WorldWideScience

Sample records for monoliths iii gas

  1. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics

    Science.gov (United States)

    Shi, Zheng; Gao, Xumin; Yuan, Jialei; Zhang, Shuai; Jiang, Yan; Zhang, Fenghua; Jiang, Yuan; Zhu, Hongbo; Wang, Yongjin

    2017-12-01

    A monolithic III-nitride photonic circuit with integrated functionalities was implemented by integrating multiple components with different functions into a single chip. In particular, the III-nitride-on-silicon platform is used as it integrates a transmitter, a waveguide, and a receiver into a suspended III-nitride membrane via a wafer-level procedure. Here, a 0.8-mm-diameter suspended device architecture is directly transferred from silicon to a foreign substrate by mechanically breaking the support beams. The transferred InGaN/GaN multiple-quantum-well diode (MQW-diode) exhibits a turn-on voltage of 2.8 V with a dominant electroluminescence peak at 453 nm. The transmitter and receiver share an identical InGaN/GaN MQW structure, and the integrated photonic circuit inherently works for on-chip power monitoring and in-plane visible light communication. The wire-bonded monolithic photonic circuit on glass experimentally demonstrates in-plane data transmission at 120 Mb/s, paving the way for diverse applications in intelligent displays, in-plane light communication, flexible optical sensors, and wearable III-nitride optoelectronics.

  2. Data quality objectives summary report for the 105-N monolith off-gas issue

    International Nuclear Information System (INIS)

    Pisarcik, D.J.

    1997-01-01

    The 105-N Basin hardware waste with radiation exposure rates high enough to make above-water handling and packaging impractical has been designated high exposure rate hardware (HERH) waste. This material, consisting primarily of irradiated reactor components, is packaged underwater for subsequent disposal as a grout-encapsulated solid monolith. The third HERH waste package that was created (Monolith No. 3) was not immediately removed from the basin because of administrative delays. During a routine facility walkdown, Monolith No. 3 was observed to be emitting bubbles. Mass spectroscopic analysis of a gas sample from Monolith No. 3 indicated that the gas was 85.2% hydrogen along with a trace of fission gases (stable isotopes of xenon). Gamma energy analysis of a gas sample from Monolith No. 3 also identified trace quantities of 85 Kr. The monolith off-gas Data Quality Objective (DQO) process concluded the following: Monolith No. 3 and similar monoliths can be safely transported following installation of spacers between the lids of the L3-181 transport cask to vent the hydrogen gas; The 85 Kr does not challenge personnel or environmental safety; Fumaroles in the surface of gassing monoliths renders them incompatible with Hanford Site Solid Waste Acceptance Criteria requirements unless placed in a qualified high integrity container overpack; and Gassing monoliths do meet Environmental Restoration Disposal Facility Waste Acceptance Criteria requirements. This DQO Summary Report is both an account of the Monolith Off-Gas DQO Process and a means of documenting the concurrence of each of the stakeholder organizations

  3. III-Vs on Si for photonic applications-A monolithic approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhechao, E-mail: Zhechao.Wang@intec.ugent.be [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden); Junesand, Carl; Metaferia, Wondwosen; Hu, Chen; Wosinski, Lech [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden); Lourdudoss, Sebastian, E-mail: slo@kth.se [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Monolithic evanescently coupled silicon laser (MECSL) structure treated. Black-Right-Pointing-Pointer Optical mode profiles and thermal resistivity of MECSL optimized by simulation. Black-Right-Pointing-Pointer MECSL through epitaxial lateral overgrowth (ELOG) of InP on Si exemplified. Black-Right-Pointing-Pointer Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. Black-Right-Pointing-Pointer Growth of dislocation free thin InP layer on Si by ELOG for MECSL demonstrated. - Abstract: Epitaxial lateral overgrowth (ELOG) technology is demonstrated as a viable technology to realize monolithic integration of III-Vs on silicon. As an alternative to wafer-to-wafer bonding and die-to-wafer bonding, ELOG provides an attractive platform for fabricating discrete and integrated components in high volume at low cost. A possible route for monolithic integration of III-Vs on silicon for silicon photonics is exemplified by the case of a monolithic evanescently coupled silicon laser (MECSL) by combining InP on Si/SiO{sub 2} through ELOG. Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. The structural design of a monolithic evanescently coupled silicon laser (MECSL) and its thermal resistivity are established through simulations. Material studies to realize the above laser through ELOG are undertaken by studying appropriate ELOG pattern designs to achieve InP on narrow regions of silicon. We show that defect-free InP can be obtained on SiO{sub 2} as the first step which paves the way for realizing active photonic devices on Si/SiO{sub 2} waveguides, e.g. an MECSL.

  4. A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector

    International Nuclear Information System (INIS)

    Kaanta, Bradley C; Zhang, Xin; Chen, Hua

    2010-01-01

    The monolithic integration of a high sensitivity detector with a gas chromatography (GC) separation column creates many potential advantages over the discrete components of a traditional chromatography system. In miniaturized high-speed GC systems, component interconnections can cause crucial errors and loss of fidelity during detection and analysis. A monolithically integrated device would eliminate the need to create helium-tight interconnections, which are bulky and labor intensive. Additionally, batch fabrication of integrated devices that no longer require expensive and fragile detectors can decrease the cost of micro GC systems through economies of scale. We present the design, fabrication and operation of a monolithic GC separation column and detector. Our device is able to separate nitrogen, methane and carbon dioxide within 30 s. This method of device integration could be applied to the existing wealth of column geometries and chemistries designed for specialized applications.

  5. InGaAsP Mach-Zehnder interferometer optical modulator monolithically integrated with InGaAs driver MOSFET on a III-V CMOS photonics platform.

    Science.gov (United States)

    Park, Jin-Kown; Takagi, Shinichi; Takenaka, Mitsuru

    2018-02-19

    We demonstrated the monolithic integration of a carrier-injection InGaAsP Mach-Zehnder interferometer (MZI) optical modulator and InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) on a III-V-on-insulator (III-V-OI) wafer. A low-resistivity lateral PIN junction was formed along an InGaAsP rib waveguide by Zn diffusion and Ni-InGaAsP alloy, enabling direct driving of the InGaAsP optical modulator by the InGaAs MOSFET. A π phase shift of the InGaAsP optical modulator was obtained through the injection of a drain current from the InGaAs MOSFET with a gate voltage of approximately 1 V. This proof-of-concept demonstration of the monolithic integration of the InGaAsP optical modulator and InGaAs driver MOSFET will enable us to develop high-performance and low-power electronic-photonic integrated circuits on a III-V CMOS photonics platform.

  6. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas E., E-mail: Douglas.Burkes@pnnl.gov; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world's highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding during fabrication and are enhanced during irradiation. One aspect of fuel development and qualification is to demonstrate an appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding and Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 °C). The mechanisms responsible for fission gas release events are discussed. - Highlights: •Complementary fission gas release events are reported for U-Mo fuel with and without cladding. •Exothermic reaction between Zr diffusion layer and cladding influences fission gas release. •Mechanisms responsible for fission gas release are similar, but with varying timing and magnitude. •Behavior of samples is similar after 800 °C signaling the onset of superlattice destabilization.

  7. Monolithic photonic integration technology platform and devices at wavelengths beyond 2 μm for gas spectroscopy applications

    NARCIS (Netherlands)

    Latkowski, S.; van Veldhoven, P.J.; Hänsel, A.; D'Agostino, D.; Rabbani-Haghighi, H.; Docter, B.; Bhattacharya, N.; Thijs, P.J.A.; Ambrosius, H.P.M.M.; Smit, M.K.; Williams, K.A.; Bente, E.A.J.M.

    2017-01-01

    In this paper a generic monolithic photonic integration technology platform and tunable laser devices for gas sensing applications at 2 μm will be presented. The basic set of long wavelength optical functions which is fundamental for a generic photonic integration approach is realized using planar,

  8. A Monolithically-Integrated μGC Chemical Sensor System

    Directory of Open Access Journals (Sweden)

    Davor Copic

    2011-06-01

    Full Text Available Gas chromatography (GC is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA, breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC system is essential for such applications. We describe the design, fabrication and packaging of mGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC, μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.

  9. Optimization of a water-gas shift reactor over a Pt/ceria/alumina monolith

    Energy Technology Data Exchange (ETDEWEB)

    Quiney, A.S.; Germani, G.; Schuurman, Y. [Institut de Recherches sur la Catalyse-CNRS, 2 Avenue A. Einstein, 69626 Villeurbanne (France)

    2006-10-06

    The water-gas shift (WGS) reaction is an important step in the purification of hydrogen for fuel cells. It lowers the carbon monoxide content and produces extra hydrogen. The constraints of automotive applications render the commercial WGS catalysts unsuitable. Pt/ceria catalysts are cited as promising catalysts for onboard applications as they are highly active and non-pyrophoric. This paper reports on a power law rate expression for a Pt/CeO{sub 2}/Al{sub 2}O{sub 3} catalyst. This rate equation is used to compare different reactor configurations for an onboard water-gas shift reactor. A one-dimensional heterogeneous model that accounts for the interfacial and intraparticle gradients has been used to optimize a dual stage adiabatic monolith reactor. (author)

  10. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications

    International Nuclear Information System (INIS)

    Hoa, Nguyen Duc; Duy, Nguyen Van; Hieu, Nguyen Van

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO 3 nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO 3 sensor exhibited a high performance to NO 2 gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO 2 ) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO 2 . In addition, the developed sensor exhibited selective detection of low NO 2 concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  11. Gas storage carbon with enhanced thermal conductivity

    Science.gov (United States)

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  12. TiO2 on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-01-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO 2 ) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO 2 powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO 2 aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO 2 powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO 2 sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC 3 H 7 ) 4 ) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO 2 powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO 2 active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified

  13. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Duy, Nguyen Van [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  14. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Energy Technology Data Exchange (ETDEWEB)

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  15. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  16. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

    International Nuclear Information System (INIS)

    Floris, P.; Twamley, B.; Nesterenko, P.N.; Paull, B.; Connolly, D.

    2012-01-01

    Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter ∼ 1-2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction. (author)

  17. Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, R.; Pantha, B. N.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-04-07

    InGaN alloys are very promising for solar water splitting because they have direct bandgaps that cover almost the whole solar spectrum. The demonstration of direct solar-to-fuel conversion without external bias with the sunlight being the only energy input would pave the way for realizing photoelectrochemical (PEC) production of hydrogen by using InGaN. A monolithic solar-PEC cell based on InGaN/GaN multiple quantum wells capable to directly generate hydrogen gas under zero bias via solar water splitting is reported. Under the irradiation by a simulated sunlight (1-sun with 100 mW/cm{sup 2}), a 1.5% solar-to-fuel conversion efficiency has been achieved under zero bias, setting a fresh benchmark of employing III-nitrides for artificial photosynthesis. Time dependent hydrogen gas production photocurrent measured over a prolonged period (measured for 7 days) revealed an excellent chemical stability of InGaN in aqueous solution of hydrobromic acid. The results provide insights into the architecture design of using InGaN for artificial photosynthesis to provide usable clean fuel (hydrogen gas) with the sunlight being the only energy input.

  18. TiO{sub 2} on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-05-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO{sub 2}) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO{sub 2} powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO{sub 2} aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO{sub 2} powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO{sub 2} sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC{sub 3}H{sub 7}){sub 4}) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO{sub 2} powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO{sub 2} active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified.

  19. Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air.

    Science.gov (United States)

    Sakwa-Novak, Miles A; Yoo, Chun-Jae; Tan, Shuai; Rashidi, Fereshteh; Jones, Christopher W

    2016-07-21

    The development of practical and effective gas-solid contactors is an important area in the development of CO2 capture technologies. Target CO2 capture applications, such as postcombustion carbon capture and sequestration (CCS) from power plant flue gases or CO2 extraction directly from ambient air (DAC), require high flow rates of gas to be processed at low cost. Extruded monolithic honeycomb structures, such as those employed in the catalytic converters of automobiles, have excellent potential as structured contactors for CO2 adsorption applications because of the low pressure drop imposed on fluid moving through the straight channels of such structures. Here, we report the impregnation of poly(ethylenimine) (PEI), an effective aminopolymer reported commonly for CO2 separation, into extruded monolithic alumina to form structured CO2 sorbents. These structured sorbents are first prepared on a small scale, characterized thoroughly, and compared with powder sorbents with a similar composition. Despite consistent differences observed in the filling of mesopores with PEI between the monolithic and powder sorbents, their performance in CO2 adsorption is similar across a range of PEI contents. A larger monolithic cylinder (1 inch diameter, 4 inch length) is evaluated under conditions closer to those that might be used in large-scale applications and shows a similar performance to the smaller monoliths and powders tested initially. This larger structure is evaluated over five cycles of CO2 adsorption and steam desorption and demonstrates a volumetric capacity of 350 molCO2  m-3monolith and an equilibration time of 350 min under a 0.4 m s(-1) linear flow velocity through the monolith channels using 400 ppm CO2 in N2 as the adsorption gas at 30 °C. This volumetric capacity surpasses that of a similar technology considered previously, which suggested that CO2 could be removed from air at an operating cost as low as $100 per ton. © 2016 WILEY-VCH Verlag

  20. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    International Nuclear Information System (INIS)

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.

    2010-01-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC 2 shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using μ-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 (micro)m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  1. Monoliths in Bioprocess Technology

    Directory of Open Access Journals (Sweden)

    Vignesh Rajamanickam

    2015-04-01

    Full Text Available Monolithic columns are a special type of chromatography column, which can be used for the purification of different biomolecules. They have become popular due to their high mass transfer properties and short purification times. Several articles have already discussed monolith manufacturing, as well as monolith characteristics. In contrast, this review focuses on the applied aspect of monoliths and discusses the most relevant biomolecules that can be successfully purified by them. We describe success stories for viruses, nucleic acids and proteins and compare them to conventional purification methods. Furthermore, the advantages of monolithic columns over particle-based resins, as well as the limitations of monoliths are discussed. With a compilation of commercially available monolithic columns, this review aims at serving as a ‘yellow pages’ for bioprocess engineers who face the challenge of purifying a certain biomolecule using monoliths.

  2. Fabrication and characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic reactions and their application in the reduction of hexacyanoferrate

    International Nuclear Information System (INIS)

    Floris, Patrick; Twamley, Brendan; Nesterenko, Pavel N.; Paull, Brett; Connolly, Damian

    2014-01-01

    Polymer monoliths in capillary (100 μm i.d.) and polypropylene pipette tip formats (vol: 20 μL) were modified with gold nano-particles (AuNP) and subsequently used for flow-through catalytic reactions. Specifically, methacrylate monoliths were modified with amine-reactive monomers using a two-step photografting method and then reacted with ethylenediamine to provide amine attachment sites for the subsequent immobilisation of 4 nm, 7 nm or 16 nm AuNP. This was achieved by flushing colloidal suspensions of gold nano-particles through each aminated polymer monolith which resulted in a multi-point covalent attachment of gold via the lone pair of electrons on the nitrogen of the free amine groups. Field emission scanning electron microscopy and scanning capacitively coupled conductivity detection was used to characterise the surface coverage of AuNP on the monoliths. The catalytic activity of AuNP immobilised on the polymer monoliths in both formats was then demonstrated using the reduction of Fe(III) to Fe(II) by sodium borohydride as a model reaction by monitoring the reduction in absorbance of the hexacyanoferrate (III) complex at 420 nm. Catalytic activity was significantly enhanced on monoliths modified with smaller AuNP with almost complete reduction (95 %) observed when using monoliths agglomerated with 7 nm AuNPs. (author)

  3. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  4. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  5. III–Vs on Si for photonic applications—A monolithic approach

    International Nuclear Information System (INIS)

    Wang, Zhechao; Junesand, Carl; Metaferia, Wondwosen; Hu, Chen; Wosinski, Lech; Lourdudoss, Sebastian

    2012-01-01

    Highlights: ► Monolithic evanescently coupled silicon laser (MECSL) structure treated. ► Optical mode profiles and thermal resistivity of MECSL optimized by simulation. ► MECSL through epitaxial lateral overgrowth (ELOG) of InP on Si exemplified. ► Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. ► Growth of dislocation free thin InP layer on Si by ELOG for MECSL demonstrated. - Abstract: Epitaxial lateral overgrowth (ELOG) technology is demonstrated as a viable technology to realize monolithic integration of III-Vs on silicon. As an alternative to wafer-to-wafer bonding and die-to-wafer bonding, ELOG provides an attractive platform for fabricating discrete and integrated components in high volume at low cost. A possible route for monolithic integration of III–Vs on silicon for silicon photonics is exemplified by the case of a monolithic evanescently coupled silicon laser (MECSL) by combining InP on Si/SiO 2 through ELOG. Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. The structural design of a monolithic evanescently coupled silicon laser (MECSL) and its thermal resistivity are established through simulations. Material studies to realize the above laser through ELOG are undertaken by studying appropriate ELOG pattern designs to achieve InP on narrow regions of silicon. We show that defect-free InP can be obtained on SiO 2 as the first step which paves the way for realizing active photonic devices on Si/SiO 2 waveguides, e.g. an MECSL.

  6. Analysis of gas-liquid metal two-phase flows using a reactor safety analysis code SIMMER-III

    International Nuclear Information System (INIS)

    Suzuki, Tohru; Tobita, Yoshiharu; Kondo, Satoru; Saito, Yasushi; Mishima, Kaichiro

    2003-01-01

    SIMMER-III, a safety analysis code for liquid-metal fast reactors (LMFRs), includes a momentum exchange model based on conventional correlations for ordinary gas-liquid flows, such as an air-water system. From the viewpoint of safety evaluation of core disruptive accidents (CDAs) in LMFRs, we need to confirm that the code can predict the two-phase flow behaviors with high liquid-to-gas density ratios formed during a CDA. In the present study, the momentum exchange model of SIMMER-III was assessed and improved using experimental data of two-phase flows containing liquid metal, on which fundamental information, such as bubble shapes, void fractions and velocity fields, has been lacking. It was found that the original SIMMER-III can suitably represent high liquid-to-gas density ratio flows including ellipsoidal bubbles as seen in lower gas fluxes. In addition, the employment of Kataoka-Ishii's correlation has improved the accuracy of SIMMER-III for gas-liquid metal flows with cap-shape bubbles as identified in higher gas fluxes. Moreover, a new procedure, in which an appropriate drag coefficient can be automatically selected according to bubble shape, was developed. Through this work, the reliability and the precision of SIMMER-III have been much raised with regard to bubbly flows for various liquid-to-gas density ratios

  7. CHAOS. III. GAS-PHASE ABUNDANCES IN NGC 5457

    Energy Technology Data Exchange (ETDEWEB)

    Croxall, Kevin V.; Pogge, Richard W. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Berg, Danielle A. [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States)

    2016-10-10

    We present Large Binocular Telescope observations of 109 H ii regions in NGC 5457 (M101) obtained with the Multi-Object Double Spectrograph. We have robust measurements of one or more temperature-sensitive auroral emission lines for 74 H ii regions, permitting the measurement of “direct” gas-phase abundances. Comparing the temperatures derived from the different ionic species, we find: (1) strong correlations of T [N ii] with T [S iii] and T [O iii], consistent with little or no intrinsic scatter; (2) a correlation of T [S iii] with T [O iii], but with significant intrinsic dispersion; (3) overall agreement between T [N ii], T [S ii], and T [O ii], as expected, but with significant outliers; (4) the correlations of T [N ii] with T [S iii] and T [O iii] match the predictions of photoionization modeling while the correlation of T [S iii] with T [O iii] is offset from the prediction of photoionization modeling. Based on these observations, which include significantly more observations of lower excitation H ii regions, missing in many analyses, we inspect the commonly used ionization correction factors (ICFs) for unobserved ionic species and propose new empirical ICFs for S and Ar. We have discovered an unexpected population of H ii regions with a significant offset to low values in Ne/O, which defies explanation. We derive radial gradients in O/H and N/O which agree with previous studies. Our large observational database allows us to examine the dispersion in abundances, and we find intrinsic dispersions of 0.074 ± 0.009 in O/H and 0.095 ± 0.009 in N/O (at a given radius). We stress that this measurement of the intrinsic dispersion comes exclusively from direct abundance measurements of H ii regions in NGC 5457.

  8. Exploring the Photoreduction of Au(III) Complexes in the Gas-Phase

    Science.gov (United States)

    Marcum, Jesse C.; Kaufman, Sydney H.; Weber, J. Mathias

    2010-06-01

    We have used photodissociation spectroscopy to probe the electronic structure and photoreduction of Au(III) in gas-phase complexes containing Cl- and OH-. The gas-phase electronic spectrum of [AuCl_4]- closely resembles the aqueous solution spectrum, showing a lack of strong solvatochromic shifts. Substitution of Cl- ligands with OH- results in a strong blue shift, in agreement with ligand-field theory. Upon excitation, [AuCl_4]- can dissociate by loss of either one or two neutral Cl atoms, resulting in the reduction of gold from Au(III) to Au(II) and Au(I) respectively. The hydroxide substituted complex, [AuCl_2(OH)_2]-, demonstrates similar behavior but the only observable fragment channel is the loss of two neutral OH ligands, leading only to Au(I).

  9. Monolitni katalizatori i reaktori: osnovne značajke, priprava i primjena (Monolith catalysts and reactors: preparation and applications

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2004-12-01

    Full Text Available Monolithic (honeycomb catalysts are continuous unitary structures containing many narrow, parallel and usually straight channels (or passages. Catalytically active components are dispersed uniformly over the whole porous ceramic monolith structure (so-called incorporated monolithic catalysts or are in a layer of porous material that is deposited on the walls of channels in the monolith's structure (washcoated monolithic catalysts. The material of the main monolithic construction is not limited to ceramics but includes metals, as well. Monolithic catalysts are commonly used in gas phase catalytic processes, such as treatment of automotive exhaust gases, selective catalytic reduction of nitrogen oxides, catalytic removal of volatile organic compounds from industrial processes, etc. Monoliths continue to be the preferred support for environmental applications due to their high geometric surface area, different design options, low pressure drop, high temperature durability, mechanical strength, ease of orientation in a reactor and effectiveness as a support for a catalytic washcoat. As known, monolithic catalysts belong to the class of the structured catalysts and/or reactors (in some cases the distinction between "catalyst" and "reactor" has vanished. Structured catalysts can greatly intensify chemical processes, resulting in smaller, safer, cleaner and more energy efficient technologies. Monolith reactors can be considered as multifunctional reactors, in which chemical conversion is advantageously integrated with another unit operation, such as separation, heat exchange, a secondary reaction, etc. Finally, structured catalysts and/or reactors appear to be one of the most significant and promising developments in the field of heterogeneous catalysis and chemical engineering of the recent years. This paper gives a description of the background and perspectives for application and development of monolithic materials. Different methods and techniques

  10. High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template.

    Science.gov (United States)

    Jones, Brad H; Lodge, Timothy P

    2009-02-11

    Nanoporous ceramic with a unique pore structure was derived from an all-hydrocarbon polymeric bicontinuous microemulsion (BmuE). The BmuE was designed to allow facile removal of one phase, resulting in a nanoporous polymer monolith with BmuE-like structure. The pores were filled with a commercially available, polymeric precursor to nonoxide, Si-based ceramics. Pyrolysis resulted in a monolith of nanoporous ceramic, stable to at least 1000 degrees C, with a BmuE-like pore structure. The pore structure is disordered and 3-D continuous. Microscopy and gas sorption measurements suggest a well-defined pore size distribution spanning roughly 60-100 nm, sizes previously unattainable through related techniques.

  11. Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

    Energy Technology Data Exchange (ETDEWEB)

    Siwak, N. P. [Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States); Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740 (United States); Fan, X. Z.; Ghodssi, R. [Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States); Kanakaraju, S.; Richardson, C. J. K. [Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740 (United States)

    2014-10-06

    An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We have fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.

  12. Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor

    International Nuclear Information System (INIS)

    Shen, Yanwen; Brown, Robert; Wen, Zhiyou

    2014-01-01

    Highlights: • Syngas fermentation process is limited by gas-to-liquid mass transfer. • A novel monolithic biofilm reactor (MBR) for efficient mass transfer was developed. • MBR with slug flow resulted in higher k L a than bubble column reactor (BCR). • MBR enhanced ethanol productivity by 53% compared to BCR. • MBR was demonstrated as a promising reactor configuration for syngas fermentation. - Abstract: Syngas fermentation is a promising process for producing fuels and chemicals from lignocellulosic biomass. Currently syngas fermentation faces several engineering challenges, with gas-to-liquid mass transfer limitation representing the major bottleneck. The aim of this work is to evaluate the performance of a monolithic biofilm reactor (MBR) as a novel reactor configuration for syngas fermentation. The volumetric mass transfer coefficient (k L a) of the MBR was evaluated in abiotic conditions within a wide range of gas flow rates (i.e., gas velocity in monolithic channels) and liquid flow rates (i.e., liquid velocity in the channels). The k L a values of the MBR were higher than those of a controlled bubble column reactor (BCR) in certain conditions, due to the slug flow pattern in the monolithic channels. A continuous syngas fermentation using Clostridium carboxidivorans P7 was conducted in the MBR system under varying operational conditions, with the variables including syngas flow rate, liquid recirculation between the monolithic column and reservoir, and dilution rate. It was found that the syngas fermentation performance – measured by such parameters as syngas utilization efficiency, ethanol concentration and productivity, and ratio of ethanol to acetic acid – depended not only on the mass transfer efficiency but also on the biofouling or abrading of the biofilm attached on the monolithic channel wall. At a condition of 300 mL/min of syngas flow rate, 500 mL/min of liquid flow rate, and 0.48 day −1 of dilution rate, the MBR produced much higher

  13. Fibrous monolithic ceramics

    International Nuclear Information System (INIS)

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  14. Fast preparation of hybrid monolithic columns via photo-initiated thiol-yne polymerization for capillary liquid chromatography.

    Science.gov (United States)

    Ma, Shujuan; Zhang, Haiyang; Li, Ya; Li, Yanan; Zhang, Na; Ou, Junjie; Ye, Mingliang; Wei, Yinmao

    2018-02-23

    Although several approaches have been developed to fabricate hybrid monoliths, it would still take a few hours to finish the formation of monoliths. Herein, photo-initiated thiol-yne polymerization was first adopted to in situ fabricate hybrid monoliths within the confines of UV-transparent fused-silica capillary. A silicon-containing diyne (1,3-diethynyltetramethyl-disiloxane, DYDS) was copolymerized with three multithiols, 1,6-hexanedithiol, trimethylolpropane tris(3-mercaptopropionate) and pentaerythriol tetrakis(3-mercaptopropionate), by using a binary porogenic system of diethylene glycol diethyl ether (DEGDE)/poly(ethylene glycol) (PEG200) within 10 min. Several characterizations of three hybrid monoliths (assigned as I, II and III, respectively) were performed. The results showed that these hybrid monoliths possessed bicontinuous porous structure, which was remarkably different from that via typical free-radical polymerization. The highest column efficiency of 76,000 plates per meter for butylbenzene was obtained on the column I in reversed-phase liquid chromatography (RPLC). It was observed that the efficiencies for strong-retained butylbenzene were almost close to those of weak-retained benzene, indicating a retention-independent efficient performance of small molecules on hybrid column I. The surface area of this hybrid monolith was very small in the dry state (less than 10.0 m 2 /g), and the chromatographic behavior of hybrid monolithic columns would be possibly explained by radical-mediated step-growth process of thiol-yne polymerization. Finally, the column I was applied for separation of BSA tryptic digest by cLC-MS/MS, indicating satisfactory separation ability for complicated samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Monolithic exploding foil initiator

    Science.gov (United States)

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  16. Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Hak; Son, Donghoon; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr, E-mail: hjbae@galaxy.yonsei.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-04-20

    We present gas kinematics based on the [O iii] λ 5007 line and their connection to galaxy gravitational potential, active galactic nucleus (AGN) energetics, and star formation, using a large sample of ∼110,000 AGNs and star-forming (SF) galaxies at z < 0.3. Gas and stellar velocity dispersions are comparable to each other in SF galaxies, indicating that the ionized gas kinematics can be accounted by the gravitational potential of host galaxies. In contrast, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. The [O iii] velocity–velocity dispersion (VVD) diagram dramatically expands toward high values as a function of AGN luminosity, implying that the outflows are AGN-driven, while SF galaxies do not show such a trend. We find that the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [O iii] profile. AGNs with strong outflow signatures show on average similar specific star formation rates (sSFRs) to those of star-forming galaxies. In contrast, AGNs with weak or no outflows have an order of magnitude lower sSFRs, suggesting that AGNs with current strong outflows do now show any negative AGN feedback and that it may take dynamical time to impact on star formation over galactic scales.

  17. Method of making improved gas storage carbon with enhanced thermal conductivity

    Science.gov (United States)

    Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN

    2002-11-05

    A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

  18. Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells

    International Nuclear Information System (INIS)

    Leem, Jung Woo; Yu, Jae Su; Kim, Jong Nam; Noh, Sam Kyu

    2014-01-01

    We design and optimize monolithic III-V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J sc . The maximum J sc , which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J sc value of 13.92 mA/cm 2 is obtained at base thicknesses of 0.57 μm and 3 μm for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.

  19. Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Jung Woo; Yu, Jae Su [Kyung Hee University, Yongin (Korea, Republic of); Kim, Jong Nam [Pukyung National University, Pusan (Korea, Republic of); Noh, Sam Kyu [Korea Research Institute of Standards and Science, Daejon (Korea, Republic of)

    2014-05-15

    We design and optimize monolithic III-V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J{sub sc}. The maximum J{sub sc}, which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J{sub sc} value of 13.92 mA/cm{sup 2} is obtained at base thicknesses of 0.57 μm and 3 μm for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.

  20. Modeling and Simulation of Monolithic AlGaAs/InGaAs Tandem Solar Cell

    Directory of Open Access Journals (Sweden)

    Samia SLIMANI

    2015-06-01

    Full Text Available Employing conventional III-V junctions we report a classical calculation of conduction and valence band edge and the electron and hole densities. It is shown that the optimum performance can be achieved by employing AlGaAs /AlGaAs/InGaAs monolithic cascade solar cells, we have established these calculations by solving the Poisson equation within the framework of the Nextnano.

  1. Microfluidic devices and methods including porous polymer monoliths

    Science.gov (United States)

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  2. Low Pressure Storage of Natural Gas for Vehicular Applications

    International Nuclear Information System (INIS)

    Tim Burchell; Mike Rogers

    2000-01-01

    Natural gas is an attractive fuel for vehicles because it is a relatively clean-burning fuel compared with gasoline. Moreover, methane can be stored in the physically adsorbed state[at a pressure of 3.5 MPa (500 psi)] at energy densities comparable to methane compressed at 24.8 MPa (3600 psi). Here we report the development of natural gas storage monoliths[1]. The monolith manufacture and activation methods are reported along with pore structure characterization data. The storage capacities of these monoliths are measured gravimetrically at a pressure of 3.5 MPa (500 psi) and ambient temperature, and storage capacities of and gt;150 V/V have been demonstrated and are reported

  3. Gas-phase infrared spectrum of phosphorus (III) oxycyanide, OPCN: experimental and theoretical investigations

    Science.gov (United States)

    Allaf, Abdul. W.; Kassem, M.; Alibrahim, M.; Boustani, Ihsan

    1999-03-01

    An attempt was made to observe the gas-phase infrared spectrum of Phosphorus (III) oxycyanide, OPCN for the first time. This molecule was produced by an on-line process using phosphorus (III) oxychloride, OPCl as precursor passed over heated AgCN. The products were characterised by the infrared spectra of their vapours. The low resolution gas-phase Fourier transform infrared spectrum shows two bands centered at 2165 and 1385 cm -1. These bands are assigned to, ν1 (CN stretch) and ν2 (OP stretch), respectively. Ab initio self-consistent-field (SCF) molecular orbital (MO) and Møller-Plesset second order perturbation theory (MP2) calculations were performed to determine the geometry, total energy and vibrational frequencies of OPCN.

  4. CEC-atmospheric pressure ionization MS of pesticides using a surfactant-bound monolithic column.

    Science.gov (United States)

    Gu, Congying; Shamsi, Shahab A

    2010-04-01

    A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) monolithic column was simply prepared by in situ co-polymerization of 11-acrylaminoundecanoic acid and ethylene dimethacrylate with 1-propanol, 1,4-butanediol and water as porogens in 100 microm id fused-silica capillary in one step. This column was used in CEC-atmospheric pressure photoionization (APPI)-MS system for separation and detection of N-methylcarbamates pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions, S/Ns around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine N-methylcarbamates in spiked apple juice sample after solid phase extraction with recoveries in the range of 65-109%.

  5. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  6. A hybrid FIA/HPLC system incorporating monolithic column chromatography

    International Nuclear Information System (INIS)

    Adcock, Jacqui L.; Francis, Paul S.; Agg, Kent M.; Marshall, Graham D.; Barnett, Neil W.

    2007-01-01

    We have combined the generation of solvent gradients using milliGAT pumps, chromatographic separations with monolithic columns and chemiluminescence detection in an instrument manifold that approaches the automation and separation efficiency of HPLC, whilst maintaining the positive attributes of flow injection analysis (FIA), such as manifold versatility, speed of analysis and portability. As preliminary demonstrations of this hybrid FIA/HPLC system, we have determined six opiate alkaloids (morphine, pseudomorphine, codeine, oripavine, ethylmorphine and thebaine) and four biogenic amines (vanilmandelic acid, serotonin, 5-hydroxyindole-3-acetic acid and homovanillic acid) in human urine, using tris(2,2'-bipyridyl)ruthenium(III) and acidic potassium permanganate chemiluminescence detection

  7. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  8. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  9. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications.

    Science.gov (United States)

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel

    2013-07-12

    Epinephrine-bonded polymeric monoliths for capillary electrochromatography (CEC) were developed by nucleophilic substitution reaction of epoxide groups of poly(glycidyl-methacrylate-co-ethylenedimethacrylate) (poly(GMA-co-EDMA)) monoliths using epinephrine as nucleophilic reagent. The ring opening reaction under dynamic conditions was optimized. Successful chemical modification of the monolith surface was ascertained by in situ Raman spectroscopy characterization. In addition, the amount of epinephrine groups that was bound to the monolith surface was evaluated by oxidation of the catechol groups with Ce(IV), followed by spectrophotometric measurement of unreacted Ce(IV). About 9% of all theoretical epoxide groups of the parent monolith were bonded to epinephrine. The chromatographic behavior of the epinephrine-bonded monolith in CEC conditions was assessed with test mixtures of alkyl benzenes, aniline derivatives and substituted phenols. In comparison to the poly(GMA-co-EDMA) monoliths, the epinephrine-bonded monoliths exhibited a much higher retention and slight differences in selectivity. The epinephrine-bonded monolith was further modified by oxidation with a Ce(IV) solution and compared with the epinephrine-bonded monoliths. The resulting monolithic stationary phases were evaluated in terms of reproducibility, giving RSD values below 9% in the parameters investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    Science.gov (United States)

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

  11. Synthesis of Porous Carbon Monoliths Using Hard Templates.

    Science.gov (United States)

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-03-21

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m²·g -1 . The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions.

  12. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Institute of Technology, Castle Point Hoboken NJ 07030

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a demonstration size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  13. Preparation of methacrylate-based anion-exchange monolithic microbore column for chromatographic separation of DNA fragments and oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Sabarudin, Akhmad, E-mail: sabarjpn@ub.ac.id [Division of Nano-materials Science, EcoTopia Science Institute, Nagoya University, Furu-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan); Department of Chemistry, Faculty of Science, Brawijaya University, Jl Veteran Malang 65145 (Indonesia); Huang, Junchao; Shu, Shin; Sakagawa, Shinnosuke [Division of Nano-materials Science, EcoTopia Science Institute, Nagoya University, Furu-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan); Umemura, Tomonari, E-mail: umemura@apchem.nagoya-u.ac.jp [Division of Nano-materials Science, EcoTopia Science Institute, Nagoya University, Furu-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan)

    2012-07-29

    Highlights: Black-Right-Pointing-Pointer Microbore-scale (1 mm i.d.) anion-exchange monolithic column. Black-Right-Pointing-Pointer Potentially preparative applications. Black-Right-Pointing-Pointer Separation of oligodeoxythymidylic acids and DNA fragments. - Abstract: In this paper, we report on the preparation of a microbore-scale (1 mm i.d.) anion-exchange monolithic column suitable not only for analytical purposes but also for potentially preparative applications. In order to meet the conflicting requirements of high permeability and good mechanical strength, the following two-step procedure was applied. First, an epoxy-containing monolith was synthesized by in situ copolymerization of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) within the confines of a silicosteel tubing of 1.02 mm i.d. and 1/16 Double-Prime o.d. in the presence of a ternary porogenic mixture of 1-propanol, 1,4-butanediol, and water. The monolithic matrix was subsequently converted into weak anion-exchanger via the ring-opening reaction of epoxy group with diethyl amine. The dynamic binding capacity was 21.4 mg mL{sup -1} for bovine serum albumin (BSA) at 10% breakthrough. The morphology and porous structure of this monolith were assessed by scanning electron microscope (SEM) and inverse size exclusion chromatography (ISEC). To optimize the separation efficiency, the effects of various chromatographic parameters upon the separation of DNA fragments were investigated. The resulting monolithic anion exchanger demonstrated good potential for the separation of both single- and double-stranded DNA molecules using a gradient elution with NaCl in Tris-HCl buffer (20 mM). Oligodeoxythymidylic acids (dT{sub 12}-dT{sub 18}) were successfully resolved at pH 8, while the fragments of 20 bp DNA ladder, 100 bp DNA ladder, and pBR322-HaeIII digest were efficiently separated at pH 9.

  14. Effects of indirect bandgap top cells in a monolithic cascade cell structure

    Science.gov (United States)

    Curtis, H. B.; Godlewski, M. P.

    1982-01-01

    The effect of having a slightly indirect top cell in a three junction cascade monolithic stack is calculated. The minority carrier continuity equations are utilized to calculate individual junction performance. Absorption coefficient curves for general III-V compounds are calculated for a variety of direct and indirect gap materials. The results indicate that for a small excursion into the indirect region, (about 0.1 eV), the loss of efficiency is acceptably small (less than 2.5 percent) and considerably less than attempting to make the top junction a smaller direct bandgap.

  15. Nano-Doped Monolithic Materials for Molecular Separation

    Directory of Open Access Journals (Sweden)

    Caleb Acquah

    2017-01-01

    Full Text Available Monoliths are continuous adsorbents that can easily be synthesised to possess tuneable meso-/macropores, convective fluid transport, and a plethora of chemistries for ligand immobilisation. They are grouped into three main classes: organic, inorganic, and hybrid, based on their chemical composition. These classes may also be differentiated by their unique morphological and physicochemical properties which are significantly relevant to their specific separation applications. The potential applications of monoliths for molecular separation have created the need to enhance their characteristic properties including mechanical strength, electrical conductivity, and chemical and thermal stability. An effective approach towards monolith enhancement has been the doping and/or hybridization with miniaturized molecular species of desirable functionalities and characteristics. Nanoparticles are usually preferred as dopants due to their high solid phase dispersion features which are associated with improved intermolecular adsorptive interactions. Examples of such nanomaterials include, but are not limited to, carbon-based, silica-based, gold-based, and alumina nanoparticles. The incorporation of these nanoparticles into monoliths via in situ polymerisation and/or post-modification enhances surface adsorption for activation and ligand immobilisation. Herein, insights into the performance enhancement of monoliths as chromatographic supports by nanoparticles doping are presented. In addition, the potential and characteristics of less common nanoparticle materials such as hydroxyapatite, ceria, hafnia, and germania are discussed. The advantages and challenges of nanoparticle doping of monoliths are also discussed.

  16. Monolith electroplating process

    Science.gov (United States)

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  17. Gas-phase infrared spectrum of phosphorus (III) oxycyanide, OPCN: Experimental and theoretical and theoretical investigations

    International Nuclear Information System (INIS)

    Allaf, A.W.; Kassem, M.; Alibrahim, M.

    1999-01-01

    An attempt was made to observe the gas-phase infrared spectrum of phosphorus (III) oxycyanide, OPCN for the first time. This molecule was produced by on-line process using phosphorus (III) oxychloride, OPCI as precursor passed over heated Ag CN. The products were characterised by the infrared spectra of their vapours. The low resolution gas-phase Fourier transform infrared spectrum shows two bands at 2165 and 1385 cm -1 . These bands are assigned to ν 1 (C≡N stretch) and ν 2 (O=P stretch), respectively. Ab initio self-consistent-field (SCF) molecular orbital (MO) and Moeller - Plesset second order perturbation theory (MP2) calculations were performed to determine the geometry, total energy and vibrational frequencies of OPCN. (authors)

  18. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  19. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    Science.gov (United States)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  20. Novel method for the rapid and specific extraction of multiple β2 -agonist residues in food by tailor-made Monolith-MIPs extraction disks and detection by gas chromatography with mass spectrometry.

    Science.gov (United States)

    Liu, Haibo; Gan, Ning; Chen, Yinji; Ding, Qingqing; Huang, Jie; Lin, Saichai; Cao, Yuting; Li, Tianhua

    2016-09-01

    A quick and specific pretreatment method based on a series of extraction clean-up disks, consisting of molecularly imprinted polymer monoliths and C18 adsorbent, was developed for the specific enrichment of salbutamol and clenbuterol residues in food. The molecularly imprinted monolithic polymer disk was synthesized using salbutamol as a template through a one-step synthesis process. It can simultaneously and specifically recognize salbutamol and clenbuterol. The monolithic polymer disk and series of C18 disks were assembled with a syringe to form a set of tailor-made devices for the extraction of target molecules. In a single run, salbutamol and clenbuterol can be specifically extracted, cleaned, and eluted by methanol/acetic acid/H2 O. The target molecules, after a silylation derivatization reaction were detected by gas chromatography-mass spectrometry. The parameters including solvent desorption, sample pH, and the cycles of reloading were investigated and discussed. Under the optimized extraction and clean-up conditions, the limits of detection and quantitation were determined as 0.018-0.022 and 0.042-0.049 ng/g for salbutamol and clenbuterol, respectively. The assay described was convenient, rapid, and specific; thereby potentially efficient in the high-throughput analysis of β2 -agonists residues in real food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  2. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    Science.gov (United States)

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Protective Skins for Aerogel Monoliths

    Science.gov (United States)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  4. Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3,4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection

    International Nuclear Information System (INIS)

    Nakamoto, Akihiro; Nishida, Manami; Saito, Takeshi; Kishiyama, Izumi; Miyazaki, Shota; Murakami, Katsunori; Nagao, Masataka; Namura, Akira

    2010-01-01

    A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d 5 was used as an internal standard. The linear ranges were 0.01-5.0 μg mL -1 for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 μg mL -1 for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation ≥0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 μg mL -1 of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio ≥ 3) in urine was 5 ng mL -1 for MA and MDMA and 10 ng mL -1 for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation.

  5. Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3,4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Akihiro [Scientific Investigation Laboratory, Hiroshima Prefectural Police Headquarters, Kohnan 2-26-3, Naka-ku, Hiroshima 730-0825 (Japan); Nishida, Manami [Hiroshima University Technical Center, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan); Saito, Takeshi [Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1143 (Japan); Kishiyama, Izumi; Miyazaki, Shota [GL Sciences Inc., Sayamagahara 237-2, Iruma, Saitama 358-0032 (Japan); Murakami, Katsunori [Scientific Investigation Laboratory, Hiroshima Prefectural Police Headquarters, Kohnan 2-26-3, Naka-ku, Hiroshima 730-0825 (Japan); Nagao, Masataka [Department of Forensic Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan); Namura, Akira, E-mail: namera@hiroshima-u.ac.jp [Department of Forensic Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan)

    2010-02-19

    A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d{sub 5} was used as an internal standard. The linear ranges were 0.01-5.0 {mu}g mL{sup -1} for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 {mu}g mL{sup -1} for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation {>=}0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 {mu}g mL{sup -1} of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio {>=} 3) in urine was 5 ng mL{sup -1} for MA and MDMA and 10 ng mL{sup -1} for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation.

  6. Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3,4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection.

    Science.gov (United States)

    Nakamoto, Akihiro; Nishida, Manami; Saito, Takeshi; Kishiyama, Izumi; Miyazaki, Shota; Murakami, Katsunori; Nagao, Masataka; Namura, Akira

    2010-02-19

    A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d(5) was used as an internal standard. The linear ranges were 0.01-5.0 microg mL(-1) for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 microg mL(-1) for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation > or = 0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 microg mL(-1) of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio > or = 3) in urine was 5 ng mL(-1) for MA and MDMA and 10 ng mL(-1) for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation. Copyright 2009 Elsevier B.V. All rights reserved.

  7. One-pot preparation of a mixed-mode organic-silica hybrid monolithic capillary column and its application in determination of endogenous gibberellins in plant tissues.

    Science.gov (United States)

    Zhang, Zheng; Hao, Yan-Hong; Ding, Jun; Xu, Sheng-Nan; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-10-16

    A newly improved one-pot method, based on "thiol-ene" click chemistry and sol-gel approach in microemulsion system, was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP) mixed-mode retention for analytes on nano-liquid chromatography (nano-LC). On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE) and derivatization process, we then realized simultaneous determination of 10 gibberellins (GAs) with low limits of detection (LODs, 0.003-0.025 ng/mL). Furthermore, 6 endogenous GAs in only 5mg rice leaves (fresh weight) were successfully detected and quantified. The developed PT-SPE-nano-LC-MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Method of producing monolithic ceramic cross-flow filter

    Science.gov (United States)

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  10. Biomimetic small peptide functionalized affinity monoliths for monoclonal antibody purification.

    Science.gov (United States)

    Wang, Xiangyu; Xia, Donghai; Han, Hai; Peng, Kun; Zhu, Peijie; Crommen, Jacques; Wang, Qiqin; Jiang, Zhengjin

    2018-08-09

    The rapid development of monoclonal antibodies (mAbs) in therapeutic and diagnostic applications has necessitated the advancement of mAbs purification technologies. In this study, a biomimetic small peptide ligand 3,5-di-tert-butyl-4-hydroxybenzoic acid-Arg-Arg-Gly (DAAG) functionalized monolith was fabricated through a metal ion chelation-based multi-step approach. The resulting monolith showed good chromatographic performance. Compared with the Ni 2+ based IMAC monolith, the DAAG functionalized monolith exhibited not only excellent specificity but also higher dynamic binding capacity (DBC). The 10% DBC and 50% DBC for hIgG reached as high values as 26.0 and 34.6 mg/mL, respectively, at a ligand density of 8.8 μmol/mL, due to the high porosity and accessibility of the monolithic matrix. Moreover, the stability of the DAAG functionalized monolith in successive breakthrough experiments indicates that it has a promising potential for long-term use in mAbs purification. Finally, the DAAG functionalized monolith was successfully applied to the purification of trastuzumab or human immunoglobulin G (hIgG) from biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Monolithic graphene fibers for solid-phase microextraction.

    Science.gov (United States)

    Fan, Jing; Dong, Zelin; Qi, Meiling; Fu, Ruonong; Qu, Liangti

    2013-12-13

    Monolithic graphene fibers for solid-phase microextraction (SPME) were fabricated through a dimensionally confined hydrothermal strategy and their extraction performance was evaluated. For the fiber fabrication, a glass pipeline was innovatively used as a hydrothermal reactor instead of a Teflon-lined autoclave. Compared with conventional methods for SPME fibers, the proposed strategy can fabricate a uniform graphene fiber as long as several meters or more at a time. Coupled to capillary gas chromatography (GC), the monolithic graphene fibers in a direct-immersion (DI) mode achieved higher extraction efficiencies for aromatics than those for n-alkanes, especially for polycyclic aromatic hydrocarbons (PAHs), thanks to π-π stacking interaction and hydrophobic effect. Additionally, the fibers exhibited excellent durability and can be repetitively used more than 160 times without significant loss of extraction performance. As a result, an optimum extraction condition of 40°C for 50min with 20% NaCl (w/w) was finally used for SPME of PAHs in aqueous samples. For the determination of PAHs in water samples, the proposed DI-SPME-GC method exhibited linear range of 0.05-200μg/L, limits of detection (LOD) of 4.0-50ng/L, relative standard deviation (RSD) less than 9.4% and 12.1% for one fiber and different fibers, respectively, and recoveries of 78.9-115.9%. The proposed method can be used for analysis of PAHs in environmental water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Earth Science With the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    Science.gov (United States)

    Zawodny, Joe; Vernier, Jean-Paul; Thomason, Larry; Roell, Marilee; Pitts, Mike; Moore, Randy; Hill, Charles; Flittner, David; Damadeo, Rob; Cisewski, Mike

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Aviation and Space Agency (now known as Roskosmos) Meteor-3M platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the ISS in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observation in the second half of this decade. Here we discuss the mission architecture, its implementation, and data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE III instrument is designed to cover this large dynamic range and also perform lunar occultations on a routine basis to augment the solar products. The standard lunar products were demonstrated during the SAGE III/M3M mission and include ozone, nitrogen dioxide & nitrogen trioxide. The operational flexibility of the SAGE III spectrometer accomplishes

  13. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    Science.gov (United States)

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Fire resistance of prefabricated monolithic slab

    Directory of Open Access Journals (Sweden)

    Gravit Marina

    2017-01-01

    Full Text Available A prefabricated monolithic slab (PMS has a number of valuable advantages, they allow to significantly decrease the weight of construction keeping the necessary structural-load capacity, to speed up and cheapen work conduction, to increase the heat isolating properties of an enclosure structure [1]. In order to create a design method of prefabricated monolithic slab fire-resistance, it's necessary to perform a series of PMS testing, one of which is being described in this article. Subjected to the test is a fragment of prefabricated monolithic slab with polystyrene concrete inserts along the beams with bent metal profile 250 mm thick, with a 2.7 m span loaded with evenly spread load equal to 600 kg/m2. After 3 hour testing for fire-resistance [2] no signs of construction ultimate behavior were detected.

  15. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  16. Development of high-throughput analysis system using highly-functional organic polymer monoliths

    International Nuclear Information System (INIS)

    Umemura, Tomonari; Kojima, Norihisa; Ueki, Yuji

    2008-01-01

    The growing demand for high-throughput analysis in the current competitive life sciences and industries has promoted the development of high-speed HPLC techniques and tools. As one of such tools, monolithic columns have attracted increasing attention and interest in the last decade due to the low flow-resistance and excellent mass transfer, allowing for rapid separations and reactions at high flow rates with minimal loss of column efficiency. Monolithic materials are classified into two main groups: silica- and organic polymer-based monoliths, each with their own advantages and disadvantages. Organic polymer monoliths have several distinct advantages in life-science research, including wide pH stability, less irreversible adsorption, facile preparation and modification. Thus, we have so far tried to develop organic polymer monoliths for various chemical operations, such as separation, extraction, preconcentration, and reaction. In the present paper, recent progress in the development of organic polymer monoliths is discussed. Especially, the procedure for the preparation of methacrylate-based monoliths with various functional groups is described, where the influence of different compositional and processing parameters on the monolithic structure is also addressed. Furthermore, the performance of the produced monoliths is demonstrated through the results for (1) rapid separations of alklybenzenes at high flow rates, (2) flow-through enzymatic digestion of cytochrome c on a trypsin-immobilized monolithic column, and (3) separation of the tryptic digest on a reversed-phase monolithic column. The flexibility and versatility of organic polymer monoliths will be beneficial for further enhancing analytical performance, and will open the way for new applications and opportunities both in scientific and industrial research. (author)

  17. Influence of different carbon monolith preparation parameters on pesticide adsorption

    Directory of Open Access Journals (Sweden)

    Vukčević Marija

    2013-01-01

    Full Text Available The capacity of carbon monolith for pesticide removal from water, and the mechanism of pesticide interaction with carbon surface were examined. Different carbon monolith samples were obtained by varying the carbonization and activation parameters. In order to examine the role of surface oxygen groups in pesticide adsorption, carbon monolith surface was functionalized by chemical treatment in HNO3, H2O2 and KOH. The surface properties of the obtained samples were investigated by BET surface area, pore size distribution and temperature-programmed desorption. Adsorption of pesticides from aqueous solution onto activated carbon monolith samples was studied by using five pesticides belonging to different chemical groups (acetamiprid, dimethoate, nicosulfuron, carbofuran and atrazine. Presented results show that higher temperature of carbonization and the amount of activating agent allow obtaining microporous carbon monolith with higher amount of surface functional groups. Adsorption properties of the activated carbon monolith were more readily affected by the amount of the surface functional groups than by specific surface area. Results obtained by carbon monolith functionalisation showed that π-π interactions were the main force for adsorption of pesticides with aromatic structure, while acidic groups play an important role in adsorption of pesticides with no aromatic ring in the chemical structure.

  18. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    Science.gov (United States)

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  19. Acoustic of monolithic dome structures

    Directory of Open Access Journals (Sweden)

    Mostafa Refat Ismail

    2018-03-01

    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  20. Non-isothermal compositional gas flow during carbon dioxide storage and enhanced gas recovery

    DEFF Research Database (Denmark)

    Singh, Ashok; Böettcher, N.; Wang, W.

    2011-01-01

    In this work we present the conceptual modeling and the numerical scheme for carbon dioxide storage into nearly depleted gas reservoirs for enhanced gas recovery reasons. For this we develop non-isothermal compositional gas flow model. We used a combined monolithic / staggered coupling scheme...... to solve mass balance equation for the gaseous mixture with heat and fractional mass transport equations. Temperature change resulting from fluid expansion and viscous heat dissipation is included in heat transport in addition to advection and conduction. We have used a modified version of the Peng...

  1. Media Presentation Synchronisation for Non-monolithic Rendering Architectures

    NARCIS (Netherlands)

    I. Vaishnavi (Ishan); D.C.A. Bulterman (Dick); P.S. Cesar Garcia (Pablo Santiago); B. Gao (Bo)

    2007-01-01

    htmlabstractNon-monolithic renderers are physically distributed media playback engines. Non-monolithic renderers may use a number of different underlying network connection types to transmit media items belonging to a presentation. There is therefore a need for a media based and inter-network- type

  2. Edge chipping and flexural resistance of monolithic ceramics☆

    Science.gov (United States)

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  3. Performance analysis of photocatalytic CO2 reduction in optical fiber monolith reactor with multiple inverse lights

    International Nuclear Information System (INIS)

    Yuan, Kai; Yang, Lijun; Du, Xiaoze; Yang, Yongping

    2014-01-01

    Highlights: • A new optical fiber monolith reactor model for CO 2 reduction was developed. • Methanol concentration versus fiber location and operation parameters was obtained. • Reaction efficiency increases by 31.1% due to the four fibers and inverse layout. • With increasing space of fiber and channel center, methanol concentration increases. • Methanol concentration increases as the vapor ratio and light intensity increase. - Abstract: Photocatalytic CO 2 reduction seems potential to mitigate greenhouse gas emissions and produce renewable energy. A new model of photocatalytic CO 2 reduction in optical fiber monolith reactor with multiple inverse lights was developed in this study to improve the conversion of CO 2 to CH 3 OH. The new light distribution equation was derived, by which the light distribution was modeled and analyzed. The variations of CH 3 OH concentration with the fiber location and operation parameters were obtained by means of numerical simulation. The results show that the outlet CH 3 OH concentration is 31.1% higher than the previous model, which is attributed to the four fibers and inverse layout. With the increase of the distance between the fiber and the monolith center, the average CH 3 OH concentration increases. The average CH 3 OH concentration also rises as the light input and water vapor percentage increase, but declines with increasing the inlet velocity. The maximum conversion rate and quantum efficiency in the model are 0.235 μmol g −1 h −1 and 0.0177% respectively, both higher than previous internally illuminated monolith reactor (0.16 μmol g −1 h −1 and 0.012%). The optical fiber monolith reactor layout with multiple inverse lights is recommended in the design of photocatalytic reactor of CO 2 reduction

  4. SEM Characterization of an Irradiated Monolithic U-10Mo Fuel Plate

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B.

    2010-01-01

    Results of scanning electron microscopy (SEM) characterization of irradiated U-7Mo dispersion fuel plates with differing amounts of matrix Si have been reported. However, to date, no results of SEM analysis of irradiated U-Mo monolithic fuel plates have been reported. This paper describes the first SEM characterization results for an irradiated monolithic U-10Mo fuel plate. Two samples from this fuel plate were characterized. One sample was produced from the low-flux side of the fuel plate, and another was produced at the high-flux side of the fuel plate. This characterization focused on the microstructural features present at the U-10Mo foil/cladding interface, particularly the interaction zone that had developed during fabrication and irradiation. In addition, the microstructure of the foil itself was investigated, along with the morphology of the observed fission gas bubbles. It was observed that a Si-rich interaction layer was present at the U-10Mo foil/cladding interface that exhibited relatively good irradiation behavior, and within the U-10Mo foil the microstructural features differed in some respects from what is typically seen in the U-Mo powders of an irradiated dispersion fuel.

  5. Creating deep soil core monoliths: Beyond the solum

    Science.gov (United States)

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  6. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO 2 and steam, and nitrate/nitrite components, if any, to N 2 . The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO 4 , I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the 2 durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form

  7. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  8. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    OpenAIRE

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructu...

  9. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  10. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography.

    Science.gov (United States)

    Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin

    2017-01-06

    This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  12. Decomposition of monolithic web application to microservices

    OpenAIRE

    Zaymus, Mikulas

    2017-01-01

    Solteq Oyj has an internal Wellbeing project for massage reservations. The task of this thesis was to transform the monolithic architecture of this application to microservices. The thesis starts with a detailed comparison between microservices and monolithic application. It points out the benefits and disadvantages microservice architecture can bring to the project. Next, it describes the theory and possible strategies that can be used in the process of decomposition of an existing monoli...

  13. Fracture-resistant monolithic dental crowns.

    Science.gov (United States)

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  14. Characterization of SOI monolithic detector system

    Science.gov (United States)

    Álvarez-Rengifo, P. L.; Soung Yee, L.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic active pixel sensor for charged particle tracking was developed. This research is performed within the framework of an R&D project called TRAPPISTe (Tracking Particles for Physics Instrumentation in SOI Technology) whose aim is to evaluate the feasibility of developing a Monolithic Active Pixel Sensor (MAPS) with Silicon-on-Insulator (SOI) technology. Two chips were fabricated: TRAPPISTe-1 and TRAPPISTe-2. TRAPPISTe-1 was produced at the WINFAB facility at the Université catholique de Louvain (UCL), Belgium, in a 2 μm fully depleted (FD-SOI) CMOS process. TRAPPISTe-2 was fabricated with the LAPIS 0.2 μm FD-SOI CMOS process. The electrical characterization on single transistor test structures and of the electronic readout for the TRAPPISTe series of monolithic pixel detectors was carried out. The behavior of the prototypes’ electronics as a function of the back voltage was studied. Results showed that both readout circuits exhibited sensitivity to the back voltage. Despite this unwanted secondary effect, the responses of TRAPPISTe-2 amplifiers can be improved by a variation in the circuit parameters.

  15. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  16. Immobilisation of shredded soft waste in cement monolith

    International Nuclear Information System (INIS)

    Brown, D.J.; Dalton, M.J.; Smith, D.L.

    1983-04-01

    A grouting process for the immobilisation of shredded contaminated laboratory waste in a cement monolith is being developed at the Atomic Energy Establishment Winfrith. The objective is to produce a 'monolithic' type package which is acceptable both for sea and land disposal. The work carried out on this project in the period April 1982 - March 1983 is summarised in this report. (author)

  17. Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography

    International Nuclear Information System (INIS)

    Catalá-Icardo, M.; Torres-Cartas, S.; Meseguer-Lloret, S.; Gómez-Benito, C.; Carrasco-Correa, E.; Simó-Alfonso, E.F.; Ramis-Ramos, G.; Herrero-Martínez, J.M.

    2017-01-01

    In this work, a method for the preparation and anchoring of polymeric monoliths in a polytetrafluoroethylene (PTFE) tubing as a column housing for microbore HPLC is described. In order to assure a covalent attachment of the monolith to the inner wall of the PTFE tube, a two-step procedure was developed. Two surface etching reagents, a commercial sodium naphthalene solution (Fluoroetch"®), or mixtures of H_2O_2 and H_2SO_4, were tried and compared. Then, the obtained hydroxyl groups on the PTFE surface were modified by methacryloylation. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the tubing wall and the stable anchorage of monolith to the wall, respectively. Special emphasis was also put on the reduction of the unwanted effects of shrinking of monolith during polymerization, by using an external proper mold and by selecting the adequate monomers in order to increase the flexibility of the polymer. Poly(glycidyl methacrylate-co-divinylbenzene) monoliths were in situ synthesized by thermal polymerization within the confines of surface-vinylized PTFE tubes. The modified PTFE tubing tightly held the monolith, and the monolithic column exhibited good pressure resistance up to 20 MPa. The column performance was also evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode. The optimized monolithic columns gave plate heights ranged between 70 and 80 μm. The resulting monoliths were also satisfactorily applied to the separation of proteins. - Highlights: • Successful surface etching of PTFE inner wall tubing was done. • The modified PTFE support was next methacryloylated with GMA. • Organic polymeric monolith was in situ prepared in the functionalized PTFE tube. • The monolithic columns gave suitable pressure resistance and separation of proteins.

  18. Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Catalá-Icardo, M., E-mail: mocaic@qim.upv.es [Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Paranimf 1, 46730, Grao de Gandía, Valencia (Spain); Torres-Cartas, S.; Meseguer-Lloret, S.; Gómez-Benito, C. [Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Paranimf 1, 46730, Grao de Gandía, Valencia (Spain); Carrasco-Correa, E.; Simó-Alfonso, E.F.; Ramis-Ramos, G. [Department of Analytical Chemistry, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia (Spain); Herrero-Martínez, J.M., E-mail: jmherrer@uv.es [Department of Analytical Chemistry, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia (Spain)

    2017-04-01

    In this work, a method for the preparation and anchoring of polymeric monoliths in a polytetrafluoroethylene (PTFE) tubing as a column housing for microbore HPLC is described. In order to assure a covalent attachment of the monolith to the inner wall of the PTFE tube, a two-step procedure was developed. Two surface etching reagents, a commercial sodium naphthalene solution (Fluoroetch{sup ®}), or mixtures of H{sub 2}O{sub 2} and H{sub 2}SO{sub 4}, were tried and compared. Then, the obtained hydroxyl groups on the PTFE surface were modified by methacryloylation. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the tubing wall and the stable anchorage of monolith to the wall, respectively. Special emphasis was also put on the reduction of the unwanted effects of shrinking of monolith during polymerization, by using an external proper mold and by selecting the adequate monomers in order to increase the flexibility of the polymer. Poly(glycidyl methacrylate-co-divinylbenzene) monoliths were in situ synthesized by thermal polymerization within the confines of surface-vinylized PTFE tubes. The modified PTFE tubing tightly held the monolith, and the monolithic column exhibited good pressure resistance up to 20 MPa. The column performance was also evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode. The optimized monolithic columns gave plate heights ranged between 70 and 80 μm. The resulting monoliths were also satisfactorily applied to the separation of proteins. - Highlights: • Successful surface etching of PTFE inner wall tubing was done. • The modified PTFE support was next methacryloylated with GMA. • Organic polymeric monolith was in situ prepared in the functionalized PTFE tube. • The monolithic columns gave suitable pressure resistance and separation of proteins.

  19. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  20. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    Science.gov (United States)

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.

  1. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis

    NARCIS (Netherlands)

    Du, P.; Carneiro, J.T.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    A novel reactor for multi-phase photocatalysis is presented, the so-called internally illuminated monolith reactor (IIMR). In the concept of the IIMR, side light emitting fibers are placed inside the channels of a ceramic monolith, equipped with a TiO2 photocatalyst coated on the wall of each

  2. SEM characterization of an irradiated monolithic U-10Mo fuel plate

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B.; Finlay, M.R.

    2010-01-01

    Results of scanning electron microscopy (SEM) characterization of irradiated U-7Mo dispersion fuel plates with differing amounts of matrix Si have been reported. However, to date, no results of SEM analysis of irradiated U-Mo monolithic fuel plates have been reported. This paper describes the first SEM characterization results for an irradiated monolithic U-10Mo fuel plate. Two samples from this fuel plate were characterized. One sample was produced from the low-flux side of the fuel plate, and another was produced at the high-flux side of the fuel plate. This characterization focused on the microstructural features present at the U-10Mo foil/AA6061 cladding interface, particularly the interaction zone that had developed during fabrication and any continued development during irradiation. In addition, the microstructure of the foil itself was investigated, along with the morphology of the observed fission gas bubbles. It was observed that a Si-rich interaction layer was present at the U-10Mo foil/cladding interface that exhibited relatively good irradiation behavior, and within the U-10Mo foil the microstructural features differed in some respects from what is typically seen in the U-7Mo powders of an irradiated dispersion fuel. (author)

  3. Monolithic JFET preamplifier for ionization chamber calorimeter

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Manfredi, P.F.; Speziali, V.

    1990-10-01

    A monolithic charge sensitive preamplifier using exclusively n-channel diffused JFETs has been designed and is now being fabricated by INTERFET Corp. by means of a dielectrically isolated process which allows preserving as much as possible the technology upon which discrete JFETs are based. A first prototype built by means of junction isolated process has been delivered. The characteristics of monolithically integrated JFETs compare favorably with discrete devices. First results of tests of a preamplifier which uses these devices are reported. 4 refs

  4. An overview of monolithic zirconia in dentistry

    Directory of Open Access Journals (Sweden)

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  5. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    Directory of Open Access Journals (Sweden)

    Deborah Pacheco Lameira

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP crowns in monolithic (1.5 mm thickness and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n=10: Polished monolithic zirconia crowns (PM; Glazed monolithic zirconia crowns (GM; Bi-layer crowns (BL. Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C, and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey’s test (P=.05 indicated that monolithic zirconia crowns presented similar fracture strength (PM=3476.2 N ± 791.7; GM=3561.5 N ± 991.6, which was higher than bilayer crowns (2060.4 N ± 810.6. There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  6. Tannin-based monoliths from emulsion-templating

    International Nuclear Information System (INIS)

    Szczurek, A.; Martinez de Yuso, A.; Fierro, V.; Pizzi, A.; Celzard, A.

    2015-01-01

    Highlights: • Efficient preparation procedures are presented for new and “green” tannin-based organic polyHIPEs. • Highest homogeneity and strength are obtained at an oil fraction near the close-packing value. • Structural and mechanical properties abruptly change above such critical value. - Abstract: Highly porous monoliths prepared by emulsion-templating, frequently called polymerised High Internal Phase Emulsions (polyHIPEs) in the literature, were prepared from “green” precursors such as Mimosa bark extract, sunflower oil and ethoxylated castor oil. Various oil fractions, ranging from 43 to 80 vol.%, were used and shown to have a dramatic impact on the resultant porous structure. A critical oil fraction around 70 vol.% was found to exist, close to the theoretical values of 64% and 74% for random and compact sphere packing, respectively, at which the properties of both emulsions and derived porous monoliths changed. Such change of behaviour was observed by many different techniques such as viscosity, electron microscopy, mercury intrusion, and mechanical studies. We show and explain why this critical oil fraction is the one leading to the strongest and most homogeneous porous monoliths

  7. Fabrication of mesoporous polymer monolith: a template-free approach.

    Science.gov (United States)

    Okada, Keisuke; Nandi, Mahasweta; Maruyama, Jun; Oka, Tatsuya; Tsujimoto, Takashi; Kondoh, Katsuyoshi; Uyama, Hiroshi

    2011-07-14

    Mesoporous polyacrylonitrile (PAN) monolith has been fabricated by a template-free approach using the unique affinity of PAN towards a water/dimethyl sulfoxide (DMSO) mixture. A newly developed Thermally Induced Phase Separation Technique (TIPS) has been used to obtain the polymer monoliths and their microstructures have been controlled by optimizing the concentration and cooling temperature.

  8. PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers

    Science.gov (United States)

    Chen, Xun; Fu, ChangBo; Galan, Javier; Giboni, Karl; Giuliani, Franco; Gu, LingHui; Han, Ke; Ji, XiangDong; Lin, Heng; Liu, JiangLai; Ni, KaiXiang; Kusano, Hiroki; Ren, XiangXiang; Wang, ShaoBo; Yang, Yong; Zhang, Dan; Zhang, Tao; Zhao, Li; Sun, XiangMing; Hu, ShouYang; Jian, SiYu; Li, XingLong; Li, XiaoMei; Liang, Hao; Zhang, HuanQiao; Zhao, MingRui; Zhou, Jing; Mao, YaJun; Qiao, Hao; Wang, SiGuang; Yuan, Ying; Wang, Meng; Khan, Amir N.; Raper, Neill; Tang, Jian; Wang, Wei; Dong, JiaNing; Feng, ChangQing; Li, Cheng; Liu, JianBei; Liu, ShuBin; Wang, XiaoLian; Zhu, DanYang; Castel, Juan F.; Cebrián, Susana; Dafni, Theopisti; Garza, Javier G.; Irastorza, Igor G.; Iguaz, Francisco J.; Luzón, Gloria; Mirallas, Hector; Aune, Stephan; Berthoumieux, Eric; Bedfer, Yann; Calvet, Denis; d'Hose, Nicole; Delbart, Alain; Diakaki, Maria; Ferrer-Ribas, Esther; Ferrero, Andrea; Kunne, Fabienne; Neyret, Damien; Papaevangelou, Thomas; Sabatié, Franck; Vanderbroucke, Maxence; Tan, AnDi; Haxton, Wick; Mei, Yuan; Kobdaj, Chinorat; Yan, Yu-Peng

    2017-06-01

    Searching for the neutrinoless double beta decay (NLDBD) is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments. PandaX-III (particle and astrophysical xenon experiment III) will search for the NLDBD of 136Xe at the China Jin Ping Underground Laboratory (CJPL). In the first phase of the experiment, a high pressure gas Time Projection Chamber (TPC) will contain 200 kg, 90% 136Xe enriched gas operated at 10 bar. Fine pitch micro-pattern gas detector (Microbulk Micromegas) will be used at both ends of the TPC for the charge readout with a cathode in the middle. Charge signals can be used to reconstruct the electron tracks of the NLDBD events and provide good energy and spatial resolution. The detector will be immersed in a large water tank to ensure 5 m of water shielding in all directions. The second phase, a ton-scale experiment, will consist of five TPCs in the same water tank, with improved energy resolution and better control over backgrounds.

  9. Recent advances in the preparation and application of monolithic capillary columns in separation science

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tingting; Yang, Xi; Xu, Yujing [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China); Ji, Yibing, E-mail: jiyibing@msn.com [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China)

    2016-08-10

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  10. Recent advances in the preparation and application of monolithic capillary columns in separation science

    International Nuclear Information System (INIS)

    Hong, Tingting; Yang, Xi; Xu, Yujing; Ji, Yibing

    2016-01-01

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  11. Shear bond strength of indirect composite material to monolithic zirconia.

    Science.gov (United States)

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (Pcomposite material and monolithic zirconia.

  12. Technology development for SOI monolithic pixel detectors

    International Nuclear Information System (INIS)

    Marczewski, J.; Domanski, K.; Grabiec, P.; Grodner, M.; Jaroszewicz, B.; Kociubinski, A.; Kucharski, K.; Tomaszewski, D.; Caccia, M.; Kucewicz, W.; Niemiec, H.

    2006-01-01

    A monolithic detector of ionizing radiation has been manufactured using silicon on insulator (SOI) wafers with a high-resistivity substrate. In our paper the integration of a standard 3 μm CMOS technology, originally designed for bulk devices, with fabrication of pixels in the bottom wafer of a SOI substrate is described. Both technological sequences have been merged minimizing thermal budget and providing suitable properties of all the technological layers. The achieved performance proves that fully depleted monolithic active pixel matrix might be a viable option for a wide spectrum of future applications

  13. Monolithic Chip-Integrated Absorption Spectrometer from 3-5 microns, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A monolithically integrated indium phosphide (InP) to silicon-on-sapphire (SoS) platform is being proposed for a monolithic portable or handheld spectrometer between...

  14. Surface characteristics and antibacterial activity of a silver-doped carbon monolith

    Directory of Open Access Journals (Sweden)

    Marija Vukčević et al

    2008-01-01

    Full Text Available A carbon monolith with a silver coating was prepared and its antimicrobial behaviour in a flow system was examined. The functional groups on the surface of the carbon monolith were determined by temperature-programmed desorption and Boehm's method, and the point of zero charge was determined by mass titration. The specific surface area was examined by N2 adsorption using the Brunauer, Emmett and Teller (BET method. As a test for the surface activity, the deposition of silver from an aqueous solution of a silver salt was used. The morphology and structure of the silver coatings were characterized by scanning electron microscopy and x-ray diffraction. The resistance to the attrition of the silver deposited on the carbon monolith was tested. The antimicrobial activity of the carbon monolith with a silver coating was determined using standard microbiological methods. Carbon monolith samples with a silver coating showed good antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans, and are therefore suitable for water purification, particularly as personal disposable water filters with a limited capacity.

  15. Metal Monolithic Amine-grafted Zeolite for CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven

    2011-03-31

    The solid amine sorbent for CO{sub 2} capture process has advantages of simplicity and low operating cost compared to the MEA (monoethanolamine) process. Solid amine sorbents reported so far suffered from either low CO{sub 2} capture capacity or low stability. The solid amine sorbent developed in this project exhibited more than 3.2 mmol/g and degraded less than 10% even after 500 cycles of heating and cooling in absence of steam. The presence of steam further enhanced CO{sub 2} capture capacity. The cost of the sorbent is estimated to be less than $7.00/lb. This sorbent was developed using the results of in situ infrared spectroscopic study. Infrared results showed that CO{sub 2} adsorbs on TEPA (tetraethylenepentamine)/PEG (polyethylene glycol) as carbamates and bicarbonates. The CO{sub 2} adsorption capacity and oxidation resistance of the amine sorbent can be enhanced by the interactions between NH{sub 2} of TEPA molecules with the OH group of PEG molecules. PEG was also found to be effectively disperse and immobilize the aromatic amines for SO{sub 2} adsorption. The infrared study also showed that SiO{sub 2} is a significantly better support than zeolites due to its proper hydrophobicity. The results of this study led to the development of a high performance solid amine sorbent under simulated gas flow condition in a fixed bed, a fluidized bed, and a metal monolith unit. This study showed heat transfer could become a major technical issue in scaling up a fixed bed adsorber. The use of the fluidized bed and metal monoliths can alleviate the heat transfer issue. The metal monolith could be suitable for small scale applications due to the high cost of manufacturing; the fluidized bed mode would be most suitable for large scale applications. Preliminary economic analysis suggested that the Akron solid amine process would cost 45% less than that of MEA process.

  16. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghoroury, Hussein S.; Yeh, Milton; Chen, J. C., E-mail: jc.chen@ostendo.com; Li, X.; Chuang, Chih-Li [EPI Lab, Ostendo Technologies, Inc., 679 Brea Canyon Rd, Walnut, CA 91789 (United States)

    2016-07-15

    Specially designed intermediate carrier blocking layers (ICBLs) in multi-active regions of III-nitride LEDs were shown to be effective in controlling the carrier injection distribution across the active regions. In principle, the majority of carriers, both holes and electrons, can be guided into targeted quantum wells and recombine to generate light of specific wavelengths at controlled current-densities. Accordingly we proposed and demonstrated a novel monolithic InGaN-based LED to achieve three primary colors of light from one device at selected current densities. This LED structure, which has three different sets of quantum wells separated with ICBLs for three primary red-green-blue (RGB) colors, was grown by metal-organic chemical vapor deposition (MOCVD). Results show that this LED can emit light ranging from 460 to 650 nm to cover the entire visible spectrum. The emission wavelength starts at 650 nm and then decreases to 460 nm or lower as the injection current increases. In addition to three primary colors, many other colors can be obtained by color mixing techniques. To the best of our knowledge, this is the first demonstration of monolithic full-color LED grown by a simple growth technique without using re-growth process.

  17. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers

    International Nuclear Information System (INIS)

    El-Ghoroury, Hussein S.; Yeh, Milton; Chen, J. C.; Li, X.; Chuang, Chih-Li

    2016-01-01

    Specially designed intermediate carrier blocking layers (ICBLs) in multi-active regions of III-nitride LEDs were shown to be effective in controlling the carrier injection distribution across the active regions. In principle, the majority of carriers, both holes and electrons, can be guided into targeted quantum wells and recombine to generate light of specific wavelengths at controlled current-densities. Accordingly we proposed and demonstrated a novel monolithic InGaN-based LED to achieve three primary colors of light from one device at selected current densities. This LED structure, which has three different sets of quantum wells separated with ICBLs for three primary red-green-blue (RGB) colors, was grown by metal-organic chemical vapor deposition (MOCVD). Results show that this LED can emit light ranging from 460 to 650 nm to cover the entire visible spectrum. The emission wavelength starts at 650 nm and then decreases to 460 nm or lower as the injection current increases. In addition to three primary colors, many other colors can be obtained by color mixing techniques. To the best of our knowledge, this is the first demonstration of monolithic full-color LED grown by a simple growth technique without using re-growth process.

  18. Molecularly Imprinted Porous Monolithic Materials from Melamine-Formaldehyde for Selective Trapping of Phosphopeptides

    DEFF Research Database (Denmark)

    Liu, Mingquan; Tran, Tri Minh; Abbas Elhaj, Ahmed Awad

    2017-01-01

    monoliths, chosen based on the combination of meso- and macropores providing optimal percolative flow and accessible surface area, was synthesized in the presence of N-Fmoc and O-Et protected phosphoserine and phosphotyrosine to prepare molecularly imprinted monoliths with surface layers selective...... for phosphopeptides. These imprinted monoliths were characterized alongside nonimprinted monoliths by a variety of techniques and finally evaluated by liquid chromatography-mass spectrometry in the capillary format to assess their abilities to trap and release phosphorylated amino acids and peptides from partly...

  19. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  20. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  1. Fine-grain concrete from mining waste for monolithic construction

    Science.gov (United States)

    Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhin, A. A.

    2018-03-01

    The technology of a monolithic construction is a well-established practice among most Russian real estate developers. The strong points of the technology are low cost of materials and lower demand for qualified workers. The monolithic construction uses various types of reinforced slabs and foamed concrete, since they are easy to use and highly durable; they also need practically no additional treatment.

  2. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    International Nuclear Information System (INIS)

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-01-01

    Understanding fuel foil mechanical properties, and fuel/cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel--cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel/cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results

  3. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    Science.gov (United States)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  4. Theory and measurements of electrophoretic effects in monolith, fixed-bed, and fluidized-bed plasma reactors

    International Nuclear Information System (INIS)

    Morin, T.J.

    1989-01-01

    Pressure gradients and secondary flow fields generated by the passage of electrical current in a d.c. gas discharge or gas laser are topics of longstanding interest in the gaseous electronics literature. These hydrodynamic effects of space charge fields and charged particle density gradients have been principally exploited in the development of gas separation and purification processes. In recent characterization studies of fixed-bed and fluidized-bed plasma reactors several anomalous flow features have been observed. These reactors involve the contacting of a high-frequency, resonantly-sustained, disperse gas discharge with granular solids in a fixed or fluidized bed. Anomalies in the measured pressure drops and fluidization velocities have motivated the development of an appropriate theoretical approach to, and some additional experimental investigations of electrophoretic effects in disperse gas discharges. In this paper, a theory which includes the effects of space charge and diffusion is used to estimate the electric field and charged particle density profiles. These profiles are then used to calculate velocity fields and gas flow rates for monolith, fixed-bed, and fluidized-bed reactors. These results are used to rationalize measurements of gas flow rates and axial pressure gradients in high-frequency disperse gas discharges with and without an additional d.c. axial electric field

  5. [O III] EMISSION AND GAS KINEMATICS IN A LYMAN-ALPHA BLOB AT z {approx} 3.1

    Energy Technology Data Exchange (ETDEWEB)

    McLinden, Emily M. [McDonald Observatory, University of Texas at Austin, Austin, TX 78712 (United States); Malhotra, Sangeeta; Rhoads, James E. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Hibon, Pascale [Gemini Observatory, La Serena (Chile); Weijmans, Anne-Marie [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Tilvi, Vithal [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2013-04-10

    We present spectroscopic measurements of the [O III] emission line from two subregions of strong Ly{alpha} emission in a radio-quiet Lyman-alpha blob (LAB). The blob under study is LAB1 at z {approx} 3.1, and the [O III] detections are from the two Lyman break galaxies (LBGs) embedded in the blob halo. The [O III] measurements were made with LUCIFER on the 8.4 m Large Binocular Telescope and NIRSPEC on 10 m Keck Telescope. Comparing the redshift of the [O III] measurements to Ly{alpha} redshifts from SAURON allows us to take a step toward understanding the kinematics of the gas in the blob. Using both LUCIFER and NIRSPEC we find velocity offsets between the [O III] and Ly{alpha} redshifts that are modestly negative or consistent with 0 km s{sup -1} in both subregions studied (ranging from -72 {+-} 42- + 6 {+-} 33 km s{sup -1}). A negative offset means Ly{alpha} is blueshifted with respect to [O III] a positive offset then implies Ly{alpha} is redshifted with respect to [O III]. These results may imply that outflows are not primarily responsible for Lyman alpha escape in this LAB, since outflows are generally expected to produce a positive velocity offset. In addition, we present an [O III] line flux upper limit on a third region of LAB1, a region that is unassociated with any underlying galaxy. We find that the [O III] upper limit from the galaxy-unassociated region of the blob is at least 1.4-2.5 times fainter than the [O III] flux from one of the LBG-associated regions and has an [O III] to Ly{alpha} ratio measured at least 1.9-3.4 times smaller than the same ratio measured from one of the LBGs.

  6. Controlling retention, selectivity and magnitude of EOF by segmented monolithic columns consisting of octadecyl and naphthyl monolithic segments--applications to RP-CEC of both neutral and charged solutes.

    Science.gov (United States)

    Karenga, Samuel; El Rassi, Ziad

    2011-04-01

    Monolithic capillaries made of two adjoining segments each filled with a different monolith were introduced for the control and manipulation of the electroosmotic flow (EOF), retention and selectivity in reversed phase-capillary electrochromatography (RP-CEC). These columns were called segmented monolithic columns (SMCs) where one segment was filled with a naphthyl methacrylate monolith (NMM) to provide hydrophobic and π-interactions, while the other segment was filled with an octadecyl acrylate monolith (ODM) to provide solely hydrophobic interaction. The ODM segment not only provided hydrophobic interactions but also functioned as the EOF accelerator segment. The average EOF of the SMC increased linearly with increasing the fractional length of the ODM segment. The neutral SMC provided a convenient way for tuning EOF, selectivity and retention in the absence of annoying electrostatic interactions and irreversible solute adsorption. The SMCs allowed the separation of a wide range of neutral solutes including polycyclic aromatic hydrocarbons (PAHs) that are difficult to separate using conventional alkyl-bonded stationary phases. In all cases, the k' of a given solute was a linear function of the fractional length of the ODM or NMM segment in the SMCs, thus facilitating the tailoring of a given SMC to solve a given separation problem. At some ODM fractional length, the fabricated SMC allowed the separation of charged solutes such as peptides and proteins that could not otherwise be achieved on a monolithic column made from NMM as an isotropic stationary phase due to the lower EOF exhibited by this monolith. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography.

    Science.gov (United States)

    Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2017-01-06

    Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming

    DEFF Research Database (Denmark)

    Cui, Xiaoti; Kær, Søren Knudsen

    2018-01-01

    Monolithic catalysts have received increasing attention for application in the small-scale steam methane reforming process. The radial heat transfer behaviors of monolith reformers were analyzed by two-dimensional computational fluid dynamic (CFD) modeling. A parameter study was conducted...... by a large number of simulations focusing on the thermal conductivity of the monolith substrate, washcoat layer, wall gap, radiation heat transfer and the geometric parameters (cell density, porosity and diameter of monolith). The effective radial thermal conductivity of the monolith structure, kr......,eff, showed good agreement with predictions made by the pseudo-continuous symmetric model. This influence of the radiation heat transfer is low for highly conductive monoliths. A simplified model has been developed to evaluate the importance of radiation for monolithic reformers under different conditions...

  9. A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane).

    Science.gov (United States)

    Burke, Jeffrey M; Smela, Elisabeth

    2012-03-01

    A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.

  10. Affinity monolith chromatography: A review of principles and recent analytical applications

    Science.gov (United States)

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  11. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin

    2012-10-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine, which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40. nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60. wt% being achieved with 40. nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30. nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. © 2012 Elsevier B.V.

  12. Microwaves integrated circuits: hybrids and monolithics - fabrication technology

    International Nuclear Information System (INIS)

    Cunha Pinto, J.K. da

    1983-01-01

    Several types of microwave integrated circuits are presented together with comments about technologies and fabrication processes; advantages and disadvantages in their utilization are analysed. Basic structures, propagation modes, materials used and major steps in the construction of hybrid thin film and monolithic microwave integrated circuits are described. Important technological applications are revised and main activities of the microelectronics lab. of the University of Sao Paulo (Brazil) in the field of hybrid and monolithic microwave integrated circuits are summarized. (C.L.B.) [pt

  13. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqi; Li, Zheng [College of Chemistry, Jilin University, Changchun 130012 (China); Niu, Qian [Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Ma, Jiutong [College of Chemistry, Jilin University, Changchun 130012 (China); Jia, Qiong, E-mail: jiaqiong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-10-30

    Graphical abstract: Poly(methacrylic acid-ethylene dimethacrylate) monolithic column embedded with zeolites was prepared and employed for the polymer monolith microextraction of colorants combined with HPLC. - Highlights: • Zeolite, as a kind of mesoporous material, was firstly combined with PMME. • Zeolite@poly(MAA-EDMA) monolith columns were prepared for the enrichment of colorants. • Zeolite@poly(MAA-EDMA) monolith columns demonstrated relatively high extraction capacity. - Abstract: A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  14. Solar photocatalytic gas-phase degradation of n-decane--a comparative study using cellulose acetate monoliths coated with P25 or sol-gel TiO₂ films.

    Science.gov (United States)

    Miranda, Sandra M; Lopes, Filipe V S; Rodrigues-Silva, Caio; Martins, Susana D S; Silva, Adrián M T; Faria, Joaquim L; Boaventura, Rui A R; Vilar, Vítor J P

    2015-01-01

    Cellulose acetate monoliths (CAM) were used as the substrate for the deposition of TiO2 films to produce honeycombed photoactive structures to fill a tubular photoreactor equipped with a compound parabolic collector. By using such a setup, an efficient single-pass gas-phase conversion was achieved in the degradation of n-decane, a model volatile organic compound. The CAM three-dimensional, gas-permeable transparent structure with a rugged surface enables a good adhesion of the catalytic coating. It also provides a rigid structure for packing the tubular photoreactor, and maximizing the illuminated catalyst surface. The efficiency of the photocatalytic oxidation (PCO) process on n-decane degradation was evaluated under different operating conditions, such as feeding concentration (73 and 146 ppm), gas stream flow rate (73, 150, and 300 mL min(-1)), relative humidity (3 and 25 %), and UV irradiance (18.9, 29.1, and 38.4 WUV m(-2)). The results show that n-decane degradation by neat photolysis is negligible, but mineralization efficiencies of 86 and 82 % were achieved with P25-CAM and SG-CAM, respectively, for parent pollutant conversions above 95 %, under steady-state conditions. A mass transfer model, considering the mass balance to the plug-flow packed photoreactor, and PCO reaction given by a Langmuir-Hinshelwood bimolecular non-competitive two types of sites equation, was able to predict well the PCO kinetics under steady-state conditions, considering all the operational parameters tested. Overall, the performance of P25-CAM was superior taking into account mineralization efficiency, cost of preparation, surface roughness, and robustness of the deposited film.

  15. Trends in heteroepitaxy of III-Vs on silicon for photonic and photovoltaic applications

    Science.gov (United States)

    Lourdudoss, Sebastian; Junesand, Carl; Kataria, Himanshu; Metaferia, Wondwosen; Omanakuttan, Giriprasanth; Sun, Yan-Ting; Wang, Zhechao; Olsson, Fredrik

    2017-02-01

    We present and compare the existing methods of heteroepitaxy of III-Vs on silicon and their trends. We focus on the epitaxial lateral overgrowth (ELOG) method as a means of achieving good quality III-Vs on silicon. Initially conducted primarily by near-equilibrium epitaxial methods such as liquid phase epitaxy and hydride vapour phase epitaxy, nowadays ELOG is being carried out even by non-equilibrium methods such as metal organic vapour phase epitaxy. In the ELOG method, the intermediate defective seed and the mask layers still exist between the laterally grown purer III-V layer and silicon. In a modified ELOG method called corrugated epitaxial lateral overgrowth (CELOG) method, it is possible to obtain direct interface between the III-V layer and silicon. In this presentation we exemplify some recent results obtained by these techniques. We assess the potentials of these methods along with the other existing methods for realizing truly monolithic photonic integration on silicon and III-V/Si heterojunction solar cells.

  16. A Monolithic Perovskite Structure for Use as a Magnetic Regenerator

    DEFF Research Database (Denmark)

    Pryds, Nini; Clemens, Frank; Menon, Mohan

    2011-01-01

    A La0.67Ca0.26Sr0.07Mn1.05O3 (LCSM) perovskite was prepared for the first time as a ceramic monolithic regenerator used in a regenerative magnetic refrigeration device. The parameters influencing the extrusion process and the performance of the regenerator, such as the nature of the monolith paste...

  17. Cholesterol-imprinted macroporous monoliths: Preparation and characterization.

    Science.gov (United States)

    Stepanova, Mariia А; Kinziabulatova, Lilia R; Nikitina, Anna A; Korzhikova-Vlakh, Evgenia G; Tennikova, Tatiana B

    2017-11-01

    The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Strength of normal sections of NPP composite monolithic constructions with ribbed reinforced panels

    International Nuclear Information System (INIS)

    Klyashitskij, V.I.; Kirillov, A.P.

    1980-01-01

    Strength characteristics and recommendations on designing composite-monolytic structures of NPP with ribbed reinforced panels are considered. Ribbed reinforced panel consists of a system of cross ribs joined with a comparatively thin (25 mm thick) plate. The investigations were carried on using models representing columns symmetrically reinforced with reinforced panels with a low percent of reinforcing. The monolithic structures consisting of ribbed reinforced panels and cast concrete for making monoliths as well as monolithic having analogous strength characteristics of extended and compressed zones have similar strengths. It is shown that calculation of supporting power of composite-monolithic structures is performed according to techniques developed for monolithic structures. Necessity of structural transverse fittings no longer arises in case of corresponding calculational substitution of stability of compressed parts of fittings. Supporting power of a structure decreases not more than by 10% in the presence of cracks in the reinforced panels of the compressed zone. Application of composite-monolithic structures during the construction of the Kursk, Smolensk and Chernobylskaya NPPs permitted to decrease labour content and reduce periods of accomplishment of these works which saves over 6 million roubles

  19. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  20. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  1. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  2. Broadband EM Performance Characteristics of Single Square Loop FSS Embedded Monolithic Radome

    Directory of Open Access Journals (Sweden)

    Raveendranath U. Nair

    2013-01-01

    Full Text Available A monolithic half-wave radome panel, centrally loaded with aperture-type single square loop frequency selective surface (SSL-FSS, is proposed here for broadband airborne radome applications. Equivalent transmission line method in conjunction with equivalent circuit model (ECM is used for modeling the SSL-FSS embedded monolithic half-wave radome panel and evaluating radome performance parameters. The design parameters of the SSL-FSS are optimized at different angles of incidence such that the new radome wall configuration offers superior EM performance from L-band to X-band as compared to the conventional monolithic half-wave slab of identical material and thickness. The superior EM performance of SSL-FSS embedded monolithic radome wall makes it suitable for the design of normal incidence and streamlined airborne radomes.

  3. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    International Nuclear Information System (INIS)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen

    2014-01-01

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu 2+ was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu 2+ were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu 2+ ). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied

  4. Preparation and characterization of poly-(methacrylatoethyl trimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate monolith

    Directory of Open Access Journals (Sweden)

    Eko Malis

    2015-05-01

    Full Text Available A polymer monolithic column, poly-(methacrylatoethyltrimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate or poly-(MATE-co-VBC-co-EDMA was successfully prepared in the current study by one-step thermally initiated in situ polymerization, confined in a steel tubing of 0.5 mm i.d. and 1/16” o.d. The monoliths were prepared from methacrylatoethyltrimethylammonium chloride (MATE and vinylbenzyl chloride (VBC as monomer and ethylene dimethacrylate (EDMA as crosslinker using a binary porogen system of 1-propanol and 1,4-butanediol. The inner wall of steel tubing was pretreated with 3-methacryloxypropyl-trimethoxysilane (MAPS. In order to obtain monolith with adequate column efficiency and low flow resistance, some parameters such as total monomer concentration (%T and crosslinker concentration (%C were optimized. The morphology of this monolith was assessed by scanning electron microscopy (SEM. The properties of the monolithic column, such as permeability, binding capacity, and pore size distribution were also characterized in detail. From the results of the characterization of all monolith variation, monolith with %T 30 %C 50 and %T 35 %C 50 give the best characteristic. These monoliths have high permeability, adequate molecular recognition sites (represented with binding capacity value of over 20 mg/mL, and have over 80% flow through pores in their pore structure contribute to low flow resistance. The resulted monolithic columns have promising potential for dual mode liquid chromatography. MATE may contribute for anion-exchange while VBC may responsible for reversed-phase liquid chromatography.

  5. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Directory of Open Access Journals (Sweden)

    Cheng Chuantong

    2017-07-01

    Full Text Available Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  6. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Science.gov (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  7. Dual jaw treatment of edentulism using implant-supported monolithic zirconia fixed prostheses.

    Science.gov (United States)

    Altarawneh, Sandra; Limmer, Bryan; Reside, Glenn J; Cooper, Lyndon

    2015-01-01

    This case report describes restoration of the edentulous maxilla and mandible with implant supported fixed prostheses using monolithic zirconia, where the incisal edges and occluding surfaces were made of monolithic zirconia. Edentulism is a debilitating condition that can be treated with either a removable or fixed dental prosthesis. The most common type of implant-supported fixed prosthesis is the metal acrylic (hybrid), with ceramo-metal prostheses being used less commonly in complete edentulism. However, both of these prostheses designs are associated with reported complications of screw loosening or fracture and chipping of acrylic resin and porcelain. Monolithic zirconia implant-supported fixed prostheses have the potential for reduction of such complications. In this case, the CAD/CAM concept was utilized in fabrication of maxillary and mandibular screw-retained implant-supported fixed prostheses using monolithic zirconia. Proper treatment planning and execution coupled with utilizing advanced technologies contributes to highly esthetic results. However, long-term studies are required to guarantee a satisfactory long-term outcome of this modality of treatment. This case report describes the clinical and technical procedures involved in fabrication of maxillary and mandibular implant-supported fixed prostheses using monolithic zirconia as a treatment of edentulism, and proposes the possible advantages associated with using monolithic zirconia in eliminating dissimilar interfaces in such prostheses that are accountable for the most commonly occurring technical complication for these prostheses being chipping and fracture of the veneering material. © 2015 Wiley Periodicals, Inc.

  8. Stanley Kubrick and B.F. Skinner : Is a Teaching Machine a Monolith ?

    OpenAIRE

    浜野, 保樹; ハマノ, ヤスキ; Yasuki, Hamano

    1990-01-01

    The teaching machine invented by B.F. Skinner was recog-nized as one of few clear achievements of scientific pedagogy and even appeared in SF. Arthur C. Clarke who wrote the script of the SF movie "2001: A Space Odyssey" with Stanley Kubrick wanted to scientifically define a monolith to be a God who had given intelligence to our ancestors. In other words, he wanted to describe a monolith as a teaching machine as well as a God. However Kubrick did not want to make clear about what a monolith i...

  9. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  10. The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties.

    Science.gov (United States)

    Li, Haibin; Liu, Chusheng; Wang, Qiqin; Zhou, Haibo; Jiang, Zhengjin

    2016-10-21

    In order to investigate the effect of charged groups present in hydrophilic monolithic stationary phases on their chromatographic properties, three charged hydrophilic monomers, i.e. N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA), [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETA), and 3-sulfopropyl acrylate potassium salt (SPA) were co-polymerized with the crosslinker N,N'-methylenebisacrylamide (MBA), respectively. The physicochemical properties of the three resulting charged hydrophilic monolithic columns were evaluated using scanning electron microscopy, ζ-potential analysis and micro-HPLC. High column efficiency was obtained on the three monolithic columns at a linear velocity of 1mm/s using thiourea as test compound. Comparative characterization of the three charged HILIC phases was then carried out using a set of model compounds, including nucleobases, nucleosides, benzoic acid derivatives, phenols, β-blockers and small peptides. Depending on the combination of stationary phase/mobile phase/solute, both hydrophilic interaction and other potential secondary interactions, including electrostatic interaction, hydrogen-bonding interaction, molecular shape selectivity, could contribute to the over-all retention of the analytes. Because of the strong electrostatic interaction provided by the quaternary ammonium groups in the poly (AETA-co-MBA) monolith, this cationic HILIC monolith exhibited the strongest retention for benzoic acid derivatives and small peptides with distorted peak shapes and the weakest retention for basic β-blockers. The sulfonyl groups on the poly (SPA-co-MBA) hydrophilic monolith could provide strong electrostatic attraction and hydrogen bonding for positively charged analytes and hydrogen-donor/acceptor containing analytes, respectively. Therefore, basic drugs, nucleobases and nucleotides exhibited the strongest retention on this anionic monolith. Because of the weak but distinct cation exchange properties of

  11. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen, E-mail: zhangch@mail.buct.edu.cn

    2014-07-15

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu{sup 2+} was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu{sup 2+} were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu{sup 2+}). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied.

  12. Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing.

    Science.gov (United States)

    Lv, Chunguang; Heiter, Jaana; Haljasorg, Tõiv; Leito, Ivo

    2016-08-17

    A new method of reproducible preparation of vinylic polymeric monolithic columns with a key step of covalently anchoring the monolith to PEEK surface is described. In order to chemically attach the polymer monolith to the tube wall, methacrylate functional groups were introduced onto PEEK surface by a three-step procedure, including surface etching, surface reduction and surface methacryloylation. The chemical state of the modified tubing surface was characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy. It was found that the etching step is the key to successfully modifying the PEEK tubing surface. Poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermally initiated free radical copolymerization within the confines of surface-vinylized PEEK tubings of dimensions close to ones conventionally used in HPLC and UHPLC (1.6 mm internal diameter, 10.0-12.5 cm length). Adhesion test was done by measuring the operating pressure drop, which the prepared stationary phases can withstand. Good pressure resistance, up to 140 bar/10 cm (flow rate 0.5 mL min(-1), acetonitrile as a mobile phase), indicates strong bonding of monolith to the tubing wall. The monolithic material was proven to have a permeability of 1.7 × 10 (-14) m(2), applying acetonitrile-water 70:30 (v/v) as a mobile phase. The column performance was reproducible from column to column and was evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode (acetonitrile-water 70:30, v/v). The numbers of plates per meter at optimal flow rate were found to be between 26 000 and 32 000 for the different analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules.

    Science.gov (United States)

    Liu, Kun; Tolley, H Dennis; Lee, Milton L

    2012-03-02

    Seven crosslinking monomers, i.e., 1,3-butanediol dimethacrylate (1,3-BDDMA), 1,4-butanediol dimethacrylate (1,4-BDDMA), neopentyl glycol dimethacrylate (NPGDMA), 1,5-pentanediol dimethacrylate (1,5-PDDMA), 1,6-hexanediol dimethacrylate (1,6-HDDMA), 1,10-decanediol dimethacrylate (1,10-DDDMA), and 1,12-dodecanediol dimethacrylate (1,12-DoDDMA), were used to synthesize highly cross-linked monolithic capillary columns for reversed-phase liquid chromatography (RPLC) of small molecules. Dodecanol and methanol were chosen as "good" and "poor" porogenic solvents, respectively, for these monoliths, and were investigated in detail to provide insight into the selection of porogen concentration using 1,12-DoDDMA. Isocratic elution of alkylbenzenes at a flow rate of 300 nL/min was conducted for all of the monoliths. Gradient elution of alkylbenzenes and alkylparabens provided high resolution separations. Optimized monoliths synthesized from all seven crosslinking monomers showed high permeability. Several of the monoliths demonstrated column efficiencies in excess of 50,000 plates/m. Monoliths with longer alkyl-bridging chains showed very little shrinking or swelling in solvents of different polarities. Column preparation was highly reproducible; the relative standard deviation (RSD) values (n=3) for run-to-run and column-to-column were less than 0.25% and 1.20%, respectively, based on retention times of alkylbenzenes. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Porous polymer monolithic col

    Directory of Open Access Journals (Sweden)

    Lydia Terborg

    2015-05-01

    Full Text Available A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water and ion exchange chromatographic modes (applying gradient of salt in water, respectively.

  15. Solid State Characterizations of Long-Term Leached Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Asmussen, Robert M.; Pearce, Carolyn I.; Parker, Kent E.; Miller, Brian W.; Lee, Brady D.; Buck, Edgar C.; Washton, Nancy M.; Bowden, Mark E.; Lawter, Amanda R.; McElroy, Erin M.; Serne, R Jeffrey

    2016-09-30

    This report describes the results from the solid phase characterization of six Cast Stone monoliths from the extended leach tests recently reported on (Serne et al. 2016),that were selected for characterization using multiple state-of-the-art approaches. The Cast Stone samples investigated were leached for > 590 d in the EPA Method 1315 test then archived for > 390 d in their final leachate. After reporting the long term leach behavior of the monoliths (containing radioactive 99Tc and stable 127I spikes and for original Westsik et al. 2013 fabricated monoliths, 238U), it was suggested that physical changes to the waste forms and a depleting inventory of contaminants of potential concern may mean that effective diffusivity calculations past 63 d should not be used to accurately represent long-term waste form behavior. These novel investigations, in both length of leaching time and application of solid state techniques, provide an initial arsenal of techniques which can be utilized to perform such Cast Stone solid phase characterization work, which in turn can support upcoming performance assessment maintenance. The work was performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to characterize several properties of the long- term leached Cast Stone monolith samples.

  16. Fabrication and Characterisation of Low-noise Monolithic Mode-locked Lasers

    DEFF Research Database (Denmark)

    Larsson, David

    2007-01-01

    This thesis deals with the fabrication and characterisation of monolithic semiconductor mode-locked lasers for use in optical communication systems. Other foreseeable applications may be as sources in microwave photonics and optical sampling. The thesis also deals with the design and fabrication...... of intracavity monolithically integrated filters. The common dnominator among the diffrent parts of the thesis is how to achieve and measure the lowest possible noise. Achieving low noise has been pinpointed as one of the most important and difficult challenges for semiconductor mode-locked lasers. The main...... result of this thesis are a fabrication process of a monolithic and deeply etched distributed Bragg reflector and a characterisation system for measurement of quantum limitid timing noise at high repetition rates. The Bragg reflector is a key component in achieving transform limited pulses with low noise...

  17. Recent progress in low-temperature-process monolithic three dimension technology

    Science.gov (United States)

    Yang, Chih-Chao; Hsieh, Tung-Ying; Huang, Wen-Hsien; Shen, Chang-Hong; Shieh, Jia-Min; Yeh, Wen-Kuan; Wu, Meng-Chyi

    2018-04-01

    Monolithic three-dimension (3D) integration is an ultimate alternative method of fabricating high density, high performance, and multi-functional integrated circuits. It offers the promise of being a new approach to increase system performance. How to manage the thermal impact of multi-tiered processes, such as dopant activation, source/drain silicidation, and channel formation, and to prevent the degradation of pre-existing devices/circuits become key challenges. In this paper, we provide updates on several important monolithic 3D works, particularly in sequentially stackable channels, and our recent achievements in monolithic 3D integrated circuit (3D-IC). These results indicate that the advanced 3D architecture with novel design tools enables ultrahigh-density stackable circuits to have superior performance and low power consumption for future artificial intelligence (AI) and internet of things (IoTs) application.

  18. Monolithic fiber optic sensor assembly

    Science.gov (United States)

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  19. Towards a Technique for Extracting Microservices from Monolithic Enterprise Systems

    OpenAIRE

    Levcovitz, Alessandra; Terra, Ricardo; Valente, Marco Tulio

    2016-01-01

    The idea behind microservices architecture is to develop a single large, complex application as a suite of small, cohesive, independent services. On the other way, monolithic systems get larger over the time, deviating from the intended architecture, and becoming risky and expensive to evolve. This paper describes a technique to identify and define microservices on monolithic enterprise systems. As the major contribution, our evaluation shows that our approach was able to identify relevant ca...

  20. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    Science.gov (United States)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  1. Antagonist wear of monolithic zirconia crowns after 2 years.

    Science.gov (United States)

    Lohbauer, Ulrich; Reich, Sven

    2017-05-01

    The aim of this study was to evaluate the amount of wear on the antagonist occlusal surfaces of clinically placed monolithic zirconia premolar and molar crowns (LAVA Plus, 3M ESPE). Fourteen in situ monolithic zirconia crowns and their opposing antagonists (n = 26) are the subject of an ongoing clinical trial and have been clinically examined at baseline and after 24 months. Silicone impressions were taken and epoxy replicas produced for qualitative SEM analysis and quantitative analysis using optical profilometry. Based on the baseline replicas, the follow-up situation has been scanned and digitally matched with the initial topography in order to calculate the mean volume loss (in mm 3 ) as well as the mean maximum vertical loss (in mm) after 2 years in service. The mean volume loss for enamel antagonist contacts (n = 7) was measured to 0.361 mm 3 and the mean of the maximum vertical loss to 0.204 mm. The mean volume loss for pure ceramic contacts (n = 10) was measured to 0.333 mm 3 and the mean of the maximum vertical loss to 0.145 mm. The wear rates on enamel contacts were not significantly different from those measured on ceramic antagonists. Based on the limitations of this study, it can be concluded for the monolithic zirconia material LAVA Plus that the measured wear rates are in consensus with other in vivo studies on ceramic restorations. Further, that no significant difference was found between natural enamel antagonists and ceramic restorations as antagonists. The monolithic zirconia restorations do not seem to be affected by wear within the first 2 years. The monolithic zirconia crowns (LAVA Plus) show acceptable antagonist wear rates after 2 years in situ, regardless of natural enamel or ceramics as antagonist materials.

  2. A monolithic integrated photonic microwave filter

    Science.gov (United States)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  3. Monolithically integrated 8-channel WDM reflective modulator

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this work the design and characterization of a monolithically integrated photonic circuit acting as a reflective modulator for eight WDM channels is presented. The chip was designed and fabricated in a generic integration technology

  4. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  5. David Adler Lectureship Award Talk: III-V Semiconductor Nanowires on Silicon for Future Devices

    Science.gov (United States)

    Riel, Heike

    Bottom-up grown nanowires are very attractive materials for direct integration of III-V semiconductors on silicon thus opening up new possibilities for the design and fabrication of nanoscale devices for electronic, optoelectronic as well as quantum information applications. Template-Assisted Selective Epitaxy (TASE) allows the well-defined and monolithic integration of complex III-V nanostructures and devices on silicon. Achieving atomically abrupt heterointerfaces, high crystal quality and control of dimension down to 1D nanowires enabled the demonstration of FETs and tunnel devices based on In(Ga)As and GaSb. Furthermore, the strong influence of strain on nanowires as well as results on quantum transport studies of InAs nanowires with well-defined geometry will be presented.

  6. Catalytic hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P [VTT Energy, Espoo (Finland)

    1997-12-31

    Gasification gas that contains particulates can be purified from tars and ammonia by using nickel monolith catalysts. Temperatures over 900 deg C are required at 20 bar pressure to avoid deactivation by H{sub 2}S and carbon. Dolomites and limestones are effective tar decomposing catalysts only when calcined. Tar decomposition in gasification conditions can take place by steam or dry (CO{sub 2}) reforming reactions. These reactions follow apparent first order kinetics with respect to hydrocarbons in gasification conditions. (author) (16 refs.)

  7. Catalytic hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas that contains particulates can be purified from tars and ammonia by using nickel monolith catalysts. Temperatures over 900 deg C are required at 20 bar pressure to avoid deactivation by H{sub 2}S and carbon. Dolomites and limestones are effective tar decomposing catalysts only when calcined. Tar decomposition in gasification conditions can take place by steam or dry (CO{sub 2}) reforming reactions. These reactions follow apparent first order kinetics with respect to hydrocarbons in gasification conditions. (author) (16 refs.)

  8. Environmentally Benign Production of Stretchable and Robust Superhydrophobic Silicone Monoliths.

    Science.gov (United States)

    Davis, Alexander; Surdo, Salvatore; Caputo, Gianvito; Bayer, Ilker S; Athanassiou, Athanassia

    2018-01-24

    Superhydrophobic materials hold an enormous potential in sectors as important as aerospace, food industries, or biomedicine. Despite this great promise, the lack of environmentally friendly production methods and limited robustness remain the two most pertinent barriers to the scalability, large-area production, and widespread use of superhydrophobic materials. In this work, highly robust superhydrophobic silicone monoliths are produced through a scalable and environmentally friendly emulsion technique. It is first found that stable and surfactantless water-in-polydimethylsiloxane (PDMS) emulsions can be formed through mechanical mixing. Increasing the internal phase fraction of the precursor emulsion is found to increase porosity and microtexture of the final monoliths, rendering them superhydrophobic. Silica nanoparticles can also be dispersed in the aqueous internal phase to create micro/nanotextured monoliths, giving further improvements in superhydrophobicity. Due to the elastomeric nature of PDMS, superhydrophobicity can be maintained even while the material is mechanically strained or compressed. In addition, because of their self-similarity, the monoliths show outstanding robustness to knife-scratch, tape-peel, and finger-wipe tests, as well as rigorous sandpaper abrasion. Superhydrophobicity was also unchanged when exposed to adverse environmental conditions including corrosive solutions, UV light, extreme temperatures, and high-energy droplet impact. Finally, important properties for eventual adoption in real-world applications including self-cleaning, stain-repellence, and blood-repellence are demonstrated.

  9. Optical properties of pre-colored dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (Pceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Namkoong, Gon; Lee, Kyoung-Keun; Madison, Shannon M.; Henderson, Walter; Ralph, Stephen E.; Doolittle, W. Alan

    2005-01-01

    Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO 3 ) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000 deg. C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO 3 , producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN/GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO 3 modulators on compact optoelectronic/electronic chips

  11. New 'monolithic' templates and improved protocols for soft lithography and microchip fabrication

    International Nuclear Information System (INIS)

    Pallandre, Antoine; Pal, Debjani; Lambert, Bertrand de; Viovy, Jean-Louis; Fuetterer, Claus

    2006-01-01

    We report a new method for fast prototyping and fabrication of polydimethylsiloxane (PDMS) and plastic microfluidic chips. These methods share in common the preparation of monolithic masters which includes the fabrication of the planar support, the 'negative pattern' of the microchannels and the fluidic connectors. The monolithic templates are extremely robust compared to conventional ones made of silicon and SU-8, and easier to produce and cheaper than all-silicon or electroplated templates. In contrast to the above-mentioned methods, our process allows one to cast both micrometre- (e.g. the microchannel) and millimetre-sized structures (e.g. the fluidic connection to the outer world) in a single fabrication step. The 'monolithic template' strategy can be used to fabricate both elastomeric (e.g. poly(dimethyl siloxane (PDMS)) polyester thermoset masters and glassy polymeric (e.g. cyclic olefin copolymer (COC)) devices. In this study we also report on one step fabrication of elastomer chips and on surface modifications of the above mentioned monolithically fabricated masters in order to improve separation of the chip from the template

  12. Laboratory Connections--Gas Monitoring Transducers Part III: Combustible Gas Sensors.

    Science.gov (United States)

    Powers, Michael H.; Dahman, Doug

    1989-01-01

    Describes an interface that uses semiconductor metal oxides to detect low gas concentrations. Notes the detector has long life, high stability, good reproducibility, low cost, and is able to convert the gas concentration to an electrical signal with a simple circuit. Theory, schematic, and applications are provided. (MVL)

  13. Failure analysis of various monolithic posterior aesthetic dental crowns using finite element method

    Science.gov (United States)

    Porojan, Liliana; Topală, Florin

    2017-08-01

    The aim of the study was to assess the effect of material stiffness and load on the biomechanical performance of the monolithic full-coverage posterior aesthetic dental crowns using finite element analysis. Three restorative materials for monolithic dental crowns were selected for the study: zirconia; lithium disilicate glass-ceramic, and resin-based composite. Stresses were calculated in the crowns for all materials and in the teeth structures, under different load values. The experiments show that dental crowns made from all this new aesthetic materials processed by CAD/CAM technologies would be indicated as monolithic dental crowns for posterior areas.

  14. Effect of pore size on performance of monolithic tube chromatography of large biomolecules.

    Science.gov (United States)

    Podgornik, Ales; Hamachi, Masataka; Isakari, Yu; Yoshimoto, Noriko; Yamamoto, Shuichi

    2017-11-01

    Effect of pore size on the performance of ion-exchange monolith tube chromatography of large biomolecules was investigated. Radial flow 1 mL polymer based monolith tubes of different pore sizes (1.5, 2, and 6 μm) were tested with model samples such as 20 mer poly T-DNA, basic proteins, and acidic proteins (molecular weight 14 000-670 000). Pressure drop, pH transient, the number of binding site, dynamic binding capacity, and peak width were examined. Pressure drop-flow rate curves and dynamic binding capacity values were well correlated with the nominal pore size. While duration of the pH transient curves depends on the pore size, it was found that pH duration normalized on estimated surface area was constant, indicating that the ligand density is the same. This was also confirmed by the constant number of binding site values being independent of pore size. The peak width values were similar to those for axial flow monolith chromatography. These results showed that it is easy to scale up axial flow monolith chromatography to radial flow monolith tube chromatography by choosing the right pore size in terms of the pressure drop and capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    CERN Document Server

    Giubilato, P; Snoeys, W; Bisello, D; Marchioro, A; Battaglia, M; Demaria, L; Mansuy, S C; Pantano, D; Rousset, J; Mattiazzo, S; Kloukinas, K; Potenza, A; Ikemoto, Y; Rivetti, A; Chalmet, P; Mugnier, H; Silvestrin, L

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV Fe-55 double peak at room temperature. To achieve high granularity (10-20 mu m pitch pixels) over large detector areas maintaining high readout speed, a complet...

  16. THE CHANGE IN DEFORMATION CHARACTERISTICS OF CONCRETE MONOLITHIC HIGH-RISE BUILDINGS

    Directory of Open Access Journals (Sweden)

    V. V. Punahin

    2009-03-01

    Full Text Available In the article results of studies of deformation features of concrete on actuate cement for monolithic high-altitude buildings are presented. It is shown that in construction of the high-altitude monolithic buildings in a summer period of a year one should take into account the character of changing the concrete elasticity and plasticity in time, which differs from the same indices for the concrete of normal hardening.

  17. Preparation of polymer monolithic column functionalized by arsonic acid groups for mixed-mode capillary liquid chromatography.

    Science.gov (United States)

    Qin, Zhang-Na; Yu, Qiong-Wei; Wang, Ren-Qi; Feng, Yu-Qi

    2018-04-27

    A mixed-mode polymer monolithic column functionalized by arsonic acid groups was prepared by single-step in situ copolymerization of monomers p-methacryloylaminophenylarsonic acid (p-MAPHA) and pentaerythritol triacrylate (PETA). The prepared poly(p-MAPHA-co-PETA) monolithic column has a homogeneous monolithic structure with good permeability and mechanical stability. Zeta potential measurements reveal that the monolithic stationary phase holds a negative surface charge when the mobile phase resides in the pH range of 3.0-8.0. The retention mechanisms of prepared monolithic column are explored by the separation of selected polycyclic aromatic hydrocarbons (PAHs), nucleosides, and three basic compounds. The results indicate that the column functions in three different separation modes associated with reversed-phase chromatography based on hydrophobic interaction, hydrophilic interaction chromatography, and cation-exchange chromatography. The column efficiency of prepared monolithic column is estimated to be 70,000 and 76,000 theoretical plates/m for thiourea and naphthalene, respectively, at a linear flow velocity of 0.85 mm/s using acetonitrile/H 2 O (85/15, v/v) as the mobile phase. Furthermore, an analysis of the retention factors obtained for the PAHs indicates that the prepared monolithic column exhibits good reproducibility with relative standard deviations of 2.9%, 4.0%, and 4.7% based on run-to-run injections, column-to-column preparation, and batch-to-batch preparation, respectively. Finally, we investigate the separation performance of the proposed monolithic column for select phenols, sulfonamides, nucleobases and nucleosides. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    International Nuclear Information System (INIS)

    Vazquez, Mercedes; Paull, Brett

    2010-01-01

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  19. Monolithic millimeter-wave and picosecond electronic technologies

    International Nuclear Information System (INIS)

    Talley, W.K.; Luhmann, N.C.

    1996-01-01

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band (∼8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies

  20. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  1. Fast analysis of glycosides based on HKUST-1-coated monolith solid-phase microextraction and direct analysis in real-time mass spectrometry.

    Science.gov (United States)

    Li, Xianjiang; Wang, Xin; Ma, Wen; Ai, Wanpeng; Bai, Yu; Ding, Li; Liu, Huwei

    2017-04-01

    Glycosides are a kind of highly important natural aromatic precursors in tobacco leaves. In this study, a novel HKUST-1-coated monolith dip-it sampler was designed for the fast and sensitive analysis of trace glycosides using direct analysis in real-time mass spectrometry. This device was prepared in two steps: in situ polymerization of monolith in a glass capillary of dip-it and layer-by-layer growth of HKUST-1 on the surface of monolith. Sufficient extraction was realized by immersing the tip to solution and in situ desorption was carried out by plasma direct analysis in real time. Compared with traditional solid-phase microextraction protocols, sample desorption was not needed anymore, and only extraction conditions were needed to be optimized in this method, including the gas temperature of direct analysis in real time, extraction time, and CH 3 COONH 4 additive concentration. This method enabled the simultaneous detection of six kinds of glycosides with the limits of detection of 0.02-0.05 μg/mL and the linear ranges covering two orders of magnitude with the limits of quantitation of 0.05-0.1 μg/mL. Moreover, the developed method was applied for the glycosides analysis of three tobacco samples, which only took about 2 s for every sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  3. Spatial and Temporal Variability in Biogenic Gas Accumulation and Release in The Greater Everglades at Multiple Scales of Measurement

    Science.gov (United States)

    McClellan, M. D.; Cornett, C.; Schaffer, L.; Comas, X.

    2017-12-01

    Wetlands play a critical role in the carbon (C) cycle by producing and releasing significant amounts of greenhouse biogenic gasses (CO2, CH4) into the atmosphere. Wetlands in tropical and subtropical climates (such as the Florida Everglades) have become of great interest in the past two decades as they account for more than 20% of the global peatland C stock and are located in climates that favor year-round C emissions. Despite the increase in research involving C emission from these types of wetlands, the spatial and temporal variability involving C production, accumulation and release is still highly uncertain, and is the focus of this research at multiple scales of measurement (i.e. lab, field and landscape). Spatial variability in biogenic gas content, build up and release, at both the lab and field scales, was estimated using a series of ground penetrating radar (GPR) surveys constrained with gas traps fitted with time-lapse cameras. Variability in gas content was estimated at the sub-meter scale (lab scale) within two extracted monoliths from different wetland ecosystems at the Disney wilderness Preserve (DWP) and the Blue Cypress Preserve (BCP) using high frequency GPR (1.2 GHz) transects across the monoliths. At the field scale (> 10m) changes in biogenic gas content were estimated using 160 MHz GPR surveys collected within 4 different emergent wetlands at the DWP. Additionally, biogenic gas content from the extracted monoliths was used to developed a landscape comparison of C accumulation and emissions for each different wetland ecosystem. Changes in gas content over time were estimated at the lab scale at high temporal resolution (i.e. sub-hourly) in monoliths from the BCP and Water Conservation Area 1-A. An autonomous rail system was constructed to estimate biogenic gas content variability within the wetland soil matrix using a series of continuous, uninterrupted 1.2 GHz GPR transects along the samples. Measurements were again constrained with an array

  4. Carprofen-imprinted monolith prepared by reversible addition-fragmentation chain transfer polymerization in room temperature ionic liquids.

    Science.gov (United States)

    Ban, Lu; Han, Xu; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng

    2013-10-01

    To obtain fast separation, ionic liquids were used as porogens first in combination with reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare a new type of molecularly imprinted polymer (MIP) monolith. The imprinted monolithic column was synthesized using a mixture of carprofen (template), 4-vinylpyridine, ethylene glycol dimethacrylate, [BMIM]BF4, and chain transfer agent (CTA). Some polymerization factors, such as template-monomer molar ratio, the degree of crosslinking, the composition of the porogen, and the content of CTA, on the column efficiency and imprinting effect of the resulting MIP monolith were systematically investigated. Affinity screening of structurally similar compounds with the template can be achieved in 200 s on the MIP monolith due to high column efficiency (up to 12,070 plates/m) and good column permeability. Recognition mechanism of the imprinted monolith was also investigated.

  5. Monoliths of activated carbon from coconut shell and impregnation with nickel and copper

    International Nuclear Information System (INIS)

    Giraldo, Liliana; Moreno, Juan

    2008-01-01

    A series of different monoliths of activated carbon were prepared from coconut shell By means of chemical activation with phosphoric acid at different concentrations Without using binders or plastics. The monolith that developed the biggest surface area was impregnated by humidic route with solutions of Ni and Cu at different molar relations. The structures were characterized by N2 adsorption at 77 K, and the morphology was explored by means of scanning electron microscopy. The carbonaceous materials obtained, Nickel-Copper-Monolith, were analyzed by Thermal Programmed Reduction (TPR). The experimental results indicated that the activation with the acid generated a micro porosity, with micropores volume between 0.40 and 0.81 cm 3 g-1 and surface areas between 703 and 1450 m 2 g-1, and a good mechanical properties. It shows that, both the copper and the nickel, are fixed to the monolith and TPR's results are interpreted when these molar relation are modified.

  6. Preparation of epoxy-based macroporous monolithic columns for the fast and efficient immunofiltration of Staphylococcus aureus.

    Science.gov (United States)

    Ott, Sonja; Niessner, Reinhard; Seidel, Michael

    2011-08-01

    Macroporous epoxy-based monolithic columns were used for immunofiltration of bacteria. The prepared monolithic polymer support is hydrophilic and has large pore sizes of 21 μm without mesopores. A surface chemistry usually applied for immobilization of antibodies on glass slides is successfully transferred to monolithic columns. Step-by-step, the surface of the epoxy-based monolith is hydrolyzed, silanized, coated with poly(ethylene glycol diamine) and activated with the homobifunctional crosslinker di(N-succinimidyl)carbonate for immobilization of antibodies on the monolithic columns. The functionalization steps are characterized to ensure the coating of each monolayer. The prepared antibody-immobilized monolithic column is optimized for immunofiltration to enrich Staphylococcus aureus as an important food contaminant. Different kinds of geometries of monolithic columns, flow rates and elution buffers are tested with the goal to get high recoveries in the shortest enrichment time as possible. An effective capture of S. aureus was achieved at a flow rate of 7.0 mL/min with low backpressures of 20.1±5.4 mbar enabling a volumetric enrichment of 1000 within 145 min. The bacteria were quantified by flow cytometry using a double-labeling approach. After immunofiltration the sensitivity was significantly increased and a detection limit of the total system of 42 S. aureus/mL was reached. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Package Holds Five Monolithic Microwave Integrated Circuits

    Science.gov (United States)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  8. A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography

    International Nuclear Information System (INIS)

    Wang Yu; Deng Qiliang; Fang Guozhen; Pan Mingfei; Yu Yang; Wang Shuo

    2012-01-01

    Highlights: ► ILs as functional monomer for capillary monolithic column. ► Separation of alkylbenzenes, thiourea analogues, and amino acids. ► The column generate a stable reversed EOF from pH 2.0 to 12.0. ► The column efficiency of 147,000 plates m −1 was obtained for thiourea. - Abstract: A novel ionic liquid (IL) monolithic capillary column was successfully prepared by thermal free radical copolymerization of IL (1-vinyl-3-octylimidazolium chloride, ViOcIm + Cl − ) together with lauryl methacrylate (LMA) as the binary functional monomers and ethylene dimethacrylate (EDMA) as the cross-linker in binary porogen. The proportion of monomers, porogens and cross-linker in the polymerization mixture was optimized in detail. The resulting IL-monolithic column could not only generate a stable reversed electroosmotic flow (EOF) in a wide pH range (2.0–12.0), but also effectively eliminate the wall adsorption of the basic analytes. The obtained IL-monolithic columns were examined by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). These results indicated that the IL-monolithic capillary column possessed good pore properties, mechanical stability and permeability. The column performance was also evaluated by separating different kinds of compounds, such as alkylbenzenes, thiourea and its analogues, and amino acids. The lowest plate height of ∼6.8 μm was obtained, which corresponded to column efficiency (theoretical plates, N) of ∼147,000 plates m −1 for thiourea. ILs, as a new type of functional monomer, present a promising option in the fabrication of the organic polymer-based monolithic columns in CEC.

  9. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed A.; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  10. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  11. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: an attractive technology.

    Science.gov (United States)

    Ladner, Y; Cretier, G; Faure, K

    2015-01-01

    Electrochromatography (EC) on a porous monolithic stationary phase prepared within the channels of a microsystem is an attractive alternative for on-chip separation. It combines the separation mechanisms of electrophoresis and liquid chromatography. Moreover, the porous polymer monolithic materials have become popular as stationary phase due to the ease and rapidity of fabrication via free radical photopolymerization. Here, we describe a hexyl acrylate (HA)-based porous monolith which is simultaneously in situ synthesized and anchored to the inner walls of the channel of a cyclic olefin copolymer (COC) device in only 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is realized.

  12. Numerical Simulation of Fluid Dynamics in a Monolithic Column

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yamamoto

    2017-01-01

    Full Text Available As for the measurement of polycyclic aromatic hydrocarbons (PAHs, ultra-performance liquid chromatography (UPLC is used for PAH identification and densitometry. However, when a solvent containing a substance to be identified passes through a column of UPLC, a dedicated high-pressure-proof device is required. Recently, a liquid chromatography instrument using a monolithic column technology has been proposed to reduce the pressure of UPLC. The present study tested five types of monolithic columns produced in experiments. To simulate the flow field, the lattice Boltzmann method (LBM was used. The velocity profile was discussed to decrease the pressure drop in the ultra-performance liquid chromatography (UPLC system.

  13. A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography.

    Science.gov (United States)

    Wang, Yu; Deng, Qi-Liang; Fang, Guo-Zhen; Pan, Ming-Fei; Yu, Yang; Wang, Shuo

    2012-01-27

    A novel ionic liquid (IL) monolithic capillary column was successfully prepared by thermal free radical copolymerization of IL (1-vinyl-3-octylimidazolium chloride, ViOcIm(+)Cl(-)) together with lauryl methacrylate (LMA) as the binary functional monomers and ethylene dimethacrylate (EDMA) as the cross-linker in binary porogen. The proportion of monomers, porogens and cross-linker in the polymerization mixture was optimized in detail. The resulting IL-monolithic column could not only generate a stable reversed electroosmotic flow (EOF) in a wide pH range (2.0-12.0), but also effectively eliminate the wall adsorption of the basic analytes. The obtained IL-monolithic columns were examined by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). These results indicated that the IL-monolithic capillary column possessed good pore properties, mechanical stability and permeability. The column performance was also evaluated by separating different kinds of compounds, such as alkylbenzenes, thiourea and its analogues, and amino acids. The lowest plate height of ~6.8 μm was obtained, which corresponded to column efficiency (theoretical plates, N) of ~147,000 plates m(-1) for thiourea. ILs, as a new type of functional monomer, present a promising option in the fabrication of the organic polymer-based monolithic columns in CEC. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.

    Science.gov (United States)

    Yonekawa, H; Tomita, Y; Watanabe, Y

    2004-01-01

    This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.

  15. Test of the TRAPPISTe monolithic detector system

    Science.gov (United States)

    Soung Yee, L.; Álvarez, P.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic pixel detector named TRAPPISTe-2 has been developed in Silicon-on-Insulator (SOI) technology. A p-n junction is implanted in the bottom handle wafer and connected to readout electronics integrated in the top active layer. The two parts are insulated from each other by a buried oxide layer resulting in a monolithic detector. Two small pixel matrices have been fabricated: one containing a 3-transistor readout and a second containing a charge sensitive amplifier readout. These two readout structures have been characterized and the pixel matrices were tested with an infrared laser source. The readout circuits are adversely affected by the backgate effect, which limits the voltage that can be applied to the metal back plane to deplete the sensor, thus narrowing the depletion width of the sensor. Despite the low depletion voltages, the integrated pixel matrices were able to respond to and track a laser source.

  16. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    International Nuclear Information System (INIS)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-01-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm −3 respectively, pore linear density of ±35 cm −1 , linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively

  17. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ari-Wahjoedi, Bambang, E-mail: bambang-ariwahjoedi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar (Malaysia); Ginta, Turnad Lenggo [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tro (Malaysia); Parman, Setyamartana [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Abustaman, Mohd Zikri Ahmad [Kebabangan Petroleum Operating Company Sdn Bhd, Lvl. 52, Tower 2, PETRONAS Twin Towers, KLCC, 50088 Kuala Lumpur (Malaysia)

    2014-10-24

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  18. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Rui M., E-mail: ruimnovais@ua.pt; Buruberri, L.H.; Seabra, M.P.; Labrincha, J.A.

    2016-11-15

    Highlights: • Porous fly ash containing-geopolymer monoliths for lead adsorption were developed. • Geopolymers’ porosity and pH of the ion solution controls the adsorption capacity. • Lead adsorption by the geopolymer monoliths up to 6.34 mg/g was observed. • These novel adsorbents can be used in packed beds that are easily collected. • The reuse of biomass fly ash wastes as raw material ensures waste valorization. - Abstract: In this study novel porous biomass fly ash-containing geopolymer monoliths were produced using a simple and flexible procedure. Geopolymers exhibiting distinct total porosities (ranging from 41.0 to 78.4%) and low apparent density (between 1.21 and 0.44 g/cm{sup 3}) were fabricated. Afterwards, the possibility of using these innovative materials as lead adsorbents under distinct conditions was evaluated. Results demonstrate that the geopolymers’ porosity and the pH of the ion solution strongly affect the lead adsorption capacity. Lead adsorption by the geopolymer monoliths ranged between 0.95 and 6.34 mg{sub lead}/g{sub geopolymer}. More porous geopolymers presented better lead removal efficiency, while higher pH in the solution reduced their removal ability, since metal precipitation is enhanced. These novel geopolymeric monoliths can be used in packed beds that are easily collected when exhausted, which is a major advantage in comparison with the use of powdered adsorbents. Furthermore, their production encompasses the reuse of biomass fly-ash, mitigating the environmental impact associated with this waste disposal, while decreasing the adsorbents production costs.

  19. Recent Advances and Uses of Monolithic Columns for the Analysis of Residues and Contaminants in Food

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Bao

    2015-02-01

    Full Text Available Monolithic columns are gaining interest as excellent substitutes to conventional particle-packed columns. These columns show higher permeability and lower flow resistance than conventional liquid chromatography columns, providing high-throughput performance, resolution and separation in short run times. Monoliths possess also great potential for the clean-up and preparation of complex mixtures. In situ polymerization inside appropriate supports allows the development of several microextraction formats, such as in-tube solid-phase and pipette tip-based extractions. These techniques using porous monoliths offer several advantages, including miniaturization and on-line coupling with analytical instruments. Additionally, monoliths are ideal support media for imprinting template-specific sites, resulting in the so-called molecularly-imprinted monoliths, with ultra-high selectivity. In this review, time-saving LC columns and preparative applications applied to the analysis of residues and contaminants in food in 2010–2014 are described, focusing on recent improvements in design and with emphasis in automated on-line systems and innovative materials and formats.

  20. CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS

    Directory of Open Access Journals (Sweden)

    Malakhova Anna Nikolaevna

    2016-06-01

    Full Text Available One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor slabs. The article provides constructive solutions of precast hollow core floor slabs and solid monolithic slabs that were used in the construction of buildings before wide use of large precast hollow core floor slabs. The article considers the application of caisson hollow core floor slabs for modern monolithic multi-storeyed buildings. The design solutions of such floor slabs, experimental investigations and computer modeling of their operation under load were described in this article. The comparative analysis of the calculation results of computer models of a hollow slabs formed of rod or plastic elements showed the similarity of calculation results.

  1. LePIX: First results from a novel monolithic pixel sensor

    International Nuclear Information System (INIS)

    Mattiazzo, S.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, N.; Giubilato, P.; Ikemoto, Y.; Kloukinas, K.; Mansuy, C.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.; Wyss, J.

    2013-01-01

    We present a monolithic pixel sensor developed in the framework of the LePIX project aimed at tracking/triggering tasks where high granularity, low power consumption, material budget, radiation hardness and production costs are a concern. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This maintains the advantages usually offered by Monolithic Active Pixel Sensors (MAPS), like a low input capacitance, having a single piece detector and using a standard CMOS production line, but offers charge collection by drift from a depleted region and therefore an excellent signal to noise ratio and a radiation tolerance superior to conventional undepleted MAPS. Measurement results obtained with the first prototypes from laser, radioactive source and beam test experiments are described. The excellent signal-to-noise performance is demonstrated by the capability of the device to separate the peaks in the spectrum of a 55 Fe source. We will also highlight the interaction between pixel cell design and architecture which points toward a very precise direction in the development of such depleted monolithic pixel devices for high energy physics

  2. Solid-phase extraction element based on epoxy polymer monolith for determination of polar organic compounds in aqueous media.

    Science.gov (United States)

    Takahashi, Tadashi; Odagiri, Kayo; Watanabe, Atsushi; Watanabe, Chuichi; Kubo, Takuya; Hosoya, Ken

    2011-10-01

    A solid-phase extraction element based on epoxy polymer monolith was fabricated for sorptive enrichment of polar compounds from liquid and gaseous samples. After ultrasonication of the element in an aqueous solution for a given period of time, the thermal desorption (TD) using a pyrolyzer with gas chromatography/mass spectrometry (GC/MS), in which TD temperature was programmed from 50 to 250 °C for the analytes absorbed in the element, was used to evaluate the element for basic extraction performance using the aqueous standard mixtures consisting of compounds having varied polarities such as hexanol, isoamyl acetate, linalool, furfural and decanoic acid, in concentrations ranging from 10 μg/L to 1 mg/L. Excellent linear relationships were observed for all compounds in the standard mixture, except decanoic acid. In the extraction of beverages such as red wine, the extraction element showed stronger adsorption characteristics for polar compounds such as alcohols and acids than a non-polar polydimethylsiloxane-based element. This feature is derived from the main polymer structure along with hydroxyl and amino groups present in the epoxy-based monolith polymer matrix. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. In situ synthesis of metal-organic frameworks in a porous polymer monolith as the stationary phase for capillary liquid chromatography.

    Science.gov (United States)

    Yang, Shengchao; Ye, Fanggui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2015-04-21

    In this study, HKUST-1 was synthesized in situ on the porous polymer monolith as the stationary phase for capillary liquid chromatography (cLC). The unique carboxyl functionalized poly(methacrylic acid-co-ethylene dimethacrylate) (poly(MAA-co-EDMA)) monolith was used as a support to directly grow HKUST-1 by a controlled layer-by-layer self-assembly strategy. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectroscopy of the resulting HKUST-1-poly(MAA-co-EDMA) monoliths indicated that HKUST-1 was successfully grafted onto the pore surface of the poly(MAA-co-EDMA) monolith. The column performance of HKUST-1-poly(MAA-co-EDMA) monoliths for the separation of various small molecules, such as benzenediols, xylenes, ethylbenzenes, and styrenes, was evaluated. The chromatographic performance was found to improve with increasing HKUST-1 density, and the column efficiencies and resolutions of HKUST-1-poly(MAA-co-EDMA) monoliths were 18 320-19 890 plates m(-1) and 1.62-6.42, respectively, for benzenediols. The HKUST-1-poly(MAA-co-EDMA) monolith displayed enhanced resolution for the separation of positional isomers when compared to the traditional C18 and HKUST-1 incorporated polymer monoliths. Hydrophobic, π-π, and hydrogen bonding interactions within the HKUST-1-poly(MAA-co-EDMA) monolith were observed in the separation of small molecules. The results showed that the HKUST-1-poly(MAA-co-EDMA) monoliths are promising stationary phases for cLC.

  4. A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array

    International Nuclear Information System (INIS)

    Toeppen, J.S.; Bliss, E.S.; Long, T.W.; Salmon, J.T.

    1991-07-01

    we have developed a video Hartmann wavefront sensor that incorporates a monolithic array of microlenses as the focusing elements. The sensor uses a monolithic array of photofabricated lenslets. Combined with a video processor, this system reveals local gradients of the wavefront at a video frame rate of 30 Hz. Higher bandwidth is easily attainable with a camera and video processor that have faster frame rates. When used with a temporal filter, the reconstructed wavefront error is less than 1/10th wave

  5. A literature survey on gas turbines materials - recent advances

    International Nuclear Information System (INIS)

    Gras, J.M.

    1992-10-01

    The 9001F gas turbine (rating of about 200 MW) is one of the most recent versions of the 9000 series, benefitting from the developments and technological advances, notably in regard to structural materials. In the framework of the EDF gas turbine engineering and construction program, evaluating the nature of these developments can provide guidance in appraising the construction materials proposed by other manufacturers. After a brief comparison between the Gennevilliers 9001F engine and the 85 MW 9000B gas turbine at Bouchain, ordered by EDF in 1971, various research aspects for optimizing gas turbine refractory material mechanical properties and corrosion resistance (superalloys, monolithic ceramics and composite ceramics) are presented; present current and future trends for high power equipment of this type are also discussed

  6. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Science.gov (United States)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  7. Numerical simulation research on rolling process of monolithic nuclear fuel plate

    International Nuclear Information System (INIS)

    Wan Jibo; Kong Xiangzhe; Ding Shurong; Xu Hongbin; Huo Yongzhong

    2015-01-01

    For the strain-rate-dependent constitutive relation of zircaloy cladding in UMo monolithic nuclear fuel plates, the three-dimensional stress updating algorithm was derived out, and the corresponding VUMAT subroutine to define its constitutive relation was developed and validated; the finite element model was built to simulate the frame rolling process of UMo monolithic nuclear fuel plates; with the explicit dynamic finite element method, the evolution rules of the deformation and contact pressure during the rolling process within the composite slab were obtained and analyzed. The research results indicate that it is convenient and efficient to define the strain-rate- dependent constitutive relations of materials with the user-defined material subroutine VUMAT; the rolling-induced contact pressure between the fuel meat and the covers varies with time, and the maximum pressure exits at the symmetric plane along the plate width direction. This study supplies a foundation and a computation method for optimizing the processing parameters to manufacture UMo monolithic nuclear fuel plates. (authors)

  8. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry.

    Science.gov (United States)

    Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-04-05

    In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. High-temperature oxidation behavior of dense SiBCN monoliths: Carbon-content dependent oxidation structure, kinetics and mechanisms

    International Nuclear Information System (INIS)

    Li, Daxin; Yang, Zhihua; Jia, Dechang; Wang, Shengjin; Duan, Xiaoming; Zhu, Qishuai; Miao, Yang; Rao, Jiancun; Zhou, Yu

    2017-01-01

    Highlights: •The scale growth for all investigated monoliths at 1500 °C cannot be depicted by a linear or parabolic rate law. •The carbon-rich monoliths oxidize at 1500 °C according to a approximately linear weight loss equation. •The excessive carbon in SiBCN monoliths deteriorates the oxidation resistance. •The oxidation resistance stems from the characteristic oxide structures and increased oxidation resistance of BN(C). -- Abstract: The high temperature oxidation behavior of three SiBCN monoliths: carbon-lean SiBCN with substantial Si metal, carbon-moderate SiBCN and carbon-rich SiBCN with excessive carbon, was investigated at 1500 °C for times up to15 h. Scale growth for carbon-lean and −moderate monoliths at 1500 °C cannot be described by a linear or parabolic rate law, while the carbon-rich monoliths oxidize according to a approximately linear weight loss equation. The microstructures of the oxide scale compose of three distinct layers. The passivating layer of carbon and boron containing amorphous SiO 2 and increased oxidation resistance of BN(C) both benefit the oxidation resistance.

  10. Monolithic Inorganic ZnO/GaN Semiconductors Heterojunction White Light-Emitting Diodes.

    Science.gov (United States)

    Jeong, Seonghoon; Oh, Seung Kyu; Ryou, Jae-Hyun; Ahn, Kwang-Soon; Song, Keun Man; Kim, Hyunsoo

    2018-01-31

    Monolithic light-emitting diodes (LEDs) that can generate white color at the one-chip level without the wavelength conversion through packaged phosphors or chip integration for photon recycling are of particular importance to produce compact, cost-competitive, and smart lighting sources. In this study, monolithic white LEDs were developed based on ZnO/GaN semiconductor heterojunctions. The electroluminescence (EL) wavelength of the ZnO/GaN heterojunction could be tuned by a post-thermal annealing process, causing the generation of an interfacial Ga 2 O 3 layer. Ultraviolet, violet-bluish, and greenish-yellow broad bands were observed from n-ZnO/p-GaN without an interfacial layer, whereas a strong greenish-yellow band emission was the only one observed from that with an interfacial layer. By controlled integration of ZnO/GaN heterojunctions with different postannealing conditions, monolithic white LED was demonstrated with color coordinates in the range (0.3534, 0.3710)-(0.4197, 0.4080) and color temperatures of 4778-3349 K in the Commission Internationale de l'Eclairage 1931 chromaticity diagram. Furthermore, the monolithic white LED produced approximately 2.1 times higher optical output power than a conventional ZnO/GaN heterojunction due to the carrier confinement effect at the Ga 2 O 3 /n-ZnO interface.

  11. Exceptionally stable and hierarchically porous self-standing zeolite monolith based on a solution-mediated and solid-state transformation synergistic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Do, Manh Huy [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Cheng, Dang-guo, E-mail: dgcheng@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Chen, Fengqiu [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhan, Xiaoli [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2015-11-15

    Although many strategies exist for fabricating hierarchical zeolite monolith, it is still challenging to synthesize pure hierarchical zeolite monolith with intracrystalline meso-/macropores and stability suitable for industrial application in a general and efficient process. Here we describe a simple quasi-solid gel crystallization route to prepare hierarchical self-standing ZSM-5 zeolite monolith via the use of Na{sup +} and OH{sup −} as counterions to modify the breaking and remaking of T–O–T (T = Si or Al) bonds. X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microscopy (TEM), laser scan confocal microscopy (LSCM), N{sub 2} adsorption–desorption, mercury porosimetry, solid-state nuclear magnetic resonance (NMR), and compression mechanical testing were applied to elucidate the structure and mechanical stability of the obtained monolith. The self-standing monolith is composed of self-interconnected meso-/macroporous MFI crystals with tunable intracrystalline meso-/macropores and possesses an unusually mechanical stability with a crushing strength of 5.01 MPa. Combined with controllable structure of the defect-free membrane layer on the monolith top, the self-standing zeolite monolith should widen their potential applications. - Highlights: • Hierarchical self-standing MFI zeolite monoliths were synthesized via a facile method. • Na{sup +} and OH{sup −} are used as counterions for breaking and remaking of T–O–T (T = Si or Al) bonds. • Hierarchical self-standing MFI zeolite monoliths result from zeolite crystal intergrowth. • Self-standing zeolite monolith has an excellent mechanical stability with tunable intracrystalline meso-/macropores.

  12. Fiber-based monolithic columns for liquid chromatography.

    Science.gov (United States)

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.

  13. Application of monolithic polycapillary focusing optics in MXRF

    International Nuclear Information System (INIS)

    Gao, N.; Ponomarev, I.; Xiao, Q.F.; Gibson, W.M.

    1996-01-01

    A monolithic polycapillary focusing optic, consisting of hundreds of thousands of small tapered glass capillaries, can collect a large solid angle of x rays from a point source and guide them through the capillaries by multiple total reflections to form an intense focused beam. Such a focused beam has many applications in microbeam x-ray fluorescence (MXRF) analysis. Two monolithic polycapillary focusing optics were tested and characterized in a MXRF set-up using a microfocusing x-ray source (50microm x 10microm). For the Cu K α line, the measured focal spot sizes of these optics were 105microm and 43microm Full-Width-Half-Maximum (FWHM), respectively. When the source was operated at 16W, the average Cu K α intensities over the focal spots were measured to be 2.4 x 10 4 photons/s/microm 2 and 8.9 x 10 4 photons/s/microm 2 , respectively. When the authors compared the monolithic optics to straight monocapillary optics (single channel capillary) with approximately the same output beam sizes, intensity gains of 16 and 44 were obtained. The optics were applied to the MXRF set-up to analyze trace elements in various samples and a Minimum Detection Limit (MDL) of about 2 pg was achieved for the transition elements (V, Cr, Mn, and Fe). The optics were also used to map the distributions of trace elements in various samples

  14. High-density 3D graphene-based monolith and related materials, methods, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah

    2017-03-21

    A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.

  15. Preparation of polyhedral oligomeric silsesquioxane based hybrid monoliths by ring-opening polymerization for capillary LC and CEC.

    Science.gov (United States)

    Lin, Hui; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Ou, Junjie; Zou, Hanfa

    2013-09-01

    A new organic-inorganic hybrid monolith was prepared by the ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with 1,4-butanediamine (BDA) using 1-propanol, 1,4-butanediol, and PEG 10,000 as a porogenic system. Benefiting from the moderate phase separation process, the resulting poly(POSS-co-BDA) hybrid monolith possessed a uniform microstructure and exhibited excellent performance in chromatographic applications. Neutral, acidic, and basic compounds were successfully separated on the hybrid monolith in capillary LC (cLC), and high column efficiencies were achieved in all of the separations. In addition, as the amino groups could generate a strong EOF, the hybrid monolith was also applied in CEC for the separation of neutral and polar compounds, and a satisfactory performance was obtained. These results demonstrate that the poly(POSS-co-BDA) hybrid monolith is a good separation media in chromatographic separations of various types of compounds by both cLC and CEC. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Industrial Fuel Gas Demonstration Plant Program. Conceptual design and evaluation of commercial plant. Volume III. Economic analyses (Deliverable Nos. 15 and 16)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This report presents the results of Task I of Phase I in the form of a Conceptual Design and Evaluation of Commercial Plant report. The report is presented in four volumes as follows: I - Executive Summary, II - Commercial Plant Design, III - Economic Analyses, IV - Demonstration Plant Recommendations. Volume III presents the economic analyses for the commercial plant and the supporting data. General cost and financing factors used in the analyses are tabulated. Three financing modes are considered. The product gas cost calculation procedure is identified and appendices present computer inputs and sample computer outputs for the MLGW, Utility, and Industry Base Cases. The results of the base case cost analyses for plant fenceline gas costs are as follows: Municipal Utility, (e.g. MLGW), $3.76/MM Btu; Investor Owned Utility, (25% equity), $4.48/MM Btu; and Investor Case, (100% equity), $5.21/MM Btu. The results of 47 IFG product cost sensitivity cases involving a dozen sensitivity variables are presented. Plant half size, coal cost, plant investment, and return on equity (industrial) are the most important sensitivity variables. Volume III also presents a summary discussion of the socioeconomic impact of the plant and a discussion of possible commercial incentives for development of IFG plants.

  17. Microchip-based monolithic column for high performance liquid chromatography

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed microchip based monolithic columns that can be used for liquid chromatography of small organic molecules, as well as, macromolecules such as...

  18. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins.

    Science.gov (United States)

    Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El

    2017-06-27

    HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  19. Study of monolithic prestressed reinforced concrete overhead road.

    Directory of Open Access Journals (Sweden)

    Ya.I. Kovalchyk

    2011-12-01

    Full Text Available Results of inspection and testing of monolithic prestressed reinforced concrete road trestle built in Kyiv are considered. The analysis of the gained results has shown that parametres correspond to the requirements of current standards on design of bridges.

  20. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  1. Low frequency seismic noise acquisition and analysis with tunable monolithic horizontal sensors

    Science.gov (United States)

    Acernese, Fausto; De Rosa, Rosario; Giordano, Gerardo; Romano, Rocco; Vilasi, Silvia; Barone, Fabrizio

    2011-04-01

    In this paper we describe the scientific data recorded mechanical monolithic horizontal sensor prototypes located in the Gran Sasso Laboratory of the INFN. The mechanical monolithic sensors, developed at the University of Salerno, are placed, in thermally insulating enclosures, onto concrete slabs connected to the bedrock. The main goal of this experiment is to characterize seismically the sites in the frequency band 10-4 ÷ 10Hz and to get all the necessary information to optimize the sensor.

  2. Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths.

    Science.gov (United States)

    Guo, Jialiang; Xiao, Yuan; Lin, Yuanjing; Zhang, Qiaoxuan; Chang, Yiqun; Crommen, Jacques; Jiang, Zhengjin

    2016-05-15

    In order to investigate the effect of the linking spacer on the enantioseparation ability of β-cyclodextrin (β-CD) functionalized polymeric monoliths, three β-CD-functionalized organic polymeric monoliths with different spacer lengths were prepared by using three amino-β-CDs, i.e. mono-6-amino-6-deoxy-β-CD, mono-6-ethylenediamine-6-deoxy-β-CD, mono-6-hexamethylenediamine-6-deoxy-β-CD, as starting materials. These amino-β-CDs reacted with glycidyl methacrylate to produce functional monomers which were then copolymerized with ethylene dimethacrylate. The enantioseparation ability of the three monoliths was evaluated using 14 chiral acidic compounds, including mandelic acid derivatives, nonsteroidal anti-inflammatory drugs, N-derivatized amino acids, and chiral herbicides under optimum chromatographic conditions. Notably, the poly(GMA-NH2-β-CD-co-EDMA) column provides higher enantioresolution and enantioselectivity than the poly(GMA-EDA-β-CD-co-EDMA) and poly(GMA-HDA-β-CD-co-EDMA) columns for most tested chiral analytes. Furthermore, the enantioseparation performance of triazole-linker containing monoliths was compared to that of ethylenediamine-linker containing monoliths. The results indicate that the enantioselectivity of β-CD monolithic columns is strongly related to the length and type of spacer tethering β-CD to the polymeric support. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Rapid and simple preparation of thiol-ene emulsion-templated monoliths and their application as enzymatic microreactors

    DEFF Research Database (Denmark)

    Lafleur, Josiane P; Senkbeil, Silja; Novotny, Jakub

    2015-01-01

    A novel, rapid and simple method for the preparation of emulsion-templated monoliths in microfluidic channels based on thiol-ene chemistry is presented. The method allows monolith synthesis and anchoring inside thiol-ene microchannels in a single photoinitiated step. Characterization by scanning...... electron microscopy showed that the methanol-based emulsion templating process resulted in a network of highly interconnected and regular thiol-ene beads anchored solidly inside thiol-ene microchannels. Surface area measurements indicate that the monoliths are macroporous, with no or little micro...

  4. Layered storage of biogenic methane-enriched gas bubbles in peat: A lumped capacitance model controlled by soil structure

    Science.gov (United States)

    Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.

    2017-12-01

    Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may

  5. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  6. Gas Pixel Detectors for low energy X-ray polarimetry

    International Nuclear Information System (INIS)

    Spandre, Gloria

    2007-01-01

    Gas Pixel Detectors are position-sensitive proportional counters in which a complete integration between the gas amplification structure and the read-out electronics has been reached. Various generation of Application-Specific Integrated Circuit (ASIC) have been designed in deep submicron CMOS technology to realize a monolithic device which is at the same time the charge collecting electrode and the analog amplifying and charge measuring front-end electronics. The experimental response of a detector with 22060 pixels at 80 μm pitch to polarized and un-polarized X-ray radiation is shown and the application of this device for Astronomical X-ray Polarimetry discussed

  7. Site-Controlled Growth of Monolithic InGaAs/InP Quantum Well Nanopillar Lasers on Silicon.

    Science.gov (United States)

    Schuster, Fabian; Kapraun, Jonas; Malheiros-Silveira, Gilliard N; Deshpande, Saniya; Chang-Hasnain, Connie J

    2017-04-12

    In this Letter, we report the site-controlled growth of InP nanolasers on a silicon substrate with patterned SiO 2 nanomasks by low-temperature metal-organic chemical vapor deposition, compatible with silicon complementary metal-oxide-semiconductor (CMOS) post-processing. A two-step growth procedure is presented to achieve smooth wurtzite faceting of vertical nanopillars. By incorporating InGaAs multiquantum wells, the nanopillar emission can be tuned over a wide spectral range. Enhanced quality factors of the intrinsic InP nanopillar cavities promote lasing at 0.87 and 1.21 μm, located within two important optical telecommunication bands. This is the first demonstration of a site-controlled III-V nanolaser monolithically integrated on silicon with a silicon-transparent emission wavelength, paving the way for energy-efficient on-chip optical links at typical telecommunication wavelengths.

  8. Monolithic junction field-effect transistor charge preamplifier for calorimetry at high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Rehn, L.A.; Manfredi, P.F.; Speziali, V.

    1991-11-01

    The outstanding noise and radiation hardness characteristics of epitaxial-channel junction field-effect transistors (JFET) suggest that a monolithic preamplifier based upon them may be able to meet the strict specifications for calorimetry at high luminosity colliders. Results obtained so far with a buried layer planar technology, among them an entire monolithic charge-sensitive preamplifier, are described

  9. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Kurdi Said El

    2017-06-01

    Full Text Available HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5 and precision (RSD ≤ 0.6 %. Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  10. Chiral monolithic absorbent constructed by optically active helical-substituted polyacetylene and graphene oxide: preparation and chiral absorption capacity.

    Science.gov (United States)

    Li, Weifei; Wang, Bo; Yang, Wantai; Deng, Jianping

    2015-02-01

    Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical-substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral-substituted acetylene monomer (Ma), cross-linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV-vis absorption, scanning electron microscopy (SEM), FT-IR, Raman, energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio-differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles

    International Nuclear Information System (INIS)

    Khanfekr, A.; Arzani, K.; Nemati, A.; Hosseini, M.

    2009-01-01

    (Lanthanum, Cerium)(Iron, Manganese, Cobalt, Palladium)(Oxygen) 3 ,-Perovskite catalyst was prepared by the citrate route and deposited on ceramic monoliths via dip coating procedure. The catalyst was applied on a car with X U 7 motors and the amount of emission was monitored with vehicle emission test systems in Sapco company. The results were compared with the imported catalyst with noble metals such as Palladium, Platinum and Rhodium by Iran Khodro company based on the Euro III standards. The catalysts were characterized by specific surface area measurements, scanning electron microscopy, X-ray diffraction, line scan and map. In the results, obtained in the home made sample, the amount of carbon monoxide, nitrogen oxides and hydrocarbons were lower than imported catalyst with Iran Khodro company with nobel metals. The illustration shows nano particles size on coat. The microstructure evaluation showed that the improved properties can be related to the existence of nano particles on coating

  12. Preparation and characterization of fluorophenylboronic acid-functionalized affinity monolithic columns for the selective enrichment of cis-diol-containing biomolecules.

    Science.gov (United States)

    Li, Qianjin; Liu, Zhen

    2015-01-01

    Boronate affinity monolithic columns have been developed into an important means for the selective recognition and capture of cis-diol-containing biomolecules, such as glycoproteins, nucleosides and saccharides. The ligands of boronic acids are playing an important role in boronate affinity monolithic columns. Although several boronate affinity monoliths with high affinity toward cis-diol-containing biomolecules have been reported, only few publications are focused on their detailed procedures for preparation and characterization. This chapter describes in detail the preparation and characterization of a boronate affinity monolithic column applying 2,4-difluoro-3-formyl-phenylboronic acid (DFFPBA) as a ligand. The DFFPBA-functionalized monolithic column not only exhibited an ultrahigh boronate affinity toward cis-diol-containing biomolecules, but also showed great potential for the selective enrichment of cis-diol-containing biomolecules in real samples.

  13. Comparison of Membrane Chromatography and Monolith Chromatography for Lactoferrin and Bovine Serum Albumin Separation

    Directory of Open Access Journals (Sweden)

    Chalore Teepakorn

    2016-09-01

    Full Text Available These last few decades, membranes and monoliths have been increasingly used as stationary phases for chromatography. Their fast mass transfer is mainly based on convection, which leads to reduced diffusion, which is usually observed in resins. Nevertheless, poor flow distribution, which causes inefficient binding, remains a major challenge for the development of both membrane and monolith devices. Moreover, the comparison of membranes and monoliths for biomolecule separation has been very poorly investigated. In this paper, the separation of two proteins, bovine serum albumin (BSA and lactoferrin (LF, with similar sizes, but different isoelectric points, was investigated at a pH of 6.0 with a BSA-LF concentration ratio of 2/1 (2.00 mg·mL−1 BSA and 1.00 mg·mL−1 LF solution using strong cation exchange membranes and monoliths packed in the same housing, as well as commercialized devices. The feeding flow rate was operated at 12.0 bed volume (BV/min for all devices. Afterward, bound LF was eluted using a phosphate-buffered saline solution with 2.00 M NaCl. Using membranes in a CIM housing from BIA Separations (Slovenia with porous frits before and after the membrane bed, higher binding capacities, sharper breakthrough curves, as well as sharper and more symmetric elution peaks were obtained. The monolith and commercialized membrane devices showed lower LF binding capacity and broadened and non-symmetric elution peaks.

  14. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...

  15. COMPBRN III: a computer code for modeling compartment fires

    International Nuclear Information System (INIS)

    Ho, V.; Siu, N.; Apostolakis, G.; Flanagan, G.F.

    1986-07-01

    The computer code COMPBRN III deterministically models the behavior of compartment fires. This code is an improvement of the original COMPBRN codes. It employs a different air entrainment model and numerical scheme to estimate properties of the ceiling hot gas layer model. Moreover, COMPBRN III incorporates a number of improvements in shape factor calculations and error checking, which distinguish it from the COMPBRN II code. This report presents the ceiling hot gas layer model employed by COMPBRN III as well as several other modifications. Information necessary to run COMPBRN III, including descriptions of required input and resulting output, are also presented. Simulation of experiments and a sample problem are included to demonstrate the usage of the code. 37 figs., 46 refs

  16. Fabrication of Monolithic Dye-Sensitized Solar Cell Using Ionic Liquid Electrolyte

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available To improve the durability of dye-sensitized solar cells (DSCs, monolithic DSCs with ionic liquid electrolyte were studied. Deposited by screen printing, a carbon layer was successfully fabricated that did not crack or peel when annealing was employed beforehand. Optimized electrodes exhibited photovoltaic characteristics of 0.608 V open-circuit voltage, 6.90 cm−2 mA short-circuit current, and 0.491 fill factor, yielding 2.06% power conversion efficiency. The monolithic DSC using ionic liquid electrolyte was thermally durable and operated stably for 1000 h at 80°C.

  17. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    Science.gov (United States)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  18. Design for an 8 Meter Monolithic UV/OIR Space Telescope

    Science.gov (United States)

    Stahl, H. Philip; Postman, Marc; Hornsby, Linda; Hopkins, Randall; Mosier, Gary E.; Pasquale, Bert A.; Arnold, William R.

    2009-01-01

    ATLAST-8 is an 8-meter monolithic UV/optical/NIR space observatory to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V cargo launch vehicle. The ATLAST-8 will yield fundamental astronomical breakthroughs. The mission concept utilizes two enabling technologies: planned Ares-V launch vehicle (scheduled for 2019) and autonomous rendezvous and docking (AR&D). The unprecedented Ares-V payload and mass capacity enables the use of a massive, monolithic, thin-meniscus primary mirror - similar to a VLT or Subaru. Furthermore, it enables simple robust design rules to mitigate cost, schedule and performance risk. AR&D enables on-orbit servicing, extending mission life and enhancing science return.

  19. Continuous-Flow Monolithic Silica Microreactors with Arenesulphonic Acid Groups: Structure–Catalytic Activity Relationships

    Directory of Open Access Journals (Sweden)

    Agnieszka Ciemięga

    2017-08-01

    Full Text Available The performance of monolithic silica microreactors activated with sulphonic acid groups and a packed bed reactor with Amberlyst 15 resin were compared in the esterification of acetic acid with n-butanol. The monolithic microreactors were made of single silica rods with complex pore architecture, differing in the size of mesopores, and in particular, flow-through macropores which significantly affected the flow characteristic of the continuous system. The highest ester productivity of 105.2 mol·molH+−1·h−1 was achieved in microreactor M1 with the largest porosity, characterized by a total pore volume of 4 cm3·g−1, mesopores with 20 nm diameter, and large flow-through macropores 30–50 μm in size. The strong impact of the permeability of the monoliths on a reaction kinetics was shown.

  20. Assessment of the Grouted IXC Monolith in Support of K East Basin Hazard Categorization

    Energy Technology Data Exchange (ETDEWEB)

    Short, Steven M.; Dodson, Michael G.; Alzheimer, James M.; Meyer, Perry A.

    2007-10-12

    Addendum to original report updating the structural analysis of the I-beam accident to reflect a smaller I-beam than originally assumed (addendum is 2 pages). The K East Basin currently contains six ion exchange columns (IXCs) that were removed from service over 10 years ago. Fluor Hanford plans to immobilize the six ion exchange columns (IXCs) in place in a concrete monolith. PNNL performed a structural assessment of the concrete monolith to determine its capability to absorb the forces imposed by postulated accidents and protect the IXCs from damage and thus prevent a release of radioactive material. From this assessment, design specifications for the concrete monolith were identified that would prevent a release of radioactive material for any of the postulated hazardous conditions.

  1. Novel gas-based detection techniques

    International Nuclear Information System (INIS)

    Graaf, Harry van der

    2009-01-01

    This year we celebrate the 100th birthday of gaseous detectors: Hans Geiger operated the first gas-filled counter in Manchester in 1908. The thin wires, essential for obtaining gas amplification, have been replaced by Micro Pattern Gas Detectors (MPGDs): Micromegas (1995) and GEM (1996). In the GridPix detector, each of the grid holes of a MPGD is equipped with its own electronic readout channel in the form of an active pixel in suitable pixel CMOS chips. By means of MEMS technology, the grid has been integrated with the chip, forming a monolithic readout device for gas volumes. By applying a protection layer made of hydrogenated amorphous silicon, the chips can be made spark proof. New protection layers have been made of silicon nitride. The use of gas as detection material for trackers is compared to Si, and the issue of chamber aging is addressed. New developments are set out: the development of Micro Channel Plates, integrated on pixel chips, the development of electron emission foil, and the realization of TimePix-2: a general-purpose pixel chip with time and amplitude measurement, per pixel, of charge signals.

  2. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    International Nuclear Information System (INIS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S.C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55 Fe double peak at room temperature. To achieve high granularity (10–20 µm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption

  3. Chromatographic selectivity of poly(alkyl methacrylate-co-divinylbenzene) monolithic columns for polar aromatic compounds by pressure-driven capillary liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shu-Ling; Wang, Chih-Chieh; Fuh, Ming-Ren, E-mail: msfuh@scu.edu.tw

    2016-10-05

    In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16–1.20%, RSD; n = 3) and column-to-column (0.26–2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns. - Highlights: • First investigation on chromatographic selectivity of AlMA-DVB monolithic columns. • Good run-to-run/column-to-column repeatability (<3%) on AlMA-DVB monolithic columns. • Efficient separation of phenylurea herbicides and sulfonamides on AlMA-DVB columns.

  4. Monolithic microwave integrated circuit with integral array antenna

    International Nuclear Information System (INIS)

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  5. Preparation and characterization of Au/CeO{sub 2}-Al{sub 2}O{sub 3} monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Gawel, Bartlomiej; Lambrechts, Kalle [Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway); Oye, Gisle, E-mail: gisle.oye@chemeng.ntnu.no [Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A facile method for preparing Au/CeO{sub 2}-Al{sub 2}O{sub 3} monoliths with hierarchical porosity. Black-Right-Pointing-Pointer Continuous-flow testing of the monoliths in liquid-phase oxidation of glucose. Black-Right-Pointing-Pointer Increased catalytic activity in the presence of cerium oxide (stirred-batch tests). - Abstract: Porous CeO{sub 2}-Al{sub 2}O{sub 3} monoliths with hierarchical pore structure were prepared by mixing boehmite particles with solutions containing different amounts of cerium chloride and aluminum nitrate. The monoliths were functionalized with gold nanoparticles using the incipient wetness method. The resulting materials were characterized by X-ray diffraction, nitrogen sorption, mercury porosimetry, UV-vis spectroscopy and transmission electron microscopy. The catalysts were tested in liquid phase glucose oxidation, comparing continuously stirred batch reactor and continuous-flow fix-bed reactor setups.

  6. Iminodiacetic acid functionalised organopolymer monoliths: application to the separation of metal cations by capillary high-performance chelation ion chromatography.

    Science.gov (United States)

    Moyna, Áine; Connolly, Damian; Nesterenko, Ekaterina; Nesterenko, Pavel N; Paull, Brett

    2013-03-01

    Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35%, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC(4)D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.

  7. Fabrication of a novel hemin-based monolithic column and its application in separation of protein from complex bio-matrix.

    Science.gov (United States)

    Jiang, Xiaoya; Zhang, Doudou; Li, Xueying; Wang, Xixi; Bai, Ligai; Liu, Haiyan; Yan, Hongyuan

    2017-05-10

    A novel polymer-based monolithic column was prepared via redox initiation system within the confines of a stainless steel column with 4.6mm i.d. In the processes, hemin and lauryl methacrylate were used as co-monomers; ethylene dimethacrylate as crosslinking agent; n-butyl alcohol, ethanediol, and N, N-dimethylformamide as tri-porogens; benzoyl peroxide and N, N-dimethyl aniline as redox initiation system. The resulting polymer-based monolithic columns were characterized by scanning electron microscopy, nitrogen adsorption-desorption instrument, and mercury intrusion porosimeter, respectively. The results illustrated that the improved monolith had relative uniform porous structure, good permeability, and low back pressure. Aromatic compounds were used to test the chromatographic behavior of the monolith, resulting in highest column efficiency of 19 880 plates per meter with reversed-phase mechanism. Furthermore, the homemade monolith was used as the stationary phase of high performance liquid chromatography to separate proteins from complex bio-matrix, including human plasma, egg white, and snailase. The results showed that the monolithic column occupied good separation ability with these complex bio-samples. Excellent specific character of the homemade hemin-based monolith was that it could simultaneously remove high-abundance proteins (including human serum albumin, immunoglobulin G, and human fibrinogen) from human plasma and separate other proteins to different fractions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Monolithic integration of microfluidic channels and semiconductor lasers

    Science.gov (United States)

    Cran-McGreehin, Simon J.; Dholakia, Kishan; Krauss, Thomas F.

    2006-08-01

    We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

  9. Development of stable monolithic wide-field Michelson interferometers.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. © 2011 Optical Society of America

  10. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    Science.gov (United States)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: line. Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along the cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and the interaction layer between the U-Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.

  11. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  12. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.

    2011-09-26

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  13. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.; Švec, František; Frechet, Jean

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  14. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    Science.gov (United States)

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. Copyright © 2011 Wiley Periodicals, Inc.

  15. Photon-counting monolithic avalanche photodiode arrays for the super collider

    International Nuclear Information System (INIS)

    Ishaque, A.N.; Castleberry, D.E.; Rougeot, H.M.

    1994-01-01

    In fiber tracking, calorimetry, and other high energy and nuclear physics experiments, the need arises to detect an optical signal consisting of a few photons (in some cases a single photoelectron) with a detector insensitive to magnetic fields. Previous attempts to detect a single photoelectron have involved avalanche photodiodes (APDs) operated in the Geiger mode, the visible light photon counter, and a photomultiplier tube with an APD as the anode. In this paper it is demonstrated that silicon APDs, biased below the breakdown voltage, can be used to detect a signal of a few photons with conventional pulse counting circuitry at room temperature. Moderate cooling, it is further argued, could make it possible to detect a single photoelectron. Monolithic arrays of silicon avalanche photodiodes fabricated by Radiation Monitoring Devices, Inc. (RMD) were evaluated for possible use in the Super Collider detector systems. Measurements on 3 element x 3 element (2 mm pitch) APD arrays, using pulse counting circuitry with a charge sensitive amplifier (CSA) and a Gaussian filter, are reported and found to conform to a simple noise model. The model is used to obtain the optimal operating point. Experimental results are described in Section II, modeling results in Section III, and the conclusions are summarized in Section IV

  16. Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors.

    Science.gov (United States)

    Malinowski, Pawel E; Georgitzikis, Epimitheas; Maes, Jorick; Vamvaka, Ioanna; Frazzica, Fortunato; Van Olmen, Jan; De Moor, Piet; Heremans, Paul; Hens, Zeger; Cheyns, David

    2017-12-10

    Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10 -6 A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.

  17. Development of catalytic gas cleaning in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P; Kurkela, E; Staahlberg, P; Hepola, J [VTT Energy, Espoo (Finland)

    1997-12-31

    Gasification gas containing dust can be efficiently purified from tars and ammonia with a nickel monolith catalyst. Temperatures of >900 deg C and a residence time of about 1 s (SV 2 500 1/h) were needed at 5 bar pressure to achieve complete tar decomposition and 80 % ammonia conversion. Catalyst deactivation was not observed during test runs of 100 h. At lower pressures dolomites and limestones can also be applied for tar removal at about 900 deg C temperatures. (orig.) 12 refs.

  18. Development of catalytic gas cleaning in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P.; Kurkela, E.; Staahlberg, P.; Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas containing dust can be efficiently purified from tars and ammonia with a nickel monolith catalyst. Temperatures of >900 deg C and a residence time of about 1 s (SV 2 500 1/h) were needed at 5 bar pressure to achieve complete tar decomposition and 80 % ammonia conversion. Catalyst deactivation was not observed during test runs of 100 h. At lower pressures dolomites and limestones can also be applied for tar removal at about 900 deg C temperatures. (orig.) 12 refs.

  19. Effect of accelerated aging on translucency of monolithic zirconia

    Directory of Open Access Journals (Sweden)

    O. Abdelbary

    2016-12-01

    Conclusion: Thickness of zirconia has significant effect on translucency. Aging has significant effect on thinner sections of zirconia. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

  20. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    KAUST Repository

    Sahli, Florent

    2017-10-09

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  1. Analysis of Catalytic Material Effect on the Photovoltaic Properties of Monolithic Dye-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Natalita Maulani Nursam

    2017-12-01

    Full Text Available Dye-sensitized solar cells (DSSC are widely developed due to their attractive appearance and simple fabrication processes. One of the challenges that arise in the DSSC fabrication involves high material cost associated with the cost of conductive substrate. DSSC with monolithic configuration was then developed on the basis of this motivation. In this contribution, titanium dioxide-based monolithic type DSSCs were fabricated on a single fluorine-doped transparent oxide coated glass using porous ZrO2 as spacer. Herein, the catalytic material for the counter-electrode was varied using carbon composite and platinum in order to analyze their effect on the solar cell efficiency. Four-point probe measurement revealed that the carbon composite exhibited slightly higher conductivity with a sheet resistance of 9.8 Ω/sq and 10.9 Ω/sq for carbon and platinum, respectively. Likewise, the photoconversion efficiency of the monolithic cells with carbon counter-electrode almost doubled the efficiency of the cells with platinum counter-electrode. Our results demonstrate that carbon could outperform the performance of platinum as catalytic material in monolithic DSSC.

  2. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    KAUST Repository

    Sahli, Florent; Kamino, Brett A.; Werner, Jé ré mie; Brä uninger, Matthias; Paviet-Salomon, Bertrand; Barraud, Loris; Monnard, Raphaë l; Seif, Johannes Peter; Tomasi, Andrea; Jeangros, Quentin; Hessler-Wyser, Aï cha; De Wolf, Stefaan; Despeisse, Matthieu; Nicolay, Sylvain; Niesen, Bjoern; Ballif, Christophe

    2017-01-01

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  3. Mathematical Modelling of Optimization of Structures of Monolithic Coverings Based on Liquid Rubbers

    Science.gov (United States)

    Turgumbayeva, R. Kh; Abdikarimov, M. N.; Mussabekov, R.; Sartayev, D. T.

    2018-05-01

    The paper considers optimization of monolithic coatings compositions using a computer and MPE methods. The goal of the paper was to construct a mathematical model of the complete factorial experiment taking into account its plan and conditions. Several regression equations were received. Dependence between content components and parameters of rubber, as well as the quantity of a rubber crumb, was considered. An optimal composition for manufacturing the material of monolithic coatings compositions was recommended based on experimental data.

  4. Novel design of low-jitter 10 GHz all-active monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Christiansen, Lotte Jin

    2004-01-01

    Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared.......Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared....

  5. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  6. A hybrid monolithic column based on boronate-functionalized graphene oxide nanosheets for online specific enrichment of glycoproteins.

    Science.gov (United States)

    Zhou, Chanyuan; Chen, Xiaoman; Du, Zhuo; Li, Gongke; Xiao, Xiaohua; Cai, Zongwei

    2017-05-19

    A hybrid monolithic column based on aminophenylboronic acid (APBA)-functionalized graphene oxide (GO) has been developed and used for selective enrichment of glycoproteins. The APBA/GO composites were homogeneously incorporated into a polymer monolithic column with the help of oligomer matrix and followed by in situ polymerization. The effect of dispersion of APBA/GO composites in the polymerization mixture on the performance of the monolithic column was explored in detail. The presence of graphene oxide not only enlarged the BET surface area from 6.3m 2 /g to 169.4m 2 /g, but also provided abundant boronic acid moieties for glycoprotein extraction, which improved the enrichment selectivity and efficiency for glycoproteins. The APBA/GO hybrid monolithic column was incorporated into a sequential injection system, which facilitated online extraction of proteins. Combining the superior properties of extraordinary surface area of GO and the affinity interaction of APBA to glycoproteins, the APBA/GO hybrid monolithic column showed higher enrichment factors for glycoproteins than other proteins without cis-diol-containing groups. Also, under comparable or even shorter processing time and without the addition of any organic solvent, it showed higher binding capacity toward glycoproteins compared with the conventional boronate affinity monolithic column. The practical applicability of this system was demonstrated by processing of egg white samples for extraction of ovalbumin and ovotransferrin, and satisfactory results were obtained by assay with SDS-PAGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The synthesis of weak acidic type hybrid monolith via thiol-ene click chemistry and its application in hydrophilic interaction chromatography.

    Science.gov (United States)

    Zeng, Jiao; Liu, Shengquan; Wang, Menglin; Yao, Shouzhuo; Chen, Yingzhuang

    2017-05-01

    In this work, a porous structure and good permeability monolithic column was polymerized in UV transparent fused-silica capillaries via photo-initiated thiol-ene click polymerization of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane (TMTVS), pentaerythritol tetra(3-mercaptopropionate)(PETMP), itaconic acid, respectively, in the presence of porogenic solvents (tetrahydrofuranand methanol) and an initiator (2,2-dimethoxy-2-phenylacetophenone) (DMPA) within 30 min. The physical properties of this monolith were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and nitrogen adsorption/desorption measurements. For an overall evaluation of the monolith in chromatographic application, separations of polycyclic aromatic hydrocarbons (PAHs), phenols, amides and bases were carried out. The column efficiency of this monolith could be as high as 112 560 N/m. It also possesses a potential application in fabrication of monoliths with high efficiency for c-LC. In addition, the resulting monolithic column demonstrated the potential use in analysis of environment waters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Catalytic Oxidation of Cyanogen Chloride over a Monolithic Oxidation Catalyst

    National Research Council Canada - National Science Library

    Campbell, Jeffrey

    1997-01-01

    The catalytic oxidation of cyanogen chloride was evaluated over a monolithic oxidation catalyst at temperatures between 200 and 300 deg C in air employing feed concentrations between 100 and 10,000 ppm...

  9. Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kawakami, S.; Yamanaka, Y.; Kato, K.; Asano, H.; Ueda, H.

    1999-01-01

    The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction by the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: ρd of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density (ρd: 1.4--2.0 Mg/m 3 ) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10 -13 m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite

  10. Specially Treated Aramid Fiber Stabilized Gel-Emulsions: Preparation of Porous Polymeric Monoliths and Highly Efficient Removing of Airborne HCHO.

    Science.gov (United States)

    Liu, Jianfei; Chen, Xiangli; Wang, Pei; Fu, Xuwei; Liu, Kaiqiang; Fang, Yu

    2017-08-01

    Porous polymeric monoliths with densities as low as ≈0.060 g cm -3 are prepared in a gel-emulsion template way, of which the stabilizer employed is a newly discovered acidified aramid fiber that is so efficient that 0.05% (w/v, accounts for continuous phase) is enough to gel the system. The porous monoliths as obtained can be dried at ambient conditions, avoiding energy-consuming processes. Importantly, the monoliths show selective adsorption to HCHO, and the corresponding adsorption capacity (M6) is ≈2700 mg g -1 , the best result that is reported until now. More importantly, the monoliths can be reused after drying. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of Population III Multiplicity on Dark Star Formation

    Science.gov (United States)

    Stacy, Athena; Pawlik, Andreas H.; Bromm, Volker; Loeb, Abraham

    2012-01-01

    We numerically study the mutual interaction between dark matter (DM) and Population III (Pop III) stellar systems in order to explore the possibility of Pop III dark stars within this physical scenario. We perform a cosmological simulation, initialized at z approx. 100, which follows the evolution of gas and DM. We analyze the formation of the first mini halo at z approx. 20 and the subsequent collapse of the gas to densities of 10(exp 12)/cu cm. We then use this simulation to initialize a set of smaller-scale 'cut-out' simulations in which we further refine the DM to have spatial resolution similar to that of the gas. We test multiple DM density profiles, and we employ the sink particle method to represent the accreting star-forming region. We find that, for a range of DM configurations, the motion of the Pop III star-disk system serves to separate the positions of the protostars with respect to the DM density peak, such that there is insufficient DM to influence the formation and evolution of the protostars for more than approx. 5000 years. In addition, the star-disk system causes gravitational scattering of the central DM to lower densities, further decreasing the influence of DM over time. Any DM-powered phase of Pop III stars will thus be very short-lived for the typical multiple system, and DM will not serve to significantly prolong the life of Pop III stars.

  12. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns.

    Science.gov (United States)

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-02-01

    The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃-55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

  13. Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules.

    Science.gov (United States)

    Yang, Shengchao; Ye, Fanggui; Lv, Qinghui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2014-09-19

    Metal-organic framework (MOF) HKUST-1 nanoparticles have been incorporated into poly(glycidyl methacrylate-co-ethylene dimethacrylate) (HKUST-1-poly(GMA-co-EDMA)) monoliths to afford stationary phases with enhanced chromatographic performance of small molecules in the reversed phase capillary liquid chromatography. The effect of HKUST-1 nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. While the bare poly(GMA-co-EDMA) monolith exhibited poor resolution (RsHKUST-1 nanoparticles to the polymerization mixture provide high increased resolution (Rs≥1.3) and high efficiency ranged from 16,300 to 44,300plates/m. Chromatographic performance of HKUST-1-poly(GMA-co-EDMA) monolith was demonstrated by separation of various analytes including polycyclic aromatic hydrocarbons, ethylbenzene and styrene, phenols and aromatic acids using a binary polar mobile phase (CH3CN/H2O). The HKUST-1-poly(GMA-co-EDMA) monolith displayed enhanced hydrophobic and π-π interaction characteristics in the reversed phase separation of test analytes compared to the bare poly(GMA-co-EDMA) monolith. The experiment results showed that HKUST-1-poly(GMA-co-EDMA) monoliths are an alternative to enhance the chromatographic separation of small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Monolithic stabilized Yb-fiber All-PM laser directly delivering nJ-level femtosecond pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality.......We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality....

  15. Development and applications of femtosecond monolithic Yb-doped fiber chirped-pulse amplifiers

    International Nuclear Information System (INIS)

    Zhu, L.

    2011-01-01

    In the past few years, compact and environmentally stable high-energy ultrashort pulse laser sources have been broadly utilized in many different applications. Fiber lasers offer big practical advantages over bulk solid-state laser systems in terms of flexibility, compactness, reliability, cost effectiveness and turn-key operability. Moreover, thermal effects are dramatically reduced due to the large surface-to-volume ratio of an optical fiber, and good spatial mode quality can be ensured by its waveguiding property. Therefore, a fiber-based laser system is considered to be the preferred laser architecture. The main theme of this thesis is the development of various femtosecond monolithic Yb-doped fiber chirped-pulse-amplification (FCPA) system and their applications. We demonstrate an ultrafast high-energy monolithic Yb-doped FCPA system in which the pulse fidelity is preserved by weakening the nonlinear effects via a substantial level of temporal stretching of the seed pulses and by using highly doped active fibers as amplifying media. The presented monolithic FCPA delivers up to ∼ 25 μJ diffraction-limited pulses that can be recompressed to sub-200 fs duration, and the pulse quality has been confirmed through the second-harmonic-generation (SHG) conversion efficiency of over 52%. Improved dispersion and nonlinearity management schemes of the FCPA system allowing substantial pulse energy scaling in the monolithic format as well as methods for overcoming a series of technological challenges are reported. Three different types of Yb-doped fiber oscillators have been developed and built in the course of this PhD work. First, we compare two oscillator types that are based on the all-normal-dispersion (ANDi) regime and the dispersion-managed (DM) regime. Both of them have been tested as the seed-pulse source of the monolithic Yb-doped FCPA system. Then we introduce another novel design based on higher-order-mode (HOM) dispersion management that competes with a

  16. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  17. Adsorbed natural gas usage in vehicles; Uso veicular do gas natural adsorvido

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Flavio Barboza; Miller, Francisco Mateus; Moura, Newton Reis de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper presents and evaluates the actual state of development of the natural gas storage in activated carbons (ANG - adsorbed natural gas) for vehicles applications. This paper also presents the technological challenges that must be overcome to turn ANG viable for vehicles applications. The main results published in ANG, its theoretical limit and a preliminary comparison between the ANG and the GNC technologies are also presented in this work. The parameters used in that comparison were storage capacity, reservoir's weight and volume. The maximum methane storage capacity in activated carbon monoliths (theoretical limit), determined by molecular simulation, is lower than the CNG ones. Therefore, the ANG contribution to vehicles applications is not related to a higher storage capacity but to its lower working pressure, that represents an advantage by the following aspects: reduction or elimination the loss of useful space inside the vehicle; safety and price reduction of NG at fueling station. (author)

  18. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    Science.gov (United States)

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  19. Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing

    International Nuclear Information System (INIS)

    Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2003-01-01

    The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer

  20. 10Gbps monolithic silicon FTTH transceiver for PON

    Science.gov (United States)

    Zhang, J.; Liow, T. Y.; Lo, G. Q.; Kwong, D. L.

    2010-05-01

    We propose a new passive optical network (PON) configuration and a novel silicon photonic transceiver architecture for optical network unit (ONU), eliminating the need for an internal laser source in ONU. We adopt dual fiber network configuration. The internal light source in each of the ONUs is eliminated. Instead, an extra seed laser source in the optical line termination (OLT) operates in continuous wave mode to serve the ONUs in the PON as a shared and centralized laser source. λ1 from OLT Tx and λ2 from the seed laser are combined by using a WDM combiner and connected to serve the multiple ONUs through the downstream fibers. The ONUs receive the data in λ1. Meanwhile, the ONUs encode and transmit data in λ2, which are sent back to OLT. The monolithic ONU transceiver contains a wavelength-division-multiplexing (WDM) filter component, a silicon modulator and a Ge photo-detector. The WDM in ONU selectively guides λ1 to the Ge-PD where the data in λ1 are detected and converted to electrical signals, and λ2 to the transmitter where the light is modulated by upstream data. The modulated optical signals in λ2 from ONUs are connected back to OLT through upstream fibers. The monolithic ONU transceiver chip size is only 2mm by 4mm. The crosstalk between the Tx and Rx is measured to be less than -20dB. The transceiver chip is integrated on a SFP+ transceiver board. Both Tx and Rx demonstrated data rate capabilities of up to 10Gbps. By implementing this scheme, the ONU transceiver size can be significantly reduced and the assembly processes will be greatly simplified. The results demonstrate the feasibility of mass manufacturing monolithic silicon ONU transceivers via low cost

  1. Role of the substrate in monolithic AlGaAs nonlinear nanoantennas

    Directory of Open Access Journals (Sweden)

    Gili Valerio Flavio

    2017-06-01

    Full Text Available We report the effect of the aluminum oxide substrate on the emission of monolithic AlGaAs-on-insulator nonlinear nanoantennas. By coupling nonlinear optical measurements with electron diffraction and microscopy observations, we find that the oxidation-induced stress causes negligible crystal deformation in the AlGaAs nanostructures and only plays a minor role in the polarization state of the harmonic field. This result highlights the reliability of the wet oxidation of thick AlGaAs optical substrates and further confirms the bulk χ(2 origin of second harmonic generation at 1.55 μm in these nanoantennas, paving the way for the development of AlGaAs-on-insulator monolithic metasurfaces.

  2. A compact narrow-linewidth laser with a low-Q monolithic cavity

    International Nuclear Information System (INIS)

    Peng, Yu

    2013-01-01

    We demonstrate an approach to narrowing the linewidth of a diode laser to around 15×10 3 Hz with a compact setup of confocal and parallel monolithic Fabry–Perot cavities (MFCs). Resonances of the confocal and parallel MFCs with low finesse are obtained. Diode lasers with optical feedback from confocal and parallel monolithic MFCs are demonstrated. The frequency could be tuned 80×10 6 Hz by changing the grating position of the external cavity diode laser based on the confocal MFC, and 100×10 6 Hz by tuning the temperature of the plane MFC over 0.02 ° C for the external cavity diode laser based on the parallel MFC. (paper)

  3. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Longguang [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  4. Monolithically integrated Helmholtz coils by 3-dimensional printing

    International Nuclear Information System (INIS)

    Li, Longguang; Abedini-Nassab, Roozbeh; Yellen, Benjamin B.

    2014-01-01

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  5. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  6. Monolithic dual-band HgCdTe infrared detector structure

    CSIR Research Space (South Africa)

    Parish, G

    1997-07-01

    Full Text Available A monolithic HgCdTe photoconductive device structure is presented that is suitable for dual-band optically registered infrared photodetection in the two atmospheric transmission windows of 3-5 mu m and 8-12 mu m, which correspond to the mid...

  7. Effects of Pop III to PopII transition on the lowest metallicity stars in dwarf galaxies

    Science.gov (United States)

    Zhang, Yimiao; Keres, Dusan; FIRE Team

    2018-01-01

    We examine the effects of the enrichments from Population III (Pop III) stars on the formation and properties of the first generation of the Population II (Pop II) stars. Pop III stars begin to transition towards Pop II stars when the metals dispersed in Pop III supernovae pollute the nearby gas. However, details of this transition are still largely unknown. We use dwarf galaxy simulations from the Feedback In Realistic Environments (FIRE) project to identify the star-forming gas that is likely to be pre-enriched by Pop III supernovae and follow the stars that form in such gas. This pre-enrichment will leave the signature in the lowest metallicity stars that can be used to better constrain the details of the Pop III-to-Pop II transition.

  8. Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Thompson, M.G.; Marinelli, C.; Chu, Y.

    Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance.......Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance....

  9. Synthesis and Textural Characterization of Mesoporous and Meso-/Macroporous Silica Monoliths Obtained by Spinodal Decomposition

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2016-04-01

    Full Text Available Silica monoliths featuring either mesopores or flow-through macropores and mesopores in their skeleton are prepared by combining spinodal phase separation and sol-gel condensation. The macroporous network is first generated by phase separation in acidic medium in the presence of polyethyleneoxides while mesoporosity is engineered in a second step in alkaline medium, possibly in the presence of alkylammonium cations as surfactants. The mesoporous monoliths, also referred as aerogels, are obtained in the presence of alkylpolyethylene oxides in acidic medium without the use of supercritical drying. The impact of the experimental conditions on pore architecture of the monoliths regarding the shape, the ordering, the size and the connectivity of the mesopores is comprehensively discussed based on a critical appraisal of the different models used for textural analysis.

  10. Water and Solute Mass Transport in Soils Developed on glacial Drift: A Br Tracer Investigation Using Instrumented Soil Monoliths at an Agricultural Long Term Ecological Research Site (Kellogg Biological Station, Hickory Corners, Southern Michigan)

    Science.gov (United States)

    Jin, L.; Hamilton, S. K.; Walter, L. M.

    2004-12-01

    Hydrologic processes control the residence time of water in the soil column. This is of central importance in understanding mineral weathering rates in terms of reaction kinetics and solute transport. In order to better quantify the coupling between water and solute mass transport and to better define controls on carbonate and aluminosilicates weathering rates, we have conducted bromide-tracer introduction experiments at four replicate soil monoliths (4 m3 volume) instrumented and managed by the KBS-LTER. Monolith soils are developed on the pitted outwash plain of the morainic system left by the last retreat of the Wisconsin glaciation, around 12,000 years ago. Soil profiles from the monolith sections extend to 200 cm and they were sampled and characterized texturally and mineralogically. Quartz and feldspar are dominant throughout the soil profile, while carbonates and hornblende occur only in deeper soil horizons. The four replicate monoliths are instrumented with gas and soil water sampling devices (Prenart tension lysimeters) at various depths. The monoliths also have a large capacity tray at the bottom, which permits collection of water for weight and chemical determinations. A bromide tracer solution (as lithium bromide) was applied to coincide as closely as possible with a major snowmelt event (2/27/04). The saturated and unsaturated transport of bromide through the four monoliths was followed as a function of time and soil profile depth for the duration of the snowmelt as well as intermittent rain events. Because the soil was saturated at the time of bromide application, the bromide solution is expected to move rapidly through macropores, followed by slower movement into micropores. The unsaturated transport of bromide is largely controlled by the intensity and duration of the rains if it is dominated by piston flow as opposed to preferential channel flow. In general, the tracer moved through the shallow soils very quickly, which is shown by early sharp

  11. The evaluation of failure stress and released amount of fission product gas of power ramped rod by fuel behaviour analysis code 'FEMAXI-III'

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujita, Misao

    1984-01-01

    Pellet-Cladding Interaction(PCI) related in-pile failure of Zircaloy sheathed fuel rod is in general considered to be caused by combination of pellet-cladding mechanical interaction(PCMI) with fuel-cladding chemical interaction(FCCI). An understanding of a basic mechanism of PCI-related fuel failure is therefore necessary to get actual cladding hoop stress from mechanical interaction and released amounts of fission product(FP) gas of aggressive environmental agency from chemical interaction. This paper describes results of code analysis performed on fuel failure to cladding hoop stress and amounts of FP gas released under the condition associated with power ramping. Data from Halden(HBWR) and from Studsvik(R2) are used for code analysis. The fuel behaviour analysis code ''FEMAXI-III'' is used as an analytical tool. The followings are revealed from the study: (1) PCI-related fuel failure is dependent upon cladding hoop stress and released amounts of FP gas at power ramping. (2) Preliminary calculated threshold values of hoop stress and of released amounts of FP gas to PCI failure are respectively 330MPa, 10% under the Halden condition, 190MPa, 5% under the Inter ramp(BWR) condition, and 270MPa, 14% under the Over ramp(PWR) condition. The values of hoop stress calculated are almost in the similar range of those obtained from ex-reactor PCI simulated tests searched from references published. (3) The FEMAXI-III code verification is made in mechanical manner by using in-pile deformation data(diametral strain) obtained from power ramping test undertaken by JAERI. While, the code verification is made in thermal manner by using punctured FP gas data obtained from post irradiation examination performed on non-defected power ramped fuel rods. The calculations are resulted in good agreements to both, mechanical and thermal experimental data suggesting the validity of the code evaluation. (J.P.N.)

  12. The Health Risk Assessment of Pb and Cr leachated from fly ash monolith landfill

    International Nuclear Information System (INIS)

    Hung, Ming-Lung; Wu, Sheng-Yao; Chen, Yen-Chuan; Shih, Hsiu-Ching; Yu, Yue-Hwa; Ma, Hwong-wen

    2009-01-01

    As of 2004, nearly two hundred thousand tons of fly ash monoliths are created each year in Taiwan to confine heavy metals for reducing the leaching quantity by precipitation. However, due to abnormal monolith fracture, poorly liner quality or exceeding usage over designed landfill capacity, serious groundwater pollution of the landfills has been reported. This research focuses on Pb and Cr leaching from monolithic landfill to assess the risk of groundwater pollution in the vicinity. The methodology combines water budget simulations using HELP model with fate and risk simulations using MMSOILS model for 5 kinds of landfill structures and 2 types of leaching models, and calculates the risk distribution over 400 grids in the down gradient direction of groundwater. The results demonstrated that the worst liner quality will cause the largest risk and the most significant exposure pathway is groundwater intake, which accounted for 98% of the total risk. Comparing Pb and Cr concentrations in the groundwater with the drinking water standards, only 14.25% of the total grids are found to be under 0.05 mg/L of Pb, and over 96.5% of the total grids are in the safety range of Cr. It indicates that Pb leaching from fly ash monolithic landfills may cause serious health risks. Without consideration of the parameters uncertainty, the cancer and noncancer risk of Pb with the sanitary landfill method was 4.23E-07 and 0.63, respectively, both under acceptable levels. However, by considering the parameters uncertainty, the non-carcinogenic risk of Pb became 1.43, exceeding the acceptable level. Only under the sealed landfill method was the hazard quotient below 1. It is important to use at least the sealed landfill for fly ash monoliths containing lead to effectively reduce health risks.

  13. Synthesis and applications of crack-free SiO2 monolith containing CdSe/ZnS quantum dots as passive lighting sources.

    Science.gov (United States)

    Yi, Dong Kee

    2008-09-01

    A reverse microemulsion technique has been used to synthesize quantum dot nanocomposites within a SiO2 surface coating. With this approach, the unique optical properties of the CdSe/ZnS quantum dots were preserved. CdSe/ZnS/SiO2 nanoparticles were homogeneously distributed in a tetramethyl orthosilicate ethanol solution and gelation process was initiated within a 10 min, and was left over night at room temperature and dried fully to achieve a solid SiO, monolith. The resulting monolith was transparent and fluorescent under ultraviolet (UV) lamp. Moreover the monolith produced was crack-free. Further studies on the photo stability of the monolith were performed using a high power UV LED device. Remarkably, quantum dots in the SiO, monolith showed better photo stability compared with those dispersed in a polymer matrix.

  14. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  15. Long-lived monolithic micro-optics for multispectral GRIN applications.

    Science.gov (United States)

    Lepicard, Antoine; Bondu, Flavie; Kang, Myungkoo; Sisken, Laura; Yadav, Anupama; Adamietz, Frederic; Rodriguez, Vincent; Richardson, Kathleen; Dussauze, Marc

    2018-05-09

    The potential for realizing robust, monolithic, near-surface refractive micro-optic elements with long-lived stability is demonstrated in visible and infrared transmitting glasses capable of use in dual band applications. Employing an enhanced understanding of glass chemistry and geometric control of mobile ion migration made possible with electrode patterning, flat, permanent, thermally-poled micro-optic structures have been produced and characterized. Sub-surface (t~5-10 µm) compositional and structural modification during the poling process results in formation of spatially-varying refractive index profiles, exhibiting induced Δn changes up to 5 × 10 -2 which remain stable for >15 months. The universality of this approach applied to monolithic vis-near infrared [NIR] oxide and NIR-midwave infrared [MIR] chalcogenide glass materials is demonstrated for the first time. Element size, shape and gradient profile variation possible through pattern design and fabrication is shown to enable a variety of design options not possible using other GRIN process methodologies.

  16. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Ha, Seung-Ryong

    2016-06-01

    Surface polishing or glazing may increase the appearance of depth of monolithic zirconia restorations. The purpose of this in vitro study was to investigate the effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. Forty-five monolithic zirconia specimens (16.3×16.4×2.0 mm) were divided into groups I to V, according to the number of colorings each received. Each group was then divided into 3 subgroups (n=3) according to the surface treatment: N=no treatment; P=polished; and G=glazed. CIElab color coordinates were obtained relative to D65 on a reflection spectrophotometer. The translucency parameter (TP) and opalescence parameter (OP) were calculated. One specimen per subgroups I and V was selected for evaluation of surface roughness (Ra) and was examined with scanning electron microscopy (SEM). Data were analyzed with 2-way ANOVA and pairwise comparisons (α=.05). Statistical powers were verified to evaluate results (α=.05). The interaction effects of surface treatments combined with the number of colorings were significant for TP, OP, and Ra (P.05), whereas glazing significantly decreased OP and Ra in most groups. SEM images demonstrated that surface treatments affected the surface texture of monolithic zirconia ceramics. Surface treatments combined with coloring strongly affect the surface texture of dental monolithic zirconia ceramics. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    Science.gov (United States)

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-07

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All

  18. Periodic imidazolium-bridged hybrid monolith for high-efficiency capillary liquid chromatography with enhanced selectivity.

    Science.gov (United States)

    Qiao, Xiaoqiang; Zhang, Niu; Han, Manman; Li, Xueyun; Qin, Xinying; Shen, Shigang

    2017-03-01

    A novel periodic imidazolium-bridged hybrid monolithic column was developed. With diene imidazolium ionic liquid 1-allyl-3-vinylimidazolium bromide as both cross-linker and organic functionalized reagent, a new periodic imidazolium-bridged hybrid monolithic column was facilely prepared in capillary with homogeneously distributed cationic imidazolium by a one-step free-radical polymerization with polyhedral oligomeric silsesquioxane methacryl substituted. The successful preparation of the new column was verified by Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, and surface area analysis. Most interestingly, the bonded amount of 1-allyl-3-vinylimidazolium bromide of the new column is three times higher than that of the conventional imidazolium-embedded hybrid monolithic column and the specific surface area of the column reached 478 m 2 /g. The new column exhibited high stability, excellent separation efficiency, and enhanced separation selectivity. The column efficiency reached 151 000 plates/m for alkylbenzenes. Furthermore, the new column was successfully used for separation of highly polar nucleosides and nucleic acid bases with pure water as mobile phase and even bovine serum albumin tryptic digest. All these results demonstrate the periodic imidazolium-bridged hybrid monolithic column is a good separation media and can be used for chromatographic separation of small molecules and complex biological samples with high efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow.

    Science.gov (United States)

    Roper, Kimberley A; Berry, Malcolm B; Ley, Steven V

    2013-01-01

    The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed.

  20. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  1. Fabrication of an ionic-liquid-based polymer monolithic column and its application in the fractionation of proteins from complex biosamples.

    Science.gov (United States)

    Zhang, Doudou; Zhang, Qian; Bai, Ligai; Han, Dandan; Liu, Haiyan; Yan, Hongyuan

    2018-05-01

    An ionic-liquid-based polymer monolithic column was synthesized by free radical polymerization within the confines of a stainless-steel column (50 mm × 4.6 mm id). In the processes, ionic liquid and stearyl methacrylate were used as dual monomers, ethylene glycol dimethacrylate as the cross-linking agent, and polyethylene glycol 200 and isopropanol as co-porogens. Effects of the prepolymerization solution components on the properties of the resulting monoliths were studied in detail. Scanning electron microscopy, nitrogen adsorption-desorption measurements, and mercury intrusion porosimetry were used to investigate the morphology and pore size distribution of the prepared monoliths, which showed that the homemade ionic-liquid-based monolith column possessed a relatively uniform macropore structure with a total macropore specific surface area of 44.72 m 2 /g. Compared to a non-ionic-liquid-based monolith prepared under the same conditions, the ionic-liquid-based monolith exhibited excellent selectivity and high performance for separating proteins from complex biosamples, such as egg white, snailase, bovine serum albumin digest solution, human plasma, etc., indicating promising applications in the fractionation and analysis of proteins from the complex biosamples in proteomics research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structure and Electromagnetic Properties of Cellular Glassy Carbon Monoliths with Controlled Cell Size

    Directory of Open Access Journals (Sweden)

    Andrzej Szczurek

    2018-05-01

    Full Text Available Electromagnetic shielding is a topic of high importance for which lightweight materials are highly sought. Porous carbon materials can meet this goal, but their structure needs to be controlled as much as possible. In this work, cellular carbon monoliths of well-defined porosity and cell size were prepared by a template method, using sacrificial paraffin spheres as the porogen and resorcinol-formaldehyde (RF resin as the carbon precursor. Physicochemical studies were carried out for investigating the conversion of RF resin into carbon, and the final cellular monoliths were investigated in terms of elemental composition, total porosity, surface area, micropore volumes, and micro/macropore size distributions. Electrical and electromagnetic (EM properties were investigated in the static regime and in the Ka-band, respectively. Due to the phenolic nature of the resin, the resultant carbon was glasslike, and the special preparation protocol that was used led to cellular materials whose cell size increased with density. The materials were shown to be relevant for EM shielding, and the relationships between those properties and the density/cell size of those cellular monoliths were elucidated.

  3. Fabrication of single-walled carbon nanohorns incorporated a monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Zhao, Hongyan; Wang, Yizhou; Cheng, Heyong; Wang, Yuanchao

    2017-08-01

    Single-walled carbon nanohorns have received great interest for their unique properties and diverse potential applications. Herein, we demonstrated the feasibility of single-walled carbon nanohorns incorporated poly(styrene-divinylbenzene) monolith as the stationary phase for capillary electrochromatography, which were prepared by one-step in situ copolymerization. Single-walled carbon nanohorns were dispersed in styrene to give a stable and homogeneous suspension. The monolithic column gave effective separation for a wide range of aromatic compounds, which was based on hydrophobicity and π-π electrostatic stacking of single-walled carbon nanohorns. The precisions of migration time and peak area varied in the ranges of 1.4-1.9% for intraday trials and 1.7-3.5% for interday trials, and 3.2-6.7% for intraday trials and 4.1-7.4% for interday trials, and 3.6-7.2% for inter-column trials and 5.2-21.3% for inter-column trials, respectively, indicating the good reproducibility of single-walled carbon nanohorns embedded monolithic columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shu-Ling; Wu, Yu-Ru; Lin, Tzuen-Yeuan; Fuh, Ming-Ren, E-mail: msfuh@scu.edu.tw

    2015-04-29

    Highlights: • Methacrylic acid (MAA) was used to increase hydrophilicity of polymeric monoliths. • Fast separation of phenol derivatives was achieved in 5 min using MAA-incorporated column. • Separations of aflatoxins and phenicol antibiotics were achieved using MAA-incorporated column. - Abstract: In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate–MAA ratios were investigated to prepare a series of 30% alkyl methacrylate–MAA–EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column.

  5. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.

    Science.gov (United States)

    Park, Sin Young; Cheong, Won Jo

    2015-09-01

    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polymethacrylate-based monoliths as stationary phases for separation of biopolymers and immobilization of enzymes.

    Science.gov (United States)

    Martinović, Tamara; Josić, Djuro

    2017-11-01

    The experiences in the production and application of polymethacrylate-based monolithic supports, since their development almost thirty years ago, are presented. The main driving force for the development of new chromatographic supports was the necessity for the isolation and separation of physiologically active biopolymers and their use for therapeutic purposes. For this sake, a development of a method for fast separation, preventing denaturation and preserving their biological activity was necessary. Development of polysaccharide-based supports, followed by the introduction of polymer-based chromatographic media, is shortly described. This development was followed by the advances in monolithic media that are now used for both large- and small-scale separation of biopolymers and nanoparticles. Finally, a short overview is given about the applications of monoliths for sample displacement chromatography, resulting in isolation of physiologically active biomolecules, such as proteins, protein complexes, and nucleic acid, as well as high-throughput sample preparation for proteomic investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Partial Coefficient System for the Design of Monolithic Vertical Breakwaters Considering Sliding and Rupture Failure of the Foundation

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Christiani, Erik; Sørensen, John Dalsgaard

    1995-01-01

    The main object is to present a set of calibrated partial coefficients for monolithic vertical breakwater failure modes. A preliminary design of the monolithic breakwater will be considered, which will be designed from existing partial coefficients, documented in Eurocode 7 (1994). From this desi...

  8. Integration trends in monolithic power ICs: Application and technology challenges

    NARCIS (Netherlands)

    Rose, M.; Bergveld, H.J.

    2016-01-01

    This paper highlights the general trend towards further monolithic integration in power applications by enabling power management and interfacing solutions in advanced CMOS nodes. The need to combine high-density digital circuits, power-management circuits, and robust interfaces in a single

  9. Measurement of the denitrification in soil monoliths from grassland and arable soil by means of 15N techniques

    International Nuclear Information System (INIS)

    Lippold, H.; Foerster, I.

    1980-01-01

    Losses of fertilizer nitrogen by denitrification were determined in soil monoliths from two sites (loess chernozem and clay ranker). The monoliths were isolated by driving plastic pipes into the plots, and fertilized with 15 N-labelled ammonium nitrate. Emission spectrometric techniques were applied to measure the N 2 and N 2 O quantities released in the isolated atmospheric layer above the monolith. The considerable losses, especially on grassland soils (up to a maximum of 30 kg N/ha), indicate the influence of rainfalls and mean temperature at the 5 dates of sampling (end of March to mid-October). (author)

  10. Molecularly imprinted macroporous monoliths for solid-phase extraction: Effect of pore size and column length on recognition properties.

    Science.gov (United States)

    Vlakh, E G; Stepanova, M A; Korneeva, Yu M; Tennikova, T B

    2016-09-01

    The series of macroporous monolithic molecularly imprinted monoliths differed by pore size, column length (volume) and amount of template used for imprinting was synthesized using methacrylic acid and glycerol dimethacrylate as co-monomers and antibiotic ciprofloxacin as a template. The prepared monoliths were characterized regarding to their permeability, pore size, porosity, and resistance to the flow of a mobile phase. The surface morphology was also analyzed. The slight dependence of imprinting factor on flow rate, as well as its independence on pore size of macroporous molecularly imprinted monolithic media was observed. The column obtained at different conditions exhibited different affinity of ciprofloxacin to the imprinted sites that was characterized with Kdiss values in the range of 10(-5)-10(-4)M. The solid-phase extraction of ciprofloxacin from such biological liquids as human blood serum, human urine and cow milk serum was performed using the developed monolithic columns. In all cases, the extraction was found to be 95.0-98.6%. Additionally, the comparison of extraction of three fluoroqinolone analogues, e.g. ciprofloxacin, levofloxacin and moxifloxacin, from human blood plasma was carried out. Contrary to ciprofloxacin extracted with more than 95%, this parameter did not exceed 40% for its analogues. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow

    Directory of Open Access Journals (Sweden)

    Kimberley A. Roper

    2013-09-01

    Full Text Available The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed.

  12. A 60-GHz rectenna for monolithic wireless sensor tags

    NARCIS (Netherlands)

    Gao, H.; Johannsen, U.; Matters - Kammerer, M.; Milosevic, D.; Smolders, A.B.; Roermund, van A.H.M.; Baltus, P.G.M.

    2013-01-01

    This paper presents the design of a 60-GHz rectenna with an on-chip antenna and rectifier in 65nm CMOS technology. The rectenna is often the bottleneck in realizing a fully-integrated monolithic wireless sensor tag. In this paper, problems of the mm-wave rectifier are discussed, and the

  13. Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules

    KAUST Repository

    Chambers, Stuart D.

    2011-12-15

    Monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) and poly(butyl methacrylate-co-ethylene dimethacrylate) capillary columns, which incorporate the new monomer [6,6]-phenyl-C 61-butyric acid 2-hydroxyethyl methacrylate ester, have been prepared and their chromatographic performance have been tested for the separation of small molecules in the reversed phase. While addition of the C60-fullerene monomer to the glycidyl methacrylate-based monolith enhanced column efficiency 18-fold, to 85 000 plates/m at a linear velocity of 0.46 mm/s and a retention factor of 2.6, when compared to the parent monolith, the use of butyl methacrylate together with the carbon nanostructured monomer afforded monolithic columns with an efficiency for benzene exceeding 110 000 plates/m at a linear velocity of 0.32 mm/s and a retention factor of 4.2. This high efficiency is unprecedented for separations using porous polymer monoliths operating in an isocratic mode. Optimization of the chromatographic parameters affords near baseline separation of 6 alkylbenzenes in 3 min with an efficiency of 64 000 plates/m. The presence of 1 wt % or more of water in the polymerization mixture has a large effect on both the formation and reproducibility of the monoliths. Other factors such as nitrogen exposure, polymerization conditions, capillary filling method, and sonication parameters were all found to be important in producing highly efficient and reproducible monoliths. © 2011 American Chemical Society.

  14. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  15. Capital cost evaluation of liquid metal reactor by plant type - comparison of modular type with monolithic type -

    International Nuclear Information System (INIS)

    Mun, K. H.; Seok, S. D.; Song, K. D.; Kim, I. C.

    1999-01-01

    A preliminary economic comparison study was performed for KALIMER(Korea Advanced LIquid MEtal Reactor)between a modular plant type with 8 150MWe modules and a 1200MWe monolithic plant type. In both cases of FOAK (First-Of-A-Kind) Plant and NOAK (Nth-Of-A-Kind) Plant, the result says that the economics of monolithic plant is superior to its modular plant. In case of NOAK plant comparison, however, the cost difference is not significant. It means that modular plant can compete with monolithic plant in capital cost if it makes efforts of cost reduction and technical progress on the assumption that the same type of NOAK plant will be constructed continuously

  16. Characterization and testing of monolithic RERTR fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D.; Jue, J.F.; Burkes, D.E. [Idaho National Lab., Idaho Falls, ID (United States)

    2007-07-01

    Monolithic fuel plates are being developed as a LEU (low enrichment uranium) fuel for application in research reactors throughout the world. These fuel plates are comprised of a U-Mo alloy foil encased in aluminum alloy cladding. Three different fabrication techniques have been looked at for producing monolithic fuel plates: hot isostatic pressing (HIP), transient liquid phase bonding (TLPB), and friction stir welding (FSW). Of these three techniques, HIP and FSW are currently being emphasized. As part of the development of these fabrication techniques, fuel plates are characterized and tested to determine properties like hardness and the bond strength at the interface between the fuel and cladding. Testing of HIP-made samples indicates that the foil/cladding interaction behavior depends on the Mo content in the UMo foil, the measured hardness values are quite different for the fuel, cladding, and interaction zone phase and Ti, Zr and Nb are the most effective diffusion barriers. For FSW samples, there is a dependence of the bond strength at the foil/cladding interface on the type of tool that is employed for performing the actual FSW process. (authors)

  17. Comparison of monolithic silica and polymethacrylate capillary columns for LC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2004-01-01

    Roč. 27, 10-11 (2004), s. 789-800 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/02/0023 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.927, year: 2004

  18. Optical properties and light irradiance of monolithic zirconia at variable thicknesses.

    Science.gov (United States)

    Sulaiman, Taiseer A; Abdulmajeed, Aous A; Donovan, Terrence E; Ritter, André V; Vallittu, Pekka K; Närhi, Timo O; Lassila, Lippo V

    2015-10-01

    The aims of this study were to: (1) estimate the effect of polishing on the surface gloss of monolithic zirconia, (2) measure and compare the translucency of monolithic zirconia at variable thicknesses, and (3) determine the effect of zirconia thickness on irradiance and total irradiant energy. Four monolithic partially stabilized zirconia (PSZ) brands; Prettau® (PRT, Zirkonzahn), Bruxzir® (BRX, Glidewell), Zenostar® (ZEN, Wieland), Katana® (KAT, Noritake), and one fully stabilized zirconia (FSZ); Prettau Anterior® (PRTA, Zirkonzahn) were used to fabricate specimens (n=5/subgroup) with different thicknesses (0.5, 0.7, 1.0, 1.2, 1.5, and 2.0mm). Zirconia core material ICE® Zircon (ICE, Zirkonzahn) was used as a control. Surface gloss and translucency were evaluated using a reflection spectrophotometer. Irradiance and total irradiant energy transmitted through each specimen was quantified using MARC® Resin Calibrator. All specimens were then subjected to a standardized polishing method and the surface gloss, translucency, irradiance, and total irradiant energy measurements were repeated. Statistical analysis was performed using two-way ANOVA and post-hoc Tukey's tests (pgloss was significantly affected by polishing (p<0.05), regardless of brand and thickness. Translucency values ranged from 5.65 to 20.40 before polishing and 5.10 to 19.95 after polishing. The ranking from least to highest translucent (after polish) was: BRX=ICE=PRTmonolithic zirconia can affect the ultimate clinical outcome of the optical properties of zirconia restorations. FSZ is relatively more polishable and translucent than PSZ. Copyright © 2015 Academy of Dental Materials

  19. Characterization of polymer monolithic stationary phases for capillary HPLC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2003-01-01

    Roč. 26, č. 11 (2003), s. 1005-1016 ISSN 1615-9306 R&D Projects: GA ČR GA203/02/0023 Institutional research plan: CEZ:AV0Z4031919; CEZ:MSM 253100002 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.108, year: 2003

  20. Monolithic blue LED series arrays for high-voltage AC operation

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Jin-Ping [Satellite Venture Business Laboratory, University of Tokushima, Tokushima 770-8506 (Japan); Sato, Hisao; Mizobuchi, Takashi; Morioka, Kenji; Kawano, Shunsuke; Muramoto, Yoshihiko; Sato, Daisuke; Sakai, Shiro [Nitride Semiconductor Co. Ltd., Naruto, Tokushima 771-0360 (Japan); Lee, Young-Bae; Ohno, Yasuo [Department of Electrical and Electronic Engineering, University of Tokushima, Tokushima 770-8506 (Japan)

    2002-12-16

    Design and fabrication of monolithic blue LED series arrays that can be operated under high ac voltage are described. Several LEDs, such as 3, 7, and 20, are connected in series and in parallel to meet ac operation. The chip size of a single device is 150 {mu}m x 120 {mu}m and the total size is 1.1 mm x 1 mm for a 40(20+20) LED array. Deep dry etching was performed as device isolation. Two-layer interconnection and air bridge are utilized to connect the devices in an array. The monolithic series array exhibit the expected operation function under dc and ac bias. The output power and forward voltage are almost proportional to LED numbers connected in series. On-wafer measurement shows that the output power is 40 mW for 40(20+20) LED array under ac 72 V. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  1. Fabrication of Monolithic Bridge Structures by Vacuum-Assisted Capillary-Force Lithography

    KAUST Repository

    Kwak, Rhokyun; Jeong, Hoon Eui; Suh, Kahp Y.

    2009-01-01

    Monolithic bridge structures were fabricated by using capillary-force lithography (CFL), which was developed for patterning polymers over a large area by combining essential features of nanoimprint lithography and capillarity. A patterned soft mold

  2. ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering

    Directory of Open Access Journals (Sweden)

    Franziska Weichelt

    2010-12-01

    Full Text Available Porous monolithic inorganic/polymeric hybrid materials have been prepared via ring-opening metathesis copolymerization starting from a highly polar monomer, i.e., cis-5-cyclooctene-trans-1,2-diol and a 7-oxanorborn-2-ene-derived cross-linker in the presence of porogenic solvents and two types of inorganic nanoparticles (i.e., CaCO3 and calcium hydroxyapatite, respectively using the third-generation Grubbs initiator RuCl2(Py2(IMesH2(CHPh. The physico-chemical properties of the monolithic materials, such as pore size distribution and microhardness were studied with regard to the nanoparticle type and content. Moreover, the reinforced monoliths were tested for the possible use as scaffold materials in tissue engineering, by carrying out cell cultivation experiments with human adipose tissue-derived stromal cells.

  3. Preparation and evaluation of 400μm I.D. polymer-based hydrophilic interaction chromatography monolithic columns with high column efficiency.

    Science.gov (United States)

    Liu, Chusheng; Li, Haibin; Wang, Qiqin; Crommen, Jacques; Zhou, Haibo; Jiang, Zhengjin

    2017-08-04

    The quest for higher column efficiency is one of the major research areas in polymer-based monolithic column fabrication. In this research, two novel polymer-based HILIC monolithic columns with 400μm I.D.×800μm O.D. were prepared based on the thermally initiated co-polymerization of N,N-dimethyl-N-(3-methacrylamidopropyl)-N-(3-sulfopropyl) ammonium betaine (SPP) and ethylene glycol dimethacrylate (EDMA) or N,N'-methylenebisacrylamide (MBA). In order to obtain a satisfactory performance in terms of column permeability, mechanical stability, efficiency and selectivity, the polymerization parameters were systematically optimized. Column efficiencies as high as 142, 000 plates/m and 120, 000 plates/m were observed for the analysis of neutral compounds at 0.6mm/s on the poly(SPP-co-MBA) and poly(SPP-co-EDMA) monoliths, respectively. Furthermore, the Van Deemter plots for thiourea on the two monoliths were compared with that on a commercial silica based ZIC-HILIC column (3.5μm, 200Å, 150mm×300μm I.D.) using ACN/H 2 O (90/10, v/v) as the mobile phase at room temperature. It was noticeable that the Van Deemter curves for both monoliths, particularly the poly(SPP-co-MBA) monolith, are significantly flatter than that obtained for the ZIC-HILIC column, which indicates that in spite of their larger internal diameters, they yield better overall efficiency, with less peak dispersion, across a much wider range of usable linear velocities. A clearly better separation performance was also observed for nucleobases, nucleosides, nucleotides and small peptides on the poly(SPP-co-MBA) monolith compared to the ZIC-HILIC column. It is particularly worth mentioning that these 400μm I.D. polymer-based HILIC monolithic columns exhibit enhanced mechanical strength owing to the thicker capillary wall of the fused-silica capillaries. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In situ polymerization of monolith based on poly(Triallyl Isocyanurate-co-trimethylolpropane triacrylate) and its application in high-performance liquid chromatography.

    Science.gov (United States)

    Zhong, Jing; Bai, Ligai; Qin, Junxiao; Wang, Jiafei; Hao, Mengbei; Yang, Gengliang

    2015-04-01

    A novel organic monolithic stationary phase was prepared for high-performance liquid chromatography (HPLC) by in situ copolymerization. In which, triallyl isocyanurate (TAIC) and trimethylolpropane triacrylate (TMPTA) in a binary porogenic solvent consisting of polyethylene glycol 200 and 1, 2-propanediol were used. The resultant monoliths with different column properties (e.g., morphology and pressure) were optimized by adjusting the ratio of TMPTA/TAIC and the composition of porogenic solvent. The resulting poly(TAIC-co-TMPTA) monolith showed a relatively homogeneous structure, good permeability and mechanical stability. The chemical group of the monolith was assayed by the infrared spectra method, the morphology of monolithic material was studied by scanning electron microscopy and the pore size distribution was determined by a mercury porosimeter. A series of small molecules were used to evaluate the column performance in terms of hydrophobic mode. At an optimized flow rate of 1.0 mL min(-1), the theoretical plate number of analyte was >15,000 plates m(-1). These applications demonstrated that the monoliths could be successfully used as the stationary phase in conjunction with HPLC to separate small molecules from the mixture. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. CMOS monolithic active pixel sensors for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Snoeys, W., E-mail: walter.snoeys@cern.ch

    2014-11-21

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon are only now starting to make their way into high energy physics. Two major requirements are radiation tolerance and low power consumption. For the most extreme radiation levels, signal charge has to be collected by drift from a depletion layer onto a designated collection electrode without losing the signal charge elsewhere in the in-pixel circuit. Low power consumption requires an optimization of Q/C, the ratio of the collected signal charge over the input capacitance [1]. Some solutions to combine sufficient Q/C and collection by drift require exotic fabrication steps. More conventional solutions up to now require a simple in-pixel readout circuit. Both high voltage CMOS technologies and Monolithic Active Pixel Sensors (MAPS) technologies with high resistivity epitaxial layers offer high voltage diodes. The choice between the two is not fundamental but more a question of how much depletion can be reached and also of availability and cost. This paper tries to give an overview.

  7. Immobilization of trypsin on sub-micron skeletal polymer monolith

    Energy Technology Data Exchange (ETDEWEB)

    Yao Chunhe [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Qi Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hu Wenbin [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Wang Fuyi [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang Gengliang [College of Pharmacy, Hebei University, Baoding 071002 (China)

    2011-04-29

    A new kind of immobilized trypsin reactor based on sub-micron skeletal polymer monolith has been developed. Covalent immobilization of trypsin on this support was performed using the epoxide functional groups in either a one- or a multi-step reaction. The proteolytic activity of the immobilized trypsin was measured by monitoring the formation of N-{alpha}-benzoyl-L-arginine (BA) which is the digestion product of a substrate N-{alpha}-benzoyl-L-arginine ethyl ester (BAEE). Results showed that the digestion speed was about 300 times faster than that performed in free solution. The performance of such an enzyme reactor was further demonstrated by digesting protein myoglobin. It has been found that the protein digestion could be achieved in 88 s at 30 deg. C, which is comparable to 24 h digestion in solution at 37 {sup o}C. Furthermore, the immobilized trypsin exhibits increased stability even after continuous use compared to that in free solution. The present monolithic enzyme-reactor provides a promising platform for the proteomic research.

  8. A distributed dynamic model of a monolith hydrogen membrane reactor

    International Nuclear Information System (INIS)

    Michelsen, Finn Are; Wilhelmsen, Øivind; Zhao, Lei; Aasen, Knut Ingvar

    2013-01-01

    Highlights: ► We model a rigorous distributed dynamic model for a HMR unit. ► The model includes enough complexity for steady-state and dynamic analysis. ► Simulations show that the model is non-linear within the normal operating range. ► The model is useful for studying and handling disturbances such as inlet changes and membrane leakage. - Abstract: This paper describes a distributed mechanistic dynamic model of a hydrogen membrane reformer unit (HMR) used for methane steam reforming. The model is based on a square channel monolith structure concept, where air flows adjacent to a mix of natural gas and water distributed in a chess pattern of channels. Combustion of hydrogen gives energy to the endothermic steam reforming reactions. The model is used for both steady state and dynamic analyses. It therefore needs to be computationally attractive, but still include enough complexity to study the important steady state and dynamic features of the process. Steady-state analysis of the model gives optimum for the steam to carbon and steam to oxygen ratios, where the conversion of methane is 92% and the hydrogen used as energy for the endothermic reactions is 28% at the nominal optimum. The dynamic analysis shows that non-linear control schemes may be necessary for satisfactory control performance

  9. Monolithic integration of a micromachined piezoresistive flow sensor

    International Nuclear Information System (INIS)

    Li, Dan; Zhao, Tao; Yang, Zhenchuan; Zhang, Dacheng

    2010-01-01

    In this paper, a monolithic integrated piezoresistive flow sensor is presented, which was fabricated with an intermediate CMOS (complementary metal-oxide semiconductor) MEMS (micro electro mechanical system) process compatible with integrated pressure sensors. Four symmetrically arranged silicon diaphragms with piezoresistors on them were used to sense the drag force induced by the input gas flow. A signal conditioning CMOS circuit with a temperature compensation module was designed and fabricated simultaneously on the same chip with an increase of the total chip area by only 35%. An extra step of boron implantation and annealing was inserted into the standard CMOS process to form the piezoresistors. KOH anisotropic etching from the backside and deep reactive ion etching (DRIE) from the front side were combined to realize the silicon diaphragms. The integrated flow sensor was packaged and tested. The testing results indicated that the addition of piezoresistor formation and structure releasing did not significantly change any of the circuitry characteristics. The measured sensor output has a quadratic relation with the input flow rate of the fluid as predicted. The tested resolution of the sensor is less than 0.1 L min −1 with a measurement range of 0.1–5 L min −1 and the sensitivity is better than 40 mV per (L min −1 ) with a measurement range of 4–5 L min −1 . The measured noise floor of the sensor is 21.7 µV rtHz −1 .

  10. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.

    Science.gov (United States)

    Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa

    2007-09-01

    A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.

  11. Shale gas opportunities. Dehydrogenation of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Patcas, F.C.; Dieterle, M.; Rezai, A.; Asprion, N. [BASF SE, Ludwigshafen (Germany)

    2013-11-01

    The discovery and use of shale gas in North America has become a game changer for the chemical industry by access to a cheaper feedstock compared to conventional oil. Increased number of ethane crackers spurred increasing interest in light alkanes dehydrogenation. Several companies have announced their interest in new propane dehydrogenation units in North America. BASF is developing light alkanes dehydrogenation technologies for two decades now. BASF developed jointly with Linde the isothermal C3 dehydrogenation process. The latest dehydrogenation catalyst development at BASF focused on a supported and steam resistant Pt-Sn catalyst which yielded excellent selectivity and activity. Intense research work both internally as well as in cooperation with universities contributed to the understanding of the relationship between the surface structure and catalyst performances like activity, selectivity and coking resistance. Using such type of catalysts BASF developed an autothermal propane dehydrogenation as well as a butane dehydrogenation process. The most recent catalyst development was a dehydrogenation catalyst coated on a honeycomb monolith to improve catalyst usage and pressure drop. This will probably be the first industrial usage of catalytic monoliths in a chemical synthesis process. (orig.) (Published in summary form only)

  12. Preparation and evaluation of a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid.

    Science.gov (United States)

    Shan, Yuanhong; Qiao, Lizhen; Shi, Xianzhe; Xu, Guowang

    2015-01-02

    To develop a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid, a new ionic liquid monomer was synthesized from 1-vinylimidazole and pentafluorobenzyl bromide. By employing a facile one-step copolymerization of polyhedral-oligomeric-silsesquioxane-type (POSS) cross-linking agent and the home-made ionic liquid monomer, the hybrid monolithic columns were in situ fabricated in fused-silica capillary. The morphology of monolithic column was characterized by scanning electron microscope (SEM) and the chemical composition was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and elemental analysis. Excellent mechanical stability and slight swelling propensity were exhibited which was ascribed to the rigid hybrid monolithic skeleton. Reproducibility results of run-to-run, column-to-column, batch-to-batch and day-to-day were investigated and the RSDs were less than 0.46%, 1.84%, 3.96% and 3.17%, respectively. The mixed-mode retention mechanism with hydrophobic interaction, π-π stacking, ion-exchange, electrostatic interaction and dipole-dipole interaction was explored systematically using analytes with different structure types. Satisfied separation capability and column efficiency were achieved for the analysis of small molecular compounds such as alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides and halogenated compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns.

    Science.gov (United States)

    Ito, Kazuaki; Takayama, Yohichi; Makabe, Nobuyuki; Mitsui, Ryo; Hirokawa, Takeshi

    2005-08-12

    A fast and highly sensitive ion chromatographic method using monolithic ODS columns was developed for the determination of nitrite (NO2-) and nitrate (NO3-) in seawater. Two monolithic ODS columns (50 mm x 4.6 mm i.d. + 100 mm x 4.6 mm i.d.) connected in series were coated and equilibrated with 5 mM cetyltrimethylammonium chloride (CTAC) aqueous solution. The column efficiency with 0.5 M NaCl as the mobile phase did not decrease in spite of the increase in flow rate of the mobile phase. Thus, good chromatograms were obtained within 3 minutes for NO2- and NO3 in artificial seawater without interferences by coexisting ions. The detection limit (S/N = 3) with UV detection at 225 nm was 0.8 and 1.6 microg/L for NO2- and NO3-, respectively. The characteristics of the monolithic CTA(+)-coated ODS columns were discussed. The present method was successfully applied to the fast and sensitive determination of NO2- and NO3- in real seawater samples.

  14. Affinity monolith chromatography: A review of general principles and applications.

    Science.gov (United States)

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Monolithic Magneto-Optical Nanocomposites of Barium Hexaferrite Platelets in PMMA.

    Science.gov (United States)

    Ferk, Gregor; Krajnc, Peter; Hamler, Anton; Mertelj, Alenka; Cebollada, Federico; Drofenik, Miha; Lisjak, Darja

    2015-06-12

    The incorporation of magnetic barium hexaferrite nanoparticles in a transparent polymer matrix of poly(methyl methacrylate) (PMMA) is reported for the first time. The barium hexaferrite nanoplatelets doped with Sc(3+), i.e., BaSc0.5Fe11.5O12 (BaHF), having diameters in the range 20 to 130 nm and thicknesses of approximately 5 nm, are synthesized hydrothermally and stabilized in 1-butanol with dodecylbenzenesulfonic acid. This method enables the preparation of monolithic nanocomposites by admixing the BaHF suspension into a liquid monomer, followed by in-situ, bulk free-radical polymerization. The PMMA retains its transparency for loadings of BaHF nanoparticles up to 0.27 wt.%, meaning that magnetically and optically anisotropic, monolithic nanocomposites can be synthesized when the polymerization is carried out in a magnetic field. The excellent dispersion of the magnetic nanoparticles, coupled with a reasonable control over the magnetic properties achieved in this investigation, is encouraging for the magneto-optical applications of these materials.

  16. LePix-A high resistivity, fully depleted monolithic pixel detector

    CERN Document Server

    Giubilato, P; Mugnier, H; Bisello, D; Marchioro, A; Snoeys, W; Denes, P; Pantano, D; Rousset, J; Mattiazzo, S; Kloukinas, K; Potenza, A; Rivetti, A; Chalmet, P

    2013-01-01

    The LePix project explores monolithic pixel sensors fabricated in a 90 nm CMOS technology built over a lightly doped substrate. This approach keeps the advantages usually offered by Monolithic Active Pixel Sensors (MAPS), like a low input capacitance, having a single piece detector and using a standard CMOS production line, and adds the benefit of charge collection by drift from a depleted region several tens of microns deep into the substrate, therefore providing an excellent signal to noise ratio and a radiation tolerance superior to conventional un-depleted MAPS. Such sensors are expected to offer significant cost savings and reduction of power consumption for the same performance, leading to the use of much less material in the detector (less cooling and less copper), addressing one of the main limitations of present day particle tracking systems. The latest evolution of the project uses detectors thinned down to 50 mu m to obtain back illuminated sensors operated in full depletion mode. By back processin...

  17. Cheap C18-modified silica monolith particles as HPLC stationary phase of good separation efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ashraf; Ali, Faiz; Cheong, Woo Jo [Dept. of of Chemistry, Inha University, Incheon (Korea, Republic of)

    2015-06-15

    The columns packed with particles have a high efficiency but they are accompanied with a high column back pressure due to lower permeability, while the monolithic columns have a high permeability but they result in inferior separation efficiency for the analysis of small molecules in HPLC. In our laboratory,we have been using the pseudo-monolithic silica particles with C-18 ligand or polystyrene film. The column to column reproducibility was evaluated based on three columns made of three different batches of silica monolith particles, and better than 4.5% in N, and 1.6% in retention time were observed. The day to day reproducibility of a single column for three consecutive days was found better than 1.5% both in N and retention time. The van Deemter plots were derived for awide range of flow rates. The trends of van Deemter plots were similar to those of common patterns and the optimal flow rate was found to be 25 μL/min.

  18. Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles.

    Science.gov (United States)

    Göktürk, Ilgım; Üzek, Recep; Uzun, Lokman; Denizli, Adil

    2016-06-01

    In this study, a new molecular imprinting (MIP)-based monolithic cryogel column was prepared using chemically crosslinked molecularly imprinted nanoparticles, to achieve a simplified chromatographic separation (SPE) for a model compound, L-glutamic acid (L-Glu). Cryogelation through crosslinking of imprinted nanoparticles forms stable monolithic cryogel columns. This technique reduces the leakage of nanoparticles and increases the surface area, while protecting the structural features of the cryogel for stable and efficient recognition of the template molecule. A non-imprinted monolithic cryogel column (NIP) was also prepared, using non-imprinted nanoparticles produced without the addition of L-Glu during polymerization. The molecularly imprinted monolithic cryogel column (MIP) indicates apparent recognition selectivity and a good adsorption capacity compared to the NIP. Also, we have achieved a significant increase in the adsorption capacity, using the advantage of high surface area of the nanoparticles.

  19. Electroactive monolithic μchip for electrochemically-responsive chromatography

    OpenAIRE

    Power, Aoife

    2013-01-01

    The EMμ project’s focus is ultimately, the development of an electroactive monolith that can be incorporated into a microfluidic system for electroanalytical applications such as sensing and electrochemically-controlled extractions and separations. To date our have made several significant advances to achieving this end goal. Firstly a facile fabrication method which allows for the production of fully disposable, gasket–free thin–layer cells suitable for EMμ was developed. A polydimethylsilox...

  20. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    Science.gov (United States)

    Farmer, Joseph C; Stadermann, Michael

    2013-11-12

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  1. Effect of Polishing Systems on Surface Roughness and Topography of Monolithic Zirconia.

    Science.gov (United States)

    Goo, C L; Yap, Auj; Tan, Kbc; Fawzy, A S

    2016-01-01

    This study evaluated the effect of different chairside polishing systems on the surface roughness and topography of monolithic zirconia. Thirty-five monolithic zirconia specimens (Lava PLUS, 3M ESPE) were fabricated and divided into five groups of seven and polished with the following: Group 1 (WZ)-Dura white stone followed by Shofu zirconia polishing kit; Group 2 (SZ)-Shofu zirconia polishing kit; Group 3 (CE)-Ceramiste porcelain polishers; Group 4 (CM)-Ceramaster porcelain polishers; and Group 5 (KZ)-Komet ZR zirconia polishers. All specimens were ground with a fine-grit diamond bur prior to polishing procedures to simulate clinical finishing. Baseline and post-polishing profilometric readings were recorded and delta Ra values (difference in mean surface roughness before and after polishing) were computed and analyzed using one-way analysis of variance and Scheffe post hoc test (pSEM) images of the ground but unpolished and polished specimens were acquired. Delta Ra values ranged from 0.146 for CE to 0.400 for KZ. Delta Ra values for KZ, WZ, and SZ were significantly greater than for CE. Significant differences in delta Ra values were also observed between KZ and CM. The SEM images obtained were consistent with the profilometric findings. Diamond-impregnated polishing systems were more effective than silica carbide-impregnated ones in reducing the surface roughness of ground monolithic zirconia.

  2. Fractionation separation of human plasma proteins using HPLC with a homemade iron porphyrin based monolithic column.

    Science.gov (United States)

    Zhang, Doudou; Zhao, Yu; Lan, Dandan; Pang, Xiaomin; Bai, Ligai; Liu, Haiyan; Yan, Hongyuan

    2017-11-15

    In this work a polymer monolithic column was fabricated within the confines of a stainless steel column (50×4.6mm i.d.) via radical polymerization by using iron porphyrin and butyl methacrylate as co-monomers, ethylene glycol dimethacrylate as crosslinking agent, ethylene glycol, isopropyl alcohol and N, N-dimethylformamide as tri-porogens, benzoyl peroxide and N,N-dimethylaniline as initiators. The resulting monolithic column was characterized by elemental analysis, scanning electron microscopy, nitrogen adsorption BET surface area, and mercury intrusion porosimetry, respectively. Results showed that the homemade monolith occupied relatively uniform pore structure, low back pressure, and enhanced selectivity for proteins in complex bio-samples. The present work described a simple and efficient method for "fractionation separation" of human plasma proteins, and it is a promising separation method for complex bio-samples in proteomic research. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A Reliable Method for the Preparation of Multiporous Alumina Monoliths by Ice-Templating

    Directory of Open Access Journals (Sweden)

    Jérémy Dhainaut

    2016-03-01

    Full Text Available Alumina supports presenting a bimodal porosity are generally advantageous for the conversion of bulky molecules such as found in biomass, refining, and petrochemistry. However, shaping of such materials, while controlling pores size and orientation, proves to be hard. This problem can be tackled by using a simple method involving sol-gel chemistry, surfactant self-assembly, and ice-templating. Herein, a systematic study of the formulation and process parameters’ influence on the final material properties is presented. This protocol results in the repeatable preparation of centimeter-sized alumina monoliths presenting a uni-directional macroporosity and structured mesopores. These monoliths should be of particular interest in high flow rate catalytic applications.

  4. Synthesis and electronic structure of low-density monoliths of nanoporous nanocrystalline anatase TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, S O; Baumann, T F; Wang, Y M; van Buuren, T; Satcher, J H

    2004-08-13

    Monolithic nanocrystalline anatase titania aerogels are synthesized by the epoxide sol-gel method followed by thermal annealing at 550 C. These aerogels are formed by {approx}10-20 nm size anatase nanoparticles which are randomly oriented and interconnected into an open-cell solid network. Aerogel monoliths have an apparent density of {approx}6% and a surface area of {approx} 100 m{sup 2} g{sup -1}. High-resolution transmission electron microscopy and soft x-ray absorption near-edge structure spectroscopy reveal good crystallinity of the anatase nanoparticles forming the aerogel skeleton.

  5. New design of a quasi-monolithic detector module with DOI capability for small animal pet

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Lee, Seung-Jae; Baek, Cheol-Ha; Choi, Yong

    2008-01-01

    We report a new design of a detector module with depth of interaction (DOI) based on a quasi-monolithic LSO crystal, a multi-channel sensor, and maximum-likelihood position-estimation (MLPE) algorithm. Light transport and detection were modeled in a quasi-monolithic crystal using DETECT2000 code, with lookup tables (LUTs) built by simulation. Events were well separated by applying the MLPE method within 2.0 mm spatial resolution in both trans-axial and DOI directions. These results demonstrate that the proposed detector provides dependable positioning capability for small animal positron emission tomography (PET)

  6. Growth techniques for monolithic YBCO solenoidal magnets

    International Nuclear Information System (INIS)

    Scruggs, S.J.; Putman, P.T.; Fang, H.; Alessandrini, M.; Salama, K.

    2006-01-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample

  7. Growth techniques for monolithic YBCO solenoidal magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scruggs, S.J. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)]. E-mail: Sscruggs2@uh.edu; Putman, P.T. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Fang, H. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Alessandrini, M. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Salama, K. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)

    2006-10-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample.

  8. Sorption of DNA by diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels.

    Science.gov (United States)

    Tozak, Kabil Özcan; Erzengin, Mahmut; Sargin, Idris; Ünlü, Nuri

    2013-01-01

    In this study, the DNA sorption performance of diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels were investigated for the purpose of designing a novel adsorbent that can be utilized for DNA purification, separation and immunoadsorption studies such as removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. Poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based monolithic cryogel column embedded with Zn(2+)-diatomite particles was prepared by free radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm). The polymerization reaction was initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. After thawing, the monolithic composite cryogels were used for affinity sorption and then subsequent desorption of DNA molecules from aqueous solutions. Diatomite (DA) particles were characterized by XRF and BET method. The characterization of composite cryogel was done through SEM imaging. The effects of pH of the solution, initial DNA concentration, ionic strength, temperature and flow rates on adsorption were investigated to determine the optimum conditions for adsorption/desorption experiments. The particle embedding procedure was shown to yield significantly enhanced adsorption of DNA on the adsorbent. Furthermore, considering its excellent bio-compatibility, p(HEMA) cryogels are promising a candidate for further DNA sorption studies.

  9. Test beam results of a depleted monolithic active pixel sensor (DMAPS) prototype

    Energy Technology Data Exchange (ETDEWEB)

    Obermann, Theresa; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Bonn Univ. (Germany); Schwenker, Benjamin [Goettingen Univ. (Germany); Collaboration: ATLAS Pixel-Collaboration

    2016-07-01

    New monolithic detector concepts are currently being explored for future particle physics experiments, in particular for the upgrade of the ATLAS detector. Common to monolithic pixel detectors is the integration of the front-end circuitry and the sensor on the same silicon substrate. The DMAPS concept makes use of high resistive silicon as substrate. It enables the application of a high bias voltage to create a drift field for the charge collection in the sensor part as well as the full usage of CMOS logic in the same piece of silicon. DMAPS prototypes from several foundries are available since three years and have been extensively characterized in the lab. In this talk, results of test beam campaigns, with neutron irradiated prototypes implemented in the ESPROS process, are presented.

  10. Gas pixel detectors

    International Nuclear Information System (INIS)

    Bellazzini, R.; Baldini, L.; Brez, A.; Cavalca, F.; Latronico, L.; Massai, M.M.; Minuti, M.; Omodei, N.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Costa, E.; Soffitta, P.

    2007-01-01

    With the Gas Pixel Detector (GPD), the class of micro-pattern gas detectors has reached a complete integration between the gas amplification structure and the read-out electronics. To obtain this goal, three generations of application-specific integrated circuit of increased complexity and improved functionality has been designed and fabricated in deep sub-micron CMOS technology. This implementation has allowed manufacturing a monolithic device, which realizes, at the same time, the pixelized charge-collecting electrode and the amplifying, shaping and charge measuring front-end electronics of a GPD. A big step forward in terms of size and performances has been obtained in the last version of the 0.18 μm CMOS analog chip, where over a large active area of 15x15 mm 2 a very high channel density (470 pixels/mm 2 ) has been reached. On the top metal layer of the chip, 105,600 hexagonal pixels at 50 μm pitch have been patterned. The chip has customable self-trigger capability and includes a signal pre-processing function for the automatic localization of the event coordinates. In this way, by limiting the output signal to only those pixels belonging to the region of interest, it is possible to reduce significantly the read-out time and data volume. In-depth tests performed on a GPD built up by coupling this device to a fine pitch (50 μm) gas electron multiplier are reported. Matching of the gas amplification and read-out pitch has let to obtain optimal results. A possible application of this detector for X-ray polarimetry of astronomical sources is discussed

  11. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells

    KAUST Repository

    Werner, Jérémie

    2016-12-05

    Perovskite/crystalline silicon tandem solar cells have the potential to reach efficiencies beyond those of silicon single-junction record devices. However, the high-temperature process of 500 °C needed for state-of-the-art mesoscopic perovskite cells has, so far, been limiting their implementation in monolithic tandem devices. Here, we demonstrate the applicability of zinc tin oxide as a recombination layer and show its electrical and optical stability at temperatures up to 500 °C. To prove the concept, we fabricate monolithic tandem cells with mesoscopic top cell with up to 16% efficiency. We then investigate the effect of zinc tin oxide layer thickness variation, showing a strong influence on the optical interference pattern within the tandem device. Finally, we discuss the perspective of mesoscopic perovskite cells for high-efficiency monolithic tandem solar cells. © 2016 Author(s)

  12. Optimization and application of octadecyl-modified monolithic silica for solid-phase extraction of drugs in whole blood samples.

    Science.gov (United States)

    Namera, Akira; Saito, Takeshi; Ota, Shigenori; Miyazaki, Shota; Oikawa, Hiroshi; Murata, Kazuhiro; Nagao, Masataka

    2017-09-29

    Monolithic silica in MonoSpin for solid-phase extraction of drugs from whole blood samples was developed to facilitate high-throughput analysis. Monolithic silica of various pore sizes and octadecyl contents were synthesized, and their effects on recovery rates were evaluated. The silica monolith M18-200 (20μm through-pore size, 10.4nm mesopore size, and 17.3% carbon content) achieved the best recovery of the target analytes in whole blood samples. The extraction proceeded with centrifugal force at 1000rpm for 2min, and the eluate was directly injected into the liquid chromatography-mass spectrometry system without any tedious steps such as evaporation of extraction solvents. Under the optimized condition, low detection limits of 0.5-2.0ngmL -1 and calibration ranges up to 1000ngmL -1 were obtained. The recoveries of the target drugs in the whole blood were 76-108% with relative standard deviation of less than 14.3%. These results indicate that the developed method based on monolithic silica is convenient, highly efficient, and applicable for detecting drugs in whole blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Construction of a sputtering reactor for the coating and processing of monolithic U-Mo nuclear fuel

    International Nuclear Information System (INIS)

    Schmid, Wolfgang

    2011-01-01

    In the presented thesis sputter deposition was used for the first time to coat monolithic U-Mo nuclear fuel foils with diffusion inhibitive materials. The intention of these coatings is to prevent the formation of an interdiffusion layer between U-Mo and Al cladding during the use of the fuel. A small sputtering reactor was built, in which the method was tested and processing parameters were investigated. In parallel a larger sputtering reactor was constructed, that allows to coat full size monolithic U-Mo nuclear fuel foils and was used to test an industrial application of the technique. As a result a method based on sputter deposition and erosion can be presented, that allows to clean as well as to coat the surface of monolithic U-Mo nuclear fuel foils in excellent quality. It can be included at any time into the manufacturing chain for U-Mo fuel elements, which is currently being developed.

  14. The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths.

    Science.gov (United States)

    Shaw, Kirsty J; Thain, Lauren; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2009-10-12

    DNA extraction was carried out on silica-based monoliths within a microfluidic device. Solid-phase DNA extraction methodology was applied in which the DNA binds to silica in the presence of a chaotropic salt, such as guanidine hydrochloride, and is eluted in a low ionic strength solution, such as water. The addition of poly-A carrier RNA to the chaotropic salt solution resulted in a marked increase in the effective amount of DNA that could be recovered (25ng) compared to the absence of RNA (5ng) using the silica-based monolith. These findings confirm that techniques utilising nucleic acid carrier molecules can enhance DNA extraction methodologies in microfluidic applications.

  15. Non-oxidic nanoscale composites: single-crystalline titanium carbide nanocubes in hierarchical porous carbon monoliths.

    Science.gov (United States)

    Sonnenburg, Kirstin; Smarsly, Bernd M; Brezesinski, Torsten

    2009-05-07

    We report the preparation of nanoscale carbon-titanium carbide composites with carbide contents of up to 80 wt%. The synthesis yields single-crystalline TiC nanocubes 20-30 nm in diameter embedded in a hierarchical porous carbon matrix. These composites were generated in the form of cylindrical monoliths but can be produced in various shapes using modern sol-gel and nanocasting methods in conjunction with carbothermal reduction. The monolithic material is characterized by a combination of microscopy, diffraction and physisorption. Overall, the results presented in this work represent a concrete design template for the synthesis of non-oxidic nanoscale composites with high surface areas.

  16. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...... directly delivers 9 nJ pulses of 275 fs duration with pulse repetition of 26.7MHz....

  17. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    Science.gov (United States)

    Wanlass, Mark W [Golden, CO

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  18. Improved monolithic reinforced concrete construction for nuclear power stations

    International Nuclear Information System (INIS)

    Guenther, P.; Fischer, K.

    1983-01-01

    Experience has shown that in applying monolithic reinforced concrete in nuclear power plant construction the following auxiliary means are useful: measuring sheets in assembling, welding gauges for reaching high tolerance accuracies of prefabricated reinforced concrete members, suitable lining materials, formwork anchorage and formwork release agents, concrete workability agents, mechanized procedures for finishing and assembling. These means were successfully tested in constructing the Greifswald nuclear power station

  19. Hierarchical porous nitrogen-doped partial graphitized carbon monoliths for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yifeng; Du, Juan; Liu, Lei; Wang, Guoxu; Zhang, Hongliang; Chen, Aibing, E-mail: chen-ab@163.com [Hebei University of Science and Technology, College of Chemical and Pharmaceutical Engineering (China)

    2017-03-15

    Porous carbon monoliths have attracted great interest in many fields due to their easy availability, large specific surface area, desirable electronic conductivity, and tunable pore structure. In this work, hierarchical porous nitrogen-doped partial graphitized carbon monoliths (N–MC–Fe) with ordered mesoporous have been successfully synthesized by using resorcinol-formaldehyde as precursors, iron salts as catalyst, and mixed triblock copolymers as templates via a one-step hydrothermal method. In the reactant system, hexamethylenetetramine (HMT) is used as nitrogen source and one of the carbon precursors under hydrothermal conditions instead of using toxic formaldehyde. The N–MC–Fe show hierarchically porous structures, with interconnected macroporous and ordered hexagonally arranged mesoporous. Nitrogen element is in situ doped into carbon through decomposition of HMT. Iron catalyst is helpful to improve the graphitization degree and pore volume of N–MC–Fe. The synthesis strategy is user-friendly, cost-effective, and can be easily scaled up for production. As supercapacitors, the N–MC–Fe show good capacity with high specific capacitance and good electrochemical stability.

  20. Optical study of the ultrasonic formation process of noble metal nanoparticles dispersed inside the pores of monolithic mesoporous silica

    CERN Document Server

    Fu Gan Hua; Kan Cai Xia; Li Cun Cheng; Fang Qi

    2003-01-01

    Gold nanoparticles dispersed inside the pores of monolithic mesoporous silica were prepared by soaking the silica in a gold (III) ion solution and subsequent ultrasound irradiation. The formation process of gold nanoparticles in the pores of mesoporous silica was investigated based on optical measurements of wrapped and naked soaked silica after ultrasonic irradiation, and the reduction rate effect in solution and pre-soaking effect. It has been shown that acoustic cavitation cannot occur in nano-sized pores. The gold nanoparticles in silica are not formed in situ within the pores but produced mainly by diffusion of the gold clusters formed in the solution during irradiation into the pores. The radicals formed in solution are exhausted before entering the pores of silica. There exists a critical reduction rate in solution, at which the yield of gold nanoparticles in silica reaches a maximum, and above which there is a decrease in the yield. This is attributed to too quick a growth or aggregation of gold clust...

  1. N Basin deactivation high exposure rate hardware container offgassing final report

    International Nuclear Information System (INIS)

    Day, R.S.; Palmer, D.L.; Pisarcik, D.J.; Vail, S.W.

    1996-11-01

    The N Reactor's 105-N Basin (N Basin) and the methods of packaging high-exposure rate hardware (HERH) were inspected, and gas bubbles were observed rising from the top surface of the third monolith prepared, Monolith No. 3. The HERH packaging was discontinued until the gas and the source could be explained and the safety of continued operation was verified. This report documents the investigation and the conclusions that support decisions regarding N Basin water removal, future storage, shipping, and Monolith No. 3 burial. Samples indicate that the gas emitted from Monolith No. 3 is almost exclusively hydrogen, containing some air and trace quantities of stable xenon. Gamma-energy analysis indicated trace amounts of 85 Kr in the samples. The literature review and the laboratory test results support the conclusion that aluminum is the only potentially grouted metal capable of corroding rapidly enough to generate the quantities of hydrogen gas that are observed. Based on aluminum components known to be found in the N Basin, the likely source of the aluminum is a used aluminum rupture can. All gas pockets in Monolith No. 3 caused by offgassing should be vented to the surface of the monolith. The peak offgas pressure within Monolith No. 3 (after it is removed from the N Basin water) should be approximately 0.62 psi above atmospheric pressure. Sufficient testing and analysis has been completed to remove Monolith No. 3 from the N Basin water and place the monolith in temporary storage until arrangements have been made for its shipment and disposition

  2. The monolithic carbon aerogels and aerogel composites for electronics and thermal protection applications

    Science.gov (United States)

    Lu, Sheng; Guo, Hui; Zhou, Yugui; Liu, Yuanyuan; Jin, Zhaoguo; Liu, Bin; Zhao, Yingmin

    2017-09-01

    Monolithic carbon aerogels have been prepared by condensation polymerization and high temperature pyrolysis. The morphology of carbon aerogels are characterized by SEM. The pore structure is characterized by N2 adsorption-desorption technique. Monolithic carbon aerogels are mesoporous nanomaterials. Carbon fiber reinforced carbon aerogel composites are prepared by in-situ sol-gel process. Fiber reinforced carbon aerogel composites are of high mechanical strength. The thermal response of the fiber reinforced aerogel composite samples are tested in an arc plasma wind tunnel. Carbon aerogel composites show good thermal insulation capability and high temperature resistance in inert atmosphere even at ultrahigh temperature up to 1800 °C. The results show that they are suitable for applications in electrodes for supercapacitors/ Lithium-ion batteries and aerospace thermal protection area.

  3. Characteristics of an activated carbon monolith for a helium adsorption compressor

    NARCIS (Netherlands)

    Lozano-Castello, D.; Jorda-Beneyto, M.; Cazorla-Amoros, D.; Linares-Solano, A.; Burger, Johannes Faas; ter Brake, Hermanus J.M.; Holland, Herman J.

    2010-01-01

    An activated carbon monolith (ACM) with a high helium adsorption/desorption capacity, high density, low pressure drop, low thermal expansion and good mechanical properties was prepared and applied successfully in a helium adsorption compressor as a part of a 4.5 K sorption cooler. The activated

  4. Stratospheric Aerosol and Gas Experiment, SAGE III on ISS, An Earth Science Mission on the International Space Station, Schedule Risk Analysis, A Project Perspective

    Science.gov (United States)

    Bonine, Lauren

    2015-01-01

    The presentation provides insight into the schedule risk analysis process used by the Stratospheric Aerosol and Gas Experiment III on the International Space Station Project. The presentation focuses on the schedule risk analysis process highlighting the methods for identification of risk inputs, the inclusion of generic risks identified outside the traditional continuous risk management process, and the development of tailored analysis products used to improve risk informed decision making.

  5. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures

    Science.gov (United States)

    Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio

    2017-06-01

    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10-3 Ω cm-1, 11 cm2 V-1 s-1, and 1.62 × 1020 cm-3, resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

  6. Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.

    Science.gov (United States)

    Liu, Yuanda; Ang, Kah-Wee

    2017-07-25

    Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.

  7. Application of a Fast Separation Method for Anti-diabetics in Pharmaceuticals Using Monolithic Column: Comparative Study With Silica Based C-18 Particle Packed Column.

    Science.gov (United States)

    Hemdan, A; Abdel-Aziz, Omar

    2018-04-01

    Run time is a predominant factor in HPLC for quality control laboratories especially if there is large number of samples have to be analyzed. Working at high flow rates cannot be attained with silica based particle packed column due to elevated backpressure issues. The use of monolithic column as an alternative to traditional C-18 column was tested for fast separation of pharmaceuticals, where the results were very competitive. The performance comparison of both columns was tested for separation of anti-diabetic combination containing Metformin, Pioglitazone and Glimepiride using Gliclazide as an internal standard. Working at high flow rates with less significant backpressure was obtained with the monolithic column where the run time was reduced from 6 min in traditional column to only 1 min in monolithic column with accepted resolution. The structure of the monolith contains many pores which can adapt the high flow rate of the mobile phase. Moreover, peak symmetry and equilibration time were more efficient with monolithic column.

  8. Preparation of Silica Monoliths with Macropores and Mesopores and of High Specific Surface Area with Low Shrinkage using a Template Induced Method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jianyu [Shanghai Normal Univ., Shanghai (China); Lu, Yan [Shanghai Institute of Technology, Shanghai (China); Whiting, Roger [AUT Univ., Auckland (New Zealand)

    2013-02-15

    In this study we report a new method for the synthesis of a silica monolithic column bed with bimodal pores (throughpores and mesopores). The template induced synthesis method was used to direct bimodal pores simultaneously instead of the usual post base-treating method. Block polymer Pluronic F127 was chosen as a dual-function template to form hierarchically porous silica monolith with both macropores and mesopores. This is a simplification of the method of monolithic column preparation. Poly(ethylene glycol) was used as a partial substitute for F127 can effectively prevent shrinkage during the monolith aging process without losing much surface area (944 m{sup 2}/g to 807 m{sup 2}/g). More importantly, the resultant material showed a much narrower mesopore size (centered at 6 nm) distribution than that made using only F127 as the template reagent, which helps the mass transfer process. The solvent washing method was used to remove the remaining organic template, and it was proved to be effective enough. The new synthesis method makes the fabrication of the silica monolithic column (especially capillary column) much easier. All the structure parameters indicate that monolith PFA05 prepared by the above method is a good material for separation, with the merits of much higher surface area than usual commercial HPLC silica particles, suitable mesopore volume, narrow mesopore size distribution, low shrinkage and it is easily prepared.

  9. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin; Alejandro, Fernando Maya; Frechet, Jean; Švec, František

    2012-01-01

    monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60

  10. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  11. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  12. Monolithic microwave integrated circuit technology for advanced space communication

    Science.gov (United States)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  13. A poly(alkyl methacrylate-divinylbenzene-vinylbenzyl trimethylammonium chloride) monolithic column for solid-phase microextraction.

    Science.gov (United States)

    Liu, Wan-Ling; Lirio, Stephen; Yang, Yicong; Wu, Lin-Tai; Hsiao, Shu-Ying; Huang, Hsi-Ya

    2015-05-22

    In this study, an organic polymer monolithic columns, which were prepared via in situ polymerization of alkyl methacrylate-ester (AMA), divinylbenzene (DVB) and vinylbenzyl trimethylammonium chloride (VBTA, charged monomer), were developed as adsorbent for solid-phase microextraction (SPME). Different parameters affecting the extraction efficiency for nine (9) non-steroidal anti-inflammatory drugs (NSAIDs) such as the ratio of the stearyl methacrylate (SMA) to DVB monomer, column length, sample pH, extraction flow rate and desorption solvent were investigated to obtain the optimal SPME condition. Also, the permeability for each poly(AMA-DVB-VBTA) monolithic column was investigated by adding porogenic solvent (poly(ethylene glycol), PEG). Using the optimized condition, a series of AMA-based poly(AMA-DVB-VBTA) monolith columns were developed to determine the effect the extraction efficiency of NSAIDs by varying the alkyl chain length of the methacrylate ester (methyl-, butyl-, octyl-, or lauryl-methacrylate; (MMA, BMA, OMA, LMA)). Results showed that decreasing the AMA chain length increases the extraction efficiency of some NSAIDs (i.e. sulindac (sul), naproxen (nap), ketoprofen (ket) and indomethacin (idm)). Among the poly(AMA-DVB-VBTA) monolithic columns, poly(BMA-DVB-VBTA) showed a highly repeatable extraction efficiency for NSAIDs with recoveries ranging from 85.0 to 100.2% with relative standard deviation (RSD) less than 6.8% (n=3). The poly(BMA-DVB-VBTA) can also be reused for at least 50 times without any significant effect in extraction efficiency for NSAIDs. Finally, using the established conditions, the poly(BMA-DVB-VBTA) was used to extract trace-level NSAIDs (100μgL(-1)) in river water with good recoveries ranging from 75.8 to 90.8% (RSD<14.9%). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED

    Science.gov (United States)

    Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.

    2014-03-01

    Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.

  15. Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Alessandro [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy) and LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)]. E-mail: alessandro.bertolini@desy.de; DeSalvo, Riccardo [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Fidecaro, Francesco [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Francesconi, Mario [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Marka, Szabolcs [Department of Physics, Columbia University, 538 W. 120th St., New York, NY 10027 (United States); Sannibale, Virginio [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Simonetti, Duccio [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Takamori, Akiteru [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032 (Japan); Tariq, Hareem [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2006-01-15

    The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150Hz. The very high mechanical quality factor, Q{approx}3000 at a resonant frequency of 0.5Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1nm, integrated over the frequency band from 0.01 to 150Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10{sup -3} has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.

  16. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion.

    Science.gov (United States)

    Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai

    2018-02-01

    Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.

  17. Synthesis of boronate-functionalized organic-inorganic hybrid monolithic column for the separation of cis-diol containing compounds at low pH.

    Science.gov (United States)

    Zhao, Heqing; Lyu, Haixia; Qin, Wenfei; Xie, Zenghong

    2018-04-01

    In this work, an organic-inorganic hybrid boronate affinity monolithic column was prepared via "one-pot" process using 4-vinylphenylboronic acid as organic monomer and divinylbenzene as cross-linker. The effects of reaction temperature, solvents and composition of organic monomers on the column properties (e.g. morphology, permeability, and mechanical stability) were investigated. A series of test compounds including small neutral molecules, aromatic amines, and cis-diol compounds were used to evaluate the retention behaviors of the prepared hybrid monolithic column. The results demonstrated that the prepared hybrid monolith exhibited mixed-interactions including hydrophilicity, cation exchange, and boronate affinity interaction. The run-to-run, day-to-day and batch-to-batch reproducibilities of the prepared hybrid monolith for thiourea's retention time were satisfactory with the relative standard deviations (RSDs) less than 0.09, 1.45 and 4.05% (n = 3), respectively, indicating the effectiveness and practicability of the proposed method. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for simultaneous separation of low- and high-molecular-weight compounds.

    Science.gov (United States)

    Greiderer, Andreas; Ligon, S Clark; Huck, Christian W; Bonn, Günther K

    2009-08-01

    Monolithic poly(1,2-bis(p-vinylphenyl)ethane (BVPE)) capillary columns were prepared by thermally initiated free radical polymerisation of 1,2-bis(p-vinylphenyl)ethane in the presence of inert diluents (porogens) and alpha,alpha'-azoisobutyronitrile (AIBN) as initiator. Polymerisations were accomplished in 200 microm ID fused silica capillaries at 65 degrees C and for 60 min. Mercury intrusion porosimetry measurements of the polymeric RP support showed a broad bimodal pore-size-distribution of mesopores and small macropores in the range of 5-400 nm and flow-channels in the mum range. N(2)-adsorption (BET) analysis resulted in a tremendous enhancement of surface area (101 m(2)/g) of BVPE stationary phases compared to typical organic monoliths (approximately 20 m(2)/g), indicating the presence of a considerable amount of mesopores. Consequently, the adequate proportion of both meso- and (small) macropores allowed the rapid and high-resolution separation of low-molecular-weight compounds as well as biomolecules on the same monolithic support. At the same time, the high fraction of flow-channels provided enhanced column permeability. The chromatographic performance of poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for the separation of biomolecules (proteins, oligonucleotides) and small molecules (alkyl benzenes, phenols, phenons) are demonstrated in this article. Additionally, pressure drop versus flow rate measurements of novel poly(1,2-bis(p-vinylphenyl)ethane) capillary columns confirmed high mechanical robustness, low swelling in organic solvents and high permeability. Due to the simplicity of monolith fabrication, comprehensive studies of the retention and separation behaviour of monolithic BVPE columns resulted in high run-to-run and batch-to-batch reproducibilities. All these attributes prove the excellent applicability of monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for micro-HPLC towards a huge range of analytes of different

  19. Safety characteristics of the monolithic CFC divertor

    International Nuclear Information System (INIS)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-01-01

    The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also. ((orig.))

  20. Safety characteristics of the monolithic CFC divertor

    Science.gov (United States)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-09-01

    The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also.

  1. Pilot tests of a PET detector using the TOF-PET ASIC based on monolithic crystals and SiPMs

    International Nuclear Information System (INIS)

    Aguilar, A.; González-Montoro, A.; González, A.J.; Hernández, L.; Monzó, J.M.; Benlloch, J.M.; Bugalho, R.; Ferramacho, L.

    2016-01-01

    In this work we show pilot tests of PET detector blocks using the TOF-PET ASIC, coupled to SiPM detector arrays and different crystal configurations. We have characterized the main ASIC features running calibration processes to compensate the time dispersion among the different ASIC/SiPM paths as well as for the time walk on the arrival of optical photons. The aim of this work is to use of LYSO monolithic crystals and explore their photon Depth of Interaction (DOI) capabilities, keeping good energy and spatial resolutions. First tests have been carried out with crystal arrays. Here we made it possible to reach a coincidence resolving times (CRT) of 370 ps FWHM, with energy resolutions better than 20% and resolving well 2 mm sized crystal elements. When using monolithic crystals, a single-pixel LYSO reference crystal helped to explore the CRT performance. We studied different strategies to provide the best timestamp determination in the monolithic scintillator. Times around 1 ns FWHM have been achieved in these pilot studies. In terms of spatial and energy resolution, values of about 3 mm and better than 30% were found, respectively. We have also demonstrated the capability of this system (monolithic and ASIC) to return accurate DOI information.

  2. Wholesale gas competition in the Netherlands and implications for phase III customers

    International Nuclear Information System (INIS)

    Harris, D.; Lapuerta, C.

    2003-06-01

    We begin by describing the Dutch gas supply chain, including the recently proposed restructuring of the 'Gas Gebouw' (Gas Building). We also analyse Dutch gas consumers, discussing the time frame for market opening and the distinguishing characteristics of different consumers. We also discuss some of the unique features of the Dutch gas supply system, such as the Groningen field's role in providing flexibility. We identify several serious barriers to shippers who wish to serve customers that consume L-gas at a low load factor. We describe the barriers in detail and, where possible, estimate the maximum portion of the market that competitors could obtain in the face of such barriers. We then examine the implications of entry barriers for L-gas prices in the Netherlands. We examine the likely pricing incentives of Shell and ExxonMobil, which may be affected by the costs of switching between L-gas and H-gas. We discuss supplyside switching costs and demand-side switching costs separately, and examine the feasibility of distribution networks converting to H-gas in response to excessive gas prices. We conclude by framing these problems in the context of the European Commission's formal methodology for defining markets and assessing market dominance. We describe the Commission's methodology for market definition, and then apply the methodology to test whether H-gas and L-gas different occupy the same market. We conclude that small consumers of low-load-factor L-gas constitute a separate market, in which Gasunie has a 100% market share. High entry barriers and a high market share combine to give Gasunie a monopoly in the market, which after the proposed restructuring of the Gas Gebouw would become a duopoly between ExxonMobil and Shell

  3. A Reliability Assessment of the Hydrostatic Test of Pipeline with 0.8 Design Factor in the West–East China Natural Gas Pipeline III

    Directory of Open Access Journals (Sweden)

    Kai Wen

    2018-05-01

    Full Text Available The use of 0.8 design factor in Chinese pipeline industry is a breakthrough with the success of the test pipe section in the west–east China gas pipeline III. For such a design factor, the traditional P-V (Pressure-Volume curve based pressure test control cannot describe the details of the process, and the 0/1 type failure is not an efficient index to show the safety level of the pipeline. In this paper, a reliability based assessment method is proposed to monitor the real-time failure probability of the pipeline during the hydrostatic test process. The reliability index can be used as the degree of risk. Following the actual hydrostatic testing of a test pipe section with 0.8 design factor in the west–east China gas pipeline III, reliability analysis was performed using Monte Carlo technique. The basic values of input parameters of the limit state equations are based on the data collected from either the tested section or the recommended value in the codes. The analysis of limit states, i.e., the yielding deformation and the excessive plastic deformation of pipeline, proceeded based on these distributions. Finally, it is found that the gradually increased water pressure makes the failure probability increase accordingly. A reliability assessment method was proposed and illustrated with the practical pressure test process.

  4. Monolithic circuits for barium fluoride detectors used in nuclear physics experiments. CRADA final report

    International Nuclear Information System (INIS)

    Varner, R.L.; Blankenship, J.L.; Beene, J.R.; Todd, R.A.

    1998-02-01

    Custom monolithic electronic circuits have been developed recently for large detector applications in high energy physics where subsystems require tens of thousands of channels of signal processing and data acquisition. In the design and construction of these enormous detectors, it has been found that monolithic circuits offer significant advantages over discrete implementations through increased performance, flexible packaging, lower power and reduced cost per channel. Much of the integrated circuit design for the high energy physics community is directly applicable to intermediate energy heavy-ion and electron physics. This STTR project conducted in collaboration with researchers at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory, sought to develop a new integrated circuit chip set for barium fluoride (BaF 2 ) detector arrays based upon existing CMOS monolithic circuit designs created for the high energy physics experiments. The work under the STTR Phase 1 demonstrated through the design, simulation, and testing of several prototype chips the feasibility of using custom CMOS integrated circuits for processing signals from BaF 2 detectors. Function blocks including charge-sensitive amplifiers, comparators, one shots, time-to-amplitude converters, analog memory circuits and buffer amplifiers were implemented during Phase 1 effort. Experimental results from bench testing and laboratory testing with sources were documented

  5. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices.

    Science.gov (United States)

    Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F; Ross, Caroline A

    2013-11-08

    Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO₂ -δ , Co- or Fe-substituted SrTiO 3- δ , as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti 0.2 Ga 0.4 Fe 0.4 )O 3- δ and polycrystalline (CeY₂)Fe₅O 12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY₂)Fe₅O 12 /silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  6. Aging of monolithic zirconia dental prostheses: Protocol for a 5-year prospective clinical study using ex vivo analyses

    OpenAIRE

    Koenig, Vinciane; Wulfman, Claudine P.; Derbanne, Mathieu A.; Dupont, Nathalie M.; Le Goff, Stéphane O.; Tang, Mie-Leng; Seidel, Laurence; Dewael, Thibaut Y.; Vanheusden, Alain J.; Mainjot, Amélie K.

    2016-01-01

    Background: Recent introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) monolithic zirconia dental prostheses raises the issue of material low thermal degradation (LTD), a well-known problem with zirconia hip prostheses. This phenomenon could be accentuated by masticatory mechanical stress. Until now zirconia LTD process has only been studied in vitro. This work introduces an original protocol to evaluate LTD process of monolithic zirconia prostheses in the oral enviro...

  7. Application of Reliability Analysis for Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Sørensen, John Dalsgaard; Christiani, E.

    1995-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of some of the most important failure modes are described. The failures are sliding and slip surface failure of a rubble mound and a clay foundation. Relevant design...

  8. Porous polyacrylamide monoliths in hydrophilic interaction capillary electrochromatography of oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Guryča, Vilém; Mechref, Y.; Palm, A. K.; Michálek, Jiří; Pacáková, V.; Novotny, M. V.

    2007-01-01

    Roč. 70, č. 1 (2007), s. 3-13 ISSN 0165-022X R&D Projects: GA MŠk 1M0538 Grant - others:U.S. Department of Health and Human Services(US) GM24349 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyacrylamide monoliths * analytical glycobiology * capillary electrochromatography Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.338, year: 2007

  9. New 'one-step' method for the simultaneous synthesis and anchoring of organic monolith inside COC microchip channels

    International Nuclear Information System (INIS)

    Ladner, Yoann; Cretier, Gerard; Dugas, Vincent; Randon, Jerome; Faure, Karine; Bruchet, Anthony

    2012-01-01

    A new method for monolith synthesis and anchoring inside cyclic olefin copolymer (COC) microchannels in a single step is proposed. It is shown that type I photo-initiators, typically used in a polymerization mixture to generate free radicals during monolith synthesis, can simultaneously act as type II photo-initiators and react with the plastic surface through hydrogen abstraction. This mechanism is used to 'photo-graft' poly(ethylene glycol) methacrylate (PEGMA) on COC surfaces. Contact angle measurements were used to observe the changes in surface hydrophilicity when increasing initiator concentration and irradiation duration. The ability of type I photo-initiators to synthesize and anchor a monolith inside COC microchannels in a single step was proved through SEM observations. Different concentrations of photo-initiators were tried. Finally, electro-chromatographic separations of polycyclic aromatic hydrocarbons were realized to illustrate the beneficial effect of anchoring on chromatographic performances. The versatility of the method was demonstrated with two widely used photo-initiators: benzoin methyl ether (BME) and azobisisobutyronitrile (AIBN). (authors)

  10. Application of the monolithic solid oxide fuel cell to space power systems

    International Nuclear Information System (INIS)

    Myles, K.M.; Bhattacharyya, S.K.

    1991-01-01

    The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented---the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system

  11. Application of the monolithic solid oxide fuel cell to space power systems

    Science.gov (United States)

    Myles, Kevin M.; Bhattacharyya, Samit K.

    1991-01-01

    The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented—the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system.

  12. Transverse mode selection in a monolithic microchip laser

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-11-01

    Full Text Available selection in a monolithic microchip laser Darryl Naidooa,b, Thomas Godinc, Michael Fromagerc, Emmanuel Cagniotc, Nicolas Passillyd, Andrew Forbesa,b and Kamel A?t-Ameurc1 a:CSIR National Laser Centre, P. O. Box 395, Pretoria 0001, South Africa b.... Lett. 77 (2000) 34-36. [14] W. Zhao, J. Tan and L. Qui, ?Improvement of confocal microscope performance by shaped annular beam and heterodyne confocal techniques,? Optik 116 (2005) 111-117. [15] T. Shiina, K. Yoshida, M. Ito and Y. Okamura, ?Long...

  13. Influence de l'alteration physique sur les caracteristiques physico-chimiques de monolithes de sols contamines traites par stabilisation/solidification au ciment

    Science.gov (United States)

    Remillard, Jonathan

    The concern of contaminated sites is affecting millions of property owner worldwide. As they pose a risk to the environment, human health or impair the value of buildings, remediation of contaminated sites has become an everyday issue. Stabilization/solidification (S/S) of contaminated soils with cement is a remediation technology that was developed to confine contaminants that cannot be degraded biologically, chemically or thermally by other technologies. Soils treated with S/S form a monolith that can be valorized on site. However, this practice is fairly uncommon in Quebec and this reluctance is partly due to the risks of degradation of the monoliths and the lack of knowledge relative to the long-term behavior of altered monoliths. The objective of this project was to simulate these degradations on cement-based monoliths of contaminated soils treated with S/S technology by causing physical alterations using different cycles of freeze/thawing and drying/wetting, and then to study the impact of these alterations on the mass losses, compressive strength, hydraulic conductivity, pH and leachability of five trace metals (Cd, Cr, Cu, Pb and Zn) used as contaminants. Various processes of S/S have been studied, either cement contents of 15 and 20%, then the presence of 5% by weight of calcium carbonate. For each S/S process formulated, the freeze/thaw cycles were much more effective in physically altering the monoliths. These alterations were mainly reflected by lower compressive strength, even more with lower cement contents. For their part, the drying/wetting cycles rather created a chemical change that lowered the pH of the monoliths. These chemical changes also affected the interpretation of leaching test results, especially for copper and zinc, since it was difficult to attribute effects to either physical or chemical alterations. The results showed that only chromium leached more clearly in response to physical alterations. All other elements studied were little

  14. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lanigan, David C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-12

    This revision to the original report adds two longer term leach sets of data to the report and provides more discussion and graphics on how to interpret the results from long-term laboratory leach tests. The leach tests were performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams.

  15. Selective catalytic oxidation: a new catalytic approach to the desulfurization of natural gas and liquid petroleum gas for fuel cell reformer applications

    Science.gov (United States)

    Lampert, J.

    In both natural gas and liquid petroleum gas (LPG), sulfur degrades the performance of the catalysts used in fuel reformers and fuel cells. In order to improve system performance, the sulfur must be removed to concentrations of less than 200 ppbv (in many applications to less than 20 ppbv) before the fuel reforming operation. Engelhard Corporation presents a unique approach to the desulfurization of natural gas and LPG. This new method catalytically converts the organic and inorganic sulfur species to sulfur oxides. The sulfur oxides are then adsorbed on a high capacity adsorbent. The sulfur compounds in the fuel are converted to sulfur oxides by combining the fuel with a small amount of air. The mixture is then heated from 250 to 270 °C, and contacted with a monolith supported sulfur tolerant catalyst at atmospheric pressure. When Engelhard Corporation demonstrated this catalytic approach in the laboratory, the result showed sulfur breakthrough to be less than 10 ppbv in the case of natural gas, and less than 150 ppbv for LPG. We used a simulated natural gas and LPG mixture, doped with a 50-170 ppmv sulfur compound containing equal concentrations of COS, ethylmercaptan, dimethylsulfide, methylethylsulfide and tetrahydrothiophene. There is no need for recycled H 2 as in the case for hydrodesulfurization.

  16. Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds.

    Science.gov (United States)

    Zhang, Bingyu; Lei, Xiaoyun; Deng, Lijun; Li, Minsheng; Yao, Sicong; Wu, Xiaoping

    2018-06-06

    An ionic liquid hybrid monolithic capillary column was prepared within 7 min via photoinitiated free-radical polymerization of an ionic liquid monomer (1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide); VBIMNTF 2 ) and a methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) acting as a cross-linker. The effects of composition of prepolymerization solution and initiation time on the porous structure and electroosmotic flow (EOF) of monolithic column were investigated. The hybrid monolith was characterized by scanning electron microscopy and FTIR. Owing to the introduction of a rigid nanosized POSS silica core and ionic liquids with multiple interaction sites, the monolithic column has a well-defined 3D skeleton morphology, good mechanical stability, and a stable anodic electroosmotic flow. The hybrid monolithic stationary phase was applied to the capillary electrochromatographic separation of various alkylbenzenes, phenols, anilines and polycyclic aromatic hydrocarbons (PAHs). The column efficiency is highest (98,000 plates/m) in case of alkylbenzenes. Mixed-mode retention mechanisms including hydrophobic interactions, π-π stacking, electrostatic interaction and electrophoretic mobility can be observed. This indicates the potential of this material in terms of efficient separation of analytes of different structural type. Graphical Abstract Preparation of a mixed-mode ionic liquid hybrid monolithic column via photoinitiated polymerization of methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) and 1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide (VBIMNTF 2 ) ionic liquid for use in capillary electrochromatography.

  17. DART-TM: A thermomechanical version of DART for LEU VHD dispersed and monolithic fuel analysis

    International Nuclear Information System (INIS)

    Saliba, Roberto; Taboada, Horacio; Moscarda, Ma.Virginia; Rest, Jeff

    2003-01-01

    A collaboration agreement between ANL/USDOE and CNEA Argentina, in the area of Low Enriched Uranium Advanced Fuels has been in place since October 16, 1997 under the 'Implementation Arrangement for Technical Exchange and Cooperation in the Area of Peaceful Uses of Nuclear Energy'. An annex concerning DART code optimization has been operative since February 8, 1999. Previously, as a part of this annex a visual thermal FASTDART version was developed that includes mechanistic models for the calculation of the fission-gas-bubble and fuel particle size distribution, reaction layer thickness, and meat thermal conductivity. FASTDART was presented at the last RERTR Meeting that included validation against RERTR 3 irradiation data. The thermal FASTDART version was assessed as an adequate tool for modeling the behavior of LEU U-Mo dispersed fuels under irradiation against PIE RERTR irradiation data. During this past year the development of a 3-D thermo-mechanical version of the code for modeling the irradiation behavior of LEU U-Mo monolithic and dispersion fuel was initiated. Some preliminary results of this work will be shown during RERTR-2003 meeting. (author)

  18. Polar and nonpolar organic polymer-based monolithic columns for capillary electrochromatography and high-performance liquid chromatography.

    Science.gov (United States)

    Rathnasekara, Renuka; Khadka, Shantipriya; Jonnada, Murthy; El Rassi, Ziad

    2017-01-01

    This review article is a continuation of the previous reviews on the area of monolithic columns covering the progress made in the field over the last couple of years from the beginning of the second half of 2014 until the end of the first half of 2016. It summarizes and evaluates the evolvement of both polar and nonpolar organic monolithic columns and their use in hydrophilic interaction LC and CEC and reversed-phase chromatography and RP-CEC. The review article discusses the results reported in a total of 62 references. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Reversing flow catalytic converter for a natural gas/diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, E.; Checkel, M.D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Hayes, R.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Zheng, M.; Mirosh, E. [Alternative Fuel Systems Inc., Calgary, AB (Canada)

    2001-07-01

    An experimental and modelling study was performed for a reverse flow catalytic converter attached to a natural gas/diesel dual fuel engine. The catalytic converter had a segmented ceramic monolith honeycomb substrate and a catalytic washcoat containing a predominantly palladium catalyst. A one-dimensional single channel model was used to simulate the operation of the converter. The kinetics of the CO and methane oxidation followed first-order behaviour. The activation energy for the oxidation of methane showed a change with temperature, dropping from a value of 129 to 35 kJ/mol at a temperature of 874 K. The reverse flow converter was able to achieve high reactor temperature under conditions of low inlet gas temperature, provided that the initial reactor temperature was sufficiently high. (author)

  20. Westerlund 1: monolithic formation of a starburst cluster

    Science.gov (United States)

    Negueruela, Ignacio; Clark, J. Simon; Ritchie, Ben; Goodwin, Simon

    2015-08-01

    Westerlund 1 is in all likelihood the most massive young cluster in the Milky Way, with a mass on the order of 105 Msol. We have been observing its massive star population for ten years, measuring radial velocity changes for a substantial fraction of its OB stars and evolved supergiants. The properties of the evolved population are entirely consisting with a single burst of star formation, in excellent agreement with the results of studies based on the lower-mass population.Here we will present two new studies of the cluster: 1) A direct measurement of its average radial velocity and velocity dispersion based on individual measurements for several dozen stars with constant radial velocity and 2) A search for massive stars in its immediate neighbourhood using multi-object spectroscopy.The results of these two studies show that Westerlund 1 is decidedly subvirial and has a systemic radial velocity significantly different from that of nearby gas, which was assumed to provide a dynamical distance by previous authors. Moreover, the dynamical distance is inconsistent with the properties of the high-mass stellar population. In addition, we find that the cluster is completely isolated, with hardly any massive star in its vicinity that could be associated in terms of distance modulus or radial velocity. The cluster halo does not extend much further than five parsec away from the centre. All these properties are very unusual among starburst clusters in the Local Universe, which tend to form in the context of large star-forming regions.Westerlund 1 is thus the best example we have of a starburst cluster formed monolithically.

  1. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration

    Science.gov (United States)

    Liu, Jifeng; Kimerling, Lionel C.; Michel, Jurgen

    2012-09-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic-photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500-1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  2. Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration

    International Nuclear Information System (INIS)

    Liu, Jifeng; Kimerling, Lionel C; Michel, Jurgen

    2012-01-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic–photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500–1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  3. Present status of the MONOLITH project

    International Nuclear Information System (INIS)

    Petrukhin, A.A.

    2001-01-01

    MONOLITH is a proposed massive (34 kt) magnetized tracking calorimeter at the Gran Sasso laboratory in Italy, optimized for the detection of atmospheric muon neutrinos. The main goal is to establish (or reject) the neutrino oscillation hypothesis through an explicit observation of the full first oscillation swing. The Δm 2 sensitivity range for this measurement comfortably covers the complete Super-Kamiokande allowed region. Other measurements include studies of matter effects, the NC up/down ratio, ν bar / ν ratio, the study of cosmic ray muons in the multi-TeV range, and auxiliary measurements from the CERN to Gran Sasso neutrino beam. Depending on approval, data taking with the part of the detector could start towards the end of 2004

  4. Monolithic integration of DUV-induced waveguides into plastic microfluidic chip for optical manipulation

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Vannahme, Christoph; Sørensen, Kristian Tølbøl

    2014-01-01

    A monolithic polymer optofluidic chip for manipulation of microbeads in flow is demonstrated. On this chip, polymer waveguides induced by Deep UV lithography are integrated with microfluidic channels. The optical propagation losses of the waveguides are measured to be 0.66±0.13 dB/mm at a wavelen......A monolithic polymer optofluidic chip for manipulation of microbeads in flow is demonstrated. On this chip, polymer waveguides induced by Deep UV lithography are integrated with microfluidic channels. The optical propagation losses of the waveguides are measured to be 0.66±0.13 d......B/mm at a wavelength of λ = 808 nm. An optimized bead tracking algorithm is implemented, allowing for determination of the optical forces acting on the particles. The algorithm features a spatio-temporal mapping of coordinates for uniting partial trajectories, without increased processing time. With an external laser...

  5. Evaluation of the fracture resistance of computer-aided design/computer-aided manufacturing monolithic crowns prepared in different cement thicknesses.

    Science.gov (United States)

    Sagsoz, N Polat; Yanıkoglu, N

    2018-04-01

    The purpose of this study was to evaluate the fracture resistance of monolithic computer-aided design/computer-aided manufacturing (CAD/CAM) crowns that are prepared with different cement thickness. For this investigation, a human maxillary premolar tooth was selected. Master model preparation was performed with a demand bur under water spray. Master die was taken to fabricate 105 epoxy resin replicas. The crowns were milled using a CEREC 4 CAD/CAM system (Software Version, 4.2.0.57192). CAD/CAM crowns were made using resin nanoceramic, feldspathic glass ceramic, lithium disilicate, and leucite-reinforced ceramics. Each group was subdivided into three groups in accordance with three different cement thicknesses (30, 90, and 150 μm). Crowns milled out. Then RelyX ™ U200 was used as a luting agent to bond the crowns to the prepared samples. After one hour cementations, the specimens were stored in water bath at 37°C for 1 week before testing. Seven unprepared and unrestored teeth were kept and tested as a control group. A universal test machine was used to assume the fracture resistance of all specimens. The compressive load (N) that caused fracture was recorded for each specimen. Fracture resistance data were statistically analyzed by one-way ANOVA and two-factor interaction modeling test (α = 0.001). There are statistically significant differences between fracture resistances of CAD/CAM monolithic crown materials (P cement thickness is not statistically significant for fracture resistance of CAD/CAM monolithic crowns (P > 0.001). CAD/CAM monolithic crown materials affected fracture resistance. Cement thickness (30, 90, and 150 μm) was not effective on fracture resistance of CAD/CAM monolithic crowns.

  6. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  7. Alumina composites for oxide/oxide fibrous monoliths

    International Nuclear Information System (INIS)

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-01-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si 3 N 4 /BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented

  8. Ballistic Performance Model of Crater Formation in Monolithic, Porous Thermal Protection Systems

    Science.gov (United States)

    Miller, J. E.; Christiansen, E. L.; Deighton, K. D.

    2014-01-01

    Porous monolithic ablative systems insulate atmospheric reentry vehicles from reentry plasmas generated by atmospheric braking from orbital and exo-orbital velocities. Due to the necessity that these materials create a temperature gradient up to several thousand Kelvin over their thickness, it is important that these materials are near their pristine state prior to reentry. These materials may also be on exposed surfaces to space environment threats like orbital debris and meteoroids leaving a probability that these exposed surfaces will be below their prescribed values. Owing to the typical small size of impact craters in these materials, the local flow fields over these craters and the ablative process afford some margin in thermal protection designs for these locally reduced performance values. In this work, tests to develop ballistic performance models for thermal protection materials typical of those being used on Orion are discussed. A density profile as a function of depth of a typical monolithic ablator and substructure system is shown in Figure 1a.

  9. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.

    Science.gov (United States)

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-10-27

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  10. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics

    Directory of Open Access Journals (Sweden)

    Haiyun Huang

    2015-10-01

    Full Text Available This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  11. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Dana; Rantamäki, A. H.; Duša, Filip; Wiedmer, S. K.

    2016-01-01

    Roč. 37, 7-8 (2016), s. 880-912 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : capillary electrochromatography * capillary liquid chromatography * mass spec- trometry * monolithic columns Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.744, year: 2016

  12. Nitrato-complexes of Y(III), La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl) benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A; Singh, M P; Singh, V K

    1982-05-01

    The nitrato-complexes, (Y(PyBzH)/sub 2/(NO/sub 3/)/sub 2/)NO/sub 3/.H/sub 2/O and Nd, Sm, Gd, Tb, Dy, Ho ; n=1-3, m=0-0.5 ; PyBzh=2-(2 -pyridyl)benzimidazole) are formed on interaction of the ligand with metal nitrates in ethanol. The electrical conductance values (116-129 ohm/sup -1/cm/sup 2/mol/sup -1/) suggest 1:1 electrolyte-nature of the complexes. Magnetic moment values of Ce(2.53 B.M.), Pr(3.62 B.M.), Nd(3.52 B.M.), Sm(1.70 B.M.), Gd(8.06 B.M.), Tb(9.44 B.M.), Dy(10.56 B.M.) and Ho(10.51 B.M.) in the complexes confirm the positive state of the metals. Infrared evidences are obtained for the existance of both coordinated (C/sub 2/v) and uncoordinated (D/sub 3/h) nitrate groups. Electronic absorption spectra of Pr(III)-, Nd(III)-, Sm(III)-, Tb(III)-, Dy(III)- and Ho(III)-complexes have been analysed in the light of LSJ terms.

  13. Nitrato-complexes of Y(III), La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl) benzimidazole

    International Nuclear Information System (INIS)

    Mishra, A.; Singh, M.P.; Singh, V.K.

    1982-01-01

    The nitrato-complexes, [Y(PyBzH) 2 (NO 3 ) 2 ]NO 3 .H 2 O and Nd, Sm, Gd, Tb, Dy, Ho ; n=1-3, m=0-0.5 ; PyBzh=2-(2 -pyridyl)benzimidazole] are formed on interaction of the ligand with metal nitrates in ethanol. The electrical conductance values (116-129 ohm -1 cm 2 mol -1 ) suggest 1:1 electrolyte-nature of the complexes. Magnetic moment values of Ce(2.53 B.M.), Pr(3.62 B.M.), Nd(3.52 B.M.), Sm(1.70 B.M.), Gd(8.06 B.M.), Tb(9.44 B.M.), Dy(10.56 B.M.) and Ho(10.51 B.M.) in the complexes confirm the terpositive state of the metals. Infrared evidences are obtained for the existance of both coordinated (C 2 v) and uncoordinated (D 3 h) nitrate groups. Electronic absorption spectra of Pr(III)-, Nd(III)-, Sm(III)-, Tb(III)-, Dy(III)- and Ho(III)-complexes have been analysed in the light of LSJ terms. (author)

  14. Liquefied petroleum gas sensor based on manganese (III) oxide and zinc manganese (III) oxide nanoparticles

    Science.gov (United States)

    Sharma, Shiva; Chauhan, Pratima; Husain, Shahid

    2018-01-01

    In this paper, {{{Mn}}}2{{{O}}}3 and {{{ZnMn}}}2{{{O}}}4 nanoparticles (NPs) are successfully synthesized using chemical co-precipitation method at room temperature and further annealed at 450 °C. The structure, crystallite size, morphology, specific surface area (SSA) and band gap energy have been determined by x-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area analysis, scanning electron microscopy (SEM-EDS) and UV-visible spectrophotometer. The sensor films of the {{{Mn}}}2{{{O}}}3 NPs and {{{ZnMn}}}2{{{O}}}4 NPs have been fabricated onto glass substrate using spin coater system separately. These sensor films are investigated for different concentrations (200-1200 ppm) of liquefied petroleum gas (LPG) at different operating temperatures ranging from 100 °C to 400 °C. A comparative study of gas sensing properties shows that spinel {{{ZnMn}}}2{{{O}}}4 sensor film exhibit excellent response (≈ 80 % ) towards 1000 ppm LPG at 300 °C in comparison to {{{Mn}}}2{{{O}}}3 sensor films. The enhancement in the gas sensing characteristics of {{{ZnMn}}}2{{{O}}}4 sensor film is attributed to the reduced crystallite size, greater SSA, and modification in structure as well as morphology.

  15. Monolithic and Flexible ZnS/SnO2 Ultraviolet Photodetectors with Lateral Graphene Electrodes.

    Science.gov (United States)

    Zhang, Cheng; Xie, Yunchao; Deng, Heng; Tumlin, Travis; Zhang, Chi; Su, Jheng-Wun; Yu, Ping; Lin, Jian

    2017-05-01

    A continuing trend of miniaturized and flexible electronics/optoelectronic calls for novel device architectures made by compatible fabrication techniques. However, traditional layer-to-layer structures cannot satisfy such a need. Herein, a novel monolithic optoelectronic device fabricated by a mask-free laser direct writing method is demonstrated in which in situ laser induced graphene-like materials are employed as lateral electrodes for flexible ZnS/SnO 2 ultraviolet photodetectors. Specifically, a ZnS/SnO 2 thin film comprised of heterogeneous ZnS/SnO 2 nanoparticles is first coated on polyimide (PI) sheets by a solution process. Then, CO 2 laser irradiation ablates designed areas of the ZnS/SnO 2 thin film and converts the underneath PI into highly conductive graphene as the lateral electrodes for the monolithic photodetectors. This in situ growth method provides good interfaces between the graphene electrodes and the semiconducting ZnS/SnO 2 resulting in high optoelectronic performance. The lateral electrode structure reduces total thickness of the devices, thus minimizing the strain and improving flexibility of the photodetectors. The demonstrated lithography-free monolithic fabrication is a simple and cost-effective method, showing a great potential for developement into roll-to-roll manufacturing of flexible electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

    Directory of Open Access Journals (Sweden)

    Mehmet Cengiz Onbasli

    2013-11-01

    Full Text Available Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4O3−δ and polycrystalline (CeY2Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  17. Random laser emission from a Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel

    Science.gov (United States)

    Abegão, Luis M. G.; Manoel, D. S.; Otuka, A. J. G.; Ferreira, P. H. D.; Vollet, D. R.; Donatti, D. A.; De Boni, L.; Mendonça, C. R.; De Vicente, F. S.; Rodrigues, J. J., Jr.; Alencar, M. A. R. C.

    2017-06-01

    A Rhodamine B-doped 3-glycidoxypropyltrimethoxysilane (GPTS)/tetraethyl orthosilicate (TEOS)-derived organic/silica monolithic xerogel with excellent optical properties was prepared and its potential as a random laser host investigated. This hybrid material has a non-porous organic/inorganic morphology with silica-rich nanoparticles of less than 10 nm in diameter homogeneously dispersed within the matrix. Random laser emission with incoherent feedback, centered at 618 nm, was observed from Rhodamine B incorporated into the monolithic xerogel when excited by a 532 nm pulsed laser. This hybrid system is shown to be very promising for the development of a new class of random laser-based integrated devices, with applications ranging from optical bio-imaging to sensing.

  18. Dark-matter halo mergers as a fertile environment for low-mass Population III star formation

    DEFF Research Database (Denmark)

    Bovino, S.; Latif, M. A.; Grassi, Tommaso

    2014-01-01

    While Population III (Pop III) stars are typically thought to be massive, pathways towards lower mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter haloes. The mergers can lead to a high ioni...

  19. Fluorescence monitoring of capillary electrophoresis separation of biomolecules with monolithically integrated optical waveguides

    NARCIS (Netherlands)

    Dongre, C.; Dekker, R.; Hoekstra, Hugo; Martinez-Vazquez, R.; Osellame, R.; Ramponi, R.; Cerullo, G.; van Weeghel, R.; Besselink, G.A.J.; van den Vlekkert, H.H.; Pollnau, Markus

    2009-01-01

    Monolithic integration of optical waveguides in a commercial lab-on-a-chip by femtosecond-laser material processing enables arbitrary 3D geometries of optical sensing structures in combination with fluidic microchannels. Integrated fluorescence monitoring of molecular separation, as applicable in

  20. Seismic waves and earthquakes in a global monolithic model

    Science.gov (United States)

    Roubíček, Tomáš

    2018-03-01

    The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.

  1. Fabrication of CMC-g-PAM superporous polymer monoliths via eco-friendly Pickering-MIPEs for superior adsorption of methyl violet and methylene blue

    Science.gov (United States)

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-06-01

    A series of superporous carboxymethylcellulose-graft-poly(acrylamide) (CMC-g-PAM) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14% and 3%, respectively. The porous monolith can rapidly adsorb 1585 mg/g of methyl violet (MV) and 1625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for 5 times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontimination of dye-containing wastewater.

  2. Construction of the Cleo III drift chamber

    International Nuclear Information System (INIS)

    Csorna, S.; Marka, S.; Dickson, M.; Dombrowski, S. von; Peterson, D.; Thies, P.; Glenn, S.; Thorndike, E.H.; Kravchenko, I.

    1998-01-01

    The CLEO III group is constructing a new chamber to be installed as part of the staged luminosity upgrade program at the Cornell electron storage ring and compatible with the interaction region optics. Although having less radial extent than the current CLEO II tracking system, CLEO III will have equivalent momentum resolution because of material reduction in the drift chamber inner skin and gas. The thin inner skin requires special attention to the end-plate motion due to wire creep. During stringing, use of a robot will fully automate the wire handling on the upper end. (author)

  3. Marginal Vertical Discrepancies of Monolithic and Veneered Zirconia and Metal-Ceramic Three-Unit Posterior Fixed Dental Prostheses.

    Science.gov (United States)

    Lopez-Suarez, Carlos; Gonzalo, Esther; Pelaez, Jesus; Serrano, Benjamin; Suarez, Maria J

    2016-01-01

    The aim of this study was to investigate and compare the marginal fit of posterior fixed dental prostheses (FDPs) made of monolithic and veneered computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia ceramic with metal-ceramic posterior FDPs. Thirty standardized steel dies were prepared to receive posterior three-unit FDPs. Specimens were randomly divided into three groups (n = 10): (1) metal-ceramic (control group), (2) veneered zirconia, and (3) monolithic zirconia. All FDPs were cemented using a glass-ionomer cement. The specimens were subjected to thermal cycling (5°C to 55°C). A scanning electron microscope (SEM) with a magnification of ×500 was used for measurements. The data were statistically analyzed using one-way analysis of variance and paired t test. Both zirconia groups showed similar vertical marginal discrepancies, and no significant differences (P = .661) in marginal adaptation were observed among the groups. No differences were observed in either group in marginal discrepancies between surfaces or abutments. Monolithic zirconia posterior FDPs exhibit similar vertical marginal discrepancies to veneered zirconia posterior FDPs. No influence of localization measurements was observed.

  4. Thermal measurement a requirement for monolithic microwave integrated circuit design

    OpenAIRE

    Hopper, Richard; Oxley, C. H.

    2008-01-01

    The thermal management of structures such as Monolithic Microwave Integrated Circuits (MMICs) is important, given increased circuit packing densities and RF output powers. The paper will describe the IR measurement technology necessary to obtain accurate temperature profiles on the surface of semiconductor devices. The measurement procedure will be explained, including the device mounting arrangement and emissivity correction technique. The paper will show how the measurement technique has be...

  5. Continuous terahertz-wave generation using a monolithically integrated horn antenna

    Science.gov (United States)

    Peytavit, E.; Beck, A.; Akalin, T.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2008-09-01

    A transverse electromagnetic horn antenna is monolithically integrated with a standard ultrafast interdigitated electrode photodetector on low-temperature-grown GaAs. Continuous-wave terahertz radiation is generated at frequencies up to 2 THz with a maximum power of approximately 1 μW at 780 GHz. Experimental variations in the terahertz power as function of the frequency are explained by means of electromagnetic simulations of the antenna and the photomixer vicinity.

  6. Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions.

    Science.gov (United States)

    Wang, Ying; Liu, Xu; Wang, Hongfang; Xia, Guangmei; Huang, Wei; Song, Rui

    2014-02-15

    In the current study, microporous spongy chitosan monoliths doped with small amount of graphene oxide (CSGO monoliths) with high porosity (96-98%), extraordinary high water absorption (more than 2000%) and low density (0.0436-0.0607 g cm(-3)) were prepared by the freeze-drying method and used as adsorbents for anionic dyes methyl orange (MO) and Cu(2+) ions. The adsorption behavior of the CSGO monoliths and influencing factors such as pH value, graphene oxide (GO) content, concentration of pollutants as well as adsorption kinetics were studied. Specifically, the saturated adsorption capacity for MO is 567.07 mg g(-1), the highest comparing with other publication results, and it is 53.69 mg g(-1) for Cu(2+) ions. Since they are biodegradable, non-toxic, efficient, low-cost and easy to prepare, we believe that these microporous spongy CSGO monoliths will be the promising candidates for water purification. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Preparation of a long-alkyl-chain-based hybrid monolithic column with mixed-mode interactions using a "one-pot" process for pressurized capillary electrochromatography.

    Science.gov (United States)

    Lyu, Haixia; Zhao, Heqing; Qin, Wenfei; Xie, Zenghong

    2017-12-01

    A simple "one-pot" approach for the preparation of a new vinyl-functionalized organic-inorganic hybrid monolithic column is described. In this improved method, the hydrolyzed alkoxysilanes of tetramethoxysilane and triethoxyvinylsilane were used as precursors for the synthesis of a silica-based monolith, while 1-hexadecene and sodium ethylenesulfonate were used as vinyl functional monomers along with azobisisobutyronitrile as an initiator. The effects of reaction temperature, urea content, and composition of organic monomers on the column properties (e.g. morphology, mechanical stability, and chromatographic performance) were investigated. The monolithic column was used for the separation of neutral solutes by reversed-phase pressurized capillary. Furthermore, the monolith can separate various aromatic amines, which indicated its excellent cation-exchange capability and hydrophobic interactions. The baseline separation of the aromatic amines was obtained with a column efficiency of up to 78 000 plates/m. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An internally illuminated monolith reactor: Pros and cons relative to a slurry reactor

    NARCIS (Netherlands)

    Carneiro, Joana T.; Carneiro, J.T.; Berger, Rob; Moulijn, Jacob A.; Mul, Guido

    2009-01-01

    In the present study, kinetic models for the photo-oxidation of cyclohexane in two different photoreactor systems are discussed: a top illumination reactor (TIR) representative of a slurry reactor, and the so-called internally illuminated monolith reactor (IIMR) representing a reactor containing

  9. Folsom Dam Outlet Works Modification Project; Simplified Three-Dimensional Stress Analysis of Monolith 12

    National Research Council Canada - National Science Library

    Matheu, Enrique E; Garner, Sharon B

    2005-01-01

    This report presents a finite-element stress analysis of monolith 12 conducted to assess any potential adverse effects caused by the proposed dimensions of the air vent near the base of the spillway pier wall...

  10. Numerical Simulation of Luminescent Downshifting in Top Cell of Monolithic Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Mahfoud Abderrezek

    2013-01-01

    Full Text Available The increase in the conversion efficiency of monolithic tandem solar cells is limited by the short-circuit current density matching between the top and the bottom cells. Generally, the top cell presents the lowest current in the two subcells. In this paper, in order to increase the short-circuit current density in the top cell, we present a theoretical survey of the luminescence downshifting (LDS approach for the design of monolithic tandem solar cells. The photovoltaic (PV glass encapsulation material is replaced with a polymer material of polymethyl methacrylate (PMMA type which is doped with diverse kinds of organic dyes. The performance of the n-p-p+ GaInP structure has been simulated as a function of the organic dyes. Gains achieved for the short-circuit current density and conversion efficiency are, respectively, 13.13% and 13.38%, under AM1.5G illumination spectra.

  11. Development of readout electronics for monolithic integration with diode strip detectors

    International Nuclear Information System (INIS)

    Hosticka, B.J.; Wrede, M.; Zimmer, G.; Kemmer, J.; Hofmann, R.; Lutz, G.

    1984-03-01

    Parallel in - serial out analog readout electronics integrated with silicon strip detectors will bring a reduction of two orders of magnitude in external electronics. The readout concept and the chosen CMOS technology solve the basic problem of low noise and low power requirements. A hybrid solution is an intermediate step towards the final goal of monolithic integration of detector and electronics. (orig.)

  12. Statistical model of a gas diffusion electrode. III. Photomicrograph study

    Energy Technology Data Exchange (ETDEWEB)

    Winsel, A W

    1965-12-01

    A linear section through a gas diffusion electrode produces a certain distribution function of sinews with the pores. From this distribution function some qualities of the pore structure are derived, and an automatic device to determine the distribution function is described. With a statistical model of a gas diffusion electrode the behavior of a DSK electrode is discussed and compared with earlier measurements of the flow resistance of this material.

  13. LePix—A high resistivity, fully depleted monolithic pixel detector

    International Nuclear Information System (INIS)

    Giubilato, P.; Bisello, D.; Chalmet, P.; Denes, P.; Kloukinas, K.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Snoeys, W.; Tindall, C.

    2013-01-01

    The LePix project explores monolithic pixel sensors fabricated in a 90 nm CMOS technology built over a lightly doped substrate. This approach keeps the advantages usually offered by Monolithic Active Pixel Sensors (MAPS), like a low input capacitance, having a single piece detector and using a standard CMOS production line, and adds the benefit of charge collection by drift from a depleted region several tens of microns deep into the substrate, therefore providing an excellent signal to noise ratio and a radiation tolerance superior to conventional un-depleted MAPS. Such sensors are expected to offer significant cost savings and reduction of power consumption for the same performance, leading to the use of much less material in the detector (less cooling and less copper), addressing one of the main limitations of present day particle tracking systems. The latest evolution of the project uses detectors thinned down to 50 μm to obtain back illuminated sensors operated in full depletion mode. By back-processing the chip and collecting the charge from the full substrate it is hence possible to efficiently detect soft X-rays up to 10 keV. Test results from first successfully processed detectors will be presented and discussed

  14. PHOTOIONIZATION MODELS FOR THE SEMI-FORBIDDEN C iii] 1909 EMISSION IN STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Jaskot, A. E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); Ravindranath, S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2016-12-20

    The increasing neutrality of the intergalactic medium at z  > 6 suppresses Ly α emission, and spectroscopic confirmation of galaxy redshifts requires the detection of alternative ultraviolet lines. The strong [C iii]  λ 1907+C iii]  λ 1909 doublet frequently observed in low-metallicity, actively star-forming galaxies is a promising emission feature. We present CLOUDY photoionization model predictions for C iii] equivalent widths (EWs) and line ratios as a function of starburst age, metallicity, and ionization parameter. Our models include a range of C/O abundances, dust content, and gas density. We also examine the effects of varying the nebular geometry and optical depth. Only the stellar models that incorporate binary interaction effects reproduce the highest observed C iii] EWs. The spectral energy distributions from the binary stellar population models also generate observable C iii] over a longer timescale relative to single-star models. We show that diagnostics using C iii] and nebular He ii  λ 1640 can separate star-forming regions from shock-ionized gas. We also find that density-bounded systems should exhibit weaker C iii] EWs at a given ionization parameter, and C iii] EWs could, therefore, select candidate Lyman continuum-leaking systems. In almost all models, C iii] is the next strongest line at <2700 Å after Ly α , and C iii] reaches detectable levels for a wide range of conditions at low metallicity. C iii] may therefore serve as an important diagnostic for characterizing galaxies at z  > 6.

  15. PHOTOIONIZATION MODELS FOR THE SEMI-FORBIDDEN C iii] 1909 EMISSION IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Jaskot, A. E.; Ravindranath, S.

    2016-01-01

    The increasing neutrality of the intergalactic medium at z  > 6 suppresses Ly α emission, and spectroscopic confirmation of galaxy redshifts requires the detection of alternative ultraviolet lines. The strong [C iii]  λ 1907+C iii]  λ 1909 doublet frequently observed in low-metallicity, actively star-forming galaxies is a promising emission feature. We present CLOUDY photoionization model predictions for C iii] equivalent widths (EWs) and line ratios as a function of starburst age, metallicity, and ionization parameter. Our models include a range of C/O abundances, dust content, and gas density. We also examine the effects of varying the nebular geometry and optical depth. Only the stellar models that incorporate binary interaction effects reproduce the highest observed C iii] EWs. The spectral energy distributions from the binary stellar population models also generate observable C iii] over a longer timescale relative to single-star models. We show that diagnostics using C iii] and nebular He ii  λ 1640 can separate star-forming regions from shock-ionized gas. We also find that density-bounded systems should exhibit weaker C iii] EWs at a given ionization parameter, and C iii] EWs could, therefore, select candidate Lyman continuum-leaking systems. In almost all models, C iii] is the next strongest line at <2700 Å after Ly α , and C iii] reaches detectable levels for a wide range of conditions at low metallicity. C iii] may therefore serve as an important diagnostic for characterizing galaxies at z  > 6.

  16. Preparation of poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith and its application in solid phase microextraction of brominated flame retardants.

    Science.gov (United States)

    Yang, Ting-ting; Zhou, Lin-feng; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin; Chen, Hong-yuan

    2013-05-24

    A capillary poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith was in situ synthesized by thermally initiated free radical co-polymerization using trimethyl-2-methacroyloxyethylammonium chloride (MATE) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. N,N-dimethylformamide and polyethylene glycol 6000 were used as solvent and porogen, respectively. The morphology and porous structure of the resulting monoliths were assessed by scanning electron microscope. In order to prepare practically useful poly(MATE-co-EGDMA) monoliths with low flow resistance and good mechanical strength, some parameters such as PEG-6000 to DMF ratio, total monomer to porogen ratio, and crosslinker to monomer ratio were optimized systematically. Moreover, the extraction mechanism was evaluated using two series of compounds, alkylbenzenes and weak acids, as model compounds on poly(MATE-co-EGDMA) monoliths as liquid chromatographic stationary phase. Finally, the monoliths were applied as the solid phase microextraction medium, and a simple off-line method for simultaneous determination of three brominated flame retardants, 2,4,6-tribromophenol (TBP), tetrabromobisphenol A (TBBPA) and 4,4'-dibrominated diphenyl ether (DBDPE), in environmental waters was developed by coupling the polymer monolith microextraction to HPLC with UV detection. The regression equations for these three brominated flame retardants showed good linearity from their limit of quantification to 5000ng/mL. The limits of detection were 0.20, 0.15 and 0.10ng/mL for TBP, TBBPA and DBDPE, respectively. The recovery of the proposed method was 78.7-106.1% with intra-day relative standard deviation of 1.3-4.4%. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Hybrid Monolith of Graphene/TEMPO-Oxidized Cellulose Nanofiber as Mechanically Robust, Highly Functional, and Recyclable Adsorbent of Methylene Blue Dye

    Directory of Open Access Journals (Sweden)

    Asif Hussain

    2018-01-01

    Full Text Available Herein we demonstrate first report on fabrication, characterization, and adsorptive appraisal of graphene/cellulose nanofibers (GO/CNFs monolith for methylene blue (MB dye. Series of hybrid monolith (GO/CNFs were assembled via urea assisted self-assembly method. Hybrid materials were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, Raman spectroscopy, elemental analysis, thermogravimetric curve analysis, specific surface area, surface charge density measurement, and compressional mechanical analysis. It was proposed that strong chemical interaction (mainly hydrogen bonding was responsible for the formation of hybrid assembly. GO/CNFs monolith showed mechanically robust architecture with tunable pore structure and surface properties. GO/CNFs adsorbent could completely remove trace to moderate concentrations of MB dye and follow pseudo-second-order kinetics model. Adsorption isotherm behaviors were found in the following order: Langmuir isotherm > Freundlich isotherm > Temkin isotherm model. Maximum adsorption capacity of 227.27 mg g−1 was achieved which is much higher than reported graphene based monoliths and magnetic adsorbent. Incorporation of nanocellulose follows exponential relationship with dye uptake capacities. High surface charge density and specific surface area were main dye adsorptive mechanism. Regeneration and recycling efficiency was achieved up to four consecutive cycles with cost-effective recollection and zero recontamination of treated water.

  18. Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths

    DEFF Research Database (Denmark)

    Ji, Xiangling; Jiang, Shichun; Qiu, Xuepeng

    2003-01-01

    Abstract: Hybrid poly(2-hydroxyethyl methacrylate) (PHEMA)/SiO2 monoliths were synthesized via a sol-gel process of the precursor tetraethyl orthosilicate (TEOS) and the in situ free-radical polymerization of 2-hydroxyethyl methacrylate (HEMA). The weight ratio of the starting chemicals, TEOS...

  19. A Symmetric Positive Definite Formulation for Monolithic Fluid Structure Interaction

    Science.gov (United States)

    2010-08-09

    more likely to converge than simply iterating the partitioned approach to convergence in a simple Gauss - Seidel manner. Our approach allows the use of...conditions in a second step. These approaches can also be iterated within a given time step for increased stability, noting that in the limit if one... converges one obtains a monolithic (albeit expensive) approach. Other approaches construct strongly coupled systems and then solve them in one of several

  20. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  1. Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue.

    Science.gov (United States)

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-01-01

    A series of superporous carboxymethylcellulose- graft -poly(acrylamide)/palygorskite (CMC- g -PAM/Pal) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV) and 1,625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater.

  2. Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-06-01

    Full Text Available A series of superporous carboxymethylcellulose-graft-poly(acrylamide/palygorskite (CMC-g-PAM/Pal polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM in the oil-in-water (O/W Pickering-medium internal phase emulsions (Pickering-MIPEs composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20 on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9–14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV and 1,625 mg/g of methylene blue (MB. After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV and 93.5% (for MB of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater.

  3. Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated sol-gel process accompanied by phase separation

    International Nuclear Information System (INIS)

    Guo, Xingzhong; Song, Jie; Lvlin, Yixiu; Yang, Hui; Nakanishi, Kazuki; Kanamori, Kazuyoshi

    2015-01-01

    Monolithic macroporous zirconia (ZrO 2 ) derived from ionic precursors has been successfully fabricated via the epoxide-mediated sol-gel route accompanied by phase separation in the presence of propylene oxide (PO) and poly(ethylene oxide) (PEO). The addition of PO used as an acid scavenger mediates the gelation, whereas PEO enhances the polymerization-induced phase separation. The appropriate choice of the starting compositions allows the production of a macroporous zirconia monolith with a porosity of 52.9% and a Brunauer–Emmett–Teller (BET) surface area of 171.9 m 2 · g −1 . The resultant dried gel is amorphous, whereas tetragonal ZrO 2 and monoclinic ZrO 2 are precipitated at 400 and 600 °C, respectively, without spoiling the macroporous morphology. After solvothermal treatment with an ethanol solution of ammonia, tetragonal ZrO 2 monoliths with smooth skeletons and well-defined mesopores can be obtained, and the BET surface area is enhanced to 583.8 m 2 · g −1 . (paper)

  4. FLUIDIZED BED STEAM REFORMER (FBSR) PRODUCT: MONOLITH FORMATION AND CHARACTERIZATION

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    The most important requirement for Hanford's low activity waste (LAW) form for shallow land disposal is the chemical durability of the product. A secondary, but still essential specification, is the compressive strength of the material with regards to the strength of the material under shallow land disposal conditions, e.g. the weight of soil overburden and potential intrusion by future generations, because the term ''near-surface disposal'' indicates disposal in the uppermost portion, or approximately the top 30 meters, of the earth's surface. The THOR(reg s ign) Treatment Technologies (TTT) mineral waste form for LAW is granular in nature because it is formed by Fluidized Bed Steam Reforming (FBSR). As a granular product it has been shown to be as durable as Hanford's LAW glass during testing with ASTM C-1285-02 known as the Product Consistency Test (PCT) and with the Single Pass Flow Through Test (SPFT). Hanford Envelope A and Envelope C simulants both performed well during PCT and SPFT testing and during subsequent performance assessment modeling. This is partially due to the high aluminosilicate content of the mineral product which provides a natural aluminosilicate buffering mechanism that inhibits leaching and is known to occur in naturally occurring aluminosilicate mineral analogs. In order for the TTT Na-Al-Si (NAS) granular mineral product to meet the compressive strength requirements (ASTM C39) for a Hanford waste form, the granular product needs to be made into a monolith or disposed of in High Integrity Containers (HIC's). Additionally, the Hanford intruder scenario for disposal in the Immobilized Low Activity Waste (ILAW) trench is mitigated as there is reduced intruder exposure when a waste form is in a monolithic form. During the preliminary testing of a monolith binder for TTT's FBSR mineral product, four parameters were monitored: (1) waste loading (not optimized for each waste form tested); (2) density; (3) compressive strength; and (4

  5. Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system

    NARCIS (Netherlands)

    P. Luo (Peiyao); C. Rodrigo (Carmen); F.J. Gaspar Lorenz (Franscisco); C.W. Oosterlee (Cornelis)

    2018-01-01

    textabstractThe interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled

  6. Chromatographic Monoliths for High-Throughput Immunoaffinity Isolation of Transferrin from Human Plasma

    Directory of Open Access Journals (Sweden)

    Irena Trbojević-Akmačić

    2016-06-01

    Full Text Available Changes in protein glycosylation are related to different diseases and have a potential as diagnostic and prognostic disease biomarkers. Transferrin (Tf glycosylation changes are common marker for congenital disorders of glycosylation. However, biological interindividual variability of Tf N-glycosylation and genes involved in glycosylation regulation are not known. Therefore, high-throughput Tf isolation method and large scale glycosylation studies are needed in order to address these questions. Due to their unique chromatographic properties, the use of chromatographic monoliths enables very fast analysis cycle, thus significantly increasing sample preparation throughput. Here, we are describing characterization of novel immunoaffinity-based monolithic columns in a 96-well plate format for specific high-throughput purification of human Tf from blood plasma. We optimized the isolation and glycan preparation procedure for subsequent ultra performance liquid chromatography (UPLC analysis of Tf N-glycosylation and managed to increase the sensitivity for approximately three times compared to initial experimental conditions, with very good reproducibility. This work is licensed under a Creative Commons Attribution 4.0 International License.

  7. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    International Nuclear Information System (INIS)

    Ratti, L.; Gaioni, L.; Manghisoni, M.; Re, V.; Traversi, G.

    2011-01-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12μm to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6μm) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  8. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, L., E-mail: lodovico.ratti@unipv.it [Universita di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Gaioni, L. [INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Universita di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2011-10-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12{mu}m to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6{mu}m) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  9. Peculiarities of Thermal Treatment of Monolithic Reinforced Concrete Structures

    Science.gov (United States)

    Kuchin, V. N.; Shilonosova, N. V.

    2017-11-01

    A mathematical program has been developed that allows one to determine the parameters of heat treatment of monolithic structures. One of the quality indicators of monolithic reinforced concrete structures is the level of temperature stresses arising in the process of heat treatment and further operation of structures. In winter at heat treatment the distribution of temperatures along the cross-section of the structure is uneven. A favorable thermo-stressed state in a concrete massif occurs when using the preheating method, providing the concrete temperature in the center of the structure is greater than at the periphery. In this case, after the strength is set and the temperature is later equalized along the cross-section, the central part of the structure tends to decrease its dimensions more but the extreme zones prevent it. Therefore, the center is in a state of tension, and the extreme zones on the periphery are compressed. In compressed concrete there is a lesser chance of cracks or defects. The temperature gradient over the section of the structure, the stress in the concrete and its strength are determined. When calculating the temperature and strength fields, the stress level was determined - a value equal to the ratio of the tensile stresses in the section under consideration to the tensile strength of the concrete in this section at the same time. The nature of the change in stress level is determined by the massive structure and power of the formwork heaters. It is shown that under unfavorable conditions the stress level is close to the critical value. The greatest temperature gradient occurs in the outer layers adjacent to the heating formwork. A technology for concrete conditioning is proposed which makes it possible to reduce the temperature stresses along the cross-section of the structure. The time for concrete conditioning in the formwork is reduced. In its turn, it further reduces labor costs and the cost of concrete work along with the cost of

  10. The application of a monolithic triphenylphosphine reagent for conducting Appel reactions in flow microreactors.

    Science.gov (United States)

    Roper, Kimberley A; Lange, Heiko; Polyzos, Anastasios; Berry, Malcolm B; Baxendale, Ian R; Ley, Steven V

    2011-01-01

    Herein we describe the application of a monolithic triphenylphosphine reagent to the Appel reaction in flow-chemistry processing, to generate various brominated products with high purity and in excellent yields, and with no requirement for further off-line purification.

  11. Detecting Milling Deformation in 7075 Aluminum Alloy Aeronautical Monolithic Components Using the Quasi-Symmetric Machining Method

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    2016-04-01

    Full Text Available The deformation of aeronautical monolithic components due to CNC machining is a bottle-neck issue in the aviation industry. The residual stress releases and redistributes in the process of material removal, and the distortion of the monolithic component is generated. The traditional one-side machining method will produce oversize deformation. Based on the three-stage CNC machining method, the quasi-symmetric machining method is developed in this study to reduce deformation by symmetry material removal using the M-symmetry distribution law of residual stress. The mechanism of milling deformation due to residual stress is investigated. A deformation experiment was conducted using traditional one-side machining method and quasi-symmetric machining method to compare with finite element method (FEM. The deformation parameters are validated by comparative results. Most of the errors are within 10%. The reason for these errors is determined to improve the reliability of the method. Moreover, the maximum deformation value of using quasi-symmetric machining method is within 20% of that of using the traditional one-side machining method. This result shows the quasi-symmetric machining method is effective in reducing deformation caused by residual stress. Thus, this research introduces an effective method for reducing the deformation of monolithic thin-walled components in the CNC milling process.

  12. Iron (III) oxyhydroxide in isopropyl alcohol preparation, characterization and solvothermal treatment

    International Nuclear Information System (INIS)

    Carvalho, E.L.C.N.; Jafelicci Junior, M.

    1989-01-01

    Iron (III) nitrate hydrolysis was carried out in isopropyl alcohol solution by an aqueous amonia gas stream resulting in iron (III) oxyhydroxide sol. It has been investigated in this work the solvothermal treatment of this colloidal system at 120 0 C and 24 hours. Iron (III) oxyhydroxide freshly obtained and solvothermally treated. Samples were dryed by lyophilization. Products obtained were characterized by the following techniques: spectrophotometric iron analysis by 1,10-orthophenantroline complexation method, powder X-ray diffraction, vibrational infrared spectra and differential thermal analysis. After solvothermal treatment resulting product was crystallized into hematite, while freshly iron (III) oxyhydroxide was non crystalline. Both of them are very active powder, showing high water adsorption [pt

  13. Process optimisation for anion exchange monolithic chromatography of 4.2kbp plasmid vaccine (pcDNA3F).

    Science.gov (United States)

    Ongkudon, Clarence M; Danquah, Michael K

    2010-10-15

    Anion exchange monolithic chromatography is increasingly becoming a prominent tool for plasmid DNA purification but no generic protocol is available to purify all types of plasmid DNA. In this work, we established a simple framework and used it to specifically purify a plasmid DNA model from a clarified alkaline-lysed plasmid-containing cell lysate. The framework involved optimising ligand functionalisation temperature (30-80°C), mobile phase flow rate (0.1-1.8mL/min), monolith pore size (done by changing the porogen content in the polymerisation reaction by 50-80%), buffer pH (6-10), ionic strength of binding buffer (0.3-0.7M) and buffer gradient elution slope (1-10% buffer B/min). We concluded that preferential pcDNA3F adsorption and optimum resolution could be achieved within the tested conditions by loading the clarified cell lysate into 400nm pore size of monolith in 0.7M NaCl (pH 6) of binding buffer followed by increasing the NaCl concentration to 1.0M at 3%B/min. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Highly Luminescent and Ultrastable CsPbBr3 Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith.

    Science.gov (United States)

    Li, Zhichun; Kong, Long; Huang, Shouqiang; Li, Liang

    2017-07-03

    We successfully prepared QDs incorporated into a silica/alumina monolith (QDs-SAM) by a simple sol-gel reaction of an Al-Si single precursor with CsPbBr 3 QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr 3 QDs from surface damages during the sol-gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr 3 QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr 3 QDs-SAM in powder form was easily mixed into the resins and applied as color-converting layer with curing on blue light-emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W -1 and a narrow emission with a full width at half maximum (FWHM) of 25 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths.

    Science.gov (United States)

    Soloviev, Sergiy O; Kapran, Andriy Y; Kurylets, Yaroslava P

    2015-02-01

    Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3≫NO2>H2O>NO>O2>CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem. Copyright © 2014. Published by Elsevier B.V.

  16. Bridged polysilsesquioxane-based wide-bore monolithic capillary columns for hydrophilic interaction chromatography

    Czech Academy of Sciences Publication Activity Database

    Šesták, Jozef; Moravcová, Dana; Křenková, Jana; Planeta, Josef; Roth, Michal; Foret, František

    2017-01-01

    Roč. 1479, JAN (2017), s. 204-209 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA14-06319S; GA ČR(CZ) GA16-03749S Institutional support: RVO:68081715 Keywords : silica monolithic column * HILIC * oligosaccharides * nucleosides Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  17. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    Clayton Cozzan

    2016-10-01

    Full Text Available With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min. The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  18. On drift fields in CMOS monolithic active pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Deveaux, Michael [Goethe-Universitaet, Frankfurt (Germany); Collaboration: CBM-MVD-Collaboration

    2016-07-01

    CMOS Monolithic Active Pixel Sensors (MAPS) combine an excellent spatial resolution of few μm with a very low material budget of 0.05% X{sub 0}. To extend their radiation tolerance to the level needed for future experiments like e.g. CBM, it is regularly considered to deplete their active volume. We discuss the limits of this strategy accounting for the specific features of the sensing elements of MAPS. Moreover, we introduce an alternative approach to generate the drift fields needed to provoke a faster charge collection by means of doping gradients.

  19. Development of the multiwavelength monolithic integrated fiber optics terminal

    Science.gov (United States)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  20. Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases.

    Science.gov (United States)

    Gupta, Vipul; Beirne, Stephen; Nesterenko, Pavel N; Paull, Brett

    2018-01-16

    Effect of column geometry on the liquid chromatographic separations using 3D printed liquid chromatographic columns with in-column polymerized monoliths has been studied. Three different liquid chromatographic columns were designed and 3D printed in titanium as 2D serpentine, 3D spiral, and 3D serpentine columns, of equal length and i.d. Successful in-column thermal polymerization of mechanically stable poly(BuMA-co-EDMA) monoliths was achieved within each design without any significant structural differences between phases. Van Deemter plots indicated higher efficiencies for the 3D serpentine chromatographic columns with higher aspect ratio turns at higher linear velocities and smaller analysis times as compared to their counterpart columns with lower aspect ratio turns. Computational fluid dynamic simulations of a basic monolithic structure indicated 44%, 90%, 100%, and 118% higher flow through narrow channels in the curved monolithic configuration as compared to the straight monolithic configuration at linear velocities of 1, 2.5, 5, and 10 mm s -1 , respectively. Isocratic RPLC separations with the 3D serpentine column resulted in an average 23% and 245% (8 solutes) increase in the number of theoretical plates as compared to the 3D spiral and 2D serpentine columns, respectively. Gradient RPLC separations with the 3D serpentine column resulted in an average 15% and 82% (8 solutes) increase in the peak capacity as compared to the 3D spiral and 2D serpentine columns, respectively. Use of the 3D serpentine column at a higher flow rate, as compared to the 3D spiral column, provided a 58% reduction in the analysis time and 74% increase in the peak capacity for the isocratic separations of the small molecules and the gradient separations of proteins, respectively.

  1. CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS

    OpenAIRE

    Malakhova Anna Nikolaevna

    2016-01-01

    One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor ...

  2. Wideband Monolithic Microwave Integrated Circuit Frequency Converters with GaAs mHEMT Technology

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2005-01-01

    We present monolithic microwave integrated circuit (MMIC) frequency converter, which can be used for up and down conversion, due to the large RF and IF port bandwidth. The MMIC converters are based on commercially available GaAs mHEMT technology and are comprised of a Gilbert mixer cell core...

  3. Aging of monolithic zirconia dental prostheses: Protocol for a 5-year prospective clinical study using ex vivo analyses.

    Science.gov (United States)

    Koenig, Vinciane; Wulfman, Claudine P; Derbanne, Mathieu A; Dupont, Nathalie M; Le Goff, Stéphane O; Tang, Mie-Leng; Seidel, Laurence; Dewael, Thibaut Y; Vanheusden, Alain J; Mainjot, Amélie K

    2016-12-15

    Recent introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) monolithic zirconia dental prostheses raises the issue of material low thermal degradation (LTD), a well-known problem with zirconia hip prostheses. This phenomenon could be accentuated by masticatory mechanical stress. Until now zirconia LTD process has only been studied in vitro . This work introduces an original protocol to evaluate LTD process of monolithic zirconia prostheses in the oral environment and to study their general clinical behavior, notably in terms of wear. 101 posterior monolithic zirconia tooth elements (molars and premolars) are included in a 5-year prospective clinical trial. On each element, several areas between 1 and 2 mm 2 (6 on molars, 4 on premolars) are determined on restoration surface: areas submitted or non-submitted to mastication mechanical stress, glazed or non-glazed. Before prosthesis placement, ex vivo analyses regarding LTD and wear are performed using Raman spectroscopy, SEM imagery and 3D laser profilometry. After placement, restorations are clinically evaluated following criteria of the World Dental Federation (FDI), complemented by the analysis of fracture clinical risk factors. Two independent examiners perform the evaluations. Clinical evaluation and ex vivo analyses are carried out after 6 months and then each year for up to 5 years. For clinicians and patients, the results of this trial will justify the use of monolithic zirconia restorations in dental practice. For researchers, the originality of a clinical study including ex vivo analyses of material aging will provide important data regarding zirconia properties.Trial registration: ClinicalTrials.gov Identifier: NCT02150226.

  4. Solution and gas phase evidence of anion binding through the secondary bonding interactions of a bidentate bis-antimony(iii) anion receptor.

    Science.gov (United States)

    Qiu, J; Song, B; Li, X; Cozzolino, A F

    2017-12-20

    The solution and gas phase halide binding to a bis-antimony(iii) anion receptor was studied. This new class of anion receptors utilizes the strong Sb-centered secondary bonding interactions (SBIs) that are formed opposite to the polar Sb-O primary bond. 1 H NMR titration data were fitted statistically to binding models and solution-phase binding energetics were extracted, while the formation of anion-to-receptor complexes was observed using ESI-MS. Density functional theory calculations suggest that their affinity towards binding halide anions is mitigated by the strong explicit solvation effect in DMSO, which gives insights into future designs that circumvent direct solvent binding and are anticipated to yield tighter and perhaps more selectivity in anion binding.

  5. Evaluation of glycidyl methacrylate-based monolith functionalized with weak anion exchange moiety inside 0.5 mm i.d. column for liquid chromatographic separation of DNA

    Directory of Open Access Journals (Sweden)

    Aprilia Nur Tasfiyati

    2016-03-01

    Full Text Available In this study, the organic polymer monolith was developed as a weak anion exchanger column in high performance liquid chromatography for DNA separation. Methacrylate-based monolithic column was prepared in microbore silicosteel column (100 × 0.5 mm i.d. by in-situ polymerization reaction using glycidyl methacrylate as monomer; ethylene dimethacrylate as crosslinker; 1-propanol, 1,4-butanediol, and water as porogenic solvents, with the presence of initiator α,α′-azobisisobutyronitrile (AIBN. The monolith matrix was modified with diethylamine to create weak anion exchanger via ring opening reaction of epoxy groups. The morphology of the monolithic column was studied by SEM. The properties of the monolithic column, such as permeability, mechanical stability, binding capacity and pore size distribution, were characterized in detail. From the results of the characterization, monoliths poly-(GMA-co-EDMA with total monomer percentage (%T 40 and crosslinker percentage (%C 25 was found to be the ideal composition of monomer and crosslinker. It has good mechanical stability and high permeability, adequate molecular recognition sites (represented with binding capacity value of 36 mg ml−1, and has relatively equal proportion of flow-through pore and mesopores (37.2% and 41.1% respectively. Poly-(GMA-co-EDMA with %T 40 and %C 25 can successfully separate oligo(dT12–18 and 50 bp DNA ladder with good resolution.

  6. Long term seismic noise acquisition and analysis in the Homestake mine with tunable monolithic sensors

    Science.gov (United States)

    Acernese, Fausto; De Rosa, Rosario; De Salvo, Riccardo; Giordano, Gerardo; Harms, Jan; Mandic, Vuk; Sajeva, Angelo; Trancynger, Thomas; Barone, Fabrizio

    2009-09-01

    In this paper we describe the scientific data recorded along one month of data taking of two mechanical monolithic horizontal sensor prototypes located in a blind-ended (side) tunnel 2000 ft deep in the Homestake (South Dakota, USA) mine chosen to host the Deep Underground Science and Engineering Laboratory (DUSEL). The two mechanical monolithic sensors, developed at the University of Salerno, are placed, in thermally insulating enclosures, onto concrete slabs connected to the bedrock, and behind a sound-proofing wall. The main goal of this experiment is to characterize the Homestake site in the frequency band 10-4 ÷ 30 H z and to estimate the level of Newtonian noise, providing also the necessary preliminary information to understand the feasibility of underground gravitational-wave interferometers sensitive at 1 H z and below.

  7. III-nitride disk-in-nanowire 1.2 μm monolithic diode laser on (001)silicon

    KAUST Repository

    Hazari, Arnab

    2015-11-12

    III-nitride nanowirediodeheterostructures with multiple In0.85Ga0.15N disks and graded InGaN mode confining regions were grown by molecular beam epitaxy on (001)Si substrates. The aerial density of the 60 nm nanowires is ∼3 × 1010 cm−2. A radiative recombination lifetime of 1.84 ns in the disks is measured by time-resolved luminescence measurements. Edge-emitting nanowire lasers have been fabricated and characterized. Measured values of Jth, T0, and dg/dn in these devices are 1.24 kA/cm2, 242 K, and 5.6 × 10−17 cm2, respectively. The peak emission is observed at ∼1.2 μm.

  8. Silver deposition on chemically treated carbon monolith

    Directory of Open Access Journals (Sweden)

    Jovanović Zoran M.

    2009-01-01

    Full Text Available Carbon monolith was treated with HNO3, KOH and H2O2. Effects of these treatments on the surface functional groups and on the amount of silver deposited on the CM surface were studied by temperature programmed desorption (TPD and atomic absorption spectrometry (AAS. As a result of chemical treatment there was an increase in the amount of surface oxygen complexes. The increase in the amount of silver deposit is proportional to the amount of surface groups that produce CO under decomposition. However, the high amount of CO groups, decomposing above 600°C, induces the smaller Ag crystallite size. Therefore, the high temperature CO evolving oxides are, most likely, the initial centers for Ag deposition.

  9. Determining leach rates of monolithic waste forms

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Dole, L.R.

    1986-01-01

    The ANS 16.1 Leach Procedure provides a conservative means of predicting long-term release from monolithic waste forms, offering a simple and relatively quick means of determining effective solid diffusion coefficients. As presented here, these coefficients can be used in a simple model to predict maximum release rates or be used in more complex site-specific models to predict actual site performance. For waste forms that pass the structural integrity test, this model also allows the prediction of EP-Tox leachate concentrations from these coefficients. Thus, the results of the ANS 16.1 Leach Procedure provide a powerful tool that can be used to predict the waste concentration limits in order to comply with the EP-Toxicity criteria for characteristically nonhazardous waste. 12 refs., 3 figs

  10. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Jue, Jan-Fong, E-mail: dennis.keiser@inl.gov; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U–Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U–10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: • A typical Zr diffusion barrier with a thickness of 25 μm. • A transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 μm. • Chemical banding, in some areas more than 100 μm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt.%. • Decomposed areas containing plate-shaped low-Mo phase. • A typical Zr/cladding interaction layer with a thickness of 1–2 μm. • A visible UZr{sub 2} bearing layer with a thickness of 1–2 μm. • Mo-rich precipitates (mainly Mo{sub 2}Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr{sub 2}-bearing layer and the U–Mo matrix. • No excessive interaction between cladding and the uncoated fuel edge. • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O

  11. The application of a monolithic triphenylphosphine reagent for conducting Appel reactions in flow microreactors

    Directory of Open Access Journals (Sweden)

    Kimberley A. Roper

    2011-12-01

    Full Text Available Herein we describe the application of a monolithic triphenylphosphine reagent to the Appel reaction in flow-chemistry processing, to generate various brominated products with high purity and in excellent yields, and with no requirement for further off-line purification.

  12. Monitoring catalysts at work in their final form: spectroscopic investigations on a monolithic catalyst

    DEFF Research Database (Denmark)

    Rasmussen, Søren B.; Bañares, Miguel A.; Bazin, Philippe

    2012-01-01

    . The observations reported here serve as a demonstration of the great potential for the application of operando spectroscopy on monolithic systems. This cross disciplinary approach aims to identify reaction pathways, active sites, intermediate- and spectator-species for catalytic reactions under truly industrial...

  13. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati

    2017-09-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  14. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati; Jiang, Qiu; Kurra, Narendra; Buttner, Ulrich; Wang, Xianbin; Alshareef, Husam N.

    2017-01-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  15. Peculiarities of forming diffusion bimetallic joints of aluminum foam with a monolithic magnesium alloy

    Directory of Open Access Journals (Sweden)

    M. Khokhlov

    2016-12-01

    Full Text Available The work is carried out to determine an optimal method to obtain the welded bimetallic joints of monolithic Mg-alloy with porous Al-alloy using gallium as chemical activator and heating up to 300 °C by two different methods: long-term in vacuum oven and short-term without vacuum by passing of low voltage current. There is no microstructure change in Al-foam but indentation test records the negligible reduction of the mechanical properties. SEM showed the crystallization of two types of Mg5Ga2 and Mg2Ga inter-metallic phases in the wavy uneven diffusion zone on Mg-alloy side with significant increase of micro-hardness and Young's modulus. The narrow depth of the diffusion zone takes place in joints by short-term heating, so this method is more applicable for welding of monolithic and porous alloys at chemical activation using gallium.

  16. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.; Singh, D.; Goretta, K. C.; de Arellano-Lopez, A. R.; Energy Technology; Russian Academy of Sciences; Univer. de Sevilla

    2001-01-01

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.

  17. Preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) monolithic column by in situ polymerization and a click reaction for capillary liquid chromatography of small molecules and proteins.

    Science.gov (United States)

    Lin, Zian; Yu, Ruifang; Hu, Wenli; Zheng, Jiangnan; Tong, Ping; Zhao, Hongzhi; Cai, Zongwei

    2015-07-07

    Combining free radical polymerization with click chemistry via a copper-mediated azide/alkyne cycloaddition (CuAAC) reaction in a "one-pot" process, a facile approach was developed for the preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) (AZT-co-PMA-co-PETA) monolithic column. The resulting poly(AZT-co-PMA-co-PETA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of a monolithic column. A series of alkylbenzenes, amides, anilines, and benzoic acids were used to evaluate the chromatographic properties of the polymer monolith in terms of hydrophobic, hydrophilic and cation-exchange interactions, and the results showed that the poly(AZT-co-PMA-co-PETA) monolith exhibited more flexible adjustment in chromatographic selectivity than that of the parent poly(PMA-co-PETA) and AZT-modified poly(PMA-co-PETA) monoliths. Column efficiencies for toluene, DMF, and formamide with 35,000-48,000 theoretical plates per m could be obtained at a linear velocity of 0.17 mm s(-1). The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention factors were less than 4.2%. In addition, the proposed monolith was also applied to efficient separation of sulfonamides, nucleobases and nucleosides, anesthetics and proteins for demonstrating its potential.

  18. Molecular analysis of sulphur-rich brown coals by flash pyrolysis-gas chromatography-mass spectrometry: The type III-S kerogen

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Leeuw, J.W. de

    1992-01-01

    The molecular composition of five brown coals from three different basins (Maestrazgo, Mequinenza and Rubielos) in Spain was investigated by flash pyrolysis-gas chromatography and flash pyrolysis-gas chromatography-mass spectrometry. In these techniques, the macromolecular material is thermally

  19. Carbon fiber composite molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Rogers, M.R. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    Monolithic adsorbents based on isotropic pitch fibers have been developed jointly by ORNL and the University of Kentucky, Center for Applied Energy Research. The monoliths are attractive for gas separation and storage applications because of their unique combination of physical properties and microporous structure. Currently at ORNL the monoliths are produced in billets that are 10 cm in diameter and 25 cm in length. The monolithic adsorbent material is being considered for guard bed applications on a natural gas (NG) powered device. In order for the material to be successful in this application, one must attain a uniform activation to modest micropore volumes throughout the large monoliths currently being produced. Here the authors report the results of a study directed toward attaining uniform activation in these billets.

  20. Coastal Engineering. vol III : Breakwater design

    NARCIS (Netherlands)

    Massie, W.W.

    1986-01-01

    General considerations, types of breakwaters, rubble mound breakwaters, wave run-up and overtopping, construction materials, armor computations, te core, filter and toe constructions, rubble mound breakwater construction, optimum design, example, monolithic breakwater, construction materials, wave

  1. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Inst. of Technology, Hoboken, NJ (United States); Manganaro, James [Anasyn LLC, Princeton, NJ (United States); Goodall, Brian [Valicor Renewables LLC, Dexter, MI (United States); Farrauto, Robert [Columbia Univ., New York, NY (United States)

    2015-03-24

    Valicor’s proprietary wet extraction process in conjunction with thermochemical pre-treatment was performed on algal biomass from two different algae strains, Nannochloropsis Salina (N.S.) and Chlorella to produce algae oils. Polar lipids such as phospholipids were hydrolyzed, and metals and metalloids, known catalyst poisons, were separated into the aqueous phase, creating an attractive “pre-refined” oil for hydrodeoxygenation (HDO) upgrading by Stevens. Oil content and oil extraction efficiency of approximately 30 and 90% respectively were achieved. At Stevens, we formulated a Pt-based bi-metallic catalyst which was demonstrated to be effective in the hydro-treating of the algae oils to produce ‘green’ diesel. The bi-metallic catalyst was wash-coated on a monolith, and in conjunction with a high throughput high pressure (pilot plant) reactor system, was used in hydrotreating algae oils from N.S. and Chlorella. Mixtures of these algae oils and refinery light atmospheric gas oil (LAGO) supplied by our petroleum refiner partner, Marathon Petroleum Corporation, were co-processed in the pilot plant reactor system using the Pt-based bi-metallic monolith catalyst. A 26 wt% N.S. algae oil/74 wt % LAGO mixture hydrotreated in the reactor system was subjected to the ASTM D975 Diesel Fuel Specification Test and it met all the important requirements, including a cetane index of 50.5. An elemental oxygen analysis performed by an independent and reputable lab reported an oxygen content of trace to none found. The successful co-processing of a mixture of algae oil and LAGO will enable integration of algae oil as a refinery feedstock which is one of the goals of DOE-BETO. We have presented experimental data that show that our precious metal-based catalysts consume less hydrogen than the conventional hydrotreating catalyst NiMo Precious metal catalysts favor the hydrodecarbonylation/hydrodecarboxylation route of HDO over the dehydration route preferred by base metal

  2. A comparison of FEMAXI-III code calculations with irradiation experiments

    International Nuclear Information System (INIS)

    Ito, K.; Sogame, M.; Ichikawa, M.; Nakajima, T.

    1981-01-01

    The FEMAXI-III code calculations were compared with in-pile diameter measurements in the Halden Boiling Water Reactor, in order to check the ability to analyse the pellet-cladding mechanical interaction. The results showed generally good agreement between calculations and measurements. The Studsvik INTER-RAMP Experiments were also analysed to examine the predictability of fuel rod failures. Good agreement was obtained between calculated and measured fission gas x release. The threshold stress to cause failure was estimated by means of FEMAXI-III. (author)

  3. One-pot synthesis of zeolitic imidazolate framework-8/poly (methyl methacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bar sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection.

    Science.gov (United States)

    You, Linna; He, Man; Chen, Beibei; Hu, Bin

    2017-11-17

    In this work, zeolitic imidazolate framework-8 (ZIF-8)/poly (methyl methacrylate-ethyleneglycol dimethacrylate) (MMA-EGDMA) composite monolith was in situ synthesized on stir bar by one-pot polymerization. Compared with the neat monolith, ZIF-8/poly(MMA-EGDMA) composite monolith has larger surface area and pore volume. It also exhibits higher extraction efficiency for target phytohormones than poly(MMA-EGDMA) monolith and commercial polyethylene glycol (PEG) coated stir bar. Based on it, a method of ZIF-8/poly(MMA-EGDMA) monolith coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detection (HPLC-UV) was established for the analysis of five phytohormones in apple and pear samples. The developed method exhibited low limits of detection (0.11-0.51μg/L), wide linear range (0.5-500μg/L) and good recoveries (82.7-111%), which demonstrated good application potential of the ZIF-8/monolith coated stir bar in trace analysis of organic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Direct preparation of a graphene oxide modified monolith in a glass syringe as a solid-phase extraction cartridge for the extraction of quaternary ammonium alkaloids from Chinese patent medicine.

    Science.gov (United States)

    Liang, Xiaojing; Wang, Licheng; Wang, Shuai; Li, Yijing; Guo, Yong

    2017-11-01

    Packed cartridges have been widely used in solid-phase extraction. However, there are still some drawbacks, such as they are blocked easily and the method is time-consuming. In view of the advantages of monoliths, a monolithic extraction material has been directly synthesized in a glass syringe without any gap between the monolith and syringe inner wall. The monolithic syringe was modified with graphene oxide by loading graphene oxide dispersion onto it. The content of graphene oxide and the surface topography of the monolith have been evaluated by elemental analysis and scanning electron microscopy, respectively, which confirmed the successful modification. This prepared graphene oxide-modified monolithic syringe was directly used as a traditional solid-phase extraction cartridge. As expected, it shows good permeability and excellent capability for the extraction of quaternary ammonium alkaloids. The sample loading velocity (1-6 mL/min) does not affect the recovery. Under the optimal conditions, good linearities (R = 0.9992-0.9998) were obtained for five quaternary ammonium alkaloids, and the limits of detection and quantification were 0.5-1 and 1-2 μg/L, respectively. The proposed method was successfully applied for the analysis of quaternary ammonium alkaloids in Chinese patent medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. System analysis and energy model for radio-triggered battery-less monolithic wireless sensor receiver

    NARCIS (Netherlands)

    Gao, H.; Wu, Y.; Matters - Kammerer, M.; Roermund, van Arthur; Baltus, P.G.M.

    2013-01-01

    Monolithic wireless sensors with integrated antenna, on-chip transceiving, sensing and energy scavenging are low-cost and robust, thus very suitable for mass production and deployment. The design of such a sensor node requires a proper architecture with careful trade-offs and joint considerations

  6. Monolithic Concrete vs Precast Concrete for the Construction of Bridge by Th Cantilever Method

    Directory of Open Access Journals (Sweden)

    Morlova Dumitru Daniel

    2015-07-01

    Full Text Available In the article "Monolithic Concrete vs Precast Concrete for the Construction of Bridges by the Cantilever Method", there are approached a number of issues that come out in the design and execution of prestressed concrete bridge structures using the cantilever method.

  7. In vitro evaluation of marginal discrepancy of monolithic zirconia restorations fabricated with different CAD-CAM systems.

    Science.gov (United States)

    Hamza, Tamer A; Sherif, Rana M

    2017-06-01

    Dental laboratories use different computer-aided design and computer-aided manufacturing (CAD-CAM) systems to fabricate fixed prostheses; however, limited evidence is available concerning which system provides the best marginal discrepancy. The purpose of this in vitro study was to evaluate the marginal fit of 5 different monolithic zirconia restorations milled with different CAD-CAM systems. Thirty monolithic zirconia crowns were fabricated on a custom-designed stainless steel die and were divided into 5 groups according to the type of monolithic zirconia crown and the CAD-CAM system used: group TZ, milled with an MCXL milling machine; group CZ, translucent zirconia milled with a motion milling machine; group ZZ, zirconia milled with a dental milling unit; group PZ, translucent zirconia milled with a zirconia milling unit; and group BZ, solid zirconia milled using an S1 VHF milling machine. The marginal fit was measured with a binocular microscope at an original magnification of ×100. The results were tabulated and statistically analyzed with 1-way ANOVA and post hoc surface range test, and pairwise multiple comparisons were made using Bonferroni correction (α=.05). The type of CAD-CAM used affected the marginal fit of the monolithic restoration. The mean (±SD) highest marginal discrepancy was recorded in group TZI at 39.3 ±2.3 μm, while the least mean marginal discrepancy was recorded in group IZ (22.8 ±8.9 μm). The Bonferroni post hoc test showed that group TZI was significantly different from all other groups tested (Pmarginal discrepancies; however, the CAD-CAM system with the 5-axis milling unit produced the best marginal fit. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy

    Science.gov (United States)

    Tan, Yih Horng; Davis, Jason A.; Fujikawa, Kohki; Ganesh, N. Vijaya; Demchenko, Alexei V.

    2012-01-01

    Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N2 gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C18-SH (coverage of 2.94 × 1014 molecules cm−2 based from the decomposition of the C18-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the ‘C’ parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology. PMID:22822294

  9. Design of a Modular Monolithic Implicit Solver for Multi-Physics Applications

    Science.gov (United States)

    Carton De Wiart, Corentin; Diosady, Laslo T.; Garai, Anirban; Burgess, Nicholas; Blonigan, Patrick; Ekelschot, Dirk; Murman, Scott M.

    2018-01-01

    The design of a modular multi-physics high-order space-time finite-element framework is presented together with its extension to allow monolithic coupling of different physics. One of the main objectives of the framework is to perform efficient high- fidelity simulations of capsule/parachute systems. This problem requires simulating multiple physics including, but not limited to, the compressible Navier-Stokes equations, the dynamics of a moving body with mesh deformations and adaptation, the linear shell equations, non-re effective boundary conditions and wall modeling. The solver is based on high-order space-time - finite element methods. Continuous, discontinuous and C1-discontinuous Galerkin methods are implemented, allowing one to discretize various physical models. Tangent and adjoint sensitivity analysis are also targeted in order to conduct gradient-based optimization, error estimation, mesh adaptation, and flow control, adding another layer of complexity to the framework. The decisions made to tackle these challenges are presented. The discussion focuses first on the "single-physics" solver and later on its extension to the monolithic coupling of different physics. The implementation of different physics modules, relevant to the capsule/parachute system, are also presented. Finally, examples of coupled computations are presented, paving the way to the simulation of the full capsule/parachute system.

  10. Graphene oxide-based composite monolith as new sorbent for the on-line solid phase extraction and high performance liquid chromatography determination of ß-sitosterol in food samples.

    Science.gov (United States)

    Cui, Beijiao; Guo, Bin; Wang, Huimin; Zhang, Doudou; Liu, Haiyan; Bai, Ligai; Yan, Hongyuan; Han, Dandan

    2018-08-15

    A composite monolithic column was prepared by redox initiation method for the on-line purification and enrichment of β-sitosterol, in which graphene oxide (GO) was embedded. The obtained monolithic column was characterized by scanning electron microscopy (SEM) and nitrogen adsorption-desorption isotherm measurement, which indicated that the monolith possessed characteristics of porous structure and high permeability. Under the optimum conditions for extraction and determination, the calibration equation was y = 47.92 × -0.1391; the linear range was 0.008-1.0 mg mL -1 ; the linear regression coefficient was 0.998; the limit of detection (LOD) is 2.4 μg mL -1 ; the limit of quantitation (LOQ) was 8 μg mL -1 ; precisions for intra-day and inter-day assays presented as relative standard deviations were less than 4.3% and 6.8%, respectively. Under the selective conditions, the enrichment factor of the method was 119. The recovery was in the range of 80.40-98.00%. Moreover, the adsorption amount of the monolith was compared with silica gel-C18 adsorbent and the monolith without graphene oxide being embedded. The polymerization monolithic column showed high selectivity and good permeability, and it was successfully used as on-line solid-phase extraction (SPE) column for determination of β-sitosterol in edible oil. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Dissolution of Ceramic Monolith of Spent Catalytic Converters by Using Hydrometallurgical Methods / Rozpuszczanie Monolitu Ceramicznego Zużytych Katalizatorów Na Drodze Hydrometalurgicznej

    Directory of Open Access Journals (Sweden)

    Willner J.

    2015-12-01

    Full Text Available Catalytic converters contain the catalytic substance in their structure, which is a mixture of Platinum Group Metals (PGMs: platinum, palladium and rhodium. The prices of these metals and a growing demand for them in the market, make it necessary to recycle spent catalytic converters and recovery of PGMs. The ceramic monolith of catalytic converters is still a predominant material in its construction among of multitude of catalytic converters which are in circulation. In this work attempts were made to leach additional metals (excluding Pt from comminuted ceramic monolith. Classic leachant oxidizing media 10M H2SO4, HCl and H3PO4 were used considering the possibility of dissolution of the ceramic monolith.

  12. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology

    Directory of Open Access Journals (Sweden)

    Rizo Edwin Gumba

    2016-09-01

    Full Text Available The advancement of alternative energy is primarily catalyzed by the negative environmental impacts and energy depletion caused by the excessive usage of fossil fuels. Biodiesel has emerged as a promising substitute to petrodiesel because it is biodegradable, less toxic, and reduces greenhouse gas emission. Apart from that, biodiesel can be used as blending component or direct replacements for diesel fuel in automotive engines. A diverse range of methods have been reported for the conversion of renewable feedstocks (vegetable oil or animal fat into biodiesel with transesterification being the most preferred method. Nevertheless, the cost of producing biodiesel is higher compared to fossil fuel, thus impeding its commercialization potentials. The limited source of reliable feedstock and the underdeveloped biodiesel production route have prevented the full-scale commercialization of biodiesel in many parts of the world. In a recent development, a new technology that incorporates monoliths as support matrices for enzyme immobilization in supercritical carbon dioxide (SC-CO2 for continuous biodiesel production has been proposed to solve the problem. The potential of SC-CO2 system to be applied in enzymatic reactors is not well documented and hence the purpose of this review is to highlight the previous studies conducted as well as the future direction of this technology.

  13. Problems of technology and corrosion in sodium coolant and cover gas

    International Nuclear Information System (INIS)

    Kuenstler, K.; Ullmann, H.

    1977-07-01

    The meeting encloses the following themes: (i) Reactions in the system sodium-steel-cover gas (ii) Corrosion behaviour of structural and cladding materials (iii) Determination of impurities in sodium and cover gas (iv) Technology of sodium and cover gas (v) Testing equipments (vi) Safety problems

  14. Clinical study on the success of posterior monolithic zirconia crowns and fixed dental prostheses: preliminary report

    Directory of Open Access Journals (Sweden)

    Merve Bankoğlu Güngör

    2017-09-01

    Full Text Available Objective: The purpose of this report was to present preliminary clinical results regarding the success rates and technical outcomes of posterior monolithic zirconia single tooth crowns (STs and fixed dental prostheses (FDPs. Materials and Method: Thirty-four patients received 43 posterior monolithic zirconia restorations as single tooth crowns (STs and/or fixed dental prostheses (FDPs, which were fabricated using a CAD-CAM (Computer Aided Design - Computer Aided Manufacturing system. At baseline and every 6 months, the restorations were examined for survival and technical outcomes. Success of the restorations was defined as the restoration remaining in situ, with no need for removal or replacement at follow-up visits. Technical outcomes were evaluated with a modified version of the United States Public Health Services criteria. Survival of restorations was estimated by using the Kaplan-Meier survival analysis. For each restoration, duration of follow-up was calculated from the time of placement to the date of its first failure. Results: After a mean observation period of 18.6 ± 3.9 months (between 8-24 months, cumulative survival rates were 86.7% and 92.3% for STs and FDPs, respectively. Technical evaluation revealed good marginal adaptation and crown contours; however, modifications were needed for shade and occlusion of restorations. Conclusion: These preliminary results revealed high survival rate and generally successful technical outcomes for posterior monolithic zirconia STs and FDPs.

  15. Long-Wavelength InAs/GaAs Quantum-Dot Light Emitting Sources Monolithically Grown on Si Substrate

    Directory of Open Access Journals (Sweden)

    Siming Chen

    2015-06-01

    Full Text Available Direct integration of III–V light emitting sources on Si substrates has attracted significant interest for addressing the growing limitations for Si-based electronics and allowing the realization of complex optoelectronics circuits. However, the high density of threading dislocations introduced by large lattice mismatch and incompatible thermal expansion coefficient between III–V materials and Si substrates have fundamentally limited monolithic epitaxy of III–V devices on Si substrates. Here, by using the InAlAs/GaAs strained layer superlattices (SLSs as dislocation filter layers (DFLs to reduce the density of threading dislocations. We firstly demonstrate a Si-based 1.3 µm InAs/GaAs quantum dot (QD laser that lases up to 111 °C, with a low threshold current density of 200 A/cm2 and high output power over 100 mW at room temperature. We then demonstrate the operation of InAs/GaAs QD superluminescent light emitting diodes (SLDs monolithically grown on Si substrates. The fabricated two-section SLD exhibits a 3 dB linewidth of 114 nm, centered at ~1255 nm with a corresponding output power of 2.6 mW at room temperature. Our work complements hybrid integration using wafer bonding and represents a significant milestone for direct monolithic integration of III–V light emitters on Si substrates.

  16. Performance study of a PET scanner based on monolithic scintillators for different DoI-dependent methods

    International Nuclear Information System (INIS)

    Preziosi, E.; Sánchez, S.; González, A.J.; Rodriguez-Alvarez, M.J.; González-Montoro, A.; Moliner, L.; Benlloch, J.M.; Pani, R.; Borrazzo, C.; Bettiol, M.

    2016-01-01

    One of the technical objectives of the MindView project is developing a brain-dedicated PET insert based on monolithic scintillation crystals. It will be inserted in MRI systems with the purpose to obtain simultaneous PET and MRI brain images. High sensitivity, high image quality performance and accurate detection of the Depth-of-Interaction (DoI) of the 511keV photons are required. We have developed a DoI estimation method, dedicated to monolithic scintillators, allowing continuous DoI estimation and a DoI-dependent algorithm for the estimation of the photon planar impact position, able to improve the single module imaging capabilities. In this work, through experimental measurements, the proposed methods have been used for the estimation of the impact positions within the monolithic crystal block. We have evaluated the PET system performance following the NEMA NU 4-2008 protocol by reconstructing the images using the STIR 3D platform. The results obtained with two different methods, providing discrete and continuous DoI information, are compared with those obtained from an algorithm without DoI capabilities and with the ideal response of the detector. The proposed DoI-dependent imaging methods show clear improvements in the spatial resolution (FWHM) of reconstructed images, allowing to obtain values from 2mm (at the center FoV) to 3mm (at the FoV edges).

  17. Highly luminescent and ultrastable CsPbBr{sub 3} perovskite quantum dots incorporated into a silica/alumina monolith

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhichun; Kong, Long; Huang, Shouqiang; Li, Liang [School of Environmental Science and Engineering, Shanghai Jiao Tong University (China)

    2017-07-03

    We successfully prepared QDs incorporated into a silica/alumina monolith (QDs-SAM) by a simple sol-gel reaction of an Al-Si single precursor with CsPbBr{sub 3} QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr{sub 3} QDs from surface damages during the sol-gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr{sub 3} QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr{sub 3} QDs-SAM in powder form was easily mixed into the resins and applied as color-converting layer with curing on blue light-emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W{sup -1} and a narrow emission with a full width at half maximum (FWHM) of 25 nm. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Magnetic resonance properties of Gd(III)-bound lipid-coated microbubbles and their cavitation fragments.

    Science.gov (United States)

    Feshitan, Jameel A; Boss, Michael A; Borden, Mark A

    2012-10-30

    Gas-filled microbubbles are potentially useful theranostic agents for magnetic resonance imaging-guided focused ultrasound surgery (MRIgFUS). Previously, MRI at 9.4 T was used to measure the contrast properties of lipid-coated microbubbles with gadolinium (Gd(III)) bound to lipid headgroups, which revealed that the longitudinal molar relaxivity (r(1)) increased after microbubble fragmentation. This behavior was attributed to an increase in water proton exchange with the Gd(III)-bound lipid fragments caused by an increase in the lipid headgroup area that accompanied the lipid shell monolayer-to-bilayer transition. In this article, we explore this mechanism by comparing the changes in r(1) and its transverse counterpart, r(2)*, after the fragmentation of microbubbles consisting of Gd(III) bound to two different locations on the lipid monolayer shell: the phosphatidylethanolamine (PE) lipid headgroup region or the distal region of the poly(ethylene glycol) (PEG) brush. Nuclear magnetic resonance (NMR) at 1.5 T was used to measure the contrast properties of the various microbubble constructs because this is the most common field strength used in clinical MRI. Results for the lipid-headgroup-labeled Gd(III) microbubbles revealed that r(1) increased after microbubble fragmentation, whereas r(2)* was unchanged. An analysis of PEG-labeled Gd(III) microbubbles revealed that both r(1) and r(2)* decreased after microbubble fragmentation. Further analysis revealed that the microbubble gas core enhanced the transverse MR signal (T(2)*) in a concentration-dependent manner but minimally affected the longitudinal (T(1)) signal. These results illustrate a new method for the use of NMR to measure the biomembrane packing structure and suggest that two mechanisms, proton-exchange enhancement by lipid membrane relaxation and magnetic field inhomogeneity imposed by the gas/liquid interface, may be used to detect and differentiate Gd(III)-labeled microbubbles and their cavitation

  19. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.; Bessho, Naoki; Koros, William J.

    2013-01-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  20. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.

    2013-05-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.