancing reconfiguration of the monomer, inhibits formation of toxic conformations of the protein. We go on to demonstrate that NOR inhibits the accumulation, aggregation and neurotoxicity of α-syn in multiple cell and animal models. These findings suggest that NOR, a compound with established safety and efficacy for treatment of depression, may slow progression of α-syn pathology by directly binding to soluble, native, α-syn, thereby inhibiting pathological aggregation and preserving its normal functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Monomeric, Oligomeric and Polymeric Proteins in Huntington Disease and Other Diseases of Polyglutamine Expansion

    Directory of Open Access Journals (Sweden)

    Guylaine Hoffner

    2014-03-01

    Full Text Available Huntington disease and other diseases of polyglutamine expansion are each caused by a different protein bearing an excessively long polyglutamine sequence and are associated with neuronal death. Although these diseases affect largely different brain regions, they all share a number of characteristics, and, therefore, are likely to possess a common mechanism. In all of the diseases, the causative protein is proteolyzed, becomes abnormally folded and accumulates in oligomers and larger aggregates. The aggregated and possibly the monomeric expanded polyglutamine are likely to play a critical role in the pathogenesis and there is increasing evidence that the secondary structure of the protein influences its toxicity. We describe here, with special attention to huntingtin, the mechanisms of polyglutamine aggregation and the modulation of aggregation by the sequences flanking the polyglutamine. We give a comprehensive picture of the characteristics of monomeric and aggregated polyglutamine, including morphology, composition, seeding ability, secondary structure, and toxicity. The structural heterogeneity of aggregated polyglutamine may explain why polyglutamine-containing aggregates could paradoxically be either toxic or neuroprotective.

  17. Synthesis and characterization of a monomeric mutant Cu/Zn superoxide dismutase with partially reconstituted enzymic activity.

    Science.gov (United States)

    Banci, L; Bertini, I; Chiu, C Y; Mullenbach, G T; Viezzoli, M S

    1995-12-15

    A monomeric analog of human Cu/Zn superoxide dismutase (F50E/G51E SOD), previously characterized and found to have reduced enzymic activity, was here further modified by replacing Glu133 with Gln. This substitution does not dramatically affect the coordination geometry at the active site, but enhances enzymic activity, and also increases the affinity for anions at the active site. This behavior parallels earlier published results in which this point mutation was made in the dimeric wild-type enzyme. The analog described here has afforded for the first time a monomeric superoxide dismutase with substantial activity. This point mutation does not significantly influence the protein structure but interactions with anions, including superoxide, are altered with respect to the monomeric form. The present monomeric Glu133Gln mutant has partially restored enzymic activity. The diminished activity of the monomeric analogs is discussed in the light of possible minor structural changes and some of their characteristics are compared with those of naturally occurring mutants associated with various neurological diseases.

  18. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods.

    Science.gov (United States)

    Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah

    2015-01-01

    In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.

  19. Occurrence and Speciation of Polymeric Chromium(III), Monomeric Chromium(III) and Chromium(VI) in Environmental Samples

    Science.gov (United States)

    HU, LIGANG; CAI, YONG; JIANG, GUIBIN

    2016-01-01

    Laboratory experiments suggest that polymeric Cr(III) could exist in aqueous solution for a relative long period of time. However, the occurrence of polymeric Cr(III) has not been reported in environmental media due partially to the lack of method for speciating polymeric Cr. We observed an unknown Cr species during the course of study on speciation of Cr in the leachates of chromated-copper-arsenate (CCA)-treated wood. Efforts were made to identify structure of the unknown Cr species. Considering the forms of Cr existed in the CCA-treated woods, we mainly focused our efforts to determine if the unknown species were polymeric Cr(III), complex of Cr/As or complex of Cr with dissolved organic matter (DOM). In order to evaluate whether polymeric Cr(III) largely exist in wood leachates, high performance liquid chromatography coupled with inductively coupled mass spectrometry (HPLC-ICPMS was used) for simultaneous speciation of monomeric Cr(III), polymeric Cr(III), and Cr(VI). In addition to wood leachates where polymeric Cr (III) ranged from 39.1 to 67.4 %, occurrence of the unknown Cr species in other environmental matrices, including surface waters, tap and waste waters, was also investigated. It was found that polymeric Cr(III) could exist in environmental samples containing μg/L level of Cr, at a level up to 60% of total Cr, suggesting that polymeric Cr(III) could significantly exist in natural environments. Failure in quantifying polymeric Cr(III) would lead to the underestimation of total Cr and bias in Cr speciation. The environmental implication of the presence of polymeric Cr(III) species in the environment deserves further study. PMID:27156211

  20. Stability, structural and functional properties of a monomeric, calcium–loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis

    Science.gov (United States)

    Cannella, Sara E.; Ntsogo Enguéné, Véronique Yvette; Davi, Marilyne; Malosse, Christian; Sotomayor Pérez, Ana Cristina; Chamot-Rooke, Julia; Vachette, Patrice; Durand, Dominique; Ladant, Daniel; Chenal, Alexandre

    2017-01-01

    Bordetella pertussis, the causative agent of whooping cough, secretes an adenylate cyclase toxin, CyaA, which invades eukaryotic cells and alters their physiology by cAMP overproduction. Calcium is an essential cofactor of CyaA, as it is the case for most members of the Repeat-in-ToXins (RTX) family. We show that the calcium-bound, monomeric form of CyaA, hCyaAm, conserves its permeabilization and haemolytic activities, even in a fully calcium-free environment. In contrast, hCyaAm requires sub-millimolar calcium in solution for cell invasion, indicating that free calcium in solution is involved in the CyaA toxin translocation process. We further report the first in solution structural characterization of hCyaAm, as deduced from SAXS, mass spectrometry and hydrodynamic studies. We show that hCyaAm adopts a compact and stable state that can transiently conserve its conformation even in a fully calcium-free environment. Our results therefore suggest that in hCyaAm, the C-terminal RTX-domain is stabilized in a high-affinity calcium-binding state by the N-terminal domains while, conversely, calcium binding to the C-terminal RTX-domain strongly stabilizes the N-terminal regions. Hence, the different regions of hCyaAm appear tightly connected, leading to stabilization effects between domains. The hysteretic behaviour of CyaA in response to calcium is likely shared by other RTX cytolysins. PMID:28186111

  1. Stable quasi-solid-state dye-sensitized solar cell using ionic gel electrolyte with low molecular mass organogelator

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Li [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huo, Zhipeng, E-mail: zhipenghuo@163.com [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Dai, Songyuan, E-mail: sydai@ncepu.edu.cn [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Beijing Key Lab of Novel Thin Film Solar Cells, North China Electric Power University, Beijing 102206 (China); Zhu, Jun; Zhang, Changneng; Pan, Xu; Huang, Yang [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Yang, Shangfeng [Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China); Zhang, Bing; Yao, Jianxi [Beijing Key Lab of Novel Thin Film Solar Cells, North China Electric Power University, Beijing 102206 (China)

    2015-02-15

    Long-term stability is essential for the application and commercialization of dye-sensitized solar cells (DSCs). A quasi-solid-state DSC (QS-DSC) with excellent long-term stability is fabricated using ionic gel electrolyte (IGE) with N,N′-methylenebisdodecanamide as low molecular mass organogelator (LMOG). The gel to solution transition temperature (T{sub gel}) of this IGE is 127 °C, well above the working temperature of the device, which contributes to the thermal properties of the IGE and the device. The electrochemical properties of the IGE and the kinetic processes of electron transport and recombination of the QS-DSC are investigated by means of electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). Due to the obstructed diffusion of redox species caused by the network of IGE, the electron recombination at the TiO{sub 2} photoelectrode/electrolyte interface in the QS-DSC is accelerated. More importantly, compared with the ionic liquid electrolyte (ILE) based DSC, the QS-DSC based on the IGE exhibits excellent thermal and light-soaking stabilities during the accelerated aging tests for 1000 h. Especially, there is almost no degradation in the short-circuit current density (J{sub sc}) in the IGE based QS-DSC, while the J{sub sc} of the ILE based DSC decreased to 85–94% of their initial values. - Highlights: • A novel IGE with high T{sub gel} is obtained by using a diamide derivative as LMOG. • The IGE based QS-DSC is very stable during the accelerated aging tests. • The influences of gelation on the electron kinetic processes are investigated.

  2. CO{sub 2} capture using fly ash-derived activated carbons impregnated with low molecular mass amines

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.M.; Arenillas, A.; Drage, T.C.; Snape, C.E. [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2005-07-01

    Two different approaches to develop high capacity CO{sub 2} sorbents are presented. Firstly, the modification of the surface chemistry of low cost carbons by impregnation with a basic nitrogen-containing polymer (i.e.polyethylenimine) is described. Relatively low molecular mass (MM) amines, namely diethanolamine (DEA, MM 105) and tetraethylenepentaamineacrylonitrile (TEPAN, MM 311) are used to produce high capacity CO{sub 2} sorbents from activated carbons derived from unburned carbon in fly ash, which have low mesoporosities. The CO{sub 2} adsorption capacity and thermal stability of the prepared sorbents was measured as a function of temperature in a thermogravimetric analyser. The results indicate that TEPAN is more effective than DEA; at a temperature of 75{sup o}C, fly ash-derived activated carbons loaded with TEPAN achieved CO{sub 2} adsorption capacities in excess of 5 wt%, which compares fabvourably with the CO{sub 2} absorption capacity of 6.5 wt% achieved with a mesoporous silica loaded with TEPAN, and outperforms fly ash-derived activated carbons loaded with PEI. TEPAN has also been shown to have a higher thermal stability than DEA. The second approach involves the development of high nitrogen content carbon matrix adsorbents by carbonisation and subsequent thermal or chemical activation of a range of materials (polyacrylonitrile, glucose-amine mixtures, melamine and urea/melamine-formaldehyde resins). The results show that although the amount of nitrogen incorporated to the final adsorbent is important, the N-functionality seems to be more relevant for increasing CO{sub 2} uptake. However, the adsorbent obtained from carbazole-sugar co-pyrolysis, despite the lower amount of N incorporated, shows high CO{sub 2} uptake, up to 9 wt%, probably because the presence of more basic functionalities as determined by XPS analysis. 9 refs., 2 figs.

  3. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil

    Science.gov (United States)

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12 h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic > citric > acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric > oxalic > acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil.

  4. Associations between body mass index and molecular subtypes as well as other clinical characteristics of breast cancer in Chinese women.

    Science.gov (United States)

    Chen, Fei-Yu; Ou, Hui-Ying; Wang, Shou-Man; Wu, Yu-Hui; Yan, Guo-Jiao; Tang, Li-Li

    2013-01-01

    Several studies have shown a positive association between body mass index (BMI) and the development of hormone receptor-positive breast cancer in postmenopausal women; however, the associations between BMI groups and molecular subtypes have yet to be well defined in premenopausal breast cancer patients. A total of 2465 female breast cancer patients diagnosed at our institution were recruited for this study. Clinicopathologic information (including age, body height and weight, as well as tumor subtypes and stages) was collected; analyses of these characteristics and the associations between them were performed. A total of 1951 cases were included in the study. The mean age was 47.3 years, the majority of patients were of normal weight, premenopausal, had stage 2 cancer, and did not present with positive nodes. The prevalence of the luminal A, luminal B, human epidermal growth factor receptor 2+, and triple-negative subtypes were 57.8%, 11.6%, 6.1%, and 24.5%, respectively. There were significant differences in the clinicopathologic features among BMI groups in premenopausal patients. The case-only odds ratio (OR) analysis revealed that normal weight patients tended to have luminal B cancer (OR = 1.4, P = 0.206), and overweight and obese patients tended to have triple-negative cancer in premenopausal patients (OR = 2.8, OR = 3.7, respectively; P < 0.001). IN CHINESE WOMEN, BREAST CANCER CAME WITH THESE CHARACTERISTICS: young mean age (premenopause), luminal A subtype, and the majority of them were within a normal weight range. In premenopausal patients, underweight patients tended to have luminal A, lower human epidermal growth factor receptor 2+ expression, stage 1 and no positive node cancer. However, overweight and obese patients tended to have a triple-negative, stage 3, and lymph node metastatic cancer.

  5. ALMA Reveals Large Molecular Gas Reservoirs in Ancestors of Milky Way-Mass Galaxies at z=1.2-1.3

    Science.gov (United States)

    Papovich, Casey J.; Labbe, Ivo; Glazebrook, Karl; Quadri, Ryan; Bekiaris, Georgios; Dickinson, Mark; Finkelstein, Steven L.; Fisher, David B.; Inami, Hanae; Livermore, Rachael C.; Spitler, Lee; Straatman, Caroline; Tran, Kim-Vy

    2017-01-01

    The gas accretion and star-formation histories of galaxies like the Milky Way remain an outstanding problem in astrophysics. Observations show that 8 billion years ago, at redshifts z > 1, the progenitors to Milky Way-mass galaxies were forming stars 30 times faster than today and predicted to be rich in molecular gas, in contrast with low present-day gas fractions (ALMA Band 4 observations, we detected the molecular gas using the CO(J=3-2) emission (rest-frame 345.8 GHz) in a sample of galaxies at redshifts z=1.2-1.3, selected to have the stellar mass (Log M*/M⊙ =10.2) and star-formation rate (SFR = 20 M⊙ yr-1) of the main progenitors of today's Milky Way-mass galaxies at this epoch. We show that with relatively short ALMA integrations, we now probe efficiently the CO luminosities of z > 1 star-forming galaxies a factor two lower than was possible previously. The CO emission from these galaxies reveals large molecular gas reservoirs, with a ratio of molecular-gas mass-to-stellar mass of ~100%, indicating most of the baryons are in cold gas, not stars. The ratio of the galaxies' total luminosity from star formation to CO luminosity corresponds to long gas-consumption timescales. Compared to local spiral galaxies, the star-formation efficiency, estimated from the ratio of total IR luminosity to CO emission, has remained nearly constant since redshift z=1.2, despite the order of magnitude decrease in gas fraction, consistent with results for more massive and more luminous galaxies at this epoch. This implies that the the physical processes that determine the rate at which gas cools to form stars in distant galaxies appear to be similar to that in local galaxies.

  6. Properties and metathesis activity of monomeric and dimeric Mo centres variously located on γ-alumina A DFT study

    Science.gov (United States)

    Handzlik, Jarosław

    2007-05-01

    Ethene metathesis proceeding on monomeric and dimeric Mo species on the (1 0 0) and (1 1 0) γ-alumina is investigated by density functional theory, applying the cluster approach. The calculated vibrational frequencies of the surface OH groups are assigned to the experimental IR bands. It is shown that both monomeric and dimeric Mo forms can be the active sites of olefin metathesis. Metathesis activity and stability of the Mo-methylidene centres depend on their location on alumina. The differences in the sites reactivity are explained on the basis of their geometrical and electronic structure parameters. For the monomeric centres, isomerisation of the trigonal bipyramidal intermediate to the stable square pyramidal molybdacyclobutane is kinetically favoured over the cycloreversal step. The situation is opposite in the case of the dimeric species.

  7. A Molecular-level Approach for Characterizing Water-insoluble Components of Organic Aerosols Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Science.gov (United States)

    Priest, A. S.; Wozniak, A. S.; Hatcher, P. G.

    2011-12-01

    There is strong evidence that suggests emissions from human activities have played a substantial role in changing the chemical composition of the atmosphere, resulting in negative effects on climate and human and environmental health. Theory suggests that the molecular composition of organic aerosols plays a role in the specific impacts; however, due to the lack of suitable analytical methods for characterizing the inherently complex aerosol organic matter (OM), our molecular level understanding of the nature and reactivity of this material has been limited. Ultra-high resolution mass spectrometry has provided molecular formula information for thousands of species present in the water-soluble fraction of organic aerosols. However, fewer studies have examined the water-insoluble fraction, which typically accounts for 30-70% of aerosol OM. Here we employ pyridine, with its high solvating power for natural OM, as a suitable solvent for examining the water-insoluble fraction of field-collected organic aerosols using ultra-high resolution mass spectrometry. The molecular composition of the water-soluble organic matter (WSOM) and pyridine-soluble organic matter (PSOM) of organic aerosols was evaluated using negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Ambient aerosol samples were collected from rural sites in New York and Virginia in 2007. The mass spectral distribution of the ions detected using ESI FT-ICR MS allowed for the determination of molecular formulas for the thousands of peaks detected in each extract. Approximately 40% of the aerosol OM was WSOM, and the spectra were dominated by compounds with only carbon, hydrogen and oxygen (~45% of assigned formulas), with relatively smaller contributions from nitrogen- and sulfur-containing formulas. Pyridine, on the other hand, extracts a molecularly unique portion of aerosol OM. Approximately 25% of the formulas are unique to PSOM, and the

  8. Comparing MALDI-TOF Mass Spectrometry with Molecular and Biochemical Methods in Identifying Enterococcus Faecium and Enterococcus Faecalis Isolated from Clinical

    Directory of Open Access Journals (Sweden)

    Samadi Kafil,H.

    2013-01-01

    Full Text Available Abstract Background and Objective: Enterococci are Gram-positive members of human gastrointestinal flora, in Dairy products and environment. they have emerged as important causes of opportunistic nosocomial infections in recent years. In this study we aimed to investigat and compare the efficiency of MALDI-TOF mass spectroscopy method through Biochemical and Molecular methods for detecting Enterococcus faecalis and Enterococcus faecium.Materials and Methods: seventhy five clinical samples were collected for biochemical, molecular and mass spectroscopy investigations. Samples were treated with Esculin hydrolysis, Catalase, Pyrrolidonyl aminopeptidase, 6.5% NaCl solution, motility, 0.04% Tellurite, L-Arabinose and Sorbitol. Using specific primes allele specific PCR was used.The samples were then analyzed by MALDI-TOF mass spectroscopy and Biotyper 3 software.Results: Enterococcus faecium and Enterococcus faecalis were detected in thirty and forty two samples, respectively whereas three samples showed both bacterial infections. Using biochemical analysis, two E. faecium isolates were Arabinose negative and one E. faecalis isolates was Telliurite negative. All samples were showed correct bands in PCR results but two of them didn't show clear bands(on agarose gel. In mass spectroscopy analysis all strains were correctly detected and well defined.Conclusion: According to our results, MALDI-TOF mass spectrometry in comparison with Molecular and Biochemical Methods could be a reliable and accurate method that can easily and quickly identify and differentiate Enterococcus faecium and Enterococcus faecalis in clinical samples.Key words: Enterococcus faecalis, Enterococcus faecium, MALDI-TOF mass spectrometry, PCR

  9. Lyophilization-induced protein denaturation in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.

    Science.gov (United States)

    Pikal-Cleland, K A; Carpenter, J F

    2001-09-01

    During freezing in phosphate buffers, selective precipitation of a less soluble buffer component and subsequent pH shifts may induce protein denaturation. Previous reports indicate significantly more inactivation and secondary structural perturbation of monomeric and tetrameric beta-galactosidase (beta-gal) during freeze-thawing in sodium phosphate (NaP) buffer as compared with potassium phosphate (KP) buffer. This observation was attributed to the significant pH shifts (from 7.0 to as low as 3.8) observed during freezing in the NaP buffer (1). In the current study, we investigated the impact of the additional stress of dehydration after freezing on the recovery of active protein on reconstitution and the retention of the native structure in the dried state. Freeze-drying monomeric and tetrameric beta-gal in either NaP or KP buffer resulted in significant secondary structural perturbations, which were greatest for the NaP samples. However, similar recoveries of active monomeric protein were observed after freeze-thawing and freeze-drying, indicating that most dehydration-induced unfolding was reversible on reconstitution of the freeze-dried protein. In contrast, the tetrameric protein was more susceptible to dehydration-induced denaturation as seen by the greater loss in activity after reconstitution of the freeze-dried samples relative to that measured after freeze-thawing. To ensure optimal protein stability during freeze-drying, the protein must be protected from both freezing and dehydration stresses. Although poly(ethylene glycol) and dextran are preferentially excluded solutes and should confer protection during freezing, they were unable to prevent lyophilization-induced denaturation. In addition, Tween did not foster maintenance of native protein during freeze-drying. However, sucrose, which hydrogen bonds to dried protein in the place of lost water, greatly reduced freezing- and drying-induced denaturation, as observed by the high retention of native

  10. Kinematic Structure of Molecular Gas around High-mass Star YSO, Papillon Nebula, in N159 East in the Large Magellanic Cloud

    CERN Document Server

    Saigo, Kazuya; Nayak, Omnarayani; Meixner, Margaret; Tokuda, Kazuki; Harada, Ryohei; Morioka, Yuuki; Sewilo, Marta; Indebetouw, Remy; Torii, Kazufumi; Kawamura, Akiko; Ohama, Akio; Hattori, Yusuke; Yamamoto, Hiroaki; Tachihara, Kengo; Minamidani, Tetsuhiro; Inoue, Tsuyoshi; Madden, Suzanne; Galametz, Maud; Lebouteiller, Vianney; Chen, C -H Rosie; Mizuno, Norikazu; Fukui, Yasuo

    2016-01-01

    We present the ALMA Band 3 and Band 6 results of 12CO(2-1), 13$CO(2-1), H30alpha recombination line, free-free emission around 98 GHz, and the dust thermal emission around 230 GHz toward the N159 East Giant Molecular Cloud (N159E) in the Large Magellanic Cloud (LMC). LMC is the nearest active high-mass star forming face-on galaxy at a distance of 50 kpc and is the best target for studing high-mass star formation. ALMA observations show that N159E is the complex of filamentary clouds with the width and length of ~1 pc and 5 pc - 10 pc, respectively. The total molecular mass is 0.92 x 10^5 Msun from the 13CO(2-1) intensity. N159E harbors the well-known Papillon Nebula, a compact high-excitation HII region. We found that a YSO associated with the Papillon Nebula has the mass of 35 Msun and is located at the intersection of three filamentary clouds. It indicates that the formation of the high-mass YSO was induced by the collision of filamentary clouds. Fukui et al. 2015 reported a similar kinematic structure towa...

  11. OH concentration in an atmospheric-pressure methane-air flame from molecular-beam mass spectrometry and laser-absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cattolica, R.J.; Yoon, S.; Knuth, E.L.

    1982-01-01

    In evaluating experimental techniques for studying premixed atmospheric-pressure methane-air flames, analysts demonstrated that the molecular-beam mass-spectrometry technique adequately measures OH concentration, given careful design of the sampling probe and appropriate consideration for possible mass interferences. Perturbation of the OH concentration profile using various sampling probes indicates the importance of minimizing the length of the sampling-orifice channel to reduce composition relaxation during sampling. The accuracy of the MBMS method was determined by comparing the results with those from a laser-absorption spectroscopy system.

  12. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W

    2015-11-01

    Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.

  13. Extracellular monomeric tau protein is sufficient to initiate the spread of tau protein pathology.

    Science.gov (United States)

    Michel, Claire H; Kumar, Satish; Pinotsi, Dorothea; Tunnacliffe, Alan; St George-Hyslop, Peter; Mandelkow, Eckhard; Mandelkow, Eva-Maria; Kaminski, Clemens F; Kaminski Schierle, Gabriele S

    2014-01-10

    Understanding the formation and propagation of aggregates of the Alzheimer disease-associated Tau protein in vivo is vital for the development of therapeutics for this devastating disorder. Using our recently developed live-cell aggregation sensor in neuron-like cells, we demonstrate that different variants of exogenous monomeric Tau, namely full-length Tau (hTau40) and the Tau-derived construct K18 comprising the repeat domain, initially accumulate in endosomal compartments, where they form fibrillar seeds that subsequently induce the aggregation of endogenous Tau. Using superresolution imaging, we confirm that fibrils consisting of endogenous and exogenous Tau are released from cells and demonstrate their potential to spread Tau pathology. Our data indicate a greater pathological risk and potential toxicity than hitherto suspected for extracellular soluble Tau.

  14. Novel Monomeric Phenanthroline—Thallium(Ⅲ) Complexes Multinuclear NMR Characterization in Organic Solvents

    Institute of Scientific and Technical Information of China (English)

    GuiBinMA; JuliusGLASER

    2002-01-01

    A novel complex of monomeric thallium (Ⅲ) with the nitrogen donor ligand phenanthroline (phen) has been prepared and characterized by multimuclear NMR(1H,13C,205Tl). The three complexes exist in equilibria in DMSO and acetonitrile solution, which was proved by the 205Tl NMR spectra. The 1H and 13C NMR spectra of tris-phen T1(Ⅲ) complex have been measured, where the spin-spin coupling between T1(I=1/2) and 13C or 1H signals were observed with the 1H and 13C NMR spectroscopy in acetonitrile. The coupling constants are presented and the chemical shifts of complexes are discussed in detail.

  15. Novel Monomeric Phenanthroline - Thallium(Ⅲ) Complexes Multinuclear NMR Characterization in Organic Solvents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel complex of monomeric thallium(III) with the nitrogen donor ligand phenanthrolinc (phen) has been prepared and characterized by multinuclear NMR (1H, 13C, 205T1).The three complexes exist in equilibria in DMSO and acetonitrile solution, which was proved by the 205Tl NMR spectra. The 1H and 13C NMR spectra of tris-phen Tl(III) complex have been measured, where the spin-spin coupling between TI (1 = 1/2) and 13C or 1H signals were observed with the 1H and 13C NMR spectroscopy in acetonitrile. The coupling constants are presented and the chemical shifts of complexes are discussed in detail.

  16. Kinetics of carbon monoxide binding to monomeric hemoproteins. Role of the proximal histidine.

    Science.gov (United States)

    Coletta, M; Ascenzi, P; Traylor, T G; Brunori, M

    1985-04-10

    The effect of pH on (i) the second-order rate constant for CO binding and (ii) the spectral properties of the deoxygenated derivative of several monomeric hemoproteins has been investigated in the pH range between 2.3 and 9.0. As in the case of 3-[1-imidazolyl]-propylamide monomethyl ester mesoheme, the rate constant for CO binding to sperm whale, horse, Dermochelys coriacea, Coryphaena hippurus, and Aplysia limacina myoglobins (the latter only in the presence of acetate/acetic acid mixture) increases, as the pH is lowered, to a value at least 1 order of magnitude higher than at pH 7.0. Such an effect is not observed in A. limacina myoglobin (in the absence of the acetate/acetic acid mixture) and Chironomus thummi thummi erythrocruorin. Moreover, the absorption spectrum, in the visible region, of the deoxy derivative of all these monomeric hemoproteins (with the exception of A. limacina myoglobin in the absence of the acetate/acetic acid mixture) undergoes a transition as the pH is lowered, an effect observed previously with 3-[1-imidazolyl]-propylamide monomethyl ester protoheme. On the basis of analogous spectroscopic and kinetic properties of chelated heme model compounds we attribute this behavior to the protonation of the N epsilon of the proximal imidazole involved in the bond with the iron atom. On the basis of this model the movement of the iron atom to the heme plane appears as a crucial step for CO binding, the activation free energy of the process amounting to approximately 2 kcal/mol.

  17. LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State

    Directory of Open Access Journals (Sweden)

    Claus U. Pietrzik

    2017-04-01

    Full Text Available The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aβ secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 and APP caused a change of APP transport velocities, indicating that LRP1 recruits APP to a specific type of fast axonal transport vesicles. In contrast lowered levels of LRP1 facilitated APP transport. We further show that monomeric and dimeric APP exhibit similar transport characteristics and that both are affected by LRP1 in a similar way, by slowing down APP anterograde transport and increasing its endocytosis rate. In line with this, a knockout of LRP1 in CHO cells and in primary neurons caused an increase of monomeric and dimeric APP surface localization and in turn accelerated shedding by meprin β and ADAM10. Notably, a choroid plexus specific LRP1 knockout caused a much higher secretion of sAPP dimers into the cerebrospinal fluid compared to sAPP monomers. Together, our data show that LRP1 functions as a sorting receptor for APP, regulating its cell surface localization and thereby its processing by ADAM10 and meprin β, with the latter exhibiting a preference for APP in its dimeric state.

  18. LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State.

    Science.gov (United States)

    Herr, Uta-Mareike; Strecker, Paul; Storck, Steffen E; Thomas, Carolin; Rabiej, Verena; Junker, Anne; Schilling, Sandra; Schmidt, Nadine; Dowds, C Marie; Eggert, Simone; Pietrzik, Claus U; Kins, Stefan

    2017-01-01

    The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aβ secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third) but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 and APP caused a change of APP transport velocities, indicating that LRP1 recruits APP to a specific type of fast axonal transport vesicles. In contrast lowered levels of LRP1 facilitated APP transport. We further show that monomeric and dimeric APP exhibit similar transport characteristics and that both are affected by LRP1 in a similar way, by slowing down APP anterograde transport and increasing its endocytosis rate. In line with this, a knockout of LRP1 in CHO cells and in primary neurons caused an increase of monomeric and dimeric APP surface localization and in turn accelerated shedding by meprin β and ADAM10. Notably, a choroid plexus specific LRP1 knockout caused a much higher secretion of sAPP dimers into the cerebrospinal fluid compared to sAPP monomers. Together, our data show that LRP1 functions as a sorting receptor for APP, regulating its cell surface localization and thereby its processing by ADAM10 and meprin β, with the latter exhibiting a preference for APP in its dimeric state.

  19. Quantitative LC-MS of polymers: determining accurate molecular weight distributions by combined size exclusion chromatography and electrospray mass spectrometry with maximum entropy data processing.

    Science.gov (United States)

    Gruendling, Till; Guilhaus, Michael; Barner-Kowollik, Christopher

    2008-09-15

    We report on the successful application of size exclusion chromatography (SEC) combined with electrospray ionization mass spectrometry (ESI-MS) and refractive index (RI) detection for the determination of accurate molecular weight distributions of synthetic polymers, corrected for chromatographic band broadening. The presented method makes use of the ability of ESI-MS to accurately depict the peak profiles and retention volumes of individual oligomers eluting from the SEC column, whereas quantitative information on the absolute concentration of oligomers is obtained from the RI-detector only. A sophisticated computational algorithm based on the maximum entropy principle is used to process the data gained by both detectors, yielding an accurate molecular weight distribution, corrected for chromatographic band broadening. Poly(methyl methacrylate) standards with molecular weights up to 10 kDa serve as model compounds. Molecular weight distributions (MWDs) obtained by the maximum entropy procedure are compared to MWDs, which were calculated by a conventional calibration of the SEC-retention time axis with peak retention data obtained from the mass spectrometer. Comparison showed that for the employed chromatographic system, distributions below 7 kDa were only weakly influenced by chromatographic band broadening. However, the maximum entropy algorithm could successfully correct the MWD of a 10 kDa standard for band broadening effects. Molecular weight averages were between 5 and 14% lower than the manufacturer stated data obtained by classical means of calibration. The presented method demonstrates a consistent approach for analyzing data obtained by coupling mass spectrometric detectors and concentration sensitive detectors to polymer liquid chromatography.

  20. Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. M. Dickhut

    2008-09-01

    Full Text Available Despite the acknowledged relevance of aerosol-derived water-soluble organic carbon (WSOC to climate and biogeochemical cycling, characterization of aerosol WSOC has been limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS was utilized in this study to provide detailed molecular level characterization of the high molecular weight (HMW; m/z>223 component of aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More than 3000 peaks were detected by ESI FT-ICR MS within a m/z range of 223–600 for each sample. Approximately 86% (Virginia and 78% (New York of these peaks were assigned molecular formulas using only carbon (C, hydrogen (H, oxygen (O, nitrogen (N, and sulfur (S as elemental constituents. H/C and O/C molar ratios were plotted on van Krevelen diagrams and indicated a strong contribution of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Approximately 1–4% of the peaks in the aerosol-derived WSOC mass spectra were classified as black carbon (BC on the basis of double bond equivalents calculated from the assigned molecular formulas. In addition, several high-magnitude peaks in the mass spectra of samples from both sites corresponded to molecular formulas proposed in previous secondary organic aerosol (SOA laboratory investigations indicating that SOAs are important constituents of the WSOC. Overall, ESI FT-ICR MS provides a level of resolution adequate for detailed compositional and source information of the HMW constituents of aerosol-derived WSOC.

  1. Molecular Characterization of Peatland-derived Dissolved Organic Matter Using Ultra-high Resolution Mass Spectrometry and Tetramethylammonium Hydroxide (TMAH) Thermochemolysis

    Science.gov (United States)

    Ridley, L. M.; Koch, B. P.; Flerus, R.; Cowie, G. L.; Abbott, G. D.; Schmitt-Kopplin, P.

    2011-12-01

    Peatlands represent a key carbon reservoir, containing around a third of the global terrestrial carbon pool and contributing significantly to riverine organic carbon fluxes. Despite this, little is known about the molecular transformations which occur when peatland-derived organic matter enters riverine or estuarine conditions. Electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to characterize the molecular composition of peatland-derived dissolved organic matter (DOM). The molecular information obtained from this technique was further supplemented by TMAH thermochemolysis gas chromatography mass spectrometry, providing a detailed investigation of this important reservoir of organic matter. This molecular perspective can provide information on degradation processes, carbon cycling and the fate of peatland organic matter with changing climatic conditions. Four samples, representing contrasting stores of DOM within a peatland system (Cors Fochno, Wales) were chosen for analysis: i) a surface porewater sample from the top 30cm of the peat profile; ii) a sample from a mid-depth (150cm), low hydraulic conductivity zone of peat which displays high concentrations of dissolved organic carbon (70mg/L DOC); iii) a deep (600cm) porewater; iv) runoff water, representing the DOM that leaves the peatland system to enter a drainage channel flowing into the nearby estuary. The FT-ICR mass spectra obtained from the mid-depth DOM were dominated by a small number of closely related organic compounds, having very high intensity peaks representing relatively unsaturated and low oxygen content molecular formulae (0.31.5) and some significant sulphur-bearing species. At depth (600cm), TMAH thermochemolysis chromatograms were dominated by n-alkanes and fatty acid methyl esters. By contrast, at mid-depth there are significant peaks which are tentatively assigned to tryglycerol structures. Surface and runoff DOM relates much more closely

  2. [Determination of the distribution of relative molecular mass of organic matter by high pressure size exclusion chromatography with UV and TOC detectors].

    Science.gov (United States)

    Zhang, Han; Dong, Bing-Zhi

    2012-09-01

    An on-line high pressure size exclusion chromatography (HPSEC) with UV and TOC detectors was adapted to examine the distribution of relative molecular mass of natural organic matter (NOM). Through synchronous determination of UV254 and TOC responses in a wide range of relative molecular mass, it was possible to accurately characterize the structure of NOM, especially for some non-aromatic and non-conjugated double bond organics which have low response to UV. It was found that, TOC detector was capable of detecting all kinds of organic matters, including sucrose, sodium alginate and other hydrophilic organic compounds. The sample volume had a positively linear correlation with the TOC response, indicating that the larger volume would produce stronger responses. The effect of ion strength was relatively low, shown by the small decrease of peak area (1.2% ) from none to 0.2 mol x L(-1) NaCl. The pH value of tested samples should be adjusted to neutral or acidic because when the samples were alkaline, the results might be inaccurate. Compared to the sample solvents adopted as ultrapure water, the samples prepared by mobile phase solvents had less interference to salt boundary peak. The on-line HPSEC-UV-TOC can be used accurately to characterize the distribution of relative molecular mass and its four fractions in River Xiang.

  3. Determination of elemental compositions from mass peak profiles of the molecular ion (m) and the m + 1 and m + 2 ions.

    Science.gov (United States)

    Grange, A H; Donnelly, J R; Sovocool, G W; Brumley, W C

    1996-02-01

    The relative abundances of M + 1 and M + 2 ions help to identify the elemental composition of the molecular ion (M). But scan speed, sensitivity, and resolution limitations of mass spectrometers have impeded determination of these abundances. Mass peak profiling from selected ion recording data (MPPSIRD) provided faster sampling and enhanced sensitivity, which permitted use of higher resolution. M + 2 profiles having only a few percent of the ion abundance of M were monitored at 20 000 resolution. The relative abundances, exact masses, and shapes of M, M + 1, and M + 2 mass peak profiles were determined. By applying five criteria based on these quantities, elemental compositions were determined even for ions too large (up to 766 Da) to be uniquely assigned from their exact mass and accuracy limits alone. A profile generation model (PGM) was written to predict these resolution-dependent quantities by considering all M + 1 and M + 2 ions for each candidate composition. The model also provided assurance that no other compositions were possible. Characterization of the M + 1 and M + 2 profiles by MPPSIRD and the PGM greatly expanded the practical ability of high-resolution mass spectrometry to determine elemental compositions.

  4. Identification of the chemical constituents of Chinese medicine Yi-Xin-Shu capsule by molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation.

    Science.gov (United States)

    Wang, Hong-ping; Chen, Chang; Liu, Yan; Yang, Hong-Jun; Wu, Hong-Wei; Xiao, Hong-Bin

    2015-11-01

    The incomplete identification of the chemical components of traditional Chinese medicinal formula has been one of the bottlenecks in the modernization of traditional Chinese medicine. Tandem mass spectrometry has been widely used for the identification of chemical substances. Current automatic tandem mass spectrometry acquisition, where precursor ions were selected according to their signal intensity, encounters a drawback in chemical substances identification when samples contain many overlapping signals. Compounds in minor or trace amounts could not be identified because most tandem mass spectrometry information was lost. Herein, a molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation method for complex Chinese medicine chemical constituent analysis was developed. The precursor ions were selected according to their two-dimensional characteristics of retention times and mass-to-charge ratio ranges from herbal compounds, so that all precursor ions from herbal compounds were included and more minor chemical constituents in Chinese medicine were identified. Compared to the conventional automatic tandem mass spectrometry setups, the approach is novel and can overcome the drawback for chemical substances identification. As an example, 276 compounds from the Chinese Medicine of Yi-Xin-Shu capsule were identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influence of heteroatom pre-selection on the molecular formula assignment of soil organic matter components determined by ultrahigh resolution mass spectrometry.

    Science.gov (United States)

    Ohno, Tsutomu; Ohno, Paul E

    2013-04-01

    Soil organic matter (SOM) is involved in many important ecosystem processes. Ultrahigh resolution mass spectrometry has become a powerful technique in the chemical characterization of SOM, allowing assignment of elemental formulae for thousands of peaks resolved in a typical mass spectrum. We investigated how the addition of N, S, and P heteroatoms in the formula calculation stage of the mass spectra processing workflow affected the formula assignments of mass spectra peaks. Dissolved organic matter extracted from plant biomass and soil as well as the soil humic acid fraction was studied. We show that the addition of S and P into the molecular formula calculation increased peak assignments on average by 17.3 % and 10.7 %, respectively, over the assignments based on the CHON elements frequently reported by SOM researchers using ultrahigh resolution mass spectrometry. The organic matter chemical characteristics as represented by van Krevelen diagrams were appreciably affected by differences in the heteroatom pre-selection for the three organic matter samples investigated, especially so for the wheat-derived dissolved organic matter. These results show that inclusion of both S and P heteroatoms into the formula calculation step, which is not routinely done, is important to obtain a more chemically complete interpretation of the ultrahigh resolution mass spectra of SOM.

  6. Far-infrared molecular lines from low- to high-mass star forming regions observed with Herschel

    NARCIS (Netherlands)

    Karska, A.; Herpin, F.; Bruderer, S.; Goicoechea, J. R.; Herczeg, G. J.; van Dishoeck, E. F.; San José-García, I.; Contursi, A.; Feuchtgruber, H.; Fedele, D.; Baudry, A.; Braine, J.; Chavarría, L.; Cernicharo, J.; van der Tak, F. F. S.; Wyrowski, F.

    2014-01-01

    Aims: Our aim is to study the response of the gas-to-energetic processes associated with high-mass star formation and compare it with previously published studies on low- and intermediate-mass young stellar objects (YSOs) using the same methods. The quantified far-IR line emission and absorption of

  7. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Bert Lagrain

    Full Text Available The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS, the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC, and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%, the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and

  8. Large molecular mass materials in coal-derived liquids by {sup 252}Cf-plasma and matrix-assisted laser desorption mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Domin, M.; Li, S.; Lazaro, M.-J.; Herod, A.A.; Larsen, J.W.; Kandiyoti, R. [School of Pharmacy, London (United Kingdom). Dept. of Parmaceutical and Biological Chemistry

    1998-05-01

    The paper compares responses of {sup 252}Cf-plasma desorption MS (PD-MS) and matrix-assisted laser desorption (MALDI) MS to identical samples. The two pairs of samples selected for the comparison were known from previous work to differ significantly in their high mass contents. MALDI-MS showed large differences in MM distributions within both pairs of samples. The PD-MS data showed a degree of similarity between one pair of samples (pyridine soluble/insoluble fractions of a coal tar pitch); for the second pair (a coal extract and its hydrocracked product), trends from the two MS techniques agreed closely. The MM range observed by PD-MS was somewhat narrower, extending to between 3000 and 5000 u. Significant differences within pairs of samples were observed by SEC and by UV-fluorescence spectroscopy, providing somewhat closer agreement with the MALDI spectra. The two MS instruments differ in two important respects: the ionization system (i.e., plasma vs laser desorption) and the maximum available ion extraction voltage: 30 kV for the MALDI-MS instrument and 15 kV for the PD-MS. The comparison of plasma vs laser desorption mass spectroscopy could not therefore take place at high ion extraction voltages. Work at up to 30 kV in the MALDI instrument indicated better sensitivity to high-mass materials at higher ion extraction voltages. The qualitative similarity of results from the two MS techniques is nevertheless apparent; the range of MMs observed in PD-MS as well as in MALDI-MS were, furthermore, far larger than those reported by any MS technique, to date. 38 refs., 6 figs., 1 tab.

  9. MALDI-TOF mass spectrometry analysis of small molecular weight compounds (under 10 KDa) as biomarkers of rat hearts undergoing arecoline challenge.

    Science.gov (United States)

    Chen, Tung-Sheng; Chang, Mu-Hsin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Day, Cecilia Hsuan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang

    2013-04-01

    Statistical and clinical reports indicate that betel nut chewing is strongly associated with progression of oral cancer because some ingredients in betel nuts are potential cancer promoters, especially arecoline. Early diagnosis for cancer biomarkers is the best strategy for prevention of cancer progression. Several methods are suggested for investigating cancer biomarkers. Among these methods, gel-based proteomics approach is the most powerful and recommended tool for investigating biomarkers due to its high-throughput. However, this proteomics approach is not suitable for screening biomarkers with molecular weight under 10 KDa because of the characteristics of gel electrophoresis. This study investigated biomarkers with molecular weight under 10 KDa in rats with arecoline challenge. The centrifuging vials with membrane (10 KDa molecular weight cut-off) played a crucial role in this study. After centrifuging, the filtrate (containing compounds with molecular weight under 10 KDa) was collected and spotted on a sample plate for MALDI-TOF mass spectrometry analysis. Compared to control, three extra peaks (m/z values were 1553.1611, 1668.2097 and 1740.1832, respectively) were found in sera and two extra peaks were found in heart tissue samples (408.9719 and 524.9961, respectively). These small compounds should play important roles and may be potential biomarker candidates in rats with arecoline. This study successfully reports a mass-based method for investigating biomarker candidates with small molecular weight in different types of sample (including serum and tissue). In addition, this reported method is more time-efficient (1 working day) than gel-based proteomics approach (5~7 working days).

  10. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source.

    Science.gov (United States)

    Leplat, N; Rossi, M J

    2013-11-01

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300-630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C4H10 at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10(11) and 5.0 × 10(11) molecule s(-1) cm(-3) of C2H5(●) (ethyl) and t-C4H9(●) (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  11. Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions.

    Science.gov (United States)

    Trimpin, Sarah; Inutan, Ellen D; Herath, Thushani N; McEwen, Charles N

    2010-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is noted for its ability to produce primarily singly charged ions. This is an attribute when using direct ionization for complex mixtures such as protein digests or synthetic polymers. However, the ability to produce multiply charged ions, as with electrospray ionization (ESI), has advantages such as extending the mass range on mass spectrometers with limited mass-to-charge (m/z) range and enhancing fragmentation for structural characterization. We designed and fabricated a novel field free transmission geometry atmopsheric pressure (AP) MALDI source mounted to a high-mass resolution Orbitrap Exactive mass spectrometer. We report the ability to produce at will either singly charged ions or highly charged ions using a MALDI process by simply changing the matrix or the matrix preparation conditions. Mass spectra with multiply charged ions very similar to those obtained with ESI of proteins such as cytochrome c and ubiquitin are obtained with low femtomole amounts applied to the MALDI target plate and for peptides such as angiotensin I and II with application of attomole amounts. Single scan acquisitions produce sufficient ion current even from proteins.

  12. Reactivity studies on [Cp'FeI]2: monomeric amido, phenoxo, and alkyl complexes.

    Science.gov (United States)

    Walter, Marc D; White, Peter S

    2012-11-05

    A series of monomeric mono(cyclopentadienyl) iron amido, phenoxo, and alkyl complexes were synthesized, and their structure and reactivity are presented. The iron(II) centers in these 14VE one-legged piano stool complexes are high spin (S = 2) in solid state and solution independent of solvent. The silylamide compound [Cp'FeN(SiMe(3))(2)] (2a, Cp' = 1,2,4-(Me(3)C)(3)C(5)H(2)) is an excellent starting material for the reaction with more acidic substrates such as phenols. Sterically encumbered phenols 2,6-(Me(3)C)(2)(4-R)C(6)H(2)OH (R = H, Me, and tBu) were investigated. In all cases monomeric iron phenoxo half-sandwich complexes [Cp'FeOR'] (4-R) are initially formed. Rearrangement of 4-R to the diamagnetic oxocyclohexadienyl complex [Cp'Fe(η(5)-O═C(6)H(2)R'(2)R")] (5-R) is observed for 2,6-(Me(3)C)(2)(4-R)C(6)H(2)OH (R = H and Me) and the Gibbs free enthalpy of activation (ΔG(‡)) was determined. In contrast this rearrangement is inhibited when the 4-position is blocked by a tBu group. Removing the steric bulk from the 2,6-positions leads to the formation of a μ-phenoxo dimer, [Cp'Fe(μ-OC(6)H(3)tBu(2)-3,5)](2) (5). Density functional theory (DFT) was used to further elucidate the structure-reactivity relationship in these molecules. The one-legged piano stool anilido complex [Cp'Fe(NHC(6)H(2)tBu(3)-2,4,6)] (7) is not accessible via acid-base reaction between 2a and H(2)NC(6)H(2)tBu(3)-2,4,6, but can be prepared by conventional salt metathesis reaction from [Cp'FeI](2) and [Li(NHC(6)H(2)tBu(3)-2,4,6)(OEt(2))](2). In contrast, reaction of 2a with Ph(2)NH yields the bimetallic [Cp'Fe(N,C-κ(1),η(5)-C(6)H(5)NPh)Fe(N-κ(1)-NPh(2))Cp'] (8) which combines two iron centers in the same oxidation state (+2), but different spin-states (S = 0 and S = 2) which is reflected in very different Cp(cent)-Fe distances of 1.68 and 2.04 Å, respectively. A monomeric iron alkyl half-sandwich complex [Cp'FeCH(SiMe(3))(2)] (9) was prepared that exhibits no reactivity toward H(2), C

  13. Stable divalent germanium, tin and lead amino(ether)-phenolate monomeric complexes: structural features, inclusion heterobimetallic complexes, and ROP catalysis.

    Science.gov (United States)

    Wang, Lingfang; Roşca, Sorin-Claudiu; Poirier, Valentin; Sinbandhit, Sourisak; Dorcet, Vincent; Roisnel, Thierry; Carpentier, Jean-François; Sarazin, Yann

    2014-03-21

    Stable germanium(II) and lead(II) amido complexes {LO(i)}M(N(SiMe3)2) (M = Ge(II), Pb(II)) bearing amino(ether)phenolate ligands are readily available using the proteo-ligands {LO(i)}H of general formula 2-CH2NR2-4,6-tBu2-C6H2OH (i = 1, NR2 = N((CH2)2OCH3)2; i = 2, NR2 = NEt2; i = 3, NR2 = aza-15-crown-5) and M(N(SiMe3)2)2 precursors. The molecular structures of these germylenes and plumbylenes, as well as those of {LO(3)}GeCl, {LO(3)}SnCl and of the congeneric {LO(4)}Sn(II)(N(SiMe3)2) where NR2 = aza-12-crown-4, have been determined crystallographically. All complexes are monomeric, with 3-coordinate metal centres. The phenolate systematically acts as a N^O(phenolate) bidentate ligand, with no interactions between the metal and the O(side-arm) atoms in these cases (for {LO(1)}(-), {LO(3)}(-) and {LO(4)}(-)) where they could potentially arise. For each family, the lone pair of electrons essentially features ns(2) character, and there is little, if any, hybridization of the valence orbitals. Heterobimetallic complexes {LO(3)}M(N(SiMe3)2)·LiOTf, where the Li(+) cation sits inside the tethered crown-ether, were prepared by reaction of {LO(3)}M(N(SiMe3)2) and LiOTf (M = Ge(II), Sn(II)). The inclusion of Li(+) (featuring a close contact with the triflate anion) in the macrocycle bears no influence on the coordination sphere of the divalent tetrel element. In association with iPrOH, the amido germylenes, stannylenes and plumbylenes catalyse the controlled polymerisation of L- and racemic lactide. The activity increases linearly according to Ge(II) ≪ Sn(II) ≪ Pb(II). The simple germylenes generate very sluggish catalysts, but the activity is significantly boosted if the heterobimetallic complex {LO(3)}Ge(N(SiMe3)2)·LiOTf is used instead. On the other hand, with 10-25 equiv. of iPrOH, the plumbylenes afford highly active binary catalysts, converting 1000 or 5000 equiv. of monomer at 60 °C within 3 or 45 min, respectively, in a controlled fashion.

  14. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods

    Directory of Open Access Journals (Sweden)

    Pei-Ling Tang

    2015-01-01

    Full Text Available In this study, oil palm empty fruit bunch (OPEFBF was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen and enzymatic [cutinase versus manganese peroxidase (MnP] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt. and reaction time (30, 90, and 180 minutes on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17±49.44 ppm hydroxybenzoic acid, 5.67±0.25 ppm p-hydroxybenzaldehyde, 25.57±1.64 ppm vanillic acid, 168.68±23.23 ppm vanillin, 75.44±6.71 ppm syringic acid, 815.26±41.77 ppm syringaldehyde, 15.21±2.19 ppm p-coumaric acid, and 44.75±3.40 ppm ferulic acid, among the tested methods. High sodium hydroxide concentration (10% wt. was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid. Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g−1 lignin at pH 8 and 55°C for 24 hours, about 642.83±14.45 ppm hydroxybenzoic acid, 70.19±3.31 ppm syringaldehyde, 22.80±1.04 ppm vanillin, 27.06±1.20 ppm p-coumaric acid, and 50.19±2.23 ppm ferulic acid were produced.

  15. 11 Efficacy and Tolerability of HDM Injective Immunotherapy With Monomeric Allergoid

    Science.gov (United States)

    Compalati, Enrico; Atzeni, Isabella; Cabras, Sergio; Fancello, Paolo; Gaspardini, Giulio; Longo, Rocco; Patella, Vincenzo; Tore, Giorgio

    2012-01-01

    Background Subcutaneous immunotherapy (SCIT) is an effective treatment of respiratory allergy and carbamylated monomeric allergoids (monoids), by virtue of their reduced IgE-binding activity, resulted clinically safe by sublingual administration. Purpose of this study was to investigate the efficacy and tolerability of immunotherapy with house dust mites (HDM) monoid administered by injective route in patients with allergic rhinoconjunctivitis (AR). Methods A preparation of 0.70 mL of 10 BU/mL containing modified extract with 50% Dermatophagoides pteronyssinus and 50% Dermatophagoides farinae (amount of major allergen: 4 μg of group 1 per milliliter) was delivered monthly for 12 months, following a 5-week build-up induction phase (0.10–0.20–0.30–0.50–0.70 mL), to 58 patients (60% males, mean age 25.1 ± 12.7) suffering from AR due to mites for at least 2 years, whereas 60 patients with similar baseline characteristics were observed as controls. All patients were allowed to assume traditional drug therapy for their condition. At the end of the study changes from baseline in symptoms scores, in number of days with drug assumption, in severity of AR (according to ARIA classification) were compared between the 2 groups; moreover an overall assessment of clinical efficacy and tolerability was based on patients' and physicians' judgements (unsatisfactory, mild, good, optimal). Results In respect to baseline both groups showed, after 1 year, an improvement in symptoms score (P < 0.001) with a significant difference in favour of SCIT group (P < 0.05). Days of drug intake were significantly lower in patients receiving SCIT (P < 0.05). The number of patients with severe AR decreased in the first group while no variation was observed in controls. The subjective clinical overall assessment was optimal in 31 cases and good in 24 according to physicians' and patients' judgements; similarly 38 patients judged tolerability as optimal and 18 as good, whereas according to

  16. Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems

    Science.gov (United States)

    Nalbantis, I.; Efstratiadis, A.; Rozos, E.; Kopsiafti, M.; Koutsoyiannis, D.

    2011-03-01

    The modelling of human-modified basins that are inadequately measured constitutes a challenge for hydrological science. Often, models for such systems are detailed and hydraulics-based for only one part of the system while for other parts oversimplified models or rough assumptions are used. This is typically a bottom-up approach, which seeks to exploit knowledge of hydrological processes at the micro-scale at some components of the system. Also, it is a monomeric approach in two ways: first, essential interactions among system components may be poorly represented or even omitted; second, differences in the level of detail of process representation can lead to uncontrolled errors. Additionally, the calibration procedure merely accounts for the reproduction of the observed responses using typical fitting criteria. The paper aims to raise some critical issues, regarding the entire modelling approach for such hydrosystems. For this, two alternative modelling strategies are examined that reflect two modelling approaches or philosophies: a dominant bottom-up approach, which is also monomeric and, very often, based on output information, and a top-down and holistic approach based on generalized information. Critical options are examined, which codify the differences between the two strategies: the representation of surface, groundwater and water management processes, the schematization and parameterization concepts and the parameter estimation methodology. The first strategy is based on stand-alone models for surface and groundwater processes and for water management, which are employed sequentially. For each model, a different (detailed or coarse) parameterization is used, which is dictated by the hydrosystem schematization. The second strategy involves model integration for all processes, parsimonious parameterization and hybrid manual-automatic parameter optimization based on multiple objectives. A test case is examined in a hydrosystem in Greece with high complexities

  17. Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems

    Directory of Open Access Journals (Sweden)

    I. Nalbantis

    2011-03-01

    Full Text Available The modelling of human-modified basins that are inadequately measured constitutes a challenge for hydrological science. Often, models for such systems are detailed and hydraulics-based for only one part of the system while for other parts oversimplified models or rough assumptions are used. This is typically a bottom-up approach, which seeks to exploit knowledge of hydrological processes at the micro-scale at some components of the system. Also, it is a monomeric approach in two ways: first, essential interactions among system components may be poorly represented or even omitted; second, differences in the level of detail of process representation can lead to uncontrolled errors. Additionally, the calibration procedure merely accounts for the reproduction of the observed responses using typical fitting criteria. The paper aims to raise some critical issues, regarding the entire modelling approach for such hydrosystems. For this, two alternative modelling strategies are examined that reflect two modelling approaches or philosophies: a dominant bottom-up approach, which is also monomeric and, very often, based on output information, and a top-down and holistic approach based on generalized information. Critical options are examined, which codify the differences between the two strategies: the representation of surface, groundwater and water management processes, the schematization and parameterization concepts and the parameter estimation methodology. The first strategy is based on stand-alone models for surface and groundwater processes and for water management, which are employed sequentially. For each model, a different (detailed or coarse parameterization is used, which is dictated by the hydrosystem schematization. The second strategy involves model integration for all processes, parsimonious parameterization and hybrid manual-automatic parameter optimization based on multiple objectives. A test case is examined in a hydrosystem in Greece

  18. The accumulation mechanism of the hypoxia imaging probe “FMISO” by imaging mass spectrometry: possible involvement of low-molecular metabolites

    Science.gov (United States)

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Tanaka, Yukari; Nishijima, Ken-ichi; Zhao, Songji; Higashino, Kenichi; Sakamoto, Shingo; Numata, Yoshito; Yamaguchi, Yoshitaka; Tamaki, Nagara; Kuge, Yuji

    2015-01-01

    18F-fluoromisonidazole (FMISO) has been widely used as a hypoxia imaging probe for diagnostic positron emission tomography (PET). FMISO is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of its nitro group. However, its detailed accumulation mechanism remains unknown. Therefore, we investigated the chemical forms of FMISO and their distributions in tumours using imaging mass spectrometry (IMS), which visualises spatial distribution of chemical compositions based on molecular masses in tissue sections. Our radiochemical analysis revealed that most of the radioactivity in tumours existed as low-molecular-weight compounds with unknown chemical formulas, unlike observations made with conventional views, suggesting that the radioactivity distribution primarily reflected that of these unknown substances. The IMS analysis indicated that FMISO and its reductive metabolites were nonspecifically distributed in the tumour in patterns not corresponding to the radioactivity distribution. Our IMS search found an unknown low-molecular-weight metabolite whose distribution pattern corresponded to that of both the radioactivity and the hypoxia marker pimonidazole. This metabolite was identified as the glutathione conjugate of amino-FMISO. We showed that the glutathione conjugate of amino-FMISO is involved in FMISO accumulation in hypoxic tumour tissues, in addition to the conventional mechanism of FMISO covalent binding to macromolecules. PMID:26582591

  19. Tuneable microsecond-pulsed glow discharge design for the simultaneous acquisition of elemental and molecular chemical information using a time-of-flight mass spectrometer.

    Science.gov (United States)

    Solà-Vázquez, Auristela; Martín, Antonio; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2009-04-01

    A microsecond-pulsed direct current glow discharge (GD) was interfaced and synchronized to a time-of-flight mass spectrometer MS(TOF) for time-gated generation and detection of elemental, structural, and molecular ions. In this way, sequential collection of the mass spectra at different temporal regimes occurring during the GD pulse cycle is allowed. The capabilities of this setup were explored using bromochloromethane as model analyte. A simple GD chamber, developed in our laboratory and characterized by a low plasma volume minimizing dilution of the sample but showing great robustness to the entrance of organic compounds in the microsecond-pulsed plasma, has been used. An exhaustive analytical characterization of the GD-MS(TOF) prototype has been performed. Calibration curves for bromochloromethane observed at the different time regimes of the GD pulse cycle (that is, for elemental, fragment, and molecular ions from the analyte) showed very good linearity for the measurement of the different involved ions, with precisions in the range of 7-13% (relative standard deviation). Actual detection limits obtained for bromochloromethane were in the range of 1-3 microg/L for elements monitoring in the GD pulse "prepeak", in the range of 11-13 microg/L when monitoring analyte fragments in the plateau, and about 238 microg/L when measuring the molecular peak in the afterpeak regime.

  20. Molecularly imprinted solid-phase extraction for the selective determination of methamphetamine, amphetamine, and methylenedioxyphenylalkylamine designer drugs in human whole blood by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Kumazawa, Takeshi; Hasegawa, Chika; Hara, Kenji; Uchigasaki, Seisaku; Lee, Xiao-Pen; Seno, Hiroshi; Suzuki, Osamu; Sato, Keizo

    2012-03-01

    A novel method is described for the extraction of methamphetamine, amphetamine, and methylenedioxyphenylalkylamine designer drugs, such as 3,4-methylenedioxy-methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxyethylamphetamine, N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine, and 3,4-(methylenedioxyphenyl)-2-butanamine, from human whole blood using molecularly imprinted solid-phase extraction as highly selective sample clean-up technique. Whole blood samples were diluted with 10 mmol/L ammonium acetate (pH 8.6) and applied to a SupelMIP-Amphetamine molecularly imprinted solid-phase extraction cartridge. The cartridge was then washed to eliminate interferences, and the amphetamines of interest were eluted with formic acid/methanol (1:100, v/v). After derivatization with trifluoroacetic anhydride, the analytes were quantified using gas chromatography-mass spectrometry. Recoveries of the seven amphetamines spiked into whole blood were 89.1-102%. The limits of quantification for each compound in 200 μL of whole blood were between 0.25 and 1.0 ng. The maximum intra- and inter-day coefficients of variation were 9.96 and 13.8%, respectively. The results show that methamphetamine, amphetamine, and methylenedioxyphenylalkyl-amine designer drugs can be efficiently extracted from crude biological samples such as whole blood by molecularly imprinted solid-phase extraction with good reproducibility. This extraction method will be useful for the pretreatment of human samples before gas chromatography-mass spectrometry.

  1. Separation of small molecular peptides with the same amino acid composition but different sequences by high performance liquid chromatography-electrospray ionization-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Peptidomics has emerged as a new discipline in recent years. Mass spectrometry (MS) is the most universal and efficient tool for structure identification of proteins and peptides. However,there is a limitation for the identification of peptides with the same amino acid composition but different se-quences because these peptides have identical mass spectra of molecular ions. This paper presents a high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method for the separation of small molecular peptides with the same amino acid composition but dif-ferent sequences. Two tripeptides of Gly-Ser-Phe and Gly-Phe-Ser were used as a model sample. The separation behavior has been investigated and the separation conditions have been optimized. Under the optimum conditions,good repeatability was achieved. The developed method could provide a helpful reference for the separation of other peptides with the same amino acid composition but different sequences in the study of proteomics and peptidomics.

  2. 3M™ Molecular detection system versus MALDI-TOF mass spectrometry and molecular techniques for the identification of Escherichia coli 0157:H7, Salmonella spp. &Listeria spp.

    Science.gov (United States)

    Loff, Marché; Mare, Louise; de Kwaadsteniet, Michele; Khan, Wesaal

    2014-06-01

    The aim of this study was to compare standard selective plating, conventional PCR (16S rRNA and species specific primers), MALDI-TOF MS and the 3M™ Molecular Detection System for the routine detection of the pathogens Listeria, Salmonella and Escherichia coli 0157:H7 in wastewater and river water samples. MALDI-TOF MS was able to positively identify 20/21 (95%) of the E. coli isolates obtained at genus and species level, while 16S rRNA sequencing only correctly identified 6/21 (28%) as E. coli strains. None of the presumptive positive Listeria spp. and Salmonella spp. isolates obtained by culturing on selective media were positively identified by MALDI-TOF and 16S rRNA analysis. The species-specific E. coli 0157:H7 PCR described in this present study, was not able to detect any E. coli 0157:H7 strains in the wastewater and river water samples analysed. However, E. coli strains, Listeria spp., L. monocytogenes and Salmonella spp. were detected using species specific PCR. Escherichia coli 0157:H7, Listeria spp. and Salmonella spp. were also sporadically detected throughout the sampling period in the wastewater and river water samples analysed by the 3M™ Molecular Detection System. MALDI-TOF MS, which is a simple, accurate and cost-effective detection method, efficiently identified the culturable organisms, while in the current study both species specific PCR (Listeria spp. and Salmonella spp.) and 3M™ Molecular Detection System could be utilised for the direct routine analysis of pathogens in water sources.

  3. Molecular gas kinematics and high-mass star formation In the spiral arms of the Milky Way

    Directory of Open Access Journals (Sweden)

    A. Luna

    2004-01-01

    Full Text Available Estudiamos la cinem atica del gas molecular mediante la l nea rotacional 12CO(J=1!0, as como la formaci on estelar que trazan las regiones HII ultracompactas en el IV cuadrante gal actico (270 l 360 . Mostramos que hay una conexi on entre (1 la formaci on de estrellas masivas en los brazos espirales, (2 el gas molecular de alta densidad columnar y (3 los movimientos a gran escala observados en el gas. Estos ultimos implican que hay menos momento angular a disipar en los procesos de formaci on estelar. Mostramos un sistema m ultiple en estudio, que est a embebido en su nube molecular en Carina.

  4. Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin

    Science.gov (United States)

    Chamma, Ingrid; Letellier, Mathieu; Butler, Corey; Tessier, Béatrice; Lim, Kok-Hong; Gauthereau, Isabel; Choquet, Daniel; Sibarita, Jean-Baptiste; Park, Sheldon; Sainlos, Matthieu; Thoumine, Olivier

    2016-01-01

    The advent of super-resolution imaging (SRI) has created a need for optimized labelling strategies. We present a new method relying on fluorophore-conjugated monomeric streptavidin (mSA) to label membrane proteins carrying a short, enzymatically biotinylated tag, compatible with SRI techniques including uPAINT, STED and dSTORM. We demonstrate efficient and specific labelling of target proteins in confined intercellular and organotypic tissues, with reduced steric hindrance and no crosslinking compared with multivalent probes. We use mSA to decipher the dynamics and nanoscale organization of the synaptic adhesion molecules neurexin-1β, neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2) in a dual-colour configuration with GFP nanobody, and show that these proteins are diffusionally trapped at synapses where they form apposed trans-synaptic adhesive structures. Furthermore, Nlg1 is dynamic, disperse and sensitive to synaptic stimulation, whereas LRRTM2 is organized in compact and stable nanodomains. Thus, mSA is a versatile tool to image membrane proteins at high resolution in complex live environments, providing novel information about the nano-organization of biological structures. PMID:26979420

  5. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation.

    Science.gov (United States)

    Takemoto, Kiwamu; Matsuda, Tomoki; Sakai, Naoki; Fu, Donald; Noda, Masanori; Uchiyama, Susumu; Kotera, Ippei; Arai, Yoshiyuki; Horiuchi, Masataka; Fukui, Kiichi; Ayabe, Tokiyoshi; Inagaki, Fuyuhiko; Suzuki, Hiroshi; Nagai, Takeharu

    2013-01-01

    Chromophore-assisted light inactivation (CALI) is a powerful technique for acute perturbation of biomolecules in a spatio-temporally defined manner in living specimen with reactive oxygen species (ROS). Whereas a chemical photosensitizer including fluorescein must be added to specimens exogenously and cannot be restricted to particular cells or sub-cellular compartments, a genetically-encoded photosensitizer, KillerRed, can be controlled in its expression by tissue specific promoters or subcellular localization tags. Despite of this superiority, KillerRed hasn't yet become a versatile tool because its dimerization tendency prevents fusion with proteins of interest. Here, we report the development of monomeric variant of KillerRed (SuperNova) by direct evolution using random mutagenesis. In contrast to KillerRed, SuperNova in fusion with target proteins shows proper localization. Furthermore, unlike KillerRed, SuperNova expression alone doesn't perturb mitotic cell division. Supernova retains the ability to generate ROS, and hence promote CALI-based functional analysis of target proteins overcoming the major drawbacks of KillerRed.

  6. Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yunli; Wang, Jianji; Liu, Zhen; Ren, Yunlai; Li, Guozhi [School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471039, Henan (China)

    2009-12-15

    Relatively large percentages of xylose with glucose, arabinose, mannose, galactose and rhamnose constitute the hydrolysis products of hemicellulose. In this paper, hydrogen production performance of facultative anaerobe (Enterobacter aerogenes) has been investigated from these different monomeric sugars except glucose. It was shown that the stereoisomers of mannose and galactose were more effective for hydrogen production than those of xylose and arabinose. The substrate of 5 g/l xylose resulted in a relative high level of hydrogen yield (73.8 mmol/l), hydrogen production efficiency (2.2 mol/mol) and a maximum hydrogen production rate (249 ml/l/h). The hydrogen yield, hydrogen production efficiency and the maximum hydrogen production rate reached 104 mmol/l, 2.35 mol/mol and 290 ml/l/h, respectively, on a substrate of 10 g/l galactose. The hydrogen yields and the maximum hydrogen production rates increased with an increase of mannose concentrations and reached 119 mmol/l and 518 ml/l/h on the culture of 25 g/l mannose. However, rhamnose was a relative poor carbon resource for E. aerogenes to produce hydrogen, from which the hydrogen yield and hydrogen production efficiency were about one half of that from the mannose substrate. E. aerogenes was found to be a promising strain for hydrogen production from hydrolysis products of hemicellulose. (author)

  7. Generation of transgenic Wuzhishan miniature pigs expressing monomeric red fluorescent protein by somatic cell nuclear transfer.

    Science.gov (United States)

    Lu, Yue; Kang, Jin-Dan; Li, Suo; Wang, Wei; Jin, Jun-Xue; Hong, Yu; Cui, Cheng-du; Yan, Chang-Guo; Yin, Xi-Jun

    2013-08-01

    Red fluorescent protein and its variants enable researchers to study gene expression, localization, and protein-protein interactions in vitro in real-time. Fluorophores with higher wavelengths are usually preferred since they efficiently penetrate tissues and produce less toxic emissions. A recently developed fluorescent protein marker, monomeric red fluorescent protein (mRFP1), is particularly useful because of its rapid maturation and minimal interference with green fluorescent protein (GFP) and GFP-derived markers. We generated a pCX-mRFP1-pgk-neoR construct and evaluated the ability of mRFP1 to function as a fluorescent marker in transgenic Wuzhishan miniature pigs. Transgenic embryos were generated by somatic cell nuclear transfer (SCNT) of nuclei isolated from ear fibroblasts expressing mRFP1. Embryos generated by SCNT developed into blastocysts in vitro (11.65%; 31/266). Thereafter, a total of 685 transgenic embryos were transferred into the oviducts of three recipients, two of which became pregnant. Of these, one recipient had six aborted fetuses, whereas the other recipient gave birth to four offspring. All offspring expressed the pCX-mRFP1-pgk-neoR gene as shown by PCR and fluorescence in situ hybridization analysis. The transgenic pigs expressed mRFP1 in all organs and tissues at high levels. These results demonstrate that Wuzhishan miniature pigs can express mRFP1. To conclude, this transgenic animal represents an excellent model with widespread applications in medicine and agriculture.

  8. Contribution of Monomeric Anthocyanins to the Color of Young Red Wine: Statistical and Experimental Approaches.

    Science.gov (United States)

    Han, Fu Liang; Li, Zheng; Xu, Yan

    2015-12-01

    Monomeric anthocyanin contributions to young red wine color were investigated using partial least square regression (PLSR) and aqueous alcohol solutions in this study. Results showed that the correlation between the anthocyanin concentration and the solution color fitted in a quadratic regression rather than linear or cubic regression. Malvidin-3-O-glucoside was estimated to show the highest contribution to young red wine color according to its concentration in wine, whereas peonidin-3-O-glucoside in its concentration contributed the least. The PLSR suggested that delphinidin-3-O-glucoside and peonidin-3-O-glucoside under the same concentration resulted in a stronger color of young red wine compared with malvidin-3-O-glucoside. These estimates were further confirmed by their color in aqueous alcohol solutions. These results suggested that delphinidin-3-O-glucoside and peonidin-3-O-glucoside were primary anthocyanins to enhance young red wine color by increasing their concentrations. This study could provide an alternative approach to improve young red wine color by adjusting anthocyanin composition and concentration.

  9. Model of a DNA-protein complex of the architectural monomeric protein MC1 from Euryarchaea.

    Directory of Open Access Journals (Sweden)

    Françoise Paquet

    Full Text Available In Archaea the two major modes of DNA packaging are wrapping by histone proteins or bending by architectural non-histone proteins. To supplement our knowledge about the binding mode of the different DNA-bending proteins observed across the three domains of life, we present here the first model of a complex in which the monomeric Methanogen Chromosomal protein 1 (MC1 from Euryarchaea binds to the concave side of a strongly bent DNA. In laboratory growth conditions MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55. Like most proteins that strongly bend DNA, MC1 is known to bind in the minor groove. Interaction areas for MC1 and DNA were mapped by Nuclear Magnetic Resonance (NMR data. The polarity of protein binding was determined using paramagnetic probes attached to the DNA. The first structural model of the DNA-MC1 complex we propose here was obtained by two complementary docking approaches and is in good agreement with the experimental data previously provided by electron microscopy and biochemistry. Residues essential to DNA-binding and -bending were highlighted and confirmed by site-directed mutagenesis. It was found that the Arg25 side-chain was essential to neutralize the negative charge of two phosphates that come very close in response to a dramatic curvature of the DNA.

  10. Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-a resolution.

    Science.gov (United States)

    Broser, Matthias; Gabdulkhakov, Azat; Kern, Jan; Guskov, Albert; Müh, Frank; Saenger, Wolfram; Zouni, Athina

    2010-08-20

    The membrane-embedded photosystem II core complex (PSIIcc) uses light energy to oxidize water in photosynthesis. Information about the spatial structure of PSIIcc obtained from x-ray crystallography was so far derived from homodimeric PSIIcc of thermophilic cyanobacteria. Here, we report the first crystallization and structural analysis of the monomeric form of PSIIcc with high oxygen evolution capacity, isolated from Thermosynechococcus elongatus. The crystals belong to the space group C222(1), contain one monomer per asymmetric unit, and diffract to a resolution of 3.6 A. The x-ray diffraction pattern of the PSIIcc-monomer crystals exhibit less anisotropy (dependence of resolution on crystal orientation) compared with crystals of dimeric PSIIcc, and the packing of the molecules within the unit cell is different. In the monomer, 19 protein subunits, 35 chlorophylls, two pheophytins, the non-heme iron, the primary plastoquinone Q(A), two heme groups, 11 beta-carotenes, 22 lipids, seven detergent molecules, and the Mn(4)Ca cluster of the water oxidizing complex could be assigned analogous to the dimer. Based on the new structural information, the roles of lipids and protein subunits in dimer formation of PSIIcc are discussed. Due to the lack of non-crystallographic symmetry and the orientation of the membrane normal of PSIIcc perpendicular ( approximately 87 degrees ) to the crystallographic b-axis, further information about the structure of the Mn(4)Ca cluster is expected to become available from orientation-dependent spectroscopy on this new crystal form.

  11. An Intrinsically Disordered Motif Mediates Diverse Actions of Monomeric C-reactive Protein.

    Science.gov (United States)

    Li, Hai-Yun; Wang, Jing; Meng, Fan; Jia, Zhe-Kun; Su, Yang; Bai, Qi-Feng; Lv, Ling-Ling; Ma, Fu-Rong; Potempa, Lawrence A; Yan, Yong-Bin; Ji, Shang-Rong; Wu, Yi

    2016-04-15

    Most proinflammatory actions of C-reactive protein (CRP) are only expressed following dissociation of its native pentameric assembly into monomeric form (mCRP). However, little is known about what underlies the greatly enhanced activities of mCRP. Here we show that a single sequence motif, i.e. cholesterol binding sequence (CBS; a.a. 35-47), is responsible for mediating the interactions of mCRP with diverse ligands. The binding of mCRP to lipoprotein component ApoB, to complement component C1q, to extracellular matrix components fibronectin and collagen, to blood coagulation component fibrinogen, and to membrane lipid component cholesterol, are all found to be markedly inhibited by the synthetic CBS peptide but not by other CRP sequences tested. Likewise, mutating CBS in mCRP also greatly impairs these interactions. Functional experiments further reveal that CBS peptide significantly reduces the effects of mCRP on activation of endothelial cells in vitro and on acute induction of IL-6 in mice. The potency and specificity of CBS are critically determined by the N-terminal residues Cys-36, Leu-37, and His-38; while the versatility of CBS appears to originate from its intrinsically disordered conformation polymorphism. Together, these data unexpectedly identify CBS as the major recognition site of mCRP and suggest that this motif may be exploited to tune the proinflammatory actions of mCRP.

  12. Design of monomeric water-soluble β-hairpin and β-sheet peptides.

    Science.gov (United States)

    Jiménez, M Angeles

    2014-01-01

    Since the first report in 1993 (JACS 115, 5887-5888) of a peptide able to form a monomeric β-hairpin structure in aqueous solution, the design of peptides forming either β-hairpins (two-stranded antiparallel β-sheets) or three-stranded antiparallel β-sheets has become a field of growing interest and activity. These studies have yielded great insights into the principles governing the stability and folding of β-hairpins and antiparallel β-sheets. This chapter provides an overview of the reported β-hairpin/β-sheet peptides focussed on the applied design criteria, reviews briefly the factors contributing to β-hairpin/β-sheet stability, and describes a protocol for the de novo design of β-sheet-forming peptides based on them. Guidelines to select appropriate turn and strand residues and to avoid self-association are provided. The methods employed to check the success of new designed peptides are also summarized. Since NMR is the best technique to that end, NOEs and chemical shifts characteristic of β-hairpins and three-stranded antiparallel β-sheets are given.

  13. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B.

    Science.gov (United States)

    Serafim, Cláudia; Ferreira, Inês; Rijo, Patrícia; Pinheiro, Lídia; Faustino, Célia; Calado, António; Garcia-Rio, Luis

    2016-01-30

    Lipoamino acid-based micelles have been developed as delivery vehicles for the hydrophobic drug amphotericin B (AmB). The micellar solubilisation of AmB by a gemini lipoamino acid (LAA) derived from cysteine and its equimolar mixtures with the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC), as well as the aggregation sate of the drug in the micellar systems, was studied under biomimetic conditions (phosphate buffered-saline, pH 7.4) using UV-vis spectroscopy. Pure surfactant systems and equimolar mixtures were characterized by tensiometry and important parameters were determined, such as critical micelle concentration (CMC), surface tension at the CMC (γCMC), maximum surface excess concentration (Γmax), and minimum area occupied per molecule at the water/air interface (Amin). Rheological behaviour from viscosity measurements at different shear rates was also addressed. Solubilisation capacity was quantified in terms of molar solubilisation ratio (χ), micelle-water partition coefficient (KM) and Gibbs energy of solubilisation (ΔGs°). Formulations of AmB in micellar media were compared in terms of drug loading, encapsulation efficiency, aggregation state of AmB and in vitro antifungal activity against Candida albicans. The LAA-containing micellar systems solubilise AmB in its monomeric and less toxic form and exhibit in vitro antifungal activity comparable to that of the commercial formulation Fungizone.

  14. Determination of high molecular mass compounds from Amazonian plant's leaves; Determinacao de compostos de massa molecular alta em folhas de plantas da Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Denilson Soares de; Pereira, Alberto dos Santos; Aquino Neto, Francisco Radler de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica]. E-mail: ladetec@iq.gov.br; Cabral, Jose Augusto; Ferreira, Carlos Alberto Cid [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil); Simoneit, Bernd R.T. [Oregon State Univ., Corvallis, OR (United States). College of Oceanic and Atmospheric Sciences. Petroleum and Environmental Geochemistry Group; Elias, Vladimir O. [Analytical Solution, Rio de Janeiro, RJ (Brazil)

    2003-10-01

    The fractions of dichloromethane extracts of leaves from andiroba (Carapa guianensis - Meliaceae), caapi (Banisteriopsis caapi - Malpighiaceae), cocoa (Theobroma cacao - Sterculiaceae), Brazil nut (Bertholletia excelsa - Lecytidaceae), cupuacu (Theobroma grandiflorum - Sterculiaceae), marupa (Simaruba amara - Simaroubaceae) and rubber tree (Hevea brasiliensis - Euphorbiaceae), were analyzed by HT-HRGC and HT-HRGC-MS. Esters of homologous series of fatty acids and long chain alcohols, phytol, amyrines and tocopherols were characterized. The characterization of the compounds was based mainly in mass spectra data and in addition by usual spectrometric data ({sup 1}H and {sup 13}C NMR, IR). (author)

  15. A molecular-level approach for characterizing water-insoluble components of ambient organic aerosol particulates using ultra-high resolution mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. S. Willoughby

    2014-04-01

    Full Text Available The chemical composition of organic aerosols in the atmosphere is strongly influenced by human emissions, and the effect these have on the environment, human health, and climate change is determined by the molecular nature of these chemical species. The complexity of organic aerosol samples limits the ability to study the chemical composition, and, therefore, the associated properties and the impacts they have. Many studies address the water-soluble fraction of organic aerosols, and have had much success in identifying specific molecular formulas for thousands of compounds present. However, little attention is given to the water-insoluble portion, which can contain most of the fossil material that is emitted through human activity. Here we compare the organic aerosols present in water extracts and organic solvent extracts (pyridine and acetonitrile of an ambient aerosol sample collected in a rural location that is impacted by natural and anthropogenic emission sources. A semi-quantitative method was developed using proton nuclear magnetic resonance spectroscopy to determine that the amount of organic matter extracted by pyridine is comparable to that of water. Electrospray ionization Fourier transform ion cyclotron resonance mass spectra show that pyridine extracts a molecularly unique fraction of organic matter compared to water or acetonitrile, which extract chemically similar organic matter components. The molecular formulas unique to pyridine were less polar, more aliphatic, and reveal formulas containing sulfur to be an important component of insoluble aerosol organic matter.

  16. Investigation of colloidal graphite as a matrix for matrix-assisted laser desorption/ionisation mass spectrometry of low molecular weight analytes.

    Science.gov (United States)

    Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J

    2016-07-01

    The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Szymanski, Craig J.; Wang, Zhaoying; Zhou, Yufan; Ma, Xiang; Yu, Jiachao; Evans, James E.; Orr, Galya; Liu, Songqin; Zhu, Zihua; Yu, Xiao-Ying

    2016-05-15

    Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics at the molecular level.

  18. OH concentration in an atmospheric-pressure methane-air flame from molecular-beam mass spectrometry and laser-absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cattolica, R.J.; Yoon, S.; Knuth, E.L.

    1980-12-01

    The concentration of the OH radical in a stoichiometric methane-air flat flame at atmospheric pressure was measured with both laser-absorption spectroscopy and molecular-beam mass spectrometry (MBMS). The nonequilibrium peak OH concentrations and the OH decay rate measured from the two techniques were in good agreement. The OH profile from the MBMS measurements, however, was shifted downstream from the absorption measurements by approximately 5 times the sampling-orifice diameter. A comparison of temperature profiles from thermocouple measurements and from a molecular-beam time-of-flight technique exhibited a similar downstream shift. The MBMS measurements effectively sampled the gas properties approximately five orifice diameters ahead of the sampling-probe tip. Perturbation of the OH concentration profile using various sampling probes indicate the importance of minimizing the length of the sampling-orifice channel to reduce composition relaxation during sampling.

  19. The JCMT Spectral Legacy Survey : physical structure of the molecular envelope of the high-mass protostar AFGL2591

    NARCIS (Netherlands)

    van der Wiel, M. H. D.; van der Tak, F. F. S.; Spaans, M.; Fuller, G. A.; Plume, R.; Roberts, H.; Williams, J. L.

    2011-01-01

    Context. The understanding of the formation process of massive stars (greater than or similar to 8 M-circle dot) is limited by a combination of theoretical complications and observational challenges. The high UV luminosities of massive stars give rise to chemical complexity in their natal molecular

  20. The JCMT Spectral Legacy Survey: physical structure of the molecular envelope of the high-mass protostar AFGL2591

    NARCIS (Netherlands)

    van der Wiel, M. H. D.; van der Tak, F. F. S.; Spaans, M.; Fuller, G. A.; Plume, R.; Roberts, H.; Williams, J. L.

    2011-01-01

    Context. The understanding of the formation process of massive stars ( ≳ 8 M⊙) is limited by a combination of theoretical complications and observational challenges. The high UV luminosities of massive stars give rise to chemical complexity in their natal molecular clouds and affect the dynamical pr

  1. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte

    Directory of Open Access Journals (Sweden)

    Shibdas Banerjee

    2012-01-01

    Full Text Available The Electrospray Ionization (ESI is a soft ionization technique extensively used for production of gas phase ions (without fragmentation of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research.

  2. A 10{sup 10} solar mass flow of molecular gas in the A1835 brightest cluster galaxy

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, B. R.; Russell, H. R.; Main, R. A.; Vantyghem, A. N.; Kirkpatrick, C. C. [Department of Physics and Astronomy, University of Waterloo, Waterloo (Canada); Nulsen, P. E. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Edge, A. C. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Murray, N. W.; Hamer, S. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, M5S 3H8 ON (Canada); Combes, F.; Salome, P. [L' Observatoire de Paris, 61 Av. de L' Observatoire, F-75014 Paris (France); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Baum, S. A.; O' Dea, C. P. [School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Bregman, J. N. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Donahue, M.; Voit, G. M. [Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, East Lansing, MI 48824 (United States); Egami, E. [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Oonk, J. B. R. [Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); Tremblay, G. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany)

    2014-04-10

    We report ALMA Early Science observations of the A1835 brightest cluster galaxy (BCG) in the CO (3-2) and CO (1-0) emission lines. We detect 5 × 10{sup 10} M {sub ☉} of molecular gas within 10 kpc of the BCG. Its ensemble velocity profile width of ∼130 km s{sup –1} FWHM is too narrow for the molecular clouds to be supported in the galaxy by dynamic pressure. The gas may instead be supported in a rotating, turbulent disk oriented nearly face-on. Roughly 10{sup 10} M {sub ☉} of molecular gas is projected 3-10 kpc to the northwest and to the east of the nucleus with line-of-sight velocities lying between –250 km s{sup –1} and +480 km s{sup –1} with respect to the systemic velocity. The high-velocity gas may be either inflowing or outflowing. However, the absence of high-velocity gas toward the nucleus that would be expected in a steady inflow, and its bipolar distribution on either side of the nucleus, are more naturally explained as outflow. Star formation and radiation from the active galactic nucleus (AGN) are both incapable of driving an outflow of this magnitude. The location of the high-velocity gas projected behind buoyantly rising X-ray cavities and favorable energetics suggest an outflow driven by the radio AGN. If so, the molecular outflow may be associated with a hot outflow on larger scales reported by Kirkpatrick and colleagues. The molecular gas flow rate of approximately 200 M {sub ☉} yr{sup –1} is comparable to the star formation rate of 100-180 M {sub ☉} yr{sup –1} in the central disk. How radio bubbles would lift dense molecular gas in their updrafts, how much gas will be lost to the BCG, and how much will return to fuel future star formation and AGN activity are poorly understood. Our results imply that radio-mechanical (radio-mode) feedback not only heats hot atmospheres surrounding elliptical galaxies and BCGs, but it is able to sweep higher density molecular gas away from their centers.

  3. Molecular Weight and Association of Asphaltenes: a Critical Review Masse moléculaire et association des asphaltènes : une revue critique

    Directory of Open Access Journals (Sweden)

    Speight J. G.

    2006-11-01

    Full Text Available The determination of asphaltene molecular weights is complicated by the tendency of asphaltene molecules to associate with each other and with other petroleum constituents, and reported molecular weights vary from 900 to 300 000. This paper reviews the methods (vapor pressure osmometry, size exclusion chromatography, ultrafiltration, ultracentrifugation, viscosity, small angle X-ray scattering, infrared spectroscopy, solubilization, and interfacial tension that have been used to estimate asphaltene molecular weights and to probe association phenomena. It is concluded that asphaltene fractions from typical crudes have a number average molecular weight of 1 200-2 700 and a molecular weight range of 1,000-10,000 or higher. Intermolecular association phenomena are primarily responsible for observed molecular weights up to and in excess of 100,000 but detailed mechanisms of the intermolecular associations are not well understood. Certain observations suggest that asphaltene molecules are associated in reversedmicelles and that asphaltenes interact selectively with resins although the evidence on these points is subject to alternate interpretations. H-bond interactions between asphaltenes and resins have been demonstrated. La détermination de la masse moléculaire des asphaltènes est difficile à cause de la tendance qu'ont les molécules d'asphaltènes à s'associer les unes aux autres et avec d'autres constituants des pétroles. Ces masses moléculaires varient de 900 à 300 000. Cet article passe en revue les méthodes (osmométrie par tension de vapeur, chromatographie d'exclusion stérique, ultrafiltration, ultracentrifugation, viscosité, diffusion centrale des rayons X, spectroscopie infra-rouge, solubilisation et tension interfaciale qui ont été utilisées pour estimer les masses moléculaires des asphaltènes et pour étudier les phénomènes d'association. On conclut que les asphaltènes extraits de bruts types ont des masses mol

  4. Metallothionein dimers studied by nano-spray mass spectrometry.

    Science.gov (United States)

    Hathout, Yetrib; Reynolds, Kristy J; Szilagyi, Zoltan; Fenselau, Catherine

    2002-01-15

    Both transient and stable dimers of metallothionein have been characterized, based on earlier studies using NMR, circular dichroism and size-exclusion chromatography. Here additional characterization is provided by nanospray mass spectrometry. Rapid redistribution of metal ions between monomeric Cd7- and Zn7-metallothionein 2a is monitored by nanospray. An experiment in which theses two forms of the monomeric protein are separated by a dialysis membrane, which will pass metal ions but not proteins, confirms that a transient dimer must form for metal ions to be redistributed. On the other hand, size-exclusion chromatography of reconstituted Zn7- or Cd7-metallothionein revealed the presence of monomeric and dimeric species. These dimers do not equilibrate readily to form monomers and they are shown to be covalent.

  5. Cell-Based Screening: Cellular Assays with a Molecular Endpoint Measured by SAMDI Mass Spectrometry (Small 28/2016).

    Science.gov (United States)

    Berns, Eric J; Cabezas, Maria D; Mrksich, Milan

    2016-07-01

    On page 3811, M. Mrksich and co-workers culture cells using self-assembled monolayers presenting cell adhesion ligands and enzyme substrates. A lysis buffer disrupts the cell membranes, releasing enzymes that modify the immobilized substrates. These modifications can be measured with SAMDI mass spectrometry, giving a high-throughput, cell-based assay.

  6. Far-infrared molecular lines from Low- to High-Mass Star Forming Regions observed with Herschel

    CERN Document Server

    Karska, A; Bruderer, S; Goicoechea, J R; Herczeg, G J; van Dishoeck, E F; José-García, I San; Contursi, A; Feuchtgruber, H; Fedele, D; Baudry, A; Braine, J; Chavarría, L; Cernicharo, J; van der Tak, F F S; Wyrowski, F

    2013-01-01

    (Abridged) We study the response of the gas to energetic processes associated with high-mass star formation and compare it with studies on low- and intermediate-mass young stellar objects (YSOs) using the same methods. The far-IR line emission and absorption of CO, H$_2$O, OH, and [OI] reveals the excitation and the relative contribution of different species to the gas cooling budget. Herschel-PACS spectra covering 55-190 um are analyzed for ten high-mass star forming regions of various luminosities and evolutionary stages at spatial scales of ~10^4 AU. Radiative transfer models are used to determine the contribution of the envelope to the far-IR CO emission. The close environments of high-mass YSOs show strong far-IR emission from molecules, atoms, and ions. Water is detected in all 10 objects even up to high excitation lines. CO lines from J=14-13 up to typically 29-28 show a single temperature component, Trot~300 K. Typical H$_2$O temperatures are Trot~250 K, while OH has Trot~80 K. Far-IR line cooling is ...

  7. Monomeric malonate precursors for the MOCVD of HfO2 and ZrO2 thin films.

    Science.gov (United States)

    Pothiraja, Ramasamy; Milanov, Andrian; Parala, Harish; Winter, Manuela; Fischer, Roland A; Devi, Anjana

    2009-01-28

    New Hf and Zr malonate complexes have been synthesized by the reaction of metal amides with different malonate ligands (L = dimethyl malonate (Hdmml), diethyl malonate (Hdeml), di-tert-butyl malonate (Hdbml) and bis(trimethylsilyl) malonate (Hbsml)). Homoleptic eight-coordinated monomeric compounds of the type ML4 were obtained for Hf with all the malonate ligands employed. In contrast, for Zr only Hdmml and Hdeml yielded the eight-coordinated monomeric compounds of the type ML4, while using the bulky Hdbml and Hbsml ligands resulted into mixed alkoxo-malonato six-coordinated compounds of the type [ML2(OR)2]. Single crystal X-ray diffraction studies of all the compounds are presented and discussed, and they are found to be monomeric. The complexes are solids and in solution, they retain their monomeric nature as evidenced by NMR measurements. Compared to the classical beta-diketonate complexes, [M(acac)4] and [M(thd)4] (M = Hf, Zr; acac: acetylacetonate; thd: tetramethylheptadione), the new malonate compounds are more volatile, decompose at lower temperatures and have lower melting points. In particular, the homoleptic diethyl malonate complexes of Hf and Zr melt at temperatures as low as 62 degrees C. In addition, the compounds are very stable in air and can be sublimed quantitatively. The promising thermal properties makes these compounds interesting for metal-organic chemical vapor deposition (MOCVD). This was demonstrated by depositing HfO2 and ZrO2 thin films successfully with two representative Hf and Zr complexes.

  8. Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment

    Science.gov (United States)

    Lum, Jeremy S.; Fernandez, Francesca; Matosin, Natalie; Andrews, Jessica L.; Huang, Xu-Feng; Ooi, Lezanne; Newell, Kelly A.

    2016-01-01

    Group 1 metabotropic glutamate receptors (mGluR1/mGluR5) play an integral role in neurodevelopment and are implicated in psychiatric disorders, such as schizophrenia. mGluR1 and mGluR5 are expressed as homodimers, which is important for their functionality and pharmacology. We examined the protein expression of dimeric and monomeric mGluR1α and mGluR5 in the prefrontal cortex (PFC) and hippocampus throughout development (juvenile/adolescence/adulthood) and in the perinatal phencyclidine (PCP) model of schizophrenia. Under control conditions, mGluR1α dimer expression increased between juvenile and adolescence (209–328%), while monomeric levels remained consistent. Dimeric mGluR5 was steadily expressed across all time points; monomeric mGluR5 was present in juveniles, dramatically declining at adolescence and adulthood (−97–99%). The mGluR regulators, Homer 1b/c and Norbin, significantly increased with age in the PFC and hippocampus. Perinatal PCP treatment significantly increased juvenile dimeric mGluR5 levels in the PFC and hippocampus (37–50%) but decreased hippocampal mGluR1α (−50–56%). Perinatal PCP treatment also reduced mGluR1α dimer levels in the PFC at adulthood (−31%). These results suggest that Group 1 mGluRs have distinct dimeric and monomeric neurodevelopmental patterns, which may impact their pharmacological profiles at specific ages. Perinatal PCP treatment disrupted the early expression of Group 1 mGluRs which may underlie neurodevelopmental alterations observed in this model. PMID:27721389

  9. MASS SPECTROMETER

    Science.gov (United States)

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  10. Buried Volume Analysis for Propene Polymerization Catalysis Promoted by Group 4 Metals: a Tool for Molecular Mass Prediction

    KAUST Repository

    Falivene, Laura

    2015-10-02

    A comparison of the steric properties of homogeneous single site catalysts for propene polymerization using the percentage of buried volume (%VBur) as molecular descriptor is reported. The %VBur calculated on the neutral precursors of the active species seems to be a reliable tool to explain several experimental data related to the propene insertion and to the monomer chain transfer. Interestingly, a linear correlation between the buried volume calculated for a large set of neutral precursors and the energetic difference between propagation and termination steps calculated by DFT methods is found for Group 4 metal catalysts. The “master curves” derived for Ti, Zr and Hf confirm not only that the %VBur is an appropriate molecular descriptor for the systems considered but also that it could be used as tool for a large computational screening of new ligands.

  11. COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, R.; Tacconi, L. J.; Lutz, D.; Berta, S.; Burkert, A. [Max-Planck-Institut für Extraterrestrische Physik (MPE), Giessenbachstr., D-85748 Garching (Germany); Saintonge, A. [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom); Magnelli, B. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Combes, F. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); García-Burillo, S. [Observatorio Astronómico Nacional-OAN, Observatorio de Madrid, Alfonso XII, 3, 28014 Madrid (Spain); Neri, R.; Boissier, J. [IRAM, 300 Rue de la Piscine, F-38406 St. Martin d' Heres, Grenoble (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Contini, T.; Boone, F.; Bouché, N. [Institut d' Astrophysique et de Planétologie, Universite de Toulouse, 9 Avenue du Colonel Roche BP 44346, F-31028 Toulouse Cedex 4 (France); Lilly, S.; Carollo, M. [Institute of Astronomy, Department of Physics, Eidgenössische Technische Hochschule, CH-8093 ETH Zürich (Switzerland); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Colina, L. [CSIC Instituto Estructura Materia, C/Serrano 121, E-28006 Madrid (Spain); Cooper, M. C., E-mail: linda@mpe.mpg.de, E-mail: genzel@mpe.mpg.de [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); and others

    2015-02-10

    We combine molecular gas masses inferred from CO emission in 500 star-forming galaxies (SFGs) between z = 0 and 3, from the IRAM-COLDGASS, PHIBSS1/2, and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks over the same stellar mass/redshift range. We constrain the scaling relations of molecular gas depletion timescale (t {sub depl}) and gas to stellar mass ratio (M {sub mol} {sub gas}/M{sub *} ) of SFGs near the star formation ''main-sequence'' with redshift, specific star-formation rate (sSFR), and stellar mass (M{sub *} ). The CO- and dust-based scaling relations agree remarkably well. This suggests that the CO → H{sub 2} mass conversion factor varies little within ±0.6 dex of the main sequence (sSFR(ms, z, M {sub *})), and less than 0.3 dex throughout this redshift range. This study builds on and strengthens the results of earlier work. We find that t {sub depl} scales as (1 + z){sup –0.3} × (sSFR/sSFR(ms, z, M {sub *})){sup –0.5}, with little dependence on M {sub *}. The resulting steep redshift dependence of M {sub mol} {sub gas}/M {sub *} ≈ (1 + z){sup 3} mirrors that of the sSFR and probably reflects the gas supply rate. The decreasing gas fractions at high M{sub *} are driven by the flattening of the SFR-M {sub *} relation. Throughout the probed redshift range a combination of an increasing gas fraction and a decreasing depletion timescale causes a larger sSFR at constant M {sub *}. As a result, galaxy integrated samples of the M {sub mol} {sub gas}-SFR rate relation exhibit a super-linear slope, which increases with the range of sSFR. With these new relations it is now possible to determine M {sub mol} {sub gas} with an accuracy of ±0.1 dex in relative terms, and ±0.2 dex including systematic uncertainties.

  12. Monomerization of viral entry inhibitor griffithsin elucidates the relationship between multivalent binding to carbohydrates and anti-HIV activity.

    Science.gov (United States)

    Moulaei, Tinoush; Shenoy, Shilpa R; Giomarelli, Barbara; Thomas, Cheryl; McMahon, James B; Dauter, Zbigniew; O'Keefe, Barry R; Wlodawer, Alexander

    2010-09-08

    Mutations were introduced to the domain-swapped homodimer of the antiviral lectin griffithsin (GRFT). Whereas several single and double mutants remained dimeric, insertion of either two or four amino acids at the dimerization interface resulted in a monomeric form of the protein (mGRFT). Monomeric character of the modified proteins was confirmed by sedimentation equilibrium ultracentrifugation and by their high resolution X-ray crystal structures, whereas their binding to carbohydrates was assessed by isothermal titration calorimetry. Cell-based antiviral activity assays utilizing different variants of mGRFT indicated that the monomeric form of the lectin had greatly reduced activity against HIV-1, suggesting that the antiviral activity of GRFT stems from crosslinking and aggregation of viral particles via multivalent interactions between GRFT and oligosaccharides present on HIV envelope glycoproteins. Atomic resolution crystal structure of a complex between mGRFT and nonamannoside revealed that a single mGRFT molecule binds to two different nonamannoside molecules through all three carbohydrate-binding sites present on the monomer.

  13. Identification of the chromophores involved in aggregation-dependent energy quenching of the monomeric photosystem II antenna protein Lhcb5.

    Science.gov (United States)

    Ballottari, Matteo; Girardon, Julien; Betterle, Nico; Morosinotto, Tomas; Bassi, Roberto

    2010-09-03

    Non-photochemical quenching (NPQ) of excess absorbed light energy is a fundamental process that regulates photosynthetic light harvesting in higher plants. Among several proposed NPQ mechanisms, aggregation-dependent quenching (ADQ) and charge transfer quenching have received the most attention. In vitro spectroscopic features of both mechanisms correlate with very similar signals detected in more intact systems and in vivo, where full NPQ can be observed. A major difference between the models is the proposed quenching site, which is predominantly the major trimeric light-harvesting complex II in ADQ and exclusively monomeric Lhcb proteins in charge transfer quenching. Here, we studied ADQ in both monomeric and trimeric Lhcb proteins, investigating the activities of each antenna subunit and their dependence on zeaxanthin, a major modulator of NPQ in vivo. We found that monomeric Lhcb proteins undergo stronger quenching than light-harvesting complex II during aggregation and that this is enhanced by binding to zeaxanthin, as occurs during NPQ in vivo. Finally, the analysis of Lhcb5 mutants showed that chlorophyll 612 and 613, in close contact with lutein bound at site L1, are important facilitators of ADQ.

  14. Induction of antibodies against epitopes inaccessible on the HIV type 1 envelope oligomer by immunization with recombinant monomeric glycoprotein 120

    DEFF Research Database (Denmark)

    Schønning, Kristian; Bolmstedt, A; Novotny, J

    1998-01-01

    An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected...... to elicit antibodies preferentially neutralizing mutant variants of HIV-BRU lacking the N306 glycan. Therefore, two guinea pigs were immunized with monomeric wild-type HIV-BRU gp120 possessing the N306 glycan and immune sera were tested for neutralization against target viruses HIV-BRU, -A308, and -A308T321....... HIV-A308 and HIV-A308T321 lack the N306 glycan; HIV-A308T321 contains an additional mutation at the tip of V3 rendering it resistant to MAb binding at this epitope. Both immune sera preferentially neutralized the two mutant virus variants lacking the N306 glycan, with a 10- to 20-fold increase...

  15. Induction of antibodies against epitopes inaccessible on the HIV type 1 envelope oligomer by immunization with recombinant monomeric glycoprotein 120

    DEFF Research Database (Denmark)

    Schønning, Kristian; Bolmstedt, A; Novotny, J

    1998-01-01

    An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected...... to elicit antibodies preferentially neutralizing mutant variants of HIV-BRU lacking the N306 glycan. Therefore, two guinea pigs were immunized with monomeric wild-type HIV-BRU gp120 possessing the N306 glycan and immune sera were tested for neutralization against target viruses HIV-BRU, -A308, and -A308T321....... HIV-A308 and HIV-A308T321 lack the N306 glycan; HIV-A308T321 contains an additional mutation at the tip of V3 rendering it resistant to MAb binding at this epitope. Both immune sera preferentially neutralized the two mutant virus variants lacking the N306 glycan, with a 10- to 20-fold increase...

  16. A $10^{10}$ Solar Mass Flow of Molecular Gas in the Abell 1835 Brightest Cluster Galaxy

    CERN Document Server

    McNamara, B R; Nulsen, P E J; Edge, A C; Murray, N W; Main, R A; Vantyghem, A N; Combes, F; Fabian, A C; Salome, P; Kirkpatrick, C C; Baum, S A; Bregman, J N; Donahue, M; Egami, E; Hamer, S; O'Dea, C P; Oonk, J B R; Tremblay, G; Voit, G M

    2014-01-01

    We report ALMA Early Science observations of the Abell 1835 brightest cluster galaxy (BCG) in the CO (3-2) and CO (1-0) emission lines. We detect $5\\times 10^{10}~\\rm M_\\odot$ of molecular gas within 10 kpc of the BCG. Its ensemble velocity profile width of $\\sim 130 ~\\rm km~s^{-1}$ FWHM is too narrow for the molecular cloud sto be supported in the galaxy by dynamic pressure. The gas may instead be supported in a rotating, turbulent disk oriented nearly face-on. Roughly $10^{10}~\\rm M_\\odot$ of molecular gas is projected $3-10 ~\\rm kpc$ to the north-west and to the east of the nucleus with line of sight velocities lying between $-250 ~\\rm km~s^{-1}$ to $+480 ~\\rm km~s^{-1}$ with respect to the systemic velocity. The high velocity gas may be either inflowing or outflowing. However, the absence of high velocity gas toward the nucleus that would be expected in a steady inflow, and its bipolar distribution on either side of the nucleus, are more naturally explained as outflow. Star formation and radiation from th...

  17. Search for the CO-dark Mass in the Central Molecular Zone by using the ASTE 10-m Telescope

    Science.gov (United States)

    Tanaka, Kunihiko

    2017-01-01

    Atomic carbon (C0) is one of the most abundant carbon-bearing species in the interstellar molecular gas, and its submillimeter lines are good tracers of low-density molecular clouds which are often dark in CO rotational lines. We present a new map of the central 150 pc region of the Milky Way in the 500 GHz [CI] line, which has been recently obtained with the ASTE 10-m telescope. The [CI] emission is brightest toward the central 5-pc region, where massive GMCs are absent. This [CI]-bright region is approximately centered toward Sgr A*, covering the entire circum-nuclear ring (CND) and the western part of the 50-km/s cloud. The C0/CO abundance ratio is 0.5-2 there, and the highest ratio is observed toward the CND but just outside of the 2-pc ring of dense gas. This discovery may suggest that the CO-dark component occupies a significant fraction of the molecular gas in the circumnuclear region.

  18. Matrix-assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer.

    Science.gov (United States)

    Veličković, Dušan; Herdier, Hélène; Philippe, Glenn; Marion, Didier; Rogniaux, Hélène; Bakan, Bénédicte

    2014-12-01

    The cutin polymers of different fruit cuticles (tomato, apple, nectarine) were examined using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) after in situ release of the lipid monomers by alkaline hydrolysis. The mass spectra were acquired from each coordinate with a lateral spatial resolution of approximately 100 μm. Specific monomers were released at their original location in the tissue, suggesting that post-hydrolysis diffusion can be neglected. Relative quantification of the species was achieved by introducing an internal standard, and the collection of data was subjected to non-supervised and supervised statistical treatments. The molecular images obtained showed a specific distribution of ions that could unambiguously be ascribed to cutinized and suberized regions observed at the surface of fruit cuticles, thus demonstrating that the method is able to probe some structural changes that affect hydrophobic cuticle polymers. Subsequent chemical assignment of the differentiating ions was performed, and all of these ions could be matched to cutin and suberin molecular markers. Therefore, this MALDI-MSI procedure provides a powerful tool for probing the surface heterogeneity of plant lipid polymers. This method should facilitate rapid investigation of the relationships between cuticle phenotypes and the structure of cutin within a large population of mutants.

  19. Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Shikang; Lu, Xiaohui; Levac, Nicole; Bateman, Adam P.; Nguyen, Tran B.; Bones, David L.; Nizkorodov, Sergey A.; Laskin, Julia; Laskin, Alexander; Yang, Xin

    2014-09-16

    Aerosol samples collected in the urban areas of Shanghai and Los Angeles were analyzed by nanospray-desorption electrospray ionization mass spectrometry (nano-DESI MS) with high mass resolution (m/Δm=100,000). Solvent mixtures of acetonitrile/water and acetonitrile/toluene were used to extract and ionize polar and non-polar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. Majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates in the two samples have distinctly different molecular characteristics. Specifically, organosulfates in the Los Angeles sample were dominated by isoprene- or monoterpene-derived products, while organosulfates of yet unknown origin in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degree of oxidation and unsaturation. The use of acetonitrile/toluene solvent facilitated identification of this type of organosulfates, suggesting they could be missed in previous studies relying on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the organosulfates detected in the Shanghai sample suggest that they may act as surfactants, and plausibly affect the surface tension and hygroscopicity of the atmospheric particulate matter. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in liquid phase could be the formation pathway of these special organosulfates. Finally, long-chain alkanes from vehicle emissions might be their precursors.

  20. Chemical cross-linking of the urease complex from Helicobacter pylori and analysis by Fourier transform ion cyclotron resonance mass spectrometry and molecular modeling

    Science.gov (United States)

    Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.

    2004-05-01

    Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.

  1. Analysis of iminosugars and other low molecular weight carbohydrates in Aglaonema sp. extracts by hydrophilic interaction liquid chromatography coupled to mass spectrometry.

    Science.gov (United States)

    Rodríguez-Sánchez, S; García-Sarrió, M J; Quintanilla-López, J E; Soria, A C; Sanz, M L

    2015-12-01

    A method by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS(2)) has been successfully developed for the simultaneous analysis of bioactive iminosugars and other low molecular weight carbohydrates in Aglaonema leaf extracts. Among other experimental chromatographic conditions, mobile phase eluents, additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry provided for target carbohydrates. In general, narrow peaks (wh: 0.2-0.6min) with good symmetry (As: 0.9-1.3) and excellent resolution (Rs>1.8) were obtained for iminosugars using an acetonitrile:water gradient with 5mM ammonium acetate in both eluents at 55°C. Tandem mass spectra were used to confirm the presence of previously detected iminosugars in Aglaonema extracts and to tentatively identify for the first time others such as miglitol isomer, glycosyl-miglitol isomers and glycosyl-DMDP isomers. Concentration of total iminosugars varied from 1.35 to 2.84mgg(-1) in the extracts of the different Aglaonema samples analyzed. To the best of our knowledge, this is the first time that a HILIC-MS(2) method has been proposed for the simultaneous analysis of iminosugars and other low molecular weight carbohydrates of Aglaonema sp. extracts.

  2. 4 Years after the Deepwater Horizon Spill: Molecular Transformation of Macondo Well Oil in Louisiana Salt Marsh Sediments Revealed by FT-ICR Mass Spectrometry.

    Science.gov (United States)

    Chen, Huan; Hou, Aixin; Corilo, Yuri E; Lin, Qianxin; Lu, Jie; Mendelssohn, Irving A; Zhang, Rui; Rodgers, Ryan P; McKenna, Amy M

    2016-09-06

    Gulf of Mexico saltmarsh sediments were heavily impacted by Macondo well oil (MWO) released from the 2010 Deepwater Horizon (DWH) oil spill. Detailed molecular-level characterization of sediment extracts collected over 48 months post-spill highlights the chemical complexity of highly polar, oxygen-containing compounds that remain environmentally persistent. Electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), combined with chromatographic prefractionation, correlates bulk chemical properties to elemental compositions of oil-transformation products as a function of time. Carboxylic acid incorporation into parent MWO hydrocarbons detected in sediment extracts (corrected for mass loss relative to C30 hopane) proceeds with an increase of ∼3-fold in O2 species after 9 months to a maximum of a ∼5.5-fold increase after 36 months, compared to the parent MWO. More importantly, higher-order oxygenated compounds (O4-O6) not detected in the parent MWO increase in relative abundance with time as lower-order oxygenated species are transformed into highly polar, oxygen-containing compounds (Ox, where x > 3). Here, we present the first molecular-level characterization of temporal compositional changes that occur in Deepwater Horizon derived oil contamination deposited in a saltmarsh ecosystem from 9 to 48 months post-spill and identify highly oxidized Macondo well oil compounds that are not detectable by routine gas-chromatography-based techniques.

  3. Atropenantiomers of novel 1,1'-binaphthyl derivatives: synthesis and use for cholesteric structure induction in low molecular mass and polymer nematics

    Science.gov (United States)

    Kalinovskii, I. O.; Mastshenko, V. I.; Vinokur, R. A.; Boiko, Natalia I.; Shibaev, Peter V.; Shibaev, Valery P.

    1998-01-01

    The synthetic pathways of preparation of new optically active 1,1-binaphthyl (BN) derivatives containing various radicals including mesogenic ones were suggested and realized. No mesophase was found, but having atropisomeric chirality origin the novel substances proved to be effective chiral dopants inducing the highly twisted supramolecular structure both in low molecular mass and in polymer liquid crystals (LC). The helical twisting power (HTP) in two different standard nematic mixtures and in the copolymers based on the nematogenic methoxy-phenyl benzoate acrylic monomer was investigated. The systematic growth of the HTP in the low molecular mass nematics was found when the longer or mesogenic radicals were attached to the binaphthyl core. In the LC-copolymers the HTP of the BN-monomer and mesophase stability were analyzed depending on temperature and the molar fraction of the BN-fragments. The observed HTP value was found to be about thrice as much as those reported for the cholesterol and binaphthyl chiral monomers.

  4. The use of agrobiodiversity for plant improvement and the intellectual property paradigm: institutional fit and legal tools for mass selection, conventional and molecular plant breeding.

    Science.gov (United States)

    Batur, Fulya; Dedeurwaerdere, Tom

    2014-12-01

    Focused on the impact of stringent intellectual property mechanisms over the uses of plant agricultural biodiversity in crop improvement, the article delves into a systematic analysis of the relationship between institutional paradigms and their technological contexts of application, identified as mass selection, controlled hybridisation, molecular breeding tools and transgenics. While the strong property paradigm has proven effective in the context of major leaps forward in genetic engineering, it faces a systematic breakdown when extended to mass selection, where innovation often displays a collective nature. However, it also creates partial blockages in those innovation schemes rested between on-farm observation and genetic modification, i.e. conventional plant breeding and upstream molecular biology research tools. Neither overly strong intellectual property rights, nor the absence of well delineated protection have proven an optimal fit for these two intermediary socio-technological systems of cumulative incremental innovation. To address these challenges, the authors look at appropriate institutional alternatives which can create effective incentives for in situ agrobiodiversity conservation and the equitable distribution of technologies in plant improvement, using the flexibilities of the TRIPS Agreement, the liability rules set forth in patents or plant variety rights themselves (in the form of farmers', breeders' and research exceptions), and other ad hoc reward regimes.

  5. Elemental and molecular analysis of metal containing biomolecules using laser induced breakdown spectroscopy and sonic spray ionization mass spectrometry: A step towards full integration and simultaneous analysis

    Science.gov (United States)

    Marmatakis, Konstantinos; Pergantis, Spiros A.; Anglos, Demetrios

    2016-12-01

    A novel methodology is proposed that combines sonic spray ionization (SSI) mass spectrometry (MS) with laser induced breakdown spectroscopy (LIBS) for analyzing metal-containing biomolecules and complexes. Focusing pulses from a nanosecond laser (Nd:YAG, λ = 1064 nm) in the microdroplet ensemble produced by a pneumatic nebulizer yielded LIBS spectra that enabled highly sensitive detection of several metal ions in aqueous and aqueous methanolic solutions. Based on the calibration curve method, LOD values at the ng/mL level were achieved for Ca (15 ng/mL), Ba (27 ng/mL), Cu (67 ng/mL) and Fe (650 ng/mL) with accuracy > 90%. LIBS measurements were performed for the first time on aerosols of solutions of known biomolecules such as superoxide dismutase and alpha-lactalbumin, which led to the reliable determination of the concentration of Cu and Ca, respectively, both in the range of a few μg/mL. In parallel, the relative molecular mass of the metalloproteins was determined by separate SSI-MS measurements performed using an identical pneumatic nebulizer based sample introduction system. This is a first step towards the ultimate aim of integrating the two analytical techniques by use of a single pneumatic nebulization system for simultaneous sample introduction for both LIBS and SSI-MS. Such a system is expected to greatly enhance our capabilities to simultaneously acquire molecular and atomic data.

  6. Application of MALDI-TOF mass spectrometry for study on fibrillar and oligomeric aggregates of alpha-synuclein

    Directory of Open Access Journals (Sweden)

    Severinovskaya O. V.

    2014-05-01

    Full Text Available Aim. To study the -synuclein (ASN aggregates of different structural origin, namely amyloid fibrils and spherical oligomers, in comparison with a native protein. Methods. MALDI TOF mass spectrometry and atomic for- ce microscopy (AFM. Results. The mass spectra of native and fibrillar ASN have similar character, i. e. they are characterized by the well pronounced peak of protein molecular ion, the low molecular weight associates, and rather low contain of fragmentation products. The spectrum of oligomeric aggregate is characterized by the high contain of fragmentation products, low intensity of protein molecular ion and the absence of peaks of associates. Conclusions. The difference between the spectra of fibrillar and oligomeric ASN could be explained, first, by the different content of the «residual» monomeric ASN and the protein degradation products in the studied samples, and, second, by the different structure-depended mechanisms of the protein degradation induced by the laser ionization. We suggested that the MALDI-TOF mass spectroscopy is a method useful for the investigation of ASN aggregation and characterization of its high order self-associates; besides, there is an interest in estimating the potency of the MALDI-TOF for the analysis of aggregation of various amyloidogenic proteins.

  7. Solvent exposure of Tyr10 as a probe of structural differences between monomeric and aggregated forms of the amyloid-β peptide

    Science.gov (United States)

    Aran Terol, Pablo; Kumita, Janet R.; Hook, Sharon C.; Dobson, Christopher M.; Esbjörner, Elin K.

    2015-01-01

    Aggregation of amyloid-β (Aβ) peptides is a characteristic pathological feature of Alzheimer's disease. We have exploited the relationship between solvent exposure and intrinsic fluorescence of a single tyrosine residue, Tyr10, in the Aβ sequence to probe structural features of the monomeric, oligomeric and fibrillar forms of the 42-residue Aβ1-42. By monitoring the quenching of Tyr10 fluorescence upon addition of water-soluble acrylamide, we show that in Aβ1-42 oligomers this residue is solvent-exposed to a similar extent to that found in the unfolded monomer. By contrast, Tyr10 is significantly shielded from acrylamide quenching in Aβ1-42 fibrils, consistent with its proximity to the fibrillar cross-β core. Furthermore, circular dichroism measurements reveal that Aβ1-42 oligomers have a considerably lower β-sheet content than the Aβ1-42 fibrils, indicative of a less ordered molecular arrangement in the former. Taken together these findings suggest significant differences in the structural assembly of oligomers and fibrils that are consistent with differences in their biological effects. PMID:26551456

  8. Monomeric and gemini surfactants as antimicrobial agents - influence on environmental and reference strains.

    Science.gov (United States)

    Koziróg, Anna; Brycki, Bogumił

    2015-01-01

    Quaternary ammonium salts (QAS) belong to surfactant commonly used both, in the household and in different branches of industry, primarily in the process of cleaning and disinfection. They have several positive features inter alia effectively limiting the development of microorganisms on many surfaces. In the present work, two compounds were used as biocides: hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) that belongs to the gemini surfactant (GS), and its single analogue - dodecyl(trimethyl)ammonium bromide (DTAB). Two fold dilution method was used to determine the minimum concentration of compounds (MIC) which inhibit the growth of bacteria: Staphylococcus aureus (ATCC 6538 and an environmental strain), Pseudomonas aeruginosa (ATCC 85327 and an environmental strain), and yeast Candida albicans (ATCC 11509 and an environmental strain). The viability of cells in liquid cultures with addition of these substances at ¼ MIC, ½ MIC and MIC concentrations were also determined. The obtained results show that DTAB inhibits the growth of bacteria at the concentration of 0.126-1.010 µM/ml, and gemini surfactant is active at 0.036-0.029 µM/ml. Therefore, GS is active at more than 17-70-fold lower concentrations than its monomeric analogue. Strains isolated from natural environment are less sensitive upon testing biocides than the references strains. Both compounds at the MIC value reduced the number of cells of all strains. The use of too low concentration of biocides can limit the growth of microorganisms, but often only for a short period of time in case of special environmental strains. Later on, they can adapt to adverse environmental conditions and begin to evolve defence mechanisms.

  9. Production of transgenic cloned pigs expressing the far-red fluorescent protein monomeric Plum.

    Science.gov (United States)

    Watanabe, Masahito; Kobayashi, Mirina; Nagaya, Masaki; Matsunari, Hitomi; Nakano, Kazuaki; Maehara, Miki; Hayashida, Gota; Takayanagi, Shuko; Sakai, Rieko; Umeyama, Kazuhiro; Watanabe, Nobuyuki; Onodera, Masafumi; Nagashima, Hiroshi

    2015-01-01

    Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36-37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.

  10. Crystal structure of a monomeric thiolase-like protein type 1 (TLP1 from Mycobacterium smegmatis.

    Directory of Open Access Journals (Sweden)

    Neelanjana Janardan

    Full Text Available An analysis of the Mycobacterium smegmatis genome suggests that it codes for several thiolases and thiolase-like proteins. Thiolases are an important family of enzymes that are involved in fatty acid metabolism. They occur as either dimers or tetramers. Thiolases catalyze the Claisen condensation of two acetyl-Coenzyme A molecules in the synthetic direction and the thiolytic cleavage of 3-ketoacyl-Coenzyme A molecules in the degradative direction. Some of the M. smegmatis genes have been annotated as thiolases of the poorly characterized SCP2-thiolase subfamily. The mammalian SCP2-thiolase consists of an N-terminal thiolase domain followed by an additional C-terminal domain called sterol carrier protein-2 or SCP2. The M. smegmatis protein selected in the present study, referred to here as the thiolase-like protein type 1 (MsTLP1, has been biochemically and structurally characterized. Unlike classical thiolases, MsTLP1 is a monomer in solution. Its structure has been determined at 2.7 Å resolution by the single wavelength anomalous dispersion method. The structure of the protomer confirms that the N-terminal domain has the thiolase fold. An extra C-terminal domain is indeed observed. Interestingly, it consists of six β-strands forming an anti-parallel β-barrel which is completely different from the expected SCP2-fold. Detailed sequence and structural comparisons with thiolases show that the residues known to be essential for catalysis are not conserved in MsTLP1. Consistent with this observation, activity measurements show that MsTLP1 does not catalyze the thiolase reaction. This is the first structural report of a monomeric thiolase-like protein from any organism. These studies show that MsTLP1 belongs to a new group of thiolase related proteins of unknown function.

  11. Purification and biochemical characterization of a monomeric form of papaya mosaic potexvirus coat protein.

    Science.gov (United States)

    Lecours, Katia; Tremblay, Marie-Hélène; Gagné, Marie-Eve Laliberté; Gagné, Stéphane M; Leclerc, Denis

    2006-05-01

    Papaya mosaic virus (PapMV) is a flexuous rod shape virus made of 1400 subunits that assemble around a plus sense genomic RNA. The structure determination of PapMV and of flexuous viruses in general is a major challenge for both NMR and X-ray crystallography. In this report, we present the characterization of a truncated version of the PapMV coat protein (CP) that is suitable for NMR study. The deletion of the N-terminal 26 amino acids of the PapMV CP (CP27-215) generates a monomer that can be expressed to high level and easily purified for production of an adequate NMR sample. The RNA gel shift assay showed that CP27-215 lost its ability to bind RNA in vitro, suggesting that the multimerization of the subunit is important for this function. The fusion of a 6x His tag at the C-terminus improved the solubility of the monomer and allowed its concentration to 0.2 mM. The CD spectra of the truncated and the wild-type proteins were similar, suggesting that both proteins are well ordered and have a similar secondary structure. CP27-215 was 15N labeled for NMR studies and a 2D 1H-15N-HSQC spectrum confirmed the presence of a well-ordered structure and the monomeric form of the protein. These results show that CP27-215 is amenable to a complete and exhaustive NMR study that should lead to the first three-dimensional structure determination of a flexuous rod shape virus.

  12. Production of transgenic cloned pigs expressing the far-red fluorescent protein monomeric Plum

    Science.gov (United States)

    WATANABE, Masahito; KOBAYASHI, Mirina; NAGAYA, Masaki; MATSUNARI, Hitomi; NAKANO, Kazuaki; MAEHARA, Miki; HAYASHIDA, Gota; TAKAYANAGI, Shuko; SAKAI, Rieko; UMEYAMA, Kazuhiro; WATANABE, Nobuyuki; ONODERA, Masafumi; NAGASHIMA, Hiroshi

    2015-01-01

    Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36–37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum. PMID:25739316

  13. Structural Analysis of Monomeric RNA-Dependent Polymerases: Evolutionary and Therapeutic Implications.

    Directory of Open Access Journals (Sweden)

    Rodrigo Jácome

    Full Text Available The crystal structures of monomeric RNA-dependent RNA polymerases and reverse transcriptases of more than 20 different viruses are available in the Protein Data Bank. They all share the characteristic right-hand shape of DNA- and RNA polymerases formed by the fingers, palm and thumb subdomains, and, in many cases, "fingertips" that extend from the fingers towards the thumb subdomain, giving the viral enzyme a closed right-hand appearance. Six conserved structural motifs that contain key residues for the proper functioning of the enzyme have been identified in all these RNA-dependent polymerases. These enzymes share a two divalent metal-ion mechanism of polymerization in which two conserved aspartate residues coordinate the interactions with the metal ions to catalyze the nucleotidyl transfer reaction. The recent availability of crystal structures of polymerases of the Orthomyxoviridae and Bunyaviridae families allowed us to make pairwise comparisons of the tertiary structures of polymerases belonging to the four main RNA viral groups, which has led to a phylogenetic tree in which single-stranded negative RNA viral polymerases have been included for the first time. This has also allowed us to use a homology-based structural prediction approach to develop a general three-dimensional model of the Ebola virus RNA-dependent RNA polymerase. Our model includes several of the conserved structural motifs and residues described in other viral RNA-dependent RNA polymerases that define the catalytic and highly conserved palm subdomain, as well as portions of the fingers and thumb subdomains. The results presented here help to understand the current use and apparent success of antivirals, i.e. Brincidofovir, Lamivudine and Favipiravir, originally aimed at other types of polymerases, to counteract the Ebola virus infection.

  14. Molecular orbital study of coordinated dioxygen. I. Structure and bonding of model monomeric Co(II) complexes

    Science.gov (United States)

    Boča, R.

    1980-08-01

    The CNDO—UHF type of MO—LCAO—SCP calculation is carried out for model systems of dioxygen fixation: O 2 CoCl 4L 2- complexes in which L = none and L = NH 3. A geometry variation is performed with respect to 5 internal coordinates describing the degrees of freedom of the Co—O 2 group. The calculated geometry, spin densities and atomic charges agree with available data based on X-ray and ESR measurements of real dioxygen carriers. Structure and bonding of complexes are discussed in more detail.

  15. Toward Precision Black Hole Masses with ALMA: NGC 1332 as a Case Study in Molecular Disk Dynamics

    Science.gov (United States)

    Barth, Aaron J.; Darling, Jeremy; Baker, Andrew J.; Boizelle, Benjamin D.; Buote, David A.; Ho, Luis C.; Walsh, Jonelle L.

    2016-05-01

    We present first results from a program of Atacama Large Millimeter/submillimeter Array (ALMA) CO(2-1) observations of circumnuclear gas disks in early-type galaxies. The program was designed with the goal of detecting gas within the gravitational sphere of influence of the central black holes (BHs). In NGC 1332, the 0.″3-resolution ALMA data reveal CO emission from the highly inclined (i≈ 83^\\circ ) circumnuclear disk, spatially coincident with the dust disk seen in Hubble Space Telescope images. The disk exhibits a central upturn in maximum line-of-sight velocity, reaching ±500 km s-1 relative to the systemic velocity, consistent with the expected signature of rapid rotation around a supermassive BH. Rotational broadening and beam smearing produce complex and asymmetric line profiles near the disk center. We constructed dynamical models for the rotating disk and fitted the modeled CO line profiles directly to the ALMA data cube. Degeneracy between rotation and turbulent velocity dispersion in the inner disk precludes the derivation of strong constraints on the BH mass, but model fits allowing for a plausible range in the magnitude of the turbulent dispersion imply a central mass in the range of ˜(4-8) × 108 {M}⊙ . We argue that gas-kinematic observations resolving the BH’s projected radius of influence along the disk’s minor axis will have the capability to yield BH mass measurements that are largely insensitive to systematic uncertainties in turbulence or in the stellar mass profile. For highly inclined disks, this is a much more stringent requirement than the usual sphere-of-influence criterion.

  16. Scalar arguments of the mathematical functions defining molecular and turbulent transport of heat and mass in compressible fluids

    Science.gov (United States)

    Kowalski, Andrew S.; Argüeso, Daniel

    2011-11-01

    The advection-diffusion equations defining control volume conservation laws in micrometeorological research are analysed to resolve discrepancies in their appropriate scalar variables for heat and mass transport. A scalar variable that is conserved during vertical motions enables the interpretation of turbulent mixing as ‘diffusion’. Gas-phase heat advection is shown to depend on gradients in the potential temperature (θ), not the temperature (T). Since conduction and radiation depend on T, advection-diffusion of heat depends on gradients of both θ and T. Conservation of θ (the first Law of Thermodynamics) requires including a pressure covariance term in the definition of the turbulent heat flux. Mass advection and diffusion are universally agreed to depend directly on gradients in the gas ‘concentration’ (c), a nonetheless ambiguous term. Depending upon author, c may be defined either as a dimensionless proportion or as a dimensional density, with non-trivial differences for the gas phase. Analyses of atmospheric law, scalar conservation and similarity theory demonstrate that mass advection-diffusion in gases depends on gradients, not in density but rather in a conserved proportion. Flux-tower researchers are encouraged to respect the meteorological tradition of writing conservation equations in terms of scalar variables that are conserved through simple air motions.

  17. Molecularly-imprinted microspheres for selective extraction and determination of melamine in milk and feed using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Li, Mu; Zhang, Liying; Meng, Zihui; Wang, Zongyi; Wu, Hui

    2010-09-01

    Molecularly-imprinted polymers in the form of microspheres were synthesized using the dispersion polymerization protocol; cyromazine was used as dummy template, while methacrylic acid, ethylene glycol dimethacrylate and acetonitrile (MeCN) were used as functional monomer, cross-linker, and porogen, respectively. When compared with the non-imprinted polymer, the molecularly-imprinted polymers (MIPs) showed outstanding affinity toward melamine in MeCN with a maximum binding concentration (B(max)) of 53.20 nmol mg(-1) MIPs, imprinting effect of 4.6, and a dissociation constant (K(d)) of 90.45 microM. After optimization of the molecularly-imprinted solid-phase extraction conditions, a new method was developed to determine the melamine in milk and feed with gas chromatography-mass spectrometry. The performance of this method has been evaluated in the tainted milk and feed in terms of recovery, precision, linearity, the limit of detection (LOD) and limit of quantitation (LOQ). Recovery ranged in samples from 93.1 to 101.3% with intra-day and inter-day relative standard deviation values below 5.34%. The LOD and LOQ of melamine in milk and feed were 0.01 microg mL(-1) (microg g(-1)) and 0.05 microg mL(-1) (microg g(-1)), respectively.

  18. Phenol soluble modulin (PSM) variants of community-associated methicillin-resistant Staphylococcus aureus (MRSA) captured using mass spectrometry-based molecular networking.

    Science.gov (United States)

    Gonzalez, David J; Vuong, Lisa; Gonzalez, Isaiah S; Keller, Nadia; McGrosso, Dominic; Hwang, John H; Hung, Jun; Zinkernagel, Annelies; Dixon, Jack E; Dorrestein, Pieter C; Nizet, Victor

    2014-05-01

    Molecular genetic analysis indicates that the problematic human bacterial pathogen methicillin-resistant Staphylococcus aureus possesses more than 2000 open reading frames in its genome. This number of potential gene products, coupled with intrinsic mechanisms of posttranslational modification, endows methicillin-resistant Staphylococcus aureus with a highly complex biochemical repertoire. Recent proteomic and metabolomic advances have provided methodologies to better understand and characterize the biosynthetic factors released by microbial organisms. Here, the emerging tool of mass spectrometry-based molecular networking was used to visualize and map the repertoire of biosynthetic factors produced by a community-associated methicillin-resistant Staphylococcus aureus strain representative of the epidemic USA300 clone. In particular, the study focused on elucidating the complexity of the recently discovered phenol soluble modulin family of peptides when placed under various antibiotic treatment stresses. Novel PSM truncated variant peptides were captured, and the type of variants that were clustered by the molecular networks platform changed in response to the different antibiotic treatment conditions. After discovery, a group of the peptides were selected for functional analysis in vitro. The peptides displayed bioactive properties including the ability to induce proinflammatory responses in human THP-1 monocytes. Additionally, the tested peptides did not display antimicrobial activity as previously reported for other phenol soluble modulin truncated variants. Our findings reveal that the PSM family of peptides are quite structurally diverse, and suggest a single phenol soluble modulin parent peptide can functionally spawn differential bioactivities in response to various external stimuli.

  19. Comparison of Molecular Species Distribution of DHA-Containing Triacylglycerols in Milk and Different Infant Formulas by Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Liu, Zhiqian; Cocks, Benjamin G; Rochfort, Simone

    2016-03-16

    Long-chain polyunsaturated fatty acids (LC-PUFA) are an important nutritional lipid and have potential in being able to promote human health. Docosahexaenoic acid (DHA, C22:6ω3) is often added in infant formulas to meet the nutritional requirement of formula-fed infants. A comprehensive survey on DHA-containing triacylglycerol (DHA-TAG) molecular species has been conducted for seven infant formulas (IFs) sourced from Australia, Europe, and the USA as well as bovine milk and human milk. Using LC-triple quadrupole MS and LC-LTQ-orbitrap MS we were able to identify and quantify 56 DHA-TAG species in these samples; the fatty acid structure of these species was assigned using their MS(2) spectra. The species composition of DHA-TAG was found to be different between bovine milk, human milk, and IFs and also between different brands of IFs. Bovine milk and human milk contain DHA-TAG of smaller molecular size (728-952 Da), whereas five out of the seven IF samples contain species of broader mass range (from 728 to 1035 Da). Our study indicates that two types of DHA were used in the seven IF products surveyed and that there is very large difference in molecular species distribution in different IF products that may influence the fine nutritional profile and biological functions of IF products.

  20. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

    Science.gov (United States)

    Altieri, K. E.; Hastings, M. G.; Peters, A. J.; Sigman, D. M.

    2012-04-01

    Atmospheric water soluble organic nitrogen (WSON) is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W), which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2281 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+), CHON compounds that contained sulfur (CHONS+), CHON compounds that contained phosphorus (CHONP+), CHON compounds that contained both sulfur and phosphorus (CHONSP+), and compounds that contained only carbon, hydrogen, and nitrogen (CHN+). Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Despite their prevalence in continental rainwater, no organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March) which have anthropogenic air mass origins and samples collected during the warm season (April to September) with remote marine air mass origins. This, in

  1. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. E. Altieri

    2011-11-01

    Full Text Available Atmospheric water soluble organic nitrogen (WSON is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties, and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W, which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2455 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+, CHON compounds that contained sulfur (CHONS+, CHON compounds that contained phosphorous (CHONP+, CHON compounds that contained both sulfur and phosphorous (CHONSP+, and compounds that contained only carbon, hydrogen, and nitrogen (CHN+. No organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March which have anthropogenic air mass origins and samples collected during the warm season (April to September with remote marine air mass origins. This, in conjunction with patterns

  2. Monomeric adiponectin increases cell viability in porcine aortic endothelial cells cultured in normal and high glucose conditions: Data on kinases activation

    Directory of Open Access Journals (Sweden)

    Elena Grossini

    2016-09-01

    Full Text Available We found that monomeric adiponectin was able to increase cell viability in porcine aortic endothelial cells (PAE cultured both in normal and high glucose condition. Moreover, in normal glucose condition monomeric adiponectin increased p38MAPK, Akt, ERK1/2 and eNOS phosphorylation in a dose- and time-dependent way. Also in high glucose condition monomeric adiponectin increased eNOS and above kinases phosphorylation with similar patterns but at lower extent. For interpretation of the data presented in this article, please see the research article “Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions” (Grossini et al., in press [1].

  3. A monomeric methyl and hydroxypropyl methacrylate injection medium and its utility in casting blood capillaries and liver bile canaliculi for scanning electron microscopy.

    Science.gov (United States)

    Murakami, T; Itoshima, T; Hitomi, K; Ohtsuka, A; Jones, A L

    1984-06-01

    A mixture of 50-60% monomeric methyl methacrylate and 40-50% monomeric 2-hydroxypropyl methacrylate was supplemented with 1.5% benzoyl peroxide (catalyst) and 1.5% N,N-dimethylaniline (accelerator) and injected into glutaraldehyde-perfusion fixed rat hypophyseal and other endocrine organ blood vessels and biliary tracts. This injection medium rapidly polymerized at room temperature and did not require partial polymerization prior to injection. Good casts of blood vessels, including the hypophyseal capillaries, were obtained for scanning electron microscopy. The monomeric methacrylate medium possesses a great advantage over previous ones, as its fluidity enables the casting of very fine vessels such as bile canaliculi. In the case of non-fixed tissues, the monomeric methacrylate medium should be injected carefully, as it is toxic and destructive to the vessels.

  4. Effect of repeat unit structure and molecular mass of lactic acid bacteria hetero-exopolysaccharides on binding to milk proteins

    DEFF Research Database (Denmark)

    Birch, Johnny; HarÐarson, HörÐur Kári; Khan, Sanaullah

    2017-01-01

    -exopolysaccharides (HePSs) of 0.14–4.9 MDa from lactic acid bacteria to different milk proteins (β-casein, κ-casein, native and heat-treated β-lactoglobulin) at pH 4.0–5.0. Maximum binding capacity (RUmax) and apparent affinity (KA,app) were HePS- and protein-dependent and varied for example 10- and 600-fold......Interactions of exopolysaccharides and proteins are of great importance in food science, but complicated to analyze and quantify at the molecular level. A surface plasmon resonance procedure was established to characterize binding of seven structure-determined, branched hetero...

  5. Online laser desorption-multiphoton postionization mass spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different traffic-related and wood combustion sources.

    Science.gov (United States)

    Bente, Matthias; Sklorz, Martin; Streibel, Thorsten; Zimmermann, Ralf

    2008-12-01

    Direct inlet aerosol mass spectrometry plays an increasingly important role in applied and fundamental aerosol and nanoparticle research. Laser desorption/ionization (LDI) based techniques for single particle time-of-flight mass spectrometry (LDI-SP-TOFMS) are a promising approach in the chemical analysis of single aerosol particles, especially for the detection of inorganic species and distinction of particle classes. However, until now the detection of molecular organic compounds on a single particle basis has been difficult due to the high laser power densities which are required for the LDI process as well as due to the inherent matrix effects associated with this ionization technique. By the application of a two-step approach, where an IR desorption laser pulse is applied to perform a gentle desorption of organic material from the single particle surface and a second UV-laser performs the soft ionization of the desorbed species, this drawback of laser based single particles mass spectrometry can be overcome. The postionization of the desorbed molecules has been accomplished in this work by resonance enhanced multiphoton ionization (REMPI) using a KrF excimer laser (248 nm). REMPI allows an almost fragmentation free trace analysis of polycyclic aromatic hydrocarbons (PAHs) and their derivatives from individual single particles (laser desorption-REMPI postionization-single particle-time-of-flight mass spectrometry or LD-REMPI-SP-TOFMS). Crucial system parameters of the home-built aerosol mass spectrometer such as the power densities and the relative timing of both lasers were optimized with respect to the detectability of particle source specific organic signatures using well characterized standard particles. In a second step, the LD-REMPI-SP-TOFMS system was applied to analyze different real world aerosols (spruce wood combustion, gasoline car exhaust, beech wood combustion, and diesel car exhaust). It was possible to distinguish the particles from different

  6. Hydrophilic interaction chromatography coupled matrix assisted laser desorption/ionization mass spectrometry for molecular analysis of organic compounds in medicines, tea, and coffee

    KAUST Repository

    Wang, Renqi

    2013-01-01

    Natural occurring organic compounds from food, natural organic matter, as well as metabolic products have received intense attention in current chemical and biological studies. Examination of unknown compounds in complex sample matrices is hampered by the limited choices for data readout and molecular elucidation. Herein, we report a generic method of hydrophilic interaction chromatography (HILIC) coupled with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid characterization of ingredients in pharmaceutical compounds, tea, and coffee. The analytes were first fractionated using a cationic HILIC column prior to MALDI-MS analyses. It was found that the retention times of a compound arising from different samples were consistent under the same conditions. Accordingly, molecules can be readily characterized by both the mass and chromatographic retention time. The retention behaviors of acidic and basic compounds on the cationic HILIC column were found to be significantly influenced by the pH of mobile phases, whereas neutral compounds depicted a constant retention time at different pH. The general HILIC-MALDI-MS method is feasible for fast screening of naturally occurring organic compounds. A series of homologs can be determined if they have the same retention behavior. Their structural features can be elucidated by considering their mass differences and hydrophilic properties as determined by HILIC chromatogram. © 2013 The Royal Society of Chemistry.

  7. Using Vitek MALDI-TOF mass spectrometry to identify species belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii complex: a relevant alternative to molecular biology?

    Science.gov (United States)

    Pailhoriès, Hélène; Daure, Sophie; Eveillard, Matthieu; Joly-Guillou, Marie-Laure; Kempf, Marie

    2015-10-01

    Acinetobacter baumannii belongs to the Acinetobacter calcoaceticus-baumannii complex (Acb) containing 2 other pathogenic species: Acinetobacter pittii and Acinetobacter nosocomialis. Identification of these bacteria remains problematic despite the use of matrix-assisted laser ionization time-of-flight mass spectrometry (MALDI-TOF MS). Here, we enriched the SARAMIS™ database of the Vitek MS® plus mass spectrometer to improve the identification of species of the Acb complex. For each species, we incremented reference spectra. Then, a SuperSpectrum was created based on the selection of 40 specific masses. In a second step, we validated reference spectra and SuperSpectra with 100 isolates identified by rpoB gene sequencing. All the isolates were correctly identified by MALDI-TOF MS with the database we created as compared to the identifications obtained by rpoB sequencing. Our database enabled rapid and reliable identification of the pathogen species belonging to the Acb complex. Identification by MALDI-TOF MS with our database is a good alternative to molecular biology.

  8. Influence of oral contraceptive use on growth hormone in vivo bioactivity following resistance exercise: responses of molecular mass variants.

    Science.gov (United States)

    Kraemer, William J; Nindl, Bradley C; Volek, Jeff S; Marx, James O; Gotshalk, Lincoln A; Bush, Jill A; Welsch, Jill R; Vingren, Jakob L; Spiering, Barry A; Fragala, Maren S; Hatfield, Disa L; Ho, Jen-Yu; Maresh, Carl M; Mastro, Andrea M; Hymer, Wesley C

    2008-06-01

    The purpose was to examine effects of oral contraceptive (OC) use on plasma growth hormone (GH) responses to heavy resistance exercise. Sixty untrained women were placed into one of two groups: currently using OC (Ortho Tri-Cyclen) (n=25; mean+/-SD: 24.5+/-4.2y, 160.4+/-7.1cm, 64.1+/-11.3kg) or not currently using OC (NOC) (n=35; 23.6+/-4.6y, 165.9+/-6.0cm, 65.7+/-10.3kg). Participants performed an acute heavy resistance exercise test (AHRET; six sets of 10 repetition squats; 2min rest between sets) during days 2-4 of the follicular phase (NOC group) or of inactive oral contraceptive intake (OC group). Plasma was obtained before and immediately after AHRET and subsequently fractionated based on apparent molecular weight (>60kD, 30-60kD, and exercise-induced GH for the IFA, Nichols, and NIDDK in unfractionated plasma and >60kD subfraction compared to NOC group. No differences were observed for the tibial line bioassay. OC use augmented immunological GH response to AHRET in unfractionated plasma and >60kD molecular weight subfraction. However, OC use only increased biological activity of GH in one of two bioassays. These data demonstrated that GH concentrations at rest and following exercise are assay-dependent.

  9. Single Enzyme Studies Reveal the Existence of Discrete Functional States for Monomeric Enzymes and How They Are “Selected” upon Allosteric Regulation

    DEFF Research Database (Denmark)

    Hatzakis, Nikos S.; Wei, Li; Jørgensen, Sune Klamer

    2012-01-01

    allosteric regulation of monomeric enzymes is poorly understood. Here we monitored for the first time allosteric regulation of enzymatic activity at the single molecule level. We measured single stochastic catalytic turnovers of a monomeric metabolic enzyme (Thermomyces lanuginosus Lipase) while titrating...... its proximity to a lipid membrane that acts as an allosteric effector. The single molecule measurements revealed the existence of discrete binary functional states that could not be identified in macroscopic measurements due to ensemble averaging. The discrete functional states correlate...

  10. High field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter from the South Atlantic Ocean

    Science.gov (United States)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.

    2012-01-01

    resonance envelopes typical of an intricate mixture of natural organic matter with noticeable peaks of anomerics and C-aromatics carbon whereas oxygenated aromatics and ketones were of too low abundance to result in noticeable humps at the S/N ratio provided. Integration according to major substructure regimes revealed continual increase of carboxylic acids and ketones from surface to deep marine DOM, reflecting a progressive oxygenation of marine DOM, with concomitant decline of carbohydrate-related substructures. Isolation of marine DOM by means of SPE likely discriminated against carbohydrates but produced materials with beneficial NMR relaxation properties: a substantial fraction of dissolved organic molecules present allowed the acquisition of two-dimensional NMR spectra with exceptional resolution. JRES, COSY and HMBC NMR spectra were capable to depict resolved molecular signatures of compounds exceeding a certain minimum abundance. Here, JRES spectra suffered from limited resolution whereas HMBC spectra were constrained because of limited S/N ratio. Hence, COSY NMR spectra appeared best suited to depict organic complexity in marine DOM. The intensity and number of COSY cross peaks was found maximal for sample FMAX and conformed to about 1500 molecules recognizable in variable abundance. Surface DOM (FISH) produced a slightly (~25%) lesser number of cross peaks with remarkable positional accordance to FMAX (~80% conforming COSY cross peaks were found in FISH and FMAX). With increasing water depth, progressive attenuation of COSY cross peaks was caused by fast transverse NMR relaxation of yet unknown origin. However, most of the faint COSY cross peak positions of deep water DOM conformed to those observed in the surface DOM, suggesting the presence of a numerous set of identical molecules throughout the entire ocean column even if the investigated water masses belonged to different oceanic regimes and currents. Aliphatic chemical environments of methylene (CH2) and

  11. Subtle differences in molecular recognition between modified glycopeptide antibiotics and bacterial receptor peptides identified by electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J. D.; Staroske, T; Roepstorff, P;

    1999-01-01

    showing that electrospray ionization mass spectrometry (ESI-MS) can be used in the rapid quantitative analysis of mixtures of vancomycin-group antibiotics and their bacterial cell-wall receptors allowing the identification of even subtle differences in binding constants. Differences in affinities...... are quantified for a mixture of vancomycin antibiotics (vancomycin, dechlorovancomycin and N-demethylvancomycin) and for a mixture of ristocetin A and its pseudoaglycone. Binding constants determined by ESI-MS were found to be in close agreement with those determined by more direct methods in aqueous solution....

  12. Interaction structure of the complex between neuroprotective factor humanin and Alzheimer's β-amyloid peptide revealed by affinity mass spectrometry and molecular modeling.

    Science.gov (United States)

    Maftei, Madalina; Tian, Xiaodan; Manea, Marilena; Exner, Thomas E; Schwanzar, Daniel; von Arnim, Christine A F; Przybylski, Michael

    2012-06-01

    Humanin (HN) is a linear 24-aa peptide recently detected in human Alzheimer's disease (AD) brain. HN specifically inhibits neuronal cell death in vitro induced by ß-amyloid (Aß) peptides and by amyloid precursor protein and its gene mutations in familial AD, thereby representing a potential therapeutic lead structure for AD; however, its molecular mechanism of action is not well understood. We report here the identification of the binding epitopes between HN and Aß(1-40) and characterization of the interaction structure through a molecular modeling study. Wild-type HN and HN-sequence mutations were synthesized by SPPS and the HPLC-purified peptides characterized by MALDI-MS. The interaction epitopes between HN and Aß(1-40) were identified by affinity-MS using proteolytic epitope excision and extraction, followed by elution and mass spectrometric characterization of the affinity-bound peptides. The affinity-MS analyses revealed HN(5-15) as the epitope sequence of HN, whereas Aß(17-28) was identified as the Aß interaction epitope. The epitopes and binding sites were ascertained by ELISA of the complex of HN peptides with immobilized Aß(1-40) and by ELISA with Aß(1-40) and Aß-partial sequences as ligands to immobilized HN. The specificity and affinity of the HN-Aß interaction were characterized by direct ESI-MS of the HN-Aß(1-40) complex and by bioaffinity analysis using a surface acoustic wave biosensor, providing a K(D) of the complex of 610 nm. A molecular dynamics simulation of the HN-Aß(1-40) complex was consistent with the binding specificity and shielding effects of the HN and Aß interaction epitopes. These results indicate a specific strong association of HN and Aß(1-40) polypeptide and provide a molecular basis for understanding the neuroprotective function of HN.

  13. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water.

    Science.gov (United States)

    Willhite, Calvin C; Ball, Gwendolyn L; McLellan, Clifton J

    2012-05-01

    Maximum contaminant levels are used to control potential health hazards posed by chemicals in drinking water, but no primary national or international limits for aluminum (Al) have been adopted. Given the differences in toxicological profiles, the present evaluation derives total allowable concentrations for certain water-soluble inorganic Al compounds (including chloride, hydroxide, oxide, phosphate and sulfate) and for the hydrated Al silicates (including attapulgite, bentonite/montmorillonite, illite, kaolinite) in drinking water. The chemistry, toxicology and clinical experience with Al materials are extensive and depend upon the particular physical and chemical form. In general, the water solubility of the monomeric Al materials depends on pH and their water solubility and gastrointestinal bioavailability are much greater than that of the hydrated Al silicates. Other than Al-containing antacids and buffered aspirin, food is the primary source of Al exposure for most healthy people. Systemic uptake of Al after ingestion of the monomeric salts is somewhat greater from drinking water (0.28%) than from food (0.1%). Once absorbed, Al accumulates in bone, brain, liver and kidney, with bone as the major site for Al deposition in humans. Oral Al hydroxide is used routinely to bind phosphate salts in the gut to control hyperphosphatemia in people with compromised renal function. Signs of chronic Al toxicity in the musculoskeletal system include a vitamin D-resistant osteomalacia (deranged membranous bone formation characterized by accumulation of the osteoid matrix and reduced mineralization, reduced numbers of osteoblasts and osteoclasts, decreased lamellar and osteoid bands with elevated Al concentrations) presenting as bone pain and proximal myopathy. Aluminum-induced bone disease can progress to stress fractures of the ribs, femur, vertebrae, humerus and metatarsals. Serum Al ≥100 µg/L has a 75-88% positive predictive value for Al bone disease. Chronic Al

  14. Characterizing Low Molecular Weight Organic Matter in Arctic Polygonal Tundra Soils to Identify Biogeochemical Hotspots Using a Dual-Separation, High-Resolution Mass Spectrometry Approach

    Science.gov (United States)

    Ladd, M.; Wullschleger, S. D.; Iversen, C. M.; Hettich, R.

    2016-12-01

    Reliably modeling biogeochemical processes (e.g. decomposition, plant-microbial competition for nutrients) across spatial or temporal scales requires elucidating the chemical composition of low molecular weight (LMW) dissolved soil organic matter (DOM). Our understanding is limited, however, by the wide-ranging physicochemical properties and high fluxes of these compounds, posing major challenges in detection, isolation, and quantification. Here, we developed and evaluated a sensitive, non-targeted approach to characterize LMW DOM in the Arctic, a unique system that is warming at a rate twice that of the global average and may have significant feedbacks to global C and N cycles. Soil cores were collected from a continuous permafrost, polygonal tundra landscape near Barrow, Alaska (71° 16' N) and sectioned into 5 cm increments. Water and salt extracts from each section were filtered and injected onto C18 reversed-phase or zwitterionic-type hydrophilic interaction chromatography (ZIC-pHILIC) columns for separation. LMW DOM profiles were obtained using high-resolution mass spectrometry (HRMS), and unique features, known and unknown, were characterized by LC retention time, accurate mass (m/z), and molecular fragmentation pattern. Coupling two orthogonal chromatographic separations with HRMS enabled the characterization of hundreds of analytes in a single measurement providing enhanced, high-throughput coverage of LMW DOM from soil extracts. The complexity and relative/absolute intensities of LMW DOM features (e.g. organic acids, amino sugars, peptides) varied across polygon type (high- or low-centered), extract condition, and with depth, providing an information-rich, molecular signal of LMW DOM availability across scales. Comprehensively profiling this complex mixture of small molecules of both biotic and abiotic origin provides a chemical signature of biological function, allowing for more reliable predictions of how discrete, molecular-scale processes may control

  15. Use of the quartz crystal microbalance to determine the monomeric friction coefficient of polyimides

    Science.gov (United States)

    Bechtold, Mary M.

    1995-01-01

    When a thin film of polymer is coated on to a quartz crystal microbalance (QCM), the QCM can be used to detect the rate of increase in weight of the polymer film as the volatile penetrant diffuses into the polymer. From this rate information the diffusion coefficient of the penetrant into the polymer can be computed. Calculations requiring this diffusion coefficient lead to values which approximate the monomeric friction coefficient of the polymer. This project ha