WorldWideScience

Sample records for monomeric 82-kda enzyme

  1. Nuclear 82-kDa choline acetyltransferase decreases amyloidogenic APP metabolism in neurons from APP/PS1 transgenic mice.

    Science.gov (United States)

    Albers, Shawn; Inthathirath, Fatima; Gill, Sandeep K; Winick-Ng, Warren; Jaworski, Ewa; Wong, Daisy Y L; Gros, Robert; Rylett, R Jane

    2014-09-01

    Alzheimer disease (AD) is associated with increased amyloidogenic processing of amyloid precursor protein (APP) to β-amyloid peptides (Aβ), cholinergic neuron loss with decreased choline acetyltransferase (ChAT) activity, and cognitive dysfunction. Both 69-kDa ChAT and 82-kDa ChAT are expressed in cholinergic neurons in human brain and spinal cord with 82-kDa ChAT localized predominantly to neuronal nuclei, suggesting potential alternative functional roles for the enzyme. By gene microarray analysis, we found that 82-kDa ChAT-expressing IMR32 neural cells have altered expression of genes involved in diverse cellular functions. Importantly, genes for several proteins that regulate APP processing along amyloidogenic and non-amyloidogenic pathways are differentially expressed in 82-kDa ChAT-containing cells. The predicted net effect based on observed changes in expression patterns of these genes would be decreased amyloidogenic APP processing with decreased Aβ production. This functional outcome was verified experimentally as a significant decrease in BACE1 protein levels and activity and a concomitant reduction in the release of endogenous Aβ1-42 from neurons cultured from brains of AD-model APP/PS1 transgenic mice. The expression of 82-kDa ChAT in neurons increased levels of GGA3, which is involved in trafficking BACE1 to lysosomes for degradation. shRNA-induced decreases in GGA3 protein levels attenuated the 82-kDa ChAT-mediated decreases in BACE1 protein and activity and Aβ1-42 release. Evidence that 82-kDa ChAT can enhance GGA3 gene expression is shown by enhanced GGA3 gene promoter activity in SN56 neural cells expressing this ChAT protein. These studies indicate a novel relationship between cholinergic neurons and APP processing, with 82-kDa ChAT acting as a negative regulator of Aβ production. This decreased formation of Aβ could result in protection for cholinergic neurons, as well as protection of other cells in the vicinity that are sensitive to

  2. A monomeric variant of insulin degrading enzyme (IDE loses its regulatory properties.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    2010-03-01

    Full Text Available Insulin degrading enzyme (IDE is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure.IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild type enzyme it displayed Michaelis-Menten kinetic behavior. With the substrate Abz-GGFLRKHGQ-EDDnp, monomeric IDE retained approximately 25% of the wild type activity. In contrast with the larger peptide substrates beta-endorphin and amyloid beta peptide 1-40, monomeric IDE retained only 1 to 0.25% of wild type activity. Unlike wild type IDE neither bradykinin nor dynorphin B-9 activated the monomeric variant of the enzyme. Similarly, monomeric IDE was not activated by polyphosphates under conditions in which the activity of wild type enzyme was increased more than 50 fold.These findings serve to establish the dimer interface in IDE and demonstrate the requirement for an oligomeric form of the enzyme for its regulatory properties. The data support a mechanism where the binding of activators to oligomeric IDE induces a conformational change that cannot occur in the monomeric variant. Since a conformational change from a closed to a more open structure is likely the rate-determining step in the IDE reaction, the subunit induced conformational change likely shifts the structure of the oligomeric enzyme to a more open conformation.

  3. Resolution of two native monomeric 90 kDa nitrate reductase active proteins from Shewanella gelidimarina and the sequence of two napA genes

    International Nuclear Information System (INIS)

    Simpson, Philippa J.L.; McKinzie, Audra A.; Codd, Rachel

    2010-01-01

    Research highlights: → Two monomeric 90 kDa nitrate reductase active proteins from Shewanella gelidimarina. → Sequence of napA from napEDABC-type operon and napA from NapDAGHB-type operon. → Isolation of NAP as NapA or NapAB correlated with NapA P47E amino acid substitution. -- Abstract: The reduction of nitrate to nitrite in the bacterial periplasm occurs in the 90 kDa NapA subunit of the periplasmic nitrate reductase (NAP) system. Most Shewanella genomes contain two nap operons: napEDABC and napDAGHB, which is an unusual feature of this genus. Two native, monomeric, 90 kDa nitrate reductase active proteins were resolved by hydrophobic interaction chromatography from aerobic cultures of Shewanella gelidimarina replete with reduced nitrogen compounds. The 90 kDa protein obtained in higher yield was characterized as NapA by electronic absorption and electron paramagnetic resonance spectroscopies and was identified by LC/MS/MS and MALDI-TOF/TOF MS as NapA from the napEDABC-type operon. The other 90 kDa protein, which was unstable and produced in low yields, was posited as NapA from the napDAGHB-type operon. Two napA genes have been sequenced from the napEDABC-type and napDAGHB-type operons of S. gelidimarina. Native NAP from S. putrefaciens was resolved as one NapA monomer and one NapAB heterodimer. Two amino acid substitutions in NapA correlated with the isolation of NAP as a NapA monomer or a NapAB heterodimer. The resolution of native, redox-active NapA isoforms in Shewanella provides new insight into the respiratory versatility of this genus, which has implications in bioremediation and the assembly of microbial fuel cells.

  4. Characterization of a bioactive 15 kDa fragment produced by proteolytic cleavage of chicken growth hormone.

    Science.gov (United States)

    Arámburo, C; Carranza, M; Reyes, M; Luna, M; Martinez-Coria, H; Berúmen, L; Scanes, C G

    2001-07-01

    There is evidence for a cleaved form of GH in the chicken pituitary gland. A 25 kDa band of immunoreactive-(ir-)GH, as well as the 22 kDa monomeric form and some oligomeric forms were observed when purified GH or fresh pituitary extract were subjected to SDS-PAGE under nonreducing conditions. Under reducing conditions, the 25 kDa ir-GH was no longer observed, being replaced by a 15 kDa band, consistent with reduction of the disulfide bridges of the cleaved form. The type of protease involved was investigated using exogenous proteases and monomeric cGH. Cleaved forms of chicken GH were generated by thrombin or collagenase. The site of cleavage was found in position Arg133-Gly134 as revealed by sequencing the fragments produced. The NH2-terminal sequence of 40 amino acid residues in the 15 kDa form was identical to that of the rcGH and analysis of the remaining 7 kDa fragment showed an exact identity with positions 134-140 of cGH structure. The thrombin cleaved GH and the 15 kDa form showed reduced activity (0.8% and 0.5% of GH, respectively) in a radioreceptor assay employing a chicken liver membrane preparation. However, this fragment had a clear bioactivity in an angiogenic bioassay and was capable to inhibit the activity of deiodinase type III in the chicken liver.

  5. Stability of human interferon-beta 1: oligomeric human interferon-beta 1 is inactive but is reactivated by monomerization.

    Science.gov (United States)

    Utsumi, J; Yamazaki, S; Kawaguchi, K; Kimura, S; Shimizu, H

    1989-10-05

    Human interferon-beta 1 is extremely stable is a low ionic strength solution of pH 2 such as 10 mM HCl at 37 degrees C. However, the presence of 0.15 M NaCl led to a remarkable loss of antiviral activity. The molecular-sieve high-performance liquid chromatography revealed that, whereas completely active human interferon-beta 1 eluted as a 25 kDa species (monomeric form), the inactivated preparation eluted primarily as a 90 kDa species (oligomeric form). The specific activity (units per mg protein) of the oligomeric form was approx. 10% of that of the monomeric form. This observation shows that oligomeric human interferon-beta 1 is apparently in an inactive form. When the oligomeric eluate was resolved by polyacrylamide gel containing sodium dodecyl sulphate (SDS), it appeared to be monomeric under non-reducing conditions. Monomerization of the oligomeric human interferon-beta 1 by treatment with 1% SDS, fully regenerated its antiviral activity. These results suggest that the inactivation of the human interferon-beta 1 preparation was caused by its oligomerization via hydrophobic interactions without the formation of intermolecular disulphide bonds. These oligomers can be dissociated by SDS to restore biological activity.

  6. Isolation and initial structural characterization of a 27 kDa protein from Zingiber officinale

    Science.gov (United States)

    Rasheed, Saima; Malik, Shoaib Ahmad; Falke, Sven; Arslan, Ali; Fazel, Ramin; Schlüter, Hartmut; Betzel, Christian; Choudhary, M. Iqbal

    2018-03-01

    Zingiber officinale Roscoe (Ginger) is a widely used traditional medicinal plant (for different ailments such as arthritis, constipation, and hypertension). This article describes the isolation and characterization of a so far unknown protein from ginger rhizomes applying ion exchange, affinity, size-exclusion chromatography, small angle X-ray scattering (SAXS), and mass spectrometry techniques. One-dimensional Coomassie-stained SDS-PAGE was performed under non-reducing conditions, showing one band corresponding to approx. 27 kDa. Dynamic light scattering (DLS) analysis of the protein solution revealed monodispersity and a monomeric state of the purified protein. Circular dichroism (CD) spectroscopy strongly indicated a β-sheet-rich protein, and disordered regions. MALDI-TOF-MS, and LC-MS/MS analysis resulted in the identification of 27.29 kDa protein, having 32.13% and 25.34% sequence coverage with Zingipain-1 and 2, respectively. The monomeric state and molecular weight were verified by small angle X-ray scattering (SAXS) studies. An elongated ab-initio model was calculated based on the scattering intensity distribution.

  7. 78 kDa receptor for Man6P-independent lysosomal enzyme targeting: Biosynthetic transport from endoplasmic reticulum to 'high-density vesicles'

    International Nuclear Information System (INIS)

    Gonzalez-Noriega, Alfonso; Ortega Cuellar, Daniel D.; Michalak, Colette

    2006-01-01

    Recent work has shown that the cation-independent mannose 6-phosphate and the 78 kDa receptors for lysosomal enzyme targeting are located in different cell compartments. While the mannose 6-phosphate receptor is enriched in the Percoll fractions that contain Golgi apparatus, most of the 78 kDa receptor is localized in a heavy fraction at the bottom of the Percoll gradient. This report presents the biosynthetic transport of the 78 kDa receptor. Newly synthesized 78 kDa receptor was transported to Golgi from endoplasmic reticulum with a half life of 5 min. From the Golgi apparatus, the receptor takes two routes; about 15-25% is transported to the plasma membrane, and the rest migrates to late endosomes, subsequently to prelysosomes and finally to the dense vesicles. The 78 kDa receptor starts appearing at the dense vesicles 120 min after biosynthesis and reaches a maximum of 40-50% of the total receptor. Treatment of cells with NH 4 Cl causes depletion of the receptor from the dense vesicles and prelysosomes and corresponding augmentation in endosomes and plasma membrane. These results suggest that the 78 kDa receptor cycles between compartments and that the dense vesicles seem to represent the most distal compartment in the biosynthetic pathway of this receptor

  8. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    2008-03-01

    Full Text Available Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer.Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity.Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  9. Two new β-glucosidases from ethanol-fermenting fungus Mucor circinelloides NBRC 4572: enzyme purification, functional characterization, and molecular cloning of the gene.

    Science.gov (United States)

    Kato, Yasuo; Nomura, Taiji; Ogita, Shinjiro; Takano, Maki; Hoshino, Kazuhiro

    2013-12-01

    Two β-glucosidases (BGLs 1 and 2) were purified to homogeneity from the extracellular enzyme preparations of the ethanol-fermenting Mucor circinelloides NBRC 4572 statically grown on rice straw. BGLs 1 and 2 are monomeric glycoproteins whose apparent molecular masses (Ms) are around 78 kDa, which decreased by approximately 10 kDa upon enzymatic deglycosylation. Both BGLs showed similar enzyme characteristics in optimal temperature and pH, stability, and inhibitors. They were active against a wide range of aryl-β-glucosides and β-linked glucose oligosaccharides. Their amino acid sequences shared 81% identity and exhibited less than 60% identity with the known family-3 BGLs. Considering properties such as reduced inhibition by ethanol, glucose, and cellobiose, low transglucosylation activity, wider substrate range, less binding affinity to lignocellulosic materials, and abundant expression, BGL1 is likely to be more suitable for bioethanol production than BGL2 via simultaneous saccharification and fermentation of rice straw with M. circinelloides.

  10. Brain-specific interaction of a 91-kDa membrane-bound protein with the cytoplasmic tail of the 300-kDa mannose 6-phosphate receptor

    DEFF Research Database (Denmark)

    Rosorius, O; Issinger, O G; Braulke, T

    1996-01-01

    The cytoplasmic tail of the 300 kDa mannose 6-phosphate receptor (MPR 300-CT) is thought to play an important role in sorting and targeting of lysosomal enzymes and the insulin-like growth factor II along the biosynthetic and endocytic pathway. In this study a brain specific 91 kDa protein and a ...... in neuronal cells....

  11. Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available The widely used insecticide beta-cypermethrin has become a public concern because of its environmental contamination and toxic effects on mammals. In this study, a novel beta-cypermethrin degrading enzyme designated as CMO was purified to apparent homogeneity from a Streptomyces sp. isolate capable of utilizing beta-cypermethrin as a growth substrate. The native enzyme showed a monomeric structure with a molecular mass of 41 kDa and pI of 5.4. The enzyme exhibited the maximal activity at pH 7.5 and 30°C. It was fairly stable in the pH range from 6.5-8.5 and at temperatures below 10°C. The enzyme activity was significantly stimulated by Fe(2+, but strongly inhibited by Ag(+, Al(3+, and Cu(2+. The enzyme catalyzed the degradation of beta-cypermethrin to form five products via hydroxylation and diaryl cleavage. A novel beta-cypermethrin detoxification pathway was proposed based on analysis of these products. The purified enzyme was identified as a monooxygenase by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis (MALDI-TOF-MS and N-terminal protein sequencing. Given that all the characterized pyrethroid-degrading enzymes are the members of hydrolase family, CMO represents the first pyrethroid-degrading monooxygenase identified from environmental microorganisms. Taken together, our findings depict a novel pyrethroid degradation mechanism and indicate that the purified enzyme may be a promising candidate for detoxification of beta-cypermethrin and environmental protection.

  12. Monomeric Yeast Frataxin is an Iron-Binding Protein

    International Nuclear Information System (INIS)

    Cook, J.; Bencze, K.; Jankovic, A.; Crater, A.; Busch, C.; Bradley, P.; Stemmler, A.; Spaller, M.; Stemmler, T.

    2006-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron

  13. Evidence for the involvement of a 66 kDa membrane protein in the synthesis of sterolglucoside in ''Saccharomyces cerevisiae''

    International Nuclear Information System (INIS)

    Lenart, U.; Palamarczyk, G.

    1995-01-01

    The membrane-bound sterolglucoside synthase from the yeast ''Saccharomyces cerevisiae'' has been solubilized by nonionic detergent, Nonidet P-40, Triton X-100, and partially purified by DEAE-cellulose column chromatography and ammonium sulfate fractionation. SDS/PAGE of the purified fraction revealed the presence of two protein bands of molecular mass 66 kDa and 54 kDa. In an attempt to identify further the polypeptide chain of sterolglucoside synthase, the partially purified enzyme was treated with [di- 125 I]-5-[3-(p-azidosalicylamide)]allyl-UDPglucose, a photoactive analogue of UDPglucose, which is a substrate for this enzyme. Upon photolysis the 125 I-labelled probe was shown to link covalently to the 66 kDa protein. The photoinsertion was competed out by the presence of unlabeled UDPglucose thus suggesting that this protein contains substrate binding site for UDPglucose. Since photoinsertion of the probe to protein of 66 kDa correlated with the molecular mass of the protein visualized upon enzyme purification we postulate that the 66 kDa protein is involved in sterolglucoside synthesis in yeast. (author). 10 refs, 5 figs, 1 tab

  14. Diagnostic potential of Fasciola gigantica-derived 14.5 kDa fatty acid binding protein in the immunodiagnosis of bubaline fascioliasis.

    Science.gov (United States)

    Allam, G; Bauomy, I R; Hemyeda, Z M; Diab, T M; Sakran, T F

    2013-06-01

    The 14.5 kDa fatty acid binding protein (FABP) was isolated from the crude extract of adult Fasciola gigantica worms. Polyclonal anti-FABP IgG was generated in rabbits immunized with prepared FABP antigen. Sandwich enzyme-linked immunosorbent assay (ELISA) was applied to detect coproantigen in stools and circulating Fasciola antigen (CA) in sera of 126 water buffaloes by using purified and horseradish peroxidase (HRP)-conjugated anti-FABP IgG. Sandwich ELISA sensitivity was 96.97% and 94.95%; while specificity was 94.12% and 82.35% for coproantigen and CA detection, respectively. However, sensitivity and specificity of the Kato-Katz technique was 73.74% and 100%, respectively. The diagnostic efficacy of sandwich ELISA was 96.55% and 93.1% for coproantigen and CA detection, respectively. In contrast, the diagnostic efficacy of the Kato-Katz technique was 77.59%. In conclusion, these results demonstrate that the purified 14.5 kDa FABP provides a more suitable antigen for immunodiagnosis of early and current bubaline fascioliasis by using sandwich ELISA.

  15. 130 kDa phosphatase from the liver of labeo rohita: isolation: purification and some kinetic properties

    International Nuclear Information System (INIS)

    Siddiqua, A.; Sherazi, M.; Shah, A.H.; Khan, A.R.; Khan, H.U.

    2009-01-01

    An isoenzyme of high molecular weight acid phosphatase (HM-ACP) from the live of fish rohu (Labeo Rohita) was isolated and purified to homogeneity. The enzyme had specific activity of 14.96 U/mg and a recovery of about 4%. The purification procedure included ammonium sulphate precipitation and series of chromatographic separations on SP-Sephadex C-50, CM-Cellulose and Sephacryl HR-200 columns. Nealry 500-folds purification was achieved. The molecular weight was estimated to be 120-130 kDa by polyacrylamide gel electrophoresis (PAGE) of native enzyme and 130 kDa by gel filtration on calibrated Sephadex G-100 column. sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) under reduced and non-reduced condition showed a band corresponding to 66 kDa confirming the dimeric nature of enzyme. para nitrophenyl phosphate and flavin mononucleotide were hydrolyzed effectively by the enzyme and found to be good substrates. Optimum temperature for the enzyme was 50 degree C and temperature stability was 0 degree-50 degree C. Similarly optimum ph for the enzyme was 5.4 and ph stability was 4.8-6.0. The K/sub m/ for the p-nitrophenyl phosphate was estimated to be 0.15 mM. The enzyme was competitively inhibited by the phosphate, vanadate, molybdate, tartrate, fluoride and pyridoxal-5-PO/sub 4/ while pyridoxamine-5-PO/sub 4/ showed poor inhibition. Metal ions such as Ag/sup +/, Cu/sup ++/ Zn/sup ++/ showed strong inhibition on the enzyme activity while other divalent ions like Mg/sup ++/, Mn/sup ++/ and Co/sup ++/ were found to be poor inhibitors. Modifiers like EDTA, methanol, ethanol, acetone and glycerol had no effect on the enzyme's activity. (author)

  16. Genetic and biochemical characterization of a novel monoterpene epsilon-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, van der C.J.B.; Werf, van der M.J.

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  17. Genetic and biochemical characterization of a novel monoterpene e-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, C.J.B. van der; Werf, M.J. van der

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  18. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.

    Directory of Open Access Journals (Sweden)

    Yoko Kimata-Ariga

    Full Text Available Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT, nitrite reductase (NiR and glutamine synthetase (GS, separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE. GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa and multiple sizes (>120 kDa, respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.

  19. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.

    Science.gov (United States)

    Sakaue, Hiroaki; Takata, Takumi; Fujii, Norihiko; Sasaki, Hiroshi; Fujii, Noriko

    2015-01-01

    Crystallin stability and subunit-subunit interaction are essential for eye lens transparency. There are three types of crystallins in lens, designated as α-, β-, and γ-crystallins. Alpha-crystallin is a hetero-polymer of about 800kDa, consisting of 35-40 subunits of two different αA- and αB-subunits, each of 20kDa. The β/γ-crystallin superfamily comprises oligomeric β-crystallin (2-6 subunits) and monomeric γ-crystallin. Since lens proteins have very long half-lives, they undergo numerous post-translational modifications including racemization, isomerization, deamidation, oxidation, glycation, and truncation, which may decrease crystallin solubility and ultimately cause cataract formation. Racemization and isomerization of aspartyl (Asp) residues have been detected only in polymeric α- and oligomeric β-crystallin, while the situation in monomeric γ-crystallin has not been studied. Here, we investigated the racemization and isomerization of Asp in the γ-crystallin fraction of elderly donors. The results show that Asp residues of γS-, γD- and γC-crystallins were not racemized and isomerized. However, strikingly, we found that a portion of αB-crystallin and βA3-crystallin moved to the lower molecular weight fraction which is the same size of γ-crystallin. In those fractions, Asp-96 of αB-crystallin and Asp-37 of βA3-crystallin were highly inverted, which do not occur in the native lens higher molecular weight fraction. Our results indicate the possibility that the inversion of Asp residues may induce dissociation of αB- and βA3-crystallins from the polymeric and oligomeric states. This is the first report that stereoinversion of amino acids disturbs lens protein assembly in aged human lens. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes.

    Science.gov (United States)

    Gagaoua, Mohammed; Hoggas, Naouel; Hafid, Kahina

    2015-02-01

    The present work describes for the first time an elegant non-chromatographic method, the three phase partitioning for the purification and recovery of zingibain, a milk-clotting enzyme, from Zingiber officinale rhizomes. Factors affecting partitioning efficiency such as (NH4)2SO4 saturation, crude extract to t-butanol ratio and pH on zingibain partitioning were investigated. Optimal purification parameters were 50% (NH4)2SO4 saturation with 1.0:1.0 ratio of crude extract:t-butanol at pH 7.0, which gave 14.91 purification fold with 215% recovery of zingibain. The enzyme was found to be exclusively partitioned in the aqueous phase. The enzyme showed a prominent single band on SDS-PAGE. It is a monomeric protein of 33.8 kDa and its isoelectric point is 4.38. The enzyme exhibited maximal proteolytic activity at a temperature of 60 °C and pH 7.0. It was found to be stable at 40-65 °C during 2 h. The enzyme was found to be highly stable against numerous metal ions and its activity was enhanced by Ca(2+), K(+) and Na(+). It was completely inhibited by heavy metal ions such as Cu(2+) and Hg(2+) and partially by Cd(+). Zingibain milk-clotting activity (MCA) was found to be highly stable when stored under freezing (-20 °C) for 30 days compared at 4 °C. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Biochemical characterization of the 49 kDa penicillin-binding protein of Mycobacterium smegmatis.

    Science.gov (United States)

    Mukherjee, T; Basu, D; Mahapatra, S; Goffin, C; van Beeumen, J; Basu, J

    1996-01-01

    The 49 kDa penicillin-binding protein (PBP) of Mycobacterium smegmatis catalyses the hydrolysis of the peptide or S-ester bond of carbonyl donors R1-CONH-CHR2-COX-CHR2-COO- (where X is NH or S). In the presence of a suitable amino acceptor, the reaction partitions between the transpeptidation and hydrolysis pathways, with the amino acceptor, behaving as a simple alternative nucleophile at the level of the acyl-enzyme. By virtue of its N-terminal sequence similarity, the 49 kDa PBP represents one of the class of monofunctional low-molecular-mass PBPs. An immunologically related protein of M(r) 52,000 is present in M. tuberculosis. The 49 kDa PBP is sensitive towards amoxycillin, imipenem, flomoxef and cefoxitin. PMID:8947487

  2. Disruption of the 37-kDa/67-kDa laminin receptor gene in bovine ...

    African Journals Online (AJOL)

    ... gene encoding for the prion binding site in bovine fetal fibroblasts. The heterozygous BFF are ready to be used in producing homozygous cattle, which will be applied to study the interaction between prion and the 37-kDa/67-kDa LRP/LR. Key words: Prion, PrPC, PrPSc, 37-kDa/67-kDa laminin receptor, gene targeting.

  3. Natural monomeric form of fetal bovine serum acetylcholinesterase lacks the C-terminal tetramerization domain.

    Science.gov (United States)

    Saxena, Ashima; Hur, Regina S; Luo, Chunyuan; Doctor, Bhupendra P

    2003-12-30

    Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.

  4. Physical immobilization of 60 kDa chaperonin linked lipase from pseudomonas aeruginosa BN-1

    International Nuclear Information System (INIS)

    Syed, M.N.; Mehmood, S.; Bashir, A.; Ashraf, F.

    2012-01-01

    Abstract: The 60 kDa chaperone linked lipase from Pseudomonas aeruginosa was subjected to physical adsorption on silica 60 and acrylic beads. It was found that higher enzyme loading was achieved on silica gel than acrylic bead. The half life of immobilized enzyme was greater compared to the free enzyme. The adsorption of the enzyme onto a solid phase also resulted in increased thermo and solvent stability. It was observed that soluble enzyme showed maximum stability at 70 degree C while immobilized enzyme showed stability up to 80 degree C for 45 minutes. The stability of immobilized enzyme increased up to 48 hours from 24 hours against different organic solvent at 1.0 M concentration. It was noted that enzyme immobilized on acrylic beads have greater reusability compared to silica immobilized enzyme. (author)

  5. Sequence analysis and molecular characterization of Clonorchis sinensis hexokinase, an unusual trimeric 50-kDa glucose-6-phosphate-sensitive allosteric enzyme.

    Directory of Open Access Journals (Sweden)

    Tingjin Chen

    Full Text Available Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis, is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK, the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small

  6. Sequence Analysis and Molecular Characterization of Clonorchis sinensis Hexokinase, an Unusual Trimeric 50-kDa Glucose-6-Phosphate-Sensitive Allosteric Enzyme

    Science.gov (United States)

    Chen, Tingjin; Ning, Dan; Sun, Hengchang; Li, Ran; Shang, Mei; Li, Xuerong; Wang, Xiaoyun; Chen, Wenjun; Liang, Chi; Li, Wenfang; Mao, Qiang; Li, Ye; Deng, Chuanhuan; Wang, Lexun; Wu, Zhongdao; Huang, Yan; Xu, Jin; Yu, Xinbing

    2014-01-01

    Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis), is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK), the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr) of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK) was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ) and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi) displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P) displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small molecule inhibitors

  7. Purification and characterization of a fibrinolytic enzyme from tempeh bongkrek as an alternative of thrombolytic agents

    Science.gov (United States)

    Sasmita, I. R. A.; Sutrisno, A.; Zubaidah, E.; Wardani, A. K.

    2018-03-01

    Tempeh is one of Indonesia’s traditional foods that contain fibrinolytic enzymes. Tempeh bongkrek shows very strong activity among various tempeh. The fibrinolytic enzymes of bongkrek tempeh are obtained by steps of purification i.e, ammonium sulphate precipitation, ion exchange chromatography and gel filtration chromatography. The fibrinolytic enzymes has been successfully purified with a yield of 4.37%, specific activity of 3,361 U / mg and purification fold of 44.02. SDS PAGE analysis showed that the enzyme was purified in to single band with estimated molecular mass of 75.82 kDa. The purified enzyme has optimum pH of 7 and optimum temperature of 50°C and pH stability between pH 4 - 7 with temperature stability from 30°-50°C. The fibrinolytic activity is increased with addition of CaCl2 but inhibited with CuSO4, phenylmethylsulfonyl fluoride (PMSF), sodium dodecyl sulfate (SDS), and ethylenediaminetetraacetic acid (EDTA).

  8. Effect of 14-kDa and 47-kDa protein molecules of age garlic extract on peritoneal macrophages.

    Science.gov (United States)

    Daneshmandi, Saeed; Hajimoradi, Monire; Ahmadabad, Hasan Namdar; Hassan, Zuhair Mohammad; Roudbary, Maryam; Ghazanfari, Tooba

    2011-03-01

    Garlic (Allium sativum), traditionally being used as a spice worldwide, has different applications and is claimed to possess beneficial effects in several health ailments such as tumor and atherosclerosis. Garlic is also an immunomodulator and its different components are responsible for different properties. The present work aimed to assess the effect of protein fractions of garlic on peritoneal macrophages. 14-kDa and 47-kDa protein fractions of garlic were purified. Mice peritoneal macrophages were lavaged and cultured in a microtiter plate and exposed to different concentrations of garlic proteins. MTT assay was performed to evaluate the viability of macrophage. The amount of nitric oxide (NO) was detected in culture supernatants of macrophages by Griess reagent and furthermore, the cytotoxicity study of culture supernatants was carried out on WEHI-164 fibrosarcoma cell line as tumor necrosis factor-α bioassay. MTT assay results for both 14-kDa and 47-kDa protein fractions of stimulated macrophages were not significant (P > 0.05). Both 14-kDa and 47-kDa fractions significantly suppressed production of NO from macrophages (P = 0.007 and P = 0.003, respectively). Cytotoxicity of macrophages' supernatant on WEHI-164 fibrosarcoma cells was not affected by garlic protein fractions (P = 0.066 for 14-kDa and P = 0.085 for 47-kDa fractions). according to our finding, 14-kDa and 47-kDa fractions of aged garlic extract are able to suppress NO production from macrophages, which can be used as a biological advantage. These molecules had no cytotoxic effect on macrophages and do not increase tumoricidal property of macrophages.

  9. The Evidence of Non n-glycan Linked Mannose in Exochitinase 42kDa, from Trichoderma harzianum BIO10671 Glycosylation

    Directory of Open Access Journals (Sweden)

    Muskhazli, M.

    2006-01-01

    Full Text Available Chitinase 42 kDa produced by Trichoderma harzianum has been proven as a prime compound to be excreted onto the hyphae of the pathogen causing localised cell wall lysis at the point of interaction. Later it will initiate the process of the host cell becomes empty of cytoplasm, disintegrates and shows a rapid collapse. This study investigates the existence of N-glycan linked mannose in chitinase 42 kDa produced by the Malaysian T. harzianum strain BIO10671. The chitinase 42 kDa from T. harzianum BIO10671 was initially purified using anion exchange chromatography prior to a series of experiments such as immunoblotting against the chitinase 42 kDa antibody, lectin staining for detecting any terminal linked mannose, and galactofuranose detection to determine the presence of galatofuranase components in glycoproteins. The enzyme purification harvested about 12-fold of chitinase 42 kDa from T. harzianum BIO10671 with strong indication of the chitinase 42 kDa presence on SDS-Page. This was confirmed by immunoblotting with a strong response around 42 kDa after overnight incubation in chitinase 42 kDa antibody suggesting that the gene for chitinase 42 kDa was greatly expressed in this strain. There are no intervation of galatofuranose on any of the terminal mannose in chitinase 42 kDa as shown by negative results on samples treated with or without endoglycosidase-H and lectin staining. Therefore, it can be concludeed that glycosylation occurred in the chitinase 42 kDa from T. harzianum 42 kDa was not in the form of N-glycan linked mannose as expected.

  10. Structure/function analysis of PARP-1 in oxidative and nitrosative stress-induced monomeric ADPR formation.

    Directory of Open Access Journals (Sweden)

    Ben Buelow

    2009-07-01

    Full Text Available Poly adenosine diphosphate-ribose polymerase-1 (PARP-1 is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR, and formation of the soluble 2(nd messenger monomeric adenosine diphosphate-ribose (mADPR. Previous studies have delineated specific roles for several of PARP-1's structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1's BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2(nd messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.

  11. Immune labeling and purification of a 71-kDa glutamate-binding protein from brain synaptic membranes

    International Nuclear Information System (INIS)

    Chen, J.W.; Cunningham, M.D.; Galton, N.; Michaelis, E.K.

    1988-01-01

    Immunoblot studies of synaptic membranes isolated from rat brain using antibodies raised against a previously purified glutamate-binding protein (GBP) indicated labeling of an ∼ 70-kDa protein band. Since the antibodies used were raised against a 14-kDa GBP, the present studies were undertaken to explore the possibility that the 14-kDa protein may have been a proteolytic fragment of a larger M/sub r/ protein in synaptic membranes. The major protein enriched in the most highly purified fractions was a 71-kDa glycoprotein, but a 63-kDa protein was co-purified during most steps of the isolation procedure. The glutamate-binding characteristics of these isolated protein fractions were very similar to those previously described for the 14-kDa GBP, including estimated dissociation constants for L-glutamate binding of 0.25 and 1 + M, inhibition of glutamate binding by azide and cyanide, and a selectivity of the ligand binding site for L-glutamate and L-aspartate. The neuroexcitatory analogs of L-glutamate and L-aspartate, ibotenate, quisqualate, and D-glutamate, inhibited L[ 3 H]glutamate binding to the isolated proteins, as did the antagonist of L-glutamate-induced neuronal excitation, L-glutamate diethylester. On the basis of the lack of any detectable glutamate-related enzyme activity associated with the isolated proteins and the presence of distinguishing sensitivities to analogs that inhibit glutamate transport carriers in synaptic membranes, it is proposed that the 71-kDa protein may be a component of a physiologic glutamate receptor complex in neuronal membranes

  12. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Samuel Lara-Gonzalez

    Full Text Available The dimeric nature of triosephosphate isomerases (TIMs is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.

  13. SYNTHESIS AND STRUCTURE OF BIS(PHENYLTETRAMETHYLCYCLOPENTADIENYL)TITANIUM(III) HYDRIDE - THE FIRST MONOMERIC BIS(CYCLOPENTADIENYL)TITANIUM(III) HYDRIDE : The First Monomeric Bis(cyclopentadienyl)titanium(III) Hydride

    NARCIS (Netherlands)

    de Wolf, J.M.; Meetsma, A.; Teuben, J.H

    1995-01-01

    The first structurally characterized monomeric bis(cyclopentadienyl)titanium(III) hydride, (C(5)PhMe(4))(2)TiH (4), was synthesized by hydrogenolysis of (C(5)PhMe(4))(2)TiMe (5). Hydride 4 was found to be a monomeric bent sandwich by X-ray diffraction methods, and the pentamethylcyclopentadienyl

  14. 200 kDa and 160 kDa neurofilament protein phosphatase resistance following in vivo aluminum chloride exposure.

    Science.gov (United States)

    Strong, M J; Jakowec, D M

    1994-01-01

    We have used time-course dephosphorylation experiments and two dimensional isoelectric focusing to assess the phosphorylation state of neurofilament (NF) proteins following the intracisternal inoculation of AlCl3. Littermates of New Zealand white rabbits, age 5-6 weeks, were inoculated with either 1000, 750, 500, 250 or 100 micrograms AlCl3 in 0.9% NaCl or 0.9% NaCl alone, killed 48 hours later and the NF-enriched cytoskeletal fraction isolated from the spinal cord. Neurofilamentous inclusions did not occur following inoculums of 100 or 250 micrograms AlCl3, but thereafter developed in increasing quantities in a dosage-dependent manner. Incubation of the NF-enriched fraction with E. Coli. alkaline phosphatase (enzyme: substrate 1:50) induced a replacement of the highly phosphorylated 200 kDa isoform of NFH with a more poorly phosphorylated 170 kDa isoform, confirmed by immunoblot analysis. This reaction was complete within 20 minutes with NF derived from NaCl, 100 or 250 micrograms AlCl3 inoculated rabbits and within 30 minutes for 500 micrograms AlCl3 inoculums. However, residual highly phosphorylated NFH isoforms persisted at 60 minutes for 750 micrograms inoculums and 90 minutes for that derived from 1000 micrograms AlCl3 inoculums. A similar inhibition of phosphatase activity was observed for NFM. Following two dimensional electrophoresis of the NF-enriched isolate, no alteration in the net phosphorylation state of individual NF subunit proteins was observed--regardless of the inoculum. These results demonstrate a dose-dependent induction of neurofilamentous inclusions in spinal motor neurons following intracisternal AlCl3 inoculation accompanied by increasing phosphatase resistance without a demonstrable alteration in NF net phosphorylation state.

  15. Enzymatic properties and primary structures of two α-amylase isozymes from the Pacific abalone Haliotis discus hannai

    OpenAIRE

    Kumagai, Yuya; Satoh, Takuya; Inoue, Akira; Ojima, Takao

    2013-01-01

    Two α-amylase (EC 3.2.1.1) isozymes, HdAmy58 and HdAmy82, with approximate molecular masses of 58 kDa and 82 kDa, respectively, were isolated from the digestive fluid of the Pacific abalone Haliotis discus hannai. Optimal temperatures and pHs for HdAmy58 and HdAmy82 were at 30℃ and 6.7, and 30℃ and 6.1, respectively. Both enzymes similarly degraded starch, glycogen, and maltooligosaccharides larger than maltotriose producing maltose and maltotriose as the major degradation products. However, ...

  16. Evidence that the synthesis of glucosylphosphodolichol in yeast involves a 35-kDa membrane protein

    International Nuclear Information System (INIS)

    Palamarczyk, G.; Drake, R.; Haley, B.; Lennarz, W.J.

    1990-01-01

    In an effort to identify the polypeptide chain of glucosylphosphodolichol synthase, yeast microsomal membranes were allowed to react with 5-azido[β- 32 P]UDPGlc, a photoactive analogue of UDPGlc, which is a substrate for this enzyme. Upon photolysis the 32 P-labeled probe was shown to link covalently to a 35-kDa protein present in microsomal membranes prepared from several wild-type yeast strains. Binding was either reduced or absent in the microsomal membranes from two yeast mutants (alg5 and dpg1) that are known to be defective in the synthesis of glucosylphosphodolichol. The microsomes isolated from a heterozygous diploid strain alg5::dpg1 generated from these two mutants exhibited partial restoration of both the ability to photolabel the 35-kDa protein and the ability to catalyze the synthesis of glucosylphosphodolichol. Microsomal membranes from a mutant strain that synthesized glucosylphosphodolichol but lacked the ability to transfer the glucosyl residue to the growing lipid-linked oligosaccharide (alg6) exhibited labeling with 5-azido[β- 32 P]UDPGlc comparable to that found in microsomes from the wild-type strain. In all cases photoinsertion of the probe into the 35-kDa protein correlated with the level of synthase assayed in the microsomal membranes. These results strongly support the conclusion that the 35-kDa protein labeled in these experiments is a component of glucosylphosphodolichol synthase

  17. The purification and characterization of an 88-kDa Porphyromonas endodontalis 35406 protease.

    Science.gov (United States)

    Rosen, G; Shoshani, M; Naor, R; Sela, M N

    2001-12-01

    A Porphyromonas endodontalis ATCC 35406 protease was purified from Triton X-114 cell extracts by preparative SDS-PAGE followed by electroelution. The purified enzyme exhibits a molecular size of 88 kDa and was dissociated into two polypeptides of 43 and 41 kDa upon heating in the presence of sodium dodecyl sulfate with or without a reducing agent. The protease (pH optimum 7.5-8.0) degraded the extracellular matrix proteins fibrinogen and fibronectin. Collagen IV was also degraded at 37 degrees C but not at 28 degrees C. The protease also cleaved the bioactive peptide angiotensin at amino acid residue phenylalanine-8 and tyrosine-4 but failed to hydrolyze bradykinin, vasopressin and synthetic chromogenic substrates with phenylalanine or tyrosine at the P1 position. In addition, two peptidases were detected in P. endodontalis cells: a proline aminopeptidase that remained associated with the cell pellet after detergent extraction and peptidase/s that partitioned into the Triton X-114 phase after phase separation and degraded the bioactive peptides bradykinin and vasopressin. These P. endodontalis peptidases and proteases may play an important role in both the nutrition and pathogenicity of these assacharolytic microorganisms. The inactivation of bioactive peptides and degradation of extracellular matrix proteins by bacterial enzymes may contribute to the damage of host tissues accompanied with endodontic infections.

  18. Tumour localization and pharmacokinetics of iodine-125 human monoclonal IgM antibody (COU-1) and its monomeric and half-monomeric fragments analysed in nude mice grafted with human tumour

    International Nuclear Information System (INIS)

    Ditzel, H.; Erb, K.; Rasmussen, J.W.; Jensenius, J.C.

    1992-01-01

    Human monoclonal IgM antibodies reactive with cancer-associated antigens may not have the optimal imaging capability due to their large size. Fragmentation of human IgM is less than straight-forward due to the loss of immunoreactivity. From the human monoclonal IgM antibody COU-1 we have prepared monomeric and half-monomeric fragments, which retain the ability to bind to colon cancer cells in vitro. The pharmacokinetics and tumour localization were evaluated in nude mice bearing human colon adenocarcinoma and human melanoma grafts. Faster clearance from the circulation was seen for the smaller half-monomeric fragment with a half-life (rapid phase/slow phase) of 2 h/16 h compared with the intact antibody, 4 h/25 h, and the monomeric fragment, 3 h/27 h. Intact COU-1 as well as the fragments accumulated in the colon tumour graft. Higher amounts of radioactivity were found in the colon tumour as compared to normal organs for intact COU-1 at days 4 and 6, for the monomeric fragment at day 4, and for the half-monomeric fragment at day 2 after injection. This investigation demonstrates the favourable biodistribution of the half monomeric COU-1 fragment. The fast clearance of this fragment resulted in a tumour-to-muscle ratio as high as 22 on day 2 after injection. Also, only this fragment gave a positive tumour-to-blood ratio. Normal IgM and its fragments were used as controls. Radioimmunoscintigraphy demonstrated the colon tumour discriminatory properties of each of the three iodine-labelled antibody preparations. The results compare favourably with previously reported investigations of the localization of human monoclonal antibodies and suggest that fragments of human monoclonal IgM antibodies may be useful tools for the immunodetection of cancer in patients. (orig.)

  19. Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1.

    Science.gov (United States)

    Lo, Yung-Chung; Huang, Chi-Yu; Cheng, Chieh-Lun; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    A thermophilic anaerobic bacterium Clostridium sp. TCW1 was isolated from dairy cow dung and was used to produce hydrogen from cellulosic feedstock. Extracellular cellulolytic enzymes produced from TCW1 strain were identified as endoglucanases (45, 53 and 70 kDa), exoglucanase (70 kDa), xylanases (53 and 60 kDa), and β-glucosidase (45 kDa). The endoglucanase and xylanase were more abundant. The optimal conditions for H2 production and enzyme production of the TCW1 strain were the same (60 °C, initial pH 7, agitation rate of 200 rpm). Ten cellulosic feedstock, including pure or natural cellulosic materials, were used as feedstock for hydrogen production by Clostridium strain TCW1 under optimal culture conditions. Using filter paper at 5.0 g/L resulted in the most effective hydrogen production performance, achieving a H2 production rate and yield of 57.7 ml/h/L and 2.03 mol H2/mol hexose, respectively. Production of cellulolytic enzyme activities was positively correlated with the efficiency of dark-H2 fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. MUREIN-METABOLIZING ENZYMES FROM ESCHERICHIA-COLI - EXISTENCE OF A 2ND LYTIC TRANSGLYCOSYLASE

    NARCIS (Netherlands)

    ENGEL, H; SMINK, AJ; VANWIJNGAARDEN, L; KECK, W

    1992-01-01

    In addition to the soluble lytic transglycosylase, a murein-metabolizing enzyme with a molecular mass of 70 kDa (Slt70), Escherichia coli possesses a second lytic transglycosylase, which has been described as a membrane-bound lytic transglycosylase (Mlt; 35 kDa; EC 3.2.1.-). The mlt gene, which

  1. A novel 35 kDa frog liver acid metallophosphatase.

    Science.gov (United States)

    Szalewicz, A; Radomska, B; Strzelczyk, B; Kubicz, A

    1999-04-12

    The lower molecular weight (35 kDa) acid phosphatase from the frog (Rana esculenta) liver is a glycometalloenzyme susceptible to activation by reducing agents and displaying tartrate and fluoride resistance. Metal chelators (EDTA, 1,10-phenanthroline) inactivate the enzyme reversibly in a time- and temperature-dependent manner. The apoenzyme is reactivated by divalent transition metal cations, i. e. cobalt, zinc, ferrous, manganese, cadmium and nickel to 130%, 75%, 63%, 62%, 55% and 34% of the original activity, respectively. Magnesium, calcium, cupric and ferric ions were shown to be ineffective in this process. Metal analysis by the emission spectrometry method (inductively coupled plasma-atomic emission spectrometry) revealed the presence of zinc, iron and magnesium. The time course of the apoenzyme reactivation, the stabilization effect and the relatively high resistance to oxidizing conditions indicate that the zinc ion is crucial for the enzyme activity. The presence of iron was additionally confirmed by the visible absorption spectrum of the enzyme with a shoulder at 417 nm and by the electron paramagnetic resonance line of high spin iron(III) with geff of 2.4. The active center containing only zinc or both zinc and iron ions is proposed. The frog liver lower molecular weight acid phosphatase is a novel metallophosphatase of lower vertebrate origin, distinct from the mammalian tartrate-resistant, purple acid phosphatases.

  2. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim); A.P.M. Eker (André); D. Bootsma (Dirk)

    1986-01-01

    textabstractPhotoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers

  3. Serine proteases as candidates for proteolytic processing of angiotensin-I converting enzyme.

    Science.gov (United States)

    Aragão, Danielle S; de Andrade, Maria Claudina C; Ebihara, Fabiana; Watanabe, Ingrid K M; Magalhães, Dayane C B P; Juliano, Maria Aparecida; Hirata, Izaura Yoshico; Casarini, Dulce Elena

    2015-01-01

    Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Physiochemical properties and kinetics of glucoamylase produced from deoxy-d-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis.

    Science.gov (United States)

    Riaz, Muhammad; Rashid, Muhammad Hamid; Sawyer, Lindsay; Akhtar, Saeed; Javed, Muhammad Rizwan; Nadeem, Habibullah; Wear, Martin

    2012-01-01

    Glucoamylases (GAs) from a wild and a deoxy-d-glucose-resistant mutant of a locally isolated Aspergillus niger were purified to apparent homogeneity. The subunit molecular mass estimated by SDS-PAGE was 93 kDa for both strains, while the molecular masses determined by MALDI-TOF for wild and mutant GAs were 72.876 and 72.063 kDa, respectively. The monomeric nature of the enzymes was confirmed through activity staining. Significant improvement was observed in the kinetic properties of the mutant GA relative to the wild type enzyme. Kinetic constants of starch hydrolysis for A. niger parent and mutant GAs calculated on the basis of molecular masses determined through MALDI-TOF were as follows: k cat = 343 and 727 s -1 , K m = 0.25 and 0.16 mg mL -1 , k cat / K m (specificity constant) = 1374 and 4510 mg mL -1 s -1 , respectively. Thermodynamic parameters for soluble starch hydrolysis also suggested that mutant GA was more efficient compared to the parent enzyme.

  5. Crystal Structure of a Monomeric Form of Severe Acute Respiratory Syndrome Coronavirus Endonuclease Nsp15 Suggests a Role for Hexamerization As An Allosteric Switch

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, J.S.; Saikatendu, K.S.; Subramanian, V.; Neuman, B.W.; Buchmeier, M.J.; Stevens, R.C.; Kuhn, P.; /Scripps Res. Inst.

    2007-07-09

    Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn{sup 2+}-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335) determined to a resolution of 2.9 Angstroms. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by {approx}120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.

  6. Rapid preparation of functional polysaccharides from Pyropia yezoensis by microwave-assistant rapid enzyme digest system.

    Science.gov (United States)

    Lee, Ji-Hyeok; Kim, Hyung-Ho; Ko, Ju-Young; Jang, Jun-Ho; Kim, Gwang-Hoon; Lee, Jung-Suck; Nah, Jae-Woon; Jeon, You-Jin

    2016-11-20

    This study describes a simple preparation of functional polysaccharides from Pyropia yezoensis using a microwave-assistant rapid enzyme digest system (MAREDS) with various carbohydrases, and evaluates their antioxidative effects. Polysaccharide hydrolysates were prepared using MAREDS under different hydrolytic conditions of the carbohydrases and microwave powers. Polysaccharides less than 10kDa (Low molecular weight polysaccharides, LMWP, ≤10kDa) were efficiently obtained using an ultrafiltration (molecular weight cut-off of 10kDa). MAREDS increases AMG activation via an increased degree of hydrolysis; the best AMG hydrolysate was prepared using a 10:1 ratio of substrate to enzyme for 2h in MAREDS with 400W. LMWP consisted of galactose (27.3%), glucose (64.5%), and mannose (8.3%) from the AMG hydrolysate had stronger antioxidant effects than the high molecular weight polysaccharides (>10kDa). We rapidly prepared functional LMWPs by using MAREDS with carbohydrases, and suggest that LMWP might be potentially a valuable algal polysaccharide antioxidant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Modulation of basophils' degranulation and allergy-related enzymes by monomeric and dimeric naphthoquinones.

    Directory of Open Access Journals (Sweden)

    Brígida R Pinho

    Full Text Available Allergic disorders are characterized by an abnormal immune response towards non-infectious substances, being associated with life quality reduction and potential life-threatening reactions. The increasing prevalence of allergic disorders demands for new and effective anti-allergic treatments. Here we test the anti-allergic potential of monomeric (juglone, menadione, naphthazarin, plumbagin and dimeric (diospyrin and diosquinone naphthoquinones. Inhibition of RBL-2H3 rat basophils' degranulation by naphthoquinones was assessed using two complementary stimuli: IgE/antigen and calcium ionophore A23187. Additionally, we tested for the inhibition of leukotrienes production in IgE/antigen-stimulated cells, and studied hyaluronidase and lipoxidase inhibition by naphthoquinones in cell-free assays. Naphthazarin (0.1 µM decreased degranulation induced by IgE/antigen but not A23187, suggesting a mechanism upstream of the calcium increase, unlike diospyrin (10 µM that reduced degranulation in A23187-stimulated cells. Naphthoquinones were weak hyaluronidase inhibitors, but all inhibited soybean lipoxidase with the most lipophilic diospyrin, diosquinone and menadione being the most potent, thus suggesting a mechanism of competition with natural lipophilic substrates. Menadione was the only naphthoquinone reducing leukotriene C4 production, with a maximal effect at 5 µM. This work expands the current knowledge on the biological properties of naphthoquinones, highlighting naphthazarin, diospyrin and menadione as potential lead compounds for structural modification in the process of improving and developing novel anti-allergic drugs.

  8. Generation and Characterization of an IgG4 Monomeric Fc Platform.

    Directory of Open Access Journals (Sweden)

    Lu Shan

    Full Text Available The immunoglobulin Fc region is a homodimer consisted of two sets of CH2 and CH3 domains and has been exploited to generate two-arm protein fusions with high expression yields, simplified purification processes and extended serum half-life. However, attempts to generate one-arm fusion proteins with monomeric Fc, with one set of CH2 and CH3 domains, are often plagued with challenges such as weakened binding to FcRn or partial monomer formation. Here, we demonstrate the generation of a stable IgG4 Fc monomer with a unique combination of mutations at the CH3-CH3 interface using rational design combined with in vitro evolution methodologies. In addition to size-exclusion chromatography and analytical ultracentrifugation, we used multi-angle light scattering (MALS to show that the engineered Fc monomer exhibits excellent monodispersity. Furthermore, crystal structure analysis (PDB ID: 5HVW reveals monomeric properties supported by disrupted interactions at the CH3-CH3 interface. Monomeric Fc fusions with Fab or scFv achieved FcRn binding and serum half-life comparable to wildtype IgG. These results demonstrate that this monomeric IgG4 Fc is a promising therapeutic platform to extend the serum half-life of proteins in a monovalent format.

  9. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.

    Directory of Open Access Journals (Sweden)

    Benjamin R Jack

    2016-05-01

    Full Text Available Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein-protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes.

  10. Crystallization and preliminary crystallographic analysis of Gre2p, an NADP+-dependent alcohol dehydrogenase from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Breicha, Klaus; Müller, Marion; Hummel, Werner; Niefind, Karsten

    2010-01-01

    The alcohol dehydrogenase Gre2p from S. cerevisiae catalyses the stereospecific reduction of a variety of different keto compounds and can therefore be applied as a valuable biocatalyst. The crystallization of the complex of Gre2p with NADP + and its preliminary X-ray analysis are described. Gre2p [Genes de respuesta a estres (stress-response gene)] from Saccharomyces cerevisiae is a monomeric enzyme of 342 amino acids with a molecular weight of 38.1 kDa. The enzyme catalyses both the stereospecific reduction of keto compounds and the oxidation of various hydroxy compounds and alcohols by the simultaneous consumption of the cofactor NADPH and formation of NADP + . Crystals of a Gre2p complex with NADP + were grown using PEG 8000 as a precipitant. They belong to the monoclinic space group P2 1 . The current diffraction resolution is 3.2 Å. In spite of the monomeric nature of Gre2p in solution, packing and self-rotation calculations revealed the existence of two Gre2p protomers per asymmetric unit related by a twofold noncrystallographic axis

  11. Direct labelling of monomeric antibody fragments Fab' with 99mTc

    International Nuclear Information System (INIS)

    Li Jun; Wang Shizhen; Yang Ziyi

    1994-01-01

    Direct labelling method and conditions of monomeric antibody Fab' with 99m Tc were investigated. Polyclonal antibody IgG was digested with ficin to produce dimeric fragments F(ab') 2 , which was subsequently reduced to monomeric fragments Fab' with 2-mercaptoethylamine. Finally, Fab' was incubated with sodium gluconate (Sn(II)) kit solution and 99m TcO 4 - eluted at room temperature to form 99m Tc-Fab'. The labelling efficiency was 85%-95%. The stability of labelled products was satisfactory and the elimination rate was faster than 99m Tc-IgG

  12. Structural Analysis of Monomeric RNA-Dependent Polymerases: Evolutionary and Therapeutic Implications.

    Directory of Open Access Journals (Sweden)

    Rodrigo Jácome

    Full Text Available The crystal structures of monomeric RNA-dependent RNA polymerases and reverse transcriptases of more than 20 different viruses are available in the Protein Data Bank. They all share the characteristic right-hand shape of DNA- and RNA polymerases formed by the fingers, palm and thumb subdomains, and, in many cases, "fingertips" that extend from the fingers towards the thumb subdomain, giving the viral enzyme a closed right-hand appearance. Six conserved structural motifs that contain key residues for the proper functioning of the enzyme have been identified in all these RNA-dependent polymerases. These enzymes share a two divalent metal-ion mechanism of polymerization in which two conserved aspartate residues coordinate the interactions with the metal ions to catalyze the nucleotidyl transfer reaction. The recent availability of crystal structures of polymerases of the Orthomyxoviridae and Bunyaviridae families allowed us to make pairwise comparisons of the tertiary structures of polymerases belonging to the four main RNA viral groups, which has led to a phylogenetic tree in which single-stranded negative RNA viral polymerases have been included for the first time. This has also allowed us to use a homology-based structural prediction approach to develop a general three-dimensional model of the Ebola virus RNA-dependent RNA polymerase. Our model includes several of the conserved structural motifs and residues described in other viral RNA-dependent RNA polymerases that define the catalytic and highly conserved palm subdomain, as well as portions of the fingers and thumb subdomains. The results presented here help to understand the current use and apparent success of antivirals, i.e. Brincidofovir, Lamivudine and Favipiravir, originally aimed at other types of polymerases, to counteract the Ebola virus infection.

  13. Carboxylesterases from the seeds of an underutilized legume, Mucuna pruriens; isolation, purification and characterization.

    Science.gov (United States)

    Chandrashekharaiah, K S; Swamy, N Ramachandra; Murthy, K R Siddalinga

    2011-12-01

    Two carboxylesterases (ME-III and ME-IV) have been purified to apparent homogeneity from the seeds of Mucuna pruriens employing ammonium sulfate fractionation, cation exchange chromatography on CM-cellulose, gel-permeation chromatography on Sephadex G-100 and preparative PAGE. The homogeneity of the purified preparations was confirmed by polyacrylamide gel electrophoresis (PAGE), gel-electrofocussing and SDS-PAGE. The molecular weights determined by gel-permeation chromatography on Sephadex G-200 were 20.89 kDa (ME-III) and 31.62 kDa (ME-IV). The molecular weights determined by SDS-PAGE both in the presence and absence of 2-mercaptoethanol were 21 kDa (ME-III) and 30.2 kDa (ME-IV) respectively, suggesting a monomeric structure for both the enzymes. The enzymes were found to have Stokes radius of 2.4 nm (ME-III) and 2.7 nm (ME-IV). The isoelectric pH values of the enzymes, ME-III and ME-IV, were 6.8 and 7.4, respectively. ME-III and ME-IV were classified as carboxylesterases employing PAGE in conjunction with substrate and inhibitor specificity. The K(m) of ME-III and ME-IV with 1-naphthyl acetate as substrate was 0.1 and 0.166 mM while with 1-naphthyl propionate as substrate the K(m) was 0.052 and 0.0454 mM, respectively. As the carbon chain length of the acyl group increased, the affinity of the substrate to the enzyme increased indicating hydrophobic nature of the acyl group binding site. The enzymes exhibited an optimum temperature of 45°C (ME-III) and 37°C (ME-IV), an optimum pH of 7.0 (ME-III) and 7.5 (ME-IV) and both the enzymes (ME-III and ME-IV) were stable up to 120 min at 35°C. Both the enzymes were inhibited by organophosphates (dichlorvos and phosphamidon), but resistant towards carbamates (carbaryl and eserine sulfate) and sulphydryl inhibitors (p-chloromercuricbenzoate, PCMB). Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Gas-phase synthesis and structure of monomeric ZnOH: a model species for metalloenzymes and catalytic surfaces.

    Science.gov (United States)

    Zack, Lindsay N; Sun, Ming; Bucchino, Matthew P; Clouthier, Dennis J; Ziurys, Lucy M

    2012-02-16

    Monomeric ZnOH has been studied for the first time using millimeter and microwave gas-phase spectroscopy. ZnOH is important in surface processes and at the active site of the enzyme carbonic anhydrase. In the millimeter-wave direct-absorption experiments, ZnOH was synthesized by reacting zinc vapor, produced in a Broida-type oven, with water. In the Fourier-transform microwave measurements, ZnOH was produced in a supersonic jet expansion of CH(3)OH and zinc vapor, created by laser ablation. Multiple rotational transitions of six ZnOH isotopologues in their X(2)A' ground states were measured over the frequency range of 22-482 GHz, and splittings due to fine and hyperfine structure were resolved. An asymmetric top pattern was observed in the spectra, showing that ZnOH is bent, indicative of covalent bonding. From these data, spectroscopic constants and an accurate structure were determined. The Zn-O bond length was found to be similar to that in carbonic anhydrase and other model enzyme systems.

  15. Monomeric insulins and their experimental and clinical implications.

    Science.gov (United States)

    Brange, J; Owens, D R; Kang, S; Vølund, A

    1990-09-01

    Due to the inherent pharmacokinetic properties of available insulins, normoglycemia is rarely, if ever, achieved in insulin-dependent diabetic patients without compromising their quality of life. Subcutaneous insulin absorption is influenced by many factors, among which the associated state of insulin (hexameric) in pharmaceutical formulation may be of importance. This review describes the development of a series of human insulin analogues with reduced tendency to self-association that, because of more rapid absorption, are better suited to meal-related therapy. DNA technology has made it possible to prepare insulins that remain dimeric or even monomeric at high concentration by introducing one or a few amino acid substitutions into human insulin. These analogues were characterized and used for elucidating the mechanisms involved in subcutaneous absorption and were investigated in preliminary clinical studies. Their relative receptor binding and in vitro potency (free-fat cell assay), ranging from 0.05 to 600% relative to human insulin, were strongly correlated (r = 0.97). In vivo, most of the analogues exhibited approximately 100% activity, explainable by a dominating receptor-mediated clearance. This was confirmed by clamp studies in which correlation between receptor binding and clearance was observed. Thus, an analogue with reduced binding and clearance gives higher circulating concentrations, counterbalancing the reduced potency at the cellular level. Absorption studies in pigs revealed a strong inverse correlation (r = 0.96) between the rate of subcutaneous absorption and the mean association state of the insulin analogues. These studies also demonstrated that monomeric insulins were absorbed three times faster than human insulin. In healthy subjects, rates of disappearance from subcutis were two to three times faster for dimeric and monomeric analogues than for human insulin. Concomitantly, a more rapid rise in plasma insulin concentration and an earlier

  16. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant.

    Directory of Open Access Journals (Sweden)

    Ahmad-Faris Seman-Kamarulzaman

    Full Text Available Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate

  17. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble

    DEFF Research Database (Denmark)

    Christgau, S; Schierbeck, H; Aanstoot, H J

    1991-01-01

    The 64-kDa pancreatic beta-cell autoantigen, which is a target of autoantibodies associated with early as well as progressive stages of beta-cell destruction, resulting in insulin-dependent diabetes (IDDM) in humans, has been identified as the gamma-aminobutyric acid-synthesizing enzyme glutamic...... acid decarboxylase. We have identified two autoantigenic forms of this protein in rat pancreatic beta-cells, a Mr 65,000 (GAD65) hydrophilic and soluble form of pI 6.9-7.1 and a Mr 64,000 (GAD64) component of pI 6.7. GAD64 is more abundant than GAD65 and has three distinct forms with regard to cellular...

  18. Functional alteration of a dimeric insecticidal lectin to a monomeric antifungal protein correlated to its oligomeric status.

    Directory of Open Access Journals (Sweden)

    Nilanjana Banerjee

    Full Text Available BACKGROUND: Allium sativum leaf agglutinin (ASAL is a 25-kDa homodimeric, insecticidal, mannose binding lectin whose subunits are assembled by the C-terminal exchange process. An attempt was made to convert dimeric ASAL into a monomeric form to correlate the relevance of quaternary association of subunits and their functional specificity. Using SWISS-MODEL program a stable monomer was designed by altering five amino acid residues near the C-terminus of ASAL. METHODOLOGY/PRINCIPAL FINDINGS: By introduction of 5 site-specific mutations (-DNSNN-, a β turn was incorporated between the 11(th and 12(th β strands of subunits of ASAL, resulting in a stable monomeric mutant ASAL (mASAL. mASAL was cloned and subsequently purified from a pMAL-c2X system. CD spectroscopic analysis confirmed the conservation of secondary structure in mASAL. Mannose binding assay confirmed that molecular mannose binds efficiently to both mASAL and ASAL. In contrast to ASAL, the hemagglutination activity of purified mASAL against rabbit erythrocytes was lost. An artificial diet bioassay of Lipaphis erysimi with mASAL displayed an insignificant level of insecticidal activity compared to ASAL. Fascinatingly, mASAL exhibited strong antifungal activity against the pathogenic fungi Fusarium oxysporum, Rhizoctonia solani and Alternaria brassicicola in a disc diffusion assay. A propidium iodide uptake assay suggested that the inhibitory activity of mASAL might be associated with the alteration of the membrane permeability of the fungus. Furthermore, a ligand blot assay of the membrane subproteome of R. solani with mASAL detected a glycoprotein receptor having interaction with mASAL. CONCLUSIONS/SIGNIFICANCE: Conversion of ASAL into a stable monomer resulted in antifungal activity. From an evolutionary aspect, these data implied that variable quaternary organization of lectins might be the outcome of defense-related adaptations to diverse situations in plants. Incorporation of m

  19. Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme.

    Science.gov (United States)

    Jakobi, Stephan; Nguyen, Tran Xuan Phong; Debaene, François; Metz, Alexander; Sanglier-Cianférani, Sarah; Reuter, Klaus; Klebe, Gerhard

    2014-10-01

    Interference with protein-protein interactions of interfaces larger than 1500 Ų by small drug-like molecules is notoriously difficult, particularly if targeting homodimers. The tRNA modifying enzyme Tgt is only functionally active as a homodimer. Thus, blocking Tgt dimerization is a promising strategy for drug therapy as this protein is key to the development of Shigellosis. Our goal was to identify hot-spot residues which, upon mutation, result in a predominantly monomeric state of Tgt. The detailed understanding of the spatial location and stability contribution of the individual interaction hot-spot residues and the plasticity of motifs involved in the interface formation is a crucial prerequisite for the rational identification of drug-like inhibitors addressing the respective dimerization interface. Using computational analyses, we identified hot-spot residues that contribute particularly to dimer stability: a cluster of hydrophobic and aromatic residues as well as several salt bridges. This in silico prediction led to the identification of a promising double mutant, which was validated experimentally. Native nano-ESI mass spectrometry showed that the dimerization of the suggested mutant is largely prevented resulting in a predominantly monomeric state. Crystal structure analysis and enzyme kinetics of the mutant variant further support the evidence for enhanced monomerization and provide first insights into the structural consequences of the dimer destabilization. © 2014 Wiley Periodicals, Inc.

  20. Diagnostic potential of IS6110, 38kDa, 65kDa and 85B sequence-based polymerase chain reaction in the diagnosis of Mycobacterium tuberculosis in clinical samples

    Directory of Open Access Journals (Sweden)

    Negi S

    2007-01-01

    Full Text Available Purpose: The correlation between the presence of specific gene sequence of M. tuberculosis and specific diagnosis of clinical tuberculosis is not known. This study compared the results of polymerase chain reaction (PCR amplification of M . tuberculosis specific DNA sequences (IS6110, 65kDa, 38kDa and mRNA coding for 85 B protein from different clinical samples of pulmonary and extrapulmonary tuberculosis. Methods: One hundred and seventy-two clinical samples from suspected tuberculosis patients were tested for smear examination, culture (LJ and rapid BACTEC 460 TB system and PCR. PCR was performed with specific primers for the targets: IS6110, 65kDa, 38kDa and 85B. Results: Each PCR test was found to have a much higher positivity than conventional test and BACTEC culture ( P < 0.05. Smear positive samples (56 and the samples (36 showing positive results by conventional methods (smear and LJ medium culture and BACTEC were found to be positive by all PCR protocols. No significant difference was found between the four PCR protocols ( P >0.05. The primer specific for amplifying the 123bp IS6110 fragment gave the highest positivity (83%, followed by 65kDa, 38kDa and 85B RT-PCR in descending order. Conclusions: These data suggest that the presence of IS6110 correlates more closely with the diagnosis of clinical tuberculosis than that of 65kDa, 38kDa and 85B proteins.

  1. Carotene-degrading activities from Bjerkandera adusta possess an application in detergent industries.

    Science.gov (United States)

    Linke, Diana; Leonhardt, Robin; Eisele, Nadine; Petersen, Laura M; Riemer, Stephanie; Nimtz, Manfred; Berger, Ralf G

    2015-06-01

    Four extracellular enzymes, a versatile peroxidase, a manganese peroxidase, a dye-decolorizing peroxidase and a lignin peroxidase were discovered in liquid cultures of the basidiomycete Bjerkandera adusta. All of them cleaved β-carotene effectively. Expression was enhanced in the presence of β-carotene or Coomassie Brilliant Blue and peaked after 7-9 days. The monomeric proteins were purified by ion exchange and size exclusion chromatography and exhibited molecular masses of 41, 43, 51 and 43 kDa, respectively. The coding sequences showed homologies from 61 to 89 % to peroxidases from other basidiomycetes. The novel enzymes retained strong activity even in the absence of hydrogen peroxide and at alkaline pH. De-staining of fabrics using detergent-tolerant enzymes may help to save the most important bio-resources, energy and water, in washing processes and led to green processes in textile cleaning.

  2. Purification and cloning of the two domain glyoxalase I from wheat bran

    DEFF Research Database (Denmark)

    Johansen, K.S.; Svendsen, I.; Rasmussen, S.K.

    2000-01-01

    induced by desiccation of the resurrection grass Sporobulus stapfianus, suggesting a role for glyoxalase in de- or rehydration of plant tissue. The 37 kDa wheat enzyme belongs to a group of monomeric glyoxalases and is composed of two similar halves each representing the full-length human glyoxalase I...... U/mg protein (1U = 1 mu mol S-lactoyl glutathione formed/min). Degenerate primers were designed and used for PCR-RACE-based cloning of the corresponding composite cDNA sequence (AJ243528). The wheat bran glyoxalase I amino acid sequence is very similar to the translated sequence of a RNA transcript...

  3. Purification and partial amino-acid sequence of gibberellin 20-oxidase from Cucurbita maxima L. endosperm.

    Science.gov (United States)

    Lange, T

    1994-01-01

    Gibberellin (GA) 20-oxidase was purified to apparent homogeneity from Cucurbita maxima endosperm by fractionated ammonium-sulphate precipitation, gel-filtration chromatography and anion-exchange and hydrophobic-interaction high-performance liquid chromatography (HPLC). Average purification after the last step was 55-fold with 3.9% of the activity recovered. The purest single fraction was enriched 101-fold with 0.2% overall recovery. Apparent relative molecular mass of the enzyme was 45 kDa, as determined by gel-filtration HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, indicating that GA 20-oxidase is probably a monomeric enzyme. The purified enzyme degraded on two-dimensional gel electrophoresis, giving two protein spots: a major one corresponding to a molecular mass of 30 kDa and a minor one at 45 kDa. The isoelectric point for both was 5.4. The amino-acid sequences of the amino-terminus of the purified enzyme and of two peptides from a tryptic digest were determined. The purified enzyme catalysed the sequential conversion of [14C]GA12 to [14C]GA15, [14C]GA24 and [14C]GA25, showing that carbon atom 20 was oxidised to the corresponding alcohol, aldehyde and carboxylic acid in three consecutive reactions. [14C]Gibberellin A53 was similarly converted to [14C]GA44, [14C]GA19, [14C]GA17 and small amounts of a fourth product, which was preliminarily identified as [14C]GA20, a C19-gibberellin. All GAs except [14C]GA20 were identified by combined gas chromatography-mass spectrometry. The cofactor requirements in the absence of dithiothreitol were essentially as in its presence (Lange et al., Planta 195, 98-107, 1994), except that ascorbate was essential for enzyme activity and the optimal concentration of catalase was lower.

  4. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression

    OpenAIRE

    Chang-Qing Duan; Malcolm J. Reeves; Qiu-Hong Pan; Lin Mu; Na-Na Liang; Fei He; Jun Wang

    2012-01-01

    Originating in the grapes, monomeric anthocyanins in young red wines contribute the majority of color and the supposed beneficial health effects related to their consumption, and as such they are recognized as one of the most important groups of phenolic metabolites in red wines. In recent years, our increasing knowledge of the chemical complexity of the monomeric anthocyanins, their stability, together with the phenomena such as self-association and copigmentation that can stabilize and enha...

  5. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2012-02-01

    Full Text Available Originating in the grapes, monomeric anthocyanins in young red wines contribute the majority of color and the supposed beneficial health effects related to their consumption, and as such they are recognized as one of the most important groups of phenolic metabolites in red wines. In recent years, our increasing knowledge of the chemical complexity of the monomeric anthocyanins, their stability, together with the phenomena such as self-association and copigmentation that can stabilize and enhance their color has helped to explain their color representation in red wine making and aging. A series of new enological practices were developed to improve the anthocyanin extraction, as well as their color expression and maintenance. This paper summarizes the most recent advances in the studies of the monomeric anthocyanins in red wines, emphasizing their origin, occurrence, color enhancing effects, their degradation and the effect of various enological practices on them.

  6. Purification and properties of fructosyl lysine oxidase from Fusarium oxysporum S-1F4.

    Science.gov (United States)

    Sakai, Y; Yoshida, N; Isogai, A; Tani, Y; Kato, N

    1995-03-01

    Fructosyl lysine oxidase (FLOD) was examined for its use in the enzymatic measurement of the level of glycated albumin in blood serum. To isolate microorganisms having such an enzyme activity, we used N epsilon-fructosyl N alpha-Z-lysine (epsilon-FL) as a sole nitrogen source in the enrichment culture medium. The isolated fungus, strain S-1F4, showed a high FLOD activity in the cell-free extract and was identified as Fusarium oxysporum. FLOD was purified to an apparent homogeneity on SDS-PAGE. The molecular mass of the subunit was 50 kDa on SDS-PAGE and seemed to exist in a monomeric form. The enzyme had an absorption spectrum characteristic of a flavoprotein and the flavin was found to be covalently bound to the enzyme. The enzyme acted against N epsilon-fructosyl N alpha-Z-lysine and N alpha-fructosyl N epsilon-Z-lysine and showed specificity for fructosyl lysine residues.

  7. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jia; Tong, Liang

    2015-10-12

    Acetyl-CoA carboxylase (ACC) has crucial roles in fatty acid metabolism and is an attractive target for drug discovery against diabetes, cancer and other diseases1, 2, 3, 4, 5, 6. Saccharomyces cerevisiae ACC (ScACC) is crucial for the production of very-long-chain fatty acids and the maintenance of the nuclear envelope7, 8. ACC contains biotin carboxylase (BC) and carboxyltransferase (CT) activities, and its biotin is linked covalently to the biotin carboxyl carrier protein (BCCP). Most eukaryotic ACCs are 250-kilodalton (kDa), multi-domain enzymes and function as homodimers and higher oligomers. They contain a unique, 80-kDa central region that shares no homology with other proteins. Although the structures of the BC, CT and BCCP domains and other biotin-dependent carboxylase holoenzymes are known1, 9, 10, 11, 12, 13, 14, there is currently no structural information on the ACC holoenzyme. Here we report the crystal structure of the full-length, 500-kDa holoenzyme dimer of ScACC. The structure is remarkably different from that of the other biotin-dependent carboxylases. The central region contains five domains and is important for positioning the BC and CT domains for catalysis. The structure unexpectedly reveals a dimer of the BC domain and extensive conformational differences compared to the structure of the BC domain alone, which is a monomer. These structural changes reveal why the BC domain alone is catalytically inactive and define the molecular mechanism for the inhibition of eukaryotic ACC by the natural product soraphen A15, 16 and by phosphorylation of a Ser residue just before the BC domain core in mammalian ACC. The BC and CT active sites are separated by 80 Å, and the entire BCCP domain must translocate during catalysis.

  8. Multistage modeling of protein dynamics with monomeric Myc oncoprotein as an example.

    Science.gov (United States)

    Liu, Jiaojiao; Dai, Jin; He, Jianfeng; Niemi, Antti J; Ilieva, Nevena

    2017-03-01

    We propose to combine a mean-field approach with all-atom molecular dynamics (MD) into a multistage algorithm that can model protein folding and dynamics over very long time periods yet with atomic-level precision. As an example, we investigate an isolated monomeric Myc oncoprotein that has been implicated in carcinomas including those in colon, breast, and lungs. Under physiological conditions a monomeric Myc is presumed to be an example of intrinsically disordered proteins that pose a serious challenge to existing modeling techniques. We argue that a room-temperature monomeric Myc is in a dynamical state, it oscillates between different conformations that we identify. For this we adopt the Cα backbone of Myc in a crystallographic heteromer as an initial ansatz for the monomeric structure. We construct a multisoliton of the pertinent Landau free energy to describe the Cα profile with ultrahigh precision. We use Glauber dynamics to resolve how the multisoliton responds to repeated increases and decreases in ambient temperature. We confirm that the initial structure is unstable in isolation. We reveal a highly degenerate ground-state landscape, an attractive set towards which Glauber dynamics converges in the limit of vanishing ambient temperature. We analyze the thermal stability of this Glauber attractor using room-temperature molecular dynamics. We identify and scrutinize a particularly stable subset in which the two helical segments of the original multisoliton align in parallel next to each other. During the MD time evolution of a representative structure from this subset, we observe intermittent quasiparticle oscillations along the C-terminal α helix, some of which resemble a translating Davydov's Amide-I soliton. We propose that the presence of oscillatory motion is in line with the expected intrinsically disordered character of Myc.

  9. Porcine pulmonary angiotensin I-converting enzyme--biochemical characterization and spatial arrangement of the N- and C-domains by three-dimensional electron microscopic reconstruction.

    OpenAIRE

    Chen, Hui-Ling; Lünsdorf, Heinrich; Hecht, Hans-Jürgen; Tsai, Hsin

    2010-01-01

    The somatic angiotensin I-converting enzyme (sACE; peptidyl-dipeptidase A; EC 3.4.15.1) was isolated from pig lung and purified to homogeneity. The purified enzyme has a molecular mass of about 180 kDa. Upon proteolytic cleavage, two approximately 90 kDa fragments were obtained and identified by amino-terminal sequence analysis as the N- and C-domains of sACE. Both purified domains were shown to be catalytically active. A 2.3 nm resolution model of sACE was obtained by three-dimensional elect...

  10. In vitro degradation of the 32kDa PS II reaction centre protein

    International Nuclear Information System (INIS)

    Eckenswiller, L.C.; Greenberg, B.M.

    1989-01-01

    The 32kDa thylakoid membrane protein is an integral component of the PS II reaction centre. The protein, although stable in the dark, undergoes light dependent turnover. Light from the UV, visible and far-red spectral regions induce 32kDa protein degradation. To better understand 32kDa protein metabolism, an in vitro degradation system is being developed. It consists of isolated thylakoid membranes than contain radiolabelled protein. The 32kDa protein is actively and specifically degraded when the thylakoid preparation is exposed to UV or visible radiation. The protein is stable in the dark. The herbicides (atrazine and DCMU) inhibit degradation in the in vitro system as they do in vivo. Additionally, several methods of isolating thylakoids are being compared to optimize the 32kDa protein degradation reaction. The preparations will be evaluated based on their ability to permit light dependent degradation of the 32kDa protein without affecting the other membrane components

  11. Strontium-82/rubidium-82 generator

    International Nuclear Information System (INIS)

    Gennaro, G.P.; Haney, P.S.

    1986-01-01

    Hydroxylapatite, a compound having the formula: M 10 (PO 4 ) 6 (OH) 2 wherein M is calcium, strontium, barium, lead, iron, sodium, potassium, zinc, cadmium, magnesium, aluminium or a rare earth metal, is provided as a support medium for strontium-82 in a strontium-82/rubidium-82 parent-daughter radionuclide generator

  12. A 19-kDa C-terminal tryptic fragment of the α chain of Na/K-ATPase is essential for occlusion and transport of cations

    International Nuclear Information System (INIS)

    Karlish, S.J.D.; Goldshleger, R.; Stein, W.D.

    1990-01-01

    Tryptic digestion of pig renal Na/K-ATPase in the presence of Rb and absence of Ca ions removes about half of the protein but leaves a stable 19-kDa membrane-embedded fragment derived from the α chain, a largely intact β chain, and essentially normal Rb- and Na-occlusion capacity. Subsequent digestion with trypsin in the presence of Ca or absence of Rb ions leads to rapid loss of the 19-kDa fragment and a parallel loss of Rb occlusion, demonstrating that the fragment is essential for occlusion. The N-terminal sequence of the 19-kDa fragment is Asn-Pro-Lys-Thr-Asp-Lys-Leu-Val-Asn-Glu-Arg-Leu-Ile-Ser-Met-Ala, beginning at residue 830 and extending toward the C terminus. Membranes containing the 19-kDa fragment have the following functional properties. (i) ATP-dependent functions are absent. (ii) The apparent affinity for occluding Rb is unchanged, the affinity for Na is lower than in the control enzyme, and activation is now strongly sigmoidal rather than hyperbolic. (iii) Membranes containing the 19-kDa fragment can be reconstituted into phospholipid vesicles and sustain slow Rb-Rb exchange. Thus the transport pathway is retained. The authors conclude that cation occlusion sites and the transport pathway within transmembrane segments are quite separate from the ATP binding sites, located on the cytoplasmic domain of the α chain. Interactions between cation and ATP sites, the heart of active transport, must be indirect - mediated, presumably, by conformational changes of the protein

  13. A 19-kDa C-terminal tryptic fragment of the. alpha. chain of Na/K-ATPase is essential for occlusion and transport of cations

    Energy Technology Data Exchange (ETDEWEB)

    Karlish, S.J.D.; Goldshleger, R. (Weizmann Institute of Science, Rehovot (Israel)); Stein, W.D. (Hebrew Univ. Jerusalem (Israel))

    1990-06-01

    Tryptic digestion of pig renal Na/K-ATPase in the presence of Rb and absence of Ca ions removes about half of the protein but leaves a stable 19-kDa membrane-embedded fragment derived from the {alpha} chain, a largely intact {beta} chain, and essentially normal Rb- and Na-occlusion capacity. Subsequent digestion with trypsin in the presence of Ca or absence of Rb ions leads to rapid loss of the 19-kDa fragment and a parallel loss of Rb occlusion, demonstrating that the fragment is essential for occlusion. The N-terminal sequence of the 19-kDa fragment is Asn-Pro-Lys-Thr-Asp-Lys-Leu-Val-Asn-Glu-Arg-Leu-Ile-Ser-Met-Ala, beginning at residue 830 and extending toward the C terminus. Membranes containing the 19-kDa fragment have the following functional properties. (i) ATP-dependent functions are absent. (ii) The apparent affinity for occluding Rb is unchanged, the affinity for Na is lower than in the control enzyme, and activation is now strongly sigmoidal rather than hyperbolic. (iii) Membranes containing the 19-kDa fragment can be reconstituted into phospholipid vesicles and sustain slow Rb-Rb exchange. Thus the transport pathway is retained. The authors conclude that cation occlusion sites and the transport pathway within transmembrane segments are quite separate from the ATP binding sites, located on the cytoplasmic domain of the {alpha} chain. Interactions between cation and ATP sites, the heart of active transport, must be indirect - mediated, presumably, by conformational changes of the protein.

  14. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.

    Science.gov (United States)

    Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H

    1998-01-23

    The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.

  15. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  16. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  17. Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions.

    Science.gov (United States)

    Grossini, Elena; Farruggio, Serena; Qoqaiche, Fatima; Raina, Giulia; Camillo, Lara; Sigaudo, Lorenzo; Mary, David; Surico, Nicola; Surico, Daniela

    2016-09-15

    Perivascular adipose tissue can be involved in the process of cardiovascular pathology through the release of adipokines, namely adiponectins. Monomeric adiponectin has been shown to increase coronary blood flow in anesthetized pigs through increased nitric oxide (NO) release and the involvement of adiponectin receptor 1 (AdipoR1). The present study was therefore planned to examine the effects of monomeric adiponectin on NO release and Ca(2+) transients in porcine aortic endothelial cells (PAEs) in normal/high glucose conditions and the related mechanisms. PAEs were treated with monomeric adiponectin alone or in the presence of intracellular kinases blocker, AdipoR1 and Ca(2+)-ATPase pump inhibitors. The role of Na(+)/Ca(2+) exchanger was examined in experiments performed in zero Na(+) medium. NO release and intracellular Ca(2+) were measured through specific probes. In PAE cultured in normal glucose conditions, monomeric adiponectin elevated NO production and [Ca(2+)]c. Similar effects were observed in high glucose conditions, although the response was lower and not transient. The Ca(2+) mobilized by monomeric adiponectin originated from an intracellular pool thapsigargin- and ATP-sensitive and from the extracellular space. Moreover, the effects of monomeric adiponectin were prevented by kinase blockers and AdipoR1 inhibitor. Finally, in normal glucose condition, a role for Na(+)/Ca(2+) exchanger and Ca(2+)-ATPase pump in restoring Ca(2+) was found. Our results add new information about the control of endothelial function elicited by monomeric adiponectin, which would be achieved by modulation of NO release and Ca(2+) transients. A signalling related to Akt, ERK1/2 and p38MAPK downstream AdipoR1 would be involved. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Cerebral microdialysis methodology--evaluation of 20 kDa and 100 kDa catheters.

    Science.gov (United States)

    Hutchinson, P J; O'Connell, M T; Nortje, J; Smith, P; Al-Rawi, P G; Gupta, A K; Menon, D K; Pickard, J D

    2005-08-01

    Microdialysis monitoring of cerebral metabolism is now performed in several neuro-intensive care units. Conventional microdialysis utilizes CMA70 catheters with 20 kDa molecular weight cut-off membranes enabling the measurement of small molecules such as glucose, lactate, pyruvate and glutamate. The CMA71 100 kDa molecular weight cut-off microdialysis catheter has recently been introduced to allow detection of larger molecules such as cytokines. The objective of this study was to perform in vitro and in vivo testing of the CMA71 microdialysis catheter, comparing its performance with the CMA70. In vitro comparison studies of three of each catheter using reference analyte solutions, demonstrated equivalent recovery for glucose, lactate, pyruvate and glutamate (range 94-97% for CMA70 and 88-103% for CMA71). In vivo comparison involved intracranial placement of paired CMA70 and CMA71 catheters (through the same cranial access device) in six patients with severe traumatic brain injury. Both catheters were perfused with CNS Perfusion Fluid without dextran at 0.3 microl min-1 with hourly sampling and bedside analysis on a CMA600 microdialysis analyser. The two catheters yielded equivalent results for glucose, lactate, pyruvate, glutamate and lactate/pyruvate ratio. CMA71 microdialysis catheters can, therefore, be used for routine clinical monitoring of extracellular substances, as well as for their intended research role of larger molecular weight protein sampling.

  19. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.

    Science.gov (United States)

    Yi, Haiqing; Sun, Tao; Armstrong, Dustin; Borneman, Scott; Yang, Chunyu; Austin, Stephanie; Kishnani, Priya S; Sun, Baodong

    2017-05-01

    Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease. FabGAA can be delivered to both the cytoplasm and lysosomes in cultured cells. FabGAA equally reduced lysosomal glycogen accumulation as rhGAA in GAA-KO mice. FabGAA has the beneficial potential over rhGAA to clear cytoplasmic glycogen. This study suggests a novel antibody-enzyme fusion protein therapy

  20. Monomeric adiponectin increases cell viability in porcine aortic endothelial cells cultured in normal and high glucose conditions: Data on kinases activation

    Directory of Open Access Journals (Sweden)

    Elena Grossini

    2016-09-01

    Full Text Available We found that monomeric adiponectin was able to increase cell viability in porcine aortic endothelial cells (PAE cultured both in normal and high glucose condition. Moreover, in normal glucose condition monomeric adiponectin increased p38MAPK, Akt, ERK1/2 and eNOS phosphorylation in a dose- and time-dependent way. Also in high glucose condition monomeric adiponectin increased eNOS and above kinases phosphorylation with similar patterns but at lower extent. For interpretation of the data presented in this article, please see the research article “Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions” (Grossini et al., in press [1].

  1. Distinct subcellular trafficking resulting from monomeric vs multimeric targeting to endothelial ICAM-1: implications for drug delivery.

    Science.gov (United States)

    Ghaffarian, Rasa; Muro, Silvia

    2014-12-01

    Ligand-targeted, receptor-mediated endocytosis is commonly exploited for intracellular drug delivery. However, cells-surface receptors may follow distinct endocytic fates when bound by monomeric vs multimeric ligands. Our purpose was to study this paradigm using ICAM-1, an endothelial receptor involved in inflammation, to better understand its regulation and potential for drug delivery. Our procedure involved fluorescence microscopy of human endothelial cells to determine the endocytic behavior of unbound ICAM-1 vs ICAM-1 bound by model ligands: monomeric (anti-ICAM) vs multimeric (anti-ICAM biotin-streptavidin conjugates or anti-ICAM coated onto 100 nm nanocarriers). Our findings suggest that both monomeric and multimeric ligands undergo a similar endocytic pathway sensitive to amiloride (∼50% inhibition), but not inhibitors of clathrin-pits or caveoli. After 30 min, ∼60-70% of both ligands colocalized with Rab11a-compartments. By 3-5 h, ∼65-80% of multimeric anti-ICAM colocalized with perinuclear lysosomes with ∼60-80% degradation, while 70% of monomeric anti-ICAM remained associated with Rab11a at the cell periphery and recycled to and from the cell-surface with minimal (drug delivery.

  2. Cloning, expression and activation of a truncated 92-kDa gelatinase minienzyme.

    Science.gov (United States)

    Kröger, M; Tschesche, H

    1997-09-01

    The matrix metalloproteinases (MMPs) are a family of highly homologous zinc-endopeptidases that degrade extracellular matrix components. Human 92-kDa gelatinase (MMP-9) represents one of the MMPs that cleaves native collagen type IV. As a basis for structural investigations, the short form (catalytic domain, amino acid residues 113-450) of the 92-kDa gelatinase cDNA was cloned and expressed in E. coli as a minienzyme. By combination of reverse transcription (RT) and polymerase chain reaction (PCR), the truncated 92-kDa gelatinase-cDNA was amplified from the corresponding mRNA derived from ovarian carcinoma cells. The cDNA fragment obtained was cloned in E. coli and sequenced. With the exception of one nucleotide inversion at position 745 (gt-->tg) the cDNA sequence was identical to the nucleotide sequence of the 92-kDa gelatinase as has been previously reported. The protein was expressed in E. coli using the vector pET-12b. The recombinant protein was stored in inclusion bodies and extracted as a 38 kDa species from the inclusion bodies by solubilization in 8 M urea. The product was purified by affinity chromatography and gel filtration. Amino-terminal sequence analysis confirmed the identity with the catalytic domain of 92-kDa gelatinase. The recombinant protein was refolded in the presence of Ca2+ and Zn2+ and yielded an active minienzyme with gelatinolytic activity. It degrades the native substrate collagen type IV and the synthetic substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 x AcOH like the full-length 92-kDa gelatinase. The catalytic activity could be inhibited by the specific MMP inhibitors TIMP-1 and TIMP-2.

  3. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    Science.gov (United States)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The activity of detoxifying enzymes in the infective juveniles of Heterorhabditis bacteriophora strains: Purification and characterization of two acetylcholinesterases.

    Science.gov (United States)

    Mohamed, Magda A; Mahdy, El-Sayed M E; Ghazy, Abd-El-Hady M; Ibrahim, Nihal M; El-Mezayen, Hatem A; Ghanem, Manal M E

    2016-02-01

    The infectivity and detoxifying enzyme activities including glutathione-S-transferase (GST), acetylcholinesterase (AChE) and carboxylesterase (CaE) are investigated in the infective juveniles (IJs) of six different strains of Heterorhabditis bacteriophora as a biocontrol agent against insect pests. The specific activities ranged from 10.8-29.8 and 50-220units/mg protein for GST and AChE, respectively; and from 24.7-129 and 22.6-77.3units/mg protein for CaE as estimated by P-nitrophenyl and α-naphthyl acetates, respectively. H. bacteriophora EM2 strain has the highest infectivity and the highest enzymatic activities as well. AChE is the predominant detoxifying enzyme that might imply its major role in the detoxification of insecticide(s). The isoenzyme pattern demonstrated two major slow-moving isoforms in all EPN strains examined. Purification of two AChE isoforms, AChEAII and AChEBI, from H. bacteriophora EM2 strain is performed by ammonium sulfate precipitation, gel filtration on Sephacryl S-200 and chromatography on DEAE-Sepharose. AChEAII and AChEBII have specific activities of 1207 and 1560unit/mg protein, native molecular weights of 180 and 68kDa, and are found in dimeric and monomeric forms, respectively. Both isoforms showed optimum activity at pH8.5 and 35°C. AChEBI exhibited higher thermal stability and higher activation energy than AChEAII. The enzymatic activities of purified AChEs are completely inhibited by Hg(+2) and Ni(+2) and greatly enhanced by Mn(+2). The substrate specificity, the relative efficiency of substrates hydrolysis, substrate inhibition and inhibition by BW284C51, but not by iso-OMPA, clearly indicated that they are true AChEs; their properties are compared with those recorded for insects as target hosts for H. bacteriophora EM2. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Purification and characterization of a protease-resistant phytase of Aspergillus oryzae SBS50 whose properties make it exceptionally useful as a feed supplement.

    Science.gov (United States)

    Sapna; Singh, Bijender

    2017-10-01

    An extracellular phytase of Aspergillus oryzae SBS50 was purified to homogeneity using ammonium sulphate precipitation, ion-exchange and gel filtration chromatography. Purified phytase has a monomeric molecular mass of ∼80kDa exhibiting its optimal activity at pH 5.0 and 50°C with a T 1/2 of 300min at 50°C. Phytase of A. oryzae displayed broad substrate specificity with V max and K m values of 58.82μmol/ml/min and 1.14mM, respectively, for calcium phytate. Purity and homogeneity of the phytase was confirmed by high performance liquid chromatography and MALDI-TOF analysis revealed the identification of a peptide showing homology with acid phosphatase of Aspergillus oryzae RIB40. Among the inhibitors, 2,3-butanedione and sodium molybdate significantly inhibited the enzyme activity. Phytase of A. oryzae showed protease-resistance and was more stable during storage at 4°C and -20°C as compared to room temperature. Among all the feed samples, mustard oil cake was dephytinized more efficiently than other feed samples. These unique properties suggested that the phytase has the potential to be useful as an animal feed supplement. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Purification and Characterization of Alkaline-Thermostable Protease Enzyme from Pitaya (Hylocereus polyrhizus Waste: A Potential Low Cost of the Enzyme

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-01-01

    Full Text Available The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent Km and Vmax of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0. The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe2+ and Zn2+, while protease activity was increased in the presence of Ca2+ and Mg2+ and Cu2+ by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA. The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications.

  7. Extraction, Purification and Thermodynamic Characterization of Almond (Amygdalus communis β-Galactosidase for the Preparation of Delactosed Milk

    Directory of Open Access Journals (Sweden)

    Melita Lobo

    2013-01-01

    Full Text Available Buffer type, pH and ionic strength, as well as the fraction of polyvinylpyrrolidone were optimized for efficient extraction of β-galactosidase from almond seeds. The enzyme was purified up to electrophoretic homogeneity employing (NH42SO4 (15–60 % fractionation, size exclusion and ion-exchange chromatography. Molecular mass of β-galactosidase as estimated by gel filtration and SDS-PAGE was approx. 62 kDa, confirming its monomeric nature. The optimum activity of the enzyme was at pH=5.5, and it was stable within the range of pH=5.0–6.0. Various kinetic parameters of β-galactosidase thermal inactivation were calculated: ΔH°, ΔS° and ΔG° suggested that the enzyme undergoes significant processes of unfolding during denaturation. Using β-galactosidase from almond seed powder, lactose hydrolysis in milk up to approx. 50 % was observed. The findings indicate the potential use of almond seeds for the production of low/delactosed milk for lactose-intolerant population.

  8. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite

    International Nuclear Information System (INIS)

    Keyse, S.M.; Tyrrell, R.M.

    1989-01-01

    We have shown that UVA (320-380 nm) radiation, hydrogen peroxide, and sodium arsenite induce a stress protein of approximately 32 kDa in human skin fibroblasts. The synthesis and cloning of cDNA from arsenite-induced mRNA populations have now allowed us to unequivocally identify the 32-kDa protein as heme oxygenase. By mRNA analysis we have shown that the heme oxygenase gene is also induced in cultured human skin fibroblasts by UVA radiation, hydrogen peroxide, cadmium chloride, iodoacetamide, and menadione. The known antioxidant properties of heme catabolites taken together with the observation of a high level of induction of the enzyme in cells from an organ not involved in hemoglobin breakdown strongly supports the proposal that the induction of heme oxygenase may be a general response to oxidant stress and constitutes an important cellular defense mechanism against oxidative damage

  9. Quantification of the predominant monomeric catechins in baking chocolate standard reference material by LC/APCI-MS.

    Science.gov (United States)

    Nelson, Bryant C; Sharpless, Katherine E

    2003-01-29

    Catechins are polyphenolic plant compounds (flavonoids) that may offer significant health benefits to humans. These benefits stem largely from their anticarcinogenic, antioxidant, and antimutagenic properties. Recent epidemiological studies suggest that the consumption of flavonoid-containing foods is associated with reduced risk of cardiovascular disease. Chocolate is a natural cocoa bean-based product that reportedly contains high levels of monomeric, oligomeric, and polymeric catechins. We have applied solid-liquid extraction and liquid chromatography coupled with atmospheric pressure chemical ionization-mass spectrometry to the identification and determination of the predominant monomeric catechins, (+)-catechin and (-)-epicatechin, in a baking chocolate Standard Reference Material (NIST Standard Reference Material 2384). (+)-Catechin and (-)-epicatechin are detected and quantified in chocolate extracts on the basis of selected-ion monitoring of their protonated [M + H](+) molecular ions. Tryptophan methyl ester is used as an internal standard. The developed method has the capacity to accurately quantify as little as 0.1 microg/mL (0.01 mg of catechin/g of chocolate) of either catechin in chocolate extracts, and the method has additionally been used to certify (+)-catechin and (-)-epicatechin levels in the baking chocolate Standard Reference Material. This is the first reported use of liquid chromatography/mass spectrometry for the quantitative determination of monomeric catechins in chocolate and the only report certifying monomeric catechin levels in a food-based Standard Reference Material.

  10. Solid state NMR sequential resonance assignments and conformational analysis of the 2x10.4 kDa dimeric form of the Bacillus subtilis protein Crh

    Energy Technology Data Exchange (ETDEWEB)

    Boeckmann, Anja [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France)], E-mail: a.bockmann@ibcp.fr; Lange, Adam [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Galinier, Anne [Institut de Biologie Structurale et Microbiologie, C.N.R.S UPR 9043 (France); Luca, Sorin [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Giraud, Nicolas; Juy, Michel [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Heise, Henrike [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Montserret, Roland; Penin, Francois [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Baldus, Marc [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany)], E-mail: maba@mpibpc.mpg.de

    2003-12-15

    Solid state NMR sample preparation and resonance assignments of the U-[{sup 13}C,{sup 15}N] 2x10.4 kDa dimeric form of the regulatory protein Crh in microcrystalline, PEG precipitated form are presented. Intra- and interresidue correlations using dipolar polarization transfer methods led to nearly complete sequential assignments of the protein, and to 88% of all {sup 15}N, {sup 13}C chemical shifts. For several residues, the resonance assignments differ significantly from those reported for the monomeric form analyzed by solution state NMR. Dihedral angles obtained from a TALOS-based statistical analysis suggest that the microcrystalline arrangement of Crh must be similar to the domain-swapped dimeric structure of a single crystal form recently solved using X-ray crystallography. For a limited number of protein residues, a remarkable doubling of the observed NMR resonances is observed indicative of local static or dynamic conformational disorder. Our study reports resonance assignments for the largest protein investigated by solid state NMR so far and describes the conformational dimeric variant of Crh with previously unknown chemical shifts.

  11. Biosynthesis, purification and characterization of commercial enzyme by penicillium expansum link

    International Nuclear Information System (INIS)

    Ahmed, K.; Valeem, E.E.

    2015-01-01

    Ever growing biotechnological industry has motivated the research towards the comprehensive survey of microorganisms, which could be used in extreme conditions of industry. In the present work optimization parameters in submerged fermentation, purification and characterization of invertase from Penicillium expansum Link using agricultural wastes (sunflower waste, cotton stalk and rice husk) as well as agro-industrial wastes (date syrup and molasses) as sources of carbon. Maximum production of invertase (7.03 U/mL) was observed when the strain was grown on culture medium (CM1) containing yeast extract as a source of nitrogen, date syrup as a source of carbon after 48 h of incubation at initial pH 5.0, temperature 35 degree C, inoculum size of 6x106 conidia in 50 mL of culture medium and agitation rate of 150 rev/min. After optimization the enzyme was also purified partially and then characterized. Kinetic constants (Km 2.57 mM and Vmax 178.6 U/mL/min) were determined by Lineweaver-Burk Plot and molecular mass (110 kDa) by 10% SDS-PAGE. Invertase showed maximum activity at pH 5.5 (128.7 U/mL) and at the temperature of 60 degree C (114.6 U/mL). BaCl/sub 2/ (21.9%), MgSO/sub 4/ (42.6%), MnCl/sub 2/ (46.8%) and EDTA (8.3%) enhanced the relative activity of enzyme while HgCl2 (-90.9%), CuSO/sub 4/ (-82.3%) and CuCl/sub 2/ (-78.7%) were proved inhibitors. (author)

  12. Influence of 120 kDa Pyruvate:Ferredoxin Oxidoreductase on Pathogenicity of Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk

    2016-02-01

    Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.

  13. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    International Nuclear Information System (INIS)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-01-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  14. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti, E-mail: arti@iitm.ac.in [Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036 (India)

    2016-08-28

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  15. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Science.gov (United States)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-08-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  16. A Molecular Dynamics Study on RAGE-Aβ42 Interaction and the Influence of G82S RAGE Polymorphism on Aβ Interaction

    Directory of Open Access Journals (Sweden)

    Sreeram Krishnan

    2015-12-01

    Full Text Available Interaction of amyloid peptides (Aβ with receptor for advanced glycation end products (RAGE elicits an inflammatory response and augments Alzheimer's disease (AD pathology. The present study was aimed to analyse the interactions of different forms of Aβ42 peptide with ligand binding domain of normal and G82S RAGE and their possible consequences in AD pathology. The structures of RAGE ectodomain (3CJJ, monomeric forms of Aβ42 - 1IYT (apolar and 1Z0Q (polar and fibrillar (2BEG were obtained from PDB. The structure of G82 and S82 RAGE was generated using SWISS MODEL. SIFT and PolyPhen analysis was performed to predict the phenotypic and functional effect of the amino acid substitution. The G82 and S82 variant structures were simulated in GROMACS and the 10 lowest energy structures were docked with different forms of Aβ42 using CLUSPRO in antibody mode. The lowest energy docked structure was further simulated for 5 ns. The structures corresponding to 0-5 ns were taken and the amino acid interactions were generated using PDBSUM. SIFT analysis indicated that G82S SNP had a tolerating effect on the structure of protein but polyphen predicted a probable damaging effect. Highest binding score was obtained with 2BEG docked with both G82 RAGE (-375.84 ± 7.425 Kcal/mol and G82S variant (-391.09 ± 13.391 Kcal/mol indicating that the fibrillar form showed better interaction. Compared to G82 RAGE, the S82 variant showed better interaction to all three forms of Aβ42. The results of study indicate that RAGE interacted better with fibrillar form of Aβ42 peptide and G82S mutation enhanced the binding affinity of RAGE towards amyloid peptides leading to enhanced inflammatory response.

  17. [Zymography--method for quantitation of activity on gelatinase A (pro-MMP-2, 72 kDa) and gelatinase B (pro-MMP-9, 92 kDa) in serum of patients with breast cancer].

    Science.gov (United States)

    Sliwowska, Izabela; Kopczyński, Zygmunt

    2007-01-01

    Zymography is an electrophoretic method for measuring proteolytic activity. The method is based on polyacrylamide gels impregnated with a protein substrate (gelatin, casein), which is degraded by the proteases. It is already widely used for research on extracellular matrix degrading enzymes, in particular the matrix metalloproteinases (MMPs). The aim of this study was to evaluate the zymography used to estimate gelatinase A (pro-MMP-2, 72 kDa) and gelatinase B (pro-MMP-9, 92 kDa) in serum of women with breast cancer. The study was conducted on the serum of 90 female with breast cancer aged 32-85 years (average 57.2 year) and in a group of 30 women with benign breast diseases aged 34-87 years (average 55.4 year). The results showed significantly higher activity ofgelatinase A and gelatinase B in the group of women with breast cancer that in the control group. The activity of gelatinase A was over 0.48 AU/ml in 50 women (55.6%) and gelatinase B in 46 women in this group (51.1%). Further analysis showed a strong correlation between activity of gelatinase A and B and advance stage of breast cancer, lymph node status, and tumour burden. An elevated activity of gelatinases in patients with breast cancer confirms the role of these enzymes in the development of such tumours. There was no significant difference in the gelatinases activity between the serum samples from patients with breast cancer and those from women with benign breast diseases. The diagnostic sensitivity of this procedure used to estimate gelatinase A and gelatinase B activity carried out 56% and 51%, and the diagnostic specificity 75% and 77%, respectively. Zymography is a simple, sensitive, and functional assay for analysing proteolytic activity of gelatinase A and gelatinase B. The diagnostic accuracy of gelatinases evaluation is limited by the lack of sensitivity and specificity in early stage of the disease and in differentiation of breast cancer from benign diseases. Measuring their activity in serum

  18. Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model

    Science.gov (United States)

    Kuligowska, Elżbieta

    2018-04-01

    Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.

  19. Principal Component Regression Analysis of the Relation Between CIELAB Color and Monomeric Anthocyanins in Young Cabernet Sauvignon Wines

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2008-11-01

    Full Text Available Color is one of the key characteristics used to evaluate the sensory quality of red wine, and anthocyanins are the main contributors to color. Monomeric anthocyanins and CIELAB color values were investigated by HPLC-MS and spectrophotometry during fermentation of Cabernet Sauvignon red wine, and principal component regression (PCR, a statistical tool, was used to establish a linkage between the detected anthocyanins and wine coloring. The results showed that 14 monomeric anthocyanins could be identified in wine samples, and all of these anthocyanins were negatively correlated with the L*, b* and H*ab values, but positively correlated with a* and C*ab values. On an equal concentration basis for each detected anthocyanin, cyanidin-3-O-glucoside (Cy3-glu had the most influence on CIELAB color value, while malvidin 3-O-glucoside (Mv3-glu had the least. The color values of various monomeric anthocyanins were influenced by their structures, substituents on the B-ring, acyl groups on the glucoside and the molecular steric structure. This work develops a statistical method for evaluating correlation between wine color and monomeric anthocyanins, and also provides a basis for elucidating the effect of intramolecular copigmentation on wine coloring.

  20. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice

    International Nuclear Information System (INIS)

    Bhanjadeo, Madhabi M.; Nayak, Ashok K.; Subudhi, Umakanta

    2017-01-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.

  1. Monomeric insulins obtained by protein engineering and their medical implications.

    Science.gov (United States)

    Brange, J; Ribel, U; Hansen, J F; Dodson, G; Hansen, M T; Havelund, S; Melberg, S G; Norris, F; Norris, K; Snel, L

    1988-06-16

    The use of insulin as an injected therapeutic agent for the treatment of diabetes has been one of the outstanding successes of modern medicine. The therapy has, however, had its associated problems, not least because injection of insulin does not lead to normal diurnal concentrations of insulin in the blood. This is especially true at meal times when absorption from subcutaneous tissue is too slow to mimic the normal rapid increments of insulin in the blood. In the neutral solutions used for therapy, insulin is mostly assembled as zinc-containing hexamers and this self-association, which under normal physiological circumstances functions to facilitate proinsulin transport, conversion and intracellular storage, may limit the rate of absorption. We now report that it is possible, by single amino-acid substitutions, to make insulins which are essentially monomeric at pharmaceutical concentrations (0.6 mM) and which have largely preserved their biological activity. These monomeric insulins are absorbed two to three times faster after subcutaneous injection than the present rapid-acting insulins. They are therefore capable of giving diabetic patients a more physiological plasma insulin profile at the time of meal consumption.

  2. Two phosphoenolpyruvate carboxykinases coexist in the Crassulacean Acid Metabolism plant Ananas comosus. Isolation and characterization of the smaller 65 kDa form.

    Science.gov (United States)

    Martín, Mariana; Rius, Sebastián Pablo; Podestá, Florencio Esteban

    2011-06-01

    Two phosphoenolpyruvate carboxykinase (PEPCK, EC 4.1.1.49) isoforms of 74 and 65 kDa were found to coexist in vivo in pineapple leaves, a constitutive Crassulacean Acid Metabolism plant. The 65 kDa form was not the result of proteolytic cleavage of the larger form since extraction methods reported to prevent PEPCK proteolysis in other plant tissues failed to yield a single immunoreactive PEPCK polypeptide in leaf extracts. In this work, the smaller form of 65 kDa was purified to homogeneity and physically and kinetically characterized and showed parameters compatible with a fully active enzyme. The specific activity was nearly twice higher for decarboxylation of oxaloacetate when compared to carboxylation of phosphoenolpyruvate. Kinetic parameters fell within the range of those estimated for other plant PEPCKs. Its activity was affected by several metabolites, as shown by inhibition by 3-phosphoglycerate, citrate, malate, fructose-1,6-bisphosphate, l-asparagine and activation of the decarboxylating activity by succinate. A break in the Arrhenius plot at about 30°C indicates that PEPCK structure is responsive to changes in temperature. The results indicate that pineapple leaves contain two PEPCK forms. The biochemical characterization of the smaller isoform performed in this work suggests that it could participate in both carbon and nitrogen metabolism in vivo by acting as a decarboxylase. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  3. Identification of an abundant 56 kDa protein implicated in food allergy as granule-bound starch synthase

    Science.gov (United States)

    Rice, the staple food of South and East Asian counties, is considered to be hypoallergenic. However, several clinical studies have documented rice-induced allergy in sensitive patients. Rice proteins with molecular weights of 14-16 kDa, 26 kDa, 33 kDa and 56 kDa have been identified as allergens. Re...

  4. 82Sr--82Rb radioisotope generator

    International Nuclear Information System (INIS)

    Grant, P.M.; Erdal, B.R.; O'Brien, H.A.

    1976-01-01

    An improved 82 Sr- 82 Rb radioisotope generator system, based upon the complexing ion exchange resin Chelex-100, has been developed. Columns of this material can be easily and rapidly milked, and the Rb-Sr separation factor for a fresh generator was found to be greater than 10 7 . Approximately 80 percent of the 82 Rb present was delivered in a 15-ml volume of aqueous 0.2 M NH 4 Cl solution. After more than 6 liters of eluant had been put through the generator, the Rb-Sr separation factor was still observed to be greater than 10 5 , and no unusual strontium breakthrough behavior was seen in the system over nearly three 82 Sr half lives. 2 claims, no drawings

  5. Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania amazonensis promastigotes

    Directory of Open Access Journals (Sweden)

    José Andrés Morgado-Díaz

    2005-07-01

    Full Text Available Here we report the subcellular localization of an intracellular serine protease of 68 kDa in axenic promastigotes of Leishmania (Leishmania amazonensis, using subcellular fractionation, enzymatic assays, immunoblotting, and immunocytochemistry. All fractions were evaluated by transmission electron microscopy and the serine protease activity was measured during the cell fractionation procedure using a-N-r-tosyl-L-arginine methyl ester (L-TAME as substrate, phenylmethylsulphone fluoride (PMSF and L-1-tosylamino-2-phenylethylchloromethylketone (TPCK as specific inhibitors. The enzymatic activity was detected mainly in a membranous vesicular fraction (6.5-fold enrichment relative to the whole homogenate, but also in a crude plasma membrane fraction (2.0-fold. Analysis by SDS-PAGE gelatin under reducing conditions demonstrated that the major proteolytic activity was found in a 68 kDa protein in all fractions studied. A protein with identical molecular weight was also recognized in immunoblots by a polyclonal antibody against serine protease (anti-SP, with higher immunoreactivity in the vesicular fraction. Electron microscopic immunolocalization using the same polyclonal antibody showed the enzyme present at the cell surface, as well as in cytoplasmic membranous compartments of the parasite. Our findings indicate that the internal location of this serine protease in L. amazonensis is mainly restricted to the membranes of intracellular compartments resembling endocytic/exocytic elements.

  6. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.

    Science.gov (United States)

    Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa

    2009-01-01

    Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.

  7. Improved detection of a staphylococcal infection by monomeric and protein A-purified polyclonal human immunoglobulin

    International Nuclear Information System (INIS)

    Calame, W.

    1993-01-01

    The present study was undertaken to compare the technetium-99m labelled non-specific polyclonal human immunoglobulin (Ig) with 99m Tc-labelled monomeric human immunoglobulin (m-Ig), 99m Tc-labelled, protein A-purified, human immunoglobulin (A-IG) and 99m Tc-labelled monomeric, protein A-purified, human immunoglobulin (mA-Ig) as tracer agents for the detection of a thigh infection with Staphylococcus aureus. In vitro the binding of the various tracer agents to bacteria at various intervals was determined. For the in vivo evaluation, mice were infected and received one of the various labelled proteins. Scintigrams were made 0.25, 1, 4 and 24 h later. All 99m Tc-labelled Igs bound to bacteria in vitro: The percentages of binding for the m-Ig (from 1 h onwards) and A-Ig and mA-Ig (from 3 h onwards) were significantly higher than that for Ig. The in vivo target-to-non-target (T/NT) ratios were significantly higher from 4 h onwards for all purified Igs than for Ig. Protein A-purified Ig yielded higher T/NT ratios than m-Ig. Furthermore, the amount of activity in the liver was significantly lower 24 h after administration of m-Ig, A-Ig and mA-Ig than after administration of Ig. It is concluded that in this experimental infection 99m Tc-labelled monomeric Ig localizes a staphylococcal thigh infection better and faster than 99m Tc-labelled unpurified Ig. However, the accumulation obtained with protein A-purified Ig or protein A-purified monomeric Ig was the highest of all tracer agents tested. (orig.)

  8. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Directory of Open Access Journals (Sweden)

    Aurélie A Albertini

    2012-02-01

    Full Text Available Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV glycoprotein G ectodomain (G(th, aa residues 1-422, the fragment that was previously crystallized. While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  9. Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase from Glomerella cingulata suggests a role in plant pathogenicity.

    Science.gov (United States)

    Sygmund, Christoph; Klausberger, Miriam; Felice, Alfons K; Ludwig, Roland

    2011-11-01

    The plant-pathogenic fungus Glomerella cingulata (anamorph Colletotrichum gloeosporoides) secretes high levels of an FAD-dependent glucose dehydrogenase (GDH) when grown on tomato juice-supplemented media. To elucidate its molecular and catalytic properties, GDH was produced in submerged culture. The highest volumetric activity was obtained in shaking flasks after 6 days of cultivation (3400 U l⁻¹, 4.2 % of total extracellular protein). GDH is a monomeric protein with an isoelectric point of 5.6. The molecular masses of the glycoforms ranged from 95 to 135 kDa, but after deglycosylation, a single 68 kDa band was obtained. The absorption spectrum is typical for an FAD-containing enzyme with maxima at 370 and 458 nm and the cofactor is non-covalently bound. The preferred substrates are glucose and xylose. Suitable electron acceptors are quinones, phenoxy radicals, 2,6-dichloroindophenol, ferricyanide and ferrocenium hexafluorophosphate. In contrast, oxygen turnover is very low. The GDH-encoding gene was cloned and phylogenetic analysis of the translated protein reveals its affiliation to the GMC family of oxidoreductases. The proposed function of this quinone and phenoxy radical reducing enzyme is to neutralize the action of plant laccase, phenoloxidase or peroxidase activities, which are increased in infected plants to evade fungal attack.

  10. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    International Nuclear Information System (INIS)

    Walker, G.; Bourguignon, L.Y.

    1990-01-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation

  11. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G.; Bourguignon, L.Y. (Univ. of Miami Medical School, FL (USA))

    1990-08-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.

  12. The dimerization domain in DapE enzymes is required for catalysis.

    Directory of Open Access Journals (Sweden)

    Boguslaw Nocek

    Full Text Available The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.

  13. The dimerization domain in DapE enzymes is required for catalysis.

    Science.gov (United States)

    Nocek, Boguslaw; Starus, Anna; Makowska-Grzyska, Magdalena; Gutierrez, Blanca; Sanchez, Stephen; Jedrzejczak, Robert; Mack, Jamey C; Olsen, Kenneth W; Joachimiak, Andrzej; Holz, Richard C

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.

  14. Detection and differentiation of 22kDa and 20kDa Growth Hormone proteoforms in human plasma by LC-MS/MS

    DEFF Research Database (Denmark)

    Sanmartín, Gerard Such; Bache, N.; Bosch, J.

    2015-01-01

    Human growth hormone (GH) is suspected to be widely and illegally used in sport to improve athletes' performance. For the detection of GH abuse, blood samples are screened for abnormal ratios between the 22 and 20kDa GH proteoforms that demonstrate the administration of the synthetic hormone....... Current detection methods are based on classical immunoassays as they provide sufficient sensitivity for the detection of GH proteoforms. These antibody based methods, however, suffer from unclear selectivity and potential cross-reactivity towards similar proteins. For unambiguous GH detection, we report...... a Mass Spectrometry ImmunoAssay (MSIA) that first enriches GH from plasma with an antibody of relatively low specificity, and subsequently quantifies the 22 and 20kDa proteoforms by Selected Reaction Monitoring (SRM) LC-MS/MS analysis. This method proved superior to an antibody-free strategy based on GH...

  15. Usefulness of 8 kDa protein of Fasciola hepatica in diagnosis of fascioliasis

    Science.gov (United States)

    Kim, Kwangsig; Yang, Hyun Jong

    2003-01-01

    This study was designed to detect and evaluate an antigenicity of low molecular weight proteins of Fasciola hepatica in fascioliasis. Low molecular weight protein of F. hepatica was purified by ammonium sulfate precipitation and Sephacryl S-100 HR gel filtration. The protein obtained was estimated to be 8 kDa on 7.5-15% gradient sodium dodecyl sulfate gel electrophoresis. Immunoblotting studies showed that the 8 kDa protein reacted with human fascioliasis sera, but not other trematodiasis sera. This result suggests that the 8 kDa protein of F. hepatica is one of diagnostic antigens in human fascioliasis without cross-reaction with other human trematodiasis. PMID:12815325

  16. Preparation of a highly concentrated, completely monomeric, active sarcoplasmic reticulum Ca2+-ATPase.

    Science.gov (United States)

    Lüdi, H; Hasselbach, W

    1985-11-21

    Sarcoplasmic reticulum vesicles from fast skeletal muscle were partially delipidated with sodium cholate at high ionic strength and sedimented in a discontinuous sucrose gradient. Phospholipid content was reduced from 0.777 mumol/mg protein to 0.242 mumol/mg protein. As judged from gel electrophoresis and high pressure liquid gel chromatography, accessory proteins were removed during centrifugation and the Ca2+-ATPase was obtained in an almost pure form. Addition of myristoylglycerophosphocholine (1 mg/mg protein) reactivates ATPase and dinitrophenylphosphatase activity to the same degree obtained with native vesicles. Using the analytical ultracentrifuge it could be demonstrated that the reactivated Ca2+-ATPase was present exclusively in a monomeric state. These results were obtained at high and low ionic strength and up to a protein concentration of 10 mg/ml. Therefore this preparation should be very useful to investigate differences between oligomeric and monomeric Ca2+-ATPase.

  17. Isoform composition and stoichiometry of the ∼ 90-kDa heat shock protein associated with glucocorticoid receptors

    International Nuclear Information System (INIS)

    Mendel, D.B.; Orti, E.

    1988-01-01

    The authors observed that the ∼ 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the ∼ 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the ∼ 90-kDa heat shock protein. The observation that TSTA and the ∼ 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested that the doublet observed is also due to the existence of two isoforms. They have therefore conducted this study to determine whether TSTA and the ∼ 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the ∼ 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. They used the BuGr1 and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free ∼ 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with [ 35 S]methionine to metabolically label proteins to steady state. The long-term metabolic labeling approach has also enabled them to directly determine that the purified non-activated glucocorticoid receptor contains a single steroid-binding protein and two ∼ 90-kDa non-steroid-binding subunits. The consistency with which a ∼ 1:2 stoichiometric ratio of steroid binding to ∼ 90-kDa protein is observed supports the view that the ∼ 90-kDa heat shock protein is a true component of nonactivated glucocorticoid-receptor complexes

  18. Collagenolytic serine protease PC and trypsin PC from king crab Paralithodes camtschaticus: cDNA cloning and primary structure of the enzymes

    Directory of Open Access Journals (Sweden)

    Rebrikov Denis V

    2004-01-01

    Full Text Available Abstract Background In this paper, we describe cDNA cloning of a new anionic trypsin and a collagenolytic serine protease from king crab Paralithodes camtschaticus and the elucidation of their primary structures. Constructing the phylogenetic tree of these enzymes was undertaken in order to prove the evolutionary relationship between them. Results The mature trypsin PC and collagenolytic protease PC contain 237 (Mcalc 24.8 kDa and 226 amino acid residues (Mcalc 23.5 kDa, respectively. Alignments of their amino acid sequences revealed a high degree of the trypsin PC identity to the trypsin from Penaeus vannamei (approximately 70% and of the collagenolytic protease PC identity to the collagenase from fiddler crab Uca pugilator (76%. The phylogenetic tree of these enzymes was constructed. Conclusions Primary structures of the two mature enzymes from P. camtschaticus were obtained and compared with those of other proteolytic proteins, including some enzymes from brachyurans. A phylogenetic analysis was also carried out. These comparisons revealed that brachyurins are closely related to their vertebrate and bacterial congeners, occupy an intermediate position between them, and their study significantly contributes to the understanding of the evolution and function of serine proteases.

  19. Functional expression of a Bombyx mori cocoonase: potential application for silk degumming.

    Science.gov (United States)

    Rodbumrer, Prangprapai; Arthan, Dumrongkiet; Uyen, Utai; Yuvaniyama, Jirundon; Svasti, Jisnuson; Wongsaengchantra, Pramvadee Y

    2012-12-01

    Cocoon, a shelter for larva development to silk moth, contains the fibrous protein fibroin, which is coated by the globular protein sericin. Emergence of the silk moth requires the action of cocoonase, a protease secreted by the pupa. The full-length prococoonase cDNA, with 780 bp open reading frame encoding 260 amino acids, was cloned by reverse transcription from total RNA of the head of 6-day-old Thai-silk Bombyx mori pupa. Only the gene fragment lacking the propeptide encoding sequence was successfully expressed in Pichia pastoris, yielding an extracellularly active cocoonase. The recombinant cocoonase was purified to homogeneity by 80% ammonium-sulfate fractionation and CM-Sepharose chromatography, and its internal peptide sequences were analyzed by nano liquid chromatography-mass spectrometry/mass spectrometry. This monomeric protein has native molecular weight of 26 kDa by gel exclusion analysis and 25 kDa subunit size by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The enzyme hydrolyses sericin but does not hydrolyse fibroin, as shown by radial diffusion on thin-layer enzyme assay (RD-TEA). Scanning electron microscopy showed that purified recombinant cocoonase could remove sericin from natural silk completely in 24 h, without damaging fibroin, using only 1 immobilized sericin unit (ISU) of enzyme as determined by RD-TEA. Natural cocoonase isolated from B. mori pupa could also digest sericin effectively, but required more enzymes (2 ISU) and longer time (48 h). In comparison, a commercial enzyme, alcalase, with the same activity not only showed less complete digestion of sericin but also caused damage of fibroin. These results suggest that recombinant B. mori cocoonase is potentially useful for silk degumming.

  20. The analysis Arabidopsis thaliana overexpressing a 14kDa self-folding protein [abstract

    Science.gov (United States)

    A recent study in banana identified a 14kDa protein that has been hypothesized to function in regulating the nucleation and growth of the needle-shaped crystals of calcium oxalate that accumulate within the tissues of this plant. To gain further insight in to the functional role of this 14 kDa prote...

  1. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R.; Chen, Zhe; Phillips, Margaret A.

    2016-12-15

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.

  2. Metal-free ALS variants of dimeric human Cu,Zn-superoxide dismutase have enhanced populations of monomeric species.

    Directory of Open Access Journals (Sweden)

    Anna-Karin E Svensson

    2010-04-01

    Full Text Available Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1 can cause amyotrophic lateral sclerosis (ALS. Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion. Perturbations of the folding free energy landscapes of metal-free versions of five ALS-inducing variants, A4V, L38V, G93A, L106V and S134N SOD1, were determined with a global analysis of kinetic and thermodynamic folding data for dimeric and stable monomeric versions of these variants. Utilizing this global analysis approach, the perturbations on the global stability in response to mutation can be partitioned between the monomer folding and association steps, and the effects of mutation on the populations of the folded and unfolded monomeric states can be determined. The 2- to 10-fold increase in the population of the folded monomeric state for A4V, L38V and L106V and the 80- to 480-fold increase in the population of the unfolded monomeric states for all but S134N would dramatically increase their propensity for aggregation through high-order nucleation reactions. The wild-type-like populations of these states for the metal-binding region S134N variant suggest that even wild-type SOD1 may also be prone to aggregation in the absence of metals.

  3. Immobilization of enzymes by radiation-induced polymerization of glass-forming monomers

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1979-01-01

    The effect of cooling rate of a monomeric system on the porosity and activity of an immobilized enzyme prepared by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperatures has been studied. Slow cooling gave the same effect on porosity of the polymer as decreasing the monomer concentration. A glass-forming solvent such as diethylene glycol was added to water to study the effect of the supercooling tendency of the solvent. Addition of diethylene glycol decreased porosity and also enzymic activity. Water was replaced by the miscible solvent p-dioxane and the immiscible solvent n-decane in order to clarify the effect of solvent. p-Dioxane had a similar effect to water on the relation between the monomer concentration, porosity and activity. On the other hand, polymer prepared from the system containing n-decane showed different immobilization properties owing to the presence of independent pores in the matrix. (author)

  4. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Osto, Luca [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Cazzaniga, Stefano [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Bressan, Mauro [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Paleček, David [Lund Univ. (Sweden). Dept. of Chemical Physics; Židek, Karel [Lund Univ. (Sweden). Dept. of Chemical Physics; Niyogi, Krishna K. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst., Dept. of Plant and Microbial Biology; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Fleming, Graham R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry, Graduate Group in Applied Science and Technology; Zigmantas, Donatas [Lund Univ. (Sweden). Dept. of Chemical Physics; Bassi, Roberto [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Consiglio Nazionale delle Ricerche (CNR), Firenze (Italy). Istituto per la Protezione delle Piante (IPP)

    2017-04-10

    Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: Energy transfer to a lutein quencher in trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. Here, we conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. Finally, this latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.

  5. Characterization of an epoxide hydrolase from the Florida red tide dinoflagellate, Karenia brevis.

    Science.gov (United States)

    Sun, Pengfei; Leeson, Cristian; Zhi, Xiaoduo; Leng, Fenfei; Pierce, Richard H; Henry, Michael S; Rein, Kathleen S

    2016-02-01

    Epoxide hydrolases (EH, EC 3.3.2.3) have been proposed to be key enzymes in the biosynthesis of polyether (PE) ladder compounds such as the brevetoxins which are produced by the dinoflagellate Karenia brevis. These enzymes have the potential to catalyze kinetically disfavored endo-tet cyclization reactions. Data mining of K. brevis transcriptome libraries revealed two classes of epoxide hydrolases: microsomal and leukotriene A4 (LTA4) hydrolases. A microsomal EH was cloned and expressed for characterization. The enzyme is a monomeric protein with molecular weight 44kDa. Kinetic parameters were evaluated using a variety of epoxide substrates to assess substrate selectivity and enantioselectivity, as well as its potential to catalyze the critical endo-tet cyclization of epoxy alcohols. Monitoring of EH activity in high and low toxin producing cultures of K. brevis over a three week period showed consistently higher activity in the high toxin producing culture implicating the involvement of one or more EH in brevetoxin biosynthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp.

    Science.gov (United States)

    Rezaei, Shahla; Shahverdi, Ahmad Reza; Faramarzi, Mohammad Ali

    2017-04-01

    The aim of the present work was to study the ability of a halophilic bacterial laccase to efficient delignification in extreme conditions. Here, a highly stable extracellular laccase showing ligninolytic activity from halophilic Aquisalibacillus elongatus is described. The laccase production was strongly influenced by NaCl and CuSO 4 and under optimal conditions reached 4.8UmL -1 . The monomeric enzyme of 75kDa was purified by a synthetic affinity column with 68.2% yield and 99.8-fold purification. The enzyme showed some valuable features viz. stability against a wide range of organic solvents, salts, metals, inhibitors, and surfactants and specificity to a wide spectrum of substrates diverse in structure and redox potential. It retained more than 50% of the original activity at 25-75°C and pH 5.0-10.0. Furthermore, the enzyme was found to be effective in the delignification of sugar beet pulp in an ionic liquid that makes it useful for industrial applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Identification and Characterization of a Novel Human Methyltransferase Modulating Hsp70 Protein Function through Lysine Methylation*

    Science.gov (United States)

    Jakobsson, Magnus E.; Moen, Anders; Bousset, Luc; Egge-Jacobsen, Wolfgang; Kernstock, Stefan; Melki, Ronald; Falnes, Pål Ø.

    2013-01-01

    Hsp70 proteins constitute an evolutionarily conserved protein family of ATP-dependent molecular chaperones involved in a wide range of biological processes. Mammalian Hsp70 proteins are subject to various post-translational modifications, including methylation, but for most of these, a functional role has not been attributed. In this study, we identified the methyltransferase METTL21A as the enzyme responsible for trimethylation of a conserved lysine residue found in several human Hsp70 (HSPA) proteins. This enzyme, denoted by us as HSPA lysine (K) methyltransferase (HSPA-KMT), was found to catalyze trimethylation of various Hsp70 family members both in vitro and in vivo, and the reaction was stimulated by ATP. Furthermore, we show that HSPA-KMT exclusively methylates 70-kDa proteins in mammalian protein extracts, demonstrating that it is a highly specific enzyme. Finally, we show that trimethylation of HSPA8 (Hsc70) has functional consequences, as it alters the affinity of the chaperone for both the monomeric and fibrillar forms of the Parkinson disease-associated protein α-synuclein. PMID:23921388

  8. Formation of the 67-kDa laminin receptor by acylation of the precursor.

    Science.gov (United States)

    Butò, S; Tagliabue, E; Ardini, E; Magnifico, A; Ghirelli, C; van den Brûle, F; Castronovo, V; Colnaghi, M I; Sobel, M E; Ménard, S

    1998-06-01

    Even though the involvement of the 67-kDa laminin receptor (67LR) in tumor invasiveness has been clearly demonstrated, its molecular structure remains an open problem, since only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated so far. A pool of recently obtained monoclonal antibodies directed against the recombinant 37LRP molecule was used to investigate the processing that leads to the formation of the 67-kDa molecule. In soluble extracts of A431 human carcinoma cells, these reagents recognize the precursor molecule as well as the mature 67LR and a 120-kDa molecule. The recovery of these proteins was found to be strikingly dependent upon the cell solubilization conditions: the 67LR is soluble in NP-40-lysis buffer whereas the 37LRP is NP-40-insoluble. Inhibition of 67LR formation by cerulenin indicates that acylation is involved in the processing of the receptor. It is likely a palmitoylation process, as indicated by sensitivity of NP-40-soluble extracts to hydroxylamine treatment. Immunoblotting assays performed with a polyclonal serum directed against galectin3 showed that both the 67- and the 120-kDa proteins carry galectin3 epitopes whereas the 37LRP does not. These data suggest that the 67LR is a heterodimer stabilized by strong intramolecular hydrophobic interactions, carried by fatty acids bound to the 37LRP and to a galectin3 cross-reacting molecule.

  9. Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose

    Science.gov (United States)

    2011-01-01

    Background Pretreatment is a critical step in the conversion of lignocellulose to fermentable sugars. Although many pretreatment processes are currently under investigation, none of them are entirely satisfactory in regard to effectiveness, cost, or environmental impact. The use of hydrogen peroxide at pH 11.5 (alkaline hydrogen peroxide (AHP)) was shown by Gould and coworkers to be an effective pretreatment of grass stovers and other plant materials in the context of animal nutrition and ethanol production. Our earlier experiments indicated that AHP performed well when compared against two other alkaline pretreatments. Here, we explored several key parameters to test the potential of AHP for further improvement relevant to lignocellulosic ethanol production. Results The effects of biomass loading, hydrogen peroxide loading, residence time, and pH control were tested in combination with subsequent digestion with a commercial enzyme preparation, optimized mixtures of four commercial enzymes, or optimized synthetic mixtures of pure enzymes. AHP pretreatment was performed at room temperature (23°C) and atmospheric pressure, and after AHP pretreatment the biomass was neutralized with HCl but not washed before enzyme digestion. Standard enzyme digestion conditions were 0.2% glucan loading, 15 mg protein/g glucan, and 48 h digestion at 50°C. Higher pretreatment biomass loadings (10% to 20%) gave higher monomeric glucose (Glc) and xylose (Xyl) yields than the 2% loading used in earlier studies. An H2O2 loading of 0.25 g/g biomass was almost as effective as 0.5 g/g, but 0.125 g/g was significantly less effective. Optimized mixtures of four commercial enzymes substantially increased post-AHP-pretreatment enzymatic hydrolysis yields at all H2O2 concentrations compared to any single commercial enzyme. At a pretreatment biomass loading of 10% and an H2O2 loading of 0.5 g/g biomass, an optimized commercial mixture at total protein loadings of 8 or 15 mg/g glucan gave

  10. Detoxification of hexavalent chromium by Leucobacter sp. uses a reductase with specificity for dihydrolipoamide.

    Science.gov (United States)

    Sarangi, Abhipsa; Krishnan, Chandraraj

    2016-02-01

    Leucobacter sp. belongs to the metal stressed community and possesses higher tolerance to metals including chromium and can detoxify toxic hexavalent chromium by reduction to less toxic trivalent chromium. But, the mechanism of reduction of hexavalent chromium by Leucobacter sp. has not been studied. Understanding the enzyme catalyzing reduction of chromium is important to improve the species for application in bioremediation. Hence, a soluble reductase catalyzing the reduction of hexavalent chromium was purified from a Leucobacter sp. and characterized. The pure chromate reductase was obtained from the cell-free extract through hydrophobic interaction and gel filtration column chromatographic methods. It was a monomeric enzyme and showed similar molecular weights in both gel filtration (∼68 KDa) and SDS-PAGE (64 KDa). It reduced Cr(VI) using both NADH and NADPH as the electron donor, but exhibited higher activity with NADH. The optimal activity was found at pH 5.5 and 30 °C. The K(m) and V(max) for Cr(VI) reduction with NADH were 46.57 μM and 0.37 μmol min(-1) (mg protein) (-1), respectively. The activity was inhibited by p-hydroxy mercury benzoate, Ag(2+) and Hg(2+) indicating the role of thiol groups in the catalysis. The spectrophotometric analysis of the purified enzyme showed the absence of bound flavin in the enzyme. The N-terminal amino acid sequence and LC/MS analysis of trypsin digested purified enzyme showed similarity to dihydrolipoyl dehydrogenase. The purified enzyme had dihydrolipoyl dehydrogenase activity with dihydrolipoamide as the substrate, which suggested that Leucobacter sp. uses reductase with multiple substrate specificity for reduction of Cr(VI) detoxification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparison of monomeric and polymeric horseradish peroxidase as labels in competitive ELISA for small molecule detection

    International Nuclear Information System (INIS)

    Li, Dongyang; Ying, Yibin; Wu, Jian; Niessner, Reinhard; Knopp, Dietmar

    2013-01-01

    We have developed a simple and sensitive competitive enzyme-linked immunosorbent assay (ELISA) to determine aflatoxin B1 (as a model small analyte) and using streptavidin-polymeric horseradish peroxidase complex (SApolyHRP) as a label for signal amplification. The performance of the assay was evaluated by comparing it with the classical indirect competitive ELISA using HRP labeled anti-mouse IgG as the tracer antibody. The results indicate that the SApolyHRP-based competitive ELISA exhibits a typically 2.4-fold steeper slope of the linear working range of the calibration curve compared to the monomeric HRP based classical ELISA, i.e., the sensitivity was increased. The SApolyHRP conjugate causes a typically 19-fold stronger signal generation in comparison to the traditional HRP labeled anti-mouse IgG at the same concentration (25 ng mL −1 ). Moreover, the SApolyHRP-based assay has a much wider linear range and a 3.8-fold better signal-to-noise ratio. Considering its simplicity, sensitivity and ease of operation, this competitive ELISA is considered to be a promising tool for small molecule immuno detection. (author)

  12. Kinetics, improved activity and thermostability of endoglucanase and beta glucosidase from a mutant-derivative of aspergillus niger ms82

    International Nuclear Information System (INIS)

    Sohail, M.; Ahmad, A.; Khan, S.A.; Uddin, F.

    2013-01-01

    A mutant MS301 of Aspergillus niger MS82 showed 1.5 to 2.5-fold improved endoglucanase and beta-glucosidase activity when grown on crude lignocellulosic substrates under solid-state and submerged conditions. Indicators of thermal stability of enzymes (Tm and T1/2) showed that the wild type and mutant endoglucanase was more heat-resistant compared to beta-glucosidase. However, mutant and parent enzymes shared almost the same values for melting temperatures and half-lives. Endoglucanase and beta-glucosidase from both the strains showed optimum activity under acidic pH. Energy of activation (Ea) of mutant beta-glucosidase was substantially lower than the parent enzyme while Ea of mutant endoglucanase was slightly less than the parent. The lowered Ea values can be attributed to the improved beta-glucosidase activity of the mutant strain. Moreover, the MS301 enzymes were better in hydrolyzing purified and crude cellulosic materials than the parent MS82. (author)

  13. Isolation and optimization of pectinase enzyme production one of useful industrial enzyme in Aspergillus niger, Rhizopus oryzae, Penicilium chrysogenum

    Directory of Open Access Journals (Sweden)

    akram songol

    2016-06-01

    Full Text Available Introduction: Pectinase enzyme is one of the most important industrial enzymes which isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the fruit and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi performed through plate culture on pectin medium and staining with Lugol's iodine solution. The best strains were identified by ITS1, 4 sequencing as Aspergillus fumigatus, Rhizopus oryzae, Penicilium chrysogenum. The enzyme production was optimized by application of the five factorial design, each at three levels. These factors are carbon sources (whey, glucose and stevia, ammonium sulfate, manganese sulfate, temperature, and pH. Pectinase concentration was measured by the Miller method. Results: The results indicate that optimum condition for enzyme production for three fungi strains was obtained at 32 °C, pH = 6, 3g / L manganese sulfate, 2.75g / L of ammonium sulfate and 10g / L of each carbon source. The best experiment in obtaining the optimum enzyme contained 1.328 mg / ml of glucose for Aspergillus niger 1.284 and 1.039 mg / ml of whey for Rhizopus oryzae and Penicilium chrysogenum. Molecular weight of enzyme was about 40 and 37 kDa which was obtained by SDS- PAGE. Discussion and conclusion: The results indicate that three strains could grow in a wide range of carbon source, pH and temperature, which could be a good candidate for industrial application.

  14. Porcine pulmonary angiotensin I-converting enzyme--biochemical characterization and spatial arrangement of the N- and C-domains by three-dimensional electron microscopic reconstruction.

    Science.gov (United States)

    Chen, Hui-Ling; Lünsdorf, Heinrich; Hecht, Hans-Jürgen; Tsai, Hsin

    2010-08-01

    The somatic angiotensin I-converting enzyme (sACE; peptidyl-dipeptidase A; EC 3.4.15.1) was isolated from pig lung and purified to homogeneity. The purified enzyme has a molecular mass of about 180 kDa. Upon proteolytic cleavage, two approximately 90 kDa fragments were obtained and identified by amino-terminal sequence analysis as the N- and C-domains of sACE. Both purified domains were shown to be catalytically active. A 2.3 nm resolution model of sACE was obtained by three-dimensional electron microscopic reconstruction of negatively stained sACE particles, based on atomic X-ray data fitting. Our model shows for the first time the relative orientation of the sACE catalytically active domains and their spatial distance. (c) 2010 Elsevier Ltd. All rights reserved.

  15. Expression and characterization of a recombinant maize CK-2 alpha subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Dobrowolska, G

    1993-01-01

    to support the immunological data also by biochemical and biophysical experiments the availability of a recombinant CK-2 alpha from maize was a prerequisite. A maize cDNA clone of maize CK-2 alpha was expressed in the bacterial strain BL21 (DE3). The recombinant protein was purified to homogeneity; its......CKIIB, one of the CK-2 like enzymes which have been isolated from maize, has been shown to be a monomeric enzyme that cross-reacts with anti CK-2 alpha specific antibodies suggesting a possible relationship between the two proteins (Dobrowolska et al. (1992) Eur. J. Biochem. 204, 299-303). In order...... molecular mass on one-dimensional SDS PAGE was estimated to be 36.5 kDa. The calculated molecular mass according to the amino acid composition is 39,228 Da (332 amino acids). The recombinant maize CK-2 alpha (rmCK-2 alpha) exhibited mostly the same properties as the recombinant human CK-2 alpha (rhCK-2...

  16. Purification and characterization of an alkaline phosphatase induced by phosphorus starvation in common bean (Phaseolus vulgaris L.) roots

    International Nuclear Information System (INIS)

    Morales, L.; Gutierrez, N.; Maya, V.; Parra, C.; Martinez B, E.; Coello, P.

    2012-01-01

    Two phosphatase isoforms from roots of the common bean (Phaseolus vulgaris L.) showed an increase in activity in response to phosphate deficiency. One of them (APIII) was chosen for further purification through ionic exchange chromatography and preparative electrophoresis. The estimated molecular mass of APIII was 35 kDa by both SDS-Page and gel filtration analyses, suggesting a monomeric form of the active enzyme. The phosphatase was classified as an alkaline phosphatase based on the requirement of ph 8 for optimum catalysis. It not only exhibited broad substrate specificity, with the most activity against pyrophosphate, but also effectively catalyzed the hydrolysis of polyphosphate, glucose-1-phosphate and phospho enol-pyruvate. Activity was completely inhibited by molybdate, vanadate and phosphate but was only partially inhibited by fluoride. Although divalent cations were not essential for the pyro phosphatase activity of this enzyme, the hydrolysis of pyro phosphatase increased substantially in the presence of Mg 2+ .

  17. Purification and characterization of an alkaline phosphatase induced by phosphorus starvation in common bean (Phaseolus vulgaris L.) roots

    Energy Technology Data Exchange (ETDEWEB)

    Morales, L.; Gutierrez, N.; Maya, V.; Parra, C.; Martinez B, E.; Coello, P., E-mail: pcoello@servidor.unam.mx [UNAM, Facultad de Quimica, Departamento de Bioquimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-07-01

    Two phosphatase isoforms from roots of the common bean (Phaseolus vulgaris L.) showed an increase in activity in response to phosphate deficiency. One of them (APIII) was chosen for further purification through ionic exchange chromatography and preparative electrophoresis. The estimated molecular mass of APIII was 35 kDa by both SDS-Page and gel filtration analyses, suggesting a monomeric form of the active enzyme. The phosphatase was classified as an alkaline phosphatase based on the requirement of ph 8 for optimum catalysis. It not only exhibited broad substrate specificity, with the most activity against pyrophosphate, but also effectively catalyzed the hydrolysis of polyphosphate, glucose-1-phosphate and phospho enol-pyruvate. Activity was completely inhibited by molybdate, vanadate and phosphate but was only partially inhibited by fluoride. Although divalent cations were not essential for the pyro phosphatase activity of this enzyme, the hydrolysis of pyro phosphatase increased substantially in the presence of Mg{sup 2+}.

  18. Crystallization and preliminary crystallographic analysis of decameric and monomeric forms of C49S mutant thioredoxin-dependent AhpC from Helicobacter pylori

    International Nuclear Information System (INIS)

    Supangat; Seo, Kyung Hye; Furqoni, Ahmad; Kwon, Young-Chul; Cho, Myung-Je; Rhee, Kwang-Ho; Lee, Sang Yeol; Lee, Kon Ho

    2008-01-01

    Decameric and monomeric forms of recombinant C49S mutant AhpC from H. pylori have been crystallized. Diffraction data were collected to 2.8 and 2.25 Å, respectively. Cys49Ser mutant Helicobacter pylori alkyl hydroperoxide reductase (C49S HpAhpC) was purified under reducing conditions in monomeric and decameric forms. The monomeric form was crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.25 Å resolution and belonged to space group C2, with unit-cell parameters a = 245.8, b = 140.7, c = 189.5 Å, β = 127°, and contained 20 molecules in the asymmetric unit. A crystal of the decameric form was obtained by the microbatch crystallization method and diffracted to 2.8 Å resolution. It belonged to space group C222, with unit-cell parameters a = 257.5, b = 417.5, c = 95.6 Å. The structure of the monomeric form of C49S HpAhpC has been solved by the molecular-replacement method

  19. Translocation of an 89-kDa periplasmic protein is associated with Holospora infection

    International Nuclear Information System (INIS)

    Iwatani, Koichi; Dohra, Hideo; Lang, B. Franz; Burger, Gertraud; Hori, Manabu; Fujishima, Masahiro

    2005-01-01

    The symbiotic bacterium Holospora obtusa infects the macronucleus of the ciliate Paramecium caudatum. After ingestion by its host, an infectious form of Holospora with an electron-translucent tip passes through the host digestive vacuole and penetrates the macronuclear envelope with this tip. To investigate the underlying molecular mechanism of this process, we raised a monoclonal antibody against the tip-specific 89-kDa protein, sequenced this partially, and identified the corresponding complete gene. The deduced protein sequence carries two actin-binding motifs. Indirect immunofluorescence microscopy shows that during escape from the host digestive vacuole, the 89-kDa proteins translocates from the inside to the outside of the tip. When the bacterium invades the macronucleus, the 89-kDa protein is left behind at the entry point of the nuclear envelope. Transmission electron microscopy shows the formation of fine fibrous structures that co-localize with the antibody-labeled regions of the bacterium. Our findings suggest that the 89-kDa protein plays a role in Holospora's escape from the host digestive vacuole, the migration through the host cytoplasm, and the invasion into the macronucleus

  20. Development of bisphenol A-removing recombinant Escherichia coli by monomeric and dimeric surface display of bisphenol A-binding peptide.

    Science.gov (United States)

    Maruthamuthu, Murali Kannan; Hong, Jiyeon; Arulsamy, Kulandaisamy; Somasundaram, Sivachandiran; Hong, SoonHo; Choe, Woo-Seok; Yoo, Ik-Keun

    2018-04-01

    Peptide-displaying Escherichia coli cells were investigated for use in adsorptive removal of bisphenol A (BPA) both in Luria-Bertani medium including BPA or ATM thermal paper eluted wastewater. Two recombinant strains were constructed with monomeric and dimeric repeats of the 7-mer BPA-binding peptide (KSLENSY), respectively. Greater than threefold increased adsorption of BPA [230.4 µmol BPA per g dry cell weight (DCW)] was found in dimeric peptide-displaying cells compared to monomeric strains (63.4 µmol per g DCW) in 15 ppm BPA solution. The selective removal of BPA from a mixture of BPA analogs (bisphenol F and bisphenol S) was verified in both monomeric and dimeric peptide-displaying cells. The binding chemistry of BPA with the peptide was assumed, based on molecular docking analysis, to be the interaction of BPA with serine and asparagine residues within the 7-mer peptide sequence. The peptide-displaying cells also functioned efficiently in thermal paper eluted wastewater containing 14.5 ppm BPA.

  1. Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes

    NARCIS (Netherlands)

    Vujičić-Žagar, Andreja; Pijning, Tjaard; Kralj, Slavko; López, Cesar A.; Eeuwema, Wieger; Dijkhuizen, Lubbert; Dijkstra, Bauke W.

    2010-01-01

    Glucansucrases are large enzymes belonging to glycoside hydrolase family 70, which catalyze the cleavage of sucrose into fructose and glucose, with the concomitant transfer of the glucose residue to a growing α-glucan polymer. Among others, plaque-forming oral bacteria secrete these enzymes to

  2. 26kDa endochitinase from barley seeds: real-time monitoring of the enzymatic reaction and substrate binding experiments using electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Dennhart, Nicole; Weigang, Linda M M; Fujiwara, Maho

    2009-01-01

    A 26 kDa endochitinase from barley seeds was enzymatically characterized exclusively by electrospray ionization mass spectrometry (ESI-MS). At first, oligosaccharide hydrolysis catalyzed by the barley chitinase was monitored in real-time by ESI-MS. The reaction time-course obtained by ESI......-MS monitoring was found to be consistent with the data obtained earlier by HPLC, and the quantitative profile was successfully simulated by kinetic modeling of the enzymatic hydrolysis. It is obvious that the real-time monitoring method by ESI-MS allows a faster and cheaper determination of the chitinase...... of the enzymatic activity in E67Q is definitely caused by a point mutation of Glu67 but not due to partial unfolding of the mutated enzyme. Finally, association constants of enzyme-oligosaccharide complexes were calculated from Scatchard plots obtained by mass spectra. The binding free energy values obtained for E...

  3. Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment.

    Science.gov (United States)

    Lum, Jeremy S; Fernandez, Francesca; Matosin, Natalie; Andrews, Jessica L; Huang, Xu-Feng; Ooi, Lezanne; Newell, Kelly A

    2016-10-10

    Group 1 metabotropic glutamate receptors (mGluR1/mGluR5) play an integral role in neurodevelopment and are implicated in psychiatric disorders, such as schizophrenia. mGluR1 and mGluR5 are expressed as homodimers, which is important for their functionality and pharmacology. We examined the protein expression of dimeric and monomeric mGluR1α and mGluR5 in the prefrontal cortex (PFC) and hippocampus throughout development (juvenile/adolescence/adulthood) and in the perinatal phencyclidine (PCP) model of schizophrenia. Under control conditions, mGluR1α dimer expression increased between juvenile and adolescence (209-328%), while monomeric levels remained consistent. Dimeric mGluR5 was steadily expressed across all time points; monomeric mGluR5 was present in juveniles, dramatically declining at adolescence and adulthood (-97-99%). The mGluR regulators, Homer 1b/c and Norbin, significantly increased with age in the PFC and hippocampus. Perinatal PCP treatment significantly increased juvenile dimeric mGluR5 levels in the PFC and hippocampus (37-50%) but decreased hippocampal mGluR1α (-50-56%). Perinatal PCP treatment also reduced mGluR1α dimer levels in the PFC at adulthood (-31%). These results suggest that Group 1 mGluRs have distinct dimeric and monomeric neurodevelopmental patterns, which may impact their pharmacological profiles at specific ages. Perinatal PCP treatment disrupted the early expression of Group 1 mGluRs which may underlie neurodevelopmental alterations observed in this model.

  4. Purification and Partial Characterization of Catalase from Chicken Erythrocytes and the Effect of Various Inhibitors on Enzyme Activity

    OpenAIRE

    AYDEMİR, Tülin; KURU, Kevser

    2003-01-01

    Catalase plays a major role in the protection of tissues from the toxic effects of H2O2 and partially reduced oxygen species. A nearly 136-fold enzyme purification was obtained from chicken erythrocyte by acetone precipitation, ethanol-chloroform treatment, CM-cellulose and Sephadex G-200 chromatography. The specific activity of purified enzyme was 42,556 U/mg. The molecular weight of the native chicken erythrocyte catalase was estimated at 240 kDa by gel filtration. SDS-gel electr...

  5. Purification and Characterization of Glutaminase Free Asparaginase from Enterobacter cloacae: In-Vitro Evaluation of Cytotoxic Potential against Human Myeloid Leukemia HL-60 Cells.

    Directory of Open Access Journals (Sweden)

    Islam Husain

    Full Text Available Asparaginase is an important antileukemic agent extensively used worldwide but the intrinsic glutaminase activity of this enzymatic drug is responsible for serious life threatening side effects. Hence, glutaminase free asparaginase is much needed for upgradation of therapeutic index of asparaginase therapy. In the present study, glutaminase free asparaginase produced from Enterobacter cloacae was purified to apparent homogeneity. The purified enzyme was found to be homodimer of approximately 106 kDa with monomeric size of approximately 52 kDa and pI 4.5. Purified enzyme showed optimum activity between pH 7-8 and temperature 35-40°C, which is close to the internal environment of human body. Monovalent cations such as Na+ and K+ enhanced asparaginase activity whereas divalent and trivalent cations, Ca2+, Mg2+, Zn2+, Mn2+, and Fe3+ inhibited the enzyme activity. Kinetic parameters Km, Vmax and Kcat of purified enzyme were found to be 1.58×10-3 M, 2.22 IU μg-1 and 5.3 × 104 S-1, respectively. Purified enzyme showed prolonged in vitro serum (T1/2 = ~ 39 h and trypsin (T1/2 = ~ 32 min half life, which is therapeutically remarkable feature. The cytotoxic activity of enzyme was examined against a panel of human cancer cell lines, HL-60, MOLT-4, MDA-MB-231 and T47D, and highest cytotoxicity observed against HL-60 cells (IC50 ~ 3.1 IU ml-1, which was comparable to commercial asparaginase. Cell and nuclear morphological studies of HL-60 cells showed that on treatment with purified asparaginase symptoms of apoptosis were increased in dose dependent manner. Cell cycle progression analysis indicates that enzyme induces apoptosis by cell cycle arrest in G0/G1 phase. Mitochondrial membrane potential loss showed that enzyme also triggers the mitochondrial pathway of apoptosis. Furthermore, the enzyme was found to be nontoxic for human noncancerous cells FR-2 and nonhemolytic for human erythrocytes.

  6. Tellurite and Tellurate Reduction by the Aerobic Anoxygenic Phototroph Erythromonas ursincola, Strain KR99 Is Carried out by a Novel Membrane Associated Enzyme

    Directory of Open Access Journals (Sweden)

    Chris Maltman

    2017-04-01

    Full Text Available Erythromonas ursincola, strain KR99 isolated from a freshwater thermal spring of Kamchatka Island in Russia, resists and reduces very high levels of toxic tellurite under aerobic conditions. Reduction is carried out by a constitutively expressed membrane associated enzyme, which was purified and characterized. The tellurite reductase has a molecular weight of 117 kDa, and is comprised of two subunits (62 and 55 kDa in a 1:1 ratio. Optimal activity occurs at pH 7.0 and 28 °C. Tellurite reduction has a Vmax of 5.15 µmol/min/mg protein and a Km of 3.36 mM. The enzyme can also reduce tellurate with a Vmax and Km of 1.08 µmol/min/mg protein and 1.44 mM, respectively. This is the first purified membrane associated Te oxyanion reductase.

  7. The anionic biosurfactant rhamnolipid does not denature industrial enzymes

    Directory of Open Access Journals (Sweden)

    Jens Kvist Madsen

    2015-04-01

    Full Text Available Biosurfactants (BS are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ, the phospholipase Lecitase Ultra® (LT and the α-amylase Stainzyme® (SZ. Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction towards the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the protein well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries to SZ. Furthermore all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant proteins. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications.

  8. Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages.

    Science.gov (United States)

    Rabe, Shahrzad Zamani Taghizadeh; Ghazanfari, Tooba; Siadat, Zahra; Rastin, Maryam; Rabe, Shahin Zamani Taghizadeh; Mahmoudi, Mahmoud

    2015-04-01

    Garlic 14-kDa protein is purified from garlic (Allium sativum L.) which is used in traditional medicine and exerts various immunomodulatory activities. The present study investigated the suppressive effect of garlic 14-kDa protein on LPS-induced expression of pro-inflammatory mediators and underlying mechanism in inflammatory macrophages. J774A.1 macrophages were treated with 14-kDa protein (5-30 μg/ml) with/without LPS (1 μg/ml) and the production of inflammatory mediators such as prostaglandin E2 (PGE2), TNF-α, and IL-1β released were measured using ELISA. Nitric oxide (NO) production was determined using the Griess method. The anti-inflammatory activity of 14-kDa protein was examined by measuring inducible nitric oxide synthase and cyclooxygenase-2 proteins using western blot. The expression of nuclear NF-κB p65 subunit was assessed by western blot. Garlic 14-kDa protein significantly inhibited the excessive production of NO, PGE, TNF-α, and IL-1β in lipopolysaccharide (LPS)-activated J774A.1 macrophages in a concentration-related manner without cytotoxic effect. Western blot analysis demonstrated that garlic 14-kDa protein suppressed corresponding inducible NO synthase expression and activated cyclooxygenase-2 protein expression. The inhibitory effect was mediated partly by a reduction in the activity and expression of transcription factor NF-κB protein. Our results suggested, for the first time, garlic 14-kDa protein exhibits anti-inflammatory properties in macrophages possibly by suppressing the inflammatory mediators via the inhibition of transcription factor NF-κB signaling pathway. The traditional use of garlic as anti-inflammatory remedy could be ascribed partly to 14-kDa protein content. This protein might be a useful candidate for controlling inflammatory diseases and further investigations in vivo.

  9. A 23-kDa protein as a substrate for protein kinase C in bovine neutrophils. Purification and partial characterization

    International Nuclear Information System (INIS)

    Stasia, M.J.; Dianoux, A.C.; Vignais, P.V.

    1989-01-01

    In 32 P i -loaded bovine neutrophils stimulated with phorbol myristate acetate (PMA), radioactivity was preferentially incorporated into a protein of low molecular mass, suggesting a PKC-dependent phosphorylation. This protein, termed 23-kDa protein, was predominantly localized in the cytosol. The apparent molecular mass of the purified protein range between 20 and 23 kDa. In the absence of mercaptoethanol, a dimer accumulated. Homogeneity of the 23-kDa protein was verified by 2D-PAGE analysis. Gel isoelectric focusing (IEF) of the purified 23-kDa protein followed by Coomassie blue staining allowed the visualization of our discrete protein bands with isoelectric points ranging between pH 6.3 and 6.7. Phosphorylation of the 23-kDa protein by [γ- 32 P]ATP in the presence of bovine neutrophil PKC supplemented with Ca 2+ , phosphatidylserine, and diacylglycerol or with PMA occurred on serine and required the presence of mercaptoethanol. IEF of the 32 P-labeled 23-kDa protein followed by autoradiography revealed for discrete bands with distinct isoelectric points similar to those of the bands stained by Coomassie blue after IEF on nonlabeled 23-kDa protein. The bands of the 23-kDa protein resolved by IEF and transfered to nitrocellulose showed ability to bind [ 35 S]GTP-γ-S. The immunoreactivity of antibodies raised in rabbits against the bovine neutrophil 23-kDa protein was demonstrated on immunoblots after SDS-PAGE. The 23-kDa protein differed also from several other proteins of similar molecular mass that have been identified in neutrophils, namely, calmodulin, the small subunit of the low-potential cytochrome b, and a low molecular weight protein which is ADP-ribosylated by the botulinum toxin

  10. Purification and Characterization of a Novel and Robust L-Asparaginase Having Low-Glutaminase Activity from Bacillus licheniformis: In Vitro Evaluation of Anti-Cancerous Properties

    Science.gov (United States)

    Mahajan, Richi V.; Kumar, Vinod; Rajendran, Vinoth; Saran, Saurabh; Ghosh, Prahlad C.; Saxena, Rajendra Kumar

    2014-01-01

    L-asparaginase having low glutaminase has been a key therapeutic agent in the treatment of acute lymphpoblastic leukemia (A.L.L). In the present study, an extracellular L-asparaginase with low glutaminase activity, produced by Bacillus licheniformis was purified to homogeneity. Protein was found to be a homotetramer of 134.8 KDa with monomeric size of 33.7 KDa and very specific for its natural substrate i.e. L-asparagine. The activity of purified L-asparaginase enhanced in presence of cations including Na+ and K+, whereas it was moderately inhibited in the presence of divalent cations and thiol group blocking reagents. The purified enzyme was maximally active over the range of pH 6.0 to 10.0 and temperature of 40°C and enzyme was stable maximum at pH 9.0 and −20°C. CD spectra of L-asparaginase predicted the enzyme to consist of 63.05% α- helix and 3.29% β-sheets in its native form with T222 of 58°C. Fluorescent spectroscopy showed the protein to be stable even in the presence of more than 3 M GdHCl. Kinetic parameters Km, Vmax and kcat of purified enzyme were found as 1.4×10−5 M, 4.03 IU and 2.68×103 s−1, respectively. The purified L-asparaginase had cytotoxic activity against various cancerous cell lines viz. Jurkat clone E6-1, MCF-7 and K-562 with IC50 of 0.22 IU, 0.78 IU and 0.153 IU respectively. However the enzyme had no toxic effect on human erythrocytes and CHO cell lines hence should be considered potential candidate for further pharmaceutical use as an anticancer drug. PMID:24905227

  11. Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose

    Directory of Open Access Journals (Sweden)

    Hodge David B

    2011-06-01

    Full Text Available Abstract Background Pretreatment is a critical step in the conversion of lignocellulose to fermentable sugars. Although many pretreatment processes are currently under investigation, none of them are entirely satisfactory in regard to effectiveness, cost, or environmental impact. The use of hydrogen peroxide at pH 11.5 (alkaline hydrogen peroxide (AHP was shown by Gould and coworkers to be an effective pretreatment of grass stovers and other plant materials in the context of animal nutrition and ethanol production. Our earlier experiments indicated that AHP performed well when compared against two other alkaline pretreatments. Here, we explored several key parameters to test the potential of AHP for further improvement relevant to lignocellulosic ethanol production. Results The effects of biomass loading, hydrogen peroxide loading, residence time, and pH control were tested in combination with subsequent digestion with a commercial enzyme preparation, optimized mixtures of four commercial enzymes, or optimized synthetic mixtures of pure enzymes. AHP pretreatment was performed at room temperature (23°C and atmospheric pressure, and after AHP pretreatment the biomass was neutralized with HCl but not washed before enzyme digestion. Standard enzyme digestion conditions were 0.2% glucan loading, 15 mg protein/g glucan, and 48 h digestion at 50°C. Higher pretreatment biomass loadings (10% to 20% gave higher monomeric glucose (Glc and xylose (Xyl yields than the 2% loading used in earlier studies. An H2O2 loading of 0.25 g/g biomass was almost as effective as 0.5 g/g, but 0.125 g/g was significantly less effective. Optimized mixtures of four commercial enzymes substantially increased post-AHP-pretreatment enzymatic hydrolysis yields at all H2O2 concentrations compared to any single commercial enzyme. At a pretreatment biomass loading of 10% and an H2O2 loading of 0.5 g/g biomass, an optimized commercial mixture at total protein loadings of 8 or 15 mg

  12. MONOMERIC ß-AMYLOID INTERACTS WITH TYPE-1 INSULIN-LIKE GROWTH FACTOR RECEPTORS TO PROVIDE ENERGY SUPPLY TO NEURONS

    Directory of Open Access Journals (Sweden)

    Maria Laura eGiuffrida

    2015-08-01

    Full Text Available ß-amyloid (Aß1-42 is produced by proteolytic cleavage of the transmembrane type-1 protein, amyloid precursor protein. Under pathological conditions, Aß1-42 self-aggregates into oligomers, which cause synaptic dysfunction and neuronal loss, and are considered the culprit of Alzheimer’s disease (AD. However, Aß1-42 is mainly monomeric at physiological concentrations, and the precise role of monomeric Aß1-42 in neuronal function is largely unknown. We report that the monomer of Aß1-42 activates type-1 insulin-like growth factor receptors and enhances glucose uptake in neurons and peripheral cells by promoting the translocation of the Glut3 glucose transporter from the cytosol to the plasma membrane. In neurons, activity-dependent glucose uptake was blunted after blocking endogenous Aß production, and re-established in the presence of cerebrospinal fluid Aß. APP-null neurons failed to enhance depolarization-stimulated glucose uptake unless exogenous monomeric Aß1-42 was added. These data suggest that Aß1-42 monomers were critical for maintaining neuronal glucose homeostasis. Accordingly, exogenous Aß1-42 monomers were able to rescue the low levels of glucose consumption observed in brain slices from AD mutant mice.

  13. Protein Hydrolysis from Catfish Prepared by Papain Enzyme and Antioxidant Activity of Hydrolyzate

    Directory of Open Access Journals (Sweden)

    Ace Baehaki

    2015-12-01

    Full Text Available The objective of this research was to make a protein hydrolysates from catfish (Pangasius pangasius enzymatically using papain enzyme and analyzed the antioxidant activity of protein hydrolysates produced. The research used the method completely randomized design with two replications the treatment were the difference concentration of the papain enzyme (0%, 1%, 2%, 3%, 4%, 5%, and 6%. The parameters of research were antioxidative activity using DPPH (2,2-difenil-1–pikrilhidrazil, protein content, and molecular weight using SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis. The results showed that catfish protein hydrolysates prepared by papain enzyme has antioxidative activity. The highest degree of hydrolysis was 71.98% at enzyme concentration of 6%. Based on the DPPH scavenging method catfish protein hydrolysates has the antioxidative activity with the value 37.85-67.62%. The protein content of catfish protein hydrolysates were 20.86-54.47 mg/ml. The molecular weight of catfish protein hydrolyzates were 11.90-65.20 kDa.

  14. Induction of antibodies against epitopes inaccessible on the HIV type 1 envelope oligomer by immunization with recombinant monomeric glycoprotein 120

    DEFF Research Database (Denmark)

    Schønning, Kristian; Bolmstedt, A; Novotny, J

    1998-01-01

    An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected...... immunogenic structures inaccessible on the envelope oligomer. The limited ability of recombinant gp120 vaccines to induce neutralizing antibodies against primary isolates may thus not exclusively reflect genetic variation....

  15. Purification, characterization and allergenicity assessment of 26kDa protein, a major allergen from Cicer arietinum.

    Science.gov (United States)

    Verma, Alok Kumar; Sharma, Akanksha; Kumar, Sandeep; Gupta, Rinkesh Kumar; Kumar, Dinesh; Gupta, Kriti; Giridhar, B H; Das, Mukul; Dwivedi, Premendra D

    2016-06-01

    Chickpea (CP), a legume of the family Fabaceae, is an important nutrient-rich food providing protein, essential amino acids, vitamins, dietary fibre, and minerals. Unfortunately, several IgE-binding proteins in CP have been detected that are responsible for allergic manifestations in sensitized population. Therefore, the prevalence of CP induced allergy prompted us towards purification, characterization and allergenicity assessment of a major ∼26kDa protein from chickpea crude protein extract (CP-CPE). Purification of CP 26kDa protein was done using a combination of fractionation and anion exchange chromatography. This protein was further characterized as "Chain A, crystal structure of a plant albumin" from Cicer arietinum with Mol wt 25.8kDa by Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Further, allergenic potential of purified 25.8kDa protein was assessed using in vivo and in vitro model. Purified protein showed IgE-binding capacity with sensitized BALB/c mice and CP allergic patient's sera. Enhanced levels of specific and total IgE, MCP-1, MCPT-1, myeloperoxidase, histamine, prostaglandin D2, and cysteinyl leukotriene were found in sera of mice treated with CP ∼26kDa protein. Further, expressions of Th2 cytokines (i.e. IL-4, IL-5, IL-13), transcription factors (i.e. GATA-3, STAT-6, SOCS-3) and mast cell signaling proteins (Lyn, cFgr, Syk, PLC-γ2, PI-3K, PKC) were also found increased at mRNA and protein levels in the intestines of mice treated with CP ∼26kDa protein. In addition, enhanced release of β-hexosaminidase, histamine, cysteinyl leukotriene and prostaglandin D2 were observed in RBL2H3 cell line when treated (125μg) with CP 26kDa protein. Conclusively, in vivo and in vitro studies revealed the allergenic potential of purified CP 26kDa protein. Being a potential allergen, plant albumin may play a pivotal role in CP induced allergenicity. Current study will be helpful for better development of therapeutic approaches to

  16. Detection of calmodulin binding protein at 170 KDA in BALB, AKR, DON and chicken granulosa cells

    International Nuclear Information System (INIS)

    Selinfreund, R.; Lin, P.H.; Marrone, B.; Wharton, W.

    1987-01-01

    Calmodulin (CAM) has been shown to bind to the epidermal growth factor (EGF) receptor (170 kDa) and is phosphorylated in a EGF dependent manner in the A431 human epidermoid carcinoma cells. In the present study, they report 125 I-CAM binding to a 170 kDa protein detected in cell membrane vesicles of Balb/3T3, AKR, DON and chicken granulosa cells. Purified plasma membranes from these cells were resolved via electrophoresis (without heat denaturation) and electroblotted onto nictrocellulose paper. Upon hybridizing against 125 I-CAM, a distinct autoradiographic band occurred at 170 kDa for all the cells lines under study. The binding of CAM is specific and can be displaced with the addition of excess unlabeled CAM. The result suggest that 125 I-CAM may bind to the 170 kDa EGF receptor in BALB, AKR, DON and chicken granulosa cells

  17. Biosynthesis of 10 kDa and 7.5 kDa insulin-like growth factor II in a human rhabdomyosarcoma cell line

    DEFF Research Database (Denmark)

    Nielsen, F C; Haselbacher, G; Christiansen, Jan

    1993-01-01

    In the present study we have analysed the expression of insulin-like growth factor II (IGF-II) in the human rhabdomyosarcoma cell line IN157.IN157 cells express high levels of three IGF-II mRNAs of 6.0 kb, 4.8 kb and 4.2 kb. In contrast, normal skeletal muscle expresses a negligible amount of IGF......-II mRNA. Two forms of IGF-II with molecular masses of 7.5 kDa and 10 kDa, corresponding to the mature IGF-II and IGF-II with a C-terminal extension of 21 amino acids (IGF-IIE21), were secreted into the culture medium at amounts of 17 ng/ml (2.3 nM) and 15 ng/ml (1.5 nM), respectively. IN157 cells also......-II and IGF-IIE21 with Kd values of 0.5 nM and 2 nM, respectively, and IGF-I with about 500 times lower affinity. IGF-II and IGF-IIE21 stimulated DNA synthesis via the IGF-I receptor, whereas the IGF-II/Man 6-P receptor mediated their rapid internalization and inactivation. During culture of IN157 cells about...

  18. Monomeric, Oligomeric and Polymeric Proteins in Huntington Disease and Other Diseases of Polyglutamine Expansion

    Directory of Open Access Journals (Sweden)

    Guylaine Hoffner

    2014-03-01

    Full Text Available Huntington disease and other diseases of polyglutamine expansion are each caused by a different protein bearing an excessively long polyglutamine sequence and are associated with neuronal death. Although these diseases affect largely different brain regions, they all share a number of characteristics, and, therefore, are likely to possess a common mechanism. In all of the diseases, the causative protein is proteolyzed, becomes abnormally folded and accumulates in oligomers and larger aggregates. The aggregated and possibly the monomeric expanded polyglutamine are likely to play a critical role in the pathogenesis and there is increasing evidence that the secondary structure of the protein influences its toxicity. We describe here, with special attention to huntingtin, the mechanisms of polyglutamine aggregation and the modulation of aggregation by the sequences flanking the polyglutamine. We give a comprehensive picture of the characteristics of monomeric and aggregated polyglutamine, including morphology, composition, seeding ability, secondary structure, and toxicity. The structural heterogeneity of aggregated polyglutamine may explain why polyglutamine-containing aggregates could paradoxically be either toxic or neuroprotective.

  19. Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Gopinath, Subash C. B.; Perumal, Veeradasan; Lakshmipriya, Thangavel; Rajintraprasad, Haarindraprasad; Rao, Balakrishnan S.; Arshad, M. K. Md; Hashim, Uda; Kumaresan, Ramanujam; Kotani, Norito; Chen, Yeng

    2016-01-01

    The 16 kDa heat shock protein (16 kDa HSP) against Mycobacterium tuberculosis (MT), expressed during the growth phase of MT, is a potential target in diagnostic tests for tuberculosis (TB). We describe here a method for impedimetric determination of the antigen by using a nanogapped dielectric surface consisting of a silver support coated with a thin finger-shaped coating made from zinc oxide and gold and patterned through a lift-off process. The electrode was characterized by scanning electron microscopy, field emission scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray spectroscopy. Surface chemical functionalization and immobilization of antibody against the 16 kDa HSP was evidenced by FTIR. In order to improve the detection limit, the antigen was conjugated to 10 nm gold nanoparticles. The resulting biosensor is capable of detecting the 16 kDa HSP in concentrations as low as 100 fM. The method covers a wide analytical range that extends from 100 fM to 1 nM. (author)

  20. The human 64-kDa polyadenylylation factor contains a ribonucleoprotein-type RNA binding domain and unusual auxiliary motifs

    International Nuclear Information System (INIS)

    Takagaki, Yoshio; Manley, J.L.; MacDonald, C.C.; Shenk, T.

    1992-01-01

    Cleavage stimulation factor is one of the multiple factors required for 3'-end cleavage of mammalian pre-mRNAs. The authors have shown previously that this factor is composed of three subunits with estimated molecular masses of 77, 64, and 50 kDa and that the 64-kDa subunit can be UV-cross linked to RNA in a polyadenylylation signal (AAUAAA)-dependent manner. They have now isolated cDNAs encoding the 64-kDa subunit of human cleavage stimulation factor. The 64-kDa subunit contains a ribonucleoprotein-type RNA binding domain in the N-terminal region and a repeat structure in the C-terminal region in which a pentapeptide sequence (consensus MEARA/G) is repeated 12 times and the formation of a long α-helix stabilized by salt bridges is predicted. An ∼270-amino acid segment surrounding this repeat structure is highly enriched in proline and glycine residues (∼20% for each). When cloned 64-kDa subunit was expressed in Escherichia coli, an N-terminal fragment containing the RNA binding domain bound to RNAs in a polyadenylylation-signal-independent manner, suggesting that the RNA binding domain is directly involved in the binding of the 64-kDa subunit to pre-mRNAs

  1. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    Science.gov (United States)

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-03-19

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

  2. Purification and Characterisation of a Fibrinolytic Enzyme from Rhizopus micro sporus var. tuberosus

    Directory of Open Access Journals (Sweden)

    Shuli Zhang

    2015-01-01

    Full Text Available Extracellular fibrinolytic enzyme from Rhizopus microsporus var. tuberosus was purified and characterised. The microorganism was isolated in a distillery from daqu, a fermentative agent used in the production of Chinese liquor and vinegar at diff erent temperatures. The fibrinolytic enzyme was partially purifi ed by ammonium sulphate precipitation, dialysis, DEAE Sepharose® Fast Flow ion exchange chromatography and Sephadex G-75 gel filtration chromatography. The molecular mass of the fi brinolytic enzyme was estimated to be 24.5 kDa by SDS-PAGE. The purified enzyme showed optimal activity at pH=7.0 and 37 °C by fibrin plate method. It showed stronger resistance to the inhibition by trypsin and was stable at 37 °C retaining 96.1 % residual activity aft er 4 h of incubation. The fibrinolytic activity of the enzyme was enhanced by Na+, Ca2+, Mg2+ and Mn2+. Conversely, Zn2+ and Cu2+ partly inhibited enzymatic activity. Using fibrin plate method, we found that the enzyme not only degrades fibrin directly, but also activates plasminogen into plasmin to degrade fibrin. The results indicate that the pure enzyme has a potential in dissolving blood clot, and the possibility for application in the treatment of thrombosis.

  3. Monomeric banana lectin at acidic pH overrules conformational stability of its native dimeric form.

    Directory of Open Access Journals (Sweden)

    Javed M Khan

    Full Text Available Banana lectin (BL is a homodimeric protein categorized among jacalin-related family of lectins. The effect of acidic pH was examined on conformational stability of BL by using circular dichroism, intrinsic fluorescence, 1-anilino-8-napthalene sulfonate (ANS binding, size exclusion chromatography (SEC and dynamic light scattering (DLS. During acid denaturation of BL, the monomerization of native dimeric protein was found at pH 2.0. The elution profile from SEC showed two different peaks (59.65 ml & 87.98 ml at pH 2.0 while single peak (61.45 ml at pH 7.4. The hydrodynamic radii (R h of native BL was 2.9 nm while at pH 2.0 two species were found with R h of 1.7 and 3.7 nm. Furthermore at, pH 2.0 the secondary structures of BL remained unaltered while tertiary structure was significantly disrupted with the exposure of hydrophobic clusters confirming the existence of molten globule like state. The unfolding of BL with different subunit status was further evaluated by urea and temperature mediated denaturation to check their stability. As inferred from high Cm and ΔG values, the monomeric form of BL offers more resistance towards chemical denaturation than the native dimeric form. Besides, dimeric BL exhibited a Tm of 77°C while no loss in secondary structures was observed in monomers even up to 95°C. To the best of our knowledge, this is the first report on monomeric subunit of lectins showing more stability against denaturants than its native dimeric state.

  4. mKikGR, a monomeric photoswitchable fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Satoshi Habuchi

    Full Text Available The recent demonstration and utilization of fluorescent proteins whose fluorescence can be switched on and off has greatly expanded the toolkit of molecular and cell biology. These photoswitchable proteins have facilitated the characterization of specifically tagged molecular species in the cell and have enabled fluorescence imaging of intracellular structures with a resolution far below the classical diffraction limit of light. Applications are limited, however, by the fast photobleaching, slow photoswitching, and oligomerization typical for photoswitchable proteins currently available. Here, we report the molecular cloning and spectroscopic characterization of mKikGR, a monomeric version of the previously reported KikGR that displays high photostability and switching rates. Furthermore, we present single-molecule imaging experiments that demonstrate that individual mKikGR proteins can be localized with a precision of better than 10 nanometers, suggesting their suitability for super-resolution imaging.

  5. Purification and Characterization of Organic Solvent and Detergent Tolerant Lipase from Thermotolerant Bacillus sp. RN2

    Directory of Open Access Journals (Sweden)

    Tadahiko Kajiwara

    2010-09-01

    Full Text Available The aim of this study was to characterize the organic solvent and detergent tolerant properties of recombinant lipase isolated from thermotolerant Bacillus sp. RN2 (Lip-SBRN2. The isolation of the lipase-coding gene was achieved by the use of inverse and direct PCR. The complete DNA sequencing of the gene revealed that the lip-SBRN2 gene contains 576 nucleotides which corresponded to 192 deduced amino acids. The purified enzyme was homogeneous with the estimated molecular mass of 19 kDa as determined by SDS-PAGE and gel filtration. The Lip-SBRN2 was stable in a pH range of 9–11 and temperature range of 45–60 °C. The enzyme was a non metallo-monomeric protein and was active against pNP-caprylate (C8 and pNP-laurate (C12 and coconut oil. The Lip-SBRN2 exhibited a high level of activity in the presence of 108% benzene, 102.4% diethylether and 112% SDS. It is anticipated that the organic solvent and detergent tolerant enzyme secreted by Bacillus sp. RN2 will be applicable as catalysts for reaction in the presence of organic solvents and detergents.

  6. Purification and characterization of [Fe]-hydrogenase from high yielding hydrogen-producing strain, Enterobacter cloacae IIT-BT08 (MTCC 5373)

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Tumpa; Das, Amit Kumar; Das, Debabrata [Department of Biotechnology, Indian Institute of Technology, Kharagpur, WB 721302 (India)

    2009-09-15

    Fe-hydrogenase from Enterobacter cloacae IIT-BT08 was purified 1284 fold with specific activity of 335 {mu}mol H{sub 2}/min/mg protein for hydrogen evolution using reduced methyl viologen as an electron-donor at 25 C. The molecular weight of the monomeric enzyme was determined to be 51 kDa by MALDI-ToF mass spectrometry. The PI of the enzyme was {proportional_to}5.6 displaying its acidic nature. The optimal temperature and pH for hydrogen evolution was 37 C and 7-7.2 respectively. The affinity constant, K{sub m} for reduced methyl viologen was 0.57 {+-} 0.03 mM and that of reduced ferredoxin was 0.72 {+-} 0.04 {mu}M. The enzyme contained {proportional_to}11.47 gm-atom Fe/mol of Fe-hydrogenase. Electron paramagnetic resonance analysis ascertained the existence of iron molecules as [4Fe-4S] clusters. The internal amino acid sequences of trypsin digested peptides of hydrogenase as determined by ESI MS/MS Q-ToF showed 80-87% identities with the respective sequences of Clostridium sp. and Trichomonas sp. hydrogenase. (author)

  7. Lower glutamic acid decarboxylase 65-kDa isoform messenger RNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia.

    Science.gov (United States)

    Glausier, Jill R; Kimoto, Sohei; Fish, Kenneth N; Lewis, David A

    2015-01-15

    Altered gamma-aminobutyric acid (GABA) signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in patients with schizophrenia and schizoaffective disorder. Levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67-kDa isoform (GAD67) in the PFC have been consistently reported to be lower in patients with these disorders, but the status of the second GABA-synthesizing enzyme, glutamic acid decarboxylase 65-kDa isoform (GAD65), remains unclear. GAD65 messenger RNA (mRNA) levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. In a subset of subject pairs, GAD65 relative protein levels were quantified by confocal immunofluorescence microscopy. Mean GAD65 mRNA levels were 13.6% lower in subjects with schizoaffective disorder but did not differ in subjects with schizophrenia relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein levels within subjects with schizoaffective disorder were not attributable to factors commonly comorbid with the diagnosis. In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in patients with schizoaffective disorder relative to patients with schizophrenia, these findings may support an interpretation that GAD65 downregulation provides a homeostatic response complementary to GAD67 downregulation that serves to reduce inhibition in the face of lower PFC network activity. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc

  8. Recombinant DNA specifying the human amyloid. beta. precursor protein (ABPP) encodes a 95-kDa polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Mita, S; Sadlock, J; Herbert, J; Schon, E A

    1988-10-11

    Although the ABPP gene give rise to multiple mRNAs, the primary translation product of this gene is unknown. The longest published cDNA sequences predict a 770-aa polypeptide of 87 kDa. However, in immunoblots, ABPP migrated as a single species of >92 kDa in rat brain, and in human, as a species of 95-100 kDa in non-membrane bound form, as multiple species of 110-135 kDa in membrane-associated form and as a 130-kDa species in fibroblasts. The sizes of these larger species relative to the MW of ABPP predicted from the cDNA sequences have been attributed to postranslational modification. However, the authors have isolated a cDNA (lambdaHAP2) from a human fetal muscle lambdagt11 cDNA library encoding an 843-aa polypeptide with a deduced MW of 94,642. This cDNA contains both exons encoding an 843-aa polypeptide with a deduced MW of 94.642. This cDNA contains both exons encoding the protease inhibitor domains. Primer extension analysis indicates that the 5' terminus of this cDNA is 14 nt from a transcriptional start site. This cDNA, encoding the longest ABPP described to date, may explain some of the observations on the sizes of tissue-derived ABPP.

  9. Potential Marine Fungi Hypocreaceae sp. as Agarase Enzyme to Hydrolyze Macroalgae Gelidium latifolium (Potensi Jamur Hypocreaceae sp. sebagai Enzim Agarase untuk menghidrolisis Makroalga Gelidium latifolium

    Directory of Open Access Journals (Sweden)

    Mujizat Kawaroe

    2015-03-01

    Full Text Available Agarase dapat mendegradasi agar ke oligosakarida dan memiliki banyak manfaat untuk makanan, kosmetik, dan lain-lain. Banyak spesies pendegradasi agar adalah organismelaut. Beberapa agarase telah diisolasi dari genera yang berbeda dari mikroorganisme yang ditemukan di air dan sedimen laut. Hypocreaceae sp. diisolasi dari air laut Pulau Pari, Kepulauan Seribu, Jakarta, Indonesia. Berdasarkan hasil identifikasi gen 16S rDNA dari 500 basis pasangan, isolat A10 memiliki 99% kesamaan dengan Hypocreaceae sp. Enzim agarase ekstraseluler dari Hypocreaceae sp. memiliki pH dan suhu optimum pada 8 TrisHCl (0,148 μ.mL-1 dan 50°C (0,182 μ.mL-1, masing-masing. Enzim Agarase dari Hypocreaceae sp. mencapai kondisi optimum pada aktivitas enzim tertinggi selama inkubasi dalam 24 jam (0,323 μ.mL-1. SDS page mengungkapkan bahwa ada dua band dari protein yang dihasilkan oleh agarase dari Hypocreaceae sp. yang berada di berat molekul 39 kDa dan 44 kDa dan hidrolisis Gelidium latifolium diperoleh 0,88% etanol. Kata kunci: enzim agarase, Hypocreaceae sp., hidrolisis, fungi, rDNA. Agarase can degradedagarto oligosaccharide and has a lot of benefits for food, cosmetics, and others. Many species of agar- degrader are marine-organism. Several agarases have been isolated from different genera of microorganisms found in seawater and marine sediments. Hypocreaceae sp. was isolated from sea water of Pari Islands, Seribu Islands, Jakarta, Indonesia. Based on the results of the 16S rDNA gene identification of 500 base pairs, A10 isolates had 99 % similarity toHypocreaceae sp. The extracellular agarase enzyme from Hypocreaceae sp. have optimum pH and temperature at 8 TrisHCl (0.148 µ.mL-1 and 50 °C (0.182 µ.mL-1, respectively. Agarase enzyme of Hypocreaceae sp. reach an optimum condition at the highest enzyme activity during incubation in 24 hours (0.323 µ.mL-1. SDS Page revealed that there are two bands of protein produced by agarase of Hypocreaceae sp. which are at

  10. SpyRings Declassified: A Blueprint for Using Isopeptide-Mediated Cyclization to Enhance Enzyme Thermal Resilience.

    Science.gov (United States)

    Schoene, C; Bennett, S P; Howarth, M

    2016-01-01

    Enzymes often have marginal stability, with unfolding typically leading to irreversible denaturation. This sensitivity is a major barrier, both for de novo enzyme development and for expanding enzyme impact beyond the laboratory. Seeking an approach to enhance resilience to denaturation that could be applied to a range of different enzymes, we developed SpyRing cyclization. SpyRings contain genetically encoded SpyTag (13 amino acids) on the N-terminus and SpyCatcher (12kDa) on the C-terminus of the enzyme, so that the Spy partners spontaneously react together through an irreversible isopeptide bond. SpyRing cyclization gave major increases in thermal resilience, including on a model for enzyme evolution, β-lactamase, and an industrially important enzyme in agriculture and nutrition, phytase. We outline the SpyRing rationale, including comparison of SpyRing cyclization to other cyclization strategies. The cloning strategy is presented for the simple insertion of enzyme genes for recombinant expression. We discuss structure-based approaches to select suitable enzyme cyclization targets. Approaches to evaluate the cyclization reaction and its effect on enzyme resilience are described. We also highlight the use of differential scanning calorimetry to understand how SpyRing cyclization promotes enzyme refolding. Efficiently searching sequence space will continue to be important for enzyme improvement, but the SpyRing platform may be a valuable rational adjunct for conferring resilience. © 2016 Elsevier Inc. All rights reserved.

  11. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of β-glucuronidase

    International Nuclear Information System (INIS)

    Watanabe, H.; Grubb, J.H.; Sly, W.S.

    1990-01-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human β-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3% of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of β-glucuronidase. At pH 7.5, the rate of endocytosis was only 14% the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized β-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized β-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor

  12. Influence of casein hydrolysates on exopolysaccharide synthesis by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Zhang, Qingli; Yang, Bao; Brashears, Mindy M; Yu, Zhimin; Zhao, Mouming; Liu, Ning; Li, Yinjuan

    2014-05-01

    A lot of interesting research has been undertaken to enhance the yield of exopolysaccharides (EPS) produced by lactic acid bacteria (LAB). The objective of this study was to determine the influence of casein hydrolysates (CH) with molecular weight less than 3 kDa on cell viability, EPS synthesis and the enzyme activity involved in EPS synthesis during the co-culturing of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus in MRS broth for 72 h at 37 ± 0.1 °C. The highest EPS yield (150.1 mg L⁻¹) was obtained on CH prepared with papain (CHP) at 48 h. At 24 h, EPS were composed of galactose, glucose and rhamnose in a molar ratio of 1.0:2.4:1.5. The monosaccharide composition changed with extension of the fermentation time. The activities of α-phosphoglucomutase, uridine 5'-diphosphate (UDP)-glucose pyrophosphorylase and UDP-galactose 4-epimerase were associated with EPS synthesis. Moreover, the activities of β-phosphoglucomutase and deoxythymadine 5'-diphosphate (dTDP)-glucose pyrophosphorylase involved in rhamnose synthesis were very low at the exponential growth phase and could not be detected during other given periods. The influence of different CH (<3 kDa) on LAB viability, EPS production, EPS monomeric composition and activity levels of key metabolic enzymes was distinct. Besides, their influence was related to the distribution of amino acids. © 2013 Society of Chemical Industry.

  13. Structural and functional studies of a 50 kDa antigenic protein from Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Choong, Yee Siew; Lim, Theam Soon; Chew, Ai Lan; Aziah, Ismail; Ismail, Asma

    2011-04-01

    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Functional analysis of the human cytomegalovirus immune evasion protein, pUS322kDa

    International Nuclear Information System (INIS)

    Zhao Yiqiang; Biegalke, Bonita J.

    2003-01-01

    Human cytomegalovirus (HCMV) is an important opportunistic pathogen that infrequently causes disease in individuals with mature immune systems. The HCMV US3 gene encodes a 22-kDa protein that interferes with immune recognition of virally infected cells. The 22-kDa US3 protein binds to major histocompatibility complex (MHC) class I complexes, retaining them in the endoplasmic reticulum (ER), thereby decreasing the presentation of viral antigen to cytotoxic T cells. Our studies demonstrate that correct folding of the ER lumenal domain of the US3 protein is essential, but insufficient for interactions with MHC class I complexes. We demonstrate a requirement for the transmembrane domain of the 22-kDa US3 protein, confirming the results of others, and also show that the cytosolic carboxyl-terminal tail influences the function of the protein. Anchoring of the ER-lumenal immunoglobulin-like fold of the US3 protein to the membrane of the endoplasmic reticulum is critical for the binding and retention of MHC class I complexes

  15. Characterization of a chitinolytic enzyme from Serratia sp. KCK isolated from kimchi juice.

    Science.gov (United States)

    Kim, Hyun-Soo; Timmis, Kenneth N; Golyshin, Peter N

    2007-07-01

    The novel chitinolytic bacterium Serratia sp. KCK, which was isolated from kimchi juice, produced chitinase A. The gene coding for the chitinolytic enzyme was cloned on the basis of sequencing of internal peptides, homology search, and design of degenerated primers. The cloned open reading frame of chiA encodes for deduced polypeptide of 563 amino acid residues with a calculated molecular mass of 61 kDa and appears to correspond to a molecular mass of about 57 kDa, which excluded the signal sequence. The deduced amino acid sequence showed high similarity to those of bacterial chitinases classified as family 18 of glycosyl hydrolases. The chitinase A is an exochitinase and exhibits a greater pH range (5.0-10.0), thermostability with a temperature optimum of 40 degrees C, and substrate range other than Serratia chitinases thus far described. These results suggested that Serratia sp. KCK chitinase A can be used for biotechnological applications with good potential.

  16. In vitro uptake of 140 kDa Bacillus thuringiensis nematicidal crystal proteins by the second stage juvenile of Meloidogyne hapla.

    Directory of Open Access Journals (Sweden)

    Fengjuan Zhang

    Full Text Available Plant-parasitic nematodes (PPNs are piercing/sucking pests, which cause severe damage to crops worldwide, and are difficult to control. The cyst and root-knot nematodes (RKN are sedentary endoparasites that develop specialized multinucleate feeding structures from the plant cells called syncytia or giant cells respectively. Within these structures the nematodes produce feeding tubes, which act as molecular sieves with exclusion limits. For example, Heterodera schachtii is reportedly unable to ingest proteins larger than 28 kDa. However, it is unknown yet what is the molecular exclusion limit of the Meloidogyne hapla. Several types of Bacillus thuringiensis crystal proteins showed toxicity to M. hapla. To monitor the entry pathway of crystal proteins into M. hapla, second-stage juveniles (J2 were treated with NHS-rhodamine labeled nematicidal crystal proteins (Cry55Aa, Cry6Aa, and Cry5Ba. Confocal microscopic observation showed that these crystal proteins were initially detected in the stylet and esophageal lumen, and subsequently in the gut. Western blot analysis revealed that these crystal proteins were modified to different molecular sizes after being ingested. The uptake efficiency of the crystal proteins by the M. hapla J2 decreased with increasing of protein molecular mass, based on enzyme-linked immunosorbent assay analysis. Our discovery revealed 140 kDa nematicidal crystal proteins entered M. hapla J2 via the stylet, and it has important implications in designing a transgenic resistance approach to control RKN.

  17. Biosynthesis of inulin from sucrose using inulosucrase from Lactobacillus gasseri DSM 20604.

    Science.gov (United States)

    Ni, Dawei; Zhu, Yingying; Xu, Wei; Bai, Yuxiang; Zhang, Tao; Mu, Wanmeng

    2018-04-01

    Inulin is composed of fructose residues connected by β-(2, 1) glycosidic linkages with many promising physiochemical and physiological properties. In this study, an inulin-producing inulosucrase gene from Lactobacillus gasseri DSM 20604 was cloned, expressed and purified. SDS-PAGE and gel filtration found that the recombinant inulosucrase is a monomeric protein with a molecular weight of 63KDa. The optimal pH for its sucrose hydrolysis and transfructosylation activities was pH 5.5. The optimal temperatures were measured to be 45, 25, and 35°C for sucrose hydrolysis, transfructosylation, and total activity, respectively. Biosynthesis studies showed that the optimal enzyme dosage was 4.5U/g sucrose. Higher sucrose concentrations immensely contributed to inulin biosynthesis; the inulin yield reached its maximum after 1.5h of reaction. Structural analyses of the polysaccharide produced by the recombinant enzyme from sucrose revealed that it is an inulin-type fructan with a molecular weight of 5.858×10 6 Da. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Purification of camel liver catalase by zinc chelate affinity chromatography and pH gradient elution: An enzyme with interesting properties.

    Science.gov (United States)

    Chafik, Abdelbasset; Essamadi, Abdelkhalid; Çelik, Safinur Yildirim; Mavi, Ahmet

    2017-12-01

    Climate change and increasing temperatures are global concerns. Camel (Camelus dromedarius) lives most of its life under high environmental stress in the desert and represent ideal model for studying desert adaptation among mammals. Catalase plays a key role in protecting cells against oxidative stress. For the first time, catalase from camel liver was purified to homogeneity by zinc chelate affinity chromatography using pH gradient elution, a better separation was obtained. A purification fold of 201.81 with 1.17% yield and a high specific activity of 1132539.37U/mg were obtained. The native enzyme had a molecular weight of 268kDa and was composed of four subunits of equal size (65kDa). The enzyme showed optimal activity at a temperature of 45°C and pH 7.2. Thiol reagents, β-Mercaptoethanol and D,L-Dithiothreitol, inhibited the enzyme activity. The enzyme was inhibited by Al 3+ , Cd 2+ and Mg 2+ , whereas Ca 2+ , Co 2+ and Ni 2+ stimulated the catalase activity. Reduced glutathione has no effect on catalase activity. The K m and V max of the enzyme for hydrogen peroxide were 37.31mM and 6185157U/mg, respectively. Sodium azide inhibited the enzyme noncompetitively with K i value of 14.43μM, the IC 50 was found to be 16.71μM. The properties of camel catalase were different comparing to those of mammalian species. Relatively higher molecular weight, higher optimum temperature, protection of reduced glutathione from hydrogen peroxide oxidation and higher affinity for hydrogen peroxide and sodium azide, these could be explained by the fact that camel is able to live in the intense environmental stress in the desert. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Selective defunctionalization by TiO2 of monomeric phenolics from lignin pyrolysis into simple phenols.

    Science.gov (United States)

    Mante, Ofei D; Rodriguez, Jose A; Babu, Suresh P

    2013-11-01

    This study is focused on defunctionalizing monomeric phenolics from lignin into simple phenols for applications such as phenol/formaldehyde resins, epoxidized novolacs, adhesives and binders. Towards this goal, Titanium dioxide (TiO2) was used to selectively remove hydroxyl, methoxy, carbonyl and carboxyl functionalities from the monomeric phenolic compounds from lignin to produce mainly phenol, cresols and xylenols. The results showed that anatase TiO2 was more selective and active compared to rutile TiO2. Catechols were found to be the most reactive phenolics and 4-ethylguaiacol the least reactive with anatase TiO2. An overall conversion of about 87% of the phenolics was achieved at 550°C with a catalyst-to-feed ratio of 5 w/w. Over 97% conversion of phenolics is achievable at moderate temperatures (550°C or ≤ 600°C) and a moderate catalyst-to-feed ratio of 6.5:1. The reactivity of catechols on TiO2 suggests that titania is a promising catalyst in the removal of hydroxyl moiety. Published by Elsevier Ltd.

  20. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes

    Science.gov (United States)

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  1. Preparation and properties of a monomeric Mn(IV)-oxo complex.

    Science.gov (United States)

    Parsell, Trenton H; Behan, Rachel K; Green, Michael T; Hendrich, Michael P; Borovik, A S

    2006-07-12

    Manganese-oxo complexes have long been investigated because of their proposed roles in biological and chemical catalysis. However, there are few examples of monomeric complexes with terminal oxo ligands, especially those with oxomanganese(IV) units. A oxomanganese(IV) complex has been prepared from [MnIIIH3buea(O)]2- ([H3buea]3-, tris[(N'-tert-butylureaylato)-N-ethylene]aminato), a monomeric MnIII-O complex in which the oxo ligand arises from cleavage of dioxygen. Treating [MnIIIH3buea(O)]2- with [Cp2Fe]BF4 in either DMF at -45 degrees C or DMSO at room temperature produces [MnIVH3buea(O)]-: lambdamax = 635 nm; nu(Mn-16O) = 737 cm-1; nu(Mn-18O) = 709 cm-1; g = 5.15, 2.44, 1.63, D = 3.0 cm-1, E/D = 0.26, aMn = 66 G (A = 190 MHz). These spectroscopic properties support the assignment of a mononuclear MnIV-oxo complex with an S = 3/2 ground state. Density functional theory supports this assignment and the Jahn-Teller distortion around the high-spin MnIV center that would alter the molecular structure of [MnIVH3buea(O)]- from trigonal symmetry (as indicated by the highly rhombic EPR signal). [MnIVH3buea(O)]- is relatively unstable in DMSO, converting to [MnIIIH3buea(OH)]- via a proposed X-H bond cleavage. [MnIVH3buea(O)]- reacts with 1,2-diphenylhydrazine to from azobenzene (95% yield) and [MnIIIH3buea(OH)]-. The MnIV-oxo does not react with triphenyl- or tricyclohexylphosphine. However, O-atom transfer is observed with methyldiphenylphosphine and dimethylphenylphosphine, producing the corresponding phosphine oxides. These results illustrate the diverse reactivity of the MnIV-oxo unit.

  2. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05

    Directory of Open Access Journals (Sweden)

    Nur Syazwani Mohtar

    2016-12-01

    Full Text Available The glycogen branching enzyme (EC 2.4.1.18, which catalyses the formation of α-1,6-glycosidic branch points in glycogen structure, is often used to enhance the nutritional value and quality of food and beverages. In order to be applicable in industries, enzymes that are stable and active at high temperature are much desired. Using genome mining, the nucleotide sequence of the branching enzyme gene (glgB was extracted from the Geobacillus mahadia Geo-05 genome sequence provided by the Malaysia Genome Institute. The size of the gene is 2013 bp, and the theoretical molecular weight of the protein is 78.43 kDa. The gene sequence was then used to predict the thermostability, function and the three dimensional structure of the enzyme. The gene was cloned and overexpressed in E. coli to verify the predicted result experimentally. The purified enzyme was used to study the effect of temperature and pH on enzyme activity and stability, and the inhibitory effect by metal ion on enzyme activity. This thermostable glycogen branching enzyme was found to be most active at 55 °C, and the half-life at 60 °C and 70 °C was 24 h and 5 h, respectively. From this research, a thermostable glycogen branching enzyme was successfully isolated from Geobacillus mahadia Geo-05 by genome mining together with molecular biology technique.

  3. Characterization of a 105-kDa plasma membrane associated glycoprotein that is involved in West Nile virus binding and infection

    International Nuclear Information System (INIS)

    Chu, J.J.H.; Ng, M.L.

    2003-01-01

    This study attempts to isolate and characterize West Nile virus-binding molecules on the plasma membrane of Vero and murine neuroblastoma cells that is responsible for virus entry. Pretreatment of Vero cells with proteases, glycosidases (endoglycosidase H, α-mannosidase), and sodium periodate strongly inhibited West Nile virus infection, whereas treatments with phospholipases and heparinases had no effect. The virus overlay protein blot detected a 105-kDa molecule on the plasma membrane extract of Vero and murine neuroblastoma cells that bind to WN virus. Treatment of the 105-kDa molecules with β-mercaptoethanol resulted in the virus binding to a series of lower molecular weight bands ranging from 30 to 40 kDa. The disruption of disulfide-linked subunits did not affect virus binding. N-linked sugars with mannose residues on the 105-kDa membrane proteins were found to be important in virus binding. Specific antibodies against the 105-kDa glycoprotein were highly effective in blocking virus entry. These results strongly supported the possibility that the 105-kDa protease-sensitive glycoprotein with complex N-linked sugars could be the putative receptor for WN virus

  4. Polyimide resin composites via in situ polymerization of monomeric reactants

    Science.gov (United States)

    Cavano, P. J.

    1974-01-01

    Thermo-oxidatively stable polyimide/graphite-fiber composites were prepared using a unique in situ polymerization of monomeric reactants directly on reinforcing fibers. This was accomplished by using an aromatic diamine and two ester-acids in a methyl alcohol solvent, rather than a previously synthesized prepolymer varnish, as with other A-type polyimides. A die molding procedure was developed and a composite property characterization conducted with high modulus graphite fiber tow. Flexure, tensile, compressive, and shear tests were conducted at temperatures from 72 to 650 F on laminates before and after exposures at the given temperatures in an air environment for times up to 1000 hours. The composite material was determined to be oxidatively, thermally, and hydrolytically stable.

  5. Structural studies on a 2,3-diphosphoglycerate independent phosphoglycerate mutase from Bacillus stearothermophilus.

    Science.gov (United States)

    Chander, M; Setlow, P; Lamani, E; Jedrzejas, M J

    1999-06-15

    Phosphoglycerate mutase (PGM), an important enzyme in the glycolytic pathway, catalyzes the transfer of a phosphate group between the 2 and the 3 positions of glyceric acid. The gene coding for the 2, 3-diphosphoglycerate independent monomeric PGM from Bacillus stearothermophilus (57 kDa), whose activity is extremely pH sensitive and has an absolute and specific requirement for Mn2+, has been cloned and the enzyme overexpressed and purified to homogeneity. Circular dichroism studies showed at most only small secondary structure changes in the enzyme upon binding to Mn2+ or its 3-phosphoglycerate substrate, but thermal unfolding analyses revealed that Mn2+ but not 3-phosphoglycerate caused a large increase in the enzyme's stability. Diffraction-quality crystals of the enzyme were obtained at neutral pH in the presence of 3-phosphoglyceric acid with ammonium sulfate as the precipitating agent; these crystals diffract X rays to beyond 2.5-A resolution and belong to the orthorhombic space group C2221 with unit cell dimensions, a = 58.42, b = 206.08, c = 124.87 A, and alpha = beta = gamma = 90.0 degrees. The selenomethionyl version of the B. stearothermophilus protein has also been overexpressed, purified, and crystallized. Employing these crystals, the determination of the three-dimensional structure of this PGM by the multiwavelength anomalous dispersion method is in progress. Copyright 1999 Academic Press.

  6. Enhanced casein kinase II activity during mouse embryogenesis. Identification of a 110-kDa phosphoprotein as the major phosphorylation product in mouse embryos and Krebs II mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Schneider, H R; Reichert, G H; Issinger, O G

    1986-01-01

    Mouse embryos at various stages of development were used to study the relationship of protein kinase activities with normal embryogenesis. Casein kinase II (CKII) activity in developing mouse embryos shows a 3-4-fold activity increase at day 12 of gestation. Together with the CKII activity...... mouse tumour cells also show an enhanced CKII activity. Here too, a 110-kDa phosphoprotein was the major phosphoryl acceptor. Partial proteolytic digestion shows that both proteins are identical. Other protein kinases tested (cAMP- and cGMP-dependent protein kinases) only show a basal level of enzyme...

  7. Evaluation of a newly designed sandwich enzyme linked immunosorbent assay for the detection of hydatid antigen in serum, urine and cyst fluid for diagnosis of cystic echinococcosis.

    Science.gov (United States)

    Chaya, Dr; Parija, Subhash Chandra

    2013-07-01

    Cystic echinococcosis (CE) is a zoonotic disease of humans with variable clinical manifestations. Imaging and immunological methods are currently the mainstay of diagnosis of this disease. Although the immunological tests for detection of anti-echinococcal antibodies have several disadvantages, they are widely being used. Antigen is far more superior than antibody detection test as they can provide a specific parasitic diagnosis. A sandwich enzyme linked immunosorbent assay (ELISA) was designed using antibodies to 24 kDa urinary hydatid antigen for the detection of hydatid antigens in urine, serum and cyst fluid specimens. The performance of this novel test was compared with that of other hydatid antibody detection ELISA and enzyme immune transfer blot (EITB) using radiological and surgical confirmation as the gold standard. The antigen detection ELISA showed 100% sensitivity and specificity when tested with cyst fluid. On testing urine and serum, the antigen detection ELISA was found to be more specific than antibody detection ELISA. EITB was found to be the most sensitive and specific test. ELISA using polyclonal antibodies against 24 kDa urinary hydatid protein was moderately sensitive to detect hydatid antigen in serum and urine. Hence polyclonal antibodies to 24 kDa urinary hydatid antigen can be used as an alternative source of antibody to detect hydatid antigen in serum, urine and cyst fluid. In the present study, EITB was found to be highly specific test for detection of hydatid antibodiesin serum. 24 kDa protein was found to be specific and of diagnostic value in CE.

  8. Molybdenum reduction to molybdenum blue in Serratia sp. Strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme.

    Science.gov (United States)

    Shukor, M Y; Halmi, M I E; Rahman, M F A; Shamaan, N A; Syed, M A

    2014-01-01

    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m ) of the Mo-reducing enzyme was 5.47 M(-1) s(-1). The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.

  9. Molybdenum Reduction to Molybdenum Blue in Serratia sp. Strain DRY5 Is Catalyzed by a Novel Molybdenum-Reducing Enzyme

    Directory of Open Access Journals (Sweden)

    M. Y. Shukor

    2014-01-01

    Full Text Available The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C. A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a Vmax for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent Km for NADH was 0.79 mM. At 5 mM NADH, the apparent Vmax and apparent Km values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (kcat/Km of the Mo-reducing enzyme was 5.47 M-1 s-1. The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.

  10. Oleosins (24 and 18 kDa) are hydrolyzed not only in extracted soybean oil bodies but also in soybean germination.

    Science.gov (United States)

    Chen, Yeming; Zhao, Luping; Cao, Yanyun; Kong, Xiangzhen; Hua, Yufei

    2014-01-29

    After oil bodies (OBs) were extracted from ungerminated soybean by pH 6.8 extraction, it was found that 24 and 18 kDa oleosins were hydrolyzed in the extracted OBs, which contained many OB extrinsic proteins (i.e., lipoxygenase, β-conglycinin, γ-conglycinin, β-amylase, glycinin, Gly m Bd 30K (Bd 30K), and P34 probable thiol protease (P34)) as well as OB intrinsic proteins. In this study, some properties (specificity, optimal pH and temperature) of the proteases of 24 and 18 kDa oleosins and the oleosin hydrolysis in soybean germination were examined, and the high relationship between Bd 30K/P34 and the proteases was also discussed. The results showed (1) the proteases were OB extrinsic proteins, which had high specificity to hydrolyze 24 and 18 kDa oleosins, and cleaved the specific peptide bonds to form limited hydrolyzed products; (2) 24 and 18 kDa oleosins were not hydrolyzed in the absence of Bd 30K and P34 (or some Tricine-SDS-PAGE undetectable proteins); (3) the protease of 24 kDa oleosin had strong resistance to alkaline pH while that of 18 kDa oleosin had weak resistance to alkaline pH, and Bd 30K and P34, resolved into two spots on two-dimensional electrophoresis gel, also showed the same trend; (4) 16 kDa oleosin as well as 24 and 18 kDa oleosins were hydrolyzed in soybean germination, and Bd 30K and P34 were always contained in the extracted OBs from germinated soybean even when all oleosins were hydrolyzed; (5) the optimal temperature and pH of the proteases were respectively determined as in the ranges of 35-50 °C and pH 6.0-6.5, while 60 °C or pH 11.0 could denature them.

  11. 18 kDa translocator protein – implications in cell’s functions

    Directory of Open Access Journals (Sweden)

    Agnieszka Kołodziejczyk

    2015-01-01

    Full Text Available The mitochondrial 18kDa Translocation Protein (TSPO was first identified in 1977 by its capability to bind benzodiazepines in peripheral tissues. It is more commonly known after its previous name – peripheral benzodiazepine receptor (PBR as opposed to the central benzodiazepine receptor (CBR, from which it differs by location, structure and function. It is ubiquitous with highest expression in steroid-producing tissues, like adrenal cortex, ovaries, testicles, and placenta. The role of TSPO is crucial for living; its inactivation results in early embryonic-lethal phenotype in mice. TSPO has been implicated in various functions of cell, including steroidogenesis, cellular respiration, reactive oxygen species production, heme biosynthesis, immunomodulation, apoptosis, and cellular proliferation. TSPO has been shown to interact with other cellular proteins: 32 kDa voltage-dependent anion channel (VDAC, 30 kDa adenine nucleotide translocase (ANT, cyclophilin D, hexokinase, creatinine kinase, diazepam binding inhibitor (DBI, phosphate carrier and Bcl-2 family. They are – involved in the formation and regulation of mitochondrial permeability transition pore (mPTP at the junction of the inner and outer mitochondrial membranes. While the function and characteristics of the mPTP are known, its well defined, but its structure remains speculative. Changes in TSPO expression are associated with multiple disorders, including cancer, ischaemia-reperfusion injury, neurological diseases and psychiatric disorders, atheromatosis, and others. – TSPO is able to bind cholesterol, porphyrins and other ligands with different affinity. The current knowledge of TSPO implicates its potential use as a diagnostic marker and therapeutic target in different diseases and their therapies.

  12. 18 kDa translocator protein – implications in cell’s functions

    Directory of Open Access Journals (Sweden)

    Agnieszka Kołodziejczyk

    2015-06-01

    Full Text Available The mitochondrial 18kDa Translocation Protein (TSPO was first identified in 1977 by its capability to bind benzodiazepines in peripheral tissues. It is more commonly known after its previous name – peripheral benzodiazepine receptor (PBR as opposed to the central benzodiazepine receptor (CBR, from which it differs by location, structure and function. It is ubiquitous with highest expression in steroid-producing tissues, like adrenal cortex, ovaries, testicles, and placenta. The role of TSPO is crucial for living; its inactivation results in early embryonic-lethal phenotype in mice. TSPO has been implicated in various functions of cell, including steroidogenesis, cellular respiration, reactive oxygen species production, heme biosynthesis, immunomodulation, apoptosis, and cellular proliferation. TSPO has been shown to interact with other cellular proteins: 32 kDa voltage-dependent anion channel (VDAC, 30 kDa adenine nucleotide translocase (ANT, cyclophilin D, hexokinase, creatinine kinase, diazepam binding inhibitor (DBI, phosphate carrier and Bcl-2 family. They are – involved in the formation and regulation of mitochondrial permeability transition pore (mPTP at the junction of the inner and outer mitochondrial membranes. While the function and characteristics of the mPTP are known, its well defined, but its structure remains speculative. Changes in TSPO expression are associated with multiple disorders, including cancer, ischaemia-reperfusion injury, neurological diseases and psychiatric disorders, atheromatosis, and others. – TSPO is able to bind cholesterol, porphyrins and other ligands with different affinity. The current knowledge of TSPO implicates its potential use as a diagnostic marker and therapeutic target in different diseases and their therapies.

  13. Discovery, cloning and characterisation of proline specific prolyl endopeptidase, a gluten degrading thermo-stable enzyme from Sphaerobacter thermophiles

    DEFF Research Database (Denmark)

    Shetty, Radhakrishna; Vestergaard, Mike; Jessen, Flemming

    2017-01-01

    processes occur at elevated temperature. We present in this paper, the discovery, cloning and characterisation of a novel recombinant thermostable gluten degrading enzyme, a proline specific prolyl endoprotease (PEP) from Sphaerobacter thermophiles. The molecular mass of the prolyl endopeptidase......Gluten free products have emerged during the last decades, as a result of a growing public concern and technological advancements allowing gluten reduction in food products. One approach is to use gluten degrading enzymes, typically at low or ambient temperatures, whereas many food production...... was estimated to be 77 kDa by using SDS-PAGE. Enzyme activity assays with a synthetic dipeptide Z-Gly-Pro-p-nitroanilide as the substrate revealed that the enzyme had optimal activity at pH 6.6 and was most active from pH 5.0-8.0. The optimum temperature was 63 °C and residual activity after one hour incubation...

  14. Discovery of Radioiodinated Monomeric Anthraquinones as a Novel Class of Necrosis Avid Agents for Early Imaging of Necrotic Myocardium.

    Science.gov (United States)

    Wang, Qin; Yang, Shengwei; Jiang, Cuihua; Li, Jindian; Wang, Cong; Chen, Linwei; Jin, Qiaomei; Song, Shaoli; Feng, Yuanbo; Ni, Yicheng; Zhang, Jian; Yin, Zhiqi

    2016-02-16

    Assessment of myocardial viability is deemed necessary to aid in clinical decision making whether to recommend revascularization therapy for patients with myocardial infarction (MI). Dianthraquinones such as hypericin (Hyp) selectively accumulate in necrotic myocardium, but were unsuitable for early imaging after administration to assess myocardial viability. Since dianthraquinones can be composed by coupling two molecules of monomeric anthraquinone and the active center can be found by splitting chemical structure, we propose that monomeric anthraquinones may be effective functional groups for necrosis targetability. In this study, eight radioiodinated monomeric anthraquinones were evaluated as novel necrosis avid agents (NAAs) for imaging of necrotic myocardium. All (131)I-anthraquinones showed high affinity to necrotic tissues and (131)I-rhein emerged as the most promising compound. Infarcts were visualized on SPECT/CT images at 6 h after injection of (131)I-rhein, which was earlier than that with (131)I-Hyp. Moreover, (131)I-rhein showed satisfactory heart-to-blood, heart-to-liver and heart-to-lung ratios for obtaining images of good diagnostic quality. (131)I-rhein was a more promising "hot spot imaging" tracer for earlier visualization of necrotic myocardium than (131)I-Hyp, which supported further development of radiopharmaceuticals based on rhein for SPECT/CT ((123)I and (99m)Tc) or PET/CT imaging ((18)F and (124)I) of myocardial necrosis.

  15. Site-saturation mutagenesis of Glomerella cingulata cutinase gene for enhanced enzyme thermostability

    Science.gov (United States)

    Hanapi, Wan Nurhidayah Wan; Iuan-Sheau, Chin; Mahadi, Nor Muhammad; Murad, Abdul Munir Abdul; Bakar, Farah Diba Abu

    2015-09-01

    Cutinase is an important biocatalyst for various industrial applications. This enzyme which has dual functionality comparable to esterases and lipases, is efficient in the hydrolysis of soluble esters and emulsified triacylglycerols. Naturally-occurring enzymes usually have disadvantages when applied in non-natural catalysis due to Glomerella cingulata cutinase enzyme thermostability. It is postulated that by increasing the rigidity at certain amino acid positions showing high mobility based on the three-dimensional structure of G. cingulata cutinase, the improvement in thermostability will be achieved. The amino acid N82 of G. cingulata cutinase was selected based on its high B-factor value determined via the B-FITTER program. Megaprimer PCR was employed to introduce mutations at the chosen site by randomization using NNK degenerate primers. About 300 transformants were selected for screening of positive cutinase variants. The N82_V14 cutinase variant was observed to be more thermostable at an almost 2-fold increase when exposed at 50°C for 1 hr as compared to the wild-type enzyme. This study may provide valuable information regarding thermal stability of cutinases denaturation at high temperatures.

  16. Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells

    Directory of Open Access Journals (Sweden)

    Nadarajah Vishna

    2010-11-01

    Full Text Available Abstract Background Bacillus thuringiensis (Bt, an ubiquitous gram-positive spore-forming bacterium forms parasporal proteins during the stationary phase of its growth. Recent findings of selective human cancer cell-killing activity in non-insecticidal Bt isolates resulted in a new category of Bt parasporal protein called parasporin. However, little is known about the receptor molecules that bind parasporins and the mechanism of anti-cancer activity. A Malaysian Bt isolate, designated Bt18 produces parasporal protein that exhibit preferential cytotoxic activity for human leukaemic T cells (CEM-SS but is non-cytotoxic to normal T cells or other cancer cell lines such as human cervical cancer (HeLa, human breast cancer (MCF-7 and colon cancer (HT-29 suggesting properties similar to parasporin. In this study we aim to identify the binding protein for Bt18 in human leukaemic T cells. Methods Bt18 parasporal protein was separated using Mono Q anion exchange column attached to a HPLC system and antibody was raised against the purified 68-kDa parasporal protein. Receptor binding assay was used to detect the binding protein for Bt18 parasporal protein in CEM-SS cells and the identified protein was sent for N-terminal sequencing. NCBI protein BLAST was used to analyse the protein sequence. Double immunofluorescence staining techniques was applied to localise Bt18 and binding protein on CEM-SS cell. Results Anion exchange separation of Bt18 parasporal protein yielded a 68-kDa parasporal protein with specific cytotoxic activity. Polyclonal IgG (anti-Bt18 for the 68-kDa parasporal protein was successfully raised and purified. Receptor binding assay showed that Bt18 parasporal protein bound to a 36-kDa protein from the CEM-SS cells lysate. N-terminal amino acid sequence of the 36-kDa protein was GKVKVGVNGFGRIGG. NCBI protein BLAST revealed that the binding protein was Glyceraldehyde-3-phosphate dehydrogenase (GAPDH. Double immunofluorescence staining showed

  17. Structural Characterization of Monomeric/Dimeric State of p59fyn SH2 Domain.

    Science.gov (United States)

    Huculeci, Radu; Kieken, Fabien; Garcia-Pino, Abel; Buts, Lieven; van Nuland, Nico; Lenaerts, Tom

    2017-01-01

    Src homology 2 (SH2) domains are key modulators in various signaling pathways allowing the recognition of phosphotyrosine sites of different proteins. Despite the fact that SH2 domains acquire their biological functions in a monomeric state, a multitude of reports have shown their tendency to dimerize. Here, we provide a technical description on how to isolate and characterize by gel filtration, circular dichroism (CD), and nuclear magnetic resonance (NMR) each conformational state of p59 fyn SH2 domain.

  18. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Rosenthal, B; Mai, Z; Caplivski, D; Ghosh, S; de la Vega, H; Graf, T; Samuelson, J

    1997-06-01

    . histolytica ADHE to bacterial ADHE than to the G. lamblia ADHE. The 6-kDa FD of E. histolytica and G. lamblia were most similar to those of the archaebacterium Methanosarcina barkeri and the delta-purple bacterium Desulfovibrio desulfuricans, respectively, while the 12-kDa FD of the T. vaginalis hydrogenosome was most similar to the 12-kDa FD of gamma-purple bacterium Pseudomonas putida. E. histolytica genes (and probably G. lamblia genes) encoding fermentation enzymes therefore likely derive from bacteria by horizontal transfer, although it is not clear from which bacteria these amebic genes derive. These are the first nonorganellar fermentation enzymes of eukaryotes implicated to have derived from bacteria.

  19. Comparison of excretory urographic contrast effects of dimeric and monomeric non-ionic iodinated contrast media in dogs

    International Nuclear Information System (INIS)

    Kishimoto, M.; Yamada, K.; Watanabe, A.; Miyamoto, K.; Iwasaki, T.; Miyake, Y.

    2007-01-01

    In excretory urography, the osmolarity of contrast media has rarely been treated as important in veterinary medicine. In this study, the contrast effect of two contrast media (monomeric iohexol and dimeric iodixanol) in the renal cortex and aorta were compared using computed tomography (CT). Five beagle dogs were used and the study employed a cross-over method for each contrast media. The results showed that there was no difference between the media in the aorta, but iodixanol showed higher CT value and a longer contrast effect than iohexol in the renal cortex, in spite of having the same iodine dosage. It is believed that iodixanol, with its low osmolarity, is diluted less by osmotic diuresis than monomeric iohexol. It is important to consider the osmolarity of the contrast media when evaluating the contrast effect, and it is essential to use the same contrast media for each examination, or the renal excretory speed will be under/overestimated

  20. Definition of purified enzyme-linked immunosorbent assay antigens from the culture filtrate protein of Mycobacterium bovis by proteomic analysis.

    Science.gov (United States)

    Cho, Yun Sang; Lee, Sang-Eun; Ko, Young Joon; Cho, Donghee; Lee, Hyang Shim; Hwang, Inyeong; Nam, Hyangmi; Heo, Eunjung; Kim, Jong Man; Jung, Sukchan

    2009-01-01

    Enzyme-linked immunosorbent assay (ELISA) has been developed as the ancillary diagnosis of bovine tuberculosis at ante-mortem to overcome the disadvantages of intradermal skin test. In this study, the antigenic proteins were purified, applied to bTB ELISA, and identified through proteomic analysis. Culture filtrate protein of Mycobacterium bovis was fractionated by MonoQ column chromatography, and examined the antigenicity by immunoblotting. The antigenic 20 kDa protein was in-gel digested and identified the antigenome by LTQ mass spectrometer and peptide match fingerprinting, which were MPB64, MPB70, MPB83, Fas, Smc, Nrp, RpoC, Transposase, LeuA, and MtbE. The 20 kDa protein exhibited the highest antigenicity to bTB positive cattle in ELISA and would be useful for bTB serological diagnosis.

  1. Purification, characterization, cytotoxicity and anticancer activities of L-asparaginase, anti-colon cancer protein, from the newly isolated alkaliphilic Streptomyces fradiae NEAE-82

    Science.gov (United States)

    El-Naggar, Noura El-Ahmady; Deraz, Sahar F.; Soliman, Hoda M.; El-Deeb, Nehal M.; El-Ewasy, Sara M.

    2016-01-01

    L-asparaginase is an important enzyme as therapeutic agents used in combination with other drugs in the treatment of acute lymphoblastic leukemia. A newly isolated actinomycetes strain, Streptomyces sp. NEAE-82, was potentially producing extracellular L-asparaginase, it was identified as Streptomyces fradiae NEAE-82, sequencing product was deposited in the GenBank database under accession number KJ467538. L-asparaginase was purified from the crude enzyme using ammonium sulfate precipitation, dialysis and ion exchange chromatography using DEAE Sepharose CL-6B. Further the kinetic studies of purified enzyme were carried out. The optimum pH, temperature and incubation time for maximum L-asparaginase activity were found to be 8.5, 40 °C and 30 min, respectively. The optimum substrate concentration was found to be 0.06 M. The Km and Vmax of the enzyme were 0.01007 M and 95.08 Uml−1min−1, respectively. The half-life time (T1/2) was 184.91 min at 50 °С, while being 179.53 min at 60 °С. The molecular weight of the subunits of L-asparaginase was found to be approximately 53 kDa by SDS–PAGE analysis. The purified L-asparaginase showed a final specific activity of 30.636 U/mg protein and was purified 3.338-fold. The present work for the first time reported more information in the production, purification and characterization of L-asparaginase produced by newly isolated actinomycetes Streptomyces fradiae NEAE-82. PMID:27605431

  2. Purification and biochemical characterization of feruloyl esterases from Aspergillus terreus MTCC 11096.

    Science.gov (United States)

    Kumar, C Ganesh; Kamle, Avijeet; Kamal, Ahmed

    2013-01-01

    Aspergillus terreus MTCC 11096 isolated from the soils of agricultural fields cultivating sweet sorghum was previously identified to produce feruloyl esterases (FAEs). The enzymes responsible for feruloyl esterase activity were purified to homogeneity and named as AtFAE-1, AtFAE-2, and AtFAE-3. The enzymes were monomeric having molecular masses of 74, 23 and 36 kDa, respectively. Active protein bands were identified by a developed pH-dependent zymogram on native PAGE. The three enzymes exhibited variation in pH tolerance ranging between pH 5-8 and thermostability of up to 55°C. Inhibition studies revealed that the serine residue was essential for feruloyl esterase activity; moreover aspartyl and glutamyl residues are not totally involved at the active site. Metal ions such as Ca(2+), K(+), and Mg(2+) stabilized the enzyme activity for all three FAEs. Kinetic data indicated that all three enzymes showed catalytic efficiencies (k(cat) /K(m)) against different synthesized alkyl and aryl esters indicating their broad substrate specificity. The peptide mass fingerprinting by MALDI/TOF-MS analysis and enzyme affinity toward methoxy and hydroxy substituents on the benzene ring revealed that the AtFAE-1 belonged to type A while AtFAE-2 and AtFAE-3 were type C FAE. The FAEs could release 65 to 90% of ferulic acid from agrowaste substrates in the presence of xylanase. © 2013 American Institute of Chemical Engineers.

  3. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity, Antioxidant Properties, Phenolic Content and Amino Acid Profiles of Fucus spiralis L. Protein Hydrolysate Fractions

    Directory of Open Access Journals (Sweden)

    Lisete Paiva

    2017-10-01

    Full Text Available Food protein-derived hydrolysates with multi-bioactivities such as antihypertensive and antioxidant properties have recently received special attention since both activities can play significant roles in preventing cardiovascular diseases. This study reports, for the first time, the angiotensin I-converting enzyme (ACE-inhibition and antioxidant properties of ultrafiltrate fractions (UF with different molecular weight ranges (<1, 1–3 and ≥3 kDa obtained from Fucus spiralis protein hydrolysate (FSPH digested with cellulase–bromelain. The amino acids profile, recovery yield, protein, peptide and total phenolic contents of these FSPH-UF, and the in vitro digestibility of F. spiralis crude protein were also investigated. FSPH-UF ≥3 kDa presented remarkably higher ACE-inhibition, yield, peptide and polyphenolic (phlorotannins contents. Antioxidant analysis showed that FSPH-UF <1 kDa and ≥3 kDa exhibited significantly higher scavenging of 2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion-chelating (FIC activity. FSPH-UF ≥3 kDa had also notably higher ferric reducing antioxidant power (FRAP. Strong correlations were observed between ACE-inhibition and antioxidant activities (FIC and FRAP. The results suggest that ACE-inhibition and antioxidant properties of FSPH-UF may be due to the bioactive peptides and polyphenols released during the enzymatic hydrolysis. In conclusion, this study shows the potential use of defined size FSPH-UF for the prevention/treatment of hypertension and/or oxidative stress-related diseases.

  4. SAXS and other spectroscopic analysis of 12S cruciferin isolated from the seeds of Brassica nigra

    Science.gov (United States)

    Khaliq, Binish; Falke, Sven; Negm, Amr; Buck, Friedrich; Munawar, Aisha; Saqib, Maria; Mahmood, Seema; Ahmad, Malik Shoaib; Betzel, Christian; Akrem, Ahmed

    2017-06-01

    Oilseeds of the plant family Brassicaceae are important for providing both lipid and protein contents to human nutrition. Cruciferins (12S globulins) are seed storage proteins, which are getting attention due to their allergenic and pathogenicity related nature. This study describes the purification and characterization of a trimeric (∼190 kDa) cruciferin protein from the seeds of Brassica nigra (L.). Cruciferin was first partially purified by ammonium sulfate precipitation (30% saturation constant) and further purified by size exclusion chromatography. The N-terminal amino-acid sequence analysis showed 82% sequence homology with cruciferin from Arabidopsis thaliana. The 50-55 kDa monomeric cruciferin produced multiple bands of two major molecular weight ranges (α-polypeptides of 28-32 kDa and β-polypeptides of 17-20 kDa) under reduced conditions of SDS-PAGE. The 2D gel electrophoretic analysis showed the further separation of the bands into their isoforms with major pI ranges between 5.7 and 8.0 (α-polypeptides) and 5.5-8.5 (β-polypeptides). The Dynamic Light Scattering (DLS) showed the monodisperse nature of the cruciferin with hydrodynamic radius of 5.8 ± 0.1 nm confirming the trimeric nature of the protein. The Circular Dichroism (CD) spectra showed both α-helices and β-sheets in the native conformation of the trimeric protein. The pure cruciferin protein (40 mg/ml) was successfully crystallized; however, the crystals diffracted only to low resolution data (8 Å). Small-angle x-ray scattering (SAXS) was applied to gain insights into the three-dimensional structure in solution. SAXS showed that the radius of gyration is 4.24 ± 0.25 nm and confirmed the nearly globular shape. The SAXS based ab initio dummy model of B. nigra cruciferin was compared with 11S globulins.

  5. α-SNAP prevents docking of the acrosome during sperm exocytosis because it sequesters monomeric syntaxin.

    Directory of Open Access Journals (Sweden)

    Facundo Rodríguez

    Full Text Available α-SNAP has an essential role in membrane fusion that consists of bridging cis SNARE complexes to NSF. α-SNAP stimulates NSF, which releases itself, α-SNAP, and individual SNAREs that subsequently re-engage in the trans arrays indispensable for fusion. α-SNAP also binds monomeric syntaxin and NSF disengages the α-SNAP/syntaxin dimer. Here, we examine why recombinant α-SNAP blocks secretion in permeabilized human sperm despite the fact that the endogenous protein is essential for membrane fusion. The only mammalian organism with a genetically modified α-SNAP is the hyh mouse strain, which bears a M105I point mutation; males are subfertile due to defective sperm exocytosis. We report here that recombinant α-SNAP-M105I has greater affinity for the cytosolic portion of immunoprecipitated syntaxin than the wild type protein and in consequence NSF is less efficient in releasing the mutant. α-SNAP-M105I is a more potent sperm exocytosis blocker than the wild type and requires higher concentrations of NSF to rescue its effect. Unlike other fusion scenarios where SNAREs are subjected to an assembly/disassembly cycle, the fusion machinery in sperm is tuned so that SNAREs progress uni-directionally from a cis configuration in resting cells to monomeric and subsequently trans arrays in cells challenged with exocytosis inducers. By means of functional and indirect immunofluorescense assays, we show that recombinant α-SNAPs--wild type and M105I--inhibit exocytosis because they bind monomeric syntaxin and prevent this SNARE from assembling with its cognates in trans. Sequestration of free syntaxin impedes docking of the acrosome to the plasma membrane assessed by transmission electron microscopy. The N-terminal deletion mutant α-SNAP-(160-295, unable to bind syntaxin, affects neither docking nor secretion. The implications of this study are twofold: our findings explain the fertility defect of hyh mice and indicate that assembly of SNAREs in trans

  6. Photophysics and photochemistry of photoreactivation

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1977-01-01

    Photoreactivating enzyme (PRE) monomerizes cyclobutyl pyrimidine dimers formed in DNA by UV light (lambda < 300 nm). The enzyme requires near UV and visible wavelengths (300 < lambda < 600 nm) for activity. Possible mechanisms of action of the PRE are suggested by non-enzymatic processes in which pyrimidine dimers are monomerized by UV and visible light. Two such non-enzymatic processes are (a) photolysis of dimers resulting from direct absorption of UV, and (b) sensitized monomerization involving charge transfer complexes. Several lines of evidence suggest that the mechanism of action of the PRE more closely resembles (b) than (a). Recent experiments on the PRE from E.coli revealed the presence of new long wavelength absorption which may indicate the presence of a ground state complex. The known ability of PRE to monomerize dimers of thymine, cytosine and uracil suggests that the carbonyl groups at 2 position of the pyrimidine ring may be important in the interaction between enzyme and dimer. (author)

  7. Photophysics and photochemistry of photoreactivation

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J C [California Univ., Irvine (USA)

    1977-05-01

    Photoreactivating enzyme (PRE) monomerizes cyclobutyl pyrimidine dimers formed in DNA by uv light (lambda < 300 nm). The enzyme requires near UV and visible wavelengths (300 < lambda < 600 nm) for activity. Possible mechanisms of action of the PRE are suggested by non-enzymatic processes in which pyrimidine dimers are monomerized by UV and visible light. Two such non-enzymatic processes are (a) photolysis of dimers resulting from direct absorption of UV, and (b) sensitized monomerization involving charge transfer complexes. Several lines of evidence suggest that the mechanism of action of the PRE more closely resembles (b) than (a). Recent experiments on the PRE from E.coli revealed the presence of new long wavelength absorption which may indicate the presence of a ground state complex. The known ability of PRE to monomerize dimers of thymine, cytosine and uracil suggests that the carbonyl groups at 2 position of the pyrimidine ring may be important in the interaction between enzyme and dimer.

  8. Identification of interleukin-8 converting enzyme as cathepsin L.

    Science.gov (United States)

    Ohashi, Kensaku; Naruto, Masanobu; Nakaki, Toshio; Sano, Emiko

    2003-06-26

    IL-8 is produced by various cells, and the NH(2)-terminal amino acid sequence of IL-8 displays heterogeneity among cell types. The mature form of IL-8 has 72 amino acids (72IL-8), while a precursor form (77IL-8) of IL-8 has five additional amino acids to the 72IL-8 NH(2)-terminal. However, it has been unclear how IL-8 is processed to yield the mature form. In this study, converting enzyme was purified as a single 31-kDa band on silver-stained polyacrylamide gel from 160 l of cultured fibroblast supernatant by sequential chromatography. NH(2)-terminal amino acid sequence analysis revealed a sequence, EAPRSVDWRE, which was identified as a partial sequence of cathepsin L. Polyclonal antibodies raised against cathepsin L recognized the purified converting enzyme on Western blot. Moreover, human hepatic cathepsin L cleaved 77IL-8 between Arg(5) and Ser(6), which is the same cleavage site as the putative converting enzyme, resulting in 72IL-8 formation. These data indicate that the converting enzyme of the partially purified fraction of the human fibroblast culture supernatant was cathepsin L. Furthermore, 72IL-8 was sevenfold more potent than 77IL-8 in a neutrophil chemotaxis assay. These results show that cathepsin L is secreted from human fibroblasts in response to external stimuli and plays an important role in IL-8 processing in inflammatory sites.

  9. Optimization of pectinase enzyme production in Aspergillus fumigatus isolated from rotten fruits

    Directory of Open Access Journals (Sweden)

    2015-12-01

    Full Text Available Introduction: Pectinase is one of the most important industrial enzymes which was isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the juice and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi have been done by plate culture on pectin medium and staining with Lugol's iodine solution. The best strain was identified by method of Pitt and Hocking as Aspergillus fumigates. The enzyme production was optimized by application of the factorial design which involves five factors, each at three levels. Five factors were carbon sources (whey, sugar, stevia and ammonium sulfate, manganese sulfate, temperature, and pH. Pectinase concentration was measured by the Miller method. Results: The results showed that the optimum condition for enzyme production was at 32 °C, PH = 6 , 3g / L manganese sulfate, 2.75g / L of ammonium sulfate, 10g / L of each carbon source (whey, stevia, and glucose. Optimum of enzyme production was observed in the presence of 1.328 mg / ml of glucose. Molecular weight of enzyme was obtained about 40 kDa by SDS-PAGE. Discussion and conclusion: The results demonstrated that this strain could grow in a wide range of carbon sources, PH and temperature. This study indicates that this strain is a good candidate for use in industrial application.

  10. Ebselen: Mechanisms of Glutamate Dehydrogenase and Glutaminase Enzyme Inhibition.

    Science.gov (United States)

    Yu, Yan; Jin, Yanhong; Zhou, Jie; Ruan, Haoqiang; Zhao, Han; Lu, Shiying; Zhang, Yue; Li, Di; Ji, Xiaoyun; Ruan, Benfang Helen

    2017-12-15

    Ebselen modulates target proteins through redox reactions with selenocysteine/cysteine residues, or through binding to the zinc finger domains. However, a recent contradiction in ebselen inhibition of kidney type glutaminase (KGA) stimulated our interest in investigating its inhibition mechanism with glutamate dehydrogenase (GDH), KGA, thioredoxin reductase (TrxR), and glutathione S-transferase. Fluorescein- or biotin-labeled ebselen derivatives were synthesized for mechanistic analyses. Biomolecular interaction analyses showed that only GDH, KGA, and TrxR proteins can bind to the ebselen derivative, and the binding to GDH and KGA could be competed off by glutamine or glutamate. From the gel shift assays, the fluorescein-labeled ebselen derivative could co-migrate with hexameric GDH and monomeric/dimeric TrxR in a dose-dependent manner; it also co-migrated with KGA but disrupted the tetrameric form of the KGA enzyme at a high compound concentration. Further proteomic analysis demonstrated that the ebselen derivative could cross-link with proteins through a specific cysteine at the active site of GDH and TrxR proteins, but for KGA protein, the binding site is at the N-terminal appendix domain outside of the catalytic domain, which might explain why ebselen is not a potent KGA enzyme inhibitor in functional assays. In conclusion, ebselen could inhibit enzyme activity by binding to the catalytic domain or disruption of the protein complex. In addition, ebselen is a relatively potent selective GDH inhibitor that might provide potential therapeutic opportunities for hyperinsulinism-hyperammonemia syndrome patients who have the mutational loss of GTP inhibition.

  11. Sequence-specific 1H-NMR assignments for the aromatic region of several biologically active, monomeric insulins including native human insulin.

    Science.gov (United States)

    Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F

    1990-06-12

    The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.

  12. Isolation and characterization of a novel endoglucanase from a Bursaphelenchus xylophilus metagenomic library.

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    Full Text Available A novel gene (designated as cen219 encoding endoglucanase was isolated from a Bursaphelenchus xylophilus metagenomic library by functional screening. Sequence analysis revealed that cen219 encoded a protein of 367 amino acids. SDS-PAGE analysis of purified endoglucanase suggested that Cen219 was a monomeric enzyme with a molecular mass of 40 kDa. The optimum temperature and pH for endoglucanase activity of Cen219 was separately 50 °C and 6.0. It was stable from 30 to 50 °C, and from pH 4.0 to 7.0. The activity was significantly enhanced by Mn(2+ and dramatically reduced by detergent SDS and metals Fe(3+, Cu(2+ or Hg(2+. The enzyme hydrolyzed a wide range of β-1, 3-, and β-1, 4-linked polysaccharides, with varying activities. Activities towards microcrystalline cellulose and filter paper were relatively high, while the highest activity was towards oat gum. The Km and Vmax of Cen219 towards CMC was 17.37 mg/ml and 333.33 U/mg, respectively. The findings have an insight into understanding the molecular basis of host-parasite interactions in B. xylophilus species. The properties also make Cen219 an interesting enzyme for biotechnological application.

  13. Formation of amyloid fibers by monomeric light chain variable domains.

    Science.gov (United States)

    Brumshtein, Boris; Esswein, Shannon R; Landau, Meytal; Ryan, Christopher M; Whitelegge, Julian P; Phillips, Martin L; Cascio, Duilio; Sawaya, Michael R; Eisenberg, David S

    2014-10-03

    Systemic light chain amyloidosis is a lethal disease characterized by excess immunoglobulin light chains and light chain fragments composed of variable domains, which aggregate into amyloid fibers. These fibers accumulate and damage organs. Some light chains induce formation of amyloid fibers, whereas others do not, making it unclear what distinguishes amyloid formers from non-formers. One mechanism by which sequence variation may reduce propensity to form amyloid fibers is by shifting the equilibrium toward an amyloid-resistant quaternary structure. Here we identify the monomeric form of the Mcg immunoglobulin light chain variable domain as the quaternary unit required for amyloid fiber assembly. Dimers of Mcg variable domains remain stable and soluble, yet become prone to assemble into amyloid fibers upon disassociation into monomers. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Studies on Ganoderma lucidum III. production of pectolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.S.; Tseng, T.C.

    1986-07-01

    Pectolytic enzymes produced by Ganoderma lucidum B in culture and polypropylene bags were investigated. Two pectolytic enzymes, i.e., endo-polygalacturonase (endo-PG) and endo-pectic methyl trans-eliminase (endo-PMTE) were obtained from crude enzymes of G. lucidum B extract from mycelia polypropylene bags. The endo-PMTE has to optimal pH at 4.5 and 8.0. The enzyme stimulated by Ca/sup + +/ ion and preferred only pectin; the enzyme activity decreased at temperature above 50/sup 0/C. The endo-PMTE a and endo-PMTE b, obtained from polypropylene bag with mycelia of G. lucidum B, were purified by 60-80% ammonium sulfate fractionation, Sephadex G-100 gel filtration, DEAE-cellulose ion exchange column chromatography and isoelectric focusing, showing pI at 8.2 and 5.5. Disc gel electrophoresis confirmed two peaks corresponding to endo-PMTE a and b as isoenzymes. Pectolytic enzymes purified by 60-80% ammonium sulfate fraction macerated potato disc and it was more active than the crude enzyme. At pH 4.5, maceration of potato disc by pectolytic enzymes more effective than those at pH 8.0 or 7.0. At pH 8.0, Ca/sup + +/ ion stimulate pectolytic enzyme activities and accelerated maceration.

  15. Discovery, characterization, and kinetic analysis of an alditol oxidase from streptomyces coelicolor

    NARCIS (Netherlands)

    Heuts, Dominic P. H. M.; van Hellemond, Erik W.; Janssen, Dick B.; Fraaije, Marco W.

    2007-01-01

    A gene encoding an alditol oxidase was found in the genome of Streptomyces coelicolor A3(2). This newly identified oxidase, AldO, was expressed at extremely high levels in Escherichia coli when fused to maltose-binding protein. AldO is a soluble monomeric flavoprotein with subunits of 45.1 kDa, each

  16. The Beckman DxI 800 prolactin assay demonstrates superior specificity for monomeric prolactin.

    LENUS (Irish Health Repository)

    Byrne, Brendan

    2010-02-01

    Commercially available prolactin immunoassays detect macroprolactin to variable degrees. Best practice requires laboratories to assess the cross-reactivity of their prolactin assay with macroprolactin, and where appropriate, introduce a screen for the presence of macroprolactin. Our policy has been to reanalyse hyperprolactinaemic samples following polyethylene glycol (PEG) precipitation and to report the resultant value as the monomeric prolactin content of the sample. The goal of this study was to determine the need to continue PEG precipitation when prolactin measurements with the Wallac AutoDELFIA were replaced by the Beckman DxI 800.

  17. Perfusion imaging using rubidium-82 ((82)Rb) PET in rats with myocardial infarction

    DEFF Research Database (Denmark)

    Clemmensen, Andreas Ettrup; Ghotbi, Adam Ali; Bodholdt, Rasmus Poul

    2017-01-01

    Assessing myocardial perfusion using 82Rb-PET is emerging as a valuable clinical tool.1,2 The rapid decay (T½ = 76 s) allows for absolute quantification of both rest and stress perfusion within 30 minutes. In addition to evaluation of epicardial disease with perfusion defects, also evaluation...... of balanced coronary and small vessel disease is possible. For further evaluation of how 82Rb-PET can be used clinically, pre-clinical application of the method would be valuable. However, so far no data on the use of 82Rb-PET in small animals have been published nor has the use of 82Rb-PET, to the best...

  18. Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions

    International Nuclear Information System (INIS)

    Greenberg, B.M.; Gaba, V.; Canaani, O.; Malkin, S.; Mattoo, A.K.; Edelman, M.

    1989-01-01

    A component of the photosystem II reaction center, the 32-kDa protein, is rapidly turned over in the light. The mechanism of its light-dependent metabolism is largely unknown. We quantified the rate of 32-kDa protein degradation over a broad spectral range (UV, visible, and far red). The quantum yield for degradation was highest in the UVB (280-320 nm) region. Spectral evidence demonstrates two distinctly different photosensitizers for 32-kDa protein degradation. The data implicate the bulk photosynthetic pigments (primarily chlorophyll) in the visible and far red regions, and plastoquinone (in one or more of its redox states) in the UV region. A significant portion of 32-kDa protein degradation in sunlight is attributed to UVB irradiance

  19. Extracellular Monomeric and Aggregated Tau Efficiently Enter Human Neurons through Overlapping but Distinct Pathways

    Directory of Open Access Journals (Sweden)

    Lewis D. Evans

    2018-03-01

    Full Text Available Summary: In Alzheimer’s disease, neurofibrillary tangle pathology appears to spread along neuronal connections, proposed to be mediated by the release and uptake of abnormal, disease-specific forms of microtubule-binding protein tau MAPT. It is currently unclear whether transfer of tau between neurons is a toxic gain-of-function process in dementia or reflects a constitutive biological process. We report two entry mechanisms for monomeric tau to human neurons: a rapid dynamin-dependent phase typical of endocytosis and a second, slower actin-dependent phase of macropinocytosis. Aggregated tau entry is independent of actin polymerization and largely dynamin dependent, consistent with endocytosis and distinct from macropinocytosis, the major route for aggregated tau entry reported for non-neuronal cells. Anti-tau antibodies abrogate monomeric tau entry into neurons, but less efficiently in the case of aggregated tau, where internalized tau carries antibody with it into neurons. These data suggest that tau entry to human neurons is a physiological process and not a disease-specific phenomenon. : In contrast with predictions that transfer of the microtubule-associated protein tau between neurons is a toxic gain-of-function process in dementia, Evans et al. show that healthy human neurons efficiently take up both normal and aggregated tau, by distinct but overlapping uptake mechanisms. Keywords: Alzheimer’s disease, frontotemporal dementia, Tau, MAPT, iPSC, endocytosis, human neurons, intracellular transport

  20. Isolation and characterization of the gene encoding the starch debranching enzyme limit dextrinase from germinating barley

    DEFF Research Database (Denmark)

    Kristensen, Michael; Lok, Finn; Planchot, Véronique

    1999-01-01

    with a value of 105 kDa estimated by SDS;;PAGE, The coding sequence is interrupted by 26 introns varying in length from 93 bp to 825 bp. The 27 exons vary in length from 53 bp to 197 bp. Southern blot analysis shows that the limit dextrinase gene is present as a single copy in the barley genome. Gene......The gene encoding the starch debranching enzyme limit dextrinase, LD, from barley (Hordeum vulgare), was isolated from a genomic phage library using a barley cDNA clone as probe. The gene encodes a protein of 904 amino acid residues with a calculated molecular mass of 98.6 kDa. This is in agreement...... expression is high during germination and the steady state transcription level reaches a maximum at day 5 of germination. The deduced amino acid sequence corresponds to the protein sequence of limit dextrinase purified from germinating malt, as determined by automated N-terminal sequencing of tryptic...

  1. Evaluation of Anti-Trichinella spiralis Obtained by Sublingual and Conventional Immunizations with the 45kDa Protein

    Directory of Open Access Journals (Sweden)

    Francisca Chávez Ruvalcaba

    2017-05-01

    Full Text Available Trichinellosis is a cosmopolitan zoonotic disease produced mainly by the consumption of poorly cooked swine meat. Several studies have probed the efficiency of immunotherapy as a method for the treatment of trichinellosis. In this work, a 45 kDa immunodominant antigen was characterized, and the presence of IgA, IgM and IgG anti-Trichinella spiralis antibodies was evaluated during the course of the infection. In addition, the differences between sublingual and parenteral administration of the 45 kDa T. spiralis antigen were determined. Long Evans rats were used both to purify the 45 kDa antigen and to evaluate the immune response produced in six different groups: healthy and infected controls; two groups of immunized murines (sublingually and parenterally with 4 doses of the 45 kDa T. spiralis immunogen administered at days 0, 7, 14 and 21 and challenged with 500 T. spiralis infective larvae (IL 7 days after the last immunization; and finally, two groups of murines infected with 500 IL of T. spiralis, immunized at week 4 post infection by the same two routes. The humoral response was evaluated by indirect immunofluorescence by confocal microscopyin order to determine the presence of IgA, IgM and IgG antibodies.

  2. 11 Efficacy and Tolerability of HDM Injective Immunotherapy With Monomeric Allergoid

    Science.gov (United States)

    Compalati, Enrico; Atzeni, Isabella; Cabras, Sergio; Fancello, Paolo; Gaspardini, Giulio; Longo, Rocco; Patella, Vincenzo; Tore, Giorgio

    2012-01-01

    Background Subcutaneous immunotherapy (SCIT) is an effective treatment of respiratory allergy and carbamylated monomeric allergoids (monoids), by virtue of their reduced IgE-binding activity, resulted clinically safe by sublingual administration. Purpose of this study was to investigate the efficacy and tolerability of immunotherapy with house dust mites (HDM) monoid administered by injective route in patients with allergic rhinoconjunctivitis (AR). Methods A preparation of 0.70 mL of 10 BU/mL containing modified extract with 50% Dermatophagoides pteronyssinus and 50% Dermatophagoides farinae (amount of major allergen: 4 μg of group 1 per milliliter) was delivered monthly for 12 months, following a 5-week build-up induction phase (0.10–0.20–0.30–0.50–0.70 mL), to 58 patients (60% males, mean age 25.1 ± 12.7) suffering from AR due to mites for at least 2 years, whereas 60 patients with similar baseline characteristics were observed as controls. All patients were allowed to assume traditional drug therapy for their condition. At the end of the study changes from baseline in symptoms scores, in number of days with drug assumption, in severity of AR (according to ARIA classification) were compared between the 2 groups; moreover an overall assessment of clinical efficacy and tolerability was based on patients' and physicians' judgements (unsatisfactory, mild, good, optimal). Results In respect to baseline both groups showed, after 1 year, an improvement in symptoms score (P allergoid was associated with a significant clinical benefit observed through objective and subjective outcomes; the traditional safety of monomeric allergoids was confirmed by the subjective judgements of tolerability.

  3. Relationship of molecular weight distribution profile of unreduced gluten protein extracts with quality characteristics of bread.

    Science.gov (United States)

    Chaudhary, Nisha; Dangi, Priya; Khatkar, B S

    2016-11-01

    A statistical correlation was established among the molecular weight distribution patterns of unreduced gluten proteins and physicochemical, rheological and bread-making quality characteristics of wheat varieties. Size exclusion chromatography fractionated the gluten proteins apparently into five peaks. Peak I signified glutenins (30-130kDa), peak II as gliadins (20-55kDa), peak III as very low molecular weight monomeric gliadins (10-28kDa), peak IV and V, collectively, as albumins and globulins (bread loaf volume (r=0.848(∗∗)); however, peak II had negative (r=-0.818(∗∗)) impact. Bread firmness increased with increment in peak II (r=0.625(∗∗)), and decreased with accretion in peak I (r=-0.623(∗∗)). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission

    International Nuclear Information System (INIS)

    Ebisawa, Tatsuki; Yamamura, Akihiro; Kameda, Yasuhiro; Hayakawa, Kou; Nagata, Koji; Tanokura, Masaru

    2010-01-01

    The crystal structure of a monomeric mutant of Azami-Green (mAG) from G. fascicularis was determined at 2.2 Å resolution. Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first known monomeric green-emitting fluorescent protein that is not a variant of Aequorea victoria green fluorescent protein (avGFP). These two green fluorescent proteins are only 27% identical in their amino-acid sequences. mAG is more similar in its amino-acid sequence to four fluorescent proteins: Dendra2 (a green-to-red irreversibly photoconverting fluorescent protein), Dronpa (a bright-and-dark reversibly photoswitchable fluorescent protein), KikG (a tetrameric green-emitting fluorescent protein) and Kaede (another green-to-red irreversibly photoconverting fluorescent protein). To reveal the structural basis of stable green emission by mAG, the 2.2 Å crystal structure of mAG has been determined and compared with the crystal structures of avGFP, Dronpa, Dendra2, Kaede and KikG. The structural comparison revealed that the chromophore formed by Gln62-Tyr63-Gly64 (QYG) and the fixing of the conformation of the imidazole ring of His193 by hydrogen bonds and van der Waals contacts involving His193, Arg66 and Thr69 are likely to be required for the stable green emission of mAG. The crystal structure of mAG will contribute to the design and development of new monomeric fluorescent proteins with faster maturation, brighter fluorescence, improved photostability, new colours and other preferable properties as alternatives to avGFP and its variants

  5. MxiN Differentially Regulates Monomeric and Oligomeric Species of the Shigella Type Three Secretion System ATPase Spa47.

    Science.gov (United States)

    Case, Heather B; Dickenson, Nicholas E

    2018-04-17

    Shigella rely entirely on the action of a single type three secretion system (T3SS) to support cellular invasion of colonic epithelial cells and to circumvent host immune responses. The ATPase Spa47 resides at the base of the Shigella needle-like type three secretion apparatus (T3SA), supporting protein secretion through the apparatus and providing a likely means for native virulence regulation by Shigella and a much needed target for non-antibiotic therapeutics to treat Shigella infections. Here, we show that MxiN is a differential regulator of Spa47 and that its regulatory impact is determined by the oligomeric state of the Spa47 ATPase, with which it interacts. In vitro and in vivo characterization shows that interaction of MxiN with Spa47 requires the six N-terminal residues of Spa47 that are also necessary for stable Spa47 oligomer formation and activation. This interaction with MxiN negatively influences the activity of Spa47 oligomers while upregulating the ATPase activity of monomeric Spa47. Detailed kinetic analyses of monomeric and oligomeric Spa47 in the presence and absence of MxiN uncover additional mechanistic insights into the regulation of Spa47 by MxiN, suggesting that the MxiN/Spa47 species resulting from interaction with monomeric and oligomeric Spa47 are functionally distinct and that both could be involved in Shigella T3SS regulation. Uncovering regulation of Spa47 by MxiN addresses an important gap in the current understanding of how Shigella controls T3SA activity and provides the first description of differential T3SS ATPase regulation by a native T3SS protein.

  6. 7 CFR 82.2 - Administration.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Administration. 82.2 Section 82.2 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... PROGRAMS CLINGSTONE PEACH DIVERSION PROGRAM § 82.2 Administration. The program will be administered under...

  7. Purification and characterisation of an extracellular phytase from Aspergillus niger 11T53A9

    Directory of Open Access Journals (Sweden)

    Ralf Greiner

    2009-12-01

    Full Text Available An extracellular phytase from Aspergillus niger 11T53A9 was purified about 51-fold to apparent homogeneity with a recovery of 20.3% referred to the phytase activity in the crude extract. Purification was achieved by ammonium sulphate precipitation, ion chromataography and gel filtration. The purified enzyme behaved as a monomeric protein with a molecular mass of about 85 kDa and exhibited maximal phytate-degrading activity at pH 5.0. Optimum temperature for the degradation of phytate was 55°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be K M = 54 µmol l-1 and k cat = 190 sec-1 at pH 5.0 and 37°C. The purified enzyme was rather specific for phytate dephosphorylation. It was shown that the phytase preferably dephosphorylates myo-inositol hexakisphosphate in a stereospecific way by sequential removal of phosphate groups via D-Ins(1,2,4,5,6P5, D-Ins(1,2,5,6P4, D-Ins(1,2,6P3, D-Ins(1,2P2 to finally Ins(2P.

  8. A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides.

    Science.gov (United States)

    Geng, Xueran; Tian, Guoting; Zhao, Yongchang; Zhao, Liyan; Wang, Hexiang; Ng, Tzi Bun

    2015-07-24

    An acidic α-galactosidase designated as TMG was purified from the fruiting bodies The purification protocol entailed ion exchange chromatography on Q-Sepharose and of Tricholoma matsutake with 136-fold purification and a specific activity of 909 units/mg. Mono-Q and fast protein liquid chromatography on Superdex 75. TMG is a monomeric protein exhibiting a molecular mass of 47 kDa in SDS-PAGE and gel filtration. The purified enzyme was identified by LC-MS/MS and three inner amino acid sequences were obtained. The optimum pH and temperature for TMG with pNPGal as substrate were pH 4.5 and 55 °C, respectively. The α-galactosidase activity was strongly inhibited by K+, Ca2+, Cd2+, Hg2+, Ag+ and Zn2+ ions. The enzyme activity was inhibited by the chemical modification agent N-bromosuccinimide (NBS), indicating the importance of tryptophan residue(s) at or near the active site. Besides hydrolyzing pNPGal, TMG also efficaciously catalyzed the degradation of natural substrates such as stachyose, raffinose, and melibiose. Thus TMG can be exploited commercially for improving the nutritional value of soy milk by degradation of indigestible oligosaccharides.

  9. A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Xueran Geng

    2015-07-01

    Full Text Available An acidic α-galactosidase designated as TMG was purified from the fruiting bodies The purification protocol entailed ion exchange chromatography on Q-Sepharose and of Tricholoma matsutake with 136-fold purification and a specific activity of 909 units/mg. Mono-Q and fast protein liquid chromatography on Superdex 75. TMG is a monomeric protein exhibiting a molecular mass of 47 kDa in SDS-PAGE and gel filtration. The purified enzyme was identified by LC-MS/MS and three inner amino acid sequences were obtained. The optimum pH and temperature for TMG with pNPGal as substrate were pH 4.5 and 55 °C, respectively. The α-galactosidase activity was strongly inhibited by K+, Ca2+, Cd2+, Hg2+, Ag+ and Zn2+ ions. The enzyme activity was inhibited by the chemical modification agent N-bromosuccinimide (NBS, indicating the importance of tryptophan residue(s at or near the active site. Besides hydrolyzing pNPGal, TMG also efficaciously catalyzed the degradation of natural substrates such as stachyose, raffinose, and melibiose. Thus TMG can be exploited commercially for improving the nutritional value of soy milk by degradation of indigestible oligosaccharides.

  10. 40 CFR 82.260 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Definitions. 82.260 Section 82.260... STRATOSPHERIC OZONE Halon Emissions Reduction § 82.260 Definitions. Halon-containing equipment means equipment.... This group consists of the three halogenated hydrocarbons known as Halon 1211, Halon 1301, and Halon...

  11. 42 CFR 460.82 - Marketing.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Marketing. 460.82 Section 460.82 Public Health... Administrative Requirements § 460.82 Marketing. (a) Information that a PACE organization must include in its marketing materials. (1) A PACE organization must inform the public about its program and give prospective...

  12. 9 CFR 3.82 - Feeding.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feeding. 3.82 Section 3.82 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE... Animal Health and Husbandry Standards § 3.82 Feeding. (a) The diet for nonhuman primates must be...

  13. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Andreasen, M.F.; Landbo, Anne-Katrine Regel; Christensen, L.P.

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...

  14. Purification and characterization of a 36 kDa antigen of Mycobacterium leprae

    NARCIS (Netherlands)

    de Wit, M. Y.; Klatser, P. R.

    1988-01-01

    A 36 kDa antigen of Mycobacterium leprae was purified by phenol biphasic partition followed by preparative SDS-PAGE. The purified antigen appeared as a single band in SDS-PAGE and eluted as a single peak in ion-exchange chromatography. The antigen comprised epitopes which were cross-reactive with M.

  15. 40 CFR 82.62 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... Containing or Manufactured With Class II Substances § 82.62 Definitions. For purposes of this subpart... to subpart A. Class II Substance means any substance designated as class II in 40 CFR part 82.... Hydrochlorofluorocarbon means any substance listed as class II in 40 CFR part 82, appendix B to subpart A. Initial...

  16. Production, purification and characterization of L-asparaginase from Streptomyces gulbargensis

    Directory of Open Access Journals (Sweden)

    S. Amena

    2010-03-01

    Full Text Available L-asparaginase is an anti-neoplastic agent used in the lymphoblastic leukaemia chemotherapy. In the present study a novel strain, Streptomyces gulbargensis was explored for the production of extra-cellular L-asparaginase using groundnut cake extract. The optimum pH, temperature, inoculum size and agitation speed for enzyme production were pH 8.5, 40ºC, 1x10(8spores/ml and 200 rev/min respectively. Maltose (0.5% and L-asparagine (0.5% proved to be the best carbon and nitrogen sources respectively. The enzyme was purified 82.12 fold and the apparent molecular weight of the enzyme was found to be 85 kDa. The optima pH and temperature for the enzyme were 9.0 and 40ºC respectively. The enzyme was more stable at the alkaline pH than at the acidic one and it retained 55% of the activity at 80ºC for 60 min.

  17. 50 CFR 82.4 - Authority.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Authority. 82.4 Section 82.4 Wildlife and... PROTECTION ACT OF 1972) Introduction § 82.4 Authority. The Secretary of the Interior has delegated to the Director, Fish and Wildlife Service, his authority under the Marine Mammal Protection Act to enter into...

  18. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    International Nuclear Information System (INIS)

    Chen, J.; Varner, J.E.

    1985-01-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) + RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) + RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) + RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 as a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding

  19. Arylsulfotransferase from Clostridium innocuum-A new enzyme catalyst for sulfation of phenol-containing compounds.

    Science.gov (United States)

    Mozhaev, Vadim V; Khmelnitsky, Yuri L; Sanchez-Riera, Fernando; Maurina-Brunker, Julie; Rosson, Reinhardt A; Grund, Alan D

    2002-06-05

    Arylsulfotransferase (AST, EC 2.8.2.22), an enzyme capable of sulfating a wide range of phenol-containing compounds was purified from a Clostridium innocuum isolate (strain 554). The enzyme has a molecular weight of 320 kDa and is composed of four subunits. Unlike many mammalian and plant arylsulfotransferases, AST from Clostridium utilizes arylsulfates, including p-nitrophenyl sulfate, as sulfate donors, and is not reactive with 3-phosphoadenosine-5'-phosphosulfate (PAPS). The enzyme possesses broad substrate specificity and is active with a variety of phenols, quinones and flavonoids, but does not utilize primary and secondary alcohols and sugars as substrates. Arylsulfotransferase tolerates the presence of 10 vol% of polar cosolvents (dimethyl formamide, acetonitrile, methanol), but loses significant activity at higher solvent concentrations of 30-40 vol%. The enzyme retains high arylsulfotransferase activity in biphasic systems composed of water and nonpolar solvents, such as cyclohexane, toluene and chloroform, while in biphasic systems with more polar solvents (ethyl acetate, 2-pentanone, methyl tert-butyl ether, and butyl acetate) the enzyme activity is completely lost. High yields of AST-catalyzed sulfation were achieved in reactions with several phenols and tyrosine-containing peptides. Overall, AST studied in this work is a promising biocatalyst in organic synthesis to afford efficient sulfation of phenolic compounds under mild reaction conditions. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 567-575, 2002.

  20. A de novo designed monomeric, compact three helix bundle protein on a carbohydrate template

    DEFF Research Database (Denmark)

    Malik, Leila; Nygård, Jesper; Christensen, Niels Johan

    2015-01-01

    De novo design and chemical synthesis of proteins and of other artificial structures, which mimic them, is a central strategy for understanding protein folding and for accessing proteins with novel functions. We have previously described carbohydrates as templates for the assembly of artificial...... the template could facilitate protein folding. Here we report the design and synthesis of 3-helix bundle carboproteins on deoxy-hexopyranosides. The carboproteins were analyzed by CD, AUC, SAXS, and NMR, which revealed the formation of the first compact, and folded monomeric carboprotein distinctly different...

  1. Identification of a 34 kDa protein altered in the LF-1 mutant as the herbicide-binding D1 protein of photosystem II

    International Nuclear Information System (INIS)

    Metz, J.; Pakrasi, H.; Seibert, M.; Arntzen, C.

    1986-01-01

    The LF-1 mutant of Scenedesmus has a complete block on the oxidizing side of its PSII reaction center. However, the reaction center as well as the reducing side of PSII is fully functional in this mutant. Compared to the wildtype (WT) the only detected protein difference in the PSII complex of LF-1 is the change in mobility of a 34 kDa protein to 36 kDa. This protein has been implicated to have a major role in Mn-binding and water-oxidation. The authors have recently shown that photoaffinity labeling of thylakoids with azido-[ 14 C]-atrazine tags the 34 kDa protein in WT and the 36 kDa protein in LF-1. It has been shown that the azido-atrazine labeled protein, called D1, functions in herbicide binding and Q/sub A/ to Q/sub B/ electron transfer on the reducing side of PSII. Polyclonal antibodies directed against the D1 protein of Amaranthus hybridus (Ohad, et al., EMBOJ 1985) were found to recognize the Scenedesmus 34 kDa (WT) and 36 kDa (LF-1) proteins. The implied dual function for the D1 protein on the reducing as well as the oxidizing side of PSII reaction center will be discussed

  2. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Landbo, A K; Christensen, L P

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...... investigated using an in vitro copper-catalyzed human LDL oxidation assay. The most abundant ferulic acid dehydrodimer (diFA) found in rye, 8-O-4-diFA, was a slightly better antioxidant than ferulic acid and p-coumaric acid. The antioxidant activity of the 8-5-diFA was comparable to that of ferulic acid......, but neither 5-5-diFA nor 8-5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 microM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts...

  3. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82.

    OpenAIRE

    Takizawa, N; Kaida, N; Torigoe, S; Moritani, T; Sawada, T; Satoh, S; Kiyohara, H

    1994-01-01

    Naphthalene and phenanthrene are transformed by enzymes encoded by the pah gene cluster of Pseudomonas putida OUS82. The pahA and pahB genes, which encode the first and second enzymes, dioxygenase and cis-dihydrodiol dehydrogenase, respectively, were identified and sequenced. The DNA sequences showed that pahA and pahB were clustered and that pahA consisted of four cistrons, pahAa, pahAb, pahAc, and pahAd, which encode ferredoxin reductase, ferredoxin, and two subunits of the iron-sulfur prot...

  4. Characterization of two N-acetyl muramoylhydrolases of Streptococcus faecium ATCC 9790

    International Nuclear Information System (INIS)

    Dolinger, D.L.

    1988-01-01

    Purified muramidase-1 of S. faecium has been shown to contain a covalently attached nucleotide. The nucleotide was isolated and identified as 5-mercaptouridine monophosphate, and to occur as multiple monomeric substitutions on the polypeptide chain, via a phosphodiester bond. Exhaustive proteolytic hydrolysis of purified muramidase-1 yielded a peptide fragment consisting of 5-mercaptouridine, tyrosine, alanine, glycine, and leucine. A second peptidoglycan hydrolase (muramidase-2) has been purified to apparent homogeneity. The enzymatic activity has been shown to be consistent with that of a 3-1,4-N-acetylmuramoylhydrolase and differs in substrate specificity and possibility mechanism of hydrolysis from muramidase-1. Purified enzyme appears as two protein staining bands of molecular masses 125 and 75 kDa after sodium dodecylsulfate polyacrylamide gel ectrophoresis. Elution and renaturation of the protein bands showed that both proteins contain muramidase-2 activity. In addition both proteins have also been shown to specifically bind [ 14 C]penicillin G and been tentatively identified as penicillin binding proteins 1 and 5, respectively

  5. Evaluation and application of alumina-based Rb-82 generators charged with high levels of Sr-82/85

    International Nuclear Information System (INIS)

    Yano, Y.; Budinger, T.F.; Chiang, G.; O'Brien, H.A.; Grant, P.M.

    1979-01-01

    Generator-produced Rb-82, a 75-sec positron emitter with potential for myocardial blood-flow imaging, was studied with various ion-exchange columns to evaluate the characteristics of alumina as an adsorber for the 25-day Sr-82 parent. Test columns of alumina, Bio Rex 70, and Chelex 100 were loaded with multimillicurie amounts of no-carrier-added Sr-82/Sr-85 (Sr-85 is a production contaminant). The breakthrough of Sr-82/Sr-85, and the yield of Rb-82, were determined for long-term elutions from each column with up to 4 liter of 2% NaCl solution at pH 8 to 9. The breakthrough of Sr-82/85 was 10 -6 to 10 -5 from alumina and 10 -6 to 10 -4 from Chelex 100 and Bio Rex 70. The effects of eluent flow rate and concentration, and of alumina volume, on the breakthrough and yield were also studied. An improved and automated Rb-82 generator was used for myocardial and brain blood-flow studies in experimental animals and in man; it was equipped with solenoid flow-control valves and five in. of lead shielding for the alumina columns, which were charged with 25 to 50 mCi Sr-82 (100 to 150 mCi Sr-85). The Rb-82 generator with alumina column provided up to 20 to 40 mCi of Rb-82 as often as every 5 to 10 min with -5 breakthrough of Sr-82/85 over the 2- to 3-mo, useful life of the generator

  6. Novel DDR Processing of Corn Stover Achieves High Monomeric Sugar Concentrations from Enzymatic Hydrolysis (230 g/L) and High Ethanol Concentration (10% v/v) During Fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen; Jennings, Ed; Shekiro, Joe; Kuhn, Erik M.; O' Brien, Marykate; Wang, Wei; Schell, Daniel J.; Himmel, Mike; Elander, Richard T.; Tucker, Melvin P.

    2015-04-03

    Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymatic hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.

  7. The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene

    NARCIS (Netherlands)

    Wimmer, Bernhard; Lottspeich, Friedrich; Klei, Ida van der; Veenhuis, Marten; Gietl, Christine

    1997-01-01

    The monoclonal a-70-kDa heat shock protein (hsp70) antibody recognizes in crude extracts from watermelon (Citrullus vulgaris) cotyledons with molecular masses of 70 and 72 KDa, Immunocytochemistry on watermelon cotyledon tissue and on isolated glyoxysomes identified hsp70s in the matrix of

  8. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts

    International Nuclear Information System (INIS)

    Keyse, S.M.; Tyrrell, R.M.

    1987-01-01

    We have analyzed the pattern of protein synthesis in solar near ultraviolet (334 nm, 365 nm) and near visible (405 nm) irradiated normal human skin fibroblasts. Two hours after irradiation we find that one major stress protein of approximately 32 kDa is induced in irradiated cells. This protein is not induced by ultraviolet radiation at wavelengths shorter than 334 nm and is not inducible by heat shock treatment of these cells. Although sodium arsenite, diamide, and menadione all induced a 32-kDa protein, they also induced the major heat shock proteins. In contrast, the oxidizing agent, hydrogen peroxide, induced the low molecular weight stress protein without causing induction of the major heat shock proteins. A comparison of the 32-kDa proteins induced by sodium arsenite, H 2 O 2 , and solar near ultraviolet radiation using chemical peptide mapping shows that they are closely related. These results imply that the pathways for induction of the heat shock response and the 32-kDa protein are not identical and suggest that, at least in the case of radiation and treatment with H 2 O 2 , the 32-kDa protein might be induced in response to cellular oxidative stress. This conclusion is supported by the observation that depletion of endogenous cellular glutathione prior to solar near ultraviolet irradiation lowers the fluence threshold for induction of the 32-kDa stress protein

  9. Ninety-five- and 25-kDa fragments of the human immunodeficiency virus envelope glycoprotein gp120 bind to the CD4 receptor

    International Nuclear Information System (INIS)

    Nygren, A.; Bergman, T.; Matthews, T.; Joernvall, H.; Wigzell, H.

    1988-01-01

    Iodine-125-labeled gp120 (120-kDa envelope glycoprotein) from the BH10 isolate of human immunodeficiency virus is cleaved to a limited extend with the glutamate-specific protease from Staphylococcus aureus. After disulfide bond reduction, fragments with approximate molecular masses of 95, 60, 50, and 25 kDa are produced. Tests for binding to CD4-positive cells show that only two fragments, the 95- and 25- kDa peptides, are observed in cleavage products that retain the selective binding capacity of gp120. Radiosequence analysis of the fragments after sodium dodecyl sulfate/polyacrylamide gel electrophoresis and electroblotting demonstrates that the 95-kDa fragment lacks the N-terminal region of gp120 and starts at position 143 of the mature envelope protein. The 50-kDa fragment starts at the same position. The 25-kDa binding fragment was similarly deduced to be generated as a small fragment from a cleavage site in the C-terminal part of gp120. The identifications of these fragments demonstrate that radiosequence analysis utilizing 125 I-labeled tyrosine residues can function as a useful and reliable method for small-scale determination of cleavage sites in proteins. Combined, the data suggest domain-like subdivisions of gp120, define at least two intervening segments especially sensitive to proteolytic cleavage, and demonstrate the presence of a functional region for receptor binding in the C-terminal part of the molecule

  10. Hda monomerization by ADP binding promotes replicase clamp-mediated DnaA-ATP hydrolysis.

    Science.gov (United States)

    Su'etsugu, Masayuki; Nakamura, Kenta; Keyamura, Kenji; Kudo, Yuka; Katayama, Tsutomu

    2008-12-26

    ATP-DnaA is the initiator of chromosomal replication in Escherichia coli, and the activity of DnaA is regulated by the regulatory inactivation of the DnaA (RIDA) system. In this system, the Hda protein promotes DnaA-ATP hydrolysis to produce inactive ADP-DnaA in a mechanism that is mediated by the DNA-loaded form of the replicase sliding clamp. In this study, we first revealed that hda translation uses an unusual initiation codon, CUG, located downstream of the annotated initiation codon. The CUG initiation codon could be used for restricting the Hda level, as this initiation codon has a low translation efficiency, and the cellular Hda level is only approximately 100 molecules per cell. Hda translated using the correct reading frame was purified and found to have a high RIDA activity in vitro. Moreover, we found that Hda has a high affinity for ADP but not for other nucleotides, including ATP. ADP-Hda was active in the RIDA system in vitro and stable in a monomeric state, whereas apo-Hda formed inactive homomultimers. Both ADP-Hda and apo-Hda could form complexes with the DNA-loaded clamp; however, only ADP-Hda-DNA-clamp complexes were highly functional in the following interaction with DnaA. Formation of ADP-Hda was also observed in vivo, and mutant analysis suggested that ADP binding is crucial for cellular Hda activity. Thus, we propose that ADP is a crucial Hda ligand that promotes the activated conformation of the protein. ADP-dependent monomerization might enable the arginine finger of the Hda AAA+ domain to be accessible to ATP bound to the DnaA AAA+ domain.

  11. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation

    Energy Technology Data Exchange (ETDEWEB)

    Droux, M.; Miginiac-Maslow, M.; Jacquot, J.P.; Gadal, P.; Crawford, N.A.; Kosower, N.S.; Buchanan, B.B.

    1987-07-01

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with (/sup 14/C)iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn, reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.

  12. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase

    Science.gov (United States)

    Roldán-Arjona, Teresa; Wei, Ying-Fei; Carter, Kenneth C.; Klungland, Arne; Anselmino, Catherine; Wang, Rui-Ping; Augustus, Meena; Lindahl, Tomas

    1997-01-01

    The major mutagenic base lesion in DNA caused by exposure to reactive oxygen species is 8-hydroxyguanine (8-oxo-7,8-dihydroguanine). In bacteria and Saccharomyces cerevisiae, this damaged base is excised by a DNA glycosylase with an associated lyase activity for chain cleavage. We have cloned, sequenced, and expressed a human cDNA with partial sequence homology to the relevant yeast gene. The encoded 47-kDa human enzyme releases free 8-hydroxyguanine from oxidized DNA and introduces a chain break in a double-stranded oligonucleotide specifically at an 8-hydroxyguanine residue base paired with cytosine. Expression of the human protein in a DNA repair-deficient E. coli mutM mutY strain partly suppresses its spontaneous mutator phenotype. The gene encoding the human enzyme maps to chromosome 3p25. These results show that human cells have an enzyme that can initiate base excision repair at mutagenic DNA lesions caused by active oxygen. PMID:9223306

  13. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation

    International Nuclear Information System (INIS)

    Droux, M.; Miginiac-Maslow, M.; Jacquot, J.P.; Gadal, P.; Crawford, N.A.; Kosower, N.S.; Buchanan, B.B.

    1987-01-01

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with [ 14 C]iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn, reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined

  14. Trypanosoma cruzi has not lost its S-adenosylmethionine decarboxylase: characterization of the gene and the encoded enzyme.

    Science.gov (United States)

    Persson, K; Aslund, L; Grahn, B; Hanke, J; Heby, O

    1998-01-01

    All attempts to identify ornithine decarboxylase in the human pathogen Trypanosoma cruzi have failed. The parasites have instead been assumed to depend on putrescine uptake and S-adenosylmethionine decarboxylase (AdoMetDC) for their synthesis of the polyamines spermidine and spermine. We have now identified the gene encoding AdoMetDC in T. cruzi by PCR cloning, with degenerate primers corresponding to conserved amino acid sequences in AdoMetDC proteins of other trypanosomatids. The amplified DNA fragment was used as a probe to isolate the complete AdoMetDC gene from a T. cruzi genomic library. The AdoMetDC gene was located on chromosomes with a size of approx. 1.4 Mbp, and contained a coding region of 1110 bp, specifying a sequence of 370 amino acid residues. The protein showed a sequence identity of only 25% with human AdoMetDC, the major differences being additional amino acids present in the terminal regions of the T. cruzi enzyme. As expected, a higher sequence identity (68-72%) was found in comparison with trypanosomatid AdoMetDCs. When the coding region was expressed in Escherichia coli, the recombinant protein underwent autocatalytic cleavage, generating a 33-34 kDa alpha subunit and a 9 kDa beta subunit. The encoded protein catalysed the decarboxylation of AdoMet (Km 0.21 mM) and was stimulated by putrescine but inhibited by the polyamines, weakly by spermidine and strongly by spermine. Methylglyoxal-bis(guanylhydrazone) (MGBG), a potent inhibitor of human AdoMetDC, was a poor inhibitor of the T. cruzi enzyme. This differential sensitivity to MGBG suggests that the two enzymes are sufficiently different to warrant the search for compounds that might interfere with the progression of Chagas' disease by selectively inhibiting T. cruzi AdoMetDC. PMID:9677309

  15. Ultratight crystal packing of a 10 kDa protein

    Energy Technology Data Exchange (ETDEWEB)

    Trillo-Muyo, Sergio [Molecular Biology Institute of Barcelona, Spanish Research Council CSIC, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona (Spain); Jasilionis, Andrius [Vilnius University, M. K. Čiurlionio 21/27, 03101 Vilnius (Lithuania); Domagalski, Marcin J. [University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0736 (United States); Chruszcz, Maksymilian [University of South Carolina, 631 Sumter Street, Columbia, SC 29208 (United States); Minor, Wladek [University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0736 (United States); Kuisiene, Nomeda [Vilnius University, M. K. Čiurlionio 21/27, 03101 Vilnius (Lithuania); Arolas, Joan L.; Solà, Maria; Gomis-Rüth, F. Xavier, E-mail: xgrcri@ibmb.csic.es [Molecular Biology Institute of Barcelona, Spanish Research Council CSIC, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona (Spain)

    2013-03-01

    The crystal structure of the C-terminal domain of a putative U32 peptidase from G. thermoleovorans is reported; it is one of the most tightly packed protein structures reported to date. While small organic molecules generally crystallize forming tightly packed lattices with little solvent content, proteins form air-sensitive high-solvent-content crystals. Here, the crystallization and full structure analysis of a novel recombinant 10 kDa protein corresponding to the C-terminal domain of a putative U32 peptidase are reported. The orthorhombic crystal contained only 24.5% solvent and is therefore among the most tightly packed protein lattices ever reported.

  16. A 43-kDa TDP-43 species is present in aggregates associated with frontotemporal lobar degeneration.

    Directory of Open Access Journals (Sweden)

    Patrick J Bosque

    Full Text Available The transactive response DNA-binding protein (TDP-43 is a major component of the abnormal intracellular inclusions that occur in two common neurodegenerative diseases of humans: (1 a subtype of frontotemporal lobar degeneration and (2 amyotrophic lateral sclerosis. Genetics, experiments in cultured cells and animals, and analogy with other neurodegenerative diseases indicate that the process of TDP-43 aggregation is fundamental to the pathogenesis of these 2 diseases, but the process by which this aggregation occurs is not understood. Biochemical fractionation has revealed truncated, phosphorylated and ubiquitinated forms of TDP-43 in a detergent-insoluble fraction from diseased CNS tissue, while these forms are absent from controls. However, a large amount of the normally predominant 43-kDa form of TDP-43 is present in the detergent-insoluble fraction even from control brains, so it has not been possible to determine if this form of TDP-43 is part of pathological aggregates in frontotemporal lobe degeneration. We used semi-denaturing detergent-agarose gel electrophoresis to isolate high molecular weight aggregates containing TDP-43 that are present in the cerebral cortex of individuals with frontotemporal lobar degeneration but not that of controls. These aggregates include the same covalently modified forms of TDP-43 seen in detergent-insoluble extracts. In addition, aggregates include a 43-kDa TDP-43 species. This aggregated 43-kDa form of TDP-43 is absent or present only at low levels in controls. The presence of 43-kDa TDP-43 in aggregates raises the possibility that covalent modification is not a primary step in the pathogenic aggregation of TDP-43 associated with frontotemporal lobar degeneration and amyotrophic lateral sclerosis.

  17. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu Conservation Area, Gorkha, Nepal.

    Science.gov (United States)

    Khatri, Bhim Prakash; Bhattarai, Tribikram; Shrestha, Sangita; Maharjan, Jyoti

    2015-01-01

    Pectinase enzymes are one of the commercially important enzymes having great potential in various industries especially in food industry. Pectinases accounts for 25 % of global food enzymes produced and their market is increasing day by day. Therefore, the exploration of microorganism with novel characteristics has always been the focus of the research. Microorganism dwelling in unique habitat may possess unique characteristics. As such, a pectinase producing fungus Aspergillus niger strain MCAS2 was isolated from soil of Manaslu Conservation Area (MCA), Gorkha, Nepal. The optimum production of pectinase enzyme was observed at 48 h of fermentation. The pectinase enzyme was partially purified by cold acetone treatment followed by Sephadex G-75 gel filtration chromatography. The partially purified enzyme exhibited maximum activity 60 U/mg which was almost 8.5-fold higher than the crude pectinase. The approximate molecular weight of the enzyme was found to be 66 kDa as observed from SDS-PAGE. The pectinase enzyme was active at broad range of temperature (30-70 °C) and pH (6.2-9.2). Optimum temperature and pH of the pectinase enzyme were 50 °C and 8.2 respectively. The enzyme was stable up to 70 °C and about 82 % of pectinase activity was still observed at 100 °C. The thermostable and alkaline nature of this pectinase can meet the demand of various industrial processes like paper and pulp industry, in textile industry, fruit juice industry, plant tissue maceration and wastewater treatment. In addition, the effect of different metal ions on pectinase activity was also studied.

  18. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms

    DEFF Research Database (Denmark)

    Krintel, Christian; Klint, Cecilia; Lindvall, Håkan

    2010-01-01

    Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of energy in the form of fatty acids from intracellular stores of neutral lipids. The enzyme has been shown to exist in different isoforms with different molecular masses (84 kDa, 89 kDa and 117 kDa) expressed in a tissue-dependen...

  19. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Directory of Open Access Journals (Sweden)

    Sonica Sondhi

    Full Text Available A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  20. Mapping monomeric threading to protein-protein structure prediction.

    Science.gov (United States)

    Guerler, Aysam; Govindarajoo, Brandon; Zhang, Yang

    2013-03-25

    The key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.

  1. Purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis (X5B).

    Science.gov (United States)

    Ghafoori, Hossein; Askari, Mansoure; Sarikhan, Sajjad

    2016-03-01

    This study reports the purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis, strain X5B. The enzyme was purified to homogeneity by acetone precipitation, ultrafiltration and carboxymethyl (CM) cation exchange chromatography, respectively. The purified protease was a monomeric enzyme with a relative molecular mass of 48-50 kDa and it was inhibited by PMSF indicating that it is a serine-protease. The optimum pH, temperature and NaCl concentration were 9.5, 35 °C and 0.98 M, respectively. The enzyme showed a significant tolerance to salt and alkaline pH. It retained approximately 50% of activity at 2.5 M NaCl and about 70% of activity at highly alkaline pH of 11.0; therefore, it was a moderately halophilic and also can be activated by metals, especially by Ca(2+). The specific activity of the purified protease was measured to be 425.23 μmol of tyrosine/min per mg of protein using casein as a substrate. The apparent K m and V max values were 0.126 mM and 0.523 mM/min, respectively and the accurate value of k cat was obtained as 3.284 × 10(-2) s(-1). These special and important characteristics make this serine protease as valuable tool for industrial applications.

  2. Resolved single-molecule detection of individual species within a mixture of anti-biotin antibodies using an engineered monomeric nanopore.

    Science.gov (United States)

    Fahie, Monifa; Chisholm, Christina; Chen, Min

    2015-02-24

    Oligomeric protein nanopores with rigid structures have been engineered for the purpose of sensing a wide range of analytes including small molecules and biological species such as proteins and DNA. We chose a monomeric β-barrel porin, OmpG, as the platform from which to derive the nanopore sensor. OmpG is decorated with seven flexible loops that move dynamically to create a distinct gating pattern when ionic current passes through the pore. Biotin was chemically tethered to the most flexible one of these loops. The gating characteristic of the loop's movement in and out of the porin was substantially altered by analyte protein binding. The gating characteristics of the pore with bound targets were remarkably sensitive to molecular identity, even providing the ability to distinguish between homologues within an antibody mixture. A total of five gating parameters were analyzed for each analyte to create a unique fingerprint for each biotin-binding protein. Our exploitation of gating noise as a molecular identifier may allow more sophisticated sensor design, while OmpG's monomeric structure greatly simplifies nanopore production.

  3. 7 CFR 905.82 - Effective time.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Effective time. 905.82 Section 905.82 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... TANGELOS GROWN IN FLORIDA Order Regulating Handling Miscellaneous Provisions § 905.82 Effective time. The...

  4. Inorganic pyrophosphatase in uncultivable hemotrophic mycoplasmas: identification and properties of the enzyme from Mycoplasma suis

    Directory of Open Access Journals (Sweden)

    Wittenbrink Max M

    2010-07-01

    Full Text Available Abstract Background Mycoplasma suis belongs to a group of highly specialized hemotrophic bacteria that attach to the surface of host erythrocytes. Hemotrophic mycoplasmas are uncultivable and the genomes are not sequenced so far. Therefore, there is a need for the clarification of essential metabolic pathways which could be crucial barriers for the establishment of an in vitro cultivation system for these veterinary significant bacteria. Inorganic pyrophosphatases (PPase are important enzymes that catalyze the hydrolysis of inorganic pyrophosphate PPi to inorganic phosphate Pi. PPases are essential and ubiquitous metal-dependent enzymes providing a thermodynamic pull for many biosynthetic reactions. Here, we describe the identification, recombinant production and characterization of the soluble (sPPase of Mycoplasma suis. Results Screening of genomic M. suis libraries was used to identify a gene encoding the M. suis inorganic pyrophosphatase (sPPase. The M. suis sPPase consists of 164 amino acids with a molecular mass of 20 kDa. The highest identity of 63.7% was found to the M. penetrans sPPase. The typical 13 active site residues as well as the cation binding signature could be also identified in the M. suis sPPase. The activity of the M. suis enzyme was strongly dependent on Mg2+ and significantly lower in the presence of Mn2+ and Zn2+. Addition of Ca2+ and EDTA inhibited the M. suis sPPase activity. These characteristics confirmed the affiliation of the M. suis PPase to family I soluble PPases. The highest activity was determined at pH 9.0. In M. suis the sPPase builds tetramers of 80 kDa which were detected by convalescent sera from experimentally M. suis infected pigs. Conclusion The identification and characterization of the sPPase of M. suis is an additional step towards the clarification of the metabolism of hemotrophic mycoplasmas and, thus, important for the establishment of an in vitro cultivation system. As an antigenic and conserved

  5. The highly antigenic 53/25 kDa Taenia solium protein fraction with cathepsin-L like activity is present in the oncosphere/cysticercus and induces non-protective IgG antibodies in pigs

    Science.gov (United States)

    Zimic, Mirko; Pajuelo, Mónica; Gilman, Robert H.; Gutiérrez, Andrés H.; Rueda, Luis D.; Flores, Myra; Chile, Nancy; Verástegui, Manuela; Gonzalez, Armando; García, Héctor H.; Sheen, Patricia

    2011-01-01

    Cathepsin L-like proteases are secreted by several parasites including Taenia solium. The mechanism used by T. solium oncospheres to degrade and penetrate the intestine and infect the host is incompletely understood. It is assumed that intestinal degradation is driven by the proteolytic activity of enzymes secreted by the oncosphere. Blocking the proteolytic activity by an antibody response would prevent the oncosphere penetration and further infection. Serine and cysteine proteases including chymotrypsin, trypsin, elastase, and cathepsin L, are secreted by T. solium and Taenia saginata oncospheres when cultured in vitro, being potential vaccine candidates. However, the purification of a sufficient quantity of proteases secreted by oncospheres to conduct a vaccine trial is costly and lengthy. A 53/25 kDa cathepsin L-like fraction partially purified from T. solium cyst fluid was described previously as an important antigen for immunodiagnostics. In this study we found that this antigen is present in the T. solium oncosphere and is also secreted by the cysticercus. This protein fraction was tested for its ability to protect pigs against an oral challenge with T. solium oncospheres in a vaccine trial. IgG antibodies against the 53/25 kDa cathepsin L-like protein fraction were elicited in the vaccinated animals but did not confer protection. PMID:22119017

  6. Isolation of a 60 kDa protein with in vitro anticancer activity against ...

    African Journals Online (AJOL)

    Sea hares have greatly attracted the interest of all those investigating chemical defense substances. Most of these substances are low molecular weight compounds derived from algal diets. In vitro anticancer effect of a 60 kDa protein isolated from the purple fluid of Aplysia dactylomela on four human cancer cell lines was ...

  7. 30 CFR 256.82 - Environmental studies.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Environmental studies. 256.82 Section 256.82... OIL AND GAS IN THE OUTER CONTINENTAL SHELF Studies § 256.82 Environmental studies. (a) The Director... practicable, be designed to predict environmental impacts of pollutants introduced into the environments and...

  8. 7 CFR 945.82 - Effective time.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Effective time. 945.82 Section 945.82 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... § 945.82 Effective time. The provisions of this subpart shall become effective at such time as the...

  9. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells

    International Nuclear Information System (INIS)

    Haering, H.U.; White, M.F.; Machicao, F.; Ermel, B.; Schleicher, E.; Obermaier, B.

    1987-01-01

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with [ 32 P]orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa β-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor β-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the 32 P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission

  10. Dot-blot immunoassay of Fasciola gigantica infection using 27 kDa and adult worm regurge antigens in Egyptian patients.

    Science.gov (United States)

    Kamel, Hanan H; Saad, Ghada A; Sarhan, Rania M

    2013-04-01

    The purpose of the present study was to evaluate the potential role of the 27-Kilodalton (KDa) antigen versus Fasciola gigantica adult worm regurge antigens in a DOT-Blot assay and to assess this assay as a practical tool for diagnosis fascioliasis in Egyptian patients. Fasciola gigantica antigen of an approximate molecular mass 27-(KDa) was obtained from adult worms by a simple elution SDS-PAGE. A Dot-Blot was developed comparatively to adult worm regurge antigens for the detection of specific antibodies from patients infected with F. gigantica in Egypt. Control sera were obtained from patients with other parasitic infections and healthy volunteers to assess the test and compare between the antigens. The sensitivity, specificity, positive and negative predictive values of Dot-Blot using the adult worm regurge were 80%, 90%, 94.1%, and 69.2% respectively, while those using 27-KDa were 100% which confirms the diagnostic potential of this antigen. All patients infected with Fasciola were positive, with cross reactivity reported with Schistosoma mansoni serum samples. This 27-KDa Dot-Blot assay showed to be a promising test which can be used for serodiagnosis of fascioliasis in Egyptian patients especially, those presenting with hepatic disease. It is specific, sensitive and easy to perform method for the rapid diagnosis particularly when more complex laboratory tests are unavailable.

  11. 45 CFR 74.82 - Program income.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Program income. 74.82 Section 74.82 Public Welfare... COMMERCIAL ORGANIZATIONS Special Provisions for Awards to Commercial Organizations § 74.82 Program income. The additional costs alternative described in § 74.24(b)(1) may not be applied to program income...

  12. 7 CFR 930.82 - Effective time.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Effective time. 930.82 Section 930.82 Agriculture... Miscellaneous Provisions § 930.82 Effective time. The provisions of this part, and of any amendment thereto, shall become effective at such time as the Secretary may declare, and shall continue in force until...

  13. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design.

    Science.gov (United States)

    Suwannarangsee, Surisa; Bunterngsook, Benjarat; Arnthong, Jantima; Paemanee, Atchara; Thamchaipenet, Arinthip; Eurwilaichitr, Lily; Laosiripojana, Navadol; Champreda, Verawat

    2012-09-01

    Synergistic enzyme system for the hydrolysis of alkali-pretreated rice straw was optimised based on the synergy of crude fungal enzyme extracts with a commercial cellulase (Celluclast™). Among 13 enzyme extracts, the enzyme preparation from Aspergillus aculeatus BCC 199 exhibited the highest level of synergy with Celluclast™. This synergy was based on the complementary cellulolytic and hemicellulolytic activities of the BCC 199 enzyme extract. A mixture design was used to optimise the ternary enzyme complex based on the synergistic enzyme mixture with Bacillus subtilis expansin. Using the full cubic model, the optimal formulation of the enzyme mixture was predicted to the percentage of Celluclast™: BCC 199: expansin=41.4:37.0:21.6, which produced 769 mg reducing sugar/g biomass using 2.82 FPU/g enzymes. This work demonstrated the use of a systematic approach for the design and optimisation of a synergistic enzyme mixture of fungal enzymes and expansin for lignocellulosic degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Hda Monomerization by ADP Binding Promotes Replicase Clamp-mediated DnaA-ATP Hydrolysis*S⃞

    Science.gov (United States)

    Su'etsugu, Masayuki; Nakamura, Kenta; Keyamura, Kenji; Kudo, Yuka; Katayama, Tsutomu

    2008-01-01

    ATP-DnaA is the initiator of chromosomal replication in Escherichia coli, and the activity of DnaA is regulated by the regulatory inactivation of the DnaA (RIDA) system. In this system, the Hda protein promotes DnaA-ATP hydrolysis to produce inactive ADP-DnaA in a mechanism that is mediated by the DNA-loaded form of the replicase sliding clamp. In this study, we first revealed that hda translation uses an unusual initiation codon, CUG, located downstream of the annotated initiation codon. The CUG initiation codon could be used for restricting the Hda level, as this initiation codon has a low translation efficiency, and the cellular Hda level is only ∼100 molecules per cell. Hda translated using the correct reading frame was purified and found to have a high RIDA activity in vitro. Moreover, we found that Hda has a high affinity for ADP but not for other nucleotides, including ATP. ADP-Hda was active in the RIDA system in vitro and stable in a monomeric state, whereas apo-Hda formed inactive homomultimers. Both ADP-Hda and apo-Hda could form complexes with the DNA-loaded clamp; however, only ADP-Hda-DNA-clamp complexes were highly functional in the following interaction with DnaA. Formation of ADP-Hda was also observed in vivo, and mutant analysis suggested that ADP binding is crucial for cellular Hda activity. Thus, we propose that ADP is a crucial Hda ligand that promotes the activated conformation of the protein. ADP-dependent monomerization might enable the arginine finger of the Hda AAA+ domain to be accessible to ATP bound to the DnaA AAA+ domain. PMID:18977760

  15. Identification of a 170-kDa protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris.

    Science.gov (United States)

    Barkla, B J; Blumwald, E

    1991-12-15

    The effect of the addition of amiloride to the growth medium was tested on the Na+/H+ antiport activity of tonoplast vesicles isolated from sugar beet (beta vulgaris L.) cell suspensions. Cells grown in the presence of NaCl and amiloride displayed an increased antiport activity. Analysis of the kinetic data showed that while the affinity of the antiport for Na+ ions did not change, the maximal velocity of the Na+/H+ exchange increased markedly. These results suggest the addition of more antiport molecules to the tonoplast and/or an increase in the turnover rate of the Na+/H+ exchange. The increase in activity of the antiport by the presence of amiloride was correlated with the enhanced synthesis of a tonoplast 170-kDa polypeptide. The increased synthesis of this polypeptide was detected not only upon exposure of the cells to amiloride but also when the cells were exposed to high NaCl concentrations. Polyclonal antibodies against the 170-kDa polypeptide almost completely inhibited the antiport activity. These results suggest the association of the 170-kDa polypeptide with the vacuolar Na+/H+ antiport.

  16. Identification of N-glycosylation in prolyl endoprotease from Aspergillus niger and evaluation of the enzyme for its possible application in proteomics.

    Science.gov (United States)

    Sebela, Marek; Rehulka, Pavel; Kábrt, Jaromír; Rehulková, Helena; Ozdian, Tomás; Raus, Martin; Franc, Vojtech; Chmelík, Josef

    2009-11-01

    An acidic prolyl endoprotease from Aspergillus niger was isolated from the commercial product Brewers Clarex to evaluate its possible application in proteomics. The chromatographic purification yielded a single protein band in sodium dodecyl sulfate polyacrylamide gel electrophoresis providing an apparent molecular mass of 63 kDa and a broad peak (m/z 58,061) in linear matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) indicating the glycoprotein nature of the enzyme. Indeed, a colorimetric assessment with phenol and sulfuric acid showed the presence of neutral sugars (9% of weight). The subsequent treatment with N-glycosidase F released a variety of high-mannose type N-glycans, which were successfully detected using MALDI-TOF MS. MALDI-TOF/TOF tandem MS analysis of glycopeptides from a tryptic digest of prolyl endoprotease unraveled the identity of the N-glycosylation site in the primary structure. The data obtained also show that the enzyme is present in its processed form, i.e. without putative signal and propeptide parts. Spectrophotometric measurements demonstrated optimal activity at pH 4.0-4.5 and also high thermostability for the cleavage at the C-terminal part of proline residues. In-solution digestion of standard proteins (12-200 kDa) allowed to evaluate the cleavage specificity. The enzyme acts upon proline and alanine residues, but there is an additional minor cleavage at some other residues like Gly, Leu, Arg, Ser and Tyr. The digestion of a honeybee peptide comprising six proline residues (apidaecin 1A) led to the detection of specific peptides terminated by proline as it was confirmed by MALDI postsource decay analysis. Copyright 2009 John Wiley & Sons, Ltd.

  17. 50 CFR 82.20 - Civil rights.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Civil rights. 82.20 Section 82.20 Wildlife... (MARINE MAMMAL PROTECTION ACT OF 1972) Administration § 82.20 Civil rights. Each cooperative agreement... Civil Rights Act of 1964, 42 U.S.C. 2000d-2000d-4, and with the Secretary's regulations promulgated...

  18. 50 CFR 216.82 - Dogs prohibited.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Dogs prohibited. 216.82 Section 216.82... Pribilof Islands Administration § 216.82 Dogs prohibited. In order to prevent molestation of fur seal herds, the landing of any dogs at Pribilof Islands is prohibited. [41 FR 49488, Nov. 9, 1976. Redesignated at...

  19. 11 CFR 100.82 - Bank loans.

    Science.gov (United States)

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Bank loans. 100.82 Section 100.82 Federal... Contributions § 100.82 Bank loans. (a) General provisions. A loan of money to a political committee or a candidate by a State bank, a federally chartered depository institution (including a national bank) or a...

  20. Comparative analysis of the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a using Mössbauer spectroscopy with a high velocity resolution

    Science.gov (United States)

    Alenkina, I. V.; Kumar, A.; Berkovsky, A. L.; Oshtrakh, M. I.

    2018-02-01

    A comparative study of tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a in the oxy- and deoxy-forms was carried out using 57Fe Mössbauer spectroscopy with a high velocity resolution in order to analyze the heme iron electronic structure and stereochemistry in relation to the Mössbauer hyperfine parameters. The Mössbauer spectra of tetrameric rabbit hemoglobin in both forms were fitted using two quadrupole doublets related to the 57Fe in ɑ- and β-subunits. In contrast, the Mössbauer spectra of monomeric soybean leghemoglobin a were fitted using: (i) two quadrupole doublets for the oxy-form related to two conformational states of the distal His E7 imidazole ring and different hydrogen bonding of oxygen molecule in the oxy-form and (ii) using three quadrupole doublets for deoxy-form related to three conformational states of the proximal His F8 imidazole ring. Small variations of Mössbauer hyperfine parameters related to small differences in the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a are discussed.

  1. 25 CFR 82.6 - Petition format.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Petition format. 82.6 Section 82.6 Indians BUREAU OF... REORGANIZED UNDER FEDERAL STATUTE AND OTHER ORGANIZED TRIBES § 82.6 Petition format. Petitions may consist of... of a petition must set forth at least a summary of the objectives of the petitioners and must show...

  2. Fermentation of Arabinoxylan-Oligosaccharides, Oligofructose and their Monomeric Sugars by Hindgut Bacteria from Siberian Sturgeon and African Catfish in Batch Culture in vitro

    NARCIS (Netherlands)

    Geraylou, Z.; Rurangwa, E.; Wiele, van der T.; Courtin, C.M.; Delcour, J.A.; Buyse, J.; Ollevier, F.

    2014-01-01

    The in vitro fermentation of two Non-Digestible Oligosaccharide (NDO) preparations, Arabinoxylan- Oligosaccharides (AXOS) and Oligofructose (OF), and their respective monomeric sugars, xylose and fructose, were investigated by hindgut microbiota of two major aquaculture fish species, Siberian

  3. 64 kDa protein is a candidate for a thyrotropin-releasing hormone receptor in prolactin-producing rat pituitary tumor cells (GH4C1 cells)

    International Nuclear Information System (INIS)

    Wright, M.; Hogset, A.; Alestrom, P.; Gautvik, K.M.

    1988-01-01

    A thyrotropin-releasing hormone (TRH) binding protein of 64 kDa has been identified by covalently crosslinking [ 3 H]TRH to GH4C1 cells by ultraviolet illumination. The crosslinkage of [ 3 H]TRH is UV-dose dependent and is inhibited by an excess of unlabeled TRH. A 64 kDa protein is also detected on immunoblots using an antiserum raised against GH4C1 cell surface epitopes. In a closely related cell line (GH12C1) which does not bind [ 3 H]TRH, the 64 kDa protein cannot be demonstrated by [ 3 H]TRH crosslinking nor by immunoblotting. These findings indicate that the 64 kDa protein is a candidate for a TRH-receptor protein in GH4C1 cells

  4. Detection of Antibodies to U.S. Isolates of Avian Pneumovirus by a Recombinant Nucleocapsid Protein-Based Sandwich Enzyme-Linked Immunosorbent Assay

    OpenAIRE

    Gulati, Baldev R.; Munir, Shirin; Patnayak, Devi P.; Goyal, Sagar M.; Kapur, Vivek

    2001-01-01

    The nucleocapsid (N) protein of subgroup C (United States-specific) avian pneumovirus (APV/US) was expressed in Escherichia coli, and antibodies to the recombinant N protein were shown to specifically recognize the ≈47-kDa N protein of APV/US by Western immunoblot analysis. The recombinant APV/US N protein was used in a sandwich-capture enzyme-linked immunosorbent assay (ELISA), and the resulting assay was found to be more sensitive and specific than the routine indirect ELISA for the detecti...

  5. cDNA cloning of human DNA topoisomerase I. Catalytic activity of a 67.7-kDa carboxyl-terminal fragment

    International Nuclear Information System (INIS)

    D'Arpa, P.; Machlin, P.S.; Ratrie, H. III; Rothfield, N.F.; Cleveland, D.W.; Earnshaw, W.C.

    1988-01-01

    cDNA clones encoding human topoisomerase I were isolated from an expression vector library (λgt11) screened with autoimmune anti-topoisomerase I serum. One of these clones has been expressed as a fusion protein comprised of a 32-kDa fragment of the bacterial TrpE protein linked to 67.7 kDa of protein encoded by the cDNA. Three lines of evidence indicate that the cloned cDNA encodes topoisomerase I. (i) Proteolysis maps of the fusion protein and human nuclear topoisomerase I are essentially identical. (ii) The fusion protein relaxes supercoiled DNA, an activity that can be immunoprecipitated by anti-topoisomerase I serum. (iii) Sequence analysis has revealed that the longest cDNA clone (3645 base pairs) encodes a protein of 765 amino acids that shares 42% identity with Saccharomyces cerevisiae topoisomerase I. The sequence data also show that the catalytically active 67.7-kDa fragment is comprised of the carboxyl terminus

  6. Adenovirus type 2 endopeptidase: an unusual phosphoprotein enzyme matured by autocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, P.K.; Flint, S.J.

    1987-02-01

    A 19-kDa protein, present in low copy number in purified adenovirus type 2, has been characterized. Several criteria were used to establish that this protein is neither a degradation product of the known structural proteins of the virion nor a minor, unusually modified, form of protein VII. This 19-kDa protein, unlike other virion proteins, possesses alkali-resistant phosphoamino acids. Analysis by partial proteolysis indicated that it is related to a 23-kDa phosphoprotein present in H2ts-1 virions assembled in infected cells maintained at 39/sup 0/C. Affinity labeling with (/sup 3/H)diisopropyl fluorophosphate showed that the 19-kDa protein contains the active site for a serine protease. The authors, therefore, conclude that the 19-kDa protein is the active form of the adenovirus-encoded endopeptidase, defined by the H2ts-1 mutation, and is synthesized as a 23-kDa precursor that appears to mature by autocatalysis.

  7. Enzymatic characterization and gene identification of aconitate isomerase, an enzyme involved in assimilation of trans-aconitic acid, from Pseudomonas sp. WU-0701.

    Science.gov (United States)

    Yuhara, Kahori; Yonehara, Hiromi; Hattori, Takasumi; Kobayashi, Keiichi; Kirimura, Kohtaro

    2015-11-01

    trans-Aconitic acid is an unsaturated organic acid that is present in some plants such as soybean and wheat; however, it remains unclear how trans-aconitic acid is degraded and/or assimilated by living cells in nature. From soil, we isolated Pseudomonas sp. WU-0701 assimilating trans-aconitic acid as a sole carbon source. In the cell-free extract of Pseudomonas sp. WU-0701, aconitate isomerase (AI; EC 5.3.3.7) activity was detected. Therefore, it seems likely that strain Pseudomonas sp. WU-0701 converts trans-aconitic acid to cis-aconitic acid with AI, and assimilates this via the tricarboxylic acid cycle. For the characterization of AI from Pseudomonas sp. WU-0701, we performed purification, determination of enzymatic properties and gene identification of AI. The molecular mass of AI purified from cell-free extract was estimated to be ~ 25 kDa by both SDS/PAGE and gel filtration analyses, indicating that AI is a monomeric enzyme. The optimal pH and temperature of purified AI for the reaction were 6.0 °C and 37 °C, respectively. The gene ais encoding AI was cloned on the basis of the N-terminal amino acid sequence of the protein, and Southern blot analysis revealed that only one copy of ais is located on the bacterial genome. The gene ais contains an ORF of 786 bp, encoding a polypeptide of 262 amino acids, including the N-terminal 22 amino acids as a putative periplasm-targeting signal peptide. It is noteworthy that the amino acid sequence of AI shows 90% and 74% identity with molybdenum ABC transporter substrate-binding proteins of Pseudomonas psychrotolerans and Xanthomonas albilineans, respectively. This is the first report on purification to homogeneity, characterization and gene identification of AI. The nucleotide sequence of ais described in this article is available in the DDBJ/EMBL/GenBank nucleotide sequence databases under the Accession No. LC010980. © 2015 FEBS.

  8. Isolation of an Angiotensin I-Converting Enzyme Inhibitory Protein with Antihypertensive Effect in Spontaneously Hypertensive Rats from the Edible Wild Mushroom Leucopaxillus tricolor

    Directory of Open Access Journals (Sweden)

    Xueran Geng

    2015-06-01

    Full Text Available An 86-kDa homodimeric angiotensin I-converting enzyme (ACE inhibitory protein designated as LTP was isolated from fruit bodies of the mushroom Leucopaxillus tricolor. The isolation procedure involved ultrafiltration through a membrane with a molecular weight cutoff of 10-kDa, ion exchange chromatography on Q-Sepharose, and finally fast protein liquid chromatography-gel filtration on Superdex 75. LTP exhibited an IC50 value of 1.64 mg∙mL−1 for its ACE inhibitory activity. The unique N-terminal amino acid sequence of LTP was disclosed by Edman degradation to be DGPTMHRQAVADFKQ. In addition, seven internal sequences of LTP were elucidated by liquid chromatography-tandem mass spectrometry (LC-MS/MS analysis. Results of the Lineweaver-Burk plot suggested that LTP competitively inhibited ACE. Both LTP and the water extract of L. tricolor exhibited a clear antihypertensive effect on spontaneously hypertensive rats.

  9. Acute myocardial infarction associated with intravenous dipyridamole for rubidium-82 PET imaging

    International Nuclear Information System (INIS)

    Marwick, T.H.; Hollman, J.

    1990-01-01

    This report describes the occurrence of chest pain and electrocardiographic features of acute myocardial infarction following intravenous dipyridamole-handgrip stress. Myocardial perfusion imaging (Rb-82 PET) demonstrated a stress-induced perfusion defect. Following failure to respond to medical therapy, urgent cardiac catheterization demonstrated total occlusion of the left anterior descending coronary artery. The vessel was revascularized, with limitation of myocardial damage evidenced by failure to develop anterior Q waves and only modest elevation of cardiac enzyme levels. Complications of intravenous dipyridamole stress are rare, this case constituting the first major problem in over 500 such procedures at this institution. However, this experience demonstrates the importance of vigilant observation during the performance of this technique

  10. Characterization of the cloned full-length and a truncated human target of rapamycin: Activity, specificity, and enzyme inhibition as studied by a high capacity assay

    International Nuclear Information System (INIS)

    Toral-Barza, Lourdes; Zhang Weiguo; Lamison, Craig; LaRocque, James; Gibbons, James; Yu, Ker

    2005-01-01

    The mammalian target of rapamycin (mTOR/TOR) is implicated in cancer and other human disorders and thus an important target for therapeutic intervention. To study human TOR in vitro, we have produced in large scale both the full-length TOR (289 kDa) and a truncated TOR (132 kDa) from HEK293 cells. Both enzymes demonstrated a robust and specific catalytic activity towards the physiological substrate proteins, p70 S6 ribosomal protein kinase 1 (p70S6K1) and eIF4E binding protein 1 (4EBP1), as measured by phosphor-specific antibodies in Western blotting. We developed a high capacity dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) for analysis of kinetic parameters. The Michaelis constant (K m ) values of TOR for ATP and the His6-S6K substrate were shown to be 50 and 0.8 μM, respectively. Dose-response and inhibition mechanisms of several known inhibitors, the rapamycin-FKBP12 complex, wortmannin and LY294002, were also studied in DELFIA. Our data indicate that TOR exhibits kinetic features of those shared by traditional serine/threonine kinases and demonstrate the feasibility for TOR enzyme screen in searching for new inhibitors

  11. Complexes of 3.6 kDa Maltodextrin with Some Metals

    Directory of Open Access Journals (Sweden)

    Christopher H. Schilling

    2004-06-01

    Full Text Available Preparation of magnesium, lanthanum, and bismuth(III complexes of 3.6 kDa maltodextrin and some properties of the resulting materials are presented. The metal derivatives contain metals bound to the oxygen atoms of the hydroxyl groups of maltodextrin. Additionally, the metal atoms are coordinated to the hydroxyl groups of the D-glucose units of the macroligand. Such coordination stabilized the metal – oxygen bond against hydrolysis, even in boiling water. The presence of magnesium and lanthanum atoms increased the thermal stability of maltodextrin, whereas bismuth atoms decreased it.

  12. KARAKTERISASI ENZIM B-GLUKOSIDASE VANILI [Characterization of B-glukosidase Enzyme from Vanilla Bean

    Directory of Open Access Journals (Sweden)

    Dwi setyaningsih 1

    2007-12-01

    Full Text Available The Indonesian natural vanilla is know for having a unigue woody, smooky, and phenolic flavor. Development of the aroma and flavor vanilla was formed by the action of a hydrolytic enzyme B-glucosidase on glucovanillin. The objective of this research was to characterize vanilla B-glucosidase. The vanilla B-glucosidase activity was increased by detergent. The enzyme was found as heat labile. Scalding should be conducted at 400C for 2-3 minutes. The result from B-glucosidase activity in each part of vanilla and microscopic analisis of vanilla bean slice showed that the highest B-glucosidase activity and vanillin concentrations were found in the seed funicles and placental tissue the of vanilla bean. The activity of vanilla B-glucosidase was optimum at pH 6,0, and temperature of 400C, found as and activation energy was 5,78 kcal/mole. After 44 minutes incubation time at 400C. The activity was reduced down to 10%. The apparent of moleculer weight was 100-400 kDa according to gel setration (Sephacryl S-300 analysis.

  13. Purification and Antithrombotic Potential of a Fibrinolytic Enzyme from Shiitake Culinary- Medicinal Mushroom, Lentinus edodes GNA01 (Agaricomycetes).

    Science.gov (United States)

    Choi, Jun-Hui; Kim, Kyung-Je; Kim, Seung

    2018-01-01

    We purified Lentinus edodes GNA01 fibrinolytic enzyme (LEFE) and identified it as a novel metalloprotease. LEFE was purified to homogeneity through a 2-step procedure, with an 8.28-fold increase in specific activity and 5.3% recovery. The molecular mass of LEFE was approximately 38 kDa, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its optimal pH, optimal temperature, pH stability, and thermal stability were 5, 30°C, 6-7, and 40°C, respectively. LEFE was inhibited by zinc and magnesium ions, and by EDTA and EGTA, indicating that LEFE is a metalloprotease. The protease exhibited fibrinolytic activity and a degradative effect on clot formation and blood clots. The protease prolonged activated partial thromboplastin time, prothrombin time, and coagulation time as induced by platelet aggregators (collagen and epinephrine). Taken together, our results indicate that L. edodes GNA01 produces a metalloprotease/fibrinolytic enzyme and that this enzyme might be applied as a new thrombolytic and antithrombotic agent for thrombosis-related cardiovascular disorders.

  14. The mitochondrial 60-kDa heat shock protein in marine invertebrates: biochemical purification and molecular characterization.

    Science.gov (United States)

    Choresh, Omer; Loya, Yossi; Müller, Werner E G; Wiedenmann, Jörg; Azem, Abdussalam

    2004-03-01

    Sessile marine invertebrates undergo constant direct exposure to the surrounding environmental conditions, including local and global environmental fluctuations that may lead to fatal protein damage. Induction of heat shock proteins (Hsps) constitutes an important defense mechanism that protects these organisms from deleterious stress conditions. In a previous study, we reported the immunological detection of a 60-kDa Hsp (Hsp60) in the sea anemone Anemonia viridis (formerly called Anemonia sulcata) and studied its expression under a variety of stress conditions. In the present study, we show that the sponge Tetilla sp. from tidal habitats with a highly variable temperature regime is characterized by an increased level of Hsp60. Moreover, we show the expression of Hsp60 in various species among Porifera and Cnidaria, suggesting a general importance of this protein among marine invertebrates. We further cloned the hsp60 gene from A viridis, using a combination of conventional protein isolation methods and screening of a complementary deoxyribonucleic acid library by polymerase chain reaction. The cloned sequence (1764 bp) encodes for a protein of 62.8 kDa (588 amino acids). The 62.8-kDa protein, which contains an amino terminal extension that may serve as a mitochondrial targeting signal, shares a significant identity with mitochondrial Hsp60s from several animals but less identity with Hsp60s from either bacteria or plants.

  15. A cold active (2R,3R)-(-)-di-O-benzoyl-tartrate hydrolyzing esterase from Rhodotorula mucilaginosa.

    Science.gov (United States)

    Zimmer, Christian; Platz, Tanja; Cadez, Neza; Giffhorn, Friedrich; Kohring, Gert-Wieland

    2006-11-01

    In a screening procedure a pink-colored yeast was isolated from enrichment cultures with (2R,3R)-(-)-di-O-benzoyl-tartrate (benzoyl-tartrate) as the sole carbon source. The organism saar1 was identified by morphological, physiological, and 18S ribosomal DNA/internal transcribed spacer analysis as Rhodotorula mucilaginosa, a basidiomycetous yeast. During growth the yeast hydrolyzed the dibenzoyl ester stoichiometrically to the monoester using the separated benzoate as the growth substrate, before the monoester was further cleaved into benzoate and tartrate, which were both metabolized. The corresponding benzoyl esterase was purified from the culture supernatant and characterized as a monomeric glycosylated 86-kDa protein with an optimum pH of 7.5 and an optimum temperature of 45 degrees C. At 0 degrees C the esterase still exhibited 20% of the corresponding activity at 30 degrees C, which correlates it to psychrophilic enzymes. The esterase could hydrolyze short chain p-nitrophenyl-alkyl esters and several benzoyl esters like benzoyl-methyl ester, ethylene-glycol-dibenzoyl ester, phenyl-benzoyl ester, cocaine, and 1,5-anhydro-D: -fructose-tribenzoyl ester. However feruloyl-ethyl ester was not hydrolyzed. The activity characteristics let the enzyme appear as a promising tool for synthesis of benzoylated compounds for pharmaceutical, cosmetic, or fine chemical applications, even at low temperatures.

  16. Ervaringen met een solid phase enzyme immunoassay voor het aantonen van gonorroe bij promiscue vrouwen

    NARCIS (Netherlands)

    Ulsen; J.van*; Michel; M.F.*; Strik; R.van*; Joost; T.H.van*; Stolz; E.*; Eijk; R.V.W.van

    1985-01-01

    De Gonozyme test (Abbott Laboratories), een nieuwe enzyme immunoassay (EIA) voor het aantonen van Neisseria gonorrhoeae werd geevalueerd in een grote groep promiscue vrouwen. Als de EIA werd uitgevoerd met materiaal afkomstig van de cervix, bedroeg de prevalentie van gonorroe 8,2%. Vergeleken

  17. 21 CFR 500.82 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Definitions. 500.82 Section 500.82 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS GENERAL Regulation of Carcinogenic Compounds Used in Food-Producing Animals § 500...

  18. 22 CFR 8.2 - Policy.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Policy. 8.2 Section 8.2 Foreign Relations... solely for advisory functions and any decision taken pursuant to the advice or recommendation of an... advisory committees will be open to the public unless there is a compelling reason which requires...

  19. A Domain of Herpes Simplex Virus pUL33 Required To Release Monomeric Viral Genomes from Cleaved Concatemeric DNA.

    Science.gov (United States)

    Yang, Kui; Dang, Xiaoqun; Baines, Joel D

    2017-10-15

    Monomeric herpesvirus DNA is cleaved from concatemers and inserted into preformed capsids through the actions of the viral terminase. The terminase of herpes simplex virus (HSV) is composed of three subunits encoded by U L 15, U L 28, and U L 33. The U L 33-encoded protein (pU L 33) interacts with pU L 28, but its precise role in the DNA cleavage and packaging reaction is unclear. To investigate the function of pU L 33, we generated a panel of recombinant viruses with either deletions or substitutions in the most conserved regions of U L 33 using a bacterial artificial chromosome system. Deletion of 11 amino acids (residues 50 to 60 or residues 110 to 120) precluded viral replication, whereas the truncation of the last 10 amino acids from the pU L 33 C terminus did not affect viral replication or the interaction of pU L 33 with pU L 28. Mutations that replaced the lysine at codon 110 and the arginine at codon 111 with alanine codons failed to replicate, and the pU L 33 mutant interacted with pU L 28 less efficiently. Interestingly, genomic termini of the large (L) and small (S) components were detected readily in cells infected with these mutants, indicating that concatemeric DNA was cleaved efficiently. However, the release of monomeric genomes as assessed by pulsed-field gel electrophoresis was greatly diminished, and DNA-containing capsids were not observed. These results suggest that pU L 33 is necessary for one of the two viral DNA cleavage events required to release individual genomes from concatemeric viral DNA. IMPORTANCE This paper shows a role for pU L 33 in one of the two DNA cleavage events required to release monomeric genomes from concatemeric viral DNA. This is the first time that such a phenotype has been observed and is the first identification of a function of this protein relevant to DNA packaging other than its interaction with other terminase components. Copyright © 2017 Yang et al.

  20. Calmyonemin: a 23 kDa analogue of algal centrin occurring in contractile myonemes of Eudiplodinium maggii (ciliate).

    Science.gov (United States)

    David, C; Viguès, B

    1994-01-01

    Myonemes are bundles of thin filaments (3-6 nm in diameter) which mediate calcium-induced contraction of the whole or only parts of the cell body in a number of protists. In Eudiplodinium maggii, a rumen ciliate which lacks a uniform ciliation of the cell body, myonemes converge toward the bases of apical ciliary zones that can be retracted under stress conditions, entailing immobilization of the cell. An mAB (A69) has been produced that identifies a calcium-binding protein by immunoblot, immunoprecipitation experiments and specifically labels the myonemes in immunoelectron microscopy. Solubility properties, apparent molecular weight (23 kDa) and isoelectric point (4.9) of the myonemal protein, are similar to the values reported for the calcium-modulated contractile protein centrin. Western-blot analysis indicates that the 23 kDa protein cross-reacts antigenically with anti-centrin antibodies. In addition, the 23 kDa protein displays calcium-induced changes in both electrophoretic and chromatographic behaviour, and contains calcium-binding domains that conform to the EF-hand structure, as known for centrin. Based on these observations, we conclude that a calcium-binding protein with major similarities to centrin occurs in the myonemes of E. maggii. We postulate that this protein plays an essential role in myoneme-mediated retraction of the ciliature.

  1. LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State

    Directory of Open Access Journals (Sweden)

    Claus U. Pietrzik

    2017-04-01

    Full Text Available The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aβ secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 and APP caused a change of APP transport velocities, indicating that LRP1 recruits APP to a specific type of fast axonal transport vesicles. In contrast lowered levels of LRP1 facilitated APP transport. We further show that monomeric and dimeric APP exhibit similar transport characteristics and that both are affected by LRP1 in a similar way, by slowing down APP anterograde transport and increasing its endocytosis rate. In line with this, a knockout of LRP1 in CHO cells and in primary neurons caused an increase of monomeric and dimeric APP surface localization and in turn accelerated shedding by meprin β and ADAM10. Notably, a choroid plexus specific LRP1 knockout caused a much higher secretion of sAPP dimers into the cerebrospinal fluid compared to sAPP monomers. Together, our data show that LRP1 functions as a sorting receptor for APP, regulating its cell surface localization and thereby its processing by ADAM10 and meprin β, with the latter exhibiting a preference for APP in its dimeric state.

  2. Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175.

    Science.gov (United States)

    Hanphakphoom, Srisuda; Maneewong, Narisara; Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2014-01-01

    Eleven strains of poly(L-lactide) (PLLA)-degrading thermophilic bacteria were isolated from forest soils and selected based on clear zone formation on an emulsified PLLA agar plate at 50°C. Among the isolates, strain LP175 showed the highest PLLA-degrading ability. It was closely related to Laceyella sacchari, with 99.9% similarity based on the 16S rRNA gene sequence. The PLLA-degrading enzyme produced by the strain was purified to homogeneity by 48.1% yield and specific activity of 328 U·mg-protein-1 with a 15.3-fold purity increase. The purified enzyme was strongly active against specific substrates such as casein and gelatin and weakly active against Suc-(Ala)₃-pNA. Optimum enzyme activity was exhibited at a temperature of 60°C with thermal stability up to 50°C and a pH of 9.0 with pH stability in a range of 8.5-10.5. Molecular weight of the enzyme was approximately 28.0 kDa, as determined by gel filtration and SDS-PAGE. The inhibitors phenylmethylsulfonyl fluoride (PMSF), ethylenediaminetetraacetate (EDTA), and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) strongly inhibited enzyme activity, but the activity was not inhibited by 1 mM 1,10-phenanthroline (1,10-phen). The N-terminal amino acid sequences had 100% homology with thermostable serine protease (thermitase) from Thermoactinomyces vulgaris. The results obtained suggest that the PLLA-degrading enzyme produced by L. sacchari strain LP175 is serine protease.

  3. Method for the isolation of biologically active monomeric immunoglobulin A from a plasma fraction.

    Science.gov (United States)

    Leibl, H; Tomasits, R; Wolf, H M; Eibl, M M; Mannhalter, J W

    1996-04-12

    A purification method for immunoglobulin A (IgA) yielding monomeric IgA with a purity of over 97% has been developed. This procedure uses ethanol-precipitated plasma (Cohn fraction III precipitate) as the starting material and includes heparin-Sepharose adsorption, dextran sulfate and ammonium sulfate precipitation, hydroxyapatite chromatography, batch adsorption by an anion-exchange matrix and gel permeation. Additional protein G Sepharose treatment leads to an IgA preparation of greater than 99% purity. The isolated IgA presented with an IgA subclass distribution, equivalent to IgA in unfractionated plasma, and was biologically active, as was shown by its ability to down-modulate Haemophilus influenzae-b-induced IL-6 secretion of human monocytes.

  4. 27 CFR 31.82 - Hotels.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Hotels. 31.82 Section 31... Same Premises § 31.82 Hotels. The proprietor of a hotel who conducts the sale of liquors throughout the hotel premises is only required to register under this part for one place. For example, different areas...

  5. 27 CFR 24.82 - Samples.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Samples. 24.82 Section 24.82 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... vinegar and salted wine as defined in § 24.215, the proprietor shall submit under separate cover at the...

  6. Phytobiotic Utilization as Feed Additive in Feed for Pancreatic Enzyme Activity of Broiler Chicken

    Directory of Open Access Journals (Sweden)

    Sri Purwanti

    2015-09-01

    Full Text Available This research was conducted to evaluate the effect of turmeric water extract, garlic and combination turmeric and garlic as a feed additive in the broiler diet on pancreatic enzyme activity of broiler chicken. Effectivity of treatments was assessed by addition of phytobiotic (control, 015% zinc bacitracin, 2.5% TE, 2.0% GE, 2.5% TGE which were arranged Completely Randomized Design with 4 replications. The variables measured were pancreatic enzyme activity(amylase enzyme activity, protease enzyme activity  and lipase enzyme activity.The results showed that enzyme protein activity content of 2.5% TE supplementation is also high at 82.02 U/ml, then supplemented 2.5% TGE, 2.0% GE, negative control and positive control respectively 75.98 ; 72.02; 68.74; and 66.57 U/ml. The lipase enzyme activity whereas the negative control and a positive control differ significantly higher (P<0.05 to treatment with the addition of 2.5% TE, 2.0% GE and 2.5% TGE phytobiotic. The research concluded that the incorporation of 2.5% TE, 2% GE and combined 2.5% TGE as feed additive enhanced pancreatic enzyme activity.

  7. Isolation of 62 kda protein with antioxidant properties from natural honey

    International Nuclear Information System (INIS)

    Mohammed, S.E.A.R.

    2014-01-01

    Fourteen natural honey samples from Libya, Sudan and Pakistan were evaluated for their antioxidant activity by employing 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical assay. The scavenging activity of honey samples were in the range of 18-32% when compared to control. A 62 kDa protein was isolated from honey by gel filtration chromatography followed by reverse phase HPLC showed significant radical scavenging activity. The research pointed out the antioxidative role of honey proteins and possibility of their contribution to the therapeutic value of the natural honey. (author)

  8. 21 CFR 82.3 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Definitions. 82.3 Section 82.3 Food and Drugs FOOD... gloss white means a suspension in water of co-precipitated aluminum hydroxide and barium sulfate. (j... interpretations of terms contained in section 201 of the Federal Food, Drug, and Cosmetic Act shall be applicable...

  9. 7 CFR 3015.82 - Financial status report.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Financial status report. 3015.82 Section 3015.82 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Financial Reporting Requirements § 3015.82...

  10. Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems

    Directory of Open Access Journals (Sweden)

    I. Nalbantis

    2011-03-01

    Full Text Available The modelling of human-modified basins that are inadequately measured constitutes a challenge for hydrological science. Often, models for such systems are detailed and hydraulics-based for only one part of the system while for other parts oversimplified models or rough assumptions are used. This is typically a bottom-up approach, which seeks to exploit knowledge of hydrological processes at the micro-scale at some components of the system. Also, it is a monomeric approach in two ways: first, essential interactions among system components may be poorly represented or even omitted; second, differences in the level of detail of process representation can lead to uncontrolled errors. Additionally, the calibration procedure merely accounts for the reproduction of the observed responses using typical fitting criteria. The paper aims to raise some critical issues, regarding the entire modelling approach for such hydrosystems. For this, two alternative modelling strategies are examined that reflect two modelling approaches or philosophies: a dominant bottom-up approach, which is also monomeric and, very often, based on output information, and a top-down and holistic approach based on generalized information. Critical options are examined, which codify the differences between the two strategies: the representation of surface, groundwater and water management processes, the schematization and parameterization concepts and the parameter estimation methodology. The first strategy is based on stand-alone models for surface and groundwater processes and for water management, which are employed sequentially. For each model, a different (detailed or coarse parameterization is used, which is dictated by the hydrosystem schematization. The second strategy involves model integration for all processes, parsimonious parameterization and hybrid manual-automatic parameter optimization based on multiple objectives. A test case is examined in a hydrosystem in Greece

  11. Mycobacterium tuberculosis 38 kDa Antigen Purification and Potential Diagnostic Use by Piezoelectric Immunosensors

    Directory of Open Access Journals (Sweden)

    Paula A. MARÍN

    2015-01-01

    Un paso crucial en el desarrollo de un inmunosensor piezoeléctrico para la detección de tuberculosis (TB, es la selección y obtención de los inmunoreactivos empleados en el inmunoensayo y la estrategia para la biofuncionalización del transductor. Diversos estudios han reportado el uso del antígeno proteico 38kDa (Ag38kDa de Mycobacterium tuberculosis (Mtb como un buen biomarcador de la enfermedad y el cumplimiento de las características físicas y bioquímicas para ser inmovilizado por monocapas autoensambladas (SAMs, en la superficie del electrodo de oro de cristales piezoeléctricos. Un inmunosensor piezoeléctrico desarrollado a partir de un antígeno nativo purificado de Mtb podría ser un método alternativo simple para la detección de Mtb con ventajas de rapidez y reusabilidad, contribuyendo al control y el tratamiento oportuno de la enfermedad. En este estudio se presenta el proceso de purificación del Ag38kDa a partir de proteínas de secreción filtradas de cultivo (CFP de Mtb para ser usado como inmunoreactivo con potencial aplicación en la detección de Mtb con inmunosensores piezoeléctricos. Se obtuvieron cristales funcionalizados mediante la técnica modificada de monocapas autoensambladas (SAMs, con el antígeno nativo purificado y CFP. Las superficies biofuncionalizadas fueron caracterizadas cualitativamente con microscopía de fuerza atómica (AFM para validar las condiciones de optimización del protocolo de inmovilización con antígenos de secreción de Mtb. Estos cristales modificados pueden ser acoplados a un sistema de caracterización de un inmunosensor piezoeléctrico para la detección de Mtb mediante un inmunoensayo competitivo directo.

  12. Energy research program 82

    International Nuclear Information System (INIS)

    1982-01-01

    The energy research program 82 (EFP-82) is prepared by the Danish ministry of energy in order to continue the extension of the Danish energy research and development started through the former trade ministry's programs EM-1 (1976) and EM-2 (1978), and the energy ministry's programs EFP-80 and EFP-81. The new program is a continuation of the activities in the period 1982-84 with a total budget of 100 mio.Dkr. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (BP)

  13. Radiation inactivation analysis of assimilatory NADH:nitrate reductase. Apparent functional sizes of partial activities associated with intact and proteolytically modified enzyme

    International Nuclear Information System (INIS)

    Solomonson, L.P.; McCreery, M.J.; Kay, C.J.; Barber, M.J.

    1987-01-01

    Recently we demonstrated that target sizes for the partial activities of nitrate reductase were considerably smaller than the 100-kDa subunit which corresponded to the target size of the full (physiologic) activity NADH:nitrate reductase. These results suggested that the partial activities resided on functionally independent domains and that radiation inactivation may be due to localized rather than extensive damage to protein structure. The present study extends these observations and addresses several associated questions. Monophasic plots were observed over a wide range of radiation doses, suggesting a single activity component in each case. No apparent differences were observed over a 10-fold range of concentration for each substrate, suggesting that the observed slopes were not due to marked changes in Km values. Apparent target sizes estimated for partial activities associated with native enzyme and with limited proteolysis products of native enzyme suggested that the functional size obtained by radiation inactivation analysis is independent of the size of the polypeptide chain. The presence of free radical scavengers during irradiation reduced the apparent target size of both the physiologic and partial activities by an amount ranging from 24 to 43%, suggesting that a free radical mechanism is at least partially responsible for the inactivation. Immunoblot analysis of nitrate reductase irradiated in the presence of free radical scavengers revealed formation of distinct bands at 90, 75, and 40 kDa with increasing doses of irradiation rather than complete destruction of the polypeptide chain

  14. Enzymatic Analysis of Iranian Echis carinatus Venom Using Zymography.

    Science.gov (United States)

    Kamyab, Mostafa; Kim, Euikyung; Hoseiny, Seyed Mehdi; Seyedian, Ramin

    2017-01-01

    Snakebite is a common problem especially in tropical areas all over the world including Iran. Echis carinatus as one of the most dangerous Iranian snakes is spreading in this country excluding central and northwest provinces. In this study gelatinase and fibrinogenolytic properties as two disintegrating matrix metalloproteinase enzymes were evaluated by a strong clear halo between 56-72 kDa in addition to another band located 76-102 kDa for gelatinase and one major band around 38 kDa for fibrinogenolytic enzyme respectively. The electrophorectc profile of our venom demonstrated at least one protein band between 24-31 kDa like previous reports and another two bands between 52-76 kDa and below 17 kDa stemmed probably due to the effect of natural selection in one species. According to our results Razi institute antivenin could neutralize in-vitro effects of gelatinase enzyme comprehensively. The electrophoretic profile of Iranian commercial antivenom as the main intravenous treatment of envenomed patients showed impurities in addition to F (ab') 2 weighing 96 kDa in SDS-PAGE analysis. It proposes more efforts for refinement to avoid short and long unwanted effects in envenomed patients.

  15. Effects of nattokinase, a pro-fibrinolytic enzyme, on red blood cell aggregation and whole blood viscosity.

    Science.gov (United States)

    Pais, Eszter; Alexy, Tamas; Holsworth, Ralph E; Meiselman, Herbert J

    2006-01-01

    The vegetable cheese-like food, natto, is extremely popular in Japan with a history extending back over 1000 years. A fibrinolytic enzyme, termed nattokinase, can be extracted from natto; the enzyme is a subtilisin-like serine protease composed of 275 amino acid residues and has a molecular weight of 27.7 kDa. In vitro and in vivo studies have consistently demonstrated the potent pro-fibrinolytic effect of the enzyme. However, no studies to date have evaluated the effects of nattokinase on various hemorheological parameters and thus we have begun to assess the effects of the enzyme on RBC aggregation and blood viscosity. Blood samples were incubated with nattokinase (final activities of 0, 15.6, 31.3, 62.5 and 125 units/ml) for 30 minutes at 37 degrees C. RBC aggregation was measured using a Myrenne MA-1 aggregometer and blood viscosity assessed over 1-1000 s(-1) with a computer controlled scanning capillary rheometer (Rheolog). Our in vitro results showed a significant, dose-dependent decrease of RBC aggregation and low-shear viscosity, with these beneficial effects evident at concentrations similar to those achieved in previous in vivo animal trials. Our preliminary data thus indicate positive in vitro hemorheological effects of nattokinase, and suggest its potential value as a therapeutic agent and the need for additional studies and clinical trials.

  16. Effects of sources of protein and enzyme supplementation on protein digestibility and chyme characteristics in broilers.

    Science.gov (United States)

    Yu, B; Lee, T T T; Chiou, P W S

    2002-07-01

    1. The purpose of this study was to evaluate the effects of protein source and enzyme supplementation on protein digestibility and chyme characteristics in broilers. 2. One hundred and twenty growing (13 d old) and 60 finishing (34 d old) Arbor Acre strain commercial male broilers were selected and placed into individual metabolic cages. 3. The experiment was a 5 x 2 factorial arrangement with 5 different sources of protein: casein, fish meal, soybean meal (SBM), soy protein concentrate (SPC), maize gluten meal (MGM) and two levels of protease (bromelain), 0 and 65 CDU/kg diets. 4. The diets were iso-nitrogenous and semi-purified, with Cr2O3 as an indicator for determination of ileal digestibility and chyme characteristics. 5. Apparent ileal protein digestibility (AIPD) in both growing and finishing chickens was highest on the casein diet, followed by fish meal, SBM, SPC and MGM. 6. Enzyme inclusion did not improve protein digestibility, but significantly decreased the digesta pH value in the gizzard and increased pH in the ileum in the 3-week-old broilers. 7. The digesta pH values in the gizzard and duodenum were significantly lower in the SBM and fish meal groups compared with the other protein groups. The molecular weight distribution pattern of the soluble protein in the chyme of the gastrointestinal (GI) segments showed a similar trend, regardless of the enzyme inclusion or the stage of growth. 8. The molecular weight profile of soluble protein changed dynamically in the casein fed broilers from the gizzard to ileum and the low molecular weight proteins, < 7 kDa, reached maximum levels at the ileum. The molecular weight profile of the soluble protein in the SBM and SPC changed between the jejunum and the ileum and in the intermediate molecular soluble protein weight (7 to 10 kDa) was significantly decreased. This indicated that the hydrolysis process began from the middle to the posterior end of the small intestine. 9. Similar profiles were also shown with

  17. Seventeen copies of the human 37 kDa laminin receptor precursor/p40 ribosome-associated protein gene are processed pseudogenes arisen from retropositional events

    DEFF Research Database (Denmark)

    Jackers, P; Clausse, N; Fernandez, M

    1996-01-01

    A cDNA coding for a 37 kDa polypeptide has been identified in several species as both the potential precursor of the 67 kDa laminin receptor (37LRP) and a putative ribosome-associated protein (p40). Interestingly, increased expression of this polypeptide (37LRP/p40) is consistently observed...

  18. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae.

    Science.gov (United States)

    Uchima, Cristiane Akemi; Tokuda, Gaku; Watanabe, Hirofumi; Kitamoto, Katsuhiko; Arioka, Manabu

    2011-03-01

    Neotermes koshunensis is a lower termite that secretes endogenous β-glucosidase in the salivary glands. This β-glucosidase (G1NkBG) was successfully expressed in Aspergillus oryzae. G1NkBG was purified to homogeneity from the culture supernatant through ammonium sulfate precipitation and anion exchange, hydrophobic, and gel filtration chromatographies with a 48-fold increase in purity. The molecular mass of the native enzyme appeared as a single band at 60 kDa after gel filtration analysis, indicating that G1NkBG is a monomeric protein. Maximum activity was observed at 50 °C with an optimum pH at 5.0. G1NkBG retained 80% of its maximum activity at temperatures up to 45 °C and lost its activity at temperatures above 55 °C. The enzyme was stable from pH 5.0 to 9.0. G1NkBG was most active towards laminaribiose and p-nitrophenyl-β-D-fucopyranoside. Cellobiose, as well as cello-oligosaccharides, was also well hydrolyzed. The enzyme activity was slightly stimulated by Mn(2+) and glycerol. The K(m) and V(max) values were 0.77 mM and 16 U/mg, respectively, against p-nitrophenyl-β-D-glucopyranoside. An unusual finding was that G1NkBG was stimulated by 1.3-fold when glucose was present in the reaction mixture at a concentration of 200 mM. These characteristics, particularly the stimulation of enzyme activity by glucose, make G1NkBG of great interest for biotechnological applications, especially for bioethanol production.

  19. Microstructural evolution of HFIR-irradiated low activation F82H and F82H-10B steels

    International Nuclear Information System (INIS)

    Wakai, E.; Shiba, K.; Sawai, T.; Hashimoto, N.; Robertson, J.P.; Klueh, R.L.

    1998-01-01

    Microstructures of reduced-activation F82H (8Cr-2W-0.2V-0.04Ta) and the F82H steels doped with 10 B, irradiated at 250 and 300 C to 3 and 57 dpa in the High Flux Isotope Reactor (HFIR), were examined by TEM. In the F82H irradiated at 250 C to 3 dpa, dislocation loops, small unidentified defect clusters with a high number density, and a few MC precipitates were observed in the matrix. The defect microstructure after 300 C irradiation to 57 dpa is dominated by the loops, and the number density of loops was lower than that of the F82H- 10 B steel. Cavities were observed in the F82H- 10 B steels, but the swelling value is insignificant. Small particles of M 6 C formed on the M 23 C 6 carbides that were present in both steels before the irradiation at 300 C to 57 dpa. A low number density of MC precipitate particles formed in the matrix during irradiation at 300 C to 57 dpa

  20. 50 CFR 82.7 - Coordination with States.

    Science.gov (United States)

    2010-10-01

    ...-IN-AID (MARINE MAMMAL PROTECTION ACT OF 1972) Application for Grants § 82.7 Coordination with States... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Coordination with States. 82.7 Section 82.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR...

  1. 40 CFR 82.150 - Purpose and scope.

    Science.gov (United States)

    2010-07-01

    ...) PROTECTION OF STRATOSPHERIC OZONE Recycling and Emissions Reduction § 82.150 Purpose and scope. (a) The purpose of this subpart is to reduce emissions of class I and class II refrigerants and their substitutes... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Purpose and scope. 82.150 Section 82...

  2. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells.

    Science.gov (United States)

    Lin, Jianfei; Chen, He; Luo, Ling; Lai, Yongrong; Xie, Wei; Kee, Kehkooi

    2015-01-01

    To correct a DNA mutation in the human genome for gene therapy, homology-directed repair (HDR) needs to be specific and have the lowest off-target effects to protect the human genome from deleterious mutations. Zinc finger nucleases, transcription activator-like effector nuclease (TALEN) and CRISPR-CAS9 systems have been engineered and used extensively to recognize and modify specific DNA sequences. Although TALEN and CRISPR/CAS9 could induce high levels of HDR in human cells, their genotoxicity was significantly higher. Here, we report the creation of a monomeric endonuclease that can recognize at least 33 bp by fusing the DNA-recognizing domain of TALEN (TALE) to a re-engineered homing endonuclease I-SceI. After sequentially re-engineering I-SceI to recognize 18 bp of the human β-globin sequence, the re-engineered I-SceI induced HDR in human cells. When the re-engineered I-SceI was fused to TALE (TALE-ISVB2), the chimeric endonuclease induced the same HDR rate at the human β-globin gene locus as that induced by TALEN, but significantly reduced genotoxicity. We further demonstrated that TALE-ISVB2 specifically targeted at the β-globin sequence in human hematopoietic stem cells. Therefore, this monomeric endonuclease has the potential to be used in therapeutic gene targeting in human cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Antibody production of wild-type and enzyme V279F variants of PAF-AH as a risk factor for Cardiovascular disease

    Science.gov (United States)

    Ramadhani, Anggia N.; Puspitarini, Sapti; Sari, Anissa N.; Widodo

    2017-11-01

    Coronary artery disease (CAD) has emerged as a leading cause of death in Indonesia nowadays. WHO data in 2012 revealed that 37% of the Indonesian population died from this disease. CAD occurs because of endothelial dysfunction in the arteries. Lipoprotein-associated phospholipase A2 (Lp-PLA2), also known as platelet-activating factor acetylhydrolase (PAF-AH), is a phospholipase A2 enzyme, encoded by the PLA2G7 gene. This protein is predicted to be involved in inflammatory phospholipid metabolism so it can be used as a biomarker of CAD in the early phase. Thus, the purpose of this research is to discover the difference in antibody production between wild-type and mutant V279F. The PAF-AH enzyme was isolated from mice lymphocyte cells in order to develop this enzyme as a biomarker of cardiovascular disease. PAF-AH migrates at 55kDa according to SDS-PAGE analysis. Flow cytometry analysis showed that mutant PAF-AH (V279F) is more antigenic than wild-type PAF-AH. The missense mutation of V279F PAF-AH means this enzyme cannot catabolize the acetyl group at the sn-2 position of PAF.

  4. 21 CFR 1250.82 - Potable water systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  5. Characterization of Mycobacterium tuberculosis nicotinamidase/pyrazinamidase.

    Science.gov (United States)

    Zhang, Hua; Deng, Jiao-Yu; Bi, Li-Jun; Zhou, Ya-Feng; Zhang, Zhi-Ping; Zhang, Cheng-Gang; Zhang, Ying; Zhang, Xian-En

    2008-02-01

    The nicotinamidase/pyrazinamidase (PncA) of Mycobacterium tuberculosis is involved in the activation of the important front-line antituberculosis drug pyrazinamide by converting it into the active form, pyrazinoic acid. Mutations in the pncA gene cause pyrazinamide resistance in M. tuberculosis. The properties of M. tuberculosis PncA were characterized in this study. The enzyme was found to be a 20.89 kDa monomeric protein. The optimal pH and temperature of enzymatic activity were pH 7.0 and 40 degrees C, respectively. Inductively coupled plasma-optical emission spectrometry revealed that the enzyme was an Mn(2+)/Fe(2+)-containing protein with a molar ratio of [Mn(2+)] to [Fe(2+)] of 1 : 1; furthermore, the external addition of either type of metal ion had no apparent effect on the wild-type enzymatic activity. The activity of the purified enzyme was determined by HPLC, and it was shown that it possessed similar pyrazinamidase and nicotinamidase activity, by contrast with previous reports. Nine PncA mutants were generated by site-directed mutagenesis. Determination of the enzymatic activity and metal ion content suggested that Asp8, Lys96 and Cys138 were key residues for catalysis, and Asp49, His51, His57 and His71 were essential for metal ion binding. Our data show that M. tuberculosis PncA may bind metal ions in a manner different from that observed in the case of Pyrococcus horikoshii PncA.

  6. High order quaternary arrangement confers increased structural stability to Brucella Spp. lumazine synthase

    Energy Technology Data Exchange (ETDEWEB)

    Zylberman, V.; Craig, P.O.; Klinke, S.; Cauerhff, A.; Goldbaum, F.A. [Instituto Leloir, Buenos Aires (Argentina); Braden, B.C. [Bowie State Univ., Maryland (United States)

    2004-07-01

    The penultimate step in the pathway of riboflavin biosynthesis is catalyzed by the enzyme lumazine synthase (LS). One of the most distinctive characteristics of this enzyme is the structural quaternary divergence found in different species. The protein exists as pentameric and icosahedral forms, built from practically the same structural monomeric unit. The pentameric structure is formed by five 18 kDa monomers, each extensively contacting neighboring monomers. The icosahedral structure consists of 60 LS monomers arranged as twelve pentamers giving rise to a capsid exhibiting icosahedral 532 symmetry. In all lumazine synthases studied, the topologically equivalent active sites are located at the interfaces between adjacent subunits in the pentameric modules. The Brucella spp. lumazine synthase (BLS) sequence clearly diverges from pentameric and icosahedral enzymes. This unusual divergence prompted to further investigate on its quaternary arrangement. In the present work, we demonstrate by means of solution Light Scattering and X-ray structural analyses that BLS assembles as a very stable dimer of pentamers representing a third category of quaternary assembly for lumazine synthases. We also describe by spectroscopic studies the thermodynamic stability of this oligomeric protein, and postulate a mechanism for dissociation/unfolding of this macromolecular assembly. The higher molecular order of BLS increases its stability 20 deg C compared to pentameric lumazine synthases. The decameric arrangement described in this work highlights the importance of quaternary interactions in the stabilization of proteins. (author)

  7. High order quaternary arrangement confers increased structural stability to Brucella Spp. lumazine synthase

    International Nuclear Information System (INIS)

    Zylberman, V.; Craig, P.O.; Klinke, S.; Cauerhff, A.; Goldbaum, F.A.; Braden, B.C.

    2004-01-01

    The penultimate step in the pathway of riboflavin biosynthesis is catalyzed by the enzyme lumazine synthase (LS). One of the most distinctive characteristics of this enzyme is the structural quaternary divergence found in different species. The protein exists as pentameric and icosahedral forms, built from practically the same structural monomeric unit. The pentameric structure is formed by five 18 kDa monomers, each extensively contacting neighboring monomers. The icosahedral structure consists of 60 LS monomers arranged as twelve pentamers giving rise to a capsid exhibiting icosahedral 532 symmetry. In all lumazine synthases studied, the topologically equivalent active sites are located at the interfaces between adjacent subunits in the pentameric modules. The Brucella spp. lumazine synthase (BLS) sequence clearly diverges from pentameric and icosahedral enzymes. This unusual divergence prompted to further investigate on its quaternary arrangement. In the present work, we demonstrate by means of solution Light Scattering and X-ray structural analyses that BLS assembles as a very stable dimer of pentamers representing a third category of quaternary assembly for lumazine synthases. We also describe by spectroscopic studies the thermodynamic stability of this oligomeric protein, and postulate a mechanism for dissociation/unfolding of this macromolecular assembly. The higher molecular order of BLS increases its stability 20 deg C compared to pentameric lumazine synthases. The decameric arrangement described in this work highlights the importance of quaternary interactions in the stabilization of proteins. (author)

  8. Identification of unprecedented anticancer properties of high molecular weight biomacromolecular complex containing bovine lactoferrin (HMW-bLf.

    Directory of Open Access Journals (Sweden)

    Fawzi Ebrahim

    Full Text Available With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we report the purification and physicochemical characterization of high molecular weight biomacromolecular complex containing bovine lactoferrin (≥250 kDa, from bovine colostrum, a naturally enriched source of lactoferrin. It showed structural similarities to native monomeric iron free (Apo lactoferrin (∼78-80 kDa, retained anti-bovine lactoferrin antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p<0.01 of human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis and cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be investigated further.

  9. Aislamiento y caracterización bioquímica de la α-glucosidasa II del hongo patógeno Candida albicans Aislamiento y caracterización bioquímica de la α-glucosidasa II del hongo patógeno Candida albicans

    Directory of Open Access Journals (Sweden)

    Arturo Flores Carreón

    2012-02-01

    Full Text Available Alpha-glucosidase II participates in N-linked glycosylation of proteins. A soluble 47 kDa α-glucosidase II has been previously isolated from C. albicans; however, bioinformatics analysis indicate that native enzyme has a molecular mass of 100 kDa. In this study we assessed the effect of protease inhibitors on intracellular distribution of α-glucosidase II. Despite there was not a significant change in the enzyme distribution, α-glucosidase II activity was associated to a 83 or 47 kDa polypeptide in absence or presence of inhibitors, respectively. Soluble 83-kDa protein was purified by conventional methodology and its biochemical characteristics were similar to those reported for the 47 kDa enzyme. Thus, these results indicated the 83 kDa protein is an α-glucosidase II and also suggested it is a precursor of the 47 kDa enzyme previously reported. La α-glucosidasa II participa en la ruta de la N-glicosilación de proteínas. En Candida albi­cans se ha aislado un polipéptido soluble de 47 kDa con actividad de α-glucosidasa II; sin embargo, análisis bioinformáticos indican que la enzima nativa pudiera tener un peso mo­lecular de 100 kDa. En este trabajo se estudió el efecto de inhibidores de proteasas sobre la distribución intracelular de la α-glucosidasa II. Se demostró que la distribución intracelular no fue afectada significativamente, pero la actividad de la α-glucosidasa II estuvo asociada a una proteína de 83 ó 47 kDa en ausencia o presencia de inhibidores de proteasas, res­pectivamente. La enzima soluble de 83 kDa se purificó por métodos convencionales y se demostró que presenta características bioquímicas similares a la enzima de 47 kDa. Estos datos confirmaron que la proteína de 83 kDa es una α-glucosidasa II y sugieren que es precursora de la enzima de 47 kDa previamente descrita.

  10. 7 CFR 8.2 - Delegation of authority.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Delegation of authority. 8.2 Section 8.2 Agriculture Office of the Secretary of Agriculture 4-H CLUB NAME AND EMBLEM § 8.2 Delegation of authority. The... Agriculture, may authorize the use of the 4-H Club Name and Emblem in accordance with the regulations in this...

  11. Epoxide hydrolase affects estrogen production in the human ovary.

    Science.gov (United States)

    Hattori, N; Fujiwara, H; Maeda, M; Fujii, S; Ueda, M

    2000-09-01

    To investigate the mechanisms of ovarian cell differentiation, we raised a new monoclonal antibody, HCL-3, which reacted with human luteal cells. It also reacted with human and porcine hepatocytes. The immunoaffinity-purified HCL-3 antigen from human corpora lutea (CL) was shown to be a 46-kDa protein. The N-terminal 22 amino acids of the 46-kDa protein from porcine liver exhibited high homology (82%) to human microsomal epoxide hydrolase (mEH). The purified HCL-3 antigen from human CL or porcine liver showed EH enzyme activity, confirming that HCL-3 antigen is identical to mEH, which is reported to detoxify the toxic substrates in the liver. In human follicles, mEH was immunohistochemically detected on granulosa and theca interna cells. In the menstrual and pregnant CL, mEH was also expressed on large and small luteal cells. A competitive inhibitor of EH, 1,2-epoxy-3,3,3-trichloropropane, inhibited the conversion of estradiol from testosterone by granulosa cells cultured in vitro, indicating the involvement of mEH in ovarian estrogen production. Because anticonvulsant sodium valproate and its analogues were reported to inhibit EH enzyme activity, these findings provide a new insight into the etiology of endocrine disorders that are frequently observed among epileptic patients taking anticonvulsant drugs.

  12. Purification and characterization of a chlorite dismutase from Pseudomonas chloritidismutans

    NARCIS (Netherlands)

    Mehboob, F.; Wolterink, A.F.W.M.; Vermeulen, A.J.; Jiang, B.; Hagedoorn, P.L.; Stams, A.J.M.; Kengen, S.W.M.

    2009-01-01

    The chlorite dismutase (Cld) of Pseudomonas chloritidismutans was purified from the periplasmic fraction in one step by hydroxyapatite chromatography. The enzyme has a molecular mass of 110 kDa and consists of four 31-kDa subunits. Enzyme catalysis followed Michaelis-Menten kinetics, with Vmax and

  13. Faradaurate nanomolecules: a superstable plasmonic 76.3 kDa cluster.

    Science.gov (United States)

    Dass, Amala

    2011-12-07

    Information on the emergence of the characteristic plasmonic optical properties of nanoscale noble-metal particles has been limited, due in part to the problem of preparing homogeneous material for ensemble measurements. Here, we report the identification, isolation, and mass spectrometric and optical characterization of a 76.3 kDa thiolate-protected gold nanoparticle. This giant molecule is far larger than any metal-cluster compound, those with direct metal-to-metal bonding, previously known as homogeneous molecular substances, and is the first to exhibit clear plasmonic properties. The observed plasmon emergence phenomena in nanomolecules are of great interest, and the availability of absolutely homogeneous and characterized samples is thus critical to establishing their origin. © 2011 American Chemical Society

  14. Monomeric Aβ(1-40) and Aβ(1-42) Peptides in Solution Adopt Very Similar Ramachandran Map Distributions That Closely Resemble Random Coil.

    Science.gov (United States)

    Roche, Julien; Shen, Yang; Lee, Jung Ho; Ying, Jinfa; Bax, Ad

    2016-02-09

    The pathogenesis of Alzheimer's disease is characterized by the aggregation and fibrillation of amyloid peptides Aβ(1-40) and Aβ(1-42) into amyloid plaques. Despite strong potential therapeutic interest, the structural pathways associated with the conversion of monomeric Aβ peptides into oligomeric species remain largely unknown. In particular, the higher aggregation propensity and associated toxicity of Aβ(1-42) compared to that of Aβ(1-40) are poorly understood. To explore in detail the structural propensity of the monomeric Aβ(1-40) and Aβ(1-42) peptides in solution, we recorded a large set of nuclear magnetic resonance (NMR) parameters, including chemical shifts, nuclear Overhauser effects (NOEs), and J couplings. Systematic comparisons show that at neutral pH the Aβ(1-40) and Aβ(1-42) peptides populate almost indistinguishable coil-like conformations. Nuclear Overhauser effect spectra collected at very high resolution remove assignment ambiguities and show no long-range NOE contacts. Six sets of backbone J couplings ((3)JHNHα, (3)JC'C', (3)JC'Hα, (1)JHαCα, (2)JNCα, and (1)JNCα) recorded for Aβ(1-40) were used as input for the recently developed MERA Ramachandran map analysis, yielding residue-specific backbone ϕ/ψ torsion angle distributions that closely resemble random coil distributions, the absence of a significantly elevated propensity for β-conformations in the C-terminal region of the peptide, and a small but distinct propensity for αL at K28. Our results suggest that the self-association of Aβ peptides into toxic oligomers is not driven by elevated propensities of the monomeric species to adopt β-strand-like conformations. Instead, the accelerated disappearance of Aβ NMR signals in D2O over H2O, particularly pronounced for Aβ(1-42), suggests that intermolecular interactions between the hydrophobic regions of the peptide dominate the aggregation process.

  15. Direct interaction of beta-amyloid with Na,K-ATPase as a putative regulator of the enzyme function

    Science.gov (United States)

    Petrushanko, Irina Yu.; Mitkevich, Vladimir A.; Anashkina, Anastasia A.; Adzhubei, Alexei A.; Burnysheva, Ksenia M.; Lakunina, Valentina A.; Kamanina, Yulia V.; Dergousova, Elena A.; Lopina, Olga D.; Ogunshola, Omolara O.; Bogdanova, Anna Yu.; Makarov, Alexander A.

    2016-06-01

    By maintaining the Na+ and K+ transmembrane gradient mammalian Na,K-ATPase acts as a key regulator of neuronal electrotonic properties. Na,K-ATPase has an important role in synaptic transmission and memory formation. Accumulation of beta-amyloid (Aβ) at the early stages of Alzheimer’s disease is accompanied by reduction of Na,K-ATPase functional activity. The molecular mechanism behind this phenomenon is not known. Here we show that the monomeric Aβ(1-42) forms a tight (Kd of 3 μM), enthalpy-driven equimolar complex with α1β1 Na,K-ATPase. The complex formation results in dose-dependent inhibition of the enzyme hydrolytic activity. The binding site of Aβ(1-42) is localized in the “gap” between the alpha- and beta-subunits of Na,K-ATPase, disrupting the enzyme functionality by preventing the subunits from shifting towards each other. Interaction of Na,K-ATPase with exogenous Aβ(1-42) leads to a pronounced decrease of the enzyme transport and hydrolytic activity and Src-kinase activation in neuroblastoma cells SH-SY5Y. This interaction allows regulation of Na,K-ATPase activity by short-term increase of the Aβ(1-42) level. However prolonged increase of Aβ(1-42) level under pathological conditions could lead to chronical inhibition of Na,K-ATPase and disruption of neuronal function. Taken together, our data suggest the role of beta-amyloid as a novel physiological regulator of Na,K-ATPase.

  16. Purification and biochemical characterization of a 22-kDa stable cysteine- like protease from the excretory-secretory product of the liver fluke Fasciola hepatica by using conventional techniques.

    Science.gov (United States)

    Hemici, Ahmed; Benerbaiha, Roumaila Sabrina; Bendjeddou, Dalila

    2017-11-15

    This study describes the purification and characterization of a stable protease activity isolated from Fasciola hepatica adult worms maintained in vitro by employing acetone precipitation (40-60%) followed by a gel filtration through Sephadex G-100 and DEAE- cellulose ion exchange column. Through this three-step purification, the enzyme was purified 11-fold with a specific activity of 1893.9U/mg and 31.5% recovery. After the final ultrafiltration step, the purification fold was increased up to 13.1 and the overall activity yield reached a rate of 18.8%. The MW of the purified protease was estimated by reducing SDS-PAGE to be 22kDa while the proteolytic activity detection was carried out by zymography on non-denaturing SDS-PAGE containing the casein as substrate. Using this substrate, the protease showed extreme proteolytic activity at pH 5.5 and temperature 35-40°C and was highly stable over a wide range of pH, from 5.0 to 10.0. In addition to its preference for the Z-Phe-Arg-AMC fluorogenic substrate resulting in maximum proteolytic activity (99.7%) at pH 7.0, the pure protease exhibited highest cleavage activity against hemoglobin and casein substrates at pH 5.5 (85.6% and 82.8%, respectively). The K m values obtained for this protease were 5.4, 13, 160 and approximately 1000μM using respectively the fluorogenic substrate Z-Phe-Arg-AMC, hemoglobin, casein and albumin. The protease activity was completely inhibited either by E-64 inhibitor (5mM) or iodoacetamide (10mM), indicating its cysteine nature. The usefulness of the purified protease as an antigen was studied by immunoblotting. Thus, sera from sheep experimentally infected with F. hepatica recognized the protease band at 2 weeks post-infection (WPI) and strongly at 7 WPI. The early detection of antibodies anti- F. hepatica suggests the application of this molecule as a specific epitope for the serodiagnosis of fascioliasis disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Glucose(xylose isomerase production by Streptomyces sp. CH7 grown on agricultural residues

    Directory of Open Access Journals (Sweden)

    Kankiya Chanitnun

    2012-09-01

    Full Text Available Streptomyces sp. CH7 was found to efficiently produce glucose(xylose isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its Km values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its Vmax values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85ºC and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60ºC after 30 min. These findings indicate that glucose(xylose isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  18. Overexpression and characterization of a novel transgalactosylic and hydrolytic β-galactosidase from a human isolate Bifidobacterium breve B24.

    Science.gov (United States)

    Yi, Sung Hun; Alli, Inteaz; Park, Kwan Hwa; Lee, Byonghoon

    2011-10-01

    After the complete gene of a β-galactosidase from human isolate Bifidobacterium breve B24 was isolated by PCR and overexpressed in E. coli, the recombinant β-galactosidase was purified to homogeneity and characterized for the glycoside transferase (GT) and glycoside hydrolase (GH) activities on lactose. One complete ORF encoding 691 amino acids (2,076 bp) was the structural gene, LacA (galA) of the β-gal gene. The recombinant enzyme shown by activity staining and gel-filtration chromatography was composed of a homodimer of 75 kDa with a total molecular mass of 150 kDa. The K(m) value for lactose (95.58 mM) was 52.5-fold higher than the corresponding K(m) values for the synthetic substrate ONPG (1.82 mM). This enzyme with the optimum of pH 7.0 and 45°C could synthesize approximately 42.00% of GOS from 1M of lactose. About 97.00% of lactose in milk was also quickly hydrolyzed by this enzyme (50 units) at 45°C for 5h to produce 46.30% of glucose, 46.60% of galactose and 7.10% of GOS. The results suggest that this recombinant β-galactosidase derived from a human isolate B. breve B24 may be suitable for both the hydrolysis and synthesis of galacto-oligosaccharides (GOS) in milk and lactose processing. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Development of an enzyme-linked immunosorbent assay-based method for measuring galactosyltransferase activity using a synthetic glycopolymer acceptor substrate.

    Science.gov (United States)

    Oubihi, M; Kitajima, K; Kobayashi, K; Adachi, T; Aoki, N; Matsuda, T

    1998-03-15

    A lectin-assisted enzyme-linked immunosorbent assay (ELISA)-based method using a synthetic glycopolymer as an acceptor substrate was developed for measuring beta 1,4-galactosyltransferase (GalT) activity. A polyacrylamide derivative having a beta-linked N-acetylglucosamine (GlcNAc beta) moiety on each monomeric unit was synthesized chemically and immobilized on a polystyrene microtiter plate as an acceptor substrate for GalT. After the plate was incubated with bovine GalT, the enzyme reaction product, beta-linked Gal residue on the polyacrylamide-bound GlcNAc residue, was detected by using Ricinus communis agglutinin 1 (RCA1), rabbit anti-RCA1 antibody, and a peroxidase-labeled anti-rabbit IgG. The lowest GalT concentration detectable by this method was about 0.5 mU/ml, which is comparable to those by the previously reported ELISA-based assays. The unique property of the glycopolymer, PAP(GlcNAc beta), of binding noncovalently but tightly to the polystyrene microtiter plate allowed the use of this acceptor substrate for the GalT activity measurement even in the presence of 1% Triton CF-54 and X-100. Our system was successfully applied to assess GalT activity in milk of various mammals.

  20. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes.

    Science.gov (United States)

    Maruthamuthu, Mukil; Jiménez, Diego Javier; Stevens, Patricia; van Elsas, Jan Dirk

    2016-01-28

    Functional metagenomics is a promising strategy for the exploration of the biocatalytic potential of microbiomes in order to uncover novel enzymes for industrial processes (e.g. biorefining or bleaching pulp). Most current methodologies used to screen for enzymes involved in plant biomass degradation are based on the use of single substrates. Moreover, highly diverse environments are used as metagenomic sources. However, such methods suffer from low hit rates of positive clones and hence the discovery of novel enzymatic activities from metagenomes has been hampered. Here, we constructed fosmid libraries from two wheat straw-degrading microbial consortia, denoted RWS (bred on untreated wheat straw) and TWS (bred on heat-treated wheat straw). Approximately 22,000 clones from each library were screened for (hemi)cellulose-degrading enzymes using a multi-chromogenic substrate approach. The screens yielded 71 positive clones for both libraries, giving hit rates of 1:440 and 1:1,047 for RWS and TWS, respectively. Seven clones (NT2-2, T5-5, NT18-17, T4-1, 10BT, NT18-21 and T17-2) were selected for sequence analyses. Their inserts revealed the presence of 18 genes encoding enzymes belonging to twelve different glycosyl hydrolase families (GH2, GH3, GH13, GH17, GH20, GH27, GH32, GH39, GH53, GH58, GH65 and GH109). These encompassed several carbohydrate-active gene clusters traceable mainly to Klebsiella related species. Detailed functional analyses showed that clone NT2-2 (containing a beta-galactosidase of ~116 kDa) had highest enzymatic activity at 55 °C and pH 9.0. Additionally, clone T5-5 (containing a beta-xylosidase of ~86 kDa) showed > 90% of enzymatic activity at 55 °C and pH 10.0. This study employed a high-throughput method for rapid screening of fosmid metagenomic libraries for (hemi)cellulose-degrading enzymes. The approach, consisting of screens on multi-substrates coupled to further analyses, revealed high hit rates, as compared with recent other studies. Two

  1. Acid Glycohydrolases in Rat Spermatocytes, Spermatids and Spermatozoa: Enzyme Activities, Biosynthesis and Immunolocalization

    Directory of Open Access Journals (Sweden)

    Abou-Haila Aida

    2001-01-01

    Full Text Available Mammalian sperm acrosome contains several glycohydrolases thought to aid in the dispersion and digestion of vestments surrounding the egg. In this study, we have used multiple approaches to examine the origin of acrosome-associated glycohdyrdolases. Mixed spermatogenic cells, prepared from rat testis, were separated by unit gravity sedimentation. The purified germ cells (spermatocytes [SP], round spermatids [RS], and elongated/condensed spermatids [E/CS] contained several glycohydrolase activities. Metabolic labeling in the cell culture, immunoprecipitation, and autoradiographic approaches revealed that &bgr;-D-galactosidase was synthesized in SP and RS in 88/90 kDa forms which undergo processing in a cell-specific manner. Immunohistochemical approaches demonstrated that the enzyme was localized in Golgi membranes/vesicles, and lysosome-like structures in SP and RS, and forming/formed acrosome of E/CS.

  2. TIMP-1 resistant matrix metalloproteinase-9 is the predominant serum active isoform associated with MRI activity in patients with multiple sclerosis.

    Science.gov (United States)

    Trentini, Alessandro; Manfrinato, Maria C; Castellazzi, Massimiliano; Tamborino, Carmine; Roversi, Gloria; Volta, Carlo A; Baldi, Eleonora; Tola, Maria R; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Fainardi, Enrico

    2015-08-01

    The activity of matrix metalloproteinase-9 (MMP-9) depends on two isoforms, an 82 kDa active MMP-9 modulated by its specific tissue inhibitor (TIMP-1), and a 65 kDa TIMP-1 resistant active MMP-9. The relevance of these two enzymatic isoforms in multiple sclerosis (MS) is still unknown. To investigate the contribution of the TIMP-1 modulated and resistant active MMP-9 isoforms to MS pathogenesis. We measured the serum levels of the 82 kDa and TIMP-1 resistant active MMP-9 isoforms by activity assay systems in 86 relapsing-remitting MS (RRMS) patients, categorized according to clinical and magnetic resonance imaging (MRI) evidence of disease activity, and in 70 inflammatory (OIND) and 69 non-inflammatory (NIND) controls. Serum levels of TIMP-1 resistant MMP-9 were more elevated in MS patients than in OIND and NIND (p < 0.05, p < 0.02, respectively). Conversely, 82 kDa active MMP-9 was higher in NIND than in the OIND and MS patients (p < 0.01 and p < 0.00001, respectively). MRI-active patients had higher levels of TIMP-1 resistant MMP-9 and 82 kDa active MMP-9, than did those with MRI inactive MS (p < 0.01 and p < 0.05, respectively). Our findings suggested that the TIMP-1 resistant MMP-9 seem to be the predominantly active isoform contributing to MS disease activity. © The Author(s), 2015.

  3. Biochemical characterization of Arabidopsis thaliana starch branching enzyme 2.2 reveals an enzymatic positive cooperativity.

    Science.gov (United States)

    Wychowski, A; Bompard, C; Grimaud, F; Potocki-Véronèse, G; D'Hulst, C; Wattebled, F; Roussel, X

    2017-09-01

    Starch Branching Enzymes (SBE) catalyze the formation of α(1 → 6) branching points on starch polymers: amylopectin and amylose. SBEs are classified in two groups named type 1 and 2. Both types are present in the entire plant kingdom except in some species such as Arabidopsis thaliana that expresses two type 2 SBEs: BE2.1 and BE2.2. The present work describes in vitro enzymatic characterization of the recombinant BE2.2. The function of recombinant BE2.2 was characterized in vitro using spectrophotometry assay, native PAGE and HPAEC-PAD analysis. Size Exclusion Chromatography separation and SAXS experiments were used to identify the oligomeric state and for structural analysis of this enzyme. Optimal pH and temperature for BE2.2 activity were determined to be pH 7 and 25 °C. A glucosyl donor of at least 12 residues is required for BE2.2 activity. The reaction results in the transfer in an α(1 → 6) position of a glucan preferentially composed of 6 glucosyl units. In addition, BE2.2, which has been shown to be monomeric in absence of substrate, is able to adopt different active forms in presence of branched substrates, which affect the kinetic parameters. BE2.2 has substrate specificity similar to those of the other type-2 BEs. We propose that the different conformations of the enzyme displaying more or less affinity toward its substrates would explain the adjustment of the kinetic data to the Hill equation. This work describes the enzymatic parameters of Arabidopsis BE2.2. It reveals for the first time conformational changes for a branching enzyme, leading to a positive cooperative binding process of this enzyme. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Crystallization of a 79 kDa fragment of the hook protein FlgE from Campylobacter jejuni

    International Nuclear Information System (INIS)

    Kido, Yasuji; Yoon, Young-Ho; Samatey, Fadel A.

    2011-01-01

    A 79 kDa fragment of FlgE from C. jejuni has been crystallized. A 79 kDa fragment of the bacterial flagellar hook protein FlgE from Campylobacter jejuni was cloned, overexpressed, purified and crystallized. Two different crystal forms were obtained. Synchrotron X-ray diffraction data showed that the first crystal form, which diffracted to 4.9 Å resolution, belonged to the tetragonal crystal system, with space group I4 1 22 and unit-cell parameters a = b = 186.2, c = 386.6 Å, α = β = γ = 90°. The second crystal form diffracted to 2.5 Å resolution and belonged to the monoclinic crystal system, with space group P2 1 and unit-cell parameters a = 75.7, b = 173.8, c = 150.8 Å, α = γ = 90, β = 106.5°. SeMet protein was also overexpressed, purified and crystallized, and a 2.6 Å resolution MAD data set was collected

  5. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Science.gov (United States)

    2010-07-01

    ... equipment. 82.36 Section 82.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Servicing of Motor Vehicle Air Conditioners § 82.36...-12, Extraction and Recycle Equipment for Mobile Automotive Air-Conditioning Systems, and Standard of...

  6. Interaction of Classical Platinum Agents with the Monomeric and Dimeric Atox1 Proteins: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Xiaolei Wang

    2013-12-01

    Full Text Available We carried out molecular dynamics simulations and free energy calculations for a series of binary and ternary models of the cisplatin, transplatin and oxaliplatin agents binding to a monomeric Atox1 protein and a dimeric Atox1 protein to investigate their interaction mechanisms. All three platinum agents could respectively combine with the monomeric Atox1 protein and the dimeric Atox1 protein to form a stable binary and ternary complex due to the covalent interaction of the platinum center with the Atox1 protein. The results suggested that the extra interaction from the oxaliplatin ligand–Atox1 protein interface increases its affinity only for the OxaliPt + Atox1 model. The binding of the oxaliplatin agent to the Atox1 protein might cause larger deformation of the protein than those of the cisplatin and transplatin agents due to the larger size of the oxaliplatin ligand. However, the extra interactions to facilitate the stabilities of the ternary CisPt + 2Atox1 and OxaliPt + 2Atox1 models come from the α1 helices and α2-β4 loops of the Atox1 protein–Atox1 protein interface due to the cis conformation of the platinum agents. The combinations of two Atox1 proteins in an asymmetric way in the three ternary models were analyzed. These investigations might provide detailed information for understanding the interaction mechanism of the platinum agents binding to the Atox1 protein in the cytoplasm.

  7. Two-step processing for activation of the cytolysin/hemolysin of Vibrio cholerae O1 biotype El Tor: nucleotide sequence of the structural gene (hlyA) and characterization of the processed products.

    Science.gov (United States)

    Yamamoto, K; Ichinose, Y; Shinagawa, H; Makino, K; Nakata, A; Iwanaga, M; Honda, T; Miwatani, T

    1990-12-01

    Vibrio cholerae O1 biotype El Tor produces and secretes a 65-kDa cytolysin/hemolysin into the culture medium. We cloned the structural gene (hlyA) for the cytolysin from the total DNA of a V. cholerae O1 El Tor strain, N86. Nucleotide sequence analysis of hlyA revealed an open reading frame consisting of 2,223 bp which can code for a protein of 741 amino acids with a molecular weight of 81,961. Consistent with this, a 79-kDa protein was identified as the product of hlyA by maxicell analysis in Escherichia coli. N-terminal amino acids of this 79-kDa HlyA protein and those of a 65-kDa El Tor cytolysin purified from V. cholerae were Asn-26 and Asn-158, respectively. The 82- and 79-kDa precursors of the 65-kDa mature cytolysin were found in V. cholerae by pulse-chase labeling and Western blot (immunoblot) analysis of hlyA products. Hemolytic activity of the 79-kDa HlyA protein from E. coli was less than 5% that for the 65-kDa cytolysin from V. cholerae. Our results suggest that in V. cholerae, the 82-kDa preprotoxin synthesized in the cytoplasm is secreted through the membranes into the culture medium as the 79-kDa inactive protoxin after cleavage of the signal peptide and is then further processed into the 65-kDa active cytolysin by release of the N-terminal 15-kDa fragment.

  8. Dicty_cDB: CHE818 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 8.1 Habrotrocha constricta 82 kDa heat shock protein 2 (hsp82-2) gene, partial cds. 88 3e-48 4 AF143854 |AF143854.1 Sinantherina soci...alis 82 kD heat shock protein (hsp82) gene, partial cds.

  9. Casein Fermentate of Lactobacillus animalis DPC6134 Contains a Range of Novel Propeptide Angiotensin-Converting Enzyme Inhibitors▿

    Science.gov (United States)

    Hayes, M.; Stanton, C.; Slattery, H.; O'Sullivan, O.; Hill, C.; Fitzgerald, G. F.; Ross, R. P.

    2007-01-01

    This work evaluated the angiotensin-converting-enzyme (ACE)-inhibitory activities of a bovine sodium caseinate fermentate generated using the proteolytic capabilities of the porcine small intestinal isolate Lactobacillus animalis DPC6134 (NCIMB deposit 41355). The crude 10-kDa L. animalis DPC6134 fermentate exhibited ACE-inhibitory activity of 85.51% (±15%) and had a 50% inhibitory concentration (IC50) of 0.8 mg protein/ml compared to captopril, which had an IC50 value of 0.005 mg/ml. Fractionation of the crude L. animalis DPC6134 fermentate by membrane filtration and reversed-phase high-performance liquid chromatography (HPLC) generated three bioactive fractions from a total of 72 fractions. Fractions 10, 19, and 43 displayed ACE-inhibitory activity percentages of 67.53 (±15), 83.71 (±19), and 42.36 (±11), respectively, where ACE inhibition was determined with 80 μl of the fractions with protein concentrations of 0.5 mg/ml. HPLC and mass spectrometry analysis identified 25 distinct peptide sequences derived from α-, β-, and κ-caseins. In silico predictions, based on the C-terminal tetrapeptide sequences, suggested that peptide NIPPLTQTPVVVPPFIQ, corresponding to β-casein f(73-89); peptide IGSENSEKTTMP, corresponding to αs1-casein f(201212); peptide SQSKVLPVPQ, corresponding to β-casein f(166-175); peptide MPFPKYPVEP, corresponding to β-casein f(124133); and peptide EPVLGPVRGPFP, corresponding to β-casein f(210-221), contained ACE-inhibitory activities. These peptides were chosen for chemical synthesis to confirm the ACE-inhibitory activity of the fractions. Chemically synthesized peptides displayed IC50 values in the range of 92 μM to 790 μM. Additionally, a simulated gastrointestinal digestion confirmed that the ACE-inhibitory 10-kDa L. animalis DPC6134 fermentation was resistant to a cocktail of digestive enzymes found in the gastrointestinal tract. PMID:17483275

  10. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods

    Directory of Open Access Journals (Sweden)

    Pei-Ling Tang

    2015-01-01

    Full Text Available In this study, oil palm empty fruit bunch (OPEFBF was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen and enzymatic [cutinase versus manganese peroxidase (MnP] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt. and reaction time (30, 90, and 180 minutes on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17±49.44 ppm hydroxybenzoic acid, 5.67±0.25 ppm p-hydroxybenzaldehyde, 25.57±1.64 ppm vanillic acid, 168.68±23.23 ppm vanillin, 75.44±6.71 ppm syringic acid, 815.26±41.77 ppm syringaldehyde, 15.21±2.19 ppm p-coumaric acid, and 44.75±3.40 ppm ferulic acid, among the tested methods. High sodium hydroxide concentration (10% wt. was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid. Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g−1 lignin at pH 8 and 55°C for 24 hours, about 642.83±14.45 ppm hydroxybenzoic acid, 70.19±3.31 ppm syringaldehyde, 22.80±1.04 ppm vanillin, 27.06±1.20 ppm p-coumaric acid, and 50.19±2.23 ppm ferulic acid were produced.

  11. Application of enzymes for efficient extraction, modification, and development of functional properties of lime pectin

    DEFF Research Database (Denmark)

    Dominiak, Malgorzata Maria; Marie Søndergaard, Karen; Wichmann, Jesper

    2014-01-01

    pectin. The most efficient enzyme preparation was Laminex C2K derived from Penicillium funiculosum which, during 4 h treatment at pH 3.5, 50 °C, released pectin with similar yield (23% w/w), molecular weight (69 kDa), and functional properties e.g. gelling, stabilization of acidified milk drinks...... and viscosity as the classically acid-extracted pectins (8 h treatment at 70 °C, pH ... at higher temperatures. The Laminex CK2 extracted pectin polymers were not sensitive to the presence of Ca2+ ions, they formed a gel at low pH in the presence of sugar and were able to stabilize acidified milk drinks. Further modification by enzymatic de-esterification of the pectin extracted with Laminex C...

  12. Src inhibitor herbimycin A prevents 132.7 kDa tyrosine phosphatase activity in Ramos Burkitt's lymphoma B cell line

    International Nuclear Information System (INIS)

    Hristov, K.; Mitev, V.; Knox, K.

    2006-01-01

    Reversible tyrosine phosphorylation, regulation of expression and proteolytic cleavage control tyrosine phosphatase contribution for the signalling pathways of B-cell antigen receptor (BCR), and CD40 during B cell selection. We used Ramos-BL B cell line to determine whether BCR and CD40 stimulation, or inhibition of the Src - tyrosine kinase, tyrosine phosphatase and caspase activity have an effect on the tyrosine phosphatase activities determined on in-gel phosphatase assay. The tyrosine phosphatase activities present in whole cell lysates of Ramos-BL B cells following treatment with 20 μg/ml anti-IgM, 1 μg/ml anti-CD40, 10 μM herbimycin A, 178 μM vanadate,100 μM phenylarsine oxide and 10 μM zVAD-fmk were detected with an in-gel phosphatase assay. Seven major tyrosine phosphatase activities with approximate molecular weight of 132.7, 63.9, 60.3, 54.2, 49.7, 44.6, and 39 kDa are present in whole cell lysates of Ramos-BL B cells. Treatment with Src-PTK inhibitor herbimycin A prevents 132.7 kDa tyrosine phosphatase activity. We conclude that the catalytic activity of Src-PTK in Ramos-BL B cells is critical for the presence of this 132.7 kDa tyrosine phosphatase activity. (authors)

  13. Dose-finding study of carbamylated monomeric allergoid tablets in grass-allergic rhinoconjunctivitis patients.

    Science.gov (United States)

    Mösges, Ralph; Rohdenburg, Christina; Eichel, Andrea; Zadoyan, Gregor; Kasche, Elena-Manja; Shah-Hosseini, Kija; Lehmacher, Walter; Schmalz, Petra; Compalati, Enrico

    2017-11-01

    To determine the optimal effective and safe dose of sublingual immunotherapy tablets containing carbamylated monomeric allergoids in patients with grass pollen-induced allergic rhinoconjunctivitis. In this prospective, randomized, double-blind, active-controlled, multicenter, Phase II study, four different daily doses were applied preseasonally for 12 weeks. Of 158 randomized adults, 155 subjects (safety population) received 300 units of allergy (UA)/day (n = 36), 600 UA/day (n = 43), 1000 UA/day (n = 39), or 2000 UA/day (n = 37). After treatment, 54.3, 47.6, 59.0 and 51.4% of patients, respectively, ceased to react to the highest allergen concentration in a conjunctival provocation test. Furthermore, the response threshold improved in 70.4, 62.9, 76.7 and 66.7% of patients, respectively. No serious adverse events occurred. This study found 1000 UA/day to be the optimal effective and safe dose.

  14. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    Science.gov (United States)

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion.

  15. The substructure of immunoglobulin G resolved to 25 kDa using amplitude modulation AFM in air

    International Nuclear Information System (INIS)

    Thomson, Neil H.

    2005-01-01

    Amplitude modulation (or tapping-mode) atomic force microscopy (AM AFM or TM AFM) in air can reveal sub-molecular details of isolated multi-subunit proteins, such as immunoglobulin G (IgG) antibodies, on atomically flat support surfaces such as mica [A. San Paulo, R. Garcia, Biophys. J. 78(3) (2000) 1599]. This is achieved by controlling the microscope imaging parameters (e.g. cantilever drive frequency and set-point amplitude) to keep the AFM tip predominantly in the attractive force regime. Under these conditions, the 50 kDa F c and F ab subunits can be resolved when the molecule has the appropriate orientation on the surface. The presence of a water layer on hydrophilic mica is an important factor affecting imaging contrast, a consequence of capillary neck formation between tip and surface [L. Zitzler, S. Herminghaus, F. Mugele, Phys. Rev. B 66(15) (2002) 155436]. Desiccation of samples to remove surface bound water layers can yield reproducible imaging of the IgG substructure [N.H. Thomson, J. Microsc. (Oxford) 217(3) (2004) 193]. This approach has also given higher resolution than previously achieved, down to about 25 kDa, and these data are detailed here. These subdomains are formed as two immunoglobulin folds from the light and heavy peptide chains of the IgG crossover. This result has been validated by comparing the AFM images with X-ray crystallography data from the protein data bank. These data show that the AFM can obtain 25 kDa resolution on isolated protein molecules with commercially available silicon tips, but, as expected for a local probe technique, resolution is highly dependent on the macromolecular orientation on the support surface

  16. 40 CFR 82.34 - Prohibitions and required practices.

    Science.gov (United States)

    2010-07-01

    .... 82.34 Section 82.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Servicing of Motor Vehicle Air Conditioners § 82.34..., any class I or class II substance that is suitable for use as a refrigerant in motor vehicle air...

  17. 34 CFR 82.300 - Professional and technical services.

    Science.gov (United States)

    2010-07-01

    ... and analysis directly applying any professional or technical discipline. For example, drafting or a... 34 Education 1 2010-07-01 2010-07-01 false Professional and technical services. 82.300 Section 82... by Other Than Own Employees § 82.300 Professional and technical services. (a) The prohibition on the...

  18. Pleiotropic benefit of monomeric and oligomeric flavanols on vascular health--a randomized controlled clinical pilot study.

    Directory of Open Access Journals (Sweden)

    Antje R Weseler

    Full Text Available BACKGROUND: Cardiovascular diseases are expanding to a major social-economic burden in the Western World and undermine man's deep desire for healthy ageing. Epidemiological studies suggest that flavanol-rich foods (e.g. grapes, wine, chocolate sustain cardiovascular health. For an evidenced-based application, however, sound clinical data on their efficacy are strongly demanded. METHODS: In a double-blind, randomized, placebo-controlled intervention study we supplemented 28 male smokers with 200 mg per day of monomeric and oligomeric flavanols (MOF from grape seeds. At baseline, after 4 and 8 weeks we measured macro- and microvascular function and a cluster of systemic biomarkers for major pathological processes occurring in the vasculature: disturbances in lipid metabolism and cellular redox balance, and activation of inflammatory cells and platelets. RESULTS: In the MOF group serum total cholesterol and LDL decreased significantly (P ≤ 0.05 by 5% (n = 11 and 7% (n = 9, respectively in volunteers with elevated baseline levels. Additionally, after 8 weeks the ratio of glutathione to glutathione disulphide in erythrocytes rose from baseline by 22% (n = 15, P<0.05 in MOF supplemented subjects. We also observed that MOF supplementation exerts anti-inflammatory effects in blood towards ex vivo added bacterial endotoxin and significantly reduces expression of inflammatory genes in leukocytes. Conversely, alterations in macro- and microvascular function, platelet aggregation, plasma levels of nitric oxide surrogates, endothelin-1, C-reactive protein, fibrinogen, prostaglandin F2alpha, plasma antioxidant capacity and gene expression levels of antioxidant defense enzymes did not reach statistical significance after 8 weeks MOF supplementation. However, integrating all measured effects into a global, so-called vascular health index revealed a significant improvement of overall vascular health by MOF compared to placebo (P ≤ 0.05. CONCLUSION: Our

  19. Cellulolytic Enzymes Production via Solid-State Fermentation: Effect of Pretreatment Methods on Physicochemical Characteristics of Substrate.

    Science.gov (United States)

    Brijwani, Khushal; Vadlani, Praveen V

    2011-01-01

    We investigated the effect of pretreatment on the physicochemical characteristics-crystallinity, bed porosity, and volumetric specific surface of soybean hulls and production of cellulolytic enzymes in solid-state fermentation of Trichoderma reesei and Aspergillus oryzae cultures. Mild acid and alkali and steam pretreatments significantly increased crystallinity and bed porosity without significant change inholocellulosic composition of substrate. Crystalline and porous steam-pretreated soybean hulls inoculated with T. reesei culture had 4 filter paper units (FPU)/g-ds, 0.6 IU/g-ds β-glucosidase, and 45 IU/g-ds endocellulase, whereas untreated hulls had 0.75 FPU/g-ds, 0.06 IU/g-ds β-glucosidase, and 7.29 IU/g-ds endocellulase enzyme activities. In A. oryzae steam-pretreated soybean hulls had 47.10 IU/g-ds endocellulase compared to 30.82 IU/g-ds in untreated soybean hulls. Generalized linear statistical model fitted to enzyme activity data showed that effects of physicochemical characteristics on enzymes production were both culture and enzyme specific. The paper shows a correlation between substrate physicochemical properties and enzyme production.

  20. Evaluation of an enzyme-linked immunoelectrotransfer blot test for the confirmatory serodiagnosis of human toxocariasis

    Directory of Open Access Journals (Sweden)

    William H Roldán

    2009-05-01

    Full Text Available To improve the serodiagnosis of human toxocariasis, a sensitive and specific enzyme-linked immunoelectrotransfer blot (EITB-IgG test was developed and evaluated using Toxocara canislarvae excretory-secretory antigens for detecting anti-Toxocara IgG antibodies. The EITB-IgG profile of toxocariasis was characterized by comparing 27 sera from patients with toxocariasis, 110 sera from healthy subjects and 186 sera from patients with other helminth diseases (ascariasis, ancylostomiasis, trichuriasis, enterobiasis, strongyloidiasis, hymenolepiasis, diphyllobothriasis, taeniasis, cysticercosis, hydatidosis and fascioliasis. Antigenic bands of 24, 28, 30, 35, 56, 117, 136 and 152 kDa were predominantly recognized in sera from all patients with toxocariasis. However, only bands of 24-35 kDa were highly specific for Toxocara infection (98.3%, whereas other antigenic bands observed displayed cross-reactivity. Additionally, when the results of the EITB-IgG test were compared to those of the ELISA-IgG test, a 100% concordance was observed for positive results in human toxocariasis cases. The concordance for negative results between the two tests for healthy subjects and patients with other helminth diseases were 96.3% and 53.7%, respectively, showing that the EITB-IgG test has a higher specificity than ELISA. In conclusion, the EITB-IgG test is a very useful tool to confirm the serological diagnosis of human toxocariasis.

  1. Application of electrospray mass spectrometry to the characterization of recombinant proteins up to 44 kDa

    NARCIS (Netherlands)

    Van Dorsselaer, A.; Bitsch, F.; Green, B.; Jarvis, S.; Lepage, P.; Bischoff, Rainer; Kolbe, V.J.; Roitsch, C.

    1990-01-01

    Mass measurement by electrospray mass spectrometry (ESMS) is used as a rapid preliminary verification of the identity of various recombinant proteins ranging from 7 to 44 kDa with an accuracy of 0.01-0.03%. ESMS not only improves the speed but also the reliability of the protein structure

  2. Regulation of 11 beta-hydroxysteroid dehydrogenase enzymes in the rat kidney by estradiol.

    Science.gov (United States)

    Gomez-Sanchez, Elise P; Ganjam, Venkataseshu; Chen, Yuan Jian; Liu, Ying; Zhou, Ming Yi; Toroslu, Cigdem; Romero, Damian G; Hughson, Michael D; de Rodriguez, Angela; Gomez-Sanchez, Celso E

    2003-08-01

    The 11beta-hydroxysteroid dehydrogenase (11betaHSD) type 1 (11betaHSD1) enzyme is an NADP+-dependent oxidoreductase, usually reductase, of major glucocorticoids. The NAD+-dependent type 2 (11betaHSD2) enzyme is an oxidase that inactivates cortisol and corticosterone, conferring extrinsic specificity of the mineralocorticoid receptor for aldosterone. We reported that addition of a reducing agent to renal homogenates results in the monomerization of 11betaHSD2 dimers and a significant increase in NAD+-dependent corticosterone conversion. Estrogenic effects on expression, dimerization, and activity of the kidney 11betaHSD1 and -2 enzymes are described herein. Renal 11betaHSD1 mRNA and protein expressions were decreased to very low levels by estradiol (E2) treatment of both intact and castrated male rats; testosterone had no effect. NADP+-dependent enzymatic activity of renal homogenates from E2-treated rats measured under nonreducing conditions was less than that of homogenates from intact animals. Addition of 10 mM DTT to aliquots from these same homogenates abrogated the difference in NADP+-dependent activity between E2-treated and control rats. In contrast, 11betaHSD2 mRNA and protein expressions were significantly increased by E2 treatment. There was a marked increase in the number of juxtamedullary proximal tubules stained by the antibody against 11betaHSD2 after the administration of E2. Notwithstanding, neither the total corticosterone and 11-dehydrocorticosterone excreted in the urine nor their ratio differed between E2- and vehicle-treated rats. NAD+-dependent enzymatic activity in the absence or presence of a reducing agent demonstrated that the increase in 11betaHSD2 protein was not associated with an increase in in vitro activity unless the dimers were reduced to monomers.

  3. MALDI-TOF mass spectrometry analysis of small molecular weight compounds (under 10 KDa) as biomarkers of rat hearts undergoing arecoline challenge.

    Science.gov (United States)

    Chen, Tung-Sheng; Chang, Mu-Hsin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Day, Cecilia Hsuan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang

    2013-04-01

    Statistical and clinical reports indicate that betel nut chewing is strongly associated with progression of oral cancer because some ingredients in betel nuts are potential cancer promoters, especially arecoline. Early diagnosis for cancer biomarkers is the best strategy for prevention of cancer progression. Several methods are suggested for investigating cancer biomarkers. Among these methods, gel-based proteomics approach is the most powerful and recommended tool for investigating biomarkers due to its high-throughput. However, this proteomics approach is not suitable for screening biomarkers with molecular weight under 10 KDa because of the characteristics of gel electrophoresis. This study investigated biomarkers with molecular weight under 10 KDa in rats with arecoline challenge. The centrifuging vials with membrane (10 KDa molecular weight cut-off) played a crucial role in this study. After centrifuging, the filtrate (containing compounds with molecular weight under 10 KDa) was collected and spotted on a sample plate for MALDI-TOF mass spectrometry analysis. Compared to control, three extra peaks (m/z values were 1553.1611, 1668.2097 and 1740.1832, respectively) were found in sera and two extra peaks were found in heart tissue samples (408.9719 and 524.9961, respectively). These small compounds should play important roles and may be potential biomarker candidates in rats with arecoline. This study successfully reports a mass-based method for investigating biomarker candidates with small molecular weight in different types of sample (including serum and tissue). In addition, this reported method is more time-efficient (1 working day) than gel-based proteomics approach (5~7 working days).

  4. 34 CFR 82.205 - Professional and technical services.

    Science.gov (United States)

    2010-07-01

    ..., drafting of a legal document accompanying a bid or proposal by a lawyer is allowable. Similarly, technical... 34 Education 1 2010-07-01 2010-07-01 false Professional and technical services. 82.205 Section 82... by Own Employees § 82.205 Professional and technical services. (a) The prohibition on the use of...

  5. 29 CFR 452.82 - Reprisal for exercising rights.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Reprisal for exercising rights. 452.82 Section 452.82 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT... DISCLOSURE ACT OF 1959 Campaign Safeguards § 452.82 Reprisal for exercising rights. A member has a right to...

  6. Ftr82 Is Critical for Vascular Patterning during Zebrafish Development

    Directory of Open Access Journals (Sweden)

    Hsueh-Wei Chang

    2017-01-01

    Full Text Available Cellular components and signaling pathways are required for the proper growth of blood vessels. Here, we report for the first time that a teleost-specific gene ftr82 (finTRIM family, member 82 plays a critical role in vasculature during zebrafish development. To date, there has been no description of tripartite motif proteins (TRIM in vascular development, and the role of ftr82 is unknown. In this study, we found that ftr82 mRNA is expressed during the development of vessels, and loss of ftr82 by morpholino (MO knockdown impairs the growth of intersegmental vessels (ISV and caudal vein plexus (CVP, suggesting that ftr82 plays a critical role in promoting ISV and CVP growth. We showed the specificity of ftr82 MO by analyzing ftr82 expression products and expressing ftr82 mRNA to rescue ftr82 morphants. We further showed that the knockdown of ftr82 reduced ISV cell numbers, suggesting that the growth impairment of vessels is likely due to a decrease of cell proliferation and migration, but not cell death. In addition, loss of ftr82 affects the expression of vascular markers, which is consistent with the defect of vascular growth. Finally, we showed that ftr82 likely interacts with vascular endothelial growth factor (VEGF and Notch signaling. Together, we identify teleost-specific ftr82 as a vascular gene that plays an important role for vascular development in zebrafish.

  7. Voltage-controlled Enzymes: The new Janus Bifrons

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Villalba-Galea

    2012-09-01

    Full Text Available The Ciona intestinalis voltage sensitive phosphatase, Ci-VSP, was the first Voltage-controlled Enzyme (VEnz proven to be under direct command of the membrane potential. The discovery of Ci-VSP conjugated voltage sensitivity and enzymatic activity in a single protein. These two facets of Ci-VSP activity have provided a unique model for studying how membrane potential is sensed by proteins and a novel mechanism for control of enzymatic activity. These facets make Ci-VSP a fascinating and versatile enzyme.Ci-VSP has a voltage sensing domain (VSD that resembles those found in voltage-gated channels (VGC. The VSD resides in the N-terminus and is formed by four putative trans-membrane segments. The fourth segment contains charged residues which are likely involved in voltage sensing. Ci-VSP produces sensing currents in response to changes in potential, within a defined range of voltages. Sensing currents are analogous to gating currents in VGC. As known, these latter proteins contain four VSDs which are entangled in a complex interaction with the pore domain –the effector domain in VGC. This complexity makes studying the basis of voltage sensing in VGC a difficult enterprise. In contrast, Ci-VSP is thought to be monomeric and its catalytic domain –the VSP’s effector domain– can be cleaved off without disrupting the basic electrical functioning of the VSD. For these reasons, VSPs are considered a great model for studying the activity of a VSD in isolation. Finally, VSPs are also phosphoinositide phosphatases. Phosphoinositides are signaling lipids found in eukaryotes and are involved in many processes, including modulation of VGC activity and regulation of cell proliferation. Understanding VSPs as VEnz has been the center of attention in recent years and several reviews has been dedicated to this area. Thus, this review will be focused instead on the other face of this true Janus Bifrons and recapitulate what is known about VSPs as electrically

  8. PURIFICACIÓN DEL ANTÍGENO 38 kDa DE Mycobacterium tuberculosis Y SU POTENCIAL USO EN DIAGNÓSTICO MEDIANTE INMUNOSENSORES PIEZOELÉCTRICOS

    OpenAIRE

    Paula A. Marín; Luz E. Botero; Jaime A. Robledo; Ana M. Murillo; Robinson A. Torres; Yeison J. Montagut; Elizabeth Pabón; Marisol Jaramillo

    2015-01-01

    Un paso crucial en el desarrollo de un inmunosensor piezoeléctrico para la detección de tuberculosis (TB), es la selección y obtención de los inmunoreactivos empleados en el inmunoensayo y la estrategia para la biofuncionalización del transductor. Diversos estudios han reportado el uso del antígeno proteico 38kDa (Ag38kDa) de Mycobacterium tuberculosis ( Mtb ) como un buen biomarcador de la enfermedad y el cumplimiento de las características físicas y bioquímicas para ser inmovilizado por mon...

  9. Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Zambare, Vasudeo; Zambare, Archana; Christopher, Lew P. [Center for Bioprocessing Research & Development, South Dakota School of Mines and Technology, Rapid City 57701, SD (United States); Muthukumarappan, Kasiviswanath [Center for Bioprocessing Research & Development, South Dakota State University, Brookings 57007, SD (United States)

    2011-07-01

    A thermophilic microbial consortium (TMC) producing hydrolytic (cellulolytic and xylanolytic) enzymes was isolated from yard waste compost following enrichment with carboxymethyl cellulose and birchwood xylan. When grown on 5% lignocellulosic substrates (corn stover and prairie cord grass) at 60C, the thermophilic consortium produced more xylanase (up to 489 U/l on corn stover) than cellulase activity (up to 367 U/l on prairie cord grass). Except for the carboxymethyl cellulose-enriched consortium, thermo-mechanical extrusion pretreatment of these substrates had a positive effect on both activities with up to 13% and 21% increase in the xylanase and cellulase production, respectively. The optimum temperatures of the crude cellulase and xylanase were 60C and 70C with half-lives of 15 h and 18 h, respectively, suggesting higher thermostability for the TMC xylanase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the crude enzyme exhibited protein bands of 25-77 kDa with multiple enzyme activities containing 3 cellulases and 3 xylanases. The substrate specificity declined in the following descending order: avicel>birchwood xylan>microcrystalline cellulose>filter paper>pine wood saw dust>carboxymethyl cellulose. The crude enzyme was 77% more active on insoluble than soluble cellulose. The Km and Vmax values were 36.49 mg/ml and 2.98 U/mg protein on avicel (cellulase), and 22.25 mg/ml and 2.09 U/mg protein, on birchwood xylan (xylanase). A total of 50 TMC isolates were screened for cellulase and xylanase secretion on agar plates. All single isolates showed significantly lower enzyme activities when compared to the thermophilic consortia. This is indicative of the strong synergistic interactions that exist within the thermophilic microbial consortium and enhance its hydrolytic capabilities. It was further demonstrated that the thermostable enzyme-generated lignocellulosic hydrolyzates can be fermented to bioethanol by a recombinant strain of Escherichia coli

  10. KARAKTERISASI ENZIM POLIFENOL OKSIDASE BIJI KAKAO (Theobroma cacao Linn. Characterization of Polyphenol Oxidase Enzyme of Cocoa Beans (Theobroma cacao Linn.

    Directory of Open Access Journals (Sweden)

    G.P. Ganda Putra

    2012-05-01

    max equals to 595,24 U/gram (db of cocoa beans and K equals to 0,20 M; result of SDS- PAGE of enzyme shows protein bands at M� of 11,75; 17,80; 27,80; 36,03 and 131,52 kDa; and finally, optimumcondition of enzyme activity is at the temperature of 53,43oC; pH 5,42 and incubation time of 80,91 minutes. ABSTRAK Telah dilakukan penelitian dengan tujuan untuk: (1 mengetahui karakteristik enzim polifenol oksidase dan (2 menen- tukan kondisi (suhu, pH dan waktu inkubasi optimum aktivitas enzim polifenol oksidase, yang diisolasi dari biji kakao kering. Hasil penelitian berupa kondisi (suhu, pH dan waktu inkubasi optimum aktivitas enzim polifenol oksidase akan diaplikasikan untuk perbaikan mutu biji kakao kering melalui teknik rehidrasi. Penelitian ini dilakukan melalui tahapan: (1 isolasi enzim polifenol oksidase dari 10 sampel biji kakao kering di Provinsi Bali, (2 karakterisasi enzim polifenol oksidase (aktivitas, kinetika enzim, BM dan (3 penentuan kondisi suhu, pH dan waktu inkubasi optimum. Hasil yang diperoleh menunjukkan bahwa: (1 aktivitas enzim polifenol oksidase rata-rata 157,49 ± 58,03 U/gram (bk biji kakao dengan aktivitas maksimum 258,22 U/gram (bk biji kakao dan minimum 59,01 U/gram (bk biji kakao; maks sebesar 595,24 U/gram (bk biji kakao dan K sebesar 0,20 M; hasil SDS-PAGE enzim menunjukkan pita-pita protein yang terbentuk pada BM 11,75; 17,80; 27,80; 36,03 dan 131,52 kDa; dan (2 kondisi optimum aktivitas enzimadalah suhu 53,43oC; pH 5,42 dan waktu inkubasi 80,91 menit.

  11. A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme.

    Science.gov (United States)

    Piumi, François; Levasseur, Anthony; Navarro, David; Zhou, Simeng; Mathieu, Yann; Ropartz, David; Ludwig, Roland; Faulds, Craig B; Record, Eric

    2014-12-01

    Data on glucose dehydrogenases (GDHs) are scarce and availability of these enzymes for application purposes is limited. This paper describes a new GDH from the fungus Pycnoporus cinnabarinus CIRM BRFM 137 that is the first reported GDH from a white-rot fungus belonging to the Basidiomycota. The enzyme was recombinantly produced in Aspergillus niger, a well-known fungal host producing an array of homologous or heterologous enzymes for industrial applications. The full-length gene that encodes GDH from P. cinnabarinus (PcGDH) consists of 2,425 bp and codes for a deduced protein of 620 amino acids with a calculated molecular mass of 62.5 kDa. The corresponding complementary DNA was cloned and placed under the control of the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. The signal peptide of the glucoamylase prepro sequence of A. niger was used to target PcGDH secretion into the culture medium, achieving a yield of 640 mg L(-1), which is tenfold higher than any other reported value. The recombinant PcGDH was purified twofold to homogeneity in a one-step procedure with a 41 % recovery using a Ni Sepharose column. The identity of the recombinant protein was further confirmed by immunodetection using western blot analysis and N-terminal sequencing. The molecular mass of the native PcGDH was 130 kDa, suggesting a homodimeric form. Optimal pH and temperature were found to be similar (5.5 and 60 °C, respectively) to those determined for the previously characterized GDH, i.e., from Glomerella cingulata. However PcGDH exhibits a lower catalytic efficiency of 67 M(-1) s(-1) toward glucose. This substrate is by far the preferred substrate, which constitutes an advantage over other sugar oxidases in the case of blood glucose monitoring. The substrate-binding domain of PcGDH turns out to be conserved as compared to other glucose-methanol-choline (GMCs) oxidoreductases. In addition, the ability of PcGDH to reduce oxidized quinones or radical

  12. The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein

    Directory of Open Access Journals (Sweden)

    Coetzer Theresa L

    2006-11-01

    Full Text Available Abstract Background Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181 is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins. Methods 4.1R structural domains (30, 16, 10 and 22 kDa domain and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R. Results Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R. Conclusion The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle.

  13. Annual report 1981-82

    International Nuclear Information System (INIS)

    The research and teaching programmes of the Universities Research Reactor, Risley, U.K. are reviewed giving outlines of the individual experiments undertaken during 1981-82 and the reactor operation and safety arrangements. (U.K.)

  14. Crystallization and preliminary X-ray analysis of ZHE1, a hatching enzyme from the zebrafish Danio rerio

    International Nuclear Information System (INIS)

    Okada, Akitoshi; Nagata, Koji; Sano, Kaori; Yasumasu, Shigeki; Kubota, Keiko; Ohtsuka, Jun; Iuchi, Ichiro; Tanokura, Masaru

    2009-01-01

    The hatching enzyme of zebrafish, ZHE1, was expressed, purified and crystallized using the hanging-drop vapour-diffusion method. The crystal belonged to space group P2 1 2 1 2 1 and diffracted X-rays to a resolution of 1.14 Å. The hatching enzyme of the zebrafish, ZHE1 (29.3 kDa), is a zinc metalloprotease that catalyzes digestion of the egg envelope (chorion). ZHE1 was heterologously expressed in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. Two diffraction data sets with resolution ranges 50.0–1.80 and 50.0–1.14 Å were independently collected from two crystals and were merged to give a highly complete data set over the full resolution range 50.0–1.14 Å. The space group was assigned as primitive orthorhombic P2 1 2 1 2 1 , with unit-cell parameters a = 32.9, b = 62.5, c = 87.4 Å. The crystal contained one ZHE1 molecule in the asymmetric unit

  15. Acyl-CoA hydrolysis by the high molecular weight protein 1 subunit of yersiniabactin synthetase: Mutational evidence for a cascade of four acyl-enzyme intermediates during hydrolytic editing

    OpenAIRE

    Suo, Zucai; Chen, Huawei; Walsh, Christopher T.

    2000-01-01

    Yersiniabactin (Ybt) synthetase is a three-subunit, 17-domain [7 domains in high molecular weight protein (HMWP)2, 9 in HMWP1, and 1 in YbtE] enzyme producing the virulence-conferring siderophore yersiniabactin in Yersinia pestis. The 350-kDa HMWP1 subunit contains a polyketide synthase module (KS-AT-MT2-KR-ACP) and a nonribosomal peptide synthetase module (Cy3-MT3-PCP3-TE). The full-length HMWP1 was heterologously overexpressed in Escherichia coli and purified...

  16. Crystallization and preliminary X-ray analysis of a monomeric mutant of Azami-Green (mAG), an Aequorea victoria green fluorescent protein-like green-emitting fluorescent protein from the stony coral Galaxea fascicularis

    International Nuclear Information System (INIS)

    Ebisawa, Tatsuki; Yamamura, Akihiro; Kameda, Yasuhiro; Hayakawa, Kou; Nagata, Koji; Tanokura, Masaru

    2009-01-01

    A monomeric mutant of Azami-Green from G. fascicularis was expressed, purified and crystallized using the sitting-drop vapour-diffusion method. The crystal belonged to space group P1 and diffracted X-rays to 2.20 Å resolution. Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first monomeric green-emitting fluorescent protein that is not a derivative of Aequorea victoria green fluorescent protein (avGFP). mAG and avGFP are 27% identical in amino-acid sequence. Diffraction-quality crystals of recombinant mAG were obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The mAG crystal diffracted X-rays to 2.20 Å resolution on beamline AR-NW12A at the Photon Factory (Tsukuba, Japan). The crystal belonged to space group P1, with unit-cell parameters a = 41.78, b = 51.72, c = 52.89 Å, α = 90.96, β = 103.41, γ = 101.79°. The Matthews coefficient (V M = 2.10 Å 3 Da −1 ) indicated that the crystal contained two mAG molecules per asymmetric unit

  17. Cooperative Interactions between 480 kDa Ankyrin-G and EB Proteins Assemble the Axon Initial Segment.

    Science.gov (United States)

    Fréal, Amélie; Fassier, Coralie; Le Bras, Barbara; Bullier, Erika; De Gois, Stéphanie; Hazan, Jamilé; Hoogenraad, Casper C; Couraud, François

    2016-04-20

    The axon initial segment (AIS) is required for generating action potentials and maintaining neuronal polarity. Significant progress has been made in deciphering the basic building blocks composing the AIS, but the underlying mechanisms required for AIS formation remains unclear. The scaffolding protein ankyrin-G is the master-organizer of the AIS. Microtubules and their interactors, particularly end-binding proteins (EBs), have emerged as potential key players in AIS formation. Here, we show that the longest isoform of ankyrin-G (480AnkG) selectively associates with EBs via its specific tail domain and that this interaction is crucial for AIS formation and neuronal polarity in cultured rodent hippocampal neurons. EBs are essential for 480AnkG localization and stabilization at the AIS, whereas 480AnkG is required for the specific accumulation of EBs in the proximal axon. Our findings thus provide a conceptual framework for understanding how the cooperative relationship between 480AnkG and EBs induces the assembly of microtubule-AIS structures in the proximal axon. Neuronal polarity is crucial for the proper function of neurons. The assembly of the axon initial segment (AIS), which is the hallmark of early neuronal polarization, relies on the longest 480 kDa ankyrin-G isoform. The microtubule cytoskeleton and its interacting proteins were suggested to be early key players in the process of AIS formation. In this study, we show that the crosstalk between 480 kDa ankyrin-G and the microtubule plus-end tracking proteins, EBs, at the proximal axon is decisive for AIS assembly and neuronal polarity. Our work thus provides insight into the functional mechanisms used by 480 kDa ankyrin-G to drive the AIS formation and thereby to establish neuronal polarity. Copyright © 2016 the authors 0270-6474/16/364421-13$15.00/0.

  18. Towards structural studies of the old yellow enzyme homologue SYE4 from Shewanella oneidensis and its complexes at atomic resolution

    International Nuclear Information System (INIS)

    Elegheert, Jonathan; Hemel, Debbie van den; Dix, Ina; Stout, Jan; Van Beeumen, Jozef; Brigé, Ann; Savvides, Savvas N.

    2009-01-01

    Of the four old yellow enzyme homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. Shewanella oneidensis is an environmentally versatile Gram-negative γ-proteobacterium that is endowed with an unusually large proteome of redox proteins. Of the four old yellow enzyme (OYE) homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 and were moderately pseudo-merohedrally twinned, emulating a P422 metric symmetry. The native crystals of SYE4 were of exceptional diffraction quality and provided complete data to 1.10 Å resolution using synchrotron radiation, while crystals of the reduced enzyme and of the enzyme in complex with a wide range of ligands typically led to high-quality complete data sets to 1.30–1.60 Å resolution, thus providing a rare opportunity to dissect the structure–function relationships of a good-sized enzyme (40 kDa) at true atomic resolution. Here, the attainment of a number of experimental milestones in the crystallographic studies of SYE4 and its complexes are reported, including isolation of the elusive hydride–Meisenheimer complex

  19. Swit_4259, an acetoacetate decarboxylase-like enzyme from Sphingomonas wittichii RW1

    Energy Technology Data Exchange (ETDEWEB)

    Mydy, Lisa S.; Mashhadi, Zahra; Knight, T. William; Fenske, Tyler; Hagemann, Trevor; Hoppe, Robert W.; Han, Lanlan; Miller, Todd R.; Schwabacher, Alan W.; Silvaggi, Nicholas R. (UW); (Vanderbilt)

    2017-11-14

    The Gram-negative bacteriumSphingomonas wittichiiRW1 is notable for its ability to metabolize a variety of aromatic hydrocarbons. Not surprisingly, theS. wittichiigenome contains a number of putative aromatic hydrocarbon-degrading gene clusters. One of these includes an enzyme of unknown function, Swit_4259, which belongs to the acetoacetate decarboxylase-like superfamily (ADCSF). Here, it is reported that Swit_4259 is a small (28.8 kDa) tetrameric ADCSF enzyme that, unlike the prototypical members of the superfamily, does not have acetoacetate decarboxylase activity. Structural characterization shows that the tertiary structure of Swit_4259 is nearly identical to that of the true decarboxylases, but there are important differences in the fine structure of the Swit_4259 active site that lead to a divergence in function. In addition, it is shown that while it is a poor substrate, Swit_4259 can catalyze the hydration of 2-oxo-hex-3-enedioate to yield 2-oxo-4-hydroxyhexanedioate. It is also demonstrated that Swit_4259 has pyruvate aldolase-dehydratase activity, a feature that is common to all of the family V ADCSF enzymes studied to date. The enzymatic activity, together with the genomic context, suggests that Swit_4259 may be a hydratase with a role in the metabolism of an as-yet-unknown hydrocarbon. These data have implications for engineering bioremediation pathways to degrade specific pollutants, as well as structure–function relationships within the ADCSF in general.

  20. PDX experimental results in FY82

    International Nuclear Information System (INIS)

    Kaye, S.M.; Bell, M.; Bol, K.

    1983-08-01

    This report presents a detailed summary of the major experimental results of PDX in FY82 and represents the efforts of the entire PDX group. Topics covered include β-scaling and fishbone studies, fluctuations, disruptions, impurities and impurity transport, power handling, limiter conditioning, edge studies, plasma fueling, counter-injection, and diagnostic development. A less detailed version will appear as the FY82 PDX contribution to the PPPL Annual Report

  1. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein

    International Nuclear Information System (INIS)

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G.

    1988-01-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5'-[α- 32 P]triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an α subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera

  2. STS-82 Pilot Scott Horowitz at SLF

    Science.gov (United States)

    1997-01-01

    STS-82 Pilot Scott J. 'Doc' Horowitz flashes a wide grin for photographers after he lands his T-38 jet at KSCs Shuttle Landing Facility. Horowitz and the other six members of the STS-82 crew came from their home base at Johnson Space Center in Houston, TX, to spend the last few days before launch at KSC. STS-82 is scheduled for liftoff on Feb. 11 during a 65-minute launch window which opens at 3:56 a.m. EST. The 10-day flight aboard the Space Shuttle Discovery will be the second Hubble Space Telescope servicing mission.

  3. The 18-kDa mitochondrial translocator protein in gliomas: from the bench to bedside.

    OpenAIRE

    Janczar, Karolina; Su, Zhangjie; Raccagni, Isabella; Anfosso, Andrea; Kelly, Charlotte; Durrenberger, Pascal F; Gerhard, Alexander; Roncaroli, Federic

    2015-01-01

    The 18-kDa mitochondrial translocator protein (TSPO) is known to be highly expressed in several types of cancer, including gliomas, whereas expression in normal brain is low. TSPO functions in glioma are still incompletely understood. The TSPO can be quantified pre-operatively with molecular imaging making it an ideal candidate for personalized treatment of patient with glioma. Studies have proposed to exploit the TSPO as a transporter of chemotherapics to selectively target tumour cells in t...

  4. A photoactivatable probe for the Na+/H+ exchanger cross-links a 66-kDa renal brush border membrane protein

    International Nuclear Information System (INIS)

    Ross, W.; Bertrand, W.; Morrison, A.

    1990-01-01

    Earlier studies on LLC-PK1 cells have demonstrated two pharmacologically distinct Na+/H+ exchangers in renal epithelia. In addition, the cDNA clone for the human Na+/H+ antiporter which is growth factor activatable has been isolated and expressed. We report here the synthesis of an amiloride analogue that can be photoactivated and labeled with 125I. This analogue covalently cross-links a 66-kDa protein of bovine renal brush border membranes. A rabbit polyclonal antibody that was directed against a 20-amino acid peptide of the cytoplasmic domain of its human Na+/H+ antiporter also gives a positive Western against 66-kDa protein of bovine brush border membranes. Thus, the photoactive probe may be helpful in the isolation and purification of the brush border Na+/H+ exchanger

  5. cDNA sequence analysis of a 29-kDa cysteine-rich surface antigen of pathogenic Entamoeba histolytica

    International Nuclear Information System (INIS)

    Torian, B.E.; Stroeher, V.L.; Stamm, W.E.; Flores, B.M.; Hagen, F.S.

    1990-01-01

    A λgt11 cDNA library was constructed from poly(U)-Spharose-selected Entamoeba histolytica trophozoite RNA in order to clone and identify surface antigens. The library was screened with rabbit polyclonal anti-E. histolytica serum. A 700-base-pair cDNA insert was isolated and the nucleotide sequence was determined. The deduced amino acid sequence of the cDNA revealed a cysteine-rich protein. DNA hybridizations showed that the gene was specific to E. histolytica since the cDNA probe reacted with DNA from four axenic strains of E. histolytica but did not react with DNA from Entamoeba invadens, Acanthamoeba castellanii, or Trichomonas vaginalis. The insert was subcloned into the expression vector pGEX-1 and the protein was expressed as a fusion with the C terminus of glutathione S-transferase. Purified fusion protein was used to generate 22 monoclonal antibodies (mAbs) and a mouse polyclonal antiserum specific for the E. histolytica portion of the fusion protein. A 29-kDa protein was identified as a surface antigen when mAbs were used to immunoprecipitate the antigen from metabolically 35 S-labeled live trophozoites. The surface location of the antigen was corroborated by mAb immunoprecipitation of a 29-kDa protein from surface- 125 I-labeled whole trophozoites as well as by the reaction of mAbs with live trophozoites in an indirect immunofluorescence assay performed at 4 degree C. Immunoblotting with mAbs demonstrated that the antigen was present on four axenic isolates tested. mAbs recognized epitopes on the 29-kDa native antigen on some but not all clinical isolates tested

  6. cDNA sequence analysis of a 29-kDa cysteine-rich surface antigen of pathogenic Entamoeba histolytica

    Energy Technology Data Exchange (ETDEWEB)

    Torian, B.E.; Stroeher, V.L.; Stamm, W.E. (Univ. of Washington, Seattle (USA)); Flores, B.M. (Louisiana State Univ. Medical Center, New Orleans (USA)); Hagen, F.S. (Zymogenetics Incorporated, Seattle, WA (USA))

    1990-08-01

    A {lambda}gt11 cDNA library was constructed from poly(U)-Spharose-selected Entamoeba histolytica trophozoite RNA in order to clone and identify surface antigens. The library was screened with rabbit polyclonal anti-E. histolytica serum. A 700-base-pair cDNA insert was isolated and the nucleotide sequence was determined. The deduced amino acid sequence of the cDNA revealed a cysteine-rich protein. DNA hybridizations showed that the gene was specific to E. histolytica since the cDNA probe reacted with DNA from four axenic strains of E. histolytica but did not react with DNA from Entamoeba invadens, Acanthamoeba castellanii, or Trichomonas vaginalis. The insert was subcloned into the expression vector pGEX-1 and the protein was expressed as a fusion with the C terminus of glutathione S-transferase. Purified fusion protein was used to generate 22 monoclonal antibodies (mAbs) and a mouse polyclonal antiserum specific for the E. histolytica portion of the fusion protein. A 29-kDa protein was identified as a surface antigen when mAbs were used to immunoprecipitate the antigen from metabolically {sup 35}S-labeled live trophozoites. The surface location of the antigen was corroborated by mAb immunoprecipitation of a 29-kDa protein from surface-{sup 125}I-labeled whole trophozoites as well as by the reaction of mAbs with live trophozoites in an indirect immunofluorescence assay performed at 4{degree}C. Immunoblotting with mAbs demonstrated that the antigen was present on four axenic isolates tested. mAbs recognized epitopes on the 29-kDa native antigen on some but not all clinical isolates tested.

  7. 40 CFR 8.2 - Applicability and effect.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Applicability and effect. 8.2 Section 8... OF NONGOVERNMENTAL ACTIVITIES IN ANTARCTICA § 8.2 Applicability and effect. (a) This part is intended to ensure that potential environmental effects of nongovernmental activities undertaken in Antarctica...

  8. Purification and Characterization of a Mycelial Catalase from Scedosporium boydii, a Useful Tool for Specific Antibody Detection in Patients with Cystic Fibrosis

    Science.gov (United States)

    Mina, Sara; Cimon, Bernard; Larcher, Gérald; Bouchara, Jean-Philippe; Robert, Raymond

    2014-01-01

    Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a wide variety of infections in immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex, which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF) and may lead to allergic bronchopulmonary mycoses, sensitization, or respiratory infections. Upon microbial infection, host phagocytic cells release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by detoxification of the hydrogen peroxide. Here, we investigated the catalase equipment of Scedosporium boydii, one of the major pathogenic species in the S. apiospermum species complex. Three catalases were identified, and the mycelial catalase A1 was purified to homogeneity by a three-step chromatographic process. This enzyme is a monofunctional tetrameric protein of 460 kDa, consisting of four 82-kDa glycosylated subunits. The potential usefulness of this enzyme in serodiagnosis of S. apiospermum infections was then investigated by an enzyme-linked immunosorbent assay (ELISA), using 64 serum samples from CF patients. Whatever the species involved in the S. apiospermum complex, sera from infected patients were clearly differentiated from sera from patients with an Aspergillus fumigatus infection or those from CF patients without clinical and biological signs of a fungal infection and without any fungus recovered from sputum samples. These results suggest that catalase A1 is a good candidate for the development of an immunoassay for serodiagnosis of infections caused by the S. apiospermum complex in patients with CF. PMID:25355796

  9. ENZYME ACTIVITIES OF PADDY SOILS AND RELATIONSHIPS WITH THE SOIL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Rıdvan KIZILKAYA

    1998-03-01

    Full Text Available This study was carried out to determine the effect of soil properties on enzyme activities of paddy soils, the sample of which were taken from Üçpınar, Harız, Doğancı, Kaygusuz, Emenli, Sarıköy and Gelemenağarı villages where rice cultivation is an intensive agricultural system. In this study, soil properties having effects on urease, phosphatase, ß-glucosidase and catalase enzyme activities were setforth. Urease enzyme activities of soil samples varied from 24.12 to 39.03 mg N 100 g dry soil -1 . Significant correlations were determined between urease enzyme activities and organic matter (r = 0.89**, extractable Mn (r = 0.74**, exchangable K (r = 0.73** and total P content of soil (r = 0.81*. Acid phosphatase enzyme activity varied between 3.00-17.44 mg phenol 100 g dry soil -1 , alkaline phosphatase enzyme activity between 12.00-25.53 mg phenol 100 g dry soil-1 . Exchangable Mg (r = 0.71* and extractable Cu (r = 0.74* were found to have positive effect on acid phosphatase enzyme activity and pH (r = 0.73*, exchangable Ca (r = 0.74*, exchangable Mg (r = 0.71*, exchangable total basic cations (r = 0.79* and extractable Cu (r = 0.70* had positive effects on alkaline phosphatase enzyme activity, whereas total P (r = - 0.84** affected the activity negatively. ß-glucosidase enzyme activity was measured to vary between 1.12-3.64 mg salingen 100 g dry soil -1 . It was also observed that extractable Zn content of soil samples (r = - 0.97** had negative effect on ß-glucosidase activity, wheras total exchangable acidic cations (r = 0.70* affected the activity positively. Catalase enzyme activities of soils changed between 5.25 - 9.00 mg O2 5 g dry soil -1 . Significant correlations were found between catalase activities and fraction of soils and extractable Fe content. Positive correlations, however, were determined between catalase activities and clay fraction (r = 0.82* and salt content (r = 0.83** of samples.

  10. Site-directed mutagenesis and molecular modelling studies show the role of Asp82 and cysteines in rat acylase 1, a member of the M20 family

    International Nuclear Information System (INIS)

    Herga, Sameh; Brutus, Alexandre; Vitale, Rosa Maria; Miche, Helene; Perrier, Josette; Puigserver, Antoine; Scaloni, Andrea; Giardina, Thierry

    2005-01-01

    Acylase 1 from rat kidney catalyzes the hydrolysis of acyl-amino acids. Sequence alignment has shown that this enzyme belongs to the metalloprotein family M20. Site-directed mutagenesis experiments led to the identification of one functionally important amino acid residue located near one of the zinc coordinating residues, which play a critical role in the enzymatic activity. The D82N- and D82E-substituted forms showed no significant activity and very low activity, respectively, along with a loss of zinc coordination. Molecular modelling investigations indicated a putative role of D82 in ensuring a proper protonation of catalytic histidine. In addition, none of the five cysteine residues present in the rat kidney acylase 1 sequence seemed involved in the catalytic process: the loss of activity induced by the C294A substitution was probably due to a conformational change in the 3D structure

  11. The iron uptake mechanisms of enteroinvasive Escherichia coli Mecanismos de captação de ferro de Escherichia coli enteroinvasora

    Directory of Open Access Journals (Sweden)

    Agda Andrade

    2000-09-01

    Full Text Available Enteroinvasive Escherichia coli strains (EIEC of different serotypes isolated from patients with acute diarrhea were examined for the ability to produce siderophores and iron-regulated outer membrane proteins (IROMP. For iron starvation cultures were grown at 37°C in LB supplied with 200 muM of a-alpha’dypirydil. All strains produced enterobactin and twelve (40% produced aerobactin. The strains showed IROMP varying from 67-82 kDa. Proteins were either induced or stimulated by the iron starvation. Differences were observed in the electrophoretic profile among the serotypes, originating 5 electrophoretic profiles. All serotypes expressed proteins of 82 kDa (FepA and 76 kDa (IutA (except serotype O28ac:H- that did not produce the 76 kDa protein. Several strains (O29:H-, O144:H-, O152:H-, and O167:H- expressed IutA in the outer membrane, in the absence of aerobactin production. Additionally to well characterized proteins (FepA and IutA, we found two IROMP of unknown function in some serotypes: a 71 kDa protein was detected in three profiles and a 67 kDa protein was present in serotype O152:H-. Moreover, two bands (39 and 43 kDa which were not iron-regulated bound specifically to human lactoferrin.Cepas de Escherichia coli enteroinvasora de diferentes sorotipos isoladas de pacientes com diarréia aguda foram examinadas quanto a capacidade de produzir sideróforos e proteínas de membrana externa reguladas pelo ferro (IROMP. O crescimento bacteriano em meio com deficiência em Fe foi obtido em caldo Lúria acrescido de 200 mM de alfa-a’dipiridil. Todas as cepas produziram enterobactina e 40% produziram aerobactina. As cepas produziram IROMPs com MM variando de 82-67 kDa. As proteínas foram induzidas ou estimuladas pela deficiência de ferro. Diferenças foram observadas no perfil eletroforético entre os sorotipos, originando 5 perfis eletroforéticos. Todos os sorotipos, com exceção do sorotipo O28ac:H- (onde a proteína de 76 kDa não foi

  12. Structural characterization of hemoglobins from Monilifera and Frenulata tubeworms (Siboglinids): first discovery of giant hexagonal-bilayer hemoglobin in the former "Pogonophora" group.

    Science.gov (United States)

    Meunier, Cédric; Andersen, Ann C; Bruneaux, Matthieu; Le Guen, Dominique; Terrier, Peran; Leize-Wagner, Emmanuelle; Zal, Franck

    2010-01-01

    Siboglinids are symbiotic polychete annelids having hemoglobins as essential oxygen- and sulfide-carriers for their endosymbiotic bacteria. We analyzed the structure of the hemoglobins from two species of siboglinids: the monilifera Sclerolinum contortum and the frenulata Oligobrachia webbi (i.e. haakonmosbiensis) from Norwegian cold seeps. Measured by Multi-Angle Laser Light Scattering (MALLS), Sclerolinum shows a 3190+/-50 kDa hexagonal bilayer hemoglobin (HBL-Hb) and a 461+/-46 kDa ring-Hb, just as vestimentifera, whereas Oligobrachia has a 409+/-3.7 kDa ring-Hb only. Electrospray Ionization-Mass Spectrometry (ESI-MS) showed Sclerolinum HBL-Hb composed of seven monomeric globins (15-16 kDa), three disulfide-bonded globin heterodimers and three linkers. The heterodimers always contain globin-b (15814.4+/-1.5 Da). Sclerolinum ring-Hb is composed of globins and dimers with identical masses as its HBL-Hb, but lacks linkers. Oligobrachia ring-Hb has three globin monomers (14-15 kDa) only, with no disulfide-bonded dimers. Comparison of Sclerolinum hemoglobins between Storegga and Haakon Mosby Mud Volcano, using the normalized height of deconvoluted ESI-MS peaks, shows differences in globin monomers abundances that could reflect genetic differences or differential gene expression between distinct seep populations. The discovery of HBL-Hb in Sclerolinum is a new element supporting the hypothesis of monilifera being phylogenetically more closely related to vestimentifera, than to frenulata.

  13. Cellulolytic Enzymes Production via Solid-State Fermentation: Effect of Pretreatment Methods on Physicochemical Characteristics of Substrate

    Directory of Open Access Journals (Sweden)

    Khushal Brijwani

    2011-01-01

    Full Text Available We investigated the effect of pretreatment on the physicochemical characteristics—crystallinity, bed porosity, and volumetric specific surface of soybean hulls and production of cellulolytic enzymes in solid-state fermentation of Trichoderma reesei and Aspergillus oryzae cultures. Mild acid and alkali and steam pretreatments significantly increased crystallinity and bed porosity without significant change inholocellulosic composition of substrate. Crystalline and porous steam-pretreated soybean hulls inoculated with T. reesei culture had 4 filter paper units (FPU/g-ds, 0.6 IU/g-ds β-glucosidase, and 45 IU/g-ds endocellulase, whereas untreated hulls had 0.75 FPU/g-ds, 0.06 IU/g-ds β-glucosidase, and 7.29 IU/g-ds endocellulase enzyme activities. In A. oryzae steam-pretreated soybean hulls had 47.10 IU/g-ds endocellulase compared to 30.82 IU/g-ds in untreated soybean hulls. Generalized linear statistical model fitted to enzyme activity data showed that effects of physicochemical characteristics on enzymes production were both culture and enzyme specific. The paper shows a correlation between substrate physicochemical properties and enzyme production.

  14. Myocardial study with rubidium-82 using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    De Landsheere, C.; Brihaye, C.; Chevigne, M.; Guillaume, M.; Lamotte, D.; Larock, M.P.; Quaglia, L.; Rigo, P. (Universite de Liege (Belgium))

    1982-01-01

    The rubidium-82 is eluted from a strontium-82/rubidium-82 generator. Its short half-life (78 sec.) enables the sequential repetition of dynamic studies. Myocardial ischemia produced in the dog by a stenosis of the left anterior descending artery is investigated. In this case, intravenous administration of rubidium demonstrates a decrease in the cation uptake in the anterior wall of the left ventricle. Through ischemia studies various parameters which are liked to modify the rubidium distribution according to the equation describing the cation exchanges, are considered. The generator strontium-82/rubidium-82 delivers a reference tracer for myocardial flow evaluation without requiring a cyclotron which is then available for the direct production of metabolic tracers.

  15. Retinoblastoma protein co-purifies with proteasomal insulin-degrading enzyme: Implications for cell proliferation control

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, Razvan T., E-mail: ratura@gmx.net [Molecular Concepts Research (MCR), Muenster (Germany); Duckworth, William C. [Department of Medicine, Phoenix VA Health Care System, Phoenix, AZ (United States); Levy, Jennifer L. [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States); Fawcett, Janet, E-mail: janet.fawcett@va.gov [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States)

    2010-04-30

    Previous investigations on proteasomal preparations containing insulin-degrading enzyme (IDE; EC 3.4.24.56) have invariably yielded a co-purifying protein with a molecular weight of about 110 kDa. We have now found both in MCF-7 breast cancer and HepG2 hepatoma cells that this associated molecule is the retinoblastoma tumor suppressor protein (RB). Interestingly, the amount of RB in this protein complex seemed to be lower in HepG2 vs. MCF-7 cells, indicating a higher (cytoplasmic) protein turnover in the former vs. the latter cells. Moreover, immunofluorescence showed increased nuclear localization of RB in HepG2 vs. MCF-7 cells. Beyond these subtle differences between these distinct tumor cell types, our present study more generally suggests an interplay between RB and IDE within the proteasome that may have important growth-regulatory consequences.

  16. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: What have we learned from Aspergillus?

    NARCIS (Netherlands)

    Culleton, H.; McKie, V.; de Vries, R.P.

    2013-01-01

    Plant biomass is the most abundant and usable carbon source for many fungal species. Due to its diverse and complex structure, fungi need to produce a large range of enzymes to degrade these polysaccharides into monomeric components. The fine-tuned production of such diverse enzyme sets requires

  17. Purification of a 6.5 kDa protease inhibitor from Amazon Inga umbratica seeds effective against serine proteases of the boll weevil Anthonomus grandis.

    Science.gov (United States)

    Calderon, L A; Teles, R C L; Leite, J R S A; Franco, O L; Grossi-de-Sá, M F; Medrano, F J; Bloch, C; Freitas, S M

    2005-08-01

    A 6.5 kDa serine protease inhibitor was purified by anion-exchange chromatography from the crude extract of the Inga umbratica seeds, containing inhibitor isoforms ranging from 6.3 to 6.7 kDa and protease inhibitors of approximately 19 kDa. The purified protein was characterized as a potent inhibitor against trypsin and chymotrypsin and it was named I. umbratica trypsin and chymotrypsin inhibitor (IUTCI). MALDI-TOF spectra of the IUTCI, in the presence of DTT, showed six disulfide bonds content, suggesting that this inhibitor belongs to Bowman-Birk family. The circular dichroism spectroscopy indicates that IUTCI is predominantly formed by unordered and beta-sheet secondary structure. It was also characterized, by fluorescence spectroscopy, as a stable protein at range of pH from 5.0 to 7.0. Moreover, this inhibitor at concentration of 75 microM presented a remarkable inhibitory activity (60%) against digestive serine proteases from boll weevil Anthonomus grandis, an important economical cotton pest.

  18. Superoxide Dismutase (SOD Enzyme Activity Assay in Fasciola spp. Para-sites and Liver Tissue Extract

    Directory of Open Access Journals (Sweden)

    M Assady

    2011-09-01

    Full Text Available Background: The purpose of this comparative study was to detect superoxide dismutase (SOD activities in Fasciola hepatica, F. gigantica parasites, infected and healthy liver tissues in order to determine of species effects and liver infection on SODs activity level.Methods: Fasciola spp. parasites and sheep liver tissues (healthy and infected liver tissues, 10 samples for each, were collected, homogenized and investigated for protein measurement, protein detection and SOD enzyme activity assay. Protein concentration was measured by Bradford method and SODs band protein was detected on SDS-PAGE. SODs activity was determined by iodonitrotetrazolium chloride, INT, and xanthine substrates. Independent samples t-test was conducted for analysis of SODs activities difference.Results: Protein concentration means were detected for F. hepatica 1.3 mg/ ml, F. gigantica 2.9 mg/ml, healthy liver tissue 5.5 mg/ml and infected liver tissue 1.6 mg/ml (with similar weight sample mass. Specific enzyme activities in the samples were obtained 0.58, 0.57, 0.51, 1.43 U/mg for F. hepatica, F. gigantica, healthy liver and infected liver respectively. Gel electrophoresis of Fasciola spp. and sheep liver tissue extracts revealed a band protein with MW of 60 kDa. The statistical analysis revealed significant difference between SOD activities of Fasciola species and also between SOD activity of liver tissues (P<.05.Conclusion: Fasciola species and liver infection are effective causes on SOD enzyme activity level.

  19. Biotransformation of soy flour isoflavones by Aspergillus niger NRRL 3122 β-glucosidase enzyme.

    Science.gov (United States)

    Abdella, Asmaa; El-Baz, Ashraf F; Ibrahim, Ibrahim A; Mahrous, Emad Eldin; Yang, Shang-Tian

    2017-12-11

    β-glucosidase enzyme produced from Aspergillus niger NRRL 3122 has been partially purified and characterised. Its molecular weight was 180 KDa. The optimal pH and temperature were 3.98 and 55 °C, respectively. It promoted the hydrolysis of soy flour isoflavone glycosides to their aglycone. Two-level Plackett-Burman design was applied and effective variables for genistein production were determined. Reaction time had a significant positive effect, and pH had a significant negative effect. They were further evaluated using Box-Behnken model. Accordingly, the optimal combination of the major reaction affecting factors was reaction time, 5 h and pH, 4. The concentration of genistein increased by 11.73 folds using this optimal combination. The antioxidant activity of the non-biotransformed and biotransformed soy flour extracts was determined by DPPH method. It was found that biotransformation increased the antioxidant activity by four folds.

  20. 27 CFR 70.82 - Payment on notice and demand.

    Science.gov (United States)

    2010-04-01

    ... demand. 70.82 Section 70.82 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Collection of Excise and Special (Occupational) Tax Notice and Demand § 70.82 Payment on notice and demand. Upon receipt of notice and demand from the appropriate TTB officer, there shall be paid at the place...

  1. Electrophoretic and zymographic techniques for production monitoring of two lipase forms from Candida antarctica DSM 70725

    Directory of Open Access Journals (Sweden)

    Dimitrijević Aleksandra S.

    2012-01-01

    Full Text Available Yeast Candida antarctica produces two lipase forms, which are widely used as catalysts in variety of organic reactions, many of which are applied on a large scale. In this work, production of two forms of lipase from C. antarctica DSM 70725 (CAL A and CAL B was monitored during seven days of cultivation in the optimal medium using different electrophoretic and zymographic techniques. According to electrophoresis after silver staining, C. antarctica lipase A (molecular mass 45 kDa was produced starting from the second day of cultivation. C. antarctica lipase B (CAL B was also produced starting from the second day, but protein was present in the fermentation broth predominantly as dimer (molecular weight 66 kDa, while presence of monomeric form of CAL B (molecular weight of 33 kDa was observed starting from the fourth day of cultivation. Both types of zymograms (based on hydrolysis and synthesis reactions were used for detection of lipase activity in the fermentation broth. C. antarctica lipase A showed activity only in hydrolytic zymogram, when α-naphtyl butyrate was used as substrate. In the same zymogram, with α-naphtyl acetate as substrate no CAL A activity was detected. Similarly, CAL A showed no activity in synthesis based zymograms towards oleic acid and octanol as substrates, indicating that CAL A is not active towards very short or long-chain substrates. As opposite of CAL A, both monomeric and dimeric form of CAL B were detected in the all zymograms, suggesting that CAL B is active towards wide range of substrates, regardless to the chain length. Thus, zymogram based on hydrolysis of α-naphtyl butyrate represents a simple method for monitoring the production of two forms of lipase from C. antarctica, that greatly differ in their characteristics.

  2. 27 CFR 479.82 - Rate of tax.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Rate of tax. 479.82... OTHER FIREARMS Transfer Tax § 479.82 Rate of tax. The transfer tax imposed with respect to firearms... transfer tax on any firearm classified as “any other weapon” shall be at the rate of $5 for each such...

  3. Characterization of a GHF45 cellulase, AkEG21, from the common sea hare Aplysia kurodai

    Directory of Open Access Journals (Sweden)

    Mohammad Matiur Rahman

    2014-08-01

    Full Text Available The common sea hare Aplysia kurodai is known to be a good source for the enzymes degrading seaweed polysaccharides. Recently four cellulases, i.e., 95 kDa, 66 kDa, 45 kDa and 21 kDa enzymes, were isolated from A. kurodai (Tsuji et al., PLoS ONE, 8, e65418, 2013. The former three cellulases were regarded as glycosyl-hydrolase-family 9 (GHF9 enzymes, while the 21 kDa cellulase was suggested to be a GHF45 enzyme. The 21 kDa cellulase was significantly heat stable, and appeared to be advantageous in performing heterogeneous expression and protein-engineering study. In the present study, we determined some enzymatic properties of the 21 kDa cellulase and cloned its cDNA to provide the basis for the protein engineering study of this cellulase. The purified 21 kDa enzyme, termed AkEG21 in the present study, hydrolyzed carboxymethyl cellulose with an optimal pH and temperature at 4.5 and 40oC, respectively. AkEG21 was considerably heat-stable, i.e., it was not inactivated by the incubation at 55oC for 30 min. AkEG21 degraded phosphoric-acid-swollen cellulose producing cellotriose and cellobiose as major end products but hardly degraded oligosaccharides smaller than tetrasaccharide. This indicated that AkEG21 is an endolytic -1,4-glucanase (EC 3.2.1.4. A cDNA of 1,013 bp encoding AkEG21 was amplified by PCR and the amino-acid sequence of 197 residues was deduced. The sequence comprised the initiation Met, the putative signal peptide of 16 residues for secretion and the catalytic domain of 180 residues, which lined from the N-terminus in this order. The sequence of the catalytic domain showed 47-62% amino-acid identities to those of GHF45 cellulases reported in other mollusks. Both the catalytic residues and the N-glycosylation residues known in other GHF45 cellulases were conserved in AkEG21. Phylogenetic analysis for the amino-acid sequences suggested the close relation between AkEG21 and fungal GHF45 cellulases.

  4. Characterization of a GHF45 cellulase, AkEG21, from the common sea hare Aplysia kurodai

    Science.gov (United States)

    Rahman, Mohammad; Inoue, Akira; Ojima, Takao

    2014-08-01

    The common sea hare Aplysia kurodai is known to be a good source for the enzymes degrading seaweed polysaccharides. Recently four cellulases, i.e., 95 kDa, 66 kDa, 45 kDa and 21 kDa enzymes, were isolated from A. kurodai (Tsuji et al., PLoS ONE, 8, e65418, 2013). The former three cellulases were regarded as glycosyl-hydrolase-family 9 (GHF9) enzymes, while the 21 kDa cellulase was suggested to be a GHF45 enzyme. The 21 kDa cellulase was significantly heat stable, and appeared to be advantageous in performing heterogeneous expression and protein-engineering study. In the present study, we determined some enzymatic properties of the 21 kDa cellulase and cloned its cDNA to provide the basis for the protein engineering study of this cellulase. The purified 21 kDa enzyme, termed AkEG21 in the present study, hydrolyzed carboxymethyl cellulose with an optimal pH and temperature at 4.5 and 40oC, respectively. AkEG21 was considerably heat-stable, i.e., it was not inactivated by the incubation at 55oC for 30 min. AkEG21 degraded phosphoric-acid-swollen cellulose producing cellotriose and cellobiose as major end products but hardly degraded oligosaccharides smaller than tetrasaccharide. This indicated that AkEG21 is an endolytic ?-1,4-glucanase (EC 3.2.1.4). A cDNA of 1,013 bp encoding AkEG21 was amplified by PCR and the amino-acid sequence of 197 residues was deduced. The sequence comprised the initiation Met, the putative signal peptide of 16 residues for secretion and the catalytic domain of 180 residues, which lined from the N-terminus in this order. The sequence of the catalytic domain showed 47-62% amino-acid identities to those of GHF45 cellulases reported in other mollusks. Both the catalytic residues and the N-glycosylation residues known in other GHF45 cellulases were conserved in AkEG21. Phylogenetic analysis for the amino-acid sequences suggested the close relation between AkEG21 and fungal GHF45 cellulases.

  5. Characterization of phosphorylation sites in the cytoplasmic domain of the 300 kDa mannose-6-phosphate receptor

    DEFF Research Database (Denmark)

    Rosorius, O; Mieskes, G; Issinger, O G

    1993-01-01

    The human 300 kDa mannose-6-phosphate receptor (MPR 300) is phosphorylated in vivo at serine residues of its cytoplasmic domain. Two-dimensional separation can resolve tryptic phosphopeptides into four major species. To identify the kinases involved in MPR 300 phosphorylation and the phosphorylat......The human 300 kDa mannose-6-phosphate receptor (MPR 300) is phosphorylated in vivo at serine residues of its cytoplasmic domain. Two-dimensional separation can resolve tryptic phosphopeptides into four major species. To identify the kinases involved in MPR 300 phosphorylation...... and the phosphorylation sites the entire coding sequence of the cytoplasmic tail was expressed in Escherichia coli. The isolated cytoplasmic domain was used as a substrate for four purified serine/threonine kinases [casein kinase II (CK II), protein kinase A (PKA), protein kinase C and Ca2+/calmodulin kinase]. All...... kinases phosphorylate the cytoplasmic tail exclusively on serine residues. Inhibition studies using synthetic peptides, partial sequencing of isolated tryptic phosphopeptides and co-migration with tryptic phosphopeptides from MPR 300 labelled in vivo showed that (i) PKA phosphorylates the cytoplasmic MPR...

  6. Characterization of monomeric DNA-binding protein Histone H1 in Leishmania braziliensis.

    Science.gov (United States)

    Carmelo, Emma; González, Gloria; Cruz, Teresa; Osuna, Antonio; Hernández, Mariano; Valladares, Basilio

    2011-08-01

    Histone H1 in Leishmania presents relevant differences compared to higher eukaryote counterparts, such as the lack of a DNA-binding central globular domain. Despite that, it is apparently fully functional since its differential expression levels have been related to changes in chromatin condensation and infectivity, among other features. The localization and the aggregation state of L. braziliensis H1 has been determined by immunolocalization, mass spectrometry, cross-linking and electrophoretic mobility shift assays. Analysis of H1 sequences from the Leishmania Genome Database revealed that our protein is included in a very divergent group of histones H1 that is present only in L. braziliensis. An antibody raised against recombinant L. braziliensis H1 recognized specifically that protein by immunoblot in L. braziliensis extracts, but not in other Leishmania species, a consequence of the sequence divergences observed among Leishmania species. Mass spectrometry analysis and in vitro DNA-binding experiments have also proven that L. braziliensis H1 is monomeric in solution, but oligomerizes upon binding to DNA. Finally, despite the lack of a globular domain, L. braziliensis H1 is able to form complexes with DNA in vitro, with higher affinity for supercoiled compared to linear DNA.

  7. Conjugation of 10 kDa Linear PEG onto Trastuzumab Fab' Is Sufficient to Significantly Enhance Lymphatic Exposure while Preserving in Vitro Biological Activity.

    Science.gov (United States)

    Chan, Linda J; Ascher, David B; Yadav, Rajbharan; Bulitta, Jürgen B; Williams, Charlotte C; Porter, Christopher J H; Landersdorfer, Cornelia B; Kaminskas, Lisa M

    2016-04-04

    The lymphatic system is a major conduit by which many diseases spread and proliferate. There is therefore increasing interest in promoting better lymphatic drug targeting. Further, antibody fragments such as Fabs have several advantages over full length monoclonal antibodies but are subject to rapid plasma clearance, which can limit the lymphatic exposure and activity of Fabs against lymph-resident diseases. This study therefore explored ideal PEGylation strategies to maximize biological activity and lymphatic exposure using trastuzumab Fab' as a model. Specifically, the Fab' was conjugated with single linear 10 or 40 kDa PEG chains at the hinge region. PEGylation led to a 3-4-fold reduction in binding affinity to HER2, but antiproliferative activity against HER2-expressing BT474 cells was preserved. Lymphatic pharmacokinetics were then examined in thoracic lymph duct cannulated rats after intravenous and subcutaneous dosing at 2 mg/kg, and the data were evaluated via population pharmacokinetic modeling. The Fab' displayed limited lymphatic exposure, but conjugation of 10 kDa PEG improved exposure by approximately 11- and 5-fold after intravenous (15% dose collected in thoracic lymph over 30 h) and subcutaneous (9%) administration, respectively. Increasing the molecular weight of the PEG to 40 kDa, however, had no significant impact on lymphatic exposure after intravenous (14%) administration and only doubled lymphatic exposure after subcutaneous administration (18%) when compared to 10 kDa PEG-Fab'. The data therefore suggests that minimal PEGylation has the potential to enhance the exposure and activity of Fab's against lymph-resident diseases, while no significant benefit is achieved with very large PEGs.

  8. A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (BayGmmKda V1.1) for spatial prediction of floods

    Science.gov (United States)

    Tien Bui, Dieu; Hoang, Nhat-Duc

    2017-09-01

    In this study, a probabilistic model, named as BayGmmKda, is proposed for flood susceptibility assessment in a study area in central Vietnam. The new model is a Bayesian framework constructed by a combination of a Gaussian mixture model (GMM), radial-basis-function Fisher discriminant analysis (RBFDA), and a geographic information system (GIS) database. In the Bayesian framework, GMM is used for modeling the data distribution of flood-influencing factors in the GIS database, whereas RBFDA is utilized to construct a latent variable that aims at enhancing the model performance. As a result, the posterior probabilistic output of the BayGmmKda model is used as flood susceptibility index. Experiment results showed that the proposed hybrid framework is superior to other benchmark models, including the adaptive neuro-fuzzy inference system and the support vector machine. To facilitate the model implementation, a software program of BayGmmKda has been developed in MATLAB. The BayGmmKda program can accurately establish a flood susceptibility map for the study region. Accordingly, local authorities can overlay this susceptibility map onto various land-use maps for the purpose of land-use planning or management.

  9. A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin).

    Science.gov (United States)

    Brange, J; Dodson, G G; Edwards, D J; Holden, P H; Whittingham, J L

    1997-04-01

    The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 A spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy.

  10. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate.

    Science.gov (United States)

    Fang, Yi; Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2016-07-15

    An amperometric sensor based on a bi-enzyme modified electrode was fabricated to detect methyl salicylate, a volatile organic compound released by pathogen-infected plants via systemic response. The detection is based on cascadic conversion reactions that result in an amperometric electrochemical signal. The bi-enzyme electrode is made of alcohol oxidase and horseradish peroxidase enzymes immobilized on to a carbon nanotube matrix through a molecular tethering method. Methyl salicylate undergoes hydrolysis to form methanol, which is consumed by alcohol oxidase to form formaldehyde while simultaneously reducing oxygen to hydrogen peroxide. The hydrogen peroxide will be further reduced to water by horseradish peroxidase, which results in an amperometric signal via direct electron transfer. The bi-enzyme biosensor was evaluated by cyclic voltammetry and constant potential amperometry using hydrolyzed methyl salicylate as the analyte. The sensitivity of the bi-enzyme biosensor as determined by cyclic voltammetry and constant potential amperometry were 112.37 and 282.82μAcm(-2)mM(-1) respectively, and the corresponding limits of detection were 22.95 and 0.98μM respectively. Constant potential amperometry was also used to evaluate durability, repeatability and interference from other compounds. Wintergreen oil was used for real sample study to establish the application of the bi-enzyme sensor for selective determination of plant pathogen infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  12. Highly Effective Serodiagnosis for Chagas' Disease ▿

    Science.gov (United States)

    Hernández, Pilar; Heimann, Michael; Riera, Cristina; Solano, Marco; Santalla, José; Luquetti, Alejandro O.; Beck, Ewald

    2010-01-01

    Many proteins of Trypanosoma cruzi, the causative agent of Chagas' disease, contain characteristic arrays of highly repetitive immunogenic amino acid motifs. Diagnostic tests using these motifs in monomeric or dimeric form have proven to provide markedly improved specificity compared to conventional tests based on crude parasite extracts. However, in many cases the available tests still suffer from limited sensitivity. In this study we produced stable synthetic genes with maximal codon variability for the four diagnostic antigens, B13, CRA, TcD, and TcE, each containing between three and nine identical amino acid repeats. These genes were combined by linker sequences encoding short proline-rich peptides, giving rise to a 24-kDa fusion protein which was used as a novel diagnostic antigen in an enzyme-linked immunosorbent assay setup. Validation of the assay with a large number of well-characterized patient sera from Bolivia and Brazil revealed excellent diagnostic performance. The high sensitivity of the new test may allow future studies to use blood collected by finger prick and dried on filter paper, thus dramatically reducing the costs and effort for the detection of T. cruzi infection. PMID:20668136

  13. Modeling and Docking Studies on Novel Mutants (K71L and T204V of the ATPase Domain of Human Heat Shock 70 kDa Protein 1

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2014-04-01

    Full Text Available The purpose of exploring protein interactions between human adenovirus and heat shock protein 70 is to exploit a potentially synergistic interaction to enhance anti-tumoral efficacy and decrease toxicity in cancer treatment. However, the protein interaction of Hsp70 with E1A32 kDa of human adenovirus serotype 5 remains to be elucidated. In this study, two residues of ATPase domain of human heat shock 70 kDa protein 1 (PDB: 1 HJO were mutated. 3D mutant models (K71L and T204V using PyMol software were then constructed. The structures were evaluated by PROCHECK, ProQ, ERRAT, Verify 3D and ProSA modules. All evidence suggests that all protein models are acceptable and of good quality. The E1A32 kDa motif was retrieved from UniProt (P03255, as well as subjected to docking interaction with NBD, K71L and T204V, using the Autodock 4.2 program. The best lowest binding energy value of −9.09 kcal/mol was selected for novel T204V. Moreover, the protein-ligand complex structures were validated by RMSD, RMSF, hydrogen bonds and salt bridge analysis. This revealed that the T204V-E1A32 kDa motif complex was the most stable among all three complex structures. This study provides information about the interaction between Hsp70 and the E1A32 kDa motif, which emphasizes future perspectives to design rational drugs and vaccines in cancer therapy.

  14. 21 CFR 82.1260 - D&C Orange No. 10.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 10. 82.1260 Section 82.1260 Food... CERTIFIED PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics § 82.1260 D&C Orange No. 10. The color additive D&C Orange No. 10 shall conform in identity and specifications to the requirements...

  15. 21 CFR 82.1261 - D&C Orange No. 11.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 11. 82.1261 Section 82.1261 Food... CERTIFIED PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics § 82.1261 D&C Orange No. 11. The color additive D&C Orange No. 11 shall conform in identity and specifications to the requirements...

  16. Production of polyclonal antiserum specific to the 27.5 kDa envelope protein of white spot syndrome virus

    NARCIS (Netherlands)

    You, Z.O.; Nadala, E.C.B.; Yang, J.S.; Hulten, van M.C.W.; Loh, P.C.

    2002-01-01

    A truncated version of the white spot syndrome virus (WSSV) 27.5 kDa envelope protein was expressed as a histidine tag fusion protein in Escherichia coli. The bacterial expression system allowed the production of up to 10 mg of purified recombinant protein per liter of bacterial culture. Antiserum

  17. Cardiac 82rubidium PET/CT: initial European experience

    International Nuclear Information System (INIS)

    Groves, Ashley M.; Dickson, John C.; Kayani, Irfan; Endozo, Raymondo; Blanchard, Patty; Shastry, Manu; Prvulovich, Elizabeth; Waddington, Wendy A.; Ben-Haim, Simona; Bomanji, Jamshed B.; Ell, Peter J.; Speechly-Dick, Marie-Elsya; McEwan, Jean R.

    2007-01-01

    Myocardial perfusion with PET/CT has advantages over conventional SPECT. We describe our initial European experience using 82 Rubidium-PET/CT, as part of a clinical myocardial perfusion service. We studied the first 100 patients (64 male; 36 female, mean age = 60: SD +/-12.5y, mean body mass index = 30: SD +/-6.9kg/m 2 ) who underwent 82 Rubidium cardiac PET/CT in our institution. Thirty patients had recently undergone coronary angiography. Patients underwent imaging during adenosine infusion and at rest. Images were acquired over 5 minutes using a GE-PET/CT instrument. Image quality was described as good, adequate or inadequate. Images were reported patient-by-patient by a minimum of five nuclear medicine physicians. A segment-by-segment analysis (17-segment model) was also performed. Image quality was good in 77%, adequate 23% and inadequate 0%. There was no statistical difference in image quality between obese and non-obese patients (Fisher's exact test, p = 0.2864). 59% had normal perfusion studies, 29% had inducible ischaemia, 12% had myocardial infarction (11% with super added ischaemia). There was reduced 82 Rubidium uptake in 132/1700 segments during stress. There was reduced 82 Rubidium uptake at rest in 42/1700 segments. The 82 Rubidium PET/CT findings were consistent with the angiographic findings in 28/30 cases. We show that, even from initial use of 82 Rubidium, it is possible to perform myocardial perfusion studies quickly with good image quality, even in the obese. The PET findings correlated well in the third of the cases where angiography was available. As such, 82 Rubidium cardiac PET/CT is likely to be an exciting addition to the European nuclear physician/ cardiologist's radionuclide imaging arsenal. (orig.)

  18. The effects of threonine phosphorylation on the stability and dynamics of the central molecular switch region of 18.5-kDa myelin basic protein.

    Directory of Open Access Journals (Sweden)

    Kenrick A Vassall

    Full Text Available The classic isoforms of myelin basic protein (MBP are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence -T92-P93-R94-T95-P96-P97-P98-S99- containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90 upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72-S107 with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012. Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the

  19. Purification of a lipoxygenase from ungerminated barley. Characterization and product formation

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Aarle, P.G.M. van; Barse, M.M.J. de; Veldink, G.A.

    1991-01-01

    Lipoxygenase was purified from ungerminated barley (variety ‘Triumph’), yielding an active enzyme with a pl of 5.2 and a molecular mass of approximately 90 kDa. In addition to the 90 kDa band SDS-PAGE showed the presence of two further proteins of 63 kDa. Western blot analysis showed

  20. Antimicrobial activity of a 48-kDa protease (AMP48) from Artocarpus heterophyllus latex.

    Science.gov (United States)

    Siritapetawee, J; Thammasirirak, S; Samosornsuk, W

    2012-01-01

    Artocarpus heterophyllus (jackfruit) is a latex producing plant. Plant latex is produced from secretory cells and contains many intergradients. It also has been used in folk medicine. This study aimed to purify and characterize the biological activities of a protease from jackfruit latex. A protease was isolated and purified from crude latex of a jackfruit tree by acid precipitation and ion exchange chromatography. The proteolytic activities of protein were tested using gelatin- and casein-zymography. The molecular weight and isoelectric point (pl) of protein were analysed by SDS/12.5% PAGE and 2D-PAGE, respectively. Antimicrobial activity of protein was analysed by broth microdilution method. In addition, the antibacterial activity of protein against Pseudomonas aeruginosa ATCC 27853 was observed and measured using atomic force microscopy (AFM) technique. The purified protein contained protease activity by digesting gelatin- and casein-substrates. The protease was designated as antimicrobial protease-48 kDa or AMP48 due to its molecular mass on SDS-PAGE was approximately 48 kDa. The isoelectric point (pl) of AMP48 was approximately 4.2. In addition, AMP48 contained antimicrobial activities by it could inhibit the growths of Pseudomonas aeruginosa ATCC 27853 and clinical isolated Candida albicans at minimum inhibitory concentration (MIC) 2.2 mg/ml and Minimum microbicidal concentration (MMC) 8.8 mg/ml. AFM image also supported the antimicrobial activities of AMP48 by the treated bacterial morphology and size were altered from normal.

  1. The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles.

    Science.gov (United States)

    Hook, V Y; Sei, C; Yasothornsrikul, S; Toneff, T; Kang, Y H; Efthimiopoulos, S; Robakis, N K; Van Nostrand, W

    1999-01-29

    Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.

  2. 21 CFR 82.1255 - D&C Orange No. 5.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 5. 82.1255 Section 82.1255 Food and... PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics § 82.1255 D&C Orange No. 5. (a) The color additive D&C Orange No. 5 shall conform in identity and specifications to the requirements of § 74.1255(a...

  3. 21 CFR 82.1254 - D&C Orange No. 4.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 4. 82.1254 Section 82.1254 Food and... PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics § 82.1254 D&C Orange No. 4. The color additive D&C Orange No. 4 shall conform in identity and specifications to the requirements of § 74.1254(a...

  4. Conversion of shrimp shell by using Serratia sp. TKU017 fermentation for the production of enzymes and antioxidants.

    Science.gov (United States)

    Wang, San-Lang; Li, Jeng-Yu; Liang, Tzu-Wen; Hsieh, Jia-Lin; Tseng, Wan-Nine

    2010-01-01

    A chitinase (CHT), and a protease (PRO) were purified from the culture supernatant of Serratia sp. TKU017 with shrimp shell as the sole carbon/nitrogen source. The molecular masses of CHT and PRO determined by SDS-PAGE were approximately 65 kDa and 53 kDa, respectively. CHT was inhibited by Mn2+, Cu2+ and PRO was inhibited by most tested divalent metals, EDTA. The optimum pH, optimum temperature, pH stability, and thermal stability of CHT and PRO were (pH 5, 50 degrees , pH 5 degrees ) and (pH 9, 40 degrees , pH 5 degrees ), respectively. PRO retained 95% of its protease activity in the presence of 0.5 mM SDS. The result demonstrates that PRO is SDS-resistant protease and probably has a rigid structure. The 4th day supernatant showed the strongest antioxidant activity (70%, DPPH scavenging ability) and the highest total phenolic content (196+/-6.2 microng of gallic acid equival/mL). Significant associations between the antioxidant potency and the total phenolic content, as well as between the antioxidant potency and free amino groups, were found for the supernatant. With this method, we have shown that shrimp shell wastes can be utilized and it's effective in the production of enzymes and antioxidants, facilitating its potential use in industrial applications and functional foods.

  5. Monomeric Aβ1–40 and Aβ1–42 Peptides in Solution Adopt Very Similar Ramachandran Map Distributions That Closely Resemble Random Coil

    Science.gov (United States)

    2016-01-01

    The pathogenesis of Alzheimer’s disease is characterized by the aggregation and fibrillation of amyloid peptides Aβ1–40 and Aβ1–42 into amyloid plaques. Despite strong potential therapeutic interest, the structural pathways associated with the conversion of monomeric Aβ peptides into oligomeric species remain largely unknown. In particular, the higher aggregation propensity and associated toxicity of Aβ1–42 compared to that of Aβ1–40 are poorly understood. To explore in detail the structural propensity of the monomeric Aβ1–40 and Aβ1–42 peptides in solution, we recorded a large set of nuclear magnetic resonance (NMR) parameters, including chemical shifts, nuclear Overhauser effects (NOEs), and J couplings. Systematic comparisons show that at neutral pH the Aβ1–40 and Aβ1–42 peptides populate almost indistinguishable coil-like conformations. Nuclear Overhauser effect spectra collected at very high resolution remove assignment ambiguities and show no long-range NOE contacts. Six sets of backbone J couplings (3JHNHα, 3JC′C′, 3JC′Hα, 1JHαCα, 2JNCα, and 1JNCα) recorded for Aβ1–40 were used as input for the recently developed MERA Ramachandran map analysis, yielding residue-specific backbone ϕ/ψ torsion angle distributions that closely resemble random coil distributions, the absence of a significantly elevated propensity for β-conformations in the C-terminal region of the peptide, and a small but distinct propensity for αL at K28. Our results suggest that the self-association of Aβ peptides into toxic oligomers is not driven by elevated propensities of the monomeric species to adopt β-strand-like conformations. Instead, the accelerated disappearance of Aβ NMR signals in D2O over H2O, particularly pronounced for Aβ1–42, suggests that intermolecular interactions between the hydrophobic regions of the peptide dominate the aggregation process. PMID:26780756

  6. Structure of the putative 32 kDa myrosinase-binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR.

    Science.gov (United States)

    Takeda, Mitsuhiro; Sugimori, Nozomi; Torizawa, Takuya; Terauchi, Tsutomu; Ono, Akira M; Yagi, Hirokazu; Yamaguchi, Yoshiki; Kato, Koichi; Ikeya, Teppei; Jee, Jungoo; Güntert, Peter; Aceti, David J; Markley, John L; Kainosho, Masatsune

    2008-12-01

    The product of gene At3g16450.1 from Arabidopsis thaliana is a 32 kDa, 299-residue protein classified as resembling a myrosinase-binding protein (MyroBP). MyroBPs are found in plants as part of a complex with the glucosinolate-degrading enzyme myrosinase, and are suspected to play a role in myrosinase-dependent defense against pathogens. Many MyroBPs and MyroBP-related proteins are composed of repeated homologous sequences with unknown structure. We report here the three-dimensional structure of the At3g16450.1 protein from Arabidopsis, which consists of two tandem repeats. Because the size of the protein is larger than that amenable to high-throughput analysis by uniform (13)C/(15)N labeling methods, we used stereo-array isotope labeling (SAIL) technology to prepare an optimally (2)H/(13)C/(15)N-labeled sample. NMR data sets collected using the SAIL protein enabled us to assign (1)H, (13)C and (15)N chemical shifts to 95.5% of all atoms, even at a low concentration (0.2 mm) of protein product. We collected additional NOESY data and determined the three-dimensional structure using the cyana software package. The structure, the first for a MyroBP family member, revealed that the At3g16450.1 protein consists of two independent but similar lectin-fold domains, each composed of three beta-sheets.

  7. Recommended activation detector cross sections (RNDL-82)

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Lapenas, A.A.

    1984-01-01

    The results of the comparison between measured and calculated average cross sections in 5 benchmark experiments are presented. Calculations have been based on the data from 10 libraries of evaluated cross sections. The recommended library (RNDL-82) of the activation detector cross sections has been created on the basis of the comparison. RNDL-82, including 26 reactions, and the basic characteristics of the detectors are presented. (author)

  8. Isolation and characterization of cDNA encoding the 80-kDa subunit protein of the human autoantigen Ku (p70/p80) recognized by autoantibodies from patients with scleroderma-polymyositis overlap syndrome

    International Nuclear Information System (INIS)

    Mimori, Tsuneyo; Ohosone, Yasuo; Hama, Nobuaki; Suwa, Akira; Akizuki, Masashi; Homma, Mitsuo; Griffith, A.J.; Hardin, J.A.

    1990-01-01

    Anti-Ku (p70/p80) autoantibodies in patients with scleroderma-polymyositis overlap syndrome recognize a 70-kDa/80-kDa protein heterodimer which binds to terminal regions of double-stranded DNA. In the present study, the authors isolated full-length cDNAs that encode the 80-kDa Ku subunit. Initial screening of a human spleen cDNA library with anti-Ku antibodies yielded a cDNA of 1.0 kilobase (kb) (termed K71) encoding a portion of the 80-kDa Ku polypeptide (identification based on immunological criteria). In RNA blots, this cDNA hybridized with two mRNAs of 3.4 and 2.6 kb. In vitro transcription and translation experiments produced an immunoprecipitable polypeptide which comigrated with the 80-kDa Ku subunit. The Ku80-6 cDNA proved to be 3304 nucleotides in length, with an additional poly(A) tail, closely approximating the size of the larger mRNA. It contains a single long open reading frame encoding 732 amino acids. The putative polypeptide has a high content of acidic amino acids and a region with periodic repeat of leucine in every seventh position which may form the leucine zipper structure. In genomic DNA blots, probes derived from the opposite ends of cDNA Ku80-6 hybridized with several nonoverlapping restriction fragments from human leukocyte DNA, indicating that the gene encoding the 80-kDa Ku polypeptide is divided into several exons by intervening sequences

  9. Enzymic construction of maltosaccharide chains on a heart protein

    International Nuclear Information System (INIS)

    Kay, M.J.; Kirkman, B.R.; Lomako, J.; Rodriguez, I.R.; Tandecarz, J.S.; Fliesler, S.J.; Whelan, W.J.

    1987-01-01

    The authors have reported that when 100,000 g pellets of rabbit-heart and rabbit-muscle homogenates are incubated with UDP( 14 C)glucose, the sugar is incorporated into a protein with Mr 40 KDa. They suggested that these in vitro observations corresponded to the initial stage in the synthesis of glycogen on a protein that they have named glycogenin and which in rabbit muscle appears to be covalently linked to the glycogen via tyrosine residues. The following new observations support the role of a protein as the precursor of glycogen and suggest that glycogen-free glycogenin is present in heart tissue. (1) The ( 14 C)glucose residues added to the heart protein can be removed with glycogenolytic enzymes that hydrolyse 1,4-alpha-glucosidic bonds and therefore constitute synthetic maltosaccharide chains. (2) The newly added glucose residues appear to be attached to pre-existing glucose residues on the protein. Chain elongation does not proceed beyond a few glucose residues. (3) The further relevance of these observations to glycogen synthesis shown by a Western blot in which the radioglucosylated heart protein was found to cross-react with polyclonal antibody to glycogenin obtained from rabbit-muscle glycogen

  10. Analysis and Evaluation of the Inhibitory Mechanism of a Novel Angiotensin-I-Converting Enzyme Inhibitory Peptide Derived from Casein Hydrolysate.

    Science.gov (United States)

    Tu, Maolin; Liu, Hanxiong; Zhang, Ruyi; Chen, Hui; Mao, Fengjiao; Cheng, Shuzhen; Lu, Weihong; Du, Ming

    2018-04-25

    Casein hydrolysates exert various biological activities, and the responsible functional peptides are being identified from them continuously. In this study, the tryptic casein hydrolysate was fractionated by an ultrafiltration membrane (3 kDa), and the peptides were identified by capillary electrophoresis-quadrupole-time-of-flight-tandem mass spectrometry. Meanwhile, in silico methods were used to analyze the toxicity, solubility, stability, and affinity between the peptides and angiotensin-I-converting enzyme (ACE). Finally, a new angiotensin-I-converting enzyme inhibitory (ACEI) peptide, EKVNELSK, derived from α s1 -casein (fragment 35-42) was screened. The half maximal inhibitory concentration value of the peptide is 5.998 mM, which was determined by a high-performance liquid chromatography method. The Lineweaver-Burk plot indicated that this peptide is a mixed-type inhibitor against ACE. Moreover, Discovery Studio 2017 R2 software was adopted to perform molecular docking to propose the potential mechanisms underlying the ACEI activity of the peptide. These results indicated that EKVNELSK is a new ACEI peptide identified from casein hydrolysate.

  11. A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (BayGmmKda V1.1 for spatial prediction of floods

    Directory of Open Access Journals (Sweden)

    D. Tien Bui

    2017-09-01

    Full Text Available In this study, a probabilistic model, named as BayGmmKda, is proposed for flood susceptibility assessment in a study area in central Vietnam. The new model is a Bayesian framework constructed by a combination of a Gaussian mixture model (GMM, radial-basis-function Fisher discriminant analysis (RBFDA, and a geographic information system (GIS database. In the Bayesian framework, GMM is used for modeling the data distribution of flood-influencing factors in the GIS database, whereas RBFDA is utilized to construct a latent variable that aims at enhancing the model performance. As a result, the posterior probabilistic output of the BayGmmKda model is used as flood susceptibility index. Experiment results showed that the proposed hybrid framework is superior to other benchmark models, including the adaptive neuro-fuzzy inference system and the support vector machine. To facilitate the model implementation, a software program of BayGmmKda has been developed in MATLAB. The BayGmmKda program can accurately establish a flood susceptibility map for the study region. Accordingly, local authorities can overlay this susceptibility map onto various land-use maps for the purpose of land-use planning or management.

  12. Molecular characterization of adenosine 5'-monophosphate deaminase--the key enzyme responsible for the umami taste of nori (Porphyra yezoensis Ueda, Rhodophyta).

    Science.gov (United States)

    Minami, Seiko; Sato, Minoru; Shiraiwa, Yoshihiro; Iwamoto, Koji

    2011-12-01

    The enzyme adenosine 5'-monophosphate deaminase (AMPD, EC 3.5.4.6) catalyzes the conversion of adenosine 5'-monophosphate to inosine 5'-mononucleotide (IMP). IMP is generally known as the compound responsible for the umami taste of the edible red alga Porphyra yezoensis Ueda that is known in Japan as nori. Therefore, we suspect that AMPD plays a key role in providing a favorable nori taste. In this study, we undertake the molecular characterization of nori-derived AMPD. The nori AMPD protein has a molecular mass of 55 kDa as estimated from both gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The calculated molecular mass from the amino acid sequence deduced from cDNA is 57.1 kDa. The isoelectric point is 5.71. The coding region of AMPD consists of 1,566 bp encoding 522 amino acids and possesses a transmembrane domain and two N-glycosylation sites. The sequence identity of nori AMPD in human and yeast AMPDs was found to be less than 50% and 20% in DNA and amino acid sequences, respectively. Proline in the conserved motif of [SA]-[LIVM]-[NGS]-[STA]-D-D-P was found to be converted to glutamate. These results indicate that nori AMPD is a novel type of AMPD.

  13. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    Science.gov (United States)

    Vora, J P; Owens, D R; Dolben, J; Atiea, J A; Dean, J D; Kang, S; Burch, A; Brange, J

    1988-11-12

    To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. Study in normal people at a diabetes research unit and a university department of medical physics. Seven healthy male volunteers aged 20-39 not receiving any other drugs. After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U/kg respectively. The response of glucagon substantiated the earlier and

  14. An RNAi construct of the P450 gene CYP82D109 leads to increased resistance to Fusarium oxysporum f. sp. vasinfectum (Fov11) and increased feeding by Helicoverpa Zea larvae

    Science.gov (United States)

    The P450 CYP82D109 gene codes for an early step enzyme in the gossypol pathway in Gossypium. The terminal leaves of RNAi plants had a 90% reduction in hemigossypolone and heliocides levels, and a 70% reduction in gossypol levels compared to wild-type (WT) plants. Previous studies comparing glanded...

  15. Human biodistribution and radiation dosimetry of 82Rb.

    Science.gov (United States)

    Senthamizhchelvan, Srinivasan; Bravo, Paco E; Esaias, Caroline; Lodge, Martin A; Merrill, Jennifer; Hobbs, Robert F; Sgouros, George; Bengel, Frank M

    2010-10-01

    Prior estimates of radiation-absorbed doses from (82)Rb, a frequently used PET perfusion tracer, yielded discrepant results. We reevaluated (82)Rb dosimetry using human in vivo biokinetic measurements. Ten healthy volunteers underwent dynamic PET/CT (6 contiguous table positions, each with separate (82)Rb infusion). Source organ volumes of interest were delineated on the CT images and transferred to the PET images to obtain time-integrated activity coefficients. Radiation doses were estimated using OLINDA/EXM 1.0. The highest mean absorbed organ doses (μGy/MBq) were observed for the kidneys (5.81), heart wall (3.86), and lungs (2.96). Mean effective doses were 1.11 ± 0.22 and 1.26 ± 0.20 μSv/MBq using the tissue-weighting factors of the International Commission on Radiological Protection (ICRP), publications 60 and 103, respectively. Our current (82)Rb dosimetry suggests reasonably low radiation exposure. On the basis of this study, a clinical (82)Rb injection of 2 × 1,480 MBq (80 mCi) would result in a mean effective dose of 3.7 mSv using the weighting factors of the ICRP 103-only slightly above the average annual natural background exposure in the United States (3.1 mSv).

  16. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses.

    Directory of Open Access Journals (Sweden)

    Qiang Yan

    Full Text Available The cytochrome P450 monooxygenases (P450s represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.. Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA or ethephon (ETH. Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA, and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes.

  17. Phosphorylation of the cytoplasmic tail of the 300-kDa mannose 6-phosphate receptor is required for the interaction with a cytosolic protein

    DEFF Research Database (Denmark)

    Rosorius, O; Issinger, O G; Braulke, T

    1993-01-01

    The cytoplasmic tail of the human 300-kDa mannose 6-phosphate receptor (MPR 300-CT) is an excellent substrate for casein kinase II in vitro. The phosphorylated MPR 300-CT was cross-linked by means of bis(sulfosuccinimidyl)suberate mainly to a cytosolic protein of 35 kDa (referred to as TIP 35...... with TIP 35 is phosphorylation-specific. Furthermore, TIP 35 was only cross-linked to the MPR 300-CT phosphorylated by casein kinase II whereas the MPR 300-CT phosphorylated by protein kinase A failed to cross-link to TIP 35. These results indicate that the cytoplasmic tail of the MPR 300 interacts...

  18. Correlation between phosphorylation level of a hippocampal 86kDa protein and extinction of a behaviour in a model of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Pires, Rita G W; Pereira, Sílvia R C; Carvalho, Fabiana M; Oliveira-Silva, Ieda F; Ferraz, Vany P; Ribeiro, Angela M

    2007-06-04

    The effects of chronic ethanol and thiamine deficiency, alone or associated, on hippocampal protein phosphorylation profiles ranging in molecular weight from 30 to 250kDa molecular weight, in stimulated (high K(+) concentration) and unstimulated (basal) conditions were investigated. These treatments significantly changed the phosphorylation level of an 86kDa phosphoprotein. Thiamine deficiency, but not chronic ethanol, induced a decrease in a behavioural extinction index, which is significantly correlated to the phosphorylation level of the p86 protein. These data add to and extend previous findings by our laboratory implicating the involvement of hippocampal neurotransmission components in extinction of a behaviour which involves learning of environmental spatial cues.

  19. Comparison of an enzyme linked immunosorbent assay (ELISA) and a radioallergosorbent test (RAST) for detection of IgE antibodies to Brugia malayi

    NARCIS (Netherlands)

    Wahyuni, Sitti; van Ree, Ronald; Mangali, Andarias; Supali, Taniawati; Yazdanbakhsh, Maria; Sartono, Erliyani

    2003-01-01

    The enzyme linked immunosorbent assay (ELISA) for specific IgE antibodies to Brugia malayi was compared with the radioallergosorbent test (RAST) for use in immunoepidemiological studies of lymphatic filariasis. Sera used were from individuals (aged 5-82 years) living in an area endemic for lymphatic

  20. Transport of nattokinase across the rat intestinal tract.

    Science.gov (United States)

    Fujita, M; Hong, K; Ito, Y; Misawa, S; Takeuchi, N; Kariya, K; Nishimuro, S

    1995-09-01

    Intraduodenal administration of nattokinase (NK) at a dose of 80 mg/kg, resulted in the degradation of fibrinogen in plasma suggesting transport of NK across the intestinal tract in normal rats. The action of NK on the cleavage of fibrinogen in the plasma from blood samples drawn at intervals after intraduodenal administration of the enzyme was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting analysis with an anti-fibrinogen gamma chain antibody. The 270 kDa fragment carrying antigenic sites for the binding of the anti-fibrinogen gamma chain antibody appeared within 0.5 h and was then degraded gradually to a 105 kDa fragment via a 200 kDa fragment. This suggests that fibrinogen was degraded to a 105 kDa fragment via several intermediates (270 and 200 kDa). In parallel with the degradation process, plasma recalcification times were remarkably prolonged NK was also detected in the plasma from blood samples drawn 3 and 5 h after administration of the enzyme by SDS-PAGE and Western blotting analysis with an anti-NK antibody. The results indicate that NK is absorbed from the rat intestinal tract and that NK cleaves fibrinogen in plasma after intraduodenal administration of the enzyme.

  1. Hydrogen permeation behavior through F82H at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, S.; Katayama, K.; Shimozori, M.; Fukada, S. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kyushu (Japan); Ushida, H. [Energy Science and Engineering, Faculty of Engineering, Kyushu University, Kyushu (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur (Malaysia)

    2015-03-15

    F82H is a primary candidate of structural material and coolant pipe material in a blanket of a fusion reactor. Understanding tritium permeation behavior through F82H is important. In a normal operation of a fusion reactor, the temperature of F82H will be controlled below 550 C. degrees because it is considered that F82H can be used up to 30,000 hours at 550 C. degrees. However, it is necessary to assume the situation where F82H is heated over 550 C. degrees in a severe accident. In this study, hydrogen permeation behavior through F82H was investigated in the temperature range from 500 to 800 C. degrees. In some cases, water vapor was added in a sample gas to investigate an effect of water vapor on hydrogen permeation. The permeability of hydrogen in the temperature range from 500 to 700 C. degrees agreed well with the permeability reported by E. Serra et al. The degradation of the permeability by water vapor was not observed. After the hydrogen permeation reached in a steady state at 700 C. degrees, the F82H sample was heated to 800 C. degrees. The permeability of hydrogen through F82H sample which was once heated up to 800 C. degrees was lower than that of the original one. (authors)

  2. Characterization and cloning of laccase gene from Hericium coralloides NBRC 7716 suitable for production of epitheaflagallin 3-O-gallate.

    Science.gov (United States)

    Itoh, Nobuya; Takagi, Shinya; Miki, Asami; Kurokawa, Junji

    2016-01-01

    Epitheaflagallin 3-O-gallate (ETFGg) is a minor polyphenol found in black tea extract, which has good physiological functions. It is synthesized from epigallocatechin gallate (EGCg) with gallic acid via laccase oxidation. Various basidiomycetes and fungi were screened to find a suitable laccase for the production of ETFGg. A basidiomycete, Hericium coralloides NBRC 7716, produced an appropriate extracellular laccase. The purified laccase produced twice the level of ETFGg compared with commercially available laccase from Trametes sp. The enzyme, termed Lcc2, is a monomeric protein with an apparent molecular mass of 67.2 kDa. The N-terminal amino acid sequence of Lcc2 is quite different from laccase isolated from the fruiting bodies of Hericium. Lcc2 showed similar substrate specificity to known laccases and could oxidize various phenolic substrates, including pyrogallol, gallic acid, and 2,6-dimethoxyphenol. The full-length lcc2 gene was obtained by PCR using degenerate primers, which were designed based on the N-terminal amino acid sequence of Lcc2 and conserved copper-binding sites of laccases, and 5'-, and 3'-RACE PCR with mRNA. The Lcc2 gene showed homology with Lentinula edodes laccase (sharing 77% amino acid identity with Lcc6). We successfully produced extracellular Lcc2 using a heterologous expression system with Saccharomyces cerevisiae. Moreover, it was confirmed that the recombinant laccase generates similar levels of ETFGg as the native enzyme. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Photoreactivation of pyrimidine dimers in the DNA of normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Oliver, R.; Fuselier, C.O.; Sutherland, J.C.

    1976-01-01

    Photoproducts formed in the DNA of human cells irradiated with ultraviolet light (uv) were identified as cyclobutyl pyrimidine dimers by their chromatographic mobility, reversibility to monomers upon short wavelength uv irradiation, and comparison of the kinetics of this monomerization with that of authentic cis--syn thymine--thymine dimers prepared by irradiation of thymine in ice. The level of cellular photoreactivation of these dimers reflects the level of photoreactivating enzyme measured in cell extracts. Action spectra for cellular dimer photoreactivation in the xeroderma pigmentosum line XP12BE agree in range (300 nm to at least 577 nm) and maximum (near 400 nm) with that for photoreactivation by purified human photoreactivating enzyme. Normal human cells can also photoreactivate dimers in their DNA. The action spectrum for the cellular monomerization of dimers is similar to that for photoreactivation by the photoreactivating enzyme in extracts of normal human fibroblasts

  4. 75 FR 80744 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-9-81 (MD-81), DC-9-82 (MD-82...

    Science.gov (United States)

    2010-12-23

    ...-1203; Directorate Identifier 2010-NM-168-AD] RIN 2120-AA64 Airworthiness Directives; McDonnell Douglas... amends Sec. 39.13 by adding the following new airworthiness directive (AD): McDonnell Douglas Corporation... Douglas Corporation Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87) and MD-88...

  5. 9 CFR 82.15 - Replacement birds and poultry.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Replacement birds and poultry. 82.15... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS EXOTIC NEWCASTLE DIS- EASE (END) AND CHLAMYDIOSIS Exotic Newcastle Disease (END) § 82.15 Replacement birds and poultry. Birds...

  6. Evaluation, partial characterization and purification of acetylcholine esterase enzyme and antiangiogenic activity from marine sponges

    Directory of Open Access Journals (Sweden)

    Maushmi Shailesh Kumar

    2014-11-01

    Full Text Available Objective: To test three marine sponges Halichondria glabrata Keller, 1891; Spirastrella pachyspira (S. pachyspira Levi, 1958 and Cliona lobata Hancock, 1849 for the presence of the acetylcholinesterase (AChE in both young and developed samples from western coastal area of India. S. pachyspira methanolic extract was selected for anti/pro angiogenic activity. Methods: They were evaluated for AChE activity using Ellman’s assay based on production of yellow colored 5-thio-2-nitrobenzoate. Purification of the enzyme was planned using ammonium sulphate precipitation and characterization by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Chorioallantoic membrane (ChAM assay model was used for angiogenic/ antiangiogenic testing. Results: All the three sponges showed good specific enzyme activity and S. pachyspira contained maximum specific enzyme activity. Sixty percent of ammonium sulphate precipitation of crude protein sample gave single band at 66 kDa corresponding to the true AChE. ChAM assay was performed at 62.5, 125.0 and 250.0 µg/mL. Dosage beyond 250 µg/mL extract showed toxic response with anti angiogenic activity at all the concentrations. Conclusions: AChE activity was detected in all samples. Extract showed good anti-angiogenic response at 62.5 µg/mL. Extract was highly toxic affecting microvasculature of ChAM as well as normal growth and development of the embryo at 500 µg/mL. With further characterization of bioactive compounds from the extract of S. pachyspira, the compounds can be developed for anti tumor activity.

  7. Inhibition of Bifidobacterium Cell Wall 51.74 kDa Adhesin Isolated from Infants Feces Towards Adhesion of Enteric Phatogen E. coli on Enterocyte Balb/C Mice

    Directory of Open Access Journals (Sweden)

    I Sukrama

    2012-01-01

    Full Text Available Objectives: To determine 51.74 kDa adhesin of Bifidobacterium sp cell wall isolated from infants feces as an anti adhesion of E. coli on enterocyte mice. Methods: Randomized Posttest-Only Control Group Design was employed to investigate adherence ability of this adhesin towards E.coli adhesion on mice entherocyte. Results: In this research, it was obtained, that the 51.74 kDa adhesin cell wall of Bifidobacterium sp has an ability to inhibit adhesion of E. coli on mice enterocyte. The ability was increased as an increase of adhsein concentration. Conclusions: that can be drawn from this research is the finding of 51.74 kDa adhesin cell wall of Bifidobacterium sp isolated from infants feces that can inhibit adhseion of E. coli on mice enterocyte. Future work that can be carried out are further researches concerning whether these protein can be applied to inhibit adherence of other pathogen bacteria

  8. 42 CFR 408.82 - Conditions for group billing.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Conditions for group billing. 408.82 Section 408.82 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE... for group billing. CMS agrees to a group billing arrangement only if the following conditions are met...

  9. 42 CFR 102.82 - Calculation of death benefits.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Calculation of death benefits. 102.82 Section 102... COMPENSATION PROGRAM Calculation and Payment of Benefits § 102.82 Calculation of death benefits. (a... paragraph (d) of this section for the death benefit available to dependents. (2) Deceased person means an...

  10. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  11. Aspartic protease from Aspergillus (Eurotium) repens strain MK82 is involved in the hydrolysis and decolourisation of dried bonito (Katsuobushi).

    Science.gov (United States)

    Aoki, Kenji; Matsubara, Sayaka; Umeda, Mayo; Tachibanac, Shusaku; Doi, Mikiharu; Takenaka, Shinji

    2013-04-01

    Katsuobushi is a dried, smoked and fermented bonito used in Japanese cuisine. During the fermentation process with several Aspergillus species, the colour of Katsuobushi gradually changes from a dark reddish-brown derived from haem proteins to pale pink. The change in colour gives Katsuobushi a higher ranking and price. This study aimed to elucidate the mechanism of decolourisation of Katsuobushi. A decolourising factor from the culture supernatant of Aspergillus (Eurotium) repens strain MK82 was purified to homogeneity. The purification was monitored by measuring the decolourising activity using equine myoglobin and bovine haemoglobin as substrates. It was found that the decolourising factor had protease activity towards myoglobin and haemoglobin. Complete inhibition of the enzyme by the inhibitor pepstatin A and the internal amino acid sequence classified the protein as an aspartic protease. The enzyme limitedly hydrolysed myoglobin between 1-Met and 2-Gly, 43-Lys and 44-Phe, and 70-Leu and 71-Thr. The purified enzyme decolourised blood of Katsuwonus pelamis (bonito) and a slice of dried bonito. It is proposed that aspartic protease plays a role in the decolourisation of Katsuobushi by the hydrolysis of haem proteins that allows the released haem to aggregate in the dried bonito. © 2012 Society of Chemical Industry.

  12. Allergen-Specific Immunotherapy with Monomeric Allergoid in a Mouse Model of Atopic Dermatitis

    Science.gov (United States)

    Babakhin, Alexander; Andreev, Sergey; Nikonova, Alexandra; Shilovsky, Igor; Buzuk, Andrey; Elisyutina, Olga; Fedenko, Elena; Khaitov, Musa

    2015-01-01

    Atopic dermatitis (AD) is a widespread and difficult to treat allergic skin disease and is a tough challenge for healthcare. In this study, we investigated whether allergen-specific immunotherapy (ASIT) with a monomeric allergoid obtained by succinylation of ovalbumin (sOVA) is effective in a mouse model of atopic dermatitis. An experimental model of AD was reproduced by epicutaneous sensitization with ovalbumin (OVA). ASIT was performed with subcutaneous (SC) administration of increasing doses of OVA or sOVA. The levels of anti-OVA antibodies, as well as cytokines, were detected by ELISA. Skin samples from patch areas were taken for histologic examination. ASIT with either OVA or sOVA resulted in a reduction of both the anti-OVA IgE level and the IgG1/IgG2a ratio. Moreover, ASIT with sOVA increased the IFN-γ level in supernatants after splenocyte stimulation with OVA. Histologic analysis of skin samples from the sites of allergen application showed that ASIT improved the histologic picture by decreasing allergic inflammation in comparison with untreated mice. These data suggest that ASIT with a succinylated allergen represents promising approach for the treatment of AD. PMID:26275152

  13. Sulfatide promotes the folding of proinsulin, preserves insulin crystals, and mediates its monomerization.

    Science.gov (United States)

    Osterbye, T; Jørgensen, K H; Fredman, P; Tranum-Jensen, J; Kaas, A; Brange, J; Whittingham, J L; Buschard, K

    2001-06-01

    Sulfatide is a glycolipid that has been associated with insulin-dependent diabetes mellitus. It is present in the islets of Langerhans and follows the same intracellular route as insulin. However, the role of sulfatide in the beta cell has been unclear. Here we present evidence suggesting that sulfatide promotes the folding of reduced proinsulin, indicating that sulfatide possesses molecular chaperone activity. Sulfatide associates with insulin by binding to the insulin domain A8--A10 and most likely by interacting with the hydrophobic side chains of the dimer-forming part of the insulin B-chain. Sulfatide has a dual effect on insulin. It substantially reduces deterioration of insulin hexamer crystals at pH 5.5, conferring stability comparable to those in beta cell granules. Sulfatide also mediates the conversion of insulin hexamers to the biological active monomers at neutral pH, the pH at the beta-cell surface. Finally, we report that inhibition of sulfatide synthesis with chloroquine and fumonisine B1 leads to inhibition of insulin granule formation in vivo. Our observations suggest that sulfatide plays a key role in the folding of proinsulin, in the maintenance of insulin structure, and in the monomerization process.

  14. Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass.

    Science.gov (United States)

    Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H

    2010-05-01

    The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.

  15. Platelet-derived growth factor induces phosphorylation of a 64-kDa nuclear protein

    International Nuclear Information System (INIS)

    Shawver, L.K.; Pierce, G.F.; Kawahara, R.S.; Deuel, T.F.

    1989-01-01

    The platelet-derived growth factor (PDGF) stimulated the phosphorylation of a nuclear protein of 64 kDa (pp64) in nuclei of nontransformed normal rat kidney (NRK) cells. Low levels of phosphorylation of pp64 were observed in nuclei of serum-starved NRK cells. Fetal calf serum (FCS), PDGF, and homodimeric v-sis and PDGF A-chain protein enhanced the incorporation of 32P into pp64 over 4-fold within 30 min and over 8-fold within 2 h of exposure of NRK cells to the growth factors. In contrast, constitutive phosphorylation of 32P-labeled pp64 in nuclei of NRK cells transformed by the simian sarcoma virus (SSV) was high and only minimally stimulated by PDGF and FCS. 32P-Labeled pp64 was isolated from nuclei of PDGF-stimulated nontransformed NRK cells; the 32P of pp64 was labile in 1 M KOH, and pp64 was not significantly recognized by anti-phosphotyrosine antisera, suggesting that the PDGF-induced phosphorylation of pp64 occurred on serine or on threonine residues. However, pp64 from SSV-transformed NRK cell nuclei was significantly stable to base hydrolysis and was immunoprecipitated with anti-phosphotyrosine antisera, suggesting that pp64 from SSV-transformed cell nuclei is phosphorylated also on tyrosine. FCS, PDGF, and PDGF A- and B-chain homodimers thus stimulate the rapid time-dependent phosphorylation of a 64-kDa nuclear protein shortly after stimulation of responsive cells. The growth factor-stimulated phosphorylation of pp64 and the constitutive high levels of pp64 phosphorylation in cells transformed by SSV suggest important roles for pp64 and perhaps regulated nuclear protein kinases and phosphatases in cell division and proliferation

  16. Improved antifungal activity of barley derived chitinase I gene that overexpress a 32 kDa recombinant chitinase in Escherichia coli host

    Directory of Open Access Journals (Sweden)

    Nida Toufiq

    Full Text Available Abstract Agricultural crops suffer many diseases, including fungal and bacterial infections, causing significant yield losses. The identification and characterisation of pathogenesis-related protein genes, such as chitinases, can lead to reduction in pathogen growth, thereby increasing tolerance against fungal pathogens. In the present study, the chitinase I gene was isolated from the genomic DNA of Barley (Hordeum vulgare L. cultivar, Haider-93. The isolated DNA was used as template for the amplification of the ∼935 bp full-length chitinase I gene. Based on the sequence of the amplified gene fragment, class I barley chitinase shares 93% amino acid sequence homology with class II wheat chitinase. Interestingly, barley class I chitinase and class II chitinase do not share sequence homology. Furthermore, the amplified fragment was expressed in Escherichia coli Rosetta strain under the control of T7 promoter in pET 30a vector. Recombinant chitinase protein of 35 kDa exhibited highest expression at 0.5 mM concentration of IPTG. Expressed recombinant protein of 35 kDa was purified to homogeneity with affinity chromatography. Following purification, a Western blot assay for recombinant chitinase protein measuring 35 kDa was developed with His-tag specific antibodies. The purified recombinant chitinase protein was demonstrated to inhibit significantly the important phytopathogenic fungi Alternaria solani, Fusarium spp, Rhizoctonia solani and Verticillium dahliae compared to the control at concentrations of 80 µg and 200 µg.

  17. Production of Mozzarella Cheese Using Rennin Enzyme from Mucor miehei Grown at Rice Bran Molasses Medium

    Science.gov (United States)

    Rusdan, I. H.; Kusnadi, J.

    2017-04-01

    The research aimed to study the characteristic and yield of Mozzarella cheese produced by using rennin enzyme from Mucor miehei which is grown at rice bran and molasses medium. The popularity of Mozzarella cheese in Indonesia is increased caused by the spreading of western foods in Indonesia such as pizza and spaghetti that use Mozzarella cheese for ingredient. In Italy, Mozzarella and pizza cheeses are dominating 78% of the total Italian Cheese products. In producing Mozzarella cheese, rennin enzyme is always used as milk coagulant. Even now, Indonesia has not produced the rennin enzyme yet. The rennin enzyme from Mucor miehei growing at rice bran and molases medium which have the availability can be managed purposively within short period of time. The completly randomized design methode used to get the best crude extracts of Mucor miehei rennin enzyme, then is employed to produce mozzarella cheese. The result of Mozzarella cheese has various characteristics such as the yield’s weight is 9.1%, which consists of 50% moisture content, 36.64% peotein levels, 0.1 melting ability and 82.72% stretch ability or 0.79/N. With that characteristic it is concluded that rennin enzyme from Mucor miehei grown at rice bran molasses medium has the potential to alternatively subtitute calf rennin to produce Mozzarella cheese, and the characteristics fulfill the standart.

  18. Production, purification and characterization of fibrinolytic enzyme from Serratia sp. KG-2-1 using optimized media.

    Science.gov (United States)

    Taneja, Kapila; Bajaj, Bijender Kumar; Kumar, Sandeep; Dilbaghi, Neeraj

    2017-07-01

    Intravascular thrombosis is one of the major causes of variety of cardiovascular disorders leading to high mortality worldwide. Fibrinolytic enzymes from microbial sources possess ability to dissolve these clots and help to circumvent these problems in more efficient and safer way. In the present study, fibrinolytic protease with higher fibrinolytic activity than plasmin was obtained from Serratia sp. KG-2-1 isolated from garbage dump soil. Response surface methodology was used to study the interactive effect of concentration of maltose, yeast extract + peptone (1:1), incubation time, and pH on enzyme production and biomass. Maximum enzyme production was achieved at 33 °C after 24 h at neutral pH in media containing 1.5% Maltose, 4.0% yeast extract + peptone and other trace elements resulting in 1.82 folds increased production. The enzyme was purified from crude extract using ammonium sulfate precipitation and DEAE-Sephadex chromatography resulting in 12.9 fold purification with 14.9% yield. The purified enzyme belongs to metalloprotease class and had optimal activity in conditions similar to physiological environment with temperature optima of 40 °C and pH optima of 8. The enzyme was found to be stable in various solvents and its activity was enhanced in presence of Na + , K + , Ba 2+ , Cu 2+ , Mn 2+ , Hg 2+ but inhibited by Ca 2+ and Fe 3+ . Hence, the obtained enzyme may be used as potential therapeutic agent in combating various thrombolytic disorders.

  19. Expression of 65-kDa oncofetal protein in experimental hepatoma after antivancer therapy

    International Nuclear Information System (INIS)

    Mirowski, M.; Rozalski, M.; Krajewska, U.; Wierbicki, R.; Hanausek, M.

    1997-01-01

    We have tested the expression of 65-kDa oncofetal protein (p65) after combined treatment with menadione and methotrexate in hamsters transplanted with Kirkman-Robbins hepatoma. The treatment of tumor-bearing animals with these compounds significantly inhibited both the tumor development and the expression of p65. This inhibition in tumor tissue was calculated from densitograms of Western blots. The inhibition of p65 was also confirmed in the serum of hepatoma bearing animals by using solid-phase radioimmunoassay (RIA) to quantify the specificity of polyclonal antibodies to fetal p65 molecules. Additionally, p65 was shown to localize both in cytoplasm an in the nuclear extracts prepared from hepatoma tissue. (author)

  20. Structural changes of creatine kinase upon substrate binding.

    Science.gov (United States)

    Forstner, M; Kriechbaum, M; Laggner, P; Wallimann, T

    1998-08-01

    Small-angle x-ray scattering was used to investigate structural changes upon binding of individual substrates or a transition state analog complex (TSAC; Mg-ADP, creatine, and KNO3) to creatine kinase (CK) isoenzymes (dimeric muscle-type (M)-CK and octameric mitochondrial (Mi)-CK) and monomeric arginine kinase (AK). Considerable changes in the shape and the size of the molecules occurred upon binding of Mg-nucleotide or TSAC. The radius of gyration of Mi-CK was reduced from 55.6 A (free enzyme) to 48.9 A (enzyme plus Mg-ATP) and to 48.2 A (enzyme plus TSAC). M-CK showed similar changes from 28.0 A (free enzyme) to 25.6 A (enzyme plus Mg-ATP) and to 25.5 A (enzyme plus TSAC). Creatine alone did not lead to significant changes in the radii of gyration, nor did free ATP or ADP. AK also showed a change of the radius of gyration from 21.5 A (free enzyme) to 19.7 A (enzyme plus Mg-ATP), whereas with arginine alone only a minor change could be observed. The primary change in structure as seen with monomeric AK seems to be a Mg-nucleotide-induced domain movement relative to each other, whereas the effect of substrate may be of local order only. In CK, however, additional movements have to be involved.

  1. Identification of phosphoproteins coupled to initiation of motility in live epididymal mouse sperm

    Science.gov (United States)

    Tash, J. S.; Bracho, G. E.

    1998-01-01

    A method for collecting live immotile cauda epididymal mouse sperm that initiate motility by dilution into an activation buffer is described. Sperm in collection buffer showed low percent motility (MOT) and population progression (PRG) that increased 10-fold and 9-fold, respectively, during the first 2 min after dilution into activation buffer. Western phosphoserine (pS), phosphothreonine (pT), and phosphotyrosine (pY) analysis revealed a 120 kDa protein that markedly increased in pT content during initiation of motility and may be related to FP130, the motility-coupled axonemal protein of sea urchin sperm. A prominent 82 kDa protein that was pS and pT-phosphorylated in immotile and motile sperm is likely the fibrous sheath component AKAP82 that is phosphorylated during spermatogenesis. Analysis of live human sperm also identified a prominent 120 kDa pT protein. Thus it appears that phosphorylation of FP130 and related 120 kDa proteins in mouse, and perhaps human sperm, represent common targets during motility initiation in sperm. Copyright 1998 Academic Press.

  2. Development, validation and evaluation of an analytical method for the determination of monomeric and oligomeric procyanidins in apple extracts.

    Science.gov (United States)

    Hollands, Wendy J; Voorspoels, Stefan; Jacobs, Griet; Aaby, Kjersti; Meisland, Ane; Garcia-Villalba, Rocio; Tomas-Barberan, Francisco; Piskula, Mariusz K; Mawson, Deborah; Vovk, Irena; Needs, Paul W; Kroon, Paul A

    2017-04-28

    There is a lack of data for individual oligomeric procyanidins in apples and apple extracts. Our aim was to develop, validate and evaluate an analytical method for the separation, identification and quantification of monomeric and oligomeric flavanols in apple extracts. To achieve this, we prepared two types of flavanol extracts from freeze-dried apples; one was an epicatechin-rich extract containing ∼30% (w/w) monomeric (-)-epicatechin which also contained oligomeric procyanidins (Extract A), the second was an oligomeric procyanidin-rich extract depleted of epicatechin (Extract B). The parameters considered for method optimisation were HPLC columns and conditions, sample heating, mass of extract and dilution volumes. The performance characteristics considered for method validation included standard linearity, method sensitivity, precision and trueness. Eight laboratories participated in the method evaluation. Chromatographic separation of the analytes was best achieved utilizing a Hilic column with a binary mobile phase consisting of acidic acetonitrile and acidic aqueous methanol. The final method showed linearity for epicatechin in the range 5-100μg/mL with a correlation co-efficient >0.999. Intra-day and inter-day precision of the analytes ranged from 2 to 6% and 2 to 13% respectively. Up to dp3, trueness of the method was >95% but decreased with increasing dp. Within laboratory precision showed RSD values <5 and 10% for monomers and oligomers, respectively. Between laboratory precision was 4 and 15% (Extract A) and 7 and 30% (Extract B) for monomers and oligomers, respectively. An analytical method for the separation, identification and quantification of procyanidins in an apple extract was developed, validated and assessed. The results of the inter-laboratory evaluation indicate that the method is reliable and reproducible. Copyright © 2017. Published by Elsevier B.V.

  3. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    Science.gov (United States)

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. 40 CFR 82.152 - Definitions.

    Science.gov (United States)

    2010-07-01

    ..., restaurants and other food service establishments. Cold storage includes the equipment used to store meat... apprentice in service, maintenance, repair, or disposal of appliances with the U.S. Department of Labor's... Administrator pursuant to § 82.160. Certified refrigerant recovery or recycling equipment means equipment...

  5. 40 CFR 82.32 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... Administrator pursuant to § 82.38. (b) Approved refrigerant recycling equipment means equipment certified by the... equipment extracts and recycles refrigerant or extracts refrigerant for recycling on-site or reclamation off... for reclamation. (2) Refrigerant from reclamation facilities that is used for the purpose of...

  6. Synergistic binding of glucose and aluminium ATP to hexokinase from Saccharomyces cerevisiae.

    Science.gov (United States)

    Woolfitt, A R; Kellett, G L; Hoggett, J G

    1988-08-10

    The binding of glucose, AlATP and AlADP to the monomeric and dimeric forms of the native yeast hexokinase PII isoenzyme and to the proteolytically modified SII monomeric form was monitored at pH 6.7 by the concomitant quenching of intrinsic protein fluorescence. No fluorescence changes were observed when free enzyme was mixed with AlATP at concentrations up to 7500 microM. In the presence of saturating concentrations of glucose, the maximal quenching of fluorescence induced by AlATP was between 1.5 and 3.5% depending on species, and the average value of [L]0.5, the concentration of ligand at half-saturation, over all monomeric species was 0.9 +/- 0.4 microM. The presence of saturating concentrations of AlATP diminished [L]0.5 for glucose binding by between 260- and 670-fold for hexokinase PII and SII monomers, respectively (dependent on the ionic strength), and by almost 4000-fold for PII dimer. The data demonstrate extremely strong synergistic interactions in the binding of glucose and AlATP to yeast hexokinase, arising as a consequence of conformational changes in the free enzyme induced by glucose and in enzyme-glucose complex induced by AlATP. The synergistic interactions of glucose and AlATP are related to their kinetic synergism and to the ability of AlATP to act as a powerful inhibitor of the hexokinase reaction.

  7. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts

    Science.gov (United States)

    Xu, Congfeng; Zhang, Yanhui H.; Thangavel, Muthusamy; Richardson, Mekel M.; Liu, Li; Zhou, Bin; Zheng, Yi; Ostrom, Rennolds S.; Zhang, Xin A.

    2009-01-01

    Tetraspanin CD82 suppresses cell migration, tumor invasion, and tumor metastasis. To determine the mechanism by which CD82 inhibits motility, most studies have focused on the cell surface CD82, which forms tetraspanin-enriched microdomains (TEMs) with other transmembrane proteins, such as integrins. In this study, we found that CD82 undergoes endocytosis and traffics to endosomes and lysosomes. To determine the endocytic mechanism of CD82, we demonstrated that dynamin and clathrin are not essential for CD82 internalization. Depletion or sequestration of sterol in the plasma membrane markedly inhibited the endocytosis of CD82. Despite the demand on Cdc42 activity, CD82 endocytosis is distinct from macropinocytosis and the documented dynamin-independent pinocytosis. As a TEM component, CD82 reorganizes TEMs and lipid rafts by redistributing cholesterol into these membrane microdomains. CD82-containing TEMs are characterized by the cholesterol-containing microdomains in the extreme light- and intermediate-density fractions. Moreover, the endocytosis of CD82 appears to alleviate CD82-mediated inhibition of cell migration. Taken together, our studies demonstrate that lipid-dependent endocytosis drives CD82 trafficking to late endosomes and lysosomes, and CD82 reorganizes TEMs and lipid rafts through redistribution of cholesterol.—Xu, C., Zhang, Y. H., Thangavel, M., Richardson, M. M., Liu, L., Zhou, B., Zheng, Y., Ostrom, R. S., Zhang, X. A. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. PMID:19497983

  8. Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria.

    Science.gov (United States)

    Kawasaki, Shinji; Ishikura, Jun; Chiba, Daisuke; Nishino, Tomoko; Niimura, Youichi

    2004-04-01

    Clostridium aminovalericum, an obligate anaerobe, is unable to form colonies on PYD agar plates in the presence of 1% O(2). When grown anaerobically in PYD liquid medium, the strain can continue normal growth after the shift from anoxic (sparged with O(2)-free N(2) carrier-gas) to microoxic (sparged with 3% O(2)/97% N(2) mixed carrier-gas) growth conditions in the mid exponential phase (OD(660)=1.0). When the strain grew under 3% O(2)/97% N(2), the medium remains anoxic. Thirty minutes after beginning aeration with 3% O(2), the activity of NADH oxidase in cell-free extracts increased more than five-fold from the level before aeration. We purified NADH oxidase to determine the characteristics of this enzyme in an obligate anaerobe. The purified NADH oxidase dominated the NADH oxidase activity detected in cell-free extracts. The enzyme is a homotetramer composed of a subunit with a molecular mass of 45 kDa. The enzyme shows a spectrum typical of a flavoprotein, and flavin adenine dinucleotide (FAD) was identified as a cofactor. The final product of NADH oxidation was H(2)O, and the estimated K(m) for oxygen was 61.9 microM. These data demonstrate that an O(2)-response enzyme that is capable of detoxifying oxygen to water exists in C. aminovalericum.

  9. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. -g.; Zhou, G.; Yang, P.; Liu, Y.; Sun, B.; Huynh, T.; Meng, H.; Zhao, L.; Xing, G.; Chen, C.; Zhao, Y.; Zhou, R.

    2012-09-18

    Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth-leading cause of cancer-related death in North America. Matrix metalloproteinases (MMPs) have long been targeted as a potential anticancer therapy because of their seminal role in angiogenesis and extracellular matrix (ECM) degradation of tumor survival and invasion. However, the inhibition specificity to MMPs and the molecular-level understanding of the inhibition mechanism remain largely unresolved. Here, we found that endohedral metallofullerenol Gd@C82(OH)22 can successfully inhibit the neoplastic activity with experiments at animal, tissue, and cellular levels. Gd@C82(OH)22 effectively blocks tumor growth in human pancreatic cancer xenografts in a nude mouse model. Enzyme activity assays also show Gd@C82(OH)22 not only suppresses the expression of MMPs but also significantly reduces their activities. We then applied large-scale molecular-dynamics simulations to illustrate the molecular mechanism by studying the Gd@C82(OH)22–MMP-9 interactions in atomic detail. Our data demonstrated that Gd@C82(OH)22 inhibits MMP-9 mainly via an exocite interaction, whereas the well-known zinc catalytic site only plays a minimal role. Steered by nonspecific electrostatic, hydrophobic, and specific hydrogen-bonding interactions, Gd@C82(OH)22 exhibits specific binding modes near the ligand-specificity loop S1', thereby inhibiting MMP-9 activity. Both the suppression of MMP expression and specific binding mode make Gd@C82(OH)22 a potentially more effective nanomedicine for pancreatic cancer than traditional medicines, which usually target the proteolytic sites directly but fail in selective inhibition. Finally, our findings provide insights for de novo design of nanomedicines for fatal diseases such as pancreatic cancer.

  10. Structure of the Putative 32 kDa Myrosinase Binding Protein from Arabidopsis (At3g16450.1) Determined by SAIL-NMR

    Science.gov (United States)

    Takeda, Mitsuhiro; Sugimori, Nozomi; Torizawa, Takuya; Terauchi, Tsutomu; Ono, Akira Mei; Yagi, Hirokazu; Yamaguchi, Yoshiki; Kato, Koichi; Ikeya, Teppei; Jee, JunGoo; Güntert, Peter; Aceti, David J.; Markley, John L.; Kainosho, Masatsune

    2009-01-01

    The product of gene At3g16450.1 from Arabidopsis thaliana is a 32 kDa, 299-residue protein classified as resembling a myrosinase-binding protein (MyroBP). MyroBPs are found in plants as part of a complex with the glucosinolate-degrading enzyme, myrosinase, and are suspected to play a role in myrosinase-dependent defense against pathogens. Many MyroBPs and MyroBP-related proteins are composed of repeated homologous sequences with unknown structure. We report here the three-dimensional structure of the At3g16450.1 protein from Arabidopsis, which consists of two tandem repeats. Because the size of the protein is larger than that amenable to high-throughput analysis by uniformly 13C/15N labeling methods, we used our stereo-array isotope labeling (SAIL) technology to prepare an optimally 2H/13C/15N-labeled sample. NMR data sets collected with the SAIL-protein enabled us to assign 1H, 13C and 15N chemical shifts to 95.5% of all atoms, even at the low concentration (0.2 mM) of the protein product. We collected additional NOESY data and solved the three-dimensional structure with the CYANA software package. The structure, the first for a MyroBP family member, revealed that the At3g16450.1 protein consists of two independent, but similar, lectin-fold domains composed of three β-sheets. PMID:19021763

  11. Carbamylated monomeric allergoids as a therapeutic option for sublingual immunotherapy of dust mite- and grass pollen-induced allergic rhinoconjunctivitis: a systematic review of published trials with a meta-analysis of treatment using Lais® tablets.

    Science.gov (United States)

    Mösges, R; Ritter, B; Kayoko, G; Allekotte, S

    2010-10-01

    Lais® allergoid tablets contain allergens that are modified by carbamylation. Due to their modified chemical structure, they are suitable for sublingual immunotherapy (SLIT) (13, 16, 17, 24). Based on their small molecule size of 12 to 40 kDa, they can be easily absorbed via the oral mucosa (1). In this review, we studied the efficacy of SLIT with carbamylated monomeric allergoid tablets in the treatment of grass pollen- and dust mite-induced allergic rhinoconjunctivitis on the basis of symptom and medication score improvements. Following a selective internet and databank search, six trials-some placebo-controlled-regarding the treatment of grass pollen- (n = 266) and dust mite-induced (n = 241) allergic rhinoconjunctivitis were used to draw conclusions regarding the clinical efficacy of allergoid tablets. The primary endpoints in these trials were decreases in the need for allergy medications and/or reductions in the occurrence of rhinoconjunctivitis symptoms. Data was recorded from patient diaries regarding their symptoms and medications used and conclusions were then drawn about the effectiveness and tolerabieity of Lais® tablets. The average improvement in symptom score in three trials of grass pollen allergy treatment was 34% in comparison to the placebo group. The treatment of dust mite-induced rhinoconjunctivitis produced an average symptom score improvement of 22% compared to the placebo or control groups. The intake of symptomatic rescue medication during allergoid tablet therapy declined. Treatment of grass pollen allergies and dust mite-induced rhinoconjunctivitis showed an average medication score improvement of 49% and 24%, respectively. Few side effects were documented in the trials and predominantly local effects were observed. Severe systemic side effects did not occur. On the basis of the trial results summarized in this review, we suggest that SLIT using Lais® sublingual tablets is an effective and well-tolerated form of treatment.

  12. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics.

    Science.gov (United States)

    Achour, Brahim; Russell, Matthew R; Barber, Jill; Rostami-Hodjegan, Amin

    2014-04-01

    Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes mediate a major proportion of phase I and phase II metabolism of xenobiotics. In vitro-in vivo extrapolation (IVIVE) of hepatic clearance in conjunction with physiologically-based pharmacokinetics (PBPK) has become common practice in drug development. However, prediction of xenobiotic kinetics in virtual populations requires knowledge of both enzyme abundances and the extent to which these correlate. A multiplexed quantification concatemer (QconCAT) strategy was used in this study to quantify the expression of several P450 and UGT enzymes simultaneously and to establish correlations between various enzyme abundances in 24 individual liver samples (ages 27-66, 14 male). Abundances were comparable to previously reported values, including CYP2C9 (40.0 ± 26.0 pmol mg(-1)), CYP2D6 (11.9 ± 13.2 pmol mg(-1)), CYP3A4 (68.1 ± 52.3 pmol mg(-1)), UGT1A1 (33.6 ± 34.0 pmol mg(-1)), and UGT2B7 (82.9 ± 36.1 pmol mg(-1)), expressed as mean ± S.D. Previous reports of correlations in expression of various P450 (CYP3A4/CYP3A5*1/*3, CYP2C8/CYP2C9, and CYP3A4/CYP2B6) were confirmed. New correlations were demonstrated between UGTs [including UGT1A6/UGT1A9 (r(s) = 0.82, P enzymes were shown to be correlated [including CYP1A2/UGT2B4 (r(s) = 0.67, P = 0.0002)]. The expression of CYP3A5 in individuals with *1/*3 genotype (n = 11) was higher than those with *3/*3 genotype (n = 10) (P history of smoking or alcohol use on enzyme expression was observed; however, expression of several enzymes declined with age. The correlation matrix produced for the first time by this study can be used to generate more realistic virtual populations with respect to abundance of various enzymes.

  13. Enzymatic carotenoid cleavage in star fruit (Averrhoa carambola).

    Science.gov (United States)

    Fleischmann, Peter; Watanabe, Naoharu; Winterhalter, Peter

    2003-05-01

    This paper presents the first description of an enzyme fraction exhibiting carotenoid cleavage activity isolated from fruit skin of Averrhoa carambola. Partial purification of the enzyme could be achieved by acetone precipitation, ultrafiltration (300 kDa, 50 kDa), isoelectric focusing (pH 3-10) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (7.5%). In this way, an enzymatically active protein fraction was obtained, consisting of four proteins in the molecular weight range of between 12 and 90 kDa. Using beta-carotene as substrate, the enzyme activity was detected spectrophotometrically at 505 nm. The main reaction product, detected by GC analysis, was beta-ionone. This proves that the isolated enzymes are closely related to aroma metabolism and release of star fruit. The time constant of the reaction was 16.6 min, the Michaelis Constant K(m)=3.6 micromol 1(-1) and the maximum velocity V(max)=10.5 x 10(-3) micromol l(-1) s(-1) mg((Protein))(-1). The optimum temperature was 45 degrees C.

  14. Different effects of 25-kDa amelogenin on the proliferation, attachment and migration of various periodontal cells

    International Nuclear Information System (INIS)

    Li, Xiting; Shu, Rong; Liu, Dali; Jiang, Shaoyun

    2010-01-01

    Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF), gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 μg/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.

  15. A 170kDa multi-domain cystatin of Fasciola gigantica is active in the male reproductive system.

    Science.gov (United States)

    Geadkaew, Amornrat; Kosa, Nanthawat; Siricoon, Sinee; Grams, Suksiri Vichasri; Grams, Rudi

    2014-09-01

    Cystatins are functional as intra- and extracellular inhibitors of cysteine proteases and are expressed as single or multi-domain proteins. We have previously described two single domain type 1 cystatins in the trematode Fasciola gigantica that are released into the parasite's intestinal tract and exhibit inhibitory activity against endogenous and host cathepsin L and B proteases. In contrast, the here presented 170kDa multi-domain cystatin (FgMDC) comprises signal peptide and 12 tandem repeated cystatin-like domains with similarity to type 2 single domain cystatins. The domains show high sequence divergence with identity values often 120kDa molecular mass in immunoblots of parasite crude extracts and ES product with different banding patterns for each antiserum demonstrating complex processing of the proprotein. The four domains with the highest conserved QVVAG motifs were expressed in Escherichia coli and the refolded recombinant proteins blocked cysteine protease activity in the parasite's ES product. Strikingly, immunohistochemical analysis using seven domain-specific antisera localized FgMDC in testis lobes and sperm. It is speculated that the processed cystatin-like domains have function analogous to the mammalian group of male reproductive tissue-specific type 2 cystatins and are functional in spermiogenesis and fertilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The 133-kDa N-terminal domain enables myosin 15 to maintain mechanotransducing stereocilia and is essential for hearing

    Science.gov (United States)

    Fang, Qing; Indzhykulian, Artur A; Mustapha, Mirna; Riordan, Gavin P; Dolan, David F; Friedman, Thomas B; Belyantseva, Inna A; Frolenkov, Gregory I; Camper, Sally A; Bird, Jonathan E

    2015-01-01

    The precise assembly of inner ear hair cell stereocilia into rows of increasing height is critical for mechanotransduction and the sense of hearing. Yet, how the lengths of actin-based stereocilia are regulated remains poorly understood. Mutations of the molecular motor myosin 15 stunt stereocilia growth and cause deafness. We found that hair cells express two isoforms of myosin 15 that differ by inclusion of an 133-kDa N-terminal domain, and that these isoforms can selectively traffic to different stereocilia rows. Using an isoform-specific knockout mouse, we show that hair cells expressing only the small isoform remarkably develop normal stereocilia bundles. However, a critical subset of stereocilia with active mechanotransducer channels subsequently retracts. The larger isoform with the 133-kDa N-terminal domain traffics to these specialized stereocilia and prevents disassembly of their actin core. Our results show that myosin 15 isoforms can navigate between functionally distinct classes of stereocilia, and are independently required to assemble and then maintain the intricate hair bundle architecture. DOI: http://dx.doi.org/10.7554/eLife.08627.001 PMID:26302205

  17. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Science.gov (United States)

    2010-01-01

    ... gases. Manufacturer of a commercial packaged boiler means any person who manufactures, produces... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial packaged boilers. 431.82... COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Packaged Boilers § 431.82 Definitions concerning commercial...

  18. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  19. Study of β-Galactosidase Enzyme Activity Produced by Lactobacilli in Milk and Cheese

    Directory of Open Access Journals (Sweden)

    J. Nowroozi

    2008-04-01

    Full Text Available Background and objectiveLactose intolerance is a discomfort state that occurs in some people after ingestion of milk and it is due to insufficient amount of beta galactosidase in the human gut to digest lactose. The aim of this study was to observe the presence of beta galactosidase enzyme produced by isolated lactobacilli from milk and cheese. Methods In this descriptive study, milk and cheese samples with different brand were bought from different shops. Lactobacilli were identified by plating samples on MRS medium, Gram staining and standard biochemical methods. β-galactosidase production by bacteria was assessed by X-Gal and ONPG methods. β-galactosidase was also detected by SDS-PAGE. ResultsFourteen genus of lactobacillus were isolated From 50 samples. All of the bacteria produced green color colonies on X-Gal plates (but in different times that indicated the presence of enzyme in the bacteria. All isolated lactobacilli were shown β-galactosidase activity in ONPG test. The highest enzymatic activity was seen in one strain of Lactobacillus Delbrueckii (1966 Miller unit /ml. In some bacteria (37% a strong β-galactosidase band(116-kDa was seen by SDS-PAGE.ConclusionAddition of beta galactosidase containing lactobacilli as a probiotic agent to milk, cheese, and other dairy products could ameliorate lactose intolerance. Meanwhile X-gal and ONPG methods which are simple, rapid and cheap can be used instead of SDS-PAGE.Keywords: Lactobacillus, Beta-Galactosidase, Nitrophenylgalactosids

  20. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production.

    Science.gov (United States)

    Cheng, Chieh-Lun; Chang, Jo-Shu

    2011-09-01

    A newly isolated indigenous bacterium Pseudomonas sp. CL3 was able to produce novel cellulases consisting of endo-β-1,4-d-glucanase (80 and 100 kDa), exo-β-1,4-d-glucanase (55 kDa) and β-1,4-d-glucosidase (65 kDa) characterized by enzyme assay and zymography analysis. In addition, the CL3 strain also produced xylanase with a molecular weight of 20 kDa. The optimal temperature for enzyme activity was 50, 45, 45 and 55 °C for endo-β-1,4-d-glucanase, exo-β-1,4-d-glucanase, β-1,4-d-glucosidase and xylanase, respectively. All the enzymes displayed optimal activity at pH 6.0. The cellulases/xylanase could hydrolyze cellulosic materials very effectively and were thus used to hydrolyze natural agricultural waste (i.e., bagasse) for clean energy (H2) production by Clostridium pasteurianum CH4 using separate hydrolysis and fermentation process. The maximum hydrogen production rate and cumulative hydrogen production were 35 ml/L/h and 1420 ml/L, respectively, with a hydrogen yield of around 0.96 mol H2/mol glucose. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. 22 CFR 226.82 - Program income.

    Science.gov (United States)

    2010-04-01

    ... Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Additional Provisions For Awards to Commercial Organizations § 226.82 Program income. The... commercial organization. ...

  2. Crystallization and preliminary X-ray characterization of the nitrile reductase QueF: a queuosine-biosynthesis enzyme

    International Nuclear Information System (INIS)

    Swairjo, Manal A.; Reddy, Robert R.; Lee, Bobby; Van Lanen, Steven G.; Brown, Shannon; Crécy-Lagard, Valérie de; Iwata-Reuyl, Dirk; Schimmel, Paul

    2005-01-01

    Structural informatics and modelling correctly predicted that substrate was required to obtain diffracting crystals of the first characterized nitrile oxidoreductase: the homododecameric QueF. QueF (MW = 19.4 kDa) is a recently characterized nitrile oxidoreductase which catalyzes the NADPH-dependent reduction of 7-cyano-7-deazaguanine (preQ 0 ) to 7-aminomethyl-7-deazaguanine, a late step in the biosynthesis of the modified tRNA nucleoside queuosine. Initial crystals of homododecameric Bacillus subtilis QueF diffracted poorly to 8.0 Å. A three-dimensional model based on homology with the tunnel-fold enzyme GTP cyclohydrolase I suggested catalysis at intersubunit interfaces and a potential role for substrate binding in quaternary structure stabilization. Guided by this insight, a second crystal form was grown that was strictly dependent on the presence of preQ 0 . This crystal form diffracted to 2.25 Å resolution

  3. A plant gene for photolyase: an enzyme catalyzing the repair of UV-light-induced DNA damage

    International Nuclear Information System (INIS)

    Batschauer, A.

    1993-01-01

    Photolyases are thought to be critical components of the defense of plants against damage to DNA by solar ultraviolet light, but nothing is known about their molecular or enzymatic nature. The molecular cloning of a photolyase from mustard (Sinapis alba) described here is intended to increase the knowledge about this important repair mechanism in plant species at a molecular level. The gene encodes a polypeptide of 501 amino acids with a predicted molecular mass of 57 kDa. There is a strong sequence similarity to bacterial and yeast photolyases, with a close relationship to enzymes with a deazaflavin chromophor. The plant photolyase is shown to be functional in Escherichia coli which also indicates conservation of photolyases during evolution. It is demonstrated that photolyase expression in plants is light induced, thus providing good evidence for the adaptation of plants to their environment in order to diminish the harmful effects of sunlight. (author)

  4. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach

    Directory of Open Access Journals (Sweden)

    Fan Xinjiong

    2012-03-01

    Full Text Available Abstract Background Pyrethroid pesticides are broad-spectrum pest control agents in agricultural production. Both agricultural and residential usage is continuing to grow, leading to the development of insecticide resistance in the pest and toxic effects on a number of nontarget organisms. Thus, it is necessary to hunt suitable enzymes including hydrolases for degrading pesticide residues, which is an efficient "green" solution to biodegrade polluting chemicals. Although many pyrethroid esterases have consistently been purified and characterized from various resources including metagenomes and organisms, the thermostable pyrethroid esterases have not been reported up to the present. Results In this study, we identified a novel pyrethroid-hydrolyzing enzyme Sys410 belonging to familyV esterases/lipases with activity-based functional screening from Turban Basin metagenomic library. Sys410 contained 280 amino acids with a predicted molecular mass (Mr of 30.8 kDa and was overexpressed in Escherichia coli BL21 (DE3 in soluble form. The optimum pH and temperature of the recombinant Sys410 were 6.5 and 55°C, respectively. The enzyme was stable in the pH range of 4.5-8.5 and at temperatures below 50°C. The activity of Sys410 decreased a little when stored at 4°C for 10 weeks, and the residual activity reached 94.1%. Even after incubation at 25°C for 10 weeks, it kept 68.3% of its activity. The recombinant Sys410 could hydrolyze a wide range of ρ-nitrophenyl esters, but its best substrate is ρ-nitrophenyl acetate with the highest activity (772.9 U/mg. The enzyme efficiently degraded cyhalothrin, cypermethrin, sumicidin, and deltamethrin under assay conditions of 37°C for 15 min, with exceeding 95% hydrolysis rate. Conclusion This is the first report to construct metagenomic libraries from Turban Basin to obtain the thermostable pyrethroid-hydrolyzing enzyme. The recombinant Sys410 with broad substrate specificities and high activity was the most

  5. Preliminary results of the round-robin testing of F82H

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, K.; Yamanouchi, N.; Tohyama, A.

    1996-10-01

    Preliminary results of metallurgical, physical and mechanical properties of low activation ferritic steel F82H (IEA heat) were obtained in the round-robin test in Japan. The properties of IEA heat F82H were almost the same as the original F82H.

  6. 42 CFR 82.0 - Background information on this part.

    Science.gov (United States)

    2010-10-01

    ... 82.0 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY... EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Introduction § 82.0 Background information on this part. The Energy Employees Occupational Illness Compensation Program Act (EEOICPA), 42 U.S.C...

  7. Purification and characterization of myrosinase from horseradish (Armoracia rusticana) roots.

    Science.gov (United States)

    Li, Xian; Kushad, Mosbah M

    2005-06-01

    Myrosinase (beta-thioglucoside glucohydrolase; EC 3.2.3.147) from horseradish (Armoracia rusticana) roots was purified to homogeneity by ammonium sulfate fractionation, Q-sepharose, and concanavalin A sepharose affinity chromatography. The purified protein migrated as a single band with a mass of about 65 kDa on SDS-polyacrylamide gel electrophoresis. Using LC-MS/MS, this band was identified as myrosinase. Western blot analysis, using the anti-myrosinase monoclonal antibody 3D7, showed a single band of about 65 kDa for horseradish crude extract and for the purified myrosinase. The native molecular mass of the purified myrosinase was estimated, using gel filtration, to be about 130 kDa. Based on these data, it appeared that myrosinase from horseradish root consists of two subunits of similar molecular mass of about 65 kDa. The enzyme exhibited high activity at broad pH (pH 5.0-8.0) and temperature (37 and 45 degrees C). The purified enzyme remained stable at 4 degrees C for more than 1 year. Using sinigrin as a substrate, the Km and Vmax values for the purified enzyme were estimated to be 0.128 mM and 0.624 micromol min(-1), respectively. The enzyme was strongly activated by 0.5 mM ascorbic acid and was able to breakdown intact glucosinolates in a crude extract of broccoli.

  8. Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yunli; Wang, Jianji; Liu, Zhen; Ren, Yunlai; Li, Guozhi [School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471039, Henan (China)

    2009-12-15

    Relatively large percentages of xylose with glucose, arabinose, mannose, galactose and rhamnose constitute the hydrolysis products of hemicellulose. In this paper, hydrogen production performance of facultative anaerobe (Enterobacter aerogenes) has been investigated from these different monomeric sugars except glucose. It was shown that the stereoisomers of mannose and galactose were more effective for hydrogen production than those of xylose and arabinose. The substrate of 5 g/l xylose resulted in a relative high level of hydrogen yield (73.8 mmol/l), hydrogen production efficiency (2.2 mol/mol) and a maximum hydrogen production rate (249 ml/l/h). The hydrogen yield, hydrogen production efficiency and the maximum hydrogen production rate reached 104 mmol/l, 2.35 mol/mol and 290 ml/l/h, respectively, on a substrate of 10 g/l galactose. The hydrogen yields and the maximum hydrogen production rates increased with an increase of mannose concentrations and reached 119 mmol/l and 518 ml/l/h on the culture of 25 g/l mannose. However, rhamnose was a relative poor carbon resource for E. aerogenes to produce hydrogen, from which the hydrogen yield and hydrogen production efficiency were about one half of that from the mannose substrate. E. aerogenes was found to be a promising strain for hydrogen production from hydrolysis products of hemicellulose. (author)

  9. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B.

    Science.gov (United States)

    Serafim, Cláudia; Ferreira, Inês; Rijo, Patrícia; Pinheiro, Lídia; Faustino, Célia; Calado, António; Garcia-Rio, Luis

    2016-01-30

    Lipoamino acid-based micelles have been developed as delivery vehicles for the hydrophobic drug amphotericin B (AmB). The micellar solubilisation of AmB by a gemini lipoamino acid (LAA) derived from cysteine and its equimolar mixtures with the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC), as well as the aggregation sate of the drug in the micellar systems, was studied under biomimetic conditions (phosphate buffered-saline, pH 7.4) using UV-vis spectroscopy. Pure surfactant systems and equimolar mixtures were characterized by tensiometry and important parameters were determined, such as critical micelle concentration (CMC), surface tension at the CMC (γCMC), maximum surface excess concentration (Γmax), and minimum area occupied per molecule at the water/air interface (Amin). Rheological behaviour from viscosity measurements at different shear rates was also addressed. Solubilisation capacity was quantified in terms of molar solubilisation ratio (χ), micelle-water partition coefficient (KM) and Gibbs energy of solubilisation (ΔGs°). Formulations of AmB in micellar media were compared in terms of drug loading, encapsulation efficiency, aggregation state of AmB and in vitro antifungal activity against Candida albicans. The LAA-containing micellar systems solubilise AmB in its monomeric and less toxic form and exhibit in vitro antifungal activity comparable to that of the commercial formulation Fungizone. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A 48 kDa collagen-binding phosphoprotein isolated from bovine aortic endothelial cells interacts with the collagenous domain, but not the globular domain, of collagen type IV.

    OpenAIRE

    Yannariello-Brown, J; Madri, J A

    1990-01-01

    We have identified collagen-binding proteins in detergent extracts of metabolically labelled bovine aortic endothelial cells (BAEC) by collagen type IV-Sepharose affinity chromatography. The major collagen type IV-binding protein identified by SDS/PAGE had a molecular mass of 48 kDa, which we term the 'collagen-binding 48 kDa protein' (CB48). The pI of CB48 was 8.0-8.3 in a two-dimensional gel system, running non-equilibrium pH gel electrophoresis in the first dimension and SDS/PAGE in the se...

  11. 40 CFR 82.154 - Prohibitions.

    Science.gov (United States)

    2010-07-01

    ... substance for use in motor vehicle air conditioners in accordance with 40 CFR part 82, subpart G; (4) The... wholly or in part of a class I or class II substance for use in motor vehicle air conditioners pursuant... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF...

  12. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex

    Science.gov (United States)

    Zhou, Mowei; Yan, Jing; Romano, Christine A.; Tebo, Bradley M.; Wysocki, Vicki H.; Paša-Tolić, Ljiljana

    2018-01-01

    Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. [Figure not available: see fulltext.

  13. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  14. The 82-plex plasma protein signature that predicts increasing inflammation

    DEFF Research Database (Denmark)

    Tepel, Martin; Beck, Hans C; Tan, Qihua

    2015-01-01

    The objective of the study was to define the specific plasma protein signature that predicts the increase of the inflammation marker C-reactive protein from index day to next-day using proteome analysis and novel bioinformatics tools. We performed a prospective study of 91 incident kidney....... The prediction model selected and validated 82 plasma proteins which determined increased next-day C-reactive protein (area under receiver-operator-characteristics curve, 0.772; 95% confidence interval, 0.669 to 0.876; P signature (P ....001) was associated with observed increased next-day C-reactive protein. The 82-plex protein signature outperformed routine clinical procedures. The category-free net reclassification index improved with 82-plex plasma protein signature (total net reclassification index, 88.3%). Using the 82-plex plasma protein...

  15. High-spin states in 82Sr

    International Nuclear Information System (INIS)

    Baktash, C.; Halper, M.L.; Garcia Bermudez, G.J.

    1989-01-01

    As recent theoretical calculations that predicted the onset of superdeformation in the A ≅ 80 region, the 52 Cr( 34 S,2p2n) reaction at 130 MeV beam energy was employed to populate the high-spin states in 82 Sr. The detection system consisted of the ORNL Compton-Suppression Spectrometer System (18 Ge detectors), the Spin Spectrometer, and the 4 φ CsI Dwarf Ball of Washington University. Off-line analysis of the proton-gated data resulted in nearly 170 million Ge-Ge pairs, which were mostly due to the 2p2n channel. A decay scheme extending to spin I=27h has been established. No strong evidence for the presence of superdeformed states in 82 Sr was found in a preliminary analysis of the data. (Author) [es

  16. 7 CFR 3.82 - Procedures for salary offset: types of collection.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Procedures for salary offset: types of collection. 3.82 Section 3.82 Agriculture Office of the Secretary of Agriculture DEBT MANAGEMENT Federal Salary Offset § 3.82 Procedures for salary offset: types of collection. A debt will be collected in a lump-sum...

  17. STS-82 Pilot Scott Horowitz arrives for TCDT

    Science.gov (United States)

    1997-01-01

    STS-82 Pilot Scott J. 'Doc' Horowitz arrives at KSCs Shuttle Landing Facility in a T-38 jet from Houston, TX. Horowitz and the other six crew members are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. The crew aboard the Space Shuttle Discovery on STS-82 will conduct the second Hubble Space Telescope servicing mission. The 10-day flight is targeted for a Feb. 11 liftoff.

  18. Design Function and Structure of a Monomeric CLC Transporter

    Energy Technology Data Exchange (ETDEWEB)

    L Robertson; L Kolmakova-Partensky; C Miller

    2011-12-31

    Channels and transporters of the ClC family cause the transmembrane movement of inorganic anions in service of a variety of biological tasks, from the unusual - the generation of the kilowatt pulses with which electric fish stun their prey - to the quotidian - the acidification of endosomes, vacuoles and lysosomes. The homodimeric architecture of ClC proteins, initially inferred from single-molecule studies of an elasmobranch Cl{sup -} channel and later confirmed by crystal structures of bacterial Cl{sup -}/H{sup +} antiporters, is apparently universal. Moreover, the basic machinery that enables ion movement through these proteins - the aqueous pores for anion diffusion in the channels and the ion-coupling chambers that coordinate Cl{sup -} and H{sup +} antiport in the transporters - are contained wholly within each subunit of the homodimer. The near-normal function of a bacterial ClC transporter straitjacketed by covalent crosslinks across the dimer interface and the behaviour of a concatemeric human homologue argue that the transport cycle resides within each subunit and does not require rigid-body rearrangements between subunits. However, this evidence is only inferential, and because examples are known in which quaternary rearrangements of extramembrane ClC domains that contribute to dimerization modulate transport activity, we cannot declare as definitive a 'parallel-pathways picture in which the homodimer consists of two single-subunit transporters operating independently. A strong prediction of such a view is that it should in principle be possible to obtain a monomeric ClC. Here we exploit the known structure of a ClC Cl{sup -}/H{sup +} exchanger, ClC-ec1 from Escherichia coli, to design mutants that destabilize the dimer interface while preserving both the structure and the transport function of individual subunits. The results demonstrate that the ClC subunit alone is the basic functional unit for transport and that cross-subunit interaction is not

  19. Primary structure of a 14 kDa basic structural protein (Lm-76) from the cuticle of the migratory locust, Locusta migratoria

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Andersen, S O; Højrup, P

    1993-01-01

    The complete amino acid sequence of a 14 kDa structural protein (LM-76) isolated from pharate cuticle of the locust, Locusta migratoria, was determined by Edman degradation of the intact protein and enzymatically derived peptides. Plasma desorption and electrospray mass spectrometry was used as a...

  20. 21 CFR 82.5 - General specifications for straight colors.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false General specifications for straight colors. 82.5... LISTING OF CERTIFIED PROVISIONALLY LISTED COLORS AND SPECIFICATIONS General Provisions § 82.5 General specifications for straight colors. No batch of a straight color listed in subpart B, C, or D shall be certified...