WorldWideScience

Sample records for monolithic tandem solar

  1. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  2. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells

    KAUST Repository

    Werner, Jérémie

    2016-12-05

    Perovskite/crystalline silicon tandem solar cells have the potential to reach efficiencies beyond those of silicon single-junction record devices. However, the high-temperature process of 500 °C needed for state-of-the-art mesoscopic perovskite cells has, so far, been limiting their implementation in monolithic tandem devices. Here, we demonstrate the applicability of zinc tin oxide as a recombination layer and show its electrical and optical stability at temperatures up to 500 °C. To prove the concept, we fabricate monolithic tandem cells with mesoscopic top cell with up to 16% efficiency. We then investigate the effect of zinc tin oxide layer thickness variation, showing a strong influence on the optical interference pattern within the tandem device. Finally, we discuss the perspective of mesoscopic perovskite cells for high-efficiency monolithic tandem solar cells. © 2016 Author(s)

  3. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    KAUST Repository

    Sahli, Florent

    2017-10-09

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  4. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    KAUST Repository

    Sahli, Florent; Kamino, Brett A.; Werner, Jé ré mie; Brä uninger, Matthias; Paviet-Salomon, Bertrand; Barraud, Loris; Monnard, Raphaë l; Seif, Johannes Peter; Tomasi, Andrea; Jeangros, Quentin; Hessler-Wyser, Aï cha; De Wolf, Stefaan; Despeisse, Matthieu; Nicolay, Sylvain; Niesen, Bjoern; Ballif, Christophe

    2017-01-01

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  5. Numerical Simulation of Luminescent Downshifting in Top Cell of Monolithic Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Mahfoud Abderrezek

    2013-01-01

    Full Text Available The increase in the conversion efficiency of monolithic tandem solar cells is limited by the short-circuit current density matching between the top and the bottom cells. Generally, the top cell presents the lowest current in the two subcells. In this paper, in order to increase the short-circuit current density in the top cell, we present a theoretical survey of the luminescence downshifting (LDS approach for the design of monolithic tandem solar cells. The photovoltaic (PV glass encapsulation material is replaced with a polymer material of polymethyl methacrylate (PMMA type which is doped with diverse kinds of organic dyes. The performance of the n-p-p+ GaInP structure has been simulated as a function of the organic dyes. Gains achieved for the short-circuit current density and conversion efficiency are, respectively, 13.13% and 13.38%, under AM1.5G illumination spectra.

  6. Simulating characteristics of Si/Ge tandem monolithic solar cell with Si1-xGex buffer layer

    Directory of Open Access Journals (Sweden)

    Gnilenko A. B.

    2015-12-01

    Full Text Available In spite of many efforts to propose new semiconductor materials and sophisticated constructions of solar cells, crystalline silicone remains the main photovoltaic material widely used up to now. There are various methods to enhance the efficiency of silicone solar cells. One of them is to combine silicone with an additional semiconductor material with the different bandgap to form a tandem construction. For example, the germanium sub-cell used as the bottom cascade for the silicone sub-cell in the tandem monolithic solar cell makes it possible to utilize the "red" sub-band of solar spectra increasing overall solar cell efficiency. The problem of the 4.2% mismatch in lattice constant between Si and Ge can be resolved in such a case by the use of SiGe buffer layer. In the paper the results of the computer simulation for Si/Ge tandem monolithic solar cell with Si1-xGex buffer layer are presented. In the solar cell under consideration, the step graded Si1-xGex buffer layer is located between the top silicone and the bottom germanium cascades to reduce the threading dislocation density in mismatched materials. The cascades are commutated by the use of the germanium tunnel diode between the bottom sub-cell and the buffer layer. For the solar cell modeling, the physically-based device simulator ATLAS of Silvaco TCAD software is employed to predict the electrical behavior of the semiconductor structure and to provide a deep insight into the internal physical processes. The voltage-current characteristic, photovoltaic parameters and the distribution of basic physical values are obtained for the investigated tandem solar cell. The influence of layer thicknesses on the photovoltaic parameters is studied. The calculated efficiency of the tandem solar cell reaches 13% which is a quarter more than the efficiency of a simple silicone solar cell with the same constructive parameters and under the same illumination conditions.

  7. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    Science.gov (United States)

    Wanlass, Mark W [Golden, CO

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  8. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells

    KAUST Repository

    Werner, Jé ré mie; Walter, Arnaud; Rucavado, Esteban; Moon, Soo Jin; Sacchetto, Davide; Rienaecker, Michael; Peibst, Robby; Brendel, Rolf; Niquille, Xavier; De Wolf, Stefaan; Lö per, Philipp; Morales-Masis, Monica; Nicolay, Sylvain; Niesen, Bjoern; Ballif, Christophe

    2016-01-01

    the concept, we fabricate monolithic tandem cells with mesoscopic top cell with up to 16% efficiency. We then investigate the effect of zinc tin oxide layer thickness variation, showing a strong influence on the optical interference pattern within the tandem

  9. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    Science.gov (United States)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  10. Molecular beam epitaxy of InP single junction and InP/In0.53Ga0.47As monolithically integrated tandem solar cells using solid phosphorous source material

    International Nuclear Information System (INIS)

    Delaney, A.; Chin, K.; Street, S.; Newman, F.; Aguilar, L.; Ignatiev, A.; Monier, C.; Velela, M.; Freundlich, A.

    1998-01-01

    This work reports the first InP solar cells, InP/In 0.53 Ga 0.47 As tandem solar cells and InP tunnel junctions to be grown using a solid phosphorous source cracker cell in a molecular beam epitaxy system. High p-type doping achieved with this system allowed for the development of InP tunnel junctions. These junctions which allow for improved current matching in subsequent monolithically integrated tandem devices also do not absorb photons which can be utilized in the InGaAs structure. Photocurrent spectral responses compared favorably to devices previously grown in a chemical beam epitaxy system. High resolution x-ray scans demonstrated good lattice matching between constituent parts of the tandem cell. AM0 efficiencies of both InP and InP/InGaAs tandem cells are reported

  11. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  12. CH(3)NH(3)PbI(3) perovskite / silicon tandem solar cells: characterization based optical simulations.

    Science.gov (United States)

    Filipič, Miha; Löper, Philipp; Niesen, Bjoern; De Wolf, Stefaan; Krč, Janez; Ballif, Christophe; Topič, Marko

    2015-04-06

    In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH(3)NH(3)PbI(3)) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses.

  13. Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering

    KAUST Repository

    Kim, Taesoo

    2018-05-03

    Realization of colloidal quantum dot (CQD)/organic photovoltaic (OPV) tandem solar cells that integrate the strong infrared absorption of CQDs with large photovoltages of OPVs is an attractive option toward high-performing, low-cost thin film solar cells. To date, monolithic hybrid tandem integration of CQD/OPV solar cells has been restricted due to the CQD ink’s catastrophic damage to the organic subcell, thus forcing the low bandgap CQD to be used as front cell. This sub-optimal configuration limits the maximum achievable photocurrent in CQD/OPV hybrid tandem solar cells. In this work, we demonstrate hybrid tandem solar cells employing a low-bandgap CQD back cell on top of an organic front cell thanks to a modified CQD ink formulation and a robust interconnection layer (ICL) which together overcome the long-standing integration challenges for CQD and organic subcells. The resulting tandem architecture surpasses previously reported current densities by ~20-25% and yields a state-of-the-art power conversion efficiency (PCE) of 9.4%.

  14. Single-graded CIGS with narrow bandgap for tandem solar cells.

    Science.gov (United States)

    Feurer, Thomas; Bissig, Benjamin; Weiss, Thomas P; Carron, Romain; Avancini, Enrico; Löckinger, Johannes; Buecheler, Stephan; Tiwari, Ayodhya N

    2018-01-01

    Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se 2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe 2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.

  15. Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells

    KAUST Repository

    Song, Zhaoning

    2016-11-23

    Perovskite/silicon tandem solar cells with high power conversion efficiencies have the potential to become a commercially viable photovoltaic option in the near future. However, device design and optimization is challenging because conventional characterization methods do not give clear feedback on the localized chemical and physical factors that limit performance within individual subcells, especially when stability and degradation is a concern. In this study, we use light beam induced current (LBIC) to probe photocurrent collection nonuniformities in the individual subcells of perovskite/silicon tandems. The choices of lasers and light biasing conditions allow efficiency-limiting effects relating to processing defects, optical interference within the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer structures will be important for future optimization of perovskite/silicon tandem solar cells.

  16. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.

    Science.gov (United States)

    Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu

    2015-11-11

    Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.

  17. Modeling and Simulation of Monolithic AlGaAs/InGaAs Tandem Solar Cell

    Directory of Open Access Journals (Sweden)

    Samia SLIMANI

    2015-06-01

    Full Text Available Employing conventional III-V junctions we report a classical calculation of conduction and valence band edge and the electron and hole densities. It is shown that the optimum performance can be achieved by employing AlGaAs /AlGaAs/InGaAs monolithic cascade solar cells, we have established these calculations by solving the Poisson equation within the framework of the Nextnano.

  18. Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage.

    Science.gov (United States)

    Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok; Braly, Ian L; Liang, Po-Wei; Hillhouse, Hugh W; Jen, Alex K-Y

    2017-09-01

    Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C 60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo; Palmiano, Elenita; Liang, Ru-Ze; Hu, Hanlin; Banavoth, Murali; Kirmani, Ahmad R.; Firdaus, Yuliar; Gao, Yangqin; Sheikh, Arif D.; Yuan, Mingjian; Mohammed, Omar F.; Hoogland, Sjoerd; Beaujuge, Pierre; Sargent, Edward H.; Amassian, Aram

    2017-01-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies

  20. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    Science.gov (United States)

    Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  1. Perovskite Solar Cells for High-Efficiency Tandems

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-09-30

    The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm2. Werner et al.15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher current density of 15.9 mA/cm2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both

  2. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells

    OpenAIRE

    Werner, Jérémie; Barraud, Loris; Walter, Arnaud; Bräuninger, Matthias; Sahli, Florent; Sacchetto, Davide; Tétreault, Nicolas; Paviet-Salomon, Bertrand; Moon, Soo-Jin; Allebé, Christophe; Despeisse, Matthieu; Nicolay, Sylvain; De Wolf, Stefaan; Niesen, Bjoern; Ballif, Christophe

    2016-01-01

    Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (

  3. A solution process for inverted tandem solar cells

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Bundgaard, Eva; Sylvester-Hvid, Kristian O.

    2011-01-01

    Tandem solar cells with normal and inverted device geometries were prepared by a solution process. Both device types were based on the use of zinc(II)oxide as the electron transporting layer (ETL). The hole transporting layer (HTL) was either PEDOT:PSS for normal geometry tandem solar cells...... or vanadium(V)oxide in the case of inverted tandem cells. It was found that the inverted tandem solar cells performed comparable or better than the normal geometry devices, showing that the connection structure of vanadium(V)oxide, Ag nanoparticles and zinc(II)oxide functions both as a good recombination...... layer, ensuring serial connection, and as a solvent barrier, protecting the first photoactive layer from processing of the second layer. This successfully demonstrates a tandem solar cell fabrication process fully compatible with state-of-the-art solution based automated production procedures....

  4. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  5. Imaging the Spatial Evolution of Degradation in Perovskite/Si Tandem Solar Cells After Exposure to Humid Air

    KAUST Repository

    Song, Zhaoning

    2017-09-14

    Monolithically integrated two-terminal perovskite/Si tandem solar cells promise to achieve high power conversion efficiency. However, there is a concern that the stability of the perovskite top cell will limit the long-term performance of tandem devices. To investigate the impact of perovskite cell degradation on the photocurrent generation and collection in the individual subcells, we employed light beam induced current mapping to spatially resolve the photocurrent under controlled humidity conditions. The evolution of the device behavior is consistent with the formation of an optically transparent hydrated perovskite phase that allows the bottom Si cell to continue to generate photocurrent at the probing wavelength (532 nm). Additional measurements were performed on perovskite thin films on glass substrates to verify the interpretation.

  6. Imaging the Spatial Evolution of Degradation in Perovskite/Si Tandem Solar Cells After Exposure to Humid Air

    KAUST Repository

    Song, Zhaoning; Werner, Jeremie; Watthage, Suneth C.; Sahli, Florent; Shrestha, Niraj; De Wolf, Stefaan; Niesen, Bjorn; Phillips, Adam B.; Ballif, Christophe; Ellingson, Randy J.; Heben, Michael J.

    2017-01-01

    Monolithically integrated two-terminal perovskite/Si tandem solar cells promise to achieve high power conversion efficiency. However, there is a concern that the stability of the perovskite top cell will limit the long-term performance of tandem devices. To investigate the impact of perovskite cell degradation on the photocurrent generation and collection in the individual subcells, we employed light beam induced current mapping to spatially resolve the photocurrent under controlled humidity conditions. The evolution of the device behavior is consistent with the formation of an optically transparent hydrated perovskite phase that allows the bottom Si cell to continue to generate photocurrent at the probing wavelength (532 nm). Additional measurements were performed on perovskite thin films on glass substrates to verify the interpretation.

  7. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  8. Tandem for power generation. New sandwich concentrator cell with over 30% efficiency; Im Tandem Strom erzeugen. Neue Mehrschicht-Konzentratorzelle erzielt ueber 30% Wirkungsgrad

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-11-01

    The Fraunhofer-Institut fuer Solare Energiesysteme at Freiburg, Germany, claims a 'best ever' efficiency of a monolithic tandem concentrator solar cell with a sandwich structure based on gallium-indium arsenide and gallium-indium phosphide. The new solar cell can be produced in a single process based on an Aixtron AG (Aachen, Germany) separator which is also used for industrial production of solar cells for aerospace applications. [German] Das Fraunhofer-Institut fuer Solare Energiesysteme in Freiburg hat einen neuen Wirkungsgradrekord fuer monolithische Tandem-Konzentratorsolarzellen gemeldet. Die Wissenschaftler am Fraunhofer-Institut fuer Solare Energiesysteme (Fraunhofer ISE) haben neue Schichtstrukturen auf der Basis von Gallium-Indium-Arsenid und Gallium-Inidum-Phosphid entwickelt. Die neue Solarzelle kann in einem einzigen Prozess hergestellt werden. Fuer diesen Prozess setzen die Freiburger Solarzellenforscher eine Abscheideanlage der Firma Aixtron AG aus Aachen ein, wie sie auch in der Industrie zur Herstellung von Solarzellen fuer Anwendungen im Weltraum genutzt wird. (orig.)

  9. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    KAUST Repository

    Bailie, Colin D.

    2015-01-01

    © 2015 The Royal Society of Chemistry. A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. This work paves the way for integrating perovskites into a low-cost and high-efficiency (>25%) tandem cell.

  10. Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells

    KAUST Repository

    Choi, Joshua J.; Wenger, Whitney N.; Hoffman, Rachel S.; Lim, Yee-Fun; Luria, Justin; Jasieniak, Jacek; Marohn, John A.; Hanrath, Tobias

    2011-01-01

    Solution-processed tandem solar cells created from nanocrystal quantum dots with size-tuned energy levels are demonstrated. Prototype devices featuring interconnected quantum dot layers of cascaded energy gaps exhibit IR sensitivity and an open circuit voltage, V oc, approaching 1 V. The tandem solar cell performance depends critically on the optical and electrical properties of the interlayer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2011-06-03

    Solution-processed tandem solar cells created from nanocrystal quantum dots with size-tuned energy levels are demonstrated. Prototype devices featuring interconnected quantum dot layers of cascaded energy gaps exhibit IR sensitivity and an open circuit voltage, V oc, approaching 1 V. The tandem solar cell performance depends critically on the optical and electrical properties of the interlayer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interface studies on the tunneling contact of a MOCVD-prepared tandem solar cell; Grenzflaechenuntersuchungen am Tunnelkontakt einer MOCVD-praeparierten Tandemsolarzelle

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, U.

    2007-07-10

    In this thesis a tandem solar cell with a novel tunneling contact was developed. For the development of the monolithic preparation especailly critical hetero-interfaces were studied in the region of the tunneling contact with surface-sensitive measuring method. The tandem solar cell consisted of single solar cells with absorber layers of In{sub 0.53}Ga{sub 0.47}As (E{sub g}=0.73 eV) and In{sub 0.78}Ga{sub 0.22}As{sub 0.491}P{sub 0.51} (E{sub g}=1.03 eV), the serial switching of which was pursued with a tunneling contact (ESAKI diode, which consisted of a very thin n-doped InGaAs and a p-doped GaAsSb layer. The III-V semiconductor layers were prepared by metalorganic gas phase epitaxy (MOCVD) monocrystallinely on an InP(100) substrate lattice-matchedly. Especially the influence of the preparation of InGaAs surfaces on the sharpness of the InGaAs/GaAsSb interface was in-situ studied by reflection-anisotropy spectroscopy and after a contamination-free transfer into the ultrahigh vacuum with photoelectron spectroscopy and with low-energetic electron diffraction (LEED). Thereby for the first time three different reconstructions of the MOCVD-prepared InGaAs surfaces could be observed, which were dependent on the heating temperature under pure hydrogen. The arsenic-rich InGaAs surface was observed for temperatures less than 300 C and showed in the LEED picture a (4 x 3) reconstruction. In the temperature range from 300 C until about 500 C a (2 x 4) reconstruction was observed, above 500 C the InGaAs surface 94 x 2)/c(8 x 2) was reconstructed. Subsequently the study of the growth of thin GaAsSb layers on these three InGaAs surface reconstructions followed. XPS measurements showed that the Sb/As ratio in GaAsSb at the growth on the As-rich (4 x 3) reconstructed surface in the first monolayers was too low. The preparation of the GaAsSb on the two other InGaAs surfaces yielded however in both cases a distinctly higher Sb/As ratio. Finally tandem solar cells with differently

  13. A review of recent progress in heterogeneous silicon tandem solar cells

    Science.gov (United States)

    Yamaguchi, Masafumi; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    Silicon solar cells are the most established solar cell technology and are expected to dominate the market in the near future. As state-of-the-art silicon solar cells are approaching the Shockley-Queisser limit, stacking silicon solar cells with other photovoltaic materials to form multi-junction devices is an obvious pathway to further raise the efficiency. However, many challenges stand in the way of fully realizing the potential of silicon tandem solar cells because heterogeneously integrating silicon with other materials often degrades their qualities. Recently, above or near 30% silicon tandem solar cell has been demonstrated, showing the promise of achieving high-efficiency and low-cost solar cells via silicon tandem. This paper reviews the recent progress of integrating solar cell with other mainstream solar cell materials. The first part of this review focuses on the integration of silicon with III-V semiconductor solar cells, which is a long-researched topic since the emergence of III-V semiconductors. We will describe the main approaches—heteroepitaxy, wafer bonding and mechanical stacking—as well as other novel approaches. The second part introduces the integration of silicon with polycrystalline thin-film solar cells, mainly perovskites on silicon solar cells because of its rapid progress recently. We will also use an analytical model to compare the material qualities of different types of silicon tandem solar cells and project their practical efficiency limits.

  14. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo

    2017-06-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  15. Silicon nanocrystals embedded in silicon carbide for tandem solar cell applications

    International Nuclear Information System (INIS)

    Schnabel, Manuel

    2015-01-01

    Tandem solar cells consist of multiple individual solar cells stacked in order of increasing bandgap, with the cell with highest bandgap towards the incident light. This allows photons to be absorbed in the cell that will convert them to electricity with the greatest efficiency, and is the only solar cell concept to surpass the theoretical efficiency limit of a conventional solar cell so far. This work is concerned with the development of silicon nanocrystals (Si NCs) embedded in silicon carbide, which are expected to have a higher bandgap than bulk Si due to quantum confinement, for use in the top cell of a two-junction tandem cell. Charge carrier transport and recombination were investigated as a function of various parameters. Distortion of luminescence spectra by optical interference was highlighted and a robust model to describe transport of majority carriers was developed. Furthermore, a range of processing steps required to produce a Si NC-based tandem cell were studied, culminating in the preparation of the first Si NC-based tandem cells. The resulting cells exhibited open-circuit voltages of 900 mV, demonstrating tandem cell functionality.

  16. Air-processed organic tandem solar cells on glass: toward competitive operating lifetimes

    DEFF Research Database (Denmark)

    Adams, Jens; Spyropoulos, George D.; Salvador, Michael

    2015-01-01

    efficiencies of more than 10% the rather limited stability of this type of devices raises concerns towards future commercialization. The tandem concept allows for both absorbing a broader range of the solar spectrum and reducing thermalization losses. We designed an organic tandem solar cell with an inverted...... device geometry comprising environmentally stable active and charge-selecting layers. Under continuous white light irradiation, we demonstrate an extrapolated, operating lifetime in excess of one decade. We elucidate that for the current generation of organic tandem cells one critical requirement...... for long operating lifetimes consists of periodic UV light treatment. These results suggest that new material approaches towards UV-resilient active and interfacial layers may enable efficient organic tandem solar cells with lifetimes competitive with traditional inorganic photovoltaics....

  17. Fabrication of Monolithic Dye-Sensitized Solar Cell Using Ionic Liquid Electrolyte

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available To improve the durability of dye-sensitized solar cells (DSCs, monolithic DSCs with ionic liquid electrolyte were studied. Deposited by screen printing, a carbon layer was successfully fabricated that did not crack or peel when annealing was employed beforehand. Optimized electrodes exhibited photovoltaic characteristics of 0.608 V open-circuit voltage, 6.90 cm−2 mA short-circuit current, and 0.491 fill factor, yielding 2.06% power conversion efficiency. The monolithic DSC using ionic liquid electrolyte was thermally durable and operated stably for 1000 h at 80°C.

  18. Solution processed organic bulk heterojunction tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Steve; Neher, Dieter [Soft Matter Physics, University of Potsdam, D-14476 Potsdam (Germany)

    2011-07-01

    One of the critical issues regarding the preparation of organic tandem solar cells from solution is the central recombination contact. This contact should be highly transparent and conductive to provide high recombination currents. Moreover it should protect the 1st subcell from the solution processing of the 2nd subcell. Here, we present a systematic study of various recombination contacts in organic bulk heterojunction tandem solar cells made from blends of different polymers with PCBM. We compare solution processed recombination contacts fabricated from metal-oxides (TiO{sub 2} and ZnO) and PEDOT:PSS with evaporated recombination contacts made from thin metal layers and molybdenum-oxide. The solar cell characteristics as well as the morphology of the contacts measured by AFM and SEM are illustrated. To compare the electrical properties of the varying contacts we show measurements on single carrier devices for different contact-structures. Alongside we present the results of optical modeling of the subcells and the complete tandem device and relate these results to experimental absorption and reflection spectra of the same structures. Based on these studies, layer thicknesses were adjusted for optimum current matching and device performance.

  19. Analysis of Catalytic Material Effect on the Photovoltaic Properties of Monolithic Dye-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Natalita Maulani Nursam

    2017-12-01

    Full Text Available Dye-sensitized solar cells (DSSC are widely developed due to their attractive appearance and simple fabrication processes. One of the challenges that arise in the DSSC fabrication involves high material cost associated with the cost of conductive substrate. DSSC with monolithic configuration was then developed on the basis of this motivation. In this contribution, titanium dioxide-based monolithic type DSSCs were fabricated on a single fluorine-doped transparent oxide coated glass using porous ZrO2 as spacer. Herein, the catalytic material for the counter-electrode was varied using carbon composite and platinum in order to analyze their effect on the solar cell efficiency. Four-point probe measurement revealed that the carbon composite exhibited slightly higher conductivity with a sheet resistance of 9.8 Ω/sq and 10.9 Ω/sq for carbon and platinum, respectively. Likewise, the photoconversion efficiency of the monolithic cells with carbon counter-electrode almost doubled the efficiency of the cells with platinum counter-electrode. Our results demonstrate that carbon could outperform the performance of platinum as catalytic material in monolithic DSSC.

  20. Economic viability of thin-film tandem solar modules in the United States

    Science.gov (United States)

    Sofia, Sarah E.; Mailoa, Jonathan P.; Weiss, Dirk N.; Stanbery, Billy J.; Buonassisi, Tonio; Peters, I. Marius

    2018-05-01

    Tandem solar cells are more efficient but more expensive per unit area than established single-junction (SJ) solar cells. To understand when specific tandem architectures should be utilized, we evaluate the cost-effectiveness of different II-VI-based thin-film tandem solar cells and compare them to the SJ subcells. Levelized cost of electricity (LCOE) and energy yield are calculated for four technologies: industrial cadmium telluride and copper indium gallium selenide, and their hypothetical two-terminal (series-connected subcells) and four-terminal (electrically independent subcells) tandems, assuming record SJ quality subcells. Different climatic conditions and scales (residential and utility scale) are considered. We show that, for US residential systems with current balance-of-system costs, the four-terminal tandem has the lowest LCOE because of its superior energy yield, even though it has the highest US per watt (US W-1) module cost. For utility-scale systems, the lowest LCOE architecture is the cadmium telluride single junction, the lowest US W-1 module. The two-terminal tandem requires decreased subcell absorber costs to reach competitiveness over the four-terminal one.

  1. Efficient organic tandem solar cells based on small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Riede, Moritz; Widmer, Johannes; Timmreck, Ronny; Wynands, David; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, George-Baehr-Str. 1, 01069 Dresden (Germany); Uhrich, Christian; Schwartz, Gregor; Gnehr, Wolf-Michael; Hildebrandt, Dirk; Weiss, Andre; Pfeiffer, Martin [Heliatek GmbH, Treidlerstr. 3, 01139 Dresden (Germany); Hwang, Jaehyung; Sundarraj, Sudhakar; Erk, Peter [BASF SE, GVC/E-J542, 67056 Ludwigshafen (Germany)

    2011-08-23

    In this paper, two vacuum processed single heterojunction organic solar cells with complementary absorption are described and the construction and optimization of tandem solar cells based on the combination of these heterojunctions demonstrated. The red-absorbing heterojunction consists of C{sub 60} and a fluorinated zinc phthalocyanine derivative (F4-ZnPc) that leads to a 0.1-0.15 V higher open circuit voltage V{sub oc} than the commonly used ZnPc. The second heterojunction incorporates C{sub 60} and a dicyanovinyl-capped sexithiophene derivative (DCV6T) that mainly absorbs in the green. The combination of both heterojunctions into one tandem solar cell leads to an absorption over the whole visible range of the sun spectrum. Thickness variations of the transparent p-doped optical spacer between both subcells in the tandem solar cell is shown to lead to a significant change in short circuit current density j{sub sc} due to optical interference effects, whereas V{sub oc} and fill factor are hardly affected. The maximum efficiency {eta} of about 5.6% is found for a spacer thickness of 150-165 nm. Based on the optimized 165nm thick spacer, effects of intensity and angle of illumination, and temperature on a tandem device are investigated. Variations in illumination intensity lead to a linear change in j{sub sc} over three orders of magnitude and a nearly constant {eta} in the range of 30 to 310 mW cm{sup -2}. Despite the stacked heterojunctions, the performance of the tandem device is robust against different illumination angles: j{sub sc} and {eta} closely follow a cosine behavior between 0 and 70 . Investigations of the temperature behavior of the tandem device show an increase in {eta} of 0.016 percentage points per Kelvin between -20 C and 25 C followed by a plateau up to 50 C. Finally, further optimization of the tandem stack results in a certified {eta} of (6.07 {+-} 0.24)% on (1.9893 {+-} 0.0060)cm{sup 2} (Fraunhofer ISE), i.e., areas large enough to be of

  2. Solution-processed organic tandem solar cells with embedded optical spacers

    NARCIS (Netherlands)

    Hadipour, Afshin; de Boer, Bert; Blom, Paul W. M.

    2007-01-01

    We demonstrate a solution-processed polymer tandem solar cell in which the two photoactive single cells are separated by an optical spacer. The use of an optical spacer allows for an independent optimization of both the electronic and optical properties of the tandem cell. The optical transmission

  3. Optics of the CuGaSe{sub 2} solar cell for highly efficient tandem concepts; Optik der CuGaSe{sub 2}-Solarzelle fuer hocheffiziente Tandemkonzepte

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Martina

    2010-01-25

    A principle aim of solar cell research lies in optimizing the exploitation of the incident solar light. Yet, for single junction solar cells there exists an efficiency limit as described by Shockley and Queisser. The only concept realized so far to overcome this threshold is - apart from concentration - the multijunction solar cell. However, any kind of multijunction design poses new challenges: The upper wide-gap solar cell (top cell) needs to show efficient light absorption in the short-wavelength region. At the same time sufficient transmission for long-wavelength light is required which then needs to be absorbed effectively by the low-gap bottom cell. In tandem solar cells a proper light management in top and bottom solar cell is of great importance. This work focuses on chalcopyrite-based tandem solar cells. For the wide-bandgap IR-transparent ZnO:Al/i-ZnO/CdS/CuGaSe{sub 2}/SnO{sub 2}:F/glass solar cell an optical model has been established. Starting from modeling each of the individual layers building the stack the optical behavior of the complete thin film system of the top cell could be described. Carefully selected layer combinations and comparison of experimental and calculated data allowed for the attribution of transmission losses to the distinct material properties. Defects in the absorber are of crucial importance but also free carrier absorption in the window and in the transparent back contact contribute significantly to optical losses. The quantification of the losses was achieved by calculating the effects of reduced top cell transmission on the photo current of a simplified bottom cell. An extension of the optical model allowed to calculate the effective absorption in the individual layers and to determine reflection losses at the interfaces. From these results an optimized top cell stack was derived which is characterized by A) simulation of the monolithic integration, B) reduced layer thicknesses wherever possible from the electrical point of

  4. Design and fabrication of a high performance inorganic tandem solar cell with 11.5% conversion efficiency

    International Nuclear Information System (INIS)

    Amiri, Omid; Mir, Noshin; Ansari, Fatemeh; Salavati-Niasari, Masoud

    2017-01-01

    Tandem solar cell is a design that combines two types of solar cells to benefit their advantages. We show a new concept for achieving highly efficient dye sensitized and quantum dot tandem solar cells. The new tandem cell further enhances the performance of the device, leading to a power conversion efficiency more than 11% under 1.5 Air Mass. To the best of our knowledge, this is the first time that the efficiency over 11 percent is achieved based on tandem solar cell. X-ray diffraction, Transmission Electron Microscopy, Scanning Electron Microscopy, Current-Voltage measurments, Intensity modulated photocurrent spectroscopy, intensity modulated photovoltage spectroscopy, Energy Dispersive X-ray spectroscopy, Brunauer-Emmett-Teller, Barrett-Joyner-Halenda and absorption spectroscopy were used to characterize the fabricated solar cells.

  5. Maximizing tandem solar cell power extraction using a three-terminal design

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Emily L. [National Renewable Energy Lab; USA; Deceglie, Michael G. [National Renewable Energy Lab; USA; Rienäcker, Michael [Institute for Solar Energy Research Hamelin; Germany; Peibst, Robby [Institute for Solar Energy Research Hamelin; Germany; Tamboli, Adele C. [National Renewable Energy Lab; USA; Stradins, Paul [National Renewable Energy Lab; USA

    2018-01-01

    Three-terminal tandem solar cells can provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects.

  6. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    Science.gov (United States)

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  7. Life cycle analysis of organic tandem solar cells: When are they warranted?

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Krebs, Frederik C

    2014-01-01

    in their making when compared with the single junction solar cell has to be justified and compensated by a higher efficiency. A central question to ask is how much energy you need to invest in a system in order for it to produce energy and return the investment at least once and preferably a number of times....... As an initial investigation into the potential viability of the tandem or multi-junction approach we have engaged in a detailed analysis based on the manufacturing energy for each step within the tandem module supply chain for full ambient processing of thin flexible polymer tandem solar cells prepared entirely...

  8. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    KAUST Repository

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; Bowring, Andrea R.; Unger, Eva L.; Nguyen, William H.; Burschka, Julian; Pellet, Norman; Lee, Jungwoo Z.; Grä tzel, Michael; Noufi, Rommel; Buonassisi, Tonio; Salleo, Alberto; McGehee, Michael D.

    2015-01-01

    solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS

  9. Flexible organic tandem solar modules: a story of up-scaling

    Science.gov (United States)

    Spyropoulos, George D.; Kubis, Peter; Li, Ning; Lucera, Luca; Salvador, Michael; Baran, Derya; Machui, Florian; Ameri, Tayebeh; Voigt, Monika M.; Brabec, Christoph J.

    2014-10-01

    The competition in the field of solar energy between Organic Photovoltaics (OPVs) and several Inorganic Photovoltaic technologies is continuously increasing to reach the ultimate purpose of energy supply from inexpensive and easily manufactured solar cell units. Solution-processed printing techniques on flexible substrates attach a tremendous opportunity to the OPVs for the accomplishment of low-cost and large area applications. Furthermore, tandem architectures came to boost up even more OPVs by increasing the photon-harvesting properties of the device. In this work, we demonstrate the road of realizing flexible organic tandem solar modules constructed by a fully roll-to-roll compatible processing. The modules exhibit an efficiency of 5.4% with geometrical fill factors beyond 80% and minimized interconnection-resistance losses. The processing involves low temperature (<70 °C), coating methods compatible with slot die coating and high speed and precision laser patterning.

  10. Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

    2012-06-01

    State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

  11. Tandem colloidal quantum dot solar cells employing a graded recombination layer

    KAUST Repository

    Wang, Xihua; Koleilat, Ghada I.; Tang, Jiang; Liu, Huan; Kramer, Illan J.; Debnath, Ratan; Brzozowski, Lukasz; Barkhouse, D. Aaron R.; Levina, Larissa; Hoogland, Sjoerd; Sargent, Edward H.

    2011-01-01

    Tuning of the electronic bandgap in colloidal quantum dots (CQDs) by changing their size enables the spectral response of CQD-based photodetectors and photovoltaic devices to be tailored. Multi-junction solar cells made from a combination of CQDs of differing sizes and thus bandgaps are a promising means by which to increase the energy harvested from the Sun's broad spectrum. Here, we report the first CQD tandem solar cells using the size-effect tuning of a single CQD material, PbS. We use a graded recombination layer to provide a progression of work functions from the hole-accepting electrode in the bottom cell to the electron-accepting electrode in the top cell, allowing matched electron and hole currents to meet and recombine. Our tandem solar cell has an open-circuit voltage of 1.06Â V, equal to the sum of the two constituent single-junction devices, and a solar power conversion efficiency of up to 4.2%. © 2011 Macmillan Publishers Limited. All rights reserved.

  12. Tandem colloidal quantum dot solar cells employing a graded recombination layer

    KAUST Repository

    Wang, Xihua

    2011-06-26

    Tuning of the electronic bandgap in colloidal quantum dots (CQDs) by changing their size enables the spectral response of CQD-based photodetectors and photovoltaic devices to be tailored. Multi-junction solar cells made from a combination of CQDs of differing sizes and thus bandgaps are a promising means by which to increase the energy harvested from the Sun\\'s broad spectrum. Here, we report the first CQD tandem solar cells using the size-effect tuning of a single CQD material, PbS. We use a graded recombination layer to provide a progression of work functions from the hole-accepting electrode in the bottom cell to the electron-accepting electrode in the top cell, allowing matched electron and hole currents to meet and recombine. Our tandem solar cell has an open-circuit voltage of 1.06Â V, equal to the sum of the two constituent single-junction devices, and a solar power conversion efficiency of up to 4.2%. © 2011 Macmillan Publishers Limited. All rights reserved.

  13. GaAs Solar Cells on V-Grooved Silicon via Selective Area Growth: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Nikhil [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vaisman, Michelle [Yale University; Li, Qiang [Hong Kong University of Science and Technology; Lau, Kei May [Hong Kong University of Science and Technology

    2017-08-31

    Interest in integrating III-Vs onto Si has recently resurged as a promising pathway towards high-efficiency, low-cost tandem photovoltaics. Here, we present a single junction GaAs solar cell grown monolithically on polished Si (001) substrates using V-grooves, selective area growth, and aspect ratio trapping to mitigate defect formation without the use of expensive, thick graded buffers. The GaAs is free of antiphase domains and maintains a relatively low TDD of 4x107 cm-2, despite the lack of a graded buffer. This 6.25 percent-efficient demonstration solar cell shows promise for further improvements to III-V/Si tandems to enable cost-competitive photovoltaics.

  14. High performance and thermally stable tandem solar selective absorber coating for concentrated solar thermal power (CSP) application

    Science.gov (United States)

    Prasad, M. Shiva; Kumar, K. K. Phani; Atchuta, S. R.; Sobha, B.; Sakthivel, S.

    2018-05-01

    A novel tandem absorber system (Mn-Cu-Co-Ox-ZrO2/SiO2) developed on an austenitic stainless steel (SS-304) substrate to show an excellent optical performance (αsol: 0.96; ɛ: 0.23@500 °C). In order to achieve this durable tandem, we experimented with two antireflective layers such as ZrO2-SiO2 and nano SiO2 layer on top of Mn-Cu-Co-Ox-ZrO2 layer. We optimized the thickness of antireflective layers to get good tandem system in terms of solar absorptance and emittance. Field emission scanning electron microscopy (FESEM), UV-Vis-NIR and Fourier transform infrared spectroscopy (FTIR) were used to characterize the developed coatings. Finally, the Mn-Cu-Co-Ox-ZrO2/SiO2 exhibits high temperature resistance up to 800 °C, thus allow an increase in the operating temperature of CSP which may lead to high efficiency. We successfully developed a high temperature resistant tandem layer with easy manufacturability at low cost which is an attractive candidate for concentrated solar power generation (CSP).

  15. Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, R.; Pantha, B. N.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-04-07

    InGaN alloys are very promising for solar water splitting because they have direct bandgaps that cover almost the whole solar spectrum. The demonstration of direct solar-to-fuel conversion without external bias with the sunlight being the only energy input would pave the way for realizing photoelectrochemical (PEC) production of hydrogen by using InGaN. A monolithic solar-PEC cell based on InGaN/GaN multiple quantum wells capable to directly generate hydrogen gas under zero bias via solar water splitting is reported. Under the irradiation by a simulated sunlight (1-sun with 100 mW/cm{sup 2}), a 1.5% solar-to-fuel conversion efficiency has been achieved under zero bias, setting a fresh benchmark of employing III-nitrides for artificial photosynthesis. Time dependent hydrogen gas production photocurrent measured over a prolonged period (measured for 7 days) revealed an excellent chemical stability of InGaN in aqueous solution of hydrobromic acid. The results provide insights into the architecture design of using InGaN for artificial photosynthesis to provide usable clean fuel (hydrogen gas) with the sunlight being the only energy input.

  16. Environmentally Printing Efficient Organic Tandem Solar Cells with High Fill Factors: A Guideline Towards 20% Power Conversion Efficiency

    DEFF Research Database (Denmark)

    Li, Ning; Baran, Derya; Spyropoulos, George D.

    2014-01-01

    presents a major challenge. The reported high PCE values from lab-scale spin-coated devices are, of course, representative, but not helpful for commercialization. Here, organic tandem solar cells with exceptionally high fill factors and PCE values of 7.66% (on glass) and 5.56% (on flexible substrate...... to enhance the power conversion efficiency (PCE). However, due to the undeveloped deposition techniques, the challenges in ink formulation as well as the lack of commercially available high performance active materials, roll-to-roll fabrication of highly efficient organic tandem solar cells currently......), which are the highest values for the solution-processed tandem solar cells fabricated by a mass-production compatible coating technique under ambient conditions, are demonstrated. To predict the highest possible performance of tandem solar cells, optical simulation based on experimentally feasible...

  17. Simulation of forward dark current voltage characteristics of tandem solar cells

    International Nuclear Information System (INIS)

    Rubinelli, F.A.

    2012-01-01

    The transport mechanisms tailoring the shape of dark current–voltage characteristics of amorphous and microcrystalline silicon based tandem solar cell structures are explored with numerical simulations. Our input parameters were calibrated by fitting experimental current voltage curves of single and double junction structures measured under dark and illuminated conditions. At low and intermediate forward voltages the dark current–voltage characteristics show one or two regions with a current–voltage exponential dependence. The diode factor is unique in tandem cells with the same material in both intrinsic layers and two dissimilar diode factors are observed in tandem cells with different materials on the top and bottom intrinsic layers. In the exponential regions the current is controlled by recombination through gap states and by free carrier diffusion. At high forward voltages the current grows more slowly with the applied voltage. The current is influenced by the onset of electron space charge limited current (SCLC) in tandem cells where both intrinsic layers are of amorphous silicon and by series resistance of the bottom cell in tandem cells where both intrinsic layers are of microcrystalline silicon. In the micromorph cell the onset of SCLC becomes visible on the amorphous top sub-cell. The dark current also depends on the thermal generation of electron–hole (e–h) pairs present at the tunneling recombination junction. The highest dependence is observed in the tandem structure where both intrinsic layers are of microcrystalline silicon. The prediction of meaningless dark currents at low forward and reverse voltages by our code is discussed and one solution is given. - Highlights: ► Transport mechanisms shaping the dark current-voltage curves of tandem devices. ► The devices are amorphous and microcrystalline based tandem solar cells. ► Two regions with a current-voltage exponential dependence are observed. ► The tandem J-V diode factor is the

  18. Photonic intermediate layer for silicon tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bielawny, Andreas; Miclea, Paul-Tiberiu; Wehrspohn, Ralf [Martin-Luther Universitaet Halle-Wittenberg (Germany). Inst. fuer Physik, Mikro-MD; Lee, Seuong-Mo; Knez, Mato [Max-Planck-Inst. fuer Mikrostrukturphysik, Halle (Germany); Carius, Reinhard [Forschungszentrum Juelich (DE). Inst. fuer Photovoltaik (IEF-5); Lisca, Marian; Rockstuhl, Carsten; Lederer, Falk [Universitaet Jena (Germany). Dept. Physik

    2008-07-01

    The concept of incorporation of a 3D photonic crystal as diffractive spectral filter within a-Si/mc-Si tandem solar cells has been investigated as a promising application. Our intermediate reflective filter enhances the pathway of spectrally selected light within an amorphous silicon top cell in its spectral region of low absorption. From our previous work, we expect a significant improvement of the tandem's efficiency of about 1.2%(absolute). This increases efficiency for a typical silicon tandem cell from 11.2% to 12.4%, as a result of the optical current-matching of the two junctions. Our wavelength-selective optical element is a 3D-structured optical thin-film - prepared by self-organized artificial opal templates and finalized with atomic layer deposition techniques. The resulting samples are highly periodical thin-film inverted opals made of zinc-oxide. We compare recent experimental data on the optical properties with our simulations and photonic bandstructure calculations.

  19. Tandem planet formation for solar system-like planetary systems

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available We present a new united theory of planet formation, which includes magneto-rotational instability (MRI and porous aggregation of solid particles in a consistent way. We show that the “tandem planet formation” regime is likely to result in solar system-like planetary systems. In the tandem planet formation regime, planetesimals form at two distinct sites: the outer and inner edges of the MRI suppressed region. The former is likely to be the source of the outer gas giants, and the latter is the source for the inner volatile-free rocky planets. Our study spans disks with a various range of accretion rates, and we find that tandem planet formation can occur for M˙=10−7.3-10−6.9M⊙yr−1. The rocky planets form between 0.4–2 AU, while the icy planets form between 6–30 AU; no planets form in 2–6 AU region for any accretion rate. This is consistent with the gap in the solid component distribution in the solar system, which has only a relatively small Mars and a very small amount of material in the main asteroid belt from 2–6 AU. The tandem regime is consistent with the idea that the Earth was initially formed as a completely volatile-free planet. Water and other volatile elements came later through the accretion of icy material by occasional inward scattering from the outer regions. Reactions between reductive minerals, such as schreibersite (Fe3P, and water are essential to supply energy and nutrients for primitive life on Earth.

  20. Investigation of InGaN/Si double junction tandem solar cells | Bouzid ...

    African Journals Online (AJOL)

    In this work, the solar power conversion efficiency of InGaN/Si double junction tandem solar cells was investigated under 1-sun AM1.5 illumination, using realistic material parameters. With this intention, the current-voltage curves are calculated for different front recombination velocities and the influence of the bottom cell ...

  1. Amorphous and microcrystalline silicon applied in very thin tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schicho, Sandra

    2011-07-28

    Thin-film solar cells are fabricated by low-cost production processes, and are therefore an alternative to conventionally used wafer solar cells based on crystalline silicon. Due to the different band gaps, tandem cells that consist of amorphous (a-Si:H) and microcrystalline ({mu}c-Si:H) single junction solar cells deposited on top of each other use the solar spectrum much more efficient than single junction solar cells. The silicon layers are usually deposited on TCO (Transparent Conductive Oxide)-coated glass and metal- or plastic foils. Compared to the CdTe and CIGS based thin-film technologies, silicon thin-film solar cells have the advantage that no limitation of raw material supply is expected and no toxic elements are used. Nevertheless, the production cost per Wattpeak is the decisive factor concerning competitiveness and can be reduced by, e.g., shorter deposition times or reduced material consumption. Both cost-reducing conceptions are simultaneously achieved by reducing the a-Si:H and {mu}c-Si:H absorber layer thicknesses in a tandem device. In the work on hand, the influence of an absorber layer thickness reduction up to 77% on the photovoltaic parameters of a-Si:H/{mu}c-Si:H tandem solar cells was investigated. An industry-oriented Radio Frequency Plasma-Enhanced Chemical Vapour Deposition (RF-PECVD) system was used to deposit the solar cells on glass substrates coated with randomly structured TCO layers. The thicknesses of top and bottom cell absorber layers were varied by adjusting the deposition time. Reduced layer thicknesses lead to lower absorption and, hence, to reduced short-circuit current densities which, however, are partially balanced by higher open-circuit voltages and fill factors. Furthermore, by using very thin amorphous top cells, the light-induced degradation decreases tremendously. Accordingly, a thickness reduction of 75% led to an efficiency loss of only 21 %. By adjusting the parameters for the deposition of a-Si:H top cells, a

  2. Roll-to-roll processed polymer tandem solar cells partially processed from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Andreasen, Birgitta

    2012-01-01

    Large area polymer tandem solar cells completely processed using roll-to-roll (R2R) coating and printing techniques are demonstrated. A stable tandem structure was achieved by the use of orthogonal ink solvents for the coating of all layers, including both active layers. Processing solvents...... included water, alcohols and chlorobenzene. Open-circuit voltages close to the expected sum of sub cell voltages were achieved, while the overall efficiency of the tandem cells was found to be limited by the low yielding back cell, which was processed from water based ink. Many of the challenges associated...

  3. Ultimate performance of polymer: Fullerene bulk heterojunction tandem solar cells

    NARCIS (Netherlands)

    Kotlarski, J.D.; Blom, P.W.M.

    2011-01-01

    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum

  4. Homo-Tandem Polymer Solar Cells withVOC>1.8 V for Efficient PV-Driven Water Splitting

    KAUST Repository

    Gao, Yangqin

    2016-03-06

    Efficient homo-tandem and triple-junction polymer solar cells are constructed by stacking identical subcells composed of the wide-bandgap polymer PBDTTPD, achieving power conversion efficiencies >8% paralleled by open-circuit voltages >1.8 V. The high-voltage homo-tandem is used to demonstrate PV-driven electrochemical water splitting with an estimated solar-to-hydrogen conversion efficiency of ≈6%. © 2016 WILEY-VCH Verlag GmbH & Co.

  5. InP tunnel junction for InGaAs/InP tandem solar cells

    Science.gov (United States)

    Vilela, M. F.; Freundlich, A.; Bensaoula, A.; Medelci, N.; Renaud, P.

    1995-01-01

    Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450-530 C). We have previously shown that CBE is perfectly suited toward the fabrication of complex photovoltaic devices such as InP/InGaAs monolithically integrated tandem solar cells, because its low process temperature preserves the electrical characteristics of the InGaAs tunnel junction commonly used as an ohmic interconnect. In this work using CBE for the fabrication of optically transparent (with respect to the bottom cell) InP tunnel diodes is demonstrated. Epitaxial growth were performed in a Riber CBE 32 system using PH3 and TMIn as III and V precursors. Solid Be (p-type) and Si (n-type) have been used as doping sources, allowing doping levels up to 2 x 10(exp -19)/cu cm and 1 x 10(exp -19)/cu cm for n and p type respectively. The InP tunnel junction characteristics and the influence of the growth's conditions (temperature, growth rate) over its performance have been carefully investigated. InP p(++)/n(++) tunnel junction with peak current densities up to 1600 A/sq cm and maximum specific resistivities (V(sub p)/I(sub p) - peak voltage to peak current ratio) in the range of 10(exp -4) Omega-sq cm were obtained. The obtained peak current densities exceed the highest results previously reported for their lattice matched counterparts, In(0.53)Ga( 0.47)As and should allow the realization of improved minimal absorption losses in the interconnect InP/InGaAs tandem devices for Space applications. Owing to the low process temperature required for the top cell, these devices exhibit almost no degradation of its characteristics after the growth of subsequent thick InP layer suggesting

  6. Influence of interface preparation on minority carrier lifetime for low bandgap tandem solar cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Nadine; Sagol, B. Erol; Seidel, Ulf; Schwarzburg, Klaus; Hannappel, Thomas [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany)

    2010-07-01

    III-V semiconductor compounds grown by MOVPE are implemented in todays state-of-the-art third generation multi-junction solar cells. The current record multi junction solar cell grown on germanium, having Ge, Ga(In)As and GaInP as subcells, reached a record efficiency of 41.6%. The efficiency of these multi junction solar cells could be significantly increased, if its low bandgap Ge subcell would be replaced by a more efficient tandem. For this purpose the low bandgap materials InGaAs and InGaAsP are suitable. The bandgap composition of these materials allows a better yield of the solar spectrum. Based on InGaAs/InGaAsP absorber materials we have developed a low bandgap tandem solar cell with optimized bandgaps. Results of time resolved photoluminescence (TRPL) for the IR-bandgap compounds InGaAsP (1.03 eV)/InGaAs (0.73 eV) are presented. The lifetime of minority carriers is one of the most important properties of solar cell absorber materials. We show on the example of the low band gap tandem cell how the choice of the materials, the quality of the bulk, the optimization of the band gap energies and the preparation of the critical interfaces are essential to build a high efficiency solar cell. The quality of the bulk and the preparation of the critical interfaces are essential for the growth of the double heterostructure (DHS).

  7. Design and long-term monitoring of DSC/CIGS tandem solar module

    International Nuclear Information System (INIS)

    Vildanova, M F; Nikolskaia, A B; Kozlov, S S; Shevaleevskiy, O I

    2015-01-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m 2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm 2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions. (paper)

  8. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures

    Science.gov (United States)

    Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio

    2017-06-01

    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10-3 Ω cm-1, 11 cm2 V-1 s-1, and 1.62 × 1020 cm-3, resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

  9. High work function transparent middle electrode for organic tandem solar cells

    NARCIS (Netherlands)

    Moet, D. J. D.; de Bruyn, P.; Blom, P. W. M.

    2010-01-01

    The use of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in combination with ZnO as middle electrode in solution-processed organic tandem solar cells requires a pH modification of the PEDOT:PSS dispersion. We demonstrate that this neutralization leads to a reduced work function

  10. Organic-inorganic halide perovskites: perspectives for silicon-based tandem solar cells

    Czech Academy of Sciences Publication Activity Database

    Löper, P.; Niesen, B.; Moon, S.J.; Martin de Nicolas, S.; Holovský, Jakub; Remeš, Zdeněk; Ledinský, Martin; Haug, F.J.; Yum, J. H.; De Wolf, S.; Ballif, C.

    2014-01-01

    Roč. 4, č. 6 (2014), s. 1545-1551 ISSN 2156-3381 R&D Projects: GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : perovskite * tandem solar cells * optical absorption * photothermal deflection spectroscopy * degradation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.165, year: 2014

  11. A hybrid tandem solar cell based on hydrogenated amorphous silicon and dye-sensitized TiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Hao Sancun [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China); Jiangsu Shuangdeng Group Co. Ltd, Thaizhou, Jiangsu, 225526 (China); Wu Jihuai, E-mail: jhwu@hqu.edu.cn [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Sun Zhonglin [Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China)

    2012-01-01

    Hydrogenated amorphous silicon film (a-Si:H) as top cell is introduced to dye-sensitized titanium dioxide nanocrystalline solar cell (DSSC) as bottom cell to assemble a hybrid tandem solar cell. The hybrid tandem solar cell fabricated with the thicknesses a-Si:H layer of 235 nm, ZnO/Pt interlayer of 100 nm and DSSC layer of 8.5 {mu}m achieves a photo-to-electric energy conversion efficiency of 8.31%, a short circuit current density of 10.61 mA{center_dot}cm{sup -2} and an open-circuit voltage of 1.45 V under a simulated solar light irradiation of 100 mW{center_dot}cm{sup -2}.

  12. Modeling Three-Terminal III-V/Si Tandem Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Emily L.; Deceglie, Michael G.; Stradins, Paul; Tamboli, Adele C.

    2017-06-27

    Three-terminal (3T) tandem cells fabricated by combining an interdigitated back contact (IBC) Si device with a wider bandgap top cell have the potential to provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects between cells. Here we develop a two dimensional device physics model to study the behavior of IBC Si solar cells operated in a 3T configuration. We investigate how different cell designs impact device performance and discuss the analysis protocol used to understand and optimize power produced from a single junction, 3T device.

  13. Measuring the external quantum efficiency of two-terminal polymer tandem solar cells

    NARCIS (Netherlands)

    Gilot, J.; Wienk, M.M.; Janssen, R.A.J.

    2010-01-01

    Tandem configurations, in which two cells are stacked and connected in series, offer a viable approach to further increase the power conversion efficiency (PCE) of organic solar cells. To enable the future rational design of new materials it is important to accurately assess the contributions of

  14. Optimization of Recombination Layer in the Tunnel Junction of Amorphous Silicon Thin-Film Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Yang-Shin Lin

    2011-01-01

    Full Text Available The amorphous silicon/amorphous silicon (a-Si/a-Si tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD at 27.1 MHz. The effects of the recombination layer and the i-layer thickness matching on the cell performance have been investigated. The results show that the tandem cell with a p+ recombination layer and i2/i1 thickness ratio of 6 exhibits a maximum efficiency of 9.0% with the open-circuit voltage (Voc of 1.59 V, short-circuit current density (Jsc of 7.96 mA/cm2, and a fill factor (FF of 0.70. After light-soaking test, our a-Si/a-Si tandem cell with p+ recombination layer shows the excellent stability and the stabilized efficiency of 8.7%.

  15. Robust optimization of a tandem grating solar thermal absorber

    Science.gov (United States)

    Choi, Jongin; Kim, Mingeon; Kang, Kyeonghwan; Lee, Ikjin; Lee, Bong Jae

    2018-04-01

    Ideal solar thermal absorbers need to have a high value of the spectral absorptance in the broad solar spectrum to utilize the solar radiation effectively. Majority of recent studies about solar thermal absorbers focus on achieving nearly perfect absorption using nanostructures, whose characteristic dimension is smaller than the wavelength of sunlight. However, precise fabrication of such nanostructures is not easy in reality; that is, unavoidable errors always occur to some extent in the dimension of fabricated nanostructures, causing an undesirable deviation of the absorption performance between the designed structure and the actually fabricated one. In order to minimize the variation in the solar absorptance due to the fabrication error, the robust optimization can be performed during the design process. However, the optimization of solar thermal absorber considering all design variables often requires tremendous computational costs to find an optimum combination of design variables with the robustness as well as the high performance. To achieve this goal, we apply the robust optimization using the Kriging method and the genetic algorithm for designing a tandem grating solar absorber. By constructing a surrogate model through the Kriging method, computational cost can be substantially reduced because exact calculation of the performance for every combination of variables is not necessary. Using the surrogate model and the genetic algorithm, we successfully design an effective solar thermal absorber exhibiting a low-level of performance degradation due to the fabrication uncertainty of design variables.

  16. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact

    Science.gov (United States)

    Fan, Lin; Wang, Fengyou; Liang, Junhui; Yao, Xin; Fang, Jia; Zhang, Dekun; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan

    2017-01-01

    A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell. Here, we present a four-terminal tandem solar cell architecture consisting of a self-filtered planar architecture perovskite top cell and a silicon heterojunction bottom cell. A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device. The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact. The four-terminal tandem solar cell yields an efficiency of 14.8%, with contributions of the top (8.98%) and the bottom cell (5.82%), respectively. We also point out that in terms of optical losses, the intermediate contact of self-filtered tandem architecture is the uppermost problem, which has been addressed in this communication, and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device. Project supported by the International Cooperation Projects of the Ministry of Science and Technology (No. 2014DFE60170), the National Natural Science Foundation of China (Nos. 61474065, 61674084), the Tianjin Research Key Program of Application Foundation and Advanced Technology (No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province (No. BE2014147-3), and the 111 Project (No. B16027).

  17. Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering

    KAUST Repository

    Kim, Taesoo; Firdaus, Yuliar; Kirmani, Ahmad R.; Liang, Ru-Ze; Hu, Hanlin; Liu, Mengxia; El Labban, Abdulrahman; Hoogland, Sjoerd; Beaujuge, Pierre; Sargent, Edward H.; Amassian, Aram

    2018-01-01

    Realization of colloidal quantum dot (CQD)/organic photovoltaic (OPV) tandem solar cells that integrate the strong infrared absorption of CQDs with large photovoltages of OPVs is an attractive option toward high-performing, low-cost thin film solar

  18. CuIn{sub 1-x}Ga{sub x}Se{sub 2} photovoltaic devices for tandem solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Seyrling, S. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland)], E-mail: seyrling@phys.ethz.ch; Calnan, S. [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Buecheler, S. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Huepkes, J. [Institut fuer Energieforschung, Photovoltaik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Wenger, S. [Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPF Lausanne, 1015 Lausanne (Switzerland); Bremaud, D.; Zogg, H. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Tiwari, A.N. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2009-02-02

    CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS) solar cells show a good spectral response in a wide range of the solar spectrum and the bandgap of CIGS can be adjusted from 1.0 eV to 1.7 eV by increasing the gallium-to-indium ratio of the absorber. While the bandgaps of Ga-rich CIGS or CGS devices make them suitable for top or intermediate cells, the In rich CIGS or CIS devices are well suited to be used as bottom cells in tandem solar cells. The photocurrent can be adapted to the desired value for current matching in tandem cells by changing the composition of CIGS which influences the absorption characteristics. Therefore, CIGS layers with different [Ga]/[In + Ga] ratios were grown on Mo and ZnO:Al coated glass substrates. The grain size, composition of the layers, and morphology strongly depend on the Ga content. Layers with Ga rich composition exhibit smaller grain size and poor photovoltaic performance. The current densities of CIGS solar cells on ZnO:Al/glass varied from 29 mA cm{sup -2} to 13 mA cm{sup -2} depending on the Ga content, and 13.5% efficient cells were achieved using a low temperature process (450 deg. C ). However, Ga-rich solar cells exhibit lower transmission than dye sensitized solar cells (DSC). Prospects of tandem solar cells combining a DSC with CIGS are presented.

  19. Round-Robin Studies on Roll-Processed ITO-free Organic Tandem Solar Cells Combined with Inter-Laboratory Stability Studies

    DEFF Research Database (Denmark)

    Livi, Francesco; Søndergaard, Roar R.; Andersen, Thomas Rieks

    2015-01-01

    Roll-processed, indium tin oxide (ITO)-free, flexible, organic tandem solar cells and modules have been realized and used in round-robin studies as well as in parallel inter-laboratory stability studies. The tandem cells/modules show no significant difference in comparison to their single...

  20. Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells.

    Science.gov (United States)

    Yang, Yang Michael; Chen, Qi; Hsieh, Yao-Tsung; Song, Tze-Bin; Marco, Nicholas De; Zhou, Huanping; Yang, Yang

    2015-07-28

    Halide perovskites (PVSK) have attracted much attention in recent years due to their high potential as a next generation solar cell material. To further improve perovskites progress toward a state-of-the-art technology, it is desirable to create a tandem structure in which perovskite may be stacked with a current prevailing solar cell such as silicon (Si) or Cu(In,Ga)(Se,S)2 (CIGS). The transparent top electrode is one of the key components as well as challenges to realize such tandem structure. Herein, we develop a multilayer transparent top electrode for perovskite photovoltaic devices delivering an 11.5% efficiency in top illumination mode. The transparent electrode is based on a dielectric/metal/dielectric structure, featuring an ultrathin gold seeded silver layer. A four terminal tandem solar cell employing solution processed CIGS and perovskite cells is also demonstrated with over 15% efficiency.

  1. Study of monolithic integrated solar blind GaN-based photodetectors

    Science.gov (United States)

    Wang, Ling; Zhang, Yan; Li, Xiaojuan; Xie, Jing; Wang, Jiqiang; Li, Xiangyang

    2018-02-01

    Monolithic integrated solar blind devices on the GaN-based epilayer, which can directly readout voltage signal, were fabricated and studied. Unlike conventional GaN-based photodiodes, the integrated devices can finish those steps: generation, accumulation of carriers and conversion of carriers to voltage. In the test process, the resetting voltage was square wave with the frequency of 15 and 110 Hz, its maximal voltage of ˜2.5 V. Under LEDs illumination, the maximum of voltage swing is about 2.5 V, and the rise time of voltage swing from 0 to 2.5 V is only about 1.6 ms. However, in dark condition, the node voltage between detector and capacitance nearly decline to zero with time when the resetting voltage was equal to zero. It is found that the leakage current in the circuit gives rise to discharge of the integrated charge. Storage mode operation can offer gain, which is advantage to detection of weak photo signal.

  2. Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials

    DEFF Research Database (Denmark)

    Li, Ning; Baran, Derya; Forberich, Karen

    2013-01-01

    in organic tandem solar cells. All the devices are processed under environmental conditions using doctor-blading, which is highly compatible with mass-production coating technologies. Power conversion efficiencies (PCE) of 6–7% are obtained for OPV devices based on different active layers. Optical...... simulations based on experimental data are performed for all realized tandem solar cells. An efficiency potential of ∼10% is estimated for these compounds in combination with phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. In addition, we assume a hypothetical, optimized acceptor to understand...... the limitation of donors. It is suggested that a PCE of >14% is realistic for tandem solar cells based on these commercially available donor materials. Along with the demonstration of novel intermediate layers we believe that this systematic study provides valuable insight for those attempting to realize...

  3. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Jorge; Desirena, Haggeo; De la Rosa, Elder [Centro de Investigaciones en Optica, A.P. 1-948, León, Guanajuato 37160 (Mexico); Papadimitratos, Alexios [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Zakhidov, Anvar A., E-mail: Zakhidov@utdallas.edu [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Energy Efficiency Center, National University of Science and Technology, MISiS, Moscow 119049 (Russian Federation)

    2015-11-21

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  4. Very high frequency plasma deposited amorphous/nanocrystalline silicon tandem solar cells on flexible substrates

    NARCIS (Netherlands)

    Liu, Y.|info:eu-repo/dai/nl/304831743

    2010-01-01

    The work in this thesis is to develop high quality intrinsic layers (especially nc-Si:H) for micromorph silicon tandem solar cells/modules on plastic substrates following the substrate transfer method or knows as the Helianthos procedure. Two objectives are covered in this thesis: (1) preliminary

  5. Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors

    DEFF Research Database (Denmark)

    Spyropoulos, G. D.; Kubis, P.; Li, Na

    2014-01-01

    Organic solar cell technology bears the potential for high photovoltaic performance combined with truly low-cost, high-volume processing. Here we demonstrate organic tandem solar modules on flexible substrates fabricated by fully roll-to-roll compatible processing at temperatures...

  6. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    International Nuclear Information System (INIS)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-01-01

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  7. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd [Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205 (Bangladesh)

    2016-05-21

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  8. The monolithic multicell: a tool for testing material components in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, H.; Gruszecki, T. [IVF Industrial Research and Development Corporation, Moelndal (Sweden); Bernhard, R. [IVF Industrial Research and Development Corporation, Moelndal (Sweden); The Royal Institute of Technology, Stockholm (Sweden). Center of Molcular Devices, Department of Chemistry; Haeggman, L.; Gorlov, M.; Boschloo, G.; Edvinsson, T.; Kloo, L.; Hagfeldt, A. [The Royal Institute of Technology, Stockholm (Sweden). Center of Molcular Devices, Department of Chemistry

    2006-07-01

    A multicell is presented as a tool for testing material components in encapsulated dye-sensitized solar cells. The multicell is based on a four-layer monolithic cell structure and an industrial process technology. Each multicell plate includes 24 individual well-encapsulated cells. A sulfur lamp corrected to the solar spectrum has been used to characterize the cells. Efficiencies up to 6.8% at a light-intensity of 1000 W/m{sup su2} (up to 7.5% at 250 W/m{sup 2}) have been obtained with an electrolyte solution based on {upsilon}-butyrolactone. Additionally, a promising long-term stability at cell efficiencies close to 5% at 1000 W/m{sup 2} has been obtained with an electrolyte based on glutaronitrile. The reproducibility of the cell performance before and after exposure to accelerated testing has been high. This means that the multicell can be used as an efficient tool for comparative performance and stability tests. (author)

  9. Novel tandem structure employing mesh-structured Cu2S counter electrode for enhanced performance of quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang, Yue-Yong; Zhang, Quan-Xin; Wang, Tian-Zi; Zhu, Li-Feng; Huang, Xiao-Ming; Zhang, Yi-Duo; Hu, Xing; Li, Dong-Mei; Luo, Yan-Hong; Meng, Qing-Bo

    2013-01-01

    Highlights: ► This is the first report on practical tandem structures for quantum dot-sensitized solar cells (QDSCs). ► Mesh-structured Cu 2 S counter electrode exhibits high catalytic activity and good transmittance. ► Influence of photoanode thickness on tandem QDSCs has been systematically studied. ► Tandem QDSCs shows higher photocurrent and efficiency as against the single-photoanode cell. ► This structure can achieve higher efficiency with different QD sensitizers for complementary spectral responses. -- Abstract: A practical tandem structure with a semitransparent mesh-structured Cu 2 S counter electrode sandwiched between two TiO 2 photoelectrodes has been designed for quantum dot-sensitized solar cells (QDSCs). The mesh-structured Cu 2 S counter electrode exhibits high catalytic activity for polysulfide electrolyte. CdS/CdSe quantum dot-sensitized TiO 2 films have been applied as both top and bottom photoelectrodes to testify the effectiveness of the tandem structure. The influence of the TiO 2 film thickness on the performance of the tandem cell has been systematically studied. The optimized tandem QDSC shows an improved photocurrent and 12-percent increase of efficiency over the top cell with a 4.7 μm thick top cell and an 11.0 μm thick bottom cell, presenting a new effective approach towards highly efficient QDSCs

  10. Homo-Tandem Polymer Solar Cells withVOC>1.8 V for Efficient PV-Driven Water Splitting

    KAUST Repository

    Gao, Yangqin; Le Corre, Vincent M.; Gaï tis, Alexandre; Neophytou, Marios; Hamid, Mahmoud Abdul; Takanabe, Kazuhiro; Beaujuge, Pierre

    2016-01-01

    Efficient homo-tandem and triple-junction polymer solar cells are constructed by stacking identical subcells composed of the wide-bandgap polymer PBDTTPD, achieving power conversion efficiencies >8% paralleled by open-circuit voltages >1.8 V

  11. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    Science.gov (United States)

    May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-09-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

  12. Numerical simulations: Toward the design of 27.6% efficient four-terminal semi-transparent perovskite/SiC passivated rear contact silicon tandem solar cell

    Science.gov (United States)

    Pandey, Rahul; Chaujar, Rishu

    2016-12-01

    In this work, a novel four-terminal perovskite/SiC-based rear contact silicon tandem solar cell device has been proposed and simulated to achieve 27.6% power conversion efficiency (PCE) under single AM1.5 illumination. 20.9% efficient semitransparent perovskite top subcell has been used for perovskite/silicon tandem architecture. The tandem structure of perovskite-silicon solar cells is a promising method to achieve efficient solar energy conversion at low cost. In the four-terminal tandem configuration, the cells are connected independently and hence avoids the need for current matching between top and bottom subcell, thus giving greater design flexibility. The simulation analysis shows, PCE of 27.6% and 22.4% with 300 μm and 10 μm thick rear contact Si bottom subcell, respectively. This is a substantial improvement comparing to transparent perovskite solar cell and c-Si solar cell operated individually. The impact of perovskite layer thickness, monomolecular, bimolecular, and trimolecular recombination have also been obtained on the performance of perovskite top subcell. Reported PCEs of 27.6% and 22.4% are 1.25 times and 1.42 times higher as compared to experimentally available efficiencies of 22.1% and 15.7% in 300 μm and 10 μm thick stand-alone silicon solar cell devices, respectively. The presence of SiC significantly suppressed the interface recombination in bottom silicon subcell. Detailed realistic technology computer aided design (TCAD) analysis has been performed to predict the behaviour of the device.

  13. Material Technologies Developments for Solar Hydrogen

    International Nuclear Information System (INIS)

    Agrafiotis, C.; Pagkoura, C.; Lorentzou, S.; Hoguet, J.C.; Konstandopoulos, A.G.

    2006-01-01

    The present work presents recent activities of our Laboratory in the field of solar-aided hydrogen production materials and reactor technologies that can be fully integrated into solar thermal power plants. Emphasis is given on structured monolithic solar reactors where ceramic supports optimized to absorb solar radiation and develop sufficiently high temperatures, are coated with active materials to perform a variety of 'solar-aided' reactions such as water splitting or natural gas reforming. Particular examples discussed include properties'' assessment of monolithic ceramic honeycombs used as volumetric solar thermal reactors/receivers, synthesis of active water-splitting redox materials for the production of hydrogen and their tailored deposition upon porous supports and design, operation simulation and performance optimization of structured monolithic solar hydrogen production reactors. (authors)

  14. Three-dimensional photonic crystals as intermediate filter for thin-film tandem solar cells

    Science.gov (United States)

    Bielawny, Andreas; Miclea, Paul T.; Wehrspohn, Ralf B.; Lee, Seung-Mo; Knez, Mato; Rockstuhl, Carsten; Lisca, Marian; Lederer, Falk L.; Carius, Reinhard

    2008-04-01

    The concept of a 3D photonic crystal structure as diffractive and spectrally selective intermediate filter within 'micromorphous' (a-Si/μc-Si) tandem solar cells has been investigated numerically and experimentally. Our device aims for the enhancement of the optical pathway of incident light within the amorphous silicon top cell in its spectral region of low absorption. From our previous simulations, we expect a significant improvement of the tandem cell efficiency of about absolutely 1.3%. This increases the efficiency for a typical a-Si / μc-Si tandem cell from 11.1% to 12.4%, as a result of the optical current-matching of the two junctions. We suggest as wavelength-selective optical element a 3D-structured optical thin-film, prepared by self-organized artificial opal templates and replicated with atomic layer deposition. The resulting samples are highly periodic thin-film inverted opals made of conducting and transparent zinc-oxide. We describe the fabrication processes and compare experimental data on the optical properties in reflection and transmission with our simulations and photonic band structure calculations.

  15. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    Science.gov (United States)

    Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.

    1990-01-01

    Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.

  16. Reduction of bonding resistance of two-terminal III-V/Si tandem solar cells fabricated using smart-stack technology

    Science.gov (United States)

    Baba, Masaaki; Makita, Kikuo; Mizuno, Hidenori; Takato, Hidetaka; Sugaya, Takeyoshi; Yamada, Noboru

    2017-12-01

    This paper describes a method that remarkably reduces the bonding resistance of mechanically stacked two-terminal GaAs/Si and InGaP/Si tandem solar cells, where the top and bottom cells are bonded using a Pd nanoparticle array. A transparent conductive oxide (TCO) layer, which partially covers the surface of the Si bottom cell below the electrodes of the III-V top cell, significantly enhances the fill factor (FF) and cell conversion efficiency. The partial TCO layer reduces the bonding resistance and thus, increases the FF and efficiency of InGaP/Si by factors of 1.20 and 1.11, respectively. Eventually, the efficiency exceeds 15%. Minimizing the optical losses at the bonding interfaces of the TCO layer is important in the fabrication of high-efficiency solar cells. To help facilitate this, the optical losses in the tandem solar cells are thoroughly characterized through optical simulations and experimental verifications.

  17. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    Science.gov (United States)

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enabling Flexible Polymer Tandem Solar Cells by 3D Ptychographic Imaging

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Andersen, Thomas Rieks; Pedersen, Emil Bøje Lind

    2015-01-01

    one after the other by wet processing leaves plenty of room for error and the process development calls for an analytical technique that enables 3D reconstruction of the layer stack with the possibility to probe thickness, density, and chemistry of the individual layers in the stack. The use......The realization of a complete tandem polymer solar cell under ambient conditions using only printing and coating methods on a flexible substrate results in a fully scalable process but also requires accurate control during layer formation to succeed. The serial process where the layers are added...

  19. See-Through Dye-Sensitized Solar Cells: Photonic Reflectors for Tandem and Building Integrated Photovoltaics

    KAUST Repository

    Heiniger, Leo-Philipp

    2013-08-21

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Series vs parallel connected organic tandem solar cells : cell performance and impact on the design and operation of functional modules

    NARCIS (Netherlands)

    Etxebarriaa, I.; Furlan, A.; Ajuria, J.; Fecher, F.W.; Voigt, de M.J.A.; Brabecd, C.J.; Wienk, M.M.; Slooff, L.H.; Veenstra, S.; Gilot, J.; Pacios, R.

    2014-01-01

    Tandem solar cells are the best approach to maximize the light harvesting and adjust the overall absorption of the cell to the solar irradiance spectrum. Usually, the front and back subcells are connected in series in two-terminal device (2T) designs which require a current matching between both

  1. Technology computer aided design of 29.5% efficient perovskite/interdigitated back contact silicon heterojunction mechanically stacked tandem solar cell for energy-efficient applications

    Science.gov (United States)

    Pandey, Rahul; Chaujar, Rishu

    2017-04-01

    A 29.5% efficient perovskite/SiC passivated interdigitated back contact silicon heterojunction (IBC-SiHJ) mechanically stacked tandem solar cell device has been designed and simulated. This is a substantial improvement of 40% and 15%, respectively, compared to the transparent perovskite solar cell (21.1%) and Si solar cell (25.6%) operated individually. The perovskite solar cell has been used as a top subcell, whereas 250- and 25-μm-thick IBC-SiHJ solar cells have been used as bottom subcells. The realistic technology computer aided design analysis has been performed to understand the physical processes in the device and to make reliable predictions of the behavior. The performance of the top subcell has been obtained for different acceptor densities and hole mobility in Spiro-MeOTAD along with the impact of counter electrode work function. To incorporate the effect of material quality, the influence of carrier lifetimes has also been studied for perovskite top and IBC-SiHJ bottom subcells. The optical and electrical behavior of the devices has been obtained for both standalone as well as tandem configuration. Results reported in this study reveal that the proposed four-terminal tandem device may open a new door for cost-effective and energy-efficient applications.

  2. Single P-N junction tandem photovoltaic device

    Science.gov (United States)

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  3. Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO 2

    KAUST Repository

    Nedelcu, Mihaela; Guldin, Stefan; Orilall, M. Christopher; Lee, Jinwoo; Hü ttner, Sven; Crossland, Edward J. W.; Warren, Scott C.; Ducati, Caterina; Laity, Pete R.; Eder, Dominik; Wiesner, Ulrich; Steiner, Ullrich; Snaith, Henry J.

    2010-01-01

    We present a material and device based study on the fabrication of mesoporous TiO2 and its integration into dye-sensitized solar cells. Poly(isoprene-block-ethyleneoxide) (PI-b-PEO) copolymers were used as structure directing agents for the sol-gel based synthesis of nanoporous monolithic TiO2 which was subsequently ground down to small particles and processed into a paste. The TiO2 synthesis and the formation of tens of micrometre thick films from the paste is a scalable approach for the manufacture of dye sensitised solar cells (DSCs). In this study, we followed the self-assembly of the material through the various processing stages of DSC manufacture. Since this approach enables high annealing temperatures while maintaining porosity, excellent crystallinity was achieved. Internal TiO 2 structures ranging from the nanometre to micrometre scale combine a high internal surface area with the strong scattering of light, which results in high light absorption and an excellent full-sun power conversion efficiency of up to 6.4% in a robust, 3 μm thick dye-sensitized solar cell. © 2010 The Royal Society of Chemistry.

  4. Artificial Photosystem I and II: Highly Selective solar fuels and tandem photocatalysis

    Science.gov (United States)

    Ding, Yuchen; Castellanos, Ignacio; Cerkovnik, Logan; Nagpal, Prashant

    2014-03-01

    Artificial photosynthesis, or generation of solar fuels from CO2/H2O, can provide an important alternative for rising CO2 emission and renewable energy generation. In our recent work, composite photocatalysts (CPCs) made from widebandgap nanotubes and different QDs were used to mimic Photosystem II (PS680) and I (PS700), respectively. By tuning the redox potentials using the size, composition and energy band alignment of QDs, we demonstrate highly selective (>90%) and efficient production of ethane, ethanol and acetaldehyde as solar fuels with different wavelengths of light. We also show that this selectivity is a result of precise energy band alignments (using cationic/anionic doping of nanotubes, QD size etc.), confirmed using measurements of electronic density of states, and alignment of higher redox potentials with hot-carriers can also lead to hot-carrier photocatalysis. This wavelength-selective CPCs can have important implications for inexpensive production of solar fuels including alkanes, alcohols, aldehydes and hydrogen, and making tandem structures (red, green, blue) with three CPCs, allowing almost full visible spectrum (410 ~ 730nm) utilization with different fuels produced simultaneously.

  5. Towards developing a tandem of organic solar cell and light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and IT, B-purple-12, Faculty of EHS, Charles Darwin University, Darwin, NT 0909 (Australia)

    2011-01-15

    It is proposed here to design a tandem of organic solar cell (OSC) and white organic light emitting diode (WOLED) which can generate power in the day time from the sun and provide lighting at night. With the advancement of chemical technology, such device is expected to be very-cost effective and reasonably efficient. A device thus fabricated has the potential of meeting the world's sustainable domestic and commercial power and lighting needs (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer

    International Nuclear Information System (INIS)

    Kim, Taehee; Choi, Jin Young; Jeon, Jun Hong; Kim, Youn-Su; Kim, Bong-Soo; Lee, Doh-Kwon; Kim, Honggon; Han, Seunghee; Kim, Kyungkon

    2012-01-01

    Highlights: ► This work enhanced power conversion efficiency of the hybrid tandem solar cell from 1.0% to 2.6%. ► The interfacial series resistance of the tandem solar cell was eliminated by inserting ITO layer. ► This work shows the feasibility of the highly efficient hybrid tandem solar cells. -- Abstract: We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (V OC = 1.041 V, J SC = 2.97 mA/cm 2 , FF = 32.3%) to 2.6% (V OC = 1.336 V, J SC = 4.65 mA/cm 2 , FF = 41.98%) due to the eliminated interfacial series resistance.

  7. Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Dewei [University of Toledo; Wang, Changlei [University of Toledo; Wuhan University; Song, Zhaoning [University of Toledo; Yu, Yue [University of Toledo; Chen, Cong [University of Toledo; Zhao, Xingzhong [Wuhan University; Yan, Yanfa [University of Toledo

    2018-02-09

    We report on fabrication of 4-terminal all-perovskite tandem solar cells with power conversion efficiencies exceeding 23% by mechanically stacking semitransparent 1.75 eV wide-bandgap FA0.8Cs0.2Pb(I0.7Br0.3)3 perovskite top cells with 1.25 eV low-bandgap (FASnI3)0.6(MAPbI3)0.4 bottom cells. The top cells use MoOx/ITO transparent electrodes and achieve transmittance up to 70% beyond 700 nm.

  8. Probing individal subcells of fully printed and coated polymer tandem solar cells using multichromatic opto-electronic characterization methods

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Dam, Henrik Friis

    2015-01-01

    In this study, a method to opto-electronically probe the individual junctions and carrier transport across interfaces in fully printed and coated tandem polymer solar cells is described, enabling the identification of efficiency limiting printing/coating defects. The methods used are light beam...

  9. Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell.

    Science.gov (United States)

    Kong, Jaemin; Lee, Jongjin; Kim, Geunjin; Kang, Hongkyu; Choi, Youna; Lee, Kwanghee

    2012-08-14

    Additional post-processing techniques, such as post-thermal annealing and UV illumination, were found to be required to obtain desirable values of the cell parameters in a tandem polymer solar cell incorporated with solution-processed basic n-type titanium sub-oxide (TiO(x))/acidic p-type poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) interlayers. Subsequent to the fabrication of the tandem polymer solar cells, the open-circuit voltage (V(OC)) of the cells exhibited half of the expected value. Only after the application of the post-treatments, the V(OC) of a tandem cell increased from the initial half-cell value (∼0.6 V) to its full-cell value (∼1.2 V). The selective light-biased incident photon-to-current efficiency (IPCE) measurements indicated that the initial V(OC) originated from the back subcell and that the application of the post-processing treatments revived the front subcell, such that the net photocurrent of the tandem cell was finally governed by a recombination process of holes from the back subcell and electrons from the front subcell. Based on our experimental results, we suggest that a V(OC) enhancement could be ascribed to two types of subsequent junction formations at the interface between the TiO(x) and PEDOT:PSS interlayers: an 'ion-mediated dipole junction', resulting from the electro-kinetic migration of cationic ions in the interlayers during post-thermal annealing in the presence of a low-work-function metal cathode, and a 'photoinduced Schottky junction', formed by increasing the charge carrier density in the n-type TiO(x) interlayer during UV illumination process. The two junctions separately contributed to the formation of a recombination junction through which the electrons in TiO(x) and the holes in PEDOT:PSS were able to recombine without substantial voltage drops.

  10. A Study on Organic-Metal Halide Perovskite Film Morphology, Interfacial Layers, Tandem Applications, and Encapsulation

    Science.gov (United States)

    Fisher, Dallas A.

    Organic-metal halide perovskites have brought about a new wave of research in the photovoltaic community due to their ideally suited optical and electronic parameters. In less than a decade, perovskite solar cell performance has skyrocketed to unprecedented efficiencies with numerous reported methodologies. Perovskites face many challenges with high-quality film morphology, interfacial layers, and long-term stability. In this work, these active areas are explored through a combination of studies. First, the importance of perovskite film precursor ratios is explored with an in-depth study of carrier lifetime and solvent-grain effects. It was found that excess lead iodide precursor greatly improves the film morphology by reducing pinholes in the solar absorber. Dimethyl sulfoxide (DMSO) solvent was found to mend grains, as well as improve carrier lifetime and device performance, possibly by passivation of grain boundary traps. Second, applications of perovskite with tandem cells is investigated, with an emphasis for silicon devices. Perovskites can easily be integrated with silicon, which already has strong market presence. Additionally, both materials' bandgaps are ideally suited for maximum tandem efficiency. The silicon/perovskite tandem device structure necessitated the optimization of inverted (p-i-n) structure devices. PEDOT:PSS, copper oxide, and nickel oxide p-type layers were explored through a combination of photoluminescent, chemical reactivity, and solar simulation results. Results were hindered due to resistive ITO and rough silicon substrates, but tandem devices displayed Voc indicative of proper monolithic performance. Third, replacement of titanium dioxide n-type layer with iron oxide (Fe 2O3, common rust) was studied. Iron oxide experiences less ultraviolet instability than that of titanium dioxide under solar illumination. It was found that current density slightly decreased due to parasitic absorption from the rust, but that open circuit voltage

  11. Modelling of tandem cell temperature coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, D.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper discusses the temperature dependence of the basic solar-cell operating parameters for a GaInP/GaAs series-connected two-terminal tandem cell. The effects of series resistance and of different incident solar spectra are also discussed.

  12. Efficient Semitransparent Perovskite Solar Cells Using a Transparent Silver Electrode and Four-Terminal Perovskite/Silicon Tandem Device Exploration

    Directory of Open Access Journals (Sweden)

    Dazheng Chen

    2018-01-01

    Full Text Available Four-terminal tandem solar cells employing a perovskite top cell and crystalline silicon (Si bottom cell offer a simpler pathway to surpass the efficiency limit of market-leading single-junction silicon solar cells. To obtain cost-effective top cells, it is crucial to develop transparent conductive electrodes with low parasitic absorption and manufacturing cost. The commonly used indium tin oxide (ITO shows some drawbacks, like the increasing prices and high-energy magnetron sputtering process. Transparent metal electrodes are promising candidates owing to the simple evaporation process, facile process conditions, and high conductivity, and the cheaper silver (Ag electrode with lower parasitic absorption than gold may be the better choice. In this work, efficient semitransparent perovskite solar cells (PSCs were firstly developed by adopting the composite cathode of an ultrathin Ag electrode at its percolation threshold thickness (11 nm, a molybdenum oxide optical coupling layer, and a bathocuproine interfacial layer. The resulting power conversion efficiency (PCE is 13.38% when the PSC is illuminated from the ITO side and the PCE is 8.34% from the Ag side, and no obvious current hysteresis can be observed. Furthermore, by stacking an industrial Si bottom cell (PCE = 14.2% to build a four-terminal architecture, the overall PCEs of 17.03% (ITO side and 11.60% (Ag side can be obtained, which are 27% and 39% higher, respectively, than those of the perovskite top cell. Also, the PCE of the tandem cell has exceeded that of the reference Si solar cell by about 20%. This work provides an outlook to fabricate high-performance solar cells via the cost-effective pathway.

  13. Cost analysis of roll-to-roll fabricated ITO free single and tandem organic solar modules based on data from manufacture

    DEFF Research Database (Denmark)

    Machui, Florian; Hösel, Markus; Li, Ning

    2014-01-01

    We present a cost analysis based on state of the art printing and coating processes to fully encapsulated, flexible ITO- and vacuum-free polymer solar cell modules. Manufacturing data for both single junctions and tandem junctions are presented and analyzed. Within this calculation the most...

  14. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; van der Werf, Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  15. Monoliths in Bioprocess Technology

    Directory of Open Access Journals (Sweden)

    Vignesh Rajamanickam

    2015-04-01

    Full Text Available Monolithic columns are a special type of chromatography column, which can be used for the purification of different biomolecules. They have become popular due to their high mass transfer properties and short purification times. Several articles have already discussed monolith manufacturing, as well as monolith characteristics. In contrast, this review focuses on the applied aspect of monoliths and discusses the most relevant biomolecules that can be successfully purified by them. We describe success stories for viruses, nucleic acids and proteins and compare them to conventional purification methods. Furthermore, the advantages of monolithic columns over particle-based resins, as well as the limitations of monoliths are discussed. With a compilation of commercially available monolithic columns, this review aims at serving as a ‘yellow pages’ for bioprocess engineers who face the challenge of purifying a certain biomolecule using monoliths.

  16. Polymer tandem solar cells

    NARCIS (Netherlands)

    Gilot, J.

    2010-01-01

    Solar cells convert solar energy directly into electricity and are attractive contribute to the increasing energy demand of modern society. Commercial mono-crystalline silicon based devices are infiltrating the energy market but their expensive, time and energy consuming production process

  17. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    Science.gov (United States)

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  18. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.

    Science.gov (United States)

    Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa

    2007-09-01

    A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.

  19. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  20. Photovoltaic Performance and Interface Behaviors of Cu(In,Ga)Se2 Solar Cells with a Sputtered-Zn(O,S) Buffer Layer by High-Temperature Annealing.

    Science.gov (United States)

    Wi, Jae-Hyung; Kim, Tae Gun; Kim, Jeong Won; Lee, Woo-Jung; Cho, Dae-Hyung; Han, Won Seok; Chung, Yong-Duck

    2015-08-12

    We selected a sputtered-Zn(O,S) film as a buffer material and fabricated a Cu(In,Ga)Se2 (CIGS) solar cell for use in monolithic tandem solar cells. A thermally stable buffer layer was required because it should withstand heat treatment during processing of top cell. Postannealing treatment was performed on a CIGS solar cell in vacuum at temperatures from 300-500 °C to examine its thermal stability. Serious device degradation particularly in VOC was observed, which was due to the diffusion of thermally activated constituent elements. The elements In and Ga tend to out-diffuse to the top surface of the CIGS, while Zn diffuses into the interface of Zn(O,S)/CIGS. Such rearrangement of atomic fractions modifies the local energy band gap and band alignment at the interface. The notch-shape induced at the interface after postannealing could function as an electrical trap during electron transport, which would result in the reduction of solar cell efficiency.

  1. Superior light trapping in thin film silicon solar cells through nano imprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Schropp, R.E.I.; Pex, P.P.A.C.

    2013-10-15

    ECN and partners have developed a fabrication process based on nanoimprint lithography (NIL) of textures for light trapping in thin film solar cells such as thin-film silicon, OPV, CIGS and CdTe. The process can be applied in roll-to-roll mode when using a foil substrate or in roll-to-plate mode when using a glass substrate. The lacquer also serves as an electrically insulating layer for cells if steel foil is used as substrate, to enable monolithic series interconnection. In this paper we will show the superior light trapping in thin film silicon solar cells made on steel foil with nanotextured back contacts. We have made single junction a-Si and {mu}c-Si and a-Si/{mu}c-Si tandem cells, where we applied several types of nano-imprints with random and periodic structures. We will show that the nano-imprinted back contact enables more than 30% increase of current in comparison with non-textured back contacts and that optimized periodic textures outperform state-of-the-art random textures. For a-Si cells we obtained Jsc of 18 mA/cm{sup 2} and for {mu}c-Si cells more than 24 mA/cm{sup 2}. Tandem cells with a total Si absorber layer thickness of only 1350 nm have an initial efficiency of 11%.

  2. New uses for the Tandem Van de Graaff Accelerator

    International Nuclear Information System (INIS)

    Balcazar Garcia, M.

    1989-01-01

    The Tandem Van de Graaff is a very high resolution magnetic separator whose application offers a rich and virgin field for research in other areas. This work presents some of the radioisotopes of interest; their mechanisms of formation and this relationship with studies in solar activity variations in earth magnetic fields, carbon cycle dynamics, archaeological dating, dating of aquifer deposits, solar influences on variations in earth climates and the mechanics of tectonic plates. Discussed are the advantages of the Tandem utilization as an isotope separator compared with conventional techniques. (Author)

  3. Improving organic tandem solar cells based on water-processed nanoparticles by quantitative 3D nanoimaging.

    Science.gov (United States)

    Pedersen, E B L; Angmo, D; Dam, H F; Thydén, K T S; Andersen, T R; Skjønsfjell, E T B; Krebs, F C; Holler, M; Diaz, A; Guizar-Sicairos, M; Breiby, D W; Andreasen, J W

    2015-08-28

    Organic solar cells have great potential for upscaling due to roll-to-roll processing and a low energy payback time, making them an attractive sustainable energy source for the future. Active layers coated with water-dispersible Landfester particles enable greater control of the layer formation and easier access to the printing industry, which has reduced the use of organic solvents since the 1980s. Through ptychographic X-ray computed tomography (PXCT), we image quantitatively a roll-to-roll coated photovoltaic tandem stack consisting of one bulk heterojunction active layer and one Landfester particle active layer. We extract the layered morphology with structural and density information including the porosity present in the various layers and the silver electrode with high resolution in 3D. The Landfester particle layer is found to have an undesired morphology with negatively correlated top- and bottom interfaces, wide thickness distribution and only partial surface coverage causing electric short circuits through the layer. By top coating a polymer material onto the Landfester nanoparticles we eliminate the structural defects of the layer such as porosity and roughness, and achieve the increased performance larger than 1 V expected for a tandem cell. This study highlights that quantitative imaging of weakly scattering stacked layers of organic materials has become feasible by PXCT, and that this information cannot be obtained by other methods. In the present study, this technique specifically reveals the need to improve the coatability and layer formation of Landfester nanoparticles, thus allowing improved solar cells to be produced.

  4. Monolithic amorphous silicon modules on continuous polymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Grimmer, D.P. (Iowa Thin Film Technologies, Inc., Ames, IA (United States))

    1992-03-01

    This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

  5. Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells

    International Nuclear Information System (INIS)

    Leem, Jung Woo; Yu, Jae Su; Kim, Jong Nam; Noh, Sam Kyu

    2014-01-01

    We design and optimize monolithic III-V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J sc . The maximum J sc , which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J sc value of 13.92 mA/cm 2 is obtained at base thicknesses of 0.57 μm and 3 μm for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.

  6. Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Jung Woo; Yu, Jae Su [Kyung Hee University, Yongin (Korea, Republic of); Kim, Jong Nam [Pukyung National University, Pusan (Korea, Republic of); Noh, Sam Kyu [Korea Research Institute of Standards and Science, Daejon (Korea, Republic of)

    2014-05-15

    We design and optimize monolithic III-V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J{sub sc}. The maximum J{sub sc}, which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J{sub sc} value of 13.92 mA/cm{sup 2} is obtained at base thicknesses of 0.57 μm and 3 μm for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.

  7. Achieving 12.8% Efficiency by Simultaneously Improving Open-Circuit Voltage and Short-Circuit Current Density in Tandem Organic Solar Cells.

    Science.gov (United States)

    Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui

    2017-06-01

    Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Flying Posture of Tandem Warhead Influences its Penetrating and Following Performance

    Directory of Open Access Journals (Sweden)

    Jin-tao Wang

    2014-02-01

    Full Text Available In this study, we investigated a novel monolithic tandem penetrating-blast warhead, which can destroy targets with adjustable parameters including attack velocity, angles, as well as yaw angles. Different flying postures determine different performance of the precursory EFP in penetration process and its following projectile in secondary process. In order to characterize the influence of flying posture, we established a finite elements analysis model. This model has been verified by a static experiment. Our results indicated that the attack velocity of the warhead has tiny influence of the penetration process. However, larger attack angle of the warhead will lead to bad performance of the warhead. Meanwhile, yaw angle range should be controlled in small values due to its randomness. The comprehensive properties of the tandem warhead meet the design requirement, and it is able to damage the target effectively.

  9. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells

    Science.gov (United States)

    Qiu, Yongcai; Liu, Wei; Chen, Wei; Chen, Wei; Zhou, Guangmin; Hsu, Po-Chun; Zhang, Rufan; Liang, Zheng; Fan, Shoushan; Zhang, Yuegang; Cui, Yi

    2016-01-01

    Bismuth vanadate (BiVO4) has been widely regarded as a promising photoanode material for photoelectrochemical (PEC) water splitting because of its low cost, its high stability against photocorrosion, and its relatively narrow band gap of 2.4 eV. However, the achieved performance of the BiVO4 photoanode remains unsatisfactory to date because its short carrier diffusion length restricts the total thickness of the BiVO4 film required for sufficient light absorption. We addressed the issue by deposition of nanoporous Mo-doped BiVO4 (Mo:BiVO4) on an engineered cone-shaped nanostructure, in which the Mo:BiVO4 layer with a larger effective thickness maintains highly efficient charge separation and high light absorption capability, which can be further enhanced by multiple light scattering in the nanocone structure. As a result, the nanocone/Mo:BiVO4/Fe(Ni)OOH photoanode exhibits a high water-splitting photocurrent of 5.82 ± 0.36 mA cm−2 at 1.23 V versus the reversible hydrogen electrode under 1-sun illumination. We also demonstrate that the PEC cell in tandem with a single perovskite solar cell exhibits unassisted water splitting with a solar-to-hydrogen conversion efficiency of up to 6.2%. PMID:27386565

  10. Efficient Solar Energy Storage Using A TiO2/WO3 Tandem Photoelectrode in An All-vanadium Photoelectrochemical Cell

    International Nuclear Information System (INIS)

    Liu, Dong; Wei, Zi; Hsu, Chia-jen; Shen, Yi; Liu, Fuqiang

    2014-01-01

    Using a photoelectrochemical (PEC) cell to convert solar energy to either electricity or chemical fuels has attracted much attention in the last four decades. However, two major obstacles that hinder wide-spread application of this approach lie in the relatively wide bandgap of chemically stable semiconducotrs, e.g., TiO 2 , and the rapid recombination of photogenerated charge carriers once they are generated within the semiconductors. We reported herein a method that utilized vanadium redox pairs, which are commonly used in vanadium redox-flow batteries (VRB), to mitigate charge carrier recombination and thus to improve photoresponse in regenerative solar energy storage for the first time. The results showed significant improvement in photocurrent during photo-charging of the all-vanadium PEC storage cell with the addition of a very low morlarity of vanadium redox species (0.01 M) to the acid electrolytes. Additonally, the photocurrent was almost doubled even with a TiO 2 electrode when two vanadium redox species were used in a full-cell configuration instead of a half-cell setup. To further enhance the light absorption, a TiO 2 /WO 3 tandem electrode was studied and compared to the TiO 2 electrode in various vanadium redox electrolytes. The tandem electrode showed higher photoresponse in all electrolytes investigated. Furthermore, the important role of vanadium redox species and WO 3 have been discussed

  11. Exploring dark current voltage characteristics of micromorph silicon tandem cells with computer simulations

    NARCIS (Netherlands)

    Sturiale, A.; Li, H. B. T.; Rath, J.K.; Schropp, R.E.I.; Rubinelli, F.A.

    2009-01-01

    The transport mechanisms controlling the forward dark current-voltage characteristic of the silicon micromorph tandem solar cell were investigated with numerical modeling techniques. The dark current-voltage characteristics of the micromorph tandem structure at forward voltages show three regions:

  12. Generating hydrogen from sunlight and water using photovoltaic tandem cell

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-15

    Photoelectrochemical conversion of solar energy to energy in hydrogen at viable efficiency is a long-term goal needed to usher in the hydrogen economy worldwide. The twin cell technology based Tandem Cell tackles a number of challenges faced by single photoelectrochemical cell based water splitting and offers a novel way of utilising complimentary parts of the solar spectrum in two cells. The overall process results in a complete system driven by solar energy that splits water into hydrogen and oxygen. Hydrogen Solar Ltd is a UK based enterprise that is working towards commercialisation of this Tandem Cell technology. One of the main project activities involved the development and optimisation of methods for preparation of larger scale photocatalytic electrodes using reproducible low cost industrial processes, with efficiencies equal to or greater than those from small scale samples made experimentally in University laboratories. Stability is also an important issue and endurance testing was performed on some samples. Spray pyrolysis methods offer considerable promise as for preparation of metal oxide semiconductor films at low cost, reproducibly. These studies lead to optimised designs for Tandem Cells, resulting in construction of an array of 12 Tandem Cells. The findings of this array work, in particular engineering issues, were very significant. Based on this work it is intended to build another two array systems that consists of 24 Tandem Cells which will be tested for light to chemical conversion efficiency, to determine what efficiency has been achieved overall. The main conclusions resulting from this project were as follows. Overall, considerable progress was made in characterising the factors that affect photoelectrode performance efficiency but that, losses in efficiency when increasing the area of photoelectrodes was greater than expected and optimisation of efficiency at practical device scale needs more work. Based on the outcome of this work program

  13. Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells.

    Science.gov (United States)

    Li, Ming-Hsien; Yang, Yu-Syuan; Wang, Kuo-Chin; Chiang, Yu-Hsien; Shen, Po-Shen; Lai, Wei-Chih; Guo, Tzung-Fang; Chen, Peter

    2017-12-06

    A robust and recyclable monolithic substrate applying all-inorganic metal-oxide selective contact with a nanoporous (np) Au:NiO x counter electrode is successfully demonstrated for efficient perovskite solar cells, of which the perovskite active layer is deposited in the final step for device fabrication. Through annealing of the Ni/Au bilayer, the nanoporous NiO/Au electrode is formed in virtue of interconnected Au network embedded in oxidized Ni. By optimizing the annealing parameters and tuning the mesoscopic layer thickness (mp-TiO 2 and mp-Al 2 O 3 ), a decent power conversion efficiency (PCE) of 10.25% is delivered. With mp-TiO 2 /mp-Al 2 O 3 /np-Au:NiO x as a template, the original perovskite solar cell with 8.52% PCE can be rejuvenated by rinsing off the perovskite material with dimethylformamide and refilling with newly deposited perovskite. A renewed device using the recycled substrate once and twice, respectively, achieved a PCE of 8.17 and 7.72% that are comparable to original performance. This demonstrates that the novel device architecture is possible to recycle the expensive transparent conducting glass substrates together with all the electrode constituents. Deposition of stable multicomponent perovskite materials in the template also achieves an efficiency of 8.54%, which shows its versatility for various perovskite materials. The application of such a novel NiO/Au nanoporous electrode has promising potential for commercializing cost-effective, large scale, and robust perovskite solar cells.

  14. Optimization of charge-carrier generation in amorphous-silicon thin-film tandem solar cell backed by two-dimensional metallic surface-relief grating

    Science.gov (United States)

    Civiletti, Benjamin J.; Anderson, Tom H.; Ahmad, Faiz; Monk, Peter B.; Lakhtakia, Akhlesh

    2017-08-01

    The rigorous coupled-wave approach was implemented in a three-dimensional setting to calculate the chargecarrier-generation rate in a thin-film solar cell with multiple amorphous-silicon p-i-n junctions. The solar cell comprised a front antireflection window; three electrically isolated p-i-n junctions in tandem; and a periodically corrugated silver back-reflector with hillock-shaped corrugations arranged on a hexagonal lattice. The differential evolution algorithm (DEA) was used to maximize the charge-carrier-generation rate over a set of selected optical and electrical parameters. This optimization exercise minimized the bandgap of the topmost i-layer but all other parameters turned out to be uninfluential. More importantly, the exercise led to a configuration that would very likely render the solar cell inefficient. Therefore, another optimization exercise was conducted to maximize power density. The resulting configuration was optimal over all parameters.

  15. Fibrous monolithic ceramics

    International Nuclear Information System (INIS)

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  16. All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Films

    DEFF Research Database (Denmark)

    Angmo, Dechan; Dam, Henrik Friis; Andersen, Thomas Rieks

    2014-01-01

    A solution-processed silver film is employed in the processing of top-illuminated indium-tin-oxide (ITO)-free polymer solar cells in single- and double-junction (tandem) structures. The nontransparent silver film fully covers the substrate and serves as the bottom electrode whereas a PEDOT...... in terms of surface morphological and topographical properties and to ITO in terms of flexibility. The slot–die coated Ag film demonstrates extremely low roughness (a root-meansquare roughness of 3 nm was measured over 240_320 mm2 area), is highly conductive (

  17. GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell

    Science.gov (United States)

    Da Silva, M.; Almosni, S.; Cornet, C.; Létoublon, A.; Levallois, C.; Rale, P.; Lombez, L.; Guillemoles, J.-F.; Durand, O.

    2015-03-01

    GaAsPN semiconductors are promising material for the elaboration of high efficiencies tandem solar cells on silicon substrates. GaAsPN diluted nitride alloy is studied as the top junction material due to its perfect lattice matching with the Si substrate and its ideal bandgap energy allowing a perfect current matching with the Si bottom cell. We review our recent progress in materials development of the GaAsPN alloy and our recent studies of some of the different building blocks toward the elaboration of a PIN solar cell. A lattice matched (with a GaP(001) substrate, as a first step toward the elaboration on a Si substrate) 1μm-thick GaAsPN alloy has been grown by MBE. After a post-growth annealing step, this alloy displays a strong absorption around 1.8-1.9 eV, and efficient photoluminescence at room temperature suitable for the elaboration of the targeted solar cell top junction. Early stage GaAsPN PIN solar cells prototypes have been grown on GaP (001) substrates, with 2 different absorber thicknesses (1μm and 0.3μm). The external quantum efficiencies and the I-V curves show that carriers have been extracted from the GaAsPN alloy absorbers, with an open-circuit voltage of 1.18 V, while displaying low short circuit currents meaning that the GaAsPN structural properties needs a further optimization. A better carrier extraction has been observed with the absorber displaying the smallest thickness, which is coherent with a low carriers diffusion length in our GaAsPN compound. Considering all the pathways for improvement, the efficiency obtained under AM1.5G is however promising.

  18. Monolithic two-terminal hybrid a-Si:H/CIGS tandem cells

    NARCIS (Netherlands)

    Blanker, J.; Vroon, Z.; Zeman, M.; Smets, A.

    2016-01-01

    Copper-indium-gallium-di-selenide (CIGS) is the present record holder in lab-scale thin-film photovoltaics (TFPV). One of the problems of this PV technology is the scarcity of indium. Multi-junction solar cells allow better spectral utilization of the light spectrum, while the required current

  19. Optimized grid design for thin film solar panels

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.; Barink, M.

    2014-01-01

    There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid

  20. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.

    Science.gov (United States)

    Shangguan, Lulu; Zhang, Lingyi; Xiong, Zhichao; Ren, Jun; Zhang, Runsheng; Gao, Fangyuan; Zhang, Weibing

    2015-04-03

    The bottom-up strategy of proteomic profiling study based on mass spectrometer (MS) has drawn high attention. However, conventional solution-based digestion could not satisfy the demands of highly efficient and complete high throughput proteolysis of complex samples. We proposed a novel bi-enzymatic reactor by immobilizing two different enzymes (trypsin/chymotrypsin) onto a mixed support of hybrid organic-inorganic monolith with SBA-15 nanoparticles embedded. Typsin and chymotrypsin were crossly immobilized onto the mixed support by covalent bonding onto the monolith with glutaraldehyde as bridge reagent and chelation via copper ion onto the nanoparticles, respectively. Compared with single enzymatic reactors, the bi-enzymatic reactor improved the overall functional analysis of membrane proteins of rat liver by doubling the number of identified peptides (from 1184/1010 with trypsin/chymotrypsin enzymatic reactors to 2891 with bi-enzymatic reactor), which led to more proteins identified with deep coverage (from 452/336 to 620); the efficiency of the bi-enzymatic reactor is also better than that of solution-based tandem digestion, greatly shorting the digestion time from 24h to 50s. Moreover, more transmembrane proteins were identified by bi-enzymatic reactor (106) compared with solution-based tandem digestion (95) with the same two enzymes and enzymatic reactors with single enzyme immobilized (75 with trypsin and 66 with chymotrypsin). The proteolytic characteristics of the bi-enzymatic reactors were evaluated by applying them to digestion of rat liver proteins. The reactors showed good digestion capability for proteins with different hydrophobicity and molecular weight. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Monolithic exploding foil initiator

    Science.gov (United States)

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  2. Experimental and in silico investigations of organic phosphates and phosphonates sorption on polymer-ceramic monolithic materials and hydroxyapatite.

    Science.gov (United States)

    Pietrzyńska, Monika; Zembrzuska, Joanna; Tomczak, Rafał; Mikołajczyk, Jakub; Rusińska-Roszak, Danuta; Voelkel, Adam; Buchwald, Tomasz; Jampílek, Josef; Lukáč, Miloš; Devínsky, Ferdinand

    2016-10-10

    A method based on experimental and in silico evaluations for investigating interactions of organic phosphates and phosphonates with hydroxyapatite was developed. This quick and easy method is used for determination of differences among organophosphorus compounds of various structures in their mineral binding affinities. Empirical sorption evaluation was carried out using liquid chromatography with tandem mass spectrometry or UV-VIS spectroscopy. Raman spectroscopy was used to confirm sorption of organic phosphates and phosphonates on hydroxyapatite. Polymer-ceramic monolithic material and bulk hydroxyapatite were applied as sorbent materials. Furthermore, a Polymer-ceramic Monolithic In-Needle Extraction device was used to investigate both sorption and desorption steps. Binding energies were computed from the fully optimised structures utilising Density Functional Theory (DFT) at B3LYP/6-31+G(d,p) level. Potential pharmacologic and toxic effects of the tested compounds were estimated by the Prediction of the Activity Spectra of Substances using GeneXplain software. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    Science.gov (United States)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  4. Quantum-Tuned Multijunction Solar Cells

    Science.gov (United States)

    Koleilat, Ghada I.

    Multijunction solar cells made from a combination of CQDs of differing sizes and thus bandgaps are a promising means by which to increase the energy harvested from the Sun's broad spectrum. In this dissertation, we first report the systematic engineering of 1.6 eV PbS CQD solar cells, optimal as the front cell responsible for visible wavelength harvesting in tandem photovoltaics. We rationally optimize each of the device's collecting electrodes---the heterointerface with electron accepting TiO2 and the deep-work-function hole-collecting MoO3 for ohmic contact---for maximum efficiency. Room-temperature processing enables flexible substrates, and permits tandem solar cells that integrate a small-bandgap back cell atop a low thermal-budget larger-bandgap front cell. We report an electrode strategy that enables a depleted heterojunction CQD PV device to be fabricated entirely at room temperature. We develop a two-layer donor-supply electrode (DSE) in which a highly doped, shallow work function layer supplies a high density of free electrons to an ultrathin TiO2 layer via charge-transfer doping. Using the DSE we build all-room-temperature-processed small-bandgap (1 eV) colloidal quantum dot solar cells suitable for use as the back junction in tandem solar cells. We further report in this work the first efficient CQD tandem solar cells. We use a graded recombination layer (GRL) to provide a progression of work functions from the hole-accepting electrode in the bottom cell to the electron-accepting electrode in the top cell. The recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We conclude our dissertation by presenting the generalized conditions for design of efficient graded recombination layer solar devices. We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the

  5. Microfluidic devices and methods including porous polymer monoliths

    Science.gov (United States)

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  6. Technological development for super-high efficiency solar cells. Technological development for crystalline compound solar cells (high-efficiency III-V tandem solar cells); Chokokoritsu taiyo denchi no gijutsu kaihatsu. Kessho kagobutsu taiyo denchi no gijutsu kaihatsu (III-V zoku kagobutsu handotai taiyo denchi no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on technological development of III-V compound semiconductor solar cells in fiscal 1994. (1) On development of epitaxial growth technology of lattice mismatching systems, the optimum structure of InGaAs strain intermediate layers was studied for reducing a dislocation density by lattice mismatching of GaAs layer grown on Si substrate and difference in thermal expansion coefficient. The effect of strain layer on dislocation reduction was found only at 250dyne/cm in strain energy. Growth of GaAs layers on the Si substrate treated by hydrofluoric acid at low temperature was attempted by MBE method. As a dislocation distribution was controlled by laying different atoms at hetero-interface, the dislocation density of growing layer surfaces decreased by concentration of dislocation at hetero-interface. (2) On development of high-efficiency tandem cell structure, tunnel junction characteristics, cell formation process and optimum design method of lattice matching tandem cells were studied, while thin film cell formation was basically studied for lattice mismatching tandem cells. 45 figs., 8 tabs.

  7. Solar-energy conversion by combined photovoltaic converters with CdTe and CuInSe2 base layers

    International Nuclear Information System (INIS)

    Khrypunov, G. S.; Sokol, E. I.; Yakimenko, Yu. I.; Meriuts, A. V.; Ivashuk, A. V.; Shelest, T. N.

    2014-01-01

    The possibility of the combined use of bifacial thin-film solar cells based on CdTe and frontal solar cells with a CuInSe 2 base layer in tandem structures is experimentally confirmed. It is found that, for the use of bifacial solar cells based on cadmium telluride in a tandem structure, the optimal thickness of their base layer should be 1 μm. The gain in the efficiency of the tandem structure, compared with an individual CuInSe 2 -based solar cell, is 1.8% in the case of series-connected solar cells and 1.3%, for parallel-connected

  8. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  9. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  10. Structural dependences of localization and recombination of photogenerated carriers in the top GaInP Subcells of GaInP/GaAs double-junction tandem solar cells.

    Science.gov (United States)

    Deng, Zhuo; Ning, Jiqiang; Su, Zhicheng; Xu, Shijie; Xing, Zheng; Wang, Rongxin; Lu, Shulong; Dong, Jianrong; Zhang, Baoshun; Yang, Hui

    2015-01-14

    In high-efficiency GaInP/GaAs double-junction tandem solar cells, GaInP layers play a central role in determining the performance of the solar cells. Therefore, gaining a deeper understanding of the optoelectronic processes in GaInP layers is crucial for improving the energy conversion efficiency of GaInP-based photovoltaic devices. In this work, we firmly show strong dependences of localization and recombination of photogenerated carriers in the top GaInP subcells in the GaInP/GaAs double-junction tandem solar cells on the substrate misorientation angle with excitation intensity- and temperature-dependent photoluminescence (PL). The entire solar cell structures including GaInP layers were grown with metalorganic chemical vapor deposition on GaAs substrates with misorientation angles of 2° (denoted as Sample 2°) and 7° (Sample 7°) off (100) toward (111)B. The PL spectral features of the two top GaInP subcells, as well as their excitation-power and temperature dependences exhibit remarkable variation on the misorientation angle. In Sample 2°, the dominant localization mechanism and luminescence channels are due to the energy potential minima caused by highly ordered atomic domains; In Sample 7°, the main localization and radiative recombination of photogenerated carriers occur in the atomically disordered regions. Our results reveal a more precise picture on the localization and recombination mechanisms of photogenerated carriers in the top GaInP subcells, which could be the crucial factors in controlling the optoelectronic efficiency of the GaInP-based multijunction photovoltaic devices.

  11. From Morphology to Interfaces to Tandem Geometries: Enhancing the Performance of Perovskite/Polymer Solar Cells

    Science.gov (United States)

    Russell, Thomas

    We have taken a new approach to develop mesoporous lead iodide scaffolds, using the nucleation and growth of lead iodide crystallites in a wet film. A simple time-dependent growth control enabled the manipulation of the mesoporous lead iodide layer quality in a continuous manner. The morphology of lead iodide is shown to influence the subsequent crystallization of methyamoniumleadiodide film by using angle-dependent grazing incidence x-ray scattering. The morphology of lead iodide film can be fine-tuned, and thus the methyamoniumleadiodide film quality can be effectively controlled, leading to an optimization of the perovskite active layer. Using this strategy, perovskite solar cells with inverted PHJ structure showed a PCE of 15.7 per cent with little hysteresis. Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between metal electrode and electron transport layer (ETL) is lacking. A significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells was achieved by inserting a fulleropyrrolidine interlayer between the silver electrode and electron transport layer. The interlayer was found to enhance recombination resistance, increases electron extraction rate and prolongs free carrier lifetime. We also uncovered a facile solution-based fabrication of high performance tandem perovskite/polymer solar cells where the front sub-cell consists of perovskite and the back sub-cell is a polymer-based layer. A record maximum PCE of 15.96 per cent was achieved, demonstrating the synergy between the perovskite and semiconducting polymers. This design balances the absorption of the perovskite and the polymer, eliminates the adverse impact of thermal annealing during perovskite fabrication, and affords devices with no hysteresis. This work was performed in collaboration with Y. Liu, Z. Page, D. Venkataraman and T. Emrick (UMASS), F. Liu (LBNL) and Q. Hu and R

  12. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  13. Influence of N-type μc-SiOx:H intermediate reflector and top cell material properties on the electrical performance of "micromorph" tandem solar cells

    Science.gov (United States)

    Chatterjee, P.; Roca i Cabarrocas, P.

    2018-01-01

    Amorphous silicon (a-Si:H) / micro-crystalline silicon (μc-Si:H), "micromorph" tandem solar cells have been investigated using a detailed electrical - optical model. Although such a tandem has good light absorption over the entire visible spectrum, the a-Si:H top cell suffers from strong light-induced degradation (LID). To improve matters, we have replaced a-Si:H by hydrogenated polymorphous silicon (pm-Si:H), a nano-structured silicon thin film with lower LID than a-Si:H. But the latter's low current carrying capacity necessitates a thicker top cell for current-matching, again leading to LID problems. The solution is to introduce a suitable intermediate reflector (IR) at the junction between the sub-cells, to concentrate light of the shorter visible wavelengths into the top cell. Here we assess the suitability of N-type micro-crystalline silicon oxide (μc-SiOx:H) as an IR. The sensitivity of the solar cell performance to the complex refractive index, thickness and texture of such a reflector is studied. We conclude that N-μc-SiOx:H does concentrate light into the top sub-cell, thus reducing its required thickness for current-matching. However the IR also reflects light right out of the device; so that the initial efficiency suffers. The advantage of such an IR is ultimately seen in the stabilized state since the LID of a thin top cell is low. We also find that for high stabilized efficiencies, the IR should be flat (having no texture of its own). Our study indicates that we may expect to reach 15% stable tandem micromorph efficiency.

  14. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  15. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications.

    Science.gov (United States)

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel

    2013-07-12

    Epinephrine-bonded polymeric monoliths for capillary electrochromatography (CEC) were developed by nucleophilic substitution reaction of epoxide groups of poly(glycidyl-methacrylate-co-ethylenedimethacrylate) (poly(GMA-co-EDMA)) monoliths using epinephrine as nucleophilic reagent. The ring opening reaction under dynamic conditions was optimized. Successful chemical modification of the monolith surface was ascertained by in situ Raman spectroscopy characterization. In addition, the amount of epinephrine groups that was bound to the monolith surface was evaluated by oxidation of the catechol groups with Ce(IV), followed by spectrophotometric measurement of unreacted Ce(IV). About 9% of all theoretical epoxide groups of the parent monolith were bonded to epinephrine. The chromatographic behavior of the epinephrine-bonded monolith in CEC conditions was assessed with test mixtures of alkyl benzenes, aniline derivatives and substituted phenols. In comparison to the poly(GMA-co-EDMA) monoliths, the epinephrine-bonded monoliths exhibited a much higher retention and slight differences in selectivity. The epinephrine-bonded monolith was further modified by oxidation with a Ce(IV) solution and compared with the epinephrine-bonded monoliths. The resulting monolithic stationary phases were evaluated in terms of reproducibility, giving RSD values below 9% in the parameters investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model

    Science.gov (United States)

    Goradia, C.; Vaughn, J.; Baraona, C. R.

    1980-01-01

    A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).

  17. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    Science.gov (United States)

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

  18. Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Barshilia, Harish C.; Selvakumar, N.; Rajam, K.S. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560 017 (India); Biswas, A. [Spectroscopy Division, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2008-11-15

    Spectrally selective TiAlN/AlON tandem absorbers were deposited on copper and stainless steel substrates using a reactive DC/RF magnetron sputtering system. The compositions and thicknesses of the individual component layers were optimized to achieve high absorptance ({alpha}=0.931-0.942) and low emittance ({epsilon}=0.05-0.06) on copper substrate. The experimental spectroscopic ellipsometric data have been fitted with the theoretical models to derive the dispersion of the optical constants (n and k). In order to study the thermal stability of the tandem absorbers, they were subjected to heat treatment (in air and vacuum) for different durations and temperatures. The tandem absorber deposited on Cu substrates exhibited high solar selectivity ({alpha}/{epsilon}) of 0.946/0.07 even after heat treatment in air up to 600 C for 2 h. At 625 C, the solar selectivity decreased significantly on Cu substrates (e.g., {alpha}/{epsilon}=0.924/0.30). The tandem absorber on Cu substrates was also stable in air up to 100 h at 400 C with a solar selectivity of 0.919/0.06. Studies on the accelerated aging tests indicated that the activation energy for the degradation of the tandem absorber is of the order of 100 kJ/mol. (author)

  19. Synthesis of Porous Carbon Monoliths Using Hard Templates.

    Science.gov (United States)

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-03-21

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m²·g -1 . The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions.

  20. II-IV-V Based Thin Film Tandem Photovoltaic Cell

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Nathan [Arizona State Univ., Mesa, AZ (United States); van Schilfgaarde, Mark [Arizona State Univ., Mesa, AZ (United States)

    2012-10-04

    [Through a combination of theory and experiment that, absent unknown mitigating factors, a tandem cell whose (wide-gap. 1.8 eV) top layer is made of ZnSnP2 and whose (narrow gap, 1.1 eV) bottom layer consisting of ZnGeAs2 are near-ideal materials for a tandem cell. Not only are there gaps optimally adjusted to the solar spectrum, but the two compounds are lattice-matched, and their energy band structure and optical absorption are also near-ideal (they closely resemble that of GaAs). Our first major challenge is to establish that high-quality II-IV-V thin films can be synthesized. We have begun growing and characterizing films of ZnGeAs2 and ZnSnP2, initially grown on Ge substrates (the lattice constant of Ge matches these compounds) by pulsed laser ablation and sputtering. In tandem are theoretical calculations to guide the experiments. The goal is to develop methods that can be used to produce a pair of lattice-matched thin films that will be useful in tandem cells.

  1. Photovoltaic solar energy: State of the art

    International Nuclear Information System (INIS)

    Van Sark, W.G.J.H.M.; Sinke, W.C.

    1993-03-01

    Attention is paid to developments in the Netherlands of all aspects of photovoltaic (PV) energy: solar cells, components, PV-systems and all kinds of applications. Efficiencies of the present solar cell types still increase, varying from more than 10% for organic/TiO 2 solar cells to 33% for GaAs/GaSb concentrator tandem solar cells. 3 figs., 2 ills., 1 tab

  2. Nano-Doped Monolithic Materials for Molecular Separation

    Directory of Open Access Journals (Sweden)

    Caleb Acquah

    2017-01-01

    Full Text Available Monoliths are continuous adsorbents that can easily be synthesised to possess tuneable meso-/macropores, convective fluid transport, and a plethora of chemistries for ligand immobilisation. They are grouped into three main classes: organic, inorganic, and hybrid, based on their chemical composition. These classes may also be differentiated by their unique morphological and physicochemical properties which are significantly relevant to their specific separation applications. The potential applications of monoliths for molecular separation have created the need to enhance their characteristic properties including mechanical strength, electrical conductivity, and chemical and thermal stability. An effective approach towards monolith enhancement has been the doping and/or hybridization with miniaturized molecular species of desirable functionalities and characteristics. Nanoparticles are usually preferred as dopants due to their high solid phase dispersion features which are associated with improved intermolecular adsorptive interactions. Examples of such nanomaterials include, but are not limited to, carbon-based, silica-based, gold-based, and alumina nanoparticles. The incorporation of these nanoparticles into monoliths via in situ polymerisation and/or post-modification enhances surface adsorption for activation and ligand immobilisation. Herein, insights into the performance enhancement of monoliths as chromatographic supports by nanoparticles doping are presented. In addition, the potential and characteristics of less common nanoparticle materials such as hydroxyapatite, ceria, hafnia, and germania are discussed. The advantages and challenges of nanoparticle doping of monoliths are also discussed.

  3. Monolith electroplating process

    Science.gov (United States)

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  4. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  5. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  6. Simulation of light-induced degradation of μc-Si in a-Si/μc-Si tandem solar cells by the diode equivalent circuit

    Science.gov (United States)

    Weicht, J. A.; Hamelmann, F. U.; Behrens, G.

    2016-02-01

    Silicon-based thin film tandem solar cells consist of one amorphous (a-Si) and one microcrystalline (μc-Si) silicon solar cell. The Staebler - Wronski effect describes the light- induced degradation and temperature-dependent healing of defects of silicon-based solar thin film cells. The solar cell degradation depends strongly on operation temperature. Until now, only the light-induced degradation (LID) of the amorphous layer was examined in a-Si/μc-Si solar cells. The LID is also observed in pc-Si single function solar cells. In our work we show the influence of the light-induced degradation of the μc-Si layer on the diode equivalent circuit. The current-voltage-curves (I-V-curves) for the initial state of a-Si/pc-Si modules are measured. Afterwards the cells are degraded under controlled conditions at constant temperature and constant irradiation. At fixed times the modules are measured at standard test conditions (STC) (AM1.5, 25°C cell temperature, 1000 W/m2) for controlling the status of LID. After the degradation the modules are annealed at dark conditions for several hours at 120°C. After the annealing the dangling bonds in the amorphous layer are healed, while the degradation of the pc-Si is still present, because the healing of defects in pc-Si solar cells needs longer time or higher temperatures. The solar cells are measured again at STC. With this laboratory measured I-V-curves we are able to separate the values of the diode model: series Rs and parallel resistance Rp, saturation current Is and diode factor n.

  7. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    Science.gov (United States)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  8. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    Science.gov (United States)

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Low Cost, Epitaxial Growth of II-VI Materials for Multijunction Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian E. [PLANT PV, Inc., Oakland, CA (United States); Peters, Craig H. [PLANT PV, Inc., Oakland, CA (United States)

    2014-04-30

    Multijunction solar cells have theoretical power conversion efficiencies in excess of 29% under one sun illumination and could become a highly disruptive technology if fabricated using low cost processing techniques to epitaxially grow defect tolerant, thin films on silicon. The PLANT PV/Molecular Foundry team studied the feasibility of using cadmium selenide (CdSe) as the wide band-gap, top cell and Si as the bottom cell in monolithically integrated tandem architecture. The greatest challenge in developing tandem solar cells is depositing wide band gap semiconductors that are both highly doped and have minority carrier lifetimes greater than 1 ns. The proposed research was to determine whether it is possible to rapidly grow CdSe films with sufficient minority carrier lifetimes and doping levels required to produce an open-circuit voltage (Voc) greater than 1.1V using close-space sublimation (CSS).

  10. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  11. ZnO transparent conductive oxide for thin film silicon solar cells

    Science.gov (United States)

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  12. Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Andersen, Thomas Rieks; Bentzen, Janet Jonna

    2015-01-01

    Silver nanowires (AgNWs) and zinc oxide (ZnO) are deposited on flexible substrates using fast roll-to-roll (R2R) processing. The AgNW film on polyethylene terephthalate (PET) shows >80% uniform optical transmission in the range of 550-900 nm. This electrode is compared to the previously reported...... spectrum reaching up to 40% increased transmission at 750 nm in comparison to Flextrode. The functionality of AgNW electrodes is demonstrated in single and tandem polymer solar cells and compared with parallel devices on traditional Flextrode. All layers, apart from the semitransparent electrodes which...... are large-scale R2R produced, are fabricated in ambient conditions on a laboratory roll-coater using printing and coating methods which are directly transferrable to large-scale R2R processing upon availability of materials. In a single cell structure, Flextrode is preferable with active layers based...

  13. Protective Skins for Aerogel Monoliths

    Science.gov (United States)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  14. 30th Solar Energy Promotion Committee Meeting - 5th Solar Cell Liaison Meeting. Combined report for fiscal 1989-1992; Dai 30 kai taiyo energy suishin iinkai dai 5 kai taiyo denchi renrakukai (1989-1992 nendo hokoku no matome)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-04-20

    The above-named events were convened in Tokyo in the period of April 20-23, 1993, where a total of 51 presentations were given on research achievements. Presented in the session on a-Si systems were 22 essays concerning high quality manufacturing technology - high integration technology, large area manufacturing technology - large area a-Si tandem solar cell, highly reliable manufacturing technology - bilayer device, composite transparent conductive film - transparent conductive film with performance enhanced by compositing, etc. Presented in the session on chalcopyrite and II-VI group systems were 8 essays concerning amorphous/compound tandem cell manufacturing technology, research on compound semiconductor solar cell, etc. Presented in the session of III-V group systems were 6 essays concerning research on compound semiconductor solar cell - superlattice structure tandem cell, development of InGaP/Si tandem solar cell, etc. In the session of crystalline Si systems, 15 essays were presented concerning highly pure silicon manufacturing technology, highly pure substrate manufacturing technology, etc. (NEDO)

  15. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Energy Technology Data Exchange (ETDEWEB)

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  16. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  17. Active control of the Chinese Giant Solar Telescope

    Science.gov (United States)

    Dai, Yichun; Yang, Dehua; Jin, Zhenyu; Liu, Zhong; Qin, Wei

    2014-07-01

    The Chinese Giant Solar Telescope (CGST) is the next generation solar telescope of China with diameter of 8 meter. The unique feature of CGST is that its primary is a ring, which facilitates the polarization detection and thermal control. In its present design and development phase, two primary mirror patterns are considered. For one thing, the primary mirror is expected to construct with mosaic mirror with 24 trapezoidal (or petal) segments, for another thing, a monolithic mirror is also a candidate for its primary mirror. Both of them depend on active control technique to maintain the optical quality of the ring mirror. As a solar telescope, the working conditions of the CGST are quite different from those of the stellar telescopes. To avoid the image deterioration due to the mirror seeing and dome seeing, especially in the case of the concentration of flux in a solar telescope, large aperture solar projects prefer to adopt open telescopes and open domes. In this circumstance, higher wind loads act on the primary mirror directly, which will cause position errors and figure errors of the primary with matters worse than those of the current 10-meter stellar telescopes with dome protect. Therefore, it gives new challenges to the active control capability, telescope structure design, and wind shielding design. In this paper, the study progress of active control of CGST for its mosaic and monolithic mirror are presented, and the wind effects on such two primary mirrors are also investigated.

  18. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Antireflection coating design for series interconnected multi-junction solar cells

    International Nuclear Information System (INIS)

    Aiken, Daniel J.

    1999-01-01

    AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J(sub SC)) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices

  20. Biomimetic small peptide functionalized affinity monoliths for monoclonal antibody purification.

    Science.gov (United States)

    Wang, Xiangyu; Xia, Donghai; Han, Hai; Peng, Kun; Zhu, Peijie; Crommen, Jacques; Wang, Qiqin; Jiang, Zhengjin

    2018-08-09

    The rapid development of monoclonal antibodies (mAbs) in therapeutic and diagnostic applications has necessitated the advancement of mAbs purification technologies. In this study, a biomimetic small peptide ligand 3,5-di-tert-butyl-4-hydroxybenzoic acid-Arg-Arg-Gly (DAAG) functionalized monolith was fabricated through a metal ion chelation-based multi-step approach. The resulting monolith showed good chromatographic performance. Compared with the Ni 2+ based IMAC monolith, the DAAG functionalized monolith exhibited not only excellent specificity but also higher dynamic binding capacity (DBC). The 10% DBC and 50% DBC for hIgG reached as high values as 26.0 and 34.6 mg/mL, respectively, at a ligand density of 8.8 μmol/mL, due to the high porosity and accessibility of the monolithic matrix. Moreover, the stability of the DAAG functionalized monolith in successive breakthrough experiments indicates that it has a promising potential for long-term use in mAbs purification. Finally, the DAAG functionalized monolith was successfully applied to the purification of trastuzumab or human immunoglobulin G (hIgG) from biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Four-terminal organic solar cell modules with increased annual energy yield

    NARCIS (Netherlands)

    Gehlhaar, R.; Cheyns, D.; Willigenburg, L. van; Hadipour, A.; Gilot, J.; Radbeh, R.; Aernouts, T.

    2013-01-01

    The authors present experimental results on mechanically stacked organic solar modules and their advantage over standard tandem architectures. A four-terminal configuration of two single junction modules with complementary absorbing active layers uses the more efficient energy conversion of a tandem

  2. A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2009-07-01

    Full Text Available Solar cells are a promising renewable, carbon-free electric energy resource to address the fossil fuel shortage and global warming. Energy conversion efficiencies around 40% have been recently achieved in laboratories using III-V semiconductor compounds as photovoltaic materials. This article reviews the efforts and accomplishments made for higher efficiency III-V semiconductor compound solar cells, specifically with multijunction tandem, lower-dimensional, photonic up/down conversion, and plasmonic metallic structures. Technological strategies for further performance improvement from the most efficient (AlInGaP/(InGaAs/Ge triple-junction cells including the search for 1.0 eV bandgap semiconductors are discussed. Lower-dimensional systems such as quantum well and dot structures are being intensively studied to realize multiple exciton generation and multiple photon absorption to break the conventional efficiency limit. Implementation of plasmonic metallic nanostructures manipulating photonic energy flow directions to enhance sunlight absorption in thin photovoltaic semiconductor materials is also emerging.

  3. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    Science.gov (United States)

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Fire resistance of prefabricated monolithic slab

    Directory of Open Access Journals (Sweden)

    Gravit Marina

    2017-01-01

    Full Text Available A prefabricated monolithic slab (PMS has a number of valuable advantages, they allow to significantly decrease the weight of construction keeping the necessary structural-load capacity, to speed up and cheapen work conduction, to increase the heat isolating properties of an enclosure structure [1]. In order to create a design method of prefabricated monolithic slab fire-resistance, it's necessary to perform a series of PMS testing, one of which is being described in this article. Subjected to the test is a fragment of prefabricated monolithic slab with polystyrene concrete inserts along the beams with bent metal profile 250 mm thick, with a 2.7 m span loaded with evenly spread load equal to 600 kg/m2. After 3 hour testing for fire-resistance [2] no signs of construction ultimate behavior were detected.

  5. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  6. TandEM: Titan and Enceladus mission

    Science.gov (United States)

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, Christophe; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, Ji; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, Catherine D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa,

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA’s Cosmic Vision 2015–2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini–Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini–Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfière) and possibly several landing probes to be delivered through the atmosphere.

  7. Development of high-throughput analysis system using highly-functional organic polymer monoliths

    International Nuclear Information System (INIS)

    Umemura, Tomonari; Kojima, Norihisa; Ueki, Yuji

    2008-01-01

    The growing demand for high-throughput analysis in the current competitive life sciences and industries has promoted the development of high-speed HPLC techniques and tools. As one of such tools, monolithic columns have attracted increasing attention and interest in the last decade due to the low flow-resistance and excellent mass transfer, allowing for rapid separations and reactions at high flow rates with minimal loss of column efficiency. Monolithic materials are classified into two main groups: silica- and organic polymer-based monoliths, each with their own advantages and disadvantages. Organic polymer monoliths have several distinct advantages in life-science research, including wide pH stability, less irreversible adsorption, facile preparation and modification. Thus, we have so far tried to develop organic polymer monoliths for various chemical operations, such as separation, extraction, preconcentration, and reaction. In the present paper, recent progress in the development of organic polymer monoliths is discussed. Especially, the procedure for the preparation of methacrylate-based monoliths with various functional groups is described, where the influence of different compositional and processing parameters on the monolithic structure is also addressed. Furthermore, the performance of the produced monoliths is demonstrated through the results for (1) rapid separations of alklybenzenes at high flow rates, (2) flow-through enzymatic digestion of cytochrome c on a trypsin-immobilized monolithic column, and (3) separation of the tryptic digest on a reversed-phase monolithic column. The flexibility and versatility of organic polymer monoliths will be beneficial for further enhancing analytical performance, and will open the way for new applications and opportunities both in scientific and industrial research. (author)

  8. Influence of different carbon monolith preparation parameters on pesticide adsorption

    Directory of Open Access Journals (Sweden)

    Vukčević Marija

    2013-01-01

    Full Text Available The capacity of carbon monolith for pesticide removal from water, and the mechanism of pesticide interaction with carbon surface were examined. Different carbon monolith samples were obtained by varying the carbonization and activation parameters. In order to examine the role of surface oxygen groups in pesticide adsorption, carbon monolith surface was functionalized by chemical treatment in HNO3, H2O2 and KOH. The surface properties of the obtained samples were investigated by BET surface area, pore size distribution and temperature-programmed desorption. Adsorption of pesticides from aqueous solution onto activated carbon monolith samples was studied by using five pesticides belonging to different chemical groups (acetamiprid, dimethoate, nicosulfuron, carbofuran and atrazine. Presented results show that higher temperature of carbonization and the amount of activating agent allow obtaining microporous carbon monolith with higher amount of surface functional groups. Adsorption properties of the activated carbon monolith were more readily affected by the amount of the surface functional groups than by specific surface area. Results obtained by carbon monolith functionalisation showed that π-π interactions were the main force for adsorption of pesticides with aromatic structure, while acidic groups play an important role in adsorption of pesticides with no aromatic ring in the chemical structure.

  9. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    Science.gov (United States)

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  10. Spectral and directional dependence of light-trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Carolin

    2011-02-17

    This thesis investigates the directional and spectral dependence of light-incoupling and light-trapping in solar cells. The light-trapping does not notably change under increased angles of incidence. To enhance the incoupling at the front of the solar cell, the effects of a textured surface structure on the cover glass of the solar cell are investigated. The texture reduces the reflectance at the air-glass interface and, additionally, reduces the reflection losses originating at the interface between the glass and the transparent conductive oxide (TCO) as well as the TCO and the silicon (Si) absorber due to the randomization of light. On samples without a textured TCO/Si interface, the textured foil induces additional light-trapping in the photovoltaically active absorber material. This effect is not observed for samples with a textured TCO/Si interface. In this case, using tandem solar cells, a redistribution of light absorption in the top and bottom subcells is detected. The antireflective texture increases the short circuit current density in thin film silicon tandem solar cells by up to 1 mA/cm{sup 2}, and the conversion efficiency by up to 0.7 % absolute. The increase in the annual yield of solar cells is estimated to be up to 10 %. Further, the spectral dependence of the efficiency and annual yield of a tandem solar cell was investigated. The daily variation of the incident spectrum causes a change in the current matching of the serial connected subcells. Simulations determine the optimum subcell layer thicknesses of tandem solar cells. The thicknesses optimized in respect to the annual yield overlap in a wide range for both investigated locations with those for the AM1.5g standard spectrum. Though, a slight top limitation is favorable. Matching the short circuit currents of the subcells maximizes the overall current, but minimizes the fill factor. This thesis introduces a new definition for the matching condition of tandem solar cells. This definition

  11. Acoustic of monolithic dome structures

    Directory of Open Access Journals (Sweden)

    Mostafa Refat Ismail

    2018-03-01

    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  12. Media Presentation Synchronisation for Non-monolithic Rendering Architectures

    NARCIS (Netherlands)

    I. Vaishnavi (Ishan); D.C.A. Bulterman (Dick); P.S. Cesar Garcia (Pablo Santiago); B. Gao (Bo)

    2007-01-01

    htmlabstractNon-monolithic renderers are physically distributed media playback engines. Non-monolithic renderers may use a number of different underlying network connection types to transmit media items belonging to a presentation. There is therefore a need for a media based and inter-network- type

  13. Edge chipping and flexural resistance of monolithic ceramics☆

    Science.gov (United States)

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  14. Computer analysis of microcrystalline silicon hetero-junction solar cell with lumerical FDTD/DEVICE

    Science.gov (United States)

    Riaz, Muhammad; Earles, S. K.; Kadhim, Ahmed; Azzahrani, Ahmad

    The computer analysis of tandem solar cell, c-Si/a-Si:H/μc-SiGe, is studied within Lumerical FDTD/Device 4.6. The optical characterization is performed in FDTD and then total generation rate is transported into DEVICE for electrical characterization. The electrical characterization of the solar cell is carried out in DEVICE. The design is implemented by staking three sub cells with band gap of 1.12eV, 1.50eV and 1.70eV, respectively. First, single junction solar cell with both a-Si and μc-SiGe absorbing layers are designed and compared. The thickness for both layers are kept the same. In a single junction, solar cell with a-Si absorbing layer, the fill factor and the efficiency are noticed as FF = 78.98%, and η = 6.03%. For μc-SiGe absorbing layer, the efficiency and fill factor are increased as η = 7.06% and FF = 84.27%, respectively. Second, for tandem thin film solar cell c-Si/a-Si:H/μc-SiGe, the fill factor FF = 81.91% and efficiency η = 9.84% have been noticed. The maximum efficiency for both single junction thin film solar cell c-Si/μc-SiGe and tandem solar cell c-Si/a-Si:H/μc-SiGe are improved with check board surface design for light trapping.

  15. Monolithic amorphous silicon modules on continuous polymer substrate. Final subcontract report, 9 January 1991--14 April 1991

    Energy Technology Data Exchange (ETDEWEB)

    Grimmer, D.P. [Iowa Thin Film Technologies, Inc., Ames, IA (US)

    1992-03-01

    This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

  16. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.

    Science.gov (United States)

    Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng

    2014-10-08

    Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.

  17. Creating deep soil core monoliths: Beyond the solum

    Science.gov (United States)

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  18. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO 2 and steam, and nitrate/nitrite components, if any, to N 2 . The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO 4 , I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the 2 durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form

  19. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  20. Band gap engineering of tandem structured CIGS compound absorption layer fabricated by sputtering and selenization

    International Nuclear Information System (INIS)

    Kang, San; Sharma, Rahul; Sim, Jae-Kwan; Lee, Cheul-Ro

    2013-01-01

    Highlights: ► Systematic band gap engineering to fabricate tandem Cu(In,Ga)Se 2 absorption layers. ► XRD shows prominent (1 1 2) reflection shift for attributed CIS, CIGS, and CGS phases. ► Optical transmittance and reflectance spectrum are improved towards infrared region. ► The Cu/In + Ga and Ga/In + Ga effect is matched with highest efficient solar cell. ► Tandem CIS/CIGS/CGS layer, the band gap is increased from 1.15 to 2.06 eV. -- Abstract: Band gap engineering was executed to fabricate a multi-junction stacked i.e. tandem Cu(In,Ga)Se 2 (CIGS) absorption layer. The CIGS absorption layers consist of multi-junction stacked CIS/CIGS/CGS thin films from bottom to top with increasing band gap. Tandem CIGS layers were fabricated by using three precursor of CuIn, In/CuGa/In, and CuGa onto the Mo coated soda-lime glass (SLG) by the sequential sputtering of CuIn, CuGa, and In targets. The CIG precursors were converted into CIGS absorption thin film by selenization process. From the X-ray diffraction (XRD) pattern of CIS/CIGS/CGS tandem layer, with the prominent peak shift for (1 1 2) reflections was attributed to the individual CIS, CIGS, and CGS phases at 26.76°, 27.15°, and 27.65° diffraction angles, respectively. The morphologies and atomic (at%) composition uniformity onto the surface and along the depth were extensively analyzed with field effect scanning electron microscope (FESEM) attached energy dispersive spectroscopy (EDS) and secondary ion mass spectroscopy (SIMS). The optical properties such as transmittance, reflectance and absorbance were found to improve in the infrared region for all the tandem CIGS layers. Near the fundamental absorption edge, the absorption coefficient was approached to 10 5 cm −1 for CIS/CIGS/CGS tandem layer. The straight-line behavior indicates that the films have a direct band gap. The band gap was found to increase from 1.15 to 1.74 eV with the Ga-grading along the depth of individual CIS, CIGS, and CGS thin films

  1. Data quality objectives summary report for the 105-N monolith off-gas issue

    International Nuclear Information System (INIS)

    Pisarcik, D.J.

    1997-01-01

    The 105-N Basin hardware waste with radiation exposure rates high enough to make above-water handling and packaging impractical has been designated high exposure rate hardware (HERH) waste. This material, consisting primarily of irradiated reactor components, is packaged underwater for subsequent disposal as a grout-encapsulated solid monolith. The third HERH waste package that was created (Monolith No. 3) was not immediately removed from the basin because of administrative delays. During a routine facility walkdown, Monolith No. 3 was observed to be emitting bubbles. Mass spectroscopic analysis of a gas sample from Monolith No. 3 indicated that the gas was 85.2% hydrogen along with a trace of fission gases (stable isotopes of xenon). Gamma energy analysis of a gas sample from Monolith No. 3 also identified trace quantities of 85 Kr. The monolith off-gas Data Quality Objective (DQO) process concluded the following: Monolith No. 3 and similar monoliths can be safely transported following installation of spacers between the lids of the L3-181 transport cask to vent the hydrogen gas; The 85 Kr does not challenge personnel or environmental safety; Fumaroles in the surface of gassing monoliths renders them incompatible with Hanford Site Solid Waste Acceptance Criteria requirements unless placed in a qualified high integrity container overpack; and Gassing monoliths do meet Environmental Restoration Disposal Facility Waste Acceptance Criteria requirements. This DQO Summary Report is both an account of the Monolith Off-Gas DQO Process and a means of documenting the concurrence of each of the stakeholder organizations

  2. Quantum-Tuned Two-Junction Solar Cells

    KAUST Repository

    Wang, Xihua

    2011-01-01

    We report quantum-size-effect tuned tandem solar cells. Our two-junction photovoltaic devices employ light-absorbing material of a single composition and use two rationally-selected nanoparticle sizes to harvest the sun’s broad spectrum.

  3. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    OpenAIRE

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructu...

  4. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  5. Preparation of stir cake sorptive extraction based on poly(4-vinylbenzoic acid-divinylbenzene) monolith and its application in sensitive determination of β-agonists in milk and swine urine samples

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojia, E-mail: hxj@xmu.edu.cn; Chen, Linli; Yuan, Dongxing

    2013-11-15

    Highlights: • A new poly(4-vinylbenzoic acid-divinylbenzene) monolith was first prepared. • The porous monolith was used as sorbent of stir cake sorptive extraction. • The new sorbent could extract β-agonists effectively by multiple interactions. • Method of determination of trace β-agonists in milk and urine samples was developed. -- Abstract: In this study, a new stir cake sorptive extraction (SCSE) based on poly(4-vinylbenzoic acid-divinylbenzene) (VBADB) monolith was prepared. The effect of preparation conditions of monolith on extraction efficiencies was investigated in detail. Several characteristic techniques, such as elemental analysis, infrared spectroscopy, mercury intrusion porosimetry and scanning electron microscopy were used to characterize the monolithic material. The combination of SCSE-VBADB with high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) detection was developed for sensitive determination of ultra-trace β-agonists in milk and swine urine samples. In order to obtain the optimal extraction conditions of SCSE-VBADB for β-agonists, several extractive parameters, including pH values and ionic strength in sample matrix, extraction and desorption time were optimized. Under the optimum conditions, the limits of detection (S/N = 3) for the target analytes were 0.007–0.030 μg/L in milk and 0.002–0.011 μg/L in swine urine, respectively. Excellent method reproducibility was achieved in terms of intraday and interday precisions, indicated by the RSDs of both <10.0%, respectively. Finally, the proposed method was successfully used to detect β-agonists in different milk and swine urines samples. Acceptable recoveries ranged from 50.3% to 113% and 50.1% to 92.2% for milk and swine urine samples, respectively; and the RSDs for reproducibility were less than 8.0% for target analytes in all real samples.

  6. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography.

    Science.gov (United States)

    Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin

    2017-01-06

    This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Organic tandem and multi-junction solar cells

    NARCIS (Netherlands)

    Hadipour, Afshin; de Boer, Bert; Blom, Paul W. M.

    2008-01-01

    The emerging field of stacked layers (double- and even multi-layers) in organic photovoltaic cells is reviewed. Owing to the limited absorption width of organic molecules and polymers, only a small fraction of the solar flux can be harvested by a single-layer bulk hetero-junction photovoltaic cell.

  8. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  9. Decomposition of monolithic web application to microservices

    OpenAIRE

    Zaymus, Mikulas

    2017-01-01

    Solteq Oyj has an internal Wellbeing project for massage reservations. The task of this thesis was to transform the monolithic architecture of this application to microservices. The thesis starts with a detailed comparison between microservices and monolithic application. It points out the benefits and disadvantages microservice architecture can bring to the project. Next, it describes the theory and possible strategies that can be used in the process of decomposition of an existing monoli...

  10. Fracture-resistant monolithic dental crowns.

    Science.gov (United States)

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  11. Characterization of SOI monolithic detector system

    Science.gov (United States)

    Álvarez-Rengifo, P. L.; Soung Yee, L.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic active pixel sensor for charged particle tracking was developed. This research is performed within the framework of an R&D project called TRAPPISTe (Tracking Particles for Physics Instrumentation in SOI Technology) whose aim is to evaluate the feasibility of developing a Monolithic Active Pixel Sensor (MAPS) with Silicon-on-Insulator (SOI) technology. Two chips were fabricated: TRAPPISTe-1 and TRAPPISTe-2. TRAPPISTe-1 was produced at the WINFAB facility at the Université catholique de Louvain (UCL), Belgium, in a 2 μm fully depleted (FD-SOI) CMOS process. TRAPPISTe-2 was fabricated with the LAPIS 0.2 μm FD-SOI CMOS process. The electrical characterization on single transistor test structures and of the electronic readout for the TRAPPISTe series of monolithic pixel detectors was carried out. The behavior of the prototypes’ electronics as a function of the back voltage was studied. Results showed that both readout circuits exhibited sensitivity to the back voltage. Despite this unwanted secondary effect, the responses of TRAPPISTe-2 amplifiers can be improved by a variation in the circuit parameters.

  12. Thin-film solar cells

    International Nuclear Information System (INIS)

    Aberle, Armin G.

    2009-01-01

    The rapid progress that is being made with inorganic thin-film photovoltaic (PV) technologies, both in the laboratory and in industry, is reviewed. While amorphous silicon based PV modules have been around for more than 20 years, recent industrial developments include the first polycrystalline silicon thin-film solar cells on glass and the first tandem solar cells based on stacks of amorphous and microcrystalline silicon films ('micromorph cells'). Significant thin-film PV production levels are also being set up for cadmium telluride and copper indium diselenide.

  13. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

    International Nuclear Information System (INIS)

    Floris, P.; Twamley, B.; Nesterenko, P.N.; Paull, B.; Connolly, D.

    2012-01-01

    Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter ∼ 1-2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction. (author)

  14. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  15. Immobilisation of shredded soft waste in cement monolith

    International Nuclear Information System (INIS)

    Brown, D.J.; Dalton, M.J.; Smith, D.L.

    1983-04-01

    A grouting process for the immobilisation of shredded contaminated laboratory waste in a cement monolith is being developed at the Atomic Energy Establishment Winfrith. The objective is to produce a 'monolithic' type package which is acceptable both for sea and land disposal. The work carried out on this project in the period April 1982 - March 1983 is summarised in this report. (author)

  16. Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography

    International Nuclear Information System (INIS)

    Catalá-Icardo, M.; Torres-Cartas, S.; Meseguer-Lloret, S.; Gómez-Benito, C.; Carrasco-Correa, E.; Simó-Alfonso, E.F.; Ramis-Ramos, G.; Herrero-Martínez, J.M.

    2017-01-01

    In this work, a method for the preparation and anchoring of polymeric monoliths in a polytetrafluoroethylene (PTFE) tubing as a column housing for microbore HPLC is described. In order to assure a covalent attachment of the monolith to the inner wall of the PTFE tube, a two-step procedure was developed. Two surface etching reagents, a commercial sodium naphthalene solution (Fluoroetch"®), or mixtures of H_2O_2 and H_2SO_4, were tried and compared. Then, the obtained hydroxyl groups on the PTFE surface were modified by methacryloylation. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the tubing wall and the stable anchorage of monolith to the wall, respectively. Special emphasis was also put on the reduction of the unwanted effects of shrinking of monolith during polymerization, by using an external proper mold and by selecting the adequate monomers in order to increase the flexibility of the polymer. Poly(glycidyl methacrylate-co-divinylbenzene) monoliths were in situ synthesized by thermal polymerization within the confines of surface-vinylized PTFE tubes. The modified PTFE tubing tightly held the monolith, and the monolithic column exhibited good pressure resistance up to 20 MPa. The column performance was also evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode. The optimized monolithic columns gave plate heights ranged between 70 and 80 μm. The resulting monoliths were also satisfactorily applied to the separation of proteins. - Highlights: • Successful surface etching of PTFE inner wall tubing was done. • The modified PTFE support was next methacryloylated with GMA. • Organic polymeric monolith was in situ prepared in the functionalized PTFE tube. • The monolithic columns gave suitable pressure resistance and separation of proteins.

  17. Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Catalá-Icardo, M., E-mail: mocaic@qim.upv.es [Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Paranimf 1, 46730, Grao de Gandía, Valencia (Spain); Torres-Cartas, S.; Meseguer-Lloret, S.; Gómez-Benito, C. [Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Paranimf 1, 46730, Grao de Gandía, Valencia (Spain); Carrasco-Correa, E.; Simó-Alfonso, E.F.; Ramis-Ramos, G. [Department of Analytical Chemistry, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia (Spain); Herrero-Martínez, J.M., E-mail: jmherrer@uv.es [Department of Analytical Chemistry, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia (Spain)

    2017-04-01

    In this work, a method for the preparation and anchoring of polymeric monoliths in a polytetrafluoroethylene (PTFE) tubing as a column housing for microbore HPLC is described. In order to assure a covalent attachment of the monolith to the inner wall of the PTFE tube, a two-step procedure was developed. Two surface etching reagents, a commercial sodium naphthalene solution (Fluoroetch{sup ®}), or mixtures of H{sub 2}O{sub 2} and H{sub 2}SO{sub 4}, were tried and compared. Then, the obtained hydroxyl groups on the PTFE surface were modified by methacryloylation. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the tubing wall and the stable anchorage of monolith to the wall, respectively. Special emphasis was also put on the reduction of the unwanted effects of shrinking of monolith during polymerization, by using an external proper mold and by selecting the adequate monomers in order to increase the flexibility of the polymer. Poly(glycidyl methacrylate-co-divinylbenzene) monoliths were in situ synthesized by thermal polymerization within the confines of surface-vinylized PTFE tubes. The modified PTFE tubing tightly held the monolith, and the monolithic column exhibited good pressure resistance up to 20 MPa. The column performance was also evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode. The optimized monolithic columns gave plate heights ranged between 70 and 80 μm. The resulting monoliths were also satisfactorily applied to the separation of proteins. - Highlights: • Successful surface etching of PTFE inner wall tubing was done. • The modified PTFE support was next methacryloylated with GMA. • Organic polymeric monolith was in situ prepared in the functionalized PTFE tube. • The monolithic columns gave suitable pressure resistance and separation of proteins.

  18. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  19. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    Science.gov (United States)

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.

  20. Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells

    Czech Academy of Sciences Publication Activity Database

    Löper, P.; Moon, S.J.; de Nicolas, S.M.; Niesen, B.; Ledinský, Martin; Nicolay, S.; Bailat, J.; Yum, J. H.; De Wolf, S.; Ballif, C.

    2015-01-01

    Roč. 17, č. 3 (2015), s. 1619-1629 ISSN 1463-9076 R&D Projects: GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : perovskites * solar cells * silicon solar cells * silicon heterojunction solar cells * photovoltaics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.449, year: 2015

  1. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guijun, E-mail: gliad@connect.ust.hk; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing [State Key Laboratory on Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-06-09

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  2. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    International Nuclear Information System (INIS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-01-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  3. A Monolithically-Integrated μGC Chemical Sensor System

    Directory of Open Access Journals (Sweden)

    Davor Copic

    2011-06-01

    Full Text Available Gas chromatography (GC is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA, breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC system is essential for such applications. We describe the design, fabrication and packaging of mGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC, μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.

  4. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis

    NARCIS (Netherlands)

    Du, P.; Carneiro, J.T.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    A novel reactor for multi-phase photocatalysis is presented, the so-called internally illuminated monolith reactor (IIMR). In the concept of the IIMR, side light emitting fibers are placed inside the channels of a ceramic monolith, equipped with a TiO2 photocatalyst coated on the wall of each

  5. Monolithic JFET preamplifier for ionization chamber calorimeter

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Manfredi, P.F.; Speziali, V.

    1990-10-01

    A monolithic charge sensitive preamplifier using exclusively n-channel diffused JFETs has been designed and is now being fabricated by INTERFET Corp. by means of a dielectrically isolated process which allows preserving as much as possible the technology upon which discrete JFETs are based. A first prototype built by means of junction isolated process has been delivered. The characteristics of monolithically integrated JFETs compare favorably with discrete devices. First results of tests of a preamplifier which uses these devices are reported. 4 refs

  6. Medium area, flexible single and tandem junction solar cells based on roll coated semi-random copolymers

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Dam, Henrik Friis; Burkhart, Beate

    2014-01-01

    laboratory roll-coater using only slot-die coating and flexographic printing under ambient conditions on a flexible ITO-free substrate. In order to overcome a low JSC and FF obtained for single junction devices, devices were also prepared in a tandem geometry making it possible to employ thinner junction...... films. Power conversion efficiencies of up to 1.36% and 1.31% were achieved for the tandem and single junction geometries, respectively....

  7. Crystalline silicon solar cell with front and rear polysilicon passivated contacts as bottom cell for hybrid tandems

    NARCIS (Netherlands)

    Luxembourg, S.L.; Zhang, D.; Wu, Y.; Najafi, M.; Zardetto, V.; Verhees, W.; Burgers, A.R.; Veenstra, S.; Geerligs, L.J.

    2017-01-01

    In this paper we analyze and model perovskite/c-Si tandem cells with front and rear polySi passivated contacts on the bottom cell. A high-efficiency tandem approach will benefit from the high Voc potential of a c-Si bottom cell with front and rear polySi passivated contacts while the combination

  8. An overview of monolithic zirconia in dentistry

    Directory of Open Access Journals (Sweden)

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  9. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    Directory of Open Access Journals (Sweden)

    Deborah Pacheco Lameira

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP crowns in monolithic (1.5 mm thickness and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n=10: Polished monolithic zirconia crowns (PM; Glazed monolithic zirconia crowns (GM; Bi-layer crowns (BL. Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C, and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey’s test (P=.05 indicated that monolithic zirconia crowns presented similar fracture strength (PM=3476.2 N ± 791.7; GM=3561.5 N ± 991.6, which was higher than bilayer crowns (2060.4 N ± 810.6. There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  10. Band gap engineering of tandem structured CIGS compound absorption layer fabricated by sputtering and selenization

    Energy Technology Data Exchange (ETDEWEB)

    Kang, San; Sharma, Rahul; Sim, Jae-Kwan [Semiconductor Materials Processing Laboratory, School of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Deokjin-dong 664-14, Jeonju 561-756 (Korea, Republic of); Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr [Semiconductor Materials Processing Laboratory, School of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Deokjin-dong 664-14, Jeonju 561-756 (Korea, Republic of)

    2013-06-25

    Highlights: ► Systematic band gap engineering to fabricate tandem Cu(In,Ga)Se{sub 2} absorption layers. ► XRD shows prominent (1 1 2) reflection shift for attributed CIS, CIGS, and CGS phases. ► Optical transmittance and reflectance spectrum are improved towards infrared region. ► The Cu/In + Ga and Ga/In + Ga effect is matched with highest efficient solar cell. ► Tandem CIS/CIGS/CGS layer, the band gap is increased from 1.15 to 2.06 eV. -- Abstract: Band gap engineering was executed to fabricate a multi-junction stacked i.e. tandem Cu(In,Ga)Se{sub 2} (CIGS) absorption layer. The CIGS absorption layers consist of multi-junction stacked CIS/CIGS/CGS thin films from bottom to top with increasing band gap. Tandem CIGS layers were fabricated by using three precursor of CuIn, In/CuGa/In, and CuGa onto the Mo coated soda-lime glass (SLG) by the sequential sputtering of CuIn, CuGa, and In targets. The CIG precursors were converted into CIGS absorption thin film by selenization process. From the X-ray diffraction (XRD) pattern of CIS/CIGS/CGS tandem layer, with the prominent peak shift for (1 1 2) reflections was attributed to the individual CIS, CIGS, and CGS phases at 26.76°, 27.15°, and 27.65° diffraction angles, respectively. The morphologies and atomic (at%) composition uniformity onto the surface and along the depth were extensively analyzed with field effect scanning electron microscope (FESEM) attached energy dispersive spectroscopy (EDS) and secondary ion mass spectroscopy (SIMS). The optical properties such as transmittance, reflectance and absorbance were found to improve in the infrared region for all the tandem CIGS layers. Near the fundamental absorption edge, the absorption coefficient was approached to 10{sup 5} cm{sup −1} for CIS/CIGS/CGS tandem layer. The straight-line behavior indicates that the films have a direct band gap. The band gap was found to increase from 1.15 to 1.74 eV with the Ga-grading along the depth of individual CIS, CIGS

  11. Tannin-based monoliths from emulsion-templating

    International Nuclear Information System (INIS)

    Szczurek, A.; Martinez de Yuso, A.; Fierro, V.; Pizzi, A.; Celzard, A.

    2015-01-01

    Highlights: • Efficient preparation procedures are presented for new and “green” tannin-based organic polyHIPEs. • Highest homogeneity and strength are obtained at an oil fraction near the close-packing value. • Structural and mechanical properties abruptly change above such critical value. - Abstract: Highly porous monoliths prepared by emulsion-templating, frequently called polymerised High Internal Phase Emulsions (polyHIPEs) in the literature, were prepared from “green” precursors such as Mimosa bark extract, sunflower oil and ethoxylated castor oil. Various oil fractions, ranging from 43 to 80 vol.%, were used and shown to have a dramatic impact on the resultant porous structure. A critical oil fraction around 70 vol.% was found to exist, close to the theoretical values of 64% and 74% for random and compact sphere packing, respectively, at which the properties of both emulsions and derived porous monoliths changed. Such change of behaviour was observed by many different techniques such as viscosity, electron microscopy, mercury intrusion, and mechanical studies. We show and explain why this critical oil fraction is the one leading to the strongest and most homogeneous porous monoliths

  12. Fabrication of mesoporous polymer monolith: a template-free approach.

    Science.gov (United States)

    Okada, Keisuke; Nandi, Mahasweta; Maruyama, Jun; Oka, Tatsuya; Tsujimoto, Takashi; Kondoh, Katsuyoshi; Uyama, Hiroshi

    2011-07-14

    Mesoporous polyacrylonitrile (PAN) monolith has been fabricated by a template-free approach using the unique affinity of PAN towards a water/dimethyl sulfoxide (DMSO) mixture. A newly developed Thermally Induced Phase Separation Technique (TIPS) has been used to obtain the polymer monoliths and their microstructures have been controlled by optimizing the concentration and cooling temperature.

  13. Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system with these low-voltage panels was installed and its performance ratio has been simulated and projected to be 92.1%, which is 20% more than the crystalline silicon and CdTe counterparts.

  14. Recent advances in the preparation and application of monolithic capillary columns in separation science

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tingting; Yang, Xi; Xu, Yujing [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China); Ji, Yibing, E-mail: jiyibing@msn.com [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China)

    2016-08-10

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  15. Recent advances in the preparation and application of monolithic capillary columns in separation science

    International Nuclear Information System (INIS)

    Hong, Tingting; Yang, Xi; Xu, Yujing; Ji, Yibing

    2016-01-01

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  16. Shear bond strength of indirect composite material to monolithic zirconia.

    Science.gov (United States)

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (Pcomposite material and monolithic zirconia.

  17. Technology development for SOI monolithic pixel detectors

    International Nuclear Information System (INIS)

    Marczewski, J.; Domanski, K.; Grabiec, P.; Grodner, M.; Jaroszewicz, B.; Kociubinski, A.; Kucharski, K.; Tomaszewski, D.; Caccia, M.; Kucewicz, W.; Niemiec, H.

    2006-01-01

    A monolithic detector of ionizing radiation has been manufactured using silicon on insulator (SOI) wafers with a high-resistivity substrate. In our paper the integration of a standard 3 μm CMOS technology, originally designed for bulk devices, with fabrication of pixels in the bottom wafer of a SOI substrate is described. Both technological sequences have been merged minimizing thermal budget and providing suitable properties of all the technological layers. The achieved performance proves that fully depleted monolithic active pixel matrix might be a viable option for a wide spectrum of future applications

  18. Monolithic Chip-Integrated Absorption Spectrometer from 3-5 microns, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A monolithically integrated indium phosphide (InP) to silicon-on-sapphire (SoS) platform is being proposed for a monolithic portable or handheld spectrometer between...

  19. Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells

    KAUST Repository

    Song, Zhaoning; Werner, Jeremie; Shrestha, Niraj; Sahli, Florent; De Wolf, Stefaan; Niesen, Bjorn; Watthage, Suneth C.; Phillips, Adam B.; Ballif, Christophe; Ellingson, Randy J.; Heben, Michael J.

    2016-01-01

    the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer

  20. Surface characteristics and antibacterial activity of a silver-doped carbon monolith

    Directory of Open Access Journals (Sweden)

    Marija Vukčević et al

    2008-01-01

    Full Text Available A carbon monolith with a silver coating was prepared and its antimicrobial behaviour in a flow system was examined. The functional groups on the surface of the carbon monolith were determined by temperature-programmed desorption and Boehm's method, and the point of zero charge was determined by mass titration. The specific surface area was examined by N2 adsorption using the Brunauer, Emmett and Teller (BET method. As a test for the surface activity, the deposition of silver from an aqueous solution of a silver salt was used. The morphology and structure of the silver coatings were characterized by scanning electron microscopy and x-ray diffraction. The resistance to the attrition of the silver deposited on the carbon monolith was tested. The antimicrobial activity of the carbon monolith with a silver coating was determined using standard microbiological methods. Carbon monolith samples with a silver coating showed good antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans, and are therefore suitable for water purification, particularly as personal disposable water filters with a limited capacity.

  1. III-V/Si Tandem Cells Utilizing Interdigitated Back Contact Si Cells and Varying Terminal Configurations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel; Klein, Talysa R.; Jain, Nikhil; Essig, Stephanie; Schulte-Huxel, Henning; Warren, Emily; van Hest, Maikel F. A. M.; Geisz, John; Stradins, Paul; Tamboli, Adele; Rienacker, Michael; Merkle, Agnes; Schmidt, Jan; Brendel, Rolf; Peibst, Robby

    2017-07-11

    Solar cells made from bulk crystalline silicon (c-Si) dominate the market, but laboratory efficiencies have stagnated because the current record efficiency of 26.3% is already very close to the theoretical limit of 29.4% for a single-junction c-Si cell. In order to substantially boost the efficiency of Si solar cells we have been developing stacked III-V/Si tandem cells, recently attaining efficiencies above 32% in four-terminal configuration. In this contribution, we use state-of-the-art III-V cells coupled with equivalent circuit simulations to compare four-terminal (4T) to three- and two-terminal (3T, 2T) operation. Equivalent circuit simulations are used to show that tandem cells can be operated just as efficiently using three terminals as with four terminals. However, care must be taken not to overestimate 3T efficiency, as the two circuits used to extract current interact, and a method is described to accurately determine this efficiency. Experimentally, a 4T GaInP/Si tandem cell utilizing an interdigitated back contact cell is shown, exhibiting a 4T efficiency of 31.5% and a 2T efficiency of 28.1%. In 3T configuration, it is used to verify the finding from simulation that 3T efficiency is overestimated when interactions between the two circuits are neglected. Considering these, a 3T efficiency approaching the 4T efficiency is found, showing that 3T operation is efficient, and an outlook on fully integrated high-efficiency 3T and 2T tandem cells is given.

  2. Molecularly Imprinted Porous Monolithic Materials from Melamine-Formaldehyde for Selective Trapping of Phosphopeptides

    DEFF Research Database (Denmark)

    Liu, Mingquan; Tran, Tri Minh; Abbas Elhaj, Ahmed Awad

    2017-01-01

    monoliths, chosen based on the combination of meso- and macropores providing optimal percolative flow and accessible surface area, was synthesized in the presence of N-Fmoc and O-Et protected phosphoserine and phosphotyrosine to prepare molecularly imprinted monoliths with surface layers selective...... for phosphopeptides. These imprinted monoliths were characterized alongside nonimprinted monoliths by a variety of techniques and finally evaluated by liquid chromatography-mass spectrometry in the capillary format to assess their abilities to trap and release phosphorylated amino acids and peptides from partly...

  3. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  4. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  5. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  6. Fine-grain concrete from mining waste for monolithic construction

    Science.gov (United States)

    Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhin, A. A.

    2018-03-01

    The technology of a monolithic construction is a well-established practice among most Russian real estate developers. The strong points of the technology are low cost of materials and lower demand for qualified workers. The monolithic construction uses various types of reinforced slabs and foamed concrete, since they are easy to use and highly durable; they also need practically no additional treatment.

  7. Results from an International Measurement Round Robin of III-V Triple Junction Solar Cells under Air Mass Zero

    Science.gov (United States)

    Jenkins, Phillip; Scheiman, Chris; Goodbody, Chris; Baur, Carsten; Sharps, Paul; Imaizumi, Mitsuru; Yoo, Henry; Sahlstrom, Ted; Walters, Robert; Lorentzen, Justin; hide

    2006-01-01

    This paper reports the results of an international measurement round robin of monolithic, triple-junction, GaInP/GaAs/Ge space solar cells. Eight laboratories representing national labs, solar cell vendors and space solar cell consumers, measured cells using in-house reference cells and compared those results to measurements made where each lab used the same set of reference cells. The results show that most of the discrepancy between laboratories is likely due to the quality of the standard cells rather than the measurement system or solar simulator used.

  8. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    International Nuclear Information System (INIS)

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-01-01

    Understanding fuel foil mechanical properties, and fuel/cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel--cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel/cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results

  9. Power management circuits for self-powered systems based on micro-scale solar energy harvesting

    Science.gov (United States)

    Yoon, Eun-Jung; Yu, Chong-Gun

    2016-03-01

    In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.

  10. Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%

    KAUST Repository

    Beiley, Zach M.

    2012-01-01

    It is estimated that for photovoltaics to reach grid parity around the planet, they must be made with costs under $0.50 per W p and must also achieve power conversion efficiencies above 20% in order to keep installation costs down. In this work we explore a novel solar cell architecture, a hybrid tandem photovoltaic (HTPV), and show that it is capable of meeting these targets. HTPV is composed of an inexpensive and low temperature processed solar cell, such as an organic or dye-sensitized solar cell, that can be printed on top of one of a variety of more traditional inorganic solar cells. Our modeling shows that an organic solar cell may be added on top of a commercial CIGS cell to improve its efficiency from 15.1% to 21.4%, thereby reducing the cost of the modules by ∼15% to 20% and the cost of installation by up to 30%. This suggests that HTPV is a promising option for producing solar power that matches the cost of existing grid energy. © 2012 The Royal Society of Chemistry.

  11. Controlling retention, selectivity and magnitude of EOF by segmented monolithic columns consisting of octadecyl and naphthyl monolithic segments--applications to RP-CEC of both neutral and charged solutes.

    Science.gov (United States)

    Karenga, Samuel; El Rassi, Ziad

    2011-04-01

    Monolithic capillaries made of two adjoining segments each filled with a different monolith were introduced for the control and manipulation of the electroosmotic flow (EOF), retention and selectivity in reversed phase-capillary electrochromatography (RP-CEC). These columns were called segmented monolithic columns (SMCs) where one segment was filled with a naphthyl methacrylate monolith (NMM) to provide hydrophobic and π-interactions, while the other segment was filled with an octadecyl acrylate monolith (ODM) to provide solely hydrophobic interaction. The ODM segment not only provided hydrophobic interactions but also functioned as the EOF accelerator segment. The average EOF of the SMC increased linearly with increasing the fractional length of the ODM segment. The neutral SMC provided a convenient way for tuning EOF, selectivity and retention in the absence of annoying electrostatic interactions and irreversible solute adsorption. The SMCs allowed the separation of a wide range of neutral solutes including polycyclic aromatic hydrocarbons (PAHs) that are difficult to separate using conventional alkyl-bonded stationary phases. In all cases, the k' of a given solute was a linear function of the fractional length of the ODM or NMM segment in the SMCs, thus facilitating the tailoring of a given SMC to solve a given separation problem. At some ODM fractional length, the fabricated SMC allowed the separation of charged solutes such as peptides and proteins that could not otherwise be achieved on a monolithic column made from NMM as an isotropic stationary phase due to the lower EOF exhibited by this monolith. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transparent electrode requirements for thin film solar cell modules

    KAUST Repository

    Rowell, Michael W.; McGehee, Michael D.

    2011-01-01

    The transparent conductor (TC) layer in thin film solar cell modules has a significant impact on the power conversion efficiency. Reflection, absorption, resistive losses and lost active area either from the scribed interconnect region in monolithically integrated modules or from the shadow losses of a metal grid in standard modules typically reduce the efficiency by 10-25%. Here, we perform calculations to show that a competitive TC must have a transparency of at least 90% at a sheet resistance of less than 10 Ω/sq (conductivity/absorptivity ≥ 1 Ω -1) for monolithically integrated modules. For standard modules, losses are much lower and the performance of alternative lower cost TC materials may already be sufficient to replace conducting oxides in this geometry. © 2011 The Royal Society of Chemistry.

  13. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography.

    Science.gov (United States)

    Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2017-01-06

    Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Fabrication of high efficacy selective solar absorbers

    CSIR Research Space (South Africa)

    Tile, N

    2012-03-01

    Full Text Available High efficiency tandem selective solar absorber materials of carbon in nickel oxide (C-NiO) composite were fabricated on an aluminium substrate using a simple and cost effective sol-gel process. The process involved preparation of carbon and nickel...

  15. Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming

    DEFF Research Database (Denmark)

    Cui, Xiaoti; Kær, Søren Knudsen

    2018-01-01

    Monolithic catalysts have received increasing attention for application in the small-scale steam methane reforming process. The radial heat transfer behaviors of monolith reformers were analyzed by two-dimensional computational fluid dynamic (CFD) modeling. A parameter study was conducted...... by a large number of simulations focusing on the thermal conductivity of the monolith substrate, washcoat layer, wall gap, radiation heat transfer and the geometric parameters (cell density, porosity and diameter of monolith). The effective radial thermal conductivity of the monolith structure, kr......,eff, showed good agreement with predictions made by the pseudo-continuous symmetric model. This influence of the radiation heat transfer is low for highly conductive monoliths. A simplified model has been developed to evaluate the importance of radiation for monolithic reformers under different conditions...

  16. Large tandem accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  17. A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane).

    Science.gov (United States)

    Burke, Jeffrey M; Smela, Elisabeth

    2012-03-01

    A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.

  18. Holographic spectrum-splitting optical systems for solar photovoltaics

    Science.gov (United States)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  19. Affinity monolith chromatography: A review of principles and recent analytical applications

    Science.gov (United States)

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  20. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin

    2012-10-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine, which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40. nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60. wt% being achieved with 40. nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30. nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. © 2012 Elsevier B.V.

  1. Microwaves integrated circuits: hybrids and monolithics - fabrication technology

    International Nuclear Information System (INIS)

    Cunha Pinto, J.K. da

    1983-01-01

    Several types of microwave integrated circuits are presented together with comments about technologies and fabrication processes; advantages and disadvantages in their utilization are analysed. Basic structures, propagation modes, materials used and major steps in the construction of hybrid thin film and monolithic microwave integrated circuits are described. Important technological applications are revised and main activities of the microelectronics lab. of the University of Sao Paulo (Brazil) in the field of hybrid and monolithic microwave integrated circuits are summarized. (C.L.B.) [pt

  2. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    Science.gov (United States)

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-04-11

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  3. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqi; Li, Zheng [College of Chemistry, Jilin University, Changchun 130012 (China); Niu, Qian [Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Ma, Jiutong [College of Chemistry, Jilin University, Changchun 130012 (China); Jia, Qiong, E-mail: jiaqiong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-10-30

    Graphical abstract: Poly(methacrylic acid-ethylene dimethacrylate) monolithic column embedded with zeolites was prepared and employed for the polymer monolith microextraction of colorants combined with HPLC. - Highlights: • Zeolite, as a kind of mesoporous material, was firstly combined with PMME. • Zeolite@poly(MAA-EDMA) monolith columns were prepared for the enrichment of colorants. • Zeolite@poly(MAA-EDMA) monolith columns demonstrated relatively high extraction capacity. - Abstract: A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  4. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    OpenAIRE

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190?mV and ISC of ~9??A, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46?mW confirmed...

  5. Graetzel solar cell modules for outdoor applications, phase 2. Final report; Graetzel-solcellsmoduler foer utomhusapplikationer, fas 2. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Henrik [IVF Industriforskning och utveckling AB, Moelndal (Sweden)

    2005-06-01

    The project 'Monolithic Dye PV Modules for Outdoor Applications' has been performed at IVF Industrial Research and Development Corporation in Moelndal over the period June 2003 to December 2004. The possibility of the dye-sensitised solar cell technology compared to other PV technologies is to realise PV products with low cost/W{sub peak} in combination with a low investment cost for setting up a production unit. The latter is important since it opens for production by smaller companies and reduces the risk related to commercialisation. The technical efforts of the project have resulted in monolithic dye PV cells with efficiencies up to 7 %. The module preparation has been scaled up to module sizes of 200 cm{sup 2} using industrial manufacturing methods. These devices will be further developed in 2005 in the project 'Flexible Solar Cells'.

  6. A Monolithic Perovskite Structure for Use as a Magnetic Regenerator

    DEFF Research Database (Denmark)

    Pryds, Nini; Clemens, Frank; Menon, Mohan

    2011-01-01

    A La0.67Ca0.26Sr0.07Mn1.05O3 (LCSM) perovskite was prepared for the first time as a ceramic monolithic regenerator used in a regenerative magnetic refrigeration device. The parameters influencing the extrusion process and the performance of the regenerator, such as the nature of the monolith paste...

  7. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  8. Cholesterol-imprinted macroporous monoliths: Preparation and characterization.

    Science.gov (United States)

    Stepanova, Mariia А; Kinziabulatova, Lilia R; Nikitina, Anna A; Korzhikova-Vlakh, Evgenia G; Tennikova, Tatiana B

    2017-11-01

    The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Strength of normal sections of NPP composite monolithic constructions with ribbed reinforced panels

    International Nuclear Information System (INIS)

    Klyashitskij, V.I.; Kirillov, A.P.

    1980-01-01

    Strength characteristics and recommendations on designing composite-monolytic structures of NPP with ribbed reinforced panels are considered. Ribbed reinforced panel consists of a system of cross ribs joined with a comparatively thin (25 mm thick) plate. The investigations were carried on using models representing columns symmetrically reinforced with reinforced panels with a low percent of reinforcing. The monolithic structures consisting of ribbed reinforced panels and cast concrete for making monoliths as well as monolithic having analogous strength characteristics of extended and compressed zones have similar strengths. It is shown that calculation of supporting power of composite-monolithic structures is performed according to techniques developed for monolithic structures. Necessity of structural transverse fittings no longer arises in case of corresponding calculational substitution of stability of compressed parts of fittings. Supporting power of a structure decreases not more than by 10% in the presence of cracks in the reinforced panels of the compressed zone. Application of composite-monolithic structures during the construction of the Kursk, Smolensk and Chernobylskaya NPPs permitted to decrease labour content and reduce periods of accomplishment of these works which saves over 6 million roubles

  10. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo; Gao, Yangqin; Hu, Hanlin; Yan, Buyi; Ning, Zhijun; Jagadamma, Lethy Krishnan; Zhao, Kui; Kirmani, Ahmad R.; Eid, Jessica; Adachi, Michael M.; Sargent, Edward H.; Beaujuge, Pierre; Amassian, Aram

    2015-01-01

    with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual

  11. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  12. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  13. Development of High Efficiency Four-Terminal Perovskite-Silicon Tandems

    Science.gov (United States)

    Duong, The Duc

    This thesis is concerned with the development of high efficiency four-terminal perovskite-silicon tandem solar cells with the potential to reduce the cost of solar energy. The work focuses on perovskite top cells and can be divided into three main parts: developing low parasitic absorption and efficient semi-transparent perovskite cells, doping perovskite materials with rubidium, and optimizing perovskite material's bandgap with quadruple-cation and mixed-halide. A further section investigates the light stability of optimized bandgap perovskite cells. In a four-terminal mechanically stacked tandem, the perovskite top cell requires two transparent contacts at both the front and rear sides. Through detailed optical and electrical power loss analysis of the tandem efficiency due to non-ideal properties of the two transparent contacts, optimal contact parameters in term of sheet resistance and transparency are identified. Indium doped tin oxide by sputtering is used for both two transparent contacts and their deposition parameters are optimized separately. The semi-transparent perovskite cell using MAPbI3 has an efficiency of more than 12% with less than 12% parasitic absorption and up to 80% transparency in the long wavelength region. Using a textured foil as anti-reflection coating, an outstanding average transparency of 84% in the long wavelength is obtained. The low parasitic absorption allows an opaque version of the semi-transparent perovskite cell to operate efficiently in a filterless spectrum splitting perovskite-silicon tandem configuration. To further enhance the performance of perovskite cells, it is essential to improve the quality of perovskite films. This can be achieved with mixed-perovskite FAPbI3/MAPbBr3. However, mixed-perovskite films normally contain small a small amount of a non-perovskite phase, which is detrimental for the cell performance. Rb-doping is found to eliminate the formation of the non-perovskite phase and enhance the crystallinity of

  14. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  15. Broadband EM Performance Characteristics of Single Square Loop FSS Embedded Monolithic Radome

    Directory of Open Access Journals (Sweden)

    Raveendranath U. Nair

    2013-01-01

    Full Text Available A monolithic half-wave radome panel, centrally loaded with aperture-type single square loop frequency selective surface (SSL-FSS, is proposed here for broadband airborne radome applications. Equivalent transmission line method in conjunction with equivalent circuit model (ECM is used for modeling the SSL-FSS embedded monolithic half-wave radome panel and evaluating radome performance parameters. The design parameters of the SSL-FSS are optimized at different angles of incidence such that the new radome wall configuration offers superior EM performance from L-band to X-band as compared to the conventional monolithic half-wave slab of identical material and thickness. The superior EM performance of SSL-FSS embedded monolithic radome wall makes it suitable for the design of normal incidence and streamlined airborne radomes.

  16. Organic solar cells fundamentals, devices, and upscaling

    CERN Document Server

    Rand, Barry P

    2014-01-01

    Solution-Processed DonorsB. Burkhart, B. C. ThompsonSmall-Molecule and Vapor-Deposited Organic Photovoltaics R. R. Lunt, R. J. HolmesAcceptor Materials for Solution-Processed Solar Cells Y. HeInterfacial Layers R. Po, C. Carbonera, A. BernardiElectrodes in Organic Photovoltaic Cells S. Yoo, J.-Y. Lee, H. Kim, J. LeeTandem and Multi-Junction Organic Solar Cells J. Gilot, R. A. J. JanssenBulk Heterojunction Morphology Control and Characterization T. Wang, D. G. LidzeyOptical Modeling and Light Management

  17. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    International Nuclear Information System (INIS)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen

    2014-01-01

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu 2+ was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu 2+ were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu 2+ ). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied

  18. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  19. Preparation and characterization of poly-(methacrylatoethyl trimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate monolith

    Directory of Open Access Journals (Sweden)

    Eko Malis

    2015-05-01

    Full Text Available A polymer monolithic column, poly-(methacrylatoethyltrimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate or poly-(MATE-co-VBC-co-EDMA was successfully prepared in the current study by one-step thermally initiated in situ polymerization, confined in a steel tubing of 0.5 mm i.d. and 1/16” o.d. The monoliths were prepared from methacrylatoethyltrimethylammonium chloride (MATE and vinylbenzyl chloride (VBC as monomer and ethylene dimethacrylate (EDMA as crosslinker using a binary porogen system of 1-propanol and 1,4-butanediol. The inner wall of steel tubing was pretreated with 3-methacryloxypropyl-trimethoxysilane (MAPS. In order to obtain monolith with adequate column efficiency and low flow resistance, some parameters such as total monomer concentration (%T and crosslinker concentration (%C were optimized. The morphology of this monolith was assessed by scanning electron microscopy (SEM. The properties of the monolithic column, such as permeability, binding capacity, and pore size distribution were also characterized in detail. From the results of the characterization of all monolith variation, monolith with %T 30 %C 50 and %T 35 %C 50 give the best characteristic. These monoliths have high permeability, adequate molecular recognition sites (represented with binding capacity value of over 20 mg/mL, and have over 80% flow through pores in their pore structure contribute to low flow resistance. The resulted monolithic columns have promising potential for dual mode liquid chromatography. MATE may contribute for anion-exchange while VBC may responsible for reversed-phase liquid chromatography.

  20. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Directory of Open Access Journals (Sweden)

    Cheng Chuantong

    2017-07-01

    Full Text Available Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  1. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Science.gov (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  2. Dual jaw treatment of edentulism using implant-supported monolithic zirconia fixed prostheses.

    Science.gov (United States)

    Altarawneh, Sandra; Limmer, Bryan; Reside, Glenn J; Cooper, Lyndon

    2015-01-01

    This case report describes restoration of the edentulous maxilla and mandible with implant supported fixed prostheses using monolithic zirconia, where the incisal edges and occluding surfaces were made of monolithic zirconia. Edentulism is a debilitating condition that can be treated with either a removable or fixed dental prosthesis. The most common type of implant-supported fixed prosthesis is the metal acrylic (hybrid), with ceramo-metal prostheses being used less commonly in complete edentulism. However, both of these prostheses designs are associated with reported complications of screw loosening or fracture and chipping of acrylic resin and porcelain. Monolithic zirconia implant-supported fixed prostheses have the potential for reduction of such complications. In this case, the CAD/CAM concept was utilized in fabrication of maxillary and mandibular screw-retained implant-supported fixed prostheses using monolithic zirconia. Proper treatment planning and execution coupled with utilizing advanced technologies contributes to highly esthetic results. However, long-term studies are required to guarantee a satisfactory long-term outcome of this modality of treatment. This case report describes the clinical and technical procedures involved in fabrication of maxillary and mandibular implant-supported fixed prostheses using monolithic zirconia as a treatment of edentulism, and proposes the possible advantages associated with using monolithic zirconia in eliminating dissimilar interfaces in such prostheses that are accountable for the most commonly occurring technical complication for these prostheses being chipping and fracture of the veneering material. © 2015 Wiley Periodicals, Inc.

  3. Novel materials for high-efficiency solar cells

    Science.gov (United States)

    Kojima, Nobuaki; Natori, Masato; Suzuki, Hidetoshi; Inagaki, Makoto; Ohshita, Yoshio; Yamaguchi, Masafumi

    2009-08-01

    Our Toyota Technological Institute group has investigated various novel materials for solar cells from organic to III-V compound materials. In this paper, we report our recent results in conductivity control of C60 thin films by metal-doping for organic solar cells, and mobility improvement of (In)GaAsN compounds for III-V tandem solar cells. The epitaxial growth of Mg-doped C60 films was attempted. It was found that the epitaxial growth of Mg-doped C60 film was enabled by using mica (001) substrate in the low Mg concentration region (Mg/C60 molar ratio defects leads this improvement.

  4. Monolitni katalizatori i reaktori: osnovne značajke, priprava i primjena (Monolith catalysts and reactors: preparation and applications

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2004-12-01

    Full Text Available Monolithic (honeycomb catalysts are continuous unitary structures containing many narrow, parallel and usually straight channels (or passages. Catalytically active components are dispersed uniformly over the whole porous ceramic monolith structure (so-called incorporated monolithic catalysts or are in a layer of porous material that is deposited on the walls of channels in the monolith's structure (washcoated monolithic catalysts. The material of the main monolithic construction is not limited to ceramics but includes metals, as well. Monolithic catalysts are commonly used in gas phase catalytic processes, such as treatment of automotive exhaust gases, selective catalytic reduction of nitrogen oxides, catalytic removal of volatile organic compounds from industrial processes, etc. Monoliths continue to be the preferred support for environmental applications due to their high geometric surface area, different design options, low pressure drop, high temperature durability, mechanical strength, ease of orientation in a reactor and effectiveness as a support for a catalytic washcoat. As known, monolithic catalysts belong to the class of the structured catalysts and/or reactors (in some cases the distinction between "catalyst" and "reactor" has vanished. Structured catalysts can greatly intensify chemical processes, resulting in smaller, safer, cleaner and more energy efficient technologies. Monolith reactors can be considered as multifunctional reactors, in which chemical conversion is advantageously integrated with another unit operation, such as separation, heat exchange, a secondary reaction, etc. Finally, structured catalysts and/or reactors appear to be one of the most significant and promising developments in the field of heterogeneous catalysis and chemical engineering of the recent years. This paper gives a description of the background and perspectives for application and development of monolithic materials. Different methods and techniques

  5. A Flexible Web-Based Approach to Modeling Tandem Photocatalytic Devices

    DEFF Research Database (Denmark)

    Seger, Brian; Hansen, Ole; Vesborg, Peter Christian Kjærgaard

    2017-01-01

    the top photoabsorber), thus allowing for a broader range of band gap combinations that can still provide highly efficient devices. While this does not change the overall maximum efficiency point, at certain band gap combinations balancing the photon absorption distribution between photoabsorbers can...... increase Solar to Hydrogen (STH) efficiency by up to 15% points. An additional feature of the WBM is that it allows users to upload data of a single photoelectrode, and then investigate the optimal matching photoabsorber band gap to maximize tandem device efficiency. This work analyzes some of the best...

  6. High Performance of Manganese Porphyrin Sensitized p-Type CuFe2O4 Photocathode for Solar Water Splitting to Produce Hydrogen in a Tandem Photoelectrochemical Cell

    Directory of Open Access Journals (Sweden)

    Xia Li

    2018-03-01

    Full Text Available A novel composite composed of (5, 10, 15, 20-tetraphenyl porphinato manganese sensitized p-type CuFe2O4 was developed for constructing the photocathode of a tandem photoelectrochemical (PEC cell. The prepared material was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS and UV-vis diffuse reflectance spectroscopy (DRS. Light-driven water splitting to produce hydrogen can be achieved through the PEC cell, and the results show that H2 and O2 can be collected separately at low applied bias. This work demonstrates that manganese porphyrin sensitized CuFe2O4 is an effective hybrid material for building the photocathode of a PEC cell for solar water splitting to produce H2.

  7. Stanley Kubrick and B.F. Skinner : Is a Teaching Machine a Monolith ?

    OpenAIRE

    浜野, 保樹; ハマノ, ヤスキ; Yasuki, Hamano

    1990-01-01

    The teaching machine invented by B.F. Skinner was recog-nized as one of few clear achievements of scientific pedagogy and even appeared in SF. Arthur C. Clarke who wrote the script of the SF movie "2001: A Space Odyssey" with Stanley Kubrick wanted to scientifically define a monolith to be a God who had given intelligence to our ancestors. In other words, he wanted to describe a monolith as a teaching machine as well as a God. However Kubrick did not want to make clear about what a monolith i...

  8. Advanced Solar Cells for Satellite Power Systems

    Science.gov (United States)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  9. III–Vs on Si for photonic applications—A monolithic approach

    International Nuclear Information System (INIS)

    Wang, Zhechao; Junesand, Carl; Metaferia, Wondwosen; Hu, Chen; Wosinski, Lech; Lourdudoss, Sebastian

    2012-01-01

    Highlights: ► Monolithic evanescently coupled silicon laser (MECSL) structure treated. ► Optical mode profiles and thermal resistivity of MECSL optimized by simulation. ► MECSL through epitaxial lateral overgrowth (ELOG) of InP on Si exemplified. ► Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. ► Growth of dislocation free thin InP layer on Si by ELOG for MECSL demonstrated. - Abstract: Epitaxial lateral overgrowth (ELOG) technology is demonstrated as a viable technology to realize monolithic integration of III-Vs on silicon. As an alternative to wafer-to-wafer bonding and die-to-wafer bonding, ELOG provides an attractive platform for fabricating discrete and integrated components in high volume at low cost. A possible route for monolithic integration of III–Vs on silicon for silicon photonics is exemplified by the case of a monolithic evanescently coupled silicon laser (MECSL) by combining InP on Si/SiO 2 through ELOG. Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. The structural design of a monolithic evanescently coupled silicon laser (MECSL) and its thermal resistivity are established through simulations. Material studies to realize the above laser through ELOG are undertaken by studying appropriate ELOG pattern designs to achieve InP on narrow regions of silicon. We show that defect-free InP can be obtained on SiO 2 as the first step which paves the way for realizing active photonic devices on Si/SiO 2 waveguides, e.g. an MECSL.

  10. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  11. The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties.

    Science.gov (United States)

    Li, Haibin; Liu, Chusheng; Wang, Qiqin; Zhou, Haibo; Jiang, Zhengjin

    2016-10-21

    In order to investigate the effect of charged groups present in hydrophilic monolithic stationary phases on their chromatographic properties, three charged hydrophilic monomers, i.e. N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA), [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETA), and 3-sulfopropyl acrylate potassium salt (SPA) were co-polymerized with the crosslinker N,N'-methylenebisacrylamide (MBA), respectively. The physicochemical properties of the three resulting charged hydrophilic monolithic columns were evaluated using scanning electron microscopy, ζ-potential analysis and micro-HPLC. High column efficiency was obtained on the three monolithic columns at a linear velocity of 1mm/s using thiourea as test compound. Comparative characterization of the three charged HILIC phases was then carried out using a set of model compounds, including nucleobases, nucleosides, benzoic acid derivatives, phenols, β-blockers and small peptides. Depending on the combination of stationary phase/mobile phase/solute, both hydrophilic interaction and other potential secondary interactions, including electrostatic interaction, hydrogen-bonding interaction, molecular shape selectivity, could contribute to the over-all retention of the analytes. Because of the strong electrostatic interaction provided by the quaternary ammonium groups in the poly (AETA-co-MBA) monolith, this cationic HILIC monolith exhibited the strongest retention for benzoic acid derivatives and small peptides with distorted peak shapes and the weakest retention for basic β-blockers. The sulfonyl groups on the poly (SPA-co-MBA) hydrophilic monolith could provide strong electrostatic attraction and hydrogen bonding for positively charged analytes and hydrogen-donor/acceptor containing analytes, respectively. Therefore, basic drugs, nucleobases and nucleotides exhibited the strongest retention on this anionic monolith. Because of the weak but distinct cation exchange properties of

  12. Monolithic CMOS imaging x-ray spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  13. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen, E-mail: zhangch@mail.buct.edu.cn

    2014-07-15

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu{sup 2+} was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu{sup 2+} were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu{sup 2+}). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied.

  14. Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing.

    Science.gov (United States)

    Lv, Chunguang; Heiter, Jaana; Haljasorg, Tõiv; Leito, Ivo

    2016-08-17

    A new method of reproducible preparation of vinylic polymeric monolithic columns with a key step of covalently anchoring the monolith to PEEK surface is described. In order to chemically attach the polymer monolith to the tube wall, methacrylate functional groups were introduced onto PEEK surface by a three-step procedure, including surface etching, surface reduction and surface methacryloylation. The chemical state of the modified tubing surface was characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy. It was found that the etching step is the key to successfully modifying the PEEK tubing surface. Poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermally initiated free radical copolymerization within the confines of surface-vinylized PEEK tubings of dimensions close to ones conventionally used in HPLC and UHPLC (1.6 mm internal diameter, 10.0-12.5 cm length). Adhesion test was done by measuring the operating pressure drop, which the prepared stationary phases can withstand. Good pressure resistance, up to 140 bar/10 cm (flow rate 0.5 mL min(-1), acetonitrile as a mobile phase), indicates strong bonding of monolith to the tubing wall. The monolithic material was proven to have a permeability of 1.7 × 10 (-14) m(2), applying acetonitrile-water 70:30 (v/v) as a mobile phase. The column performance was reproducible from column to column and was evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode (acetonitrile-water 70:30, v/v). The numbers of plates per meter at optimal flow rate were found to be between 26 000 and 32 000 for the different analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Transmission Electron Microscopy of Amorphous Tandem Thin-Film Silicon Modules Produced by A Roll-to-Roll Process on Plastic Foil

    DEFF Research Database (Denmark)

    Couty, P.; Duchamp, Martial; Söderström, K.

    2011-01-01

    An improvement of the photo-current is expected when amorphous silicon solar cells are grown on a ZnO texture. A full understanding of the relationship between cell structure and electrical performance is essential for the rapid development of high efficiency VHF-tandem cells on textured substrates...... a control-lost of shape fidelity is used to smooth the texture and make it compatible with subsequent layer growth. Then, we present the electrical performances of the most promising reference solar cell single junction which was obtained on a roll-to-roll foil. Finally, a tandem amorphous/amorphous Si....... At first, we present the systematic study where amorphous cells are grown on ZnO based textures. For varying the texture, the same original master LPCVD ZnO was successively transferred to nickel molds and finally transferred to the plastic foil by roll-to-roll process. From TEM images, we show how...

  16. Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules.

    Science.gov (United States)

    Liu, Kun; Tolley, H Dennis; Lee, Milton L

    2012-03-02

    Seven crosslinking monomers, i.e., 1,3-butanediol dimethacrylate (1,3-BDDMA), 1,4-butanediol dimethacrylate (1,4-BDDMA), neopentyl glycol dimethacrylate (NPGDMA), 1,5-pentanediol dimethacrylate (1,5-PDDMA), 1,6-hexanediol dimethacrylate (1,6-HDDMA), 1,10-decanediol dimethacrylate (1,10-DDDMA), and 1,12-dodecanediol dimethacrylate (1,12-DoDDMA), were used to synthesize highly cross-linked monolithic capillary columns for reversed-phase liquid chromatography (RPLC) of small molecules. Dodecanol and methanol were chosen as "good" and "poor" porogenic solvents, respectively, for these monoliths, and were investigated in detail to provide insight into the selection of porogen concentration using 1,12-DoDDMA. Isocratic elution of alkylbenzenes at a flow rate of 300 nL/min was conducted for all of the monoliths. Gradient elution of alkylbenzenes and alkylparabens provided high resolution separations. Optimized monoliths synthesized from all seven crosslinking monomers showed high permeability. Several of the monoliths demonstrated column efficiencies in excess of 50,000 plates/m. Monoliths with longer alkyl-bridging chains showed very little shrinking or swelling in solvents of different polarities. Column preparation was highly reproducible; the relative standard deviation (RSD) values (n=3) for run-to-run and column-to-column were less than 0.25% and 1.20%, respectively, based on retention times of alkylbenzenes. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. III-Vs on Si for photonic applications-A monolithic approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhechao, E-mail: Zhechao.Wang@intec.ugent.be [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden); Junesand, Carl; Metaferia, Wondwosen; Hu, Chen; Wosinski, Lech [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden); Lourdudoss, Sebastian, E-mail: slo@kth.se [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Monolithic evanescently coupled silicon laser (MECSL) structure treated. Black-Right-Pointing-Pointer Optical mode profiles and thermal resistivity of MECSL optimized by simulation. Black-Right-Pointing-Pointer MECSL through epitaxial lateral overgrowth (ELOG) of InP on Si exemplified. Black-Right-Pointing-Pointer Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. Black-Right-Pointing-Pointer Growth of dislocation free thin InP layer on Si by ELOG for MECSL demonstrated. - Abstract: Epitaxial lateral overgrowth (ELOG) technology is demonstrated as a viable technology to realize monolithic integration of III-Vs on silicon. As an alternative to wafer-to-wafer bonding and die-to-wafer bonding, ELOG provides an attractive platform for fabricating discrete and integrated components in high volume at low cost. A possible route for monolithic integration of III-Vs on silicon for silicon photonics is exemplified by the case of a monolithic evanescently coupled silicon laser (MECSL) by combining InP on Si/SiO{sub 2} through ELOG. Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. The structural design of a monolithic evanescently coupled silicon laser (MECSL) and its thermal resistivity are established through simulations. Material studies to realize the above laser through ELOG are undertaken by studying appropriate ELOG pattern designs to achieve InP on narrow regions of silicon. We show that defect-free InP can be obtained on SiO{sub 2} as the first step which paves the way for realizing active photonic devices on Si/SiO{sub 2} waveguides, e.g. an MECSL.

  18. A study of reflex tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Takao; Morinobu, Shunpei; Gono, Yasuyuki; Sagara, Kenji; Sugimitsu, Tsuyoshi; Mitarai, Shiro; Nakamura, Hiroyuki; Ikeda, Nobuo; Morikawa, Tsuneyasu [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1996-12-01

    An investigation on `developing research theme and its realizing experimental apparatus` based on the tandem accelerator facility is executed. At a standpoint of recognition on essentiality of preparation, improvement or novel technical development capable of extreme increase in capacity of the tandem accelerator facility to form COE with high uniqueness, proposal of numerous ideas and their investigations and searches were conducted. In this paper, consideration results of `beam reacceleration using tandem accelerator` were shown as follows: (1) Short life unstable nuclei formed by nuclear reaction using tandem acceleration primary beam is ionized to negative and to reaccelerate by using the same tandem accelerator. And (2) by combination of plural electrons with the tandem primary accelerated beam, numbers of charge is reduced to reaccelerate by the tandem. (G.K.)

  19. Porous polymer monolithic col

    Directory of Open Access Journals (Sweden)

    Lydia Terborg

    2015-05-01

    Full Text Available A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water and ion exchange chromatographic modes (applying gradient of salt in water, respectively.

  20. Solid State Characterizations of Long-Term Leached Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Asmussen, Robert M.; Pearce, Carolyn I.; Parker, Kent E.; Miller, Brian W.; Lee, Brady D.; Buck, Edgar C.; Washton, Nancy M.; Bowden, Mark E.; Lawter, Amanda R.; McElroy, Erin M.; Serne, R Jeffrey

    2016-09-30

    This report describes the results from the solid phase characterization of six Cast Stone monoliths from the extended leach tests recently reported on (Serne et al. 2016),that were selected for characterization using multiple state-of-the-art approaches. The Cast Stone samples investigated were leached for > 590 d in the EPA Method 1315 test then archived for > 390 d in their final leachate. After reporting the long term leach behavior of the monoliths (containing radioactive 99Tc and stable 127I spikes and for original Westsik et al. 2013 fabricated monoliths, 238U), it was suggested that physical changes to the waste forms and a depleting inventory of contaminants of potential concern may mean that effective diffusivity calculations past 63 d should not be used to accurately represent long-term waste form behavior. These novel investigations, in both length of leaching time and application of solid state techniques, provide an initial arsenal of techniques which can be utilized to perform such Cast Stone solid phase characterization work, which in turn can support upcoming performance assessment maintenance. The work was performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to characterize several properties of the long- term leached Cast Stone monolith samples.

  1. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H.

    2013-01-01

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  2. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  3. Fabrication and Characterisation of Low-noise Monolithic Mode-locked Lasers

    DEFF Research Database (Denmark)

    Larsson, David

    2007-01-01

    This thesis deals with the fabrication and characterisation of monolithic semiconductor mode-locked lasers for use in optical communication systems. Other foreseeable applications may be as sources in microwave photonics and optical sampling. The thesis also deals with the design and fabrication...... of intracavity monolithically integrated filters. The common dnominator among the diffrent parts of the thesis is how to achieve and measure the lowest possible noise. Achieving low noise has been pinpointed as one of the most important and difficult challenges for semiconductor mode-locked lasers. The main...... result of this thesis are a fabrication process of a monolithic and deeply etched distributed Bragg reflector and a characterisation system for measurement of quantum limitid timing noise at high repetition rates. The Bragg reflector is a key component in achieving transform limited pulses with low noise...

  4. Recent progress in low-temperature-process monolithic three dimension technology

    Science.gov (United States)

    Yang, Chih-Chao; Hsieh, Tung-Ying; Huang, Wen-Hsien; Shen, Chang-Hong; Shieh, Jia-Min; Yeh, Wen-Kuan; Wu, Meng-Chyi

    2018-04-01

    Monolithic three-dimension (3D) integration is an ultimate alternative method of fabricating high density, high performance, and multi-functional integrated circuits. It offers the promise of being a new approach to increase system performance. How to manage the thermal impact of multi-tiered processes, such as dopant activation, source/drain silicidation, and channel formation, and to prevent the degradation of pre-existing devices/circuits become key challenges. In this paper, we provide updates on several important monolithic 3D works, particularly in sequentially stackable channels, and our recent achievements in monolithic 3D integrated circuit (3D-IC). These results indicate that the advanced 3D architecture with novel design tools enables ultrahigh-density stackable circuits to have superior performance and low power consumption for future artificial intelligence (AI) and internet of things (IoTs) application.

  5. Hybrid Perovskites: Prospects for Concentrator Solar Cells.

    Science.gov (United States)

    Lin, Qianqian; Wang, Zhiping; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2018-04-01

    Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.

  6. Monolithic fiber optic sensor assembly

    Science.gov (United States)

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  7. Towards a Technique for Extracting Microservices from Monolithic Enterprise Systems

    OpenAIRE

    Levcovitz, Alessandra; Terra, Ricardo; Valente, Marco Tulio

    2016-01-01

    The idea behind microservices architecture is to develop a single large, complex application as a suite of small, cohesive, independent services. On the other way, monolithic systems get larger over the time, deviating from the intended architecture, and becoming risky and expensive to evolve. This paper describes a technique to identify and define microservices on monolithic enterprise systems. As the major contribution, our evaluation shows that our approach was able to identify relevant ca...

  8. RF sputtered HgCdTe films for tandem cell applications

    International Nuclear Information System (INIS)

    Wang, S.L.; Lee, S.H.; Gupta, A.; Compaan, A.D.

    2004-01-01

    Polycrystalline Hg 1-x Cd x Te films were investigated for their potential as bottom cells of a CdTe-based tandem solar cell. The films were deposited by RF sputtering from a cold pressed target containing 30% HgTe+70% CdTe. The as-deposited films were highly resistive with (111) preferred orientation and a bandgap of ∝1.0 eV. Various thermal treatment schemes were investigated under different conditions of ambient and temperature to reduce the resistivity. The film properties were analyzed using infrared transmission spectra, energy dispersive X-ray spectra and X-ray diffraction. N doped p-HgCdTe films were also prepared by reactive sputtering in a N 2 /Ar ambient. P-n junction solar cells were fabricated with CdS films as the heterojunction partner. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Highly Efficient and Stable Sn-Rich Perovskite Solar Cells by Introducing Bromine.

    Science.gov (United States)

    Lee, Seojun; Kang, Dong-Won

    2017-07-12

    Compositional engineering of recently arising methylammonium (MA) lead (Pb) halide based perovskites is an essential approach for finding better perovskite compositions to resolve still remaining issues of toxic Pb, long-term instability, etc. In this work, we carried out crystallographic, morphological, optical, and photovoltaic characterization of compositional MASn 0.6 Pb 0.4 I 3-x Br x by gradually introducing bromine (Br) into parental Pb-Sn binary perovskite (MASn 0.6 Pb 0.4 I 3 ) to elucidate its function in Sn-rich (Sn:Pb = 6:4) perovskites. We found significant advances in crystallinity and dense coverage of the perovskite films by inserting the Br into Sn-rich perovskite lattice. Furthermore, light-intensity-dependent open circuit voltage (V oc ) measurement revealed much suppressed trap-assisted recombination for a proper Br-added (x = 0.4) device. These contributed to attaining the unprecedented power conversion efficiency of 12.1% and V oc of 0.78 V, which are, to the best of our knowledge, the highest performance in the Sn-rich (≥60%) perovskite solar cells reported so far. In addition, impressive enhancement of photocurrent-output stability and little hysteresis were found, which paves the way for the development of environmentally benign (Pb reduction), stable monolithic tandem cells using the developed low band gap (1.24-1.26 eV) MASn 0.6 Pb 0.4 I 3-x Br x with suggested composition (x = 0.2-0.4).

  10. Exceeding Conventional Photovoltaic Efficiency Limits Using Colloidal Quantum Dots

    Science.gov (United States)

    Pach, Gregory F.

    Colloidal quantum dots (QDs) are a widely investigated field of research due to their highly tunable nature in which the optical and electronic properties of the nanocrystal can be manipulated by merely changing the nanocrystal's size. Specifically, colloidal quantum dot solar cells (QDSCs) have become a promising candidate for future generation photovoltaic technology. Quantum dots exhibit multiple exciton generation (MEG) in which multiple electron-hole pairs are generated from a single high-energy photon. This process is not observed in bulk-like semiconductors and allows for QDSCs to achieve theoretical efficiency limits above the standard single-junction Shockley-Queisser limit. However, the fast expanding field of QDSC research has lacked standardization of synthetic techniques and device design. Therefore, we sought to detail methodology for synthesizing PbS and PbSe QDs as well as photovoltaic device fabrication techniques as a fast track toward constructing high-performance solar cells. We show that these protocols lead toward consistently achieving efficiencies above 8% for PbS QDSCs. Using the same methodology for building single-junction photovoltaic devices, we incorporated PbS QDs as a bottom cell into a monolithic tandem architecture along with solution-processed CdTe nanocrystals. Modeling shows that near-peak tandem device efficiencies can be achieved across a wide range of bottom cell band gaps, and therefore the highly tunable band gap of lead-chalcogenide QDs lends well towards a bottom cell in a tandem architecture. A fully functioning monolithic tandem device is realized through the development of a ZnTe/ZnO recombination layer that appropriately combines the two subcells in series. Multiple recent reports have shown nanocrystalline heterostructures to undergo the MEG process more efficiency than several other nanostrucutres, namely lead-chalcogenide QDs. The final section of my thesis expands upon a recent publication by Zhang et. al., which

  11. Antagonist wear of monolithic zirconia crowns after 2 years.

    Science.gov (United States)

    Lohbauer, Ulrich; Reich, Sven

    2017-05-01

    The aim of this study was to evaluate the amount of wear on the antagonist occlusal surfaces of clinically placed monolithic zirconia premolar and molar crowns (LAVA Plus, 3M ESPE). Fourteen in situ monolithic zirconia crowns and their opposing antagonists (n = 26) are the subject of an ongoing clinical trial and have been clinically examined at baseline and after 24 months. Silicone impressions were taken and epoxy replicas produced for qualitative SEM analysis and quantitative analysis using optical profilometry. Based on the baseline replicas, the follow-up situation has been scanned and digitally matched with the initial topography in order to calculate the mean volume loss (in mm 3 ) as well as the mean maximum vertical loss (in mm) after 2 years in service. The mean volume loss for enamel antagonist contacts (n = 7) was measured to 0.361 mm 3 and the mean of the maximum vertical loss to 0.204 mm. The mean volume loss for pure ceramic contacts (n = 10) was measured to 0.333 mm 3 and the mean of the maximum vertical loss to 0.145 mm. The wear rates on enamel contacts were not significantly different from those measured on ceramic antagonists. Based on the limitations of this study, it can be concluded for the monolithic zirconia material LAVA Plus that the measured wear rates are in consensus with other in vivo studies on ceramic restorations. Further, that no significant difference was found between natural enamel antagonists and ceramic restorations as antagonists. The monolithic zirconia restorations do not seem to be affected by wear within the first 2 years. The monolithic zirconia crowns (LAVA Plus) show acceptable antagonist wear rates after 2 years in situ, regardless of natural enamel or ceramics as antagonist materials.

  12. A monolithic integrated photonic microwave filter

    Science.gov (United States)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  13. Monolithically integrated 8-channel WDM reflective modulator

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this work the design and characterization of a monolithically integrated photonic circuit acting as a reflective modulator for eight WDM channels is presented. The chip was designed and fabricated in a generic integration technology

  14. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  15. Digital solar edge tracker for the Halogen Occultation Experiment

    Science.gov (United States)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  16. Environmentally Benign Production of Stretchable and Robust Superhydrophobic Silicone Monoliths.

    Science.gov (United States)

    Davis, Alexander; Surdo, Salvatore; Caputo, Gianvito; Bayer, Ilker S; Athanassiou, Athanassia

    2018-01-24

    Superhydrophobic materials hold an enormous potential in sectors as important as aerospace, food industries, or biomedicine. Despite this great promise, the lack of environmentally friendly production methods and limited robustness remain the two most pertinent barriers to the scalability, large-area production, and widespread use of superhydrophobic materials. In this work, highly robust superhydrophobic silicone monoliths are produced through a scalable and environmentally friendly emulsion technique. It is first found that stable and surfactantless water-in-polydimethylsiloxane (PDMS) emulsions can be formed through mechanical mixing. Increasing the internal phase fraction of the precursor emulsion is found to increase porosity and microtexture of the final monoliths, rendering them superhydrophobic. Silica nanoparticles can also be dispersed in the aqueous internal phase to create micro/nanotextured monoliths, giving further improvements in superhydrophobicity. Due to the elastomeric nature of PDMS, superhydrophobicity can be maintained even while the material is mechanically strained or compressed. In addition, because of their self-similarity, the monoliths show outstanding robustness to knife-scratch, tape-peel, and finger-wipe tests, as well as rigorous sandpaper abrasion. Superhydrophobicity was also unchanged when exposed to adverse environmental conditions including corrosive solutions, UV light, extreme temperatures, and high-energy droplet impact. Finally, important properties for eventual adoption in real-world applications including self-cleaning, stain-repellence, and blood-repellence are demonstrated.

  17. Optical properties of pre-colored dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (Pceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Integrating a Semitransparent, Fullerene-Free Organic Solar Cell in Tandem with a BiVO4 Photoanode for Unassisted Solar Water Splitting.

    Science.gov (United States)

    Peng, Yuelin; Govindaraju, Gokul V; Lee, Dong Ki; Choi, Kyoung-Shin; Andrew, Trisha L

    2017-07-12

    We report an unassisted solar water splitting system powered by a diketopyrrolopyrrole (DPP)-containing semitransparent organic solar cell. Two major merits of this fullerene-free solar cell enable its integration with a BiVO 4 photoanode. First is the high open circuit voltage and high fill factor displayed by this single junction solar cell, which yields sufficient power to effect water splitting when serially connected to an appropriate electrode/catalyst. Second, the wavelength-resolved photoaction spectrum of the DPP-based solar cell has minimal overlap with that of the BiVO 4 photoanode, thus ensuring that light collection across these two components can be optimized. The latter feature enables a new water splitting device configuration wherein the solar cell is placed first in the path of incident light, before the BiVO 4 photoanode, although BiVO 4 has a wider bandgap. This configuration is accessed by replacing the reflective top electrode of the standard DPP-based solar cell with a thin metal film and an antireflection layer, thus rendering the solar cell semitransparent. In this configuration, incident light does not travel through the aqueous electrolyte to reach the solar cell or photoanode, and therefore, photon losses due to the scattering of water are reduced. Moreover, this new configuration allows the BiVO 4 photoanode to be back-illuminated, i.e., through the BiVO 4 /back contact interface, which leads to higher photocurrents compared to front illumination. The combination of a semitransparent single-junction solar cell and a BiVO 4 photoanode coated with oxygen evolution catalysts in a new device configuration yielded an unassisted solar water splitting system with a solar-to-hydrogen conversion efficiency of 2.2% in water.

  19. New 'monolithic' templates and improved protocols for soft lithography and microchip fabrication

    International Nuclear Information System (INIS)

    Pallandre, Antoine; Pal, Debjani; Lambert, Bertrand de; Viovy, Jean-Louis; Fuetterer, Claus

    2006-01-01

    We report a new method for fast prototyping and fabrication of polydimethylsiloxane (PDMS) and plastic microfluidic chips. These methods share in common the preparation of monolithic masters which includes the fabrication of the planar support, the 'negative pattern' of the microchannels and the fluidic connectors. The monolithic templates are extremely robust compared to conventional ones made of silicon and SU-8, and easier to produce and cheaper than all-silicon or electroplated templates. In contrast to the above-mentioned methods, our process allows one to cast both micrometre- (e.g. the microchannel) and millimetre-sized structures (e.g. the fluidic connection to the outer world) in a single fabrication step. The 'monolithic template' strategy can be used to fabricate both elastomeric (e.g. poly(dimethyl siloxane (PDMS)) polyester thermoset masters and glassy polymeric (e.g. cyclic olefin copolymer (COC)) devices. In this study we also report on one step fabrication of elastomer chips and on surface modifications of the above mentioned monolithically fabricated masters in order to improve separation of the chip from the template

  20. Failure analysis of various monolithic posterior aesthetic dental crowns using finite element method

    Science.gov (United States)

    Porojan, Liliana; Topală, Florin

    2017-08-01

    The aim of the study was to assess the effect of material stiffness and load on the biomechanical performance of the monolithic full-coverage posterior aesthetic dental crowns using finite element analysis. Three restorative materials for monolithic dental crowns were selected for the study: zirconia; lithium disilicate glass-ceramic, and resin-based composite. Stresses were calculated in the crowns for all materials and in the teeth structures, under different load values. The experiments show that dental crowns made from all this new aesthetic materials processed by CAD/CAM technologies would be indicated as monolithic dental crowns for posterior areas.

  1. Effect of pore size on performance of monolithic tube chromatography of large biomolecules.

    Science.gov (United States)

    Podgornik, Ales; Hamachi, Masataka; Isakari, Yu; Yoshimoto, Noriko; Yamamoto, Shuichi

    2017-11-01

    Effect of pore size on the performance of ion-exchange monolith tube chromatography of large biomolecules was investigated. Radial flow 1 mL polymer based monolith tubes of different pore sizes (1.5, 2, and 6 μm) were tested with model samples such as 20 mer poly T-DNA, basic proteins, and acidic proteins (molecular weight 14 000-670 000). Pressure drop, pH transient, the number of binding site, dynamic binding capacity, and peak width were examined. Pressure drop-flow rate curves and dynamic binding capacity values were well correlated with the nominal pore size. While duration of the pH transient curves depends on the pore size, it was found that pH duration normalized on estimated surface area was constant, indicating that the ligand density is the same. This was also confirmed by the constant number of binding site values being independent of pore size. The peak width values were similar to those for axial flow monolith chromatography. These results showed that it is easy to scale up axial flow monolith chromatography to radial flow monolith tube chromatography by choosing the right pore size in terms of the pressure drop and capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    CERN Document Server

    Giubilato, P; Snoeys, W; Bisello, D; Marchioro, A; Battaglia, M; Demaria, L; Mansuy, S C; Pantano, D; Rousset, J; Mattiazzo, S; Kloukinas, K; Potenza, A; Ikemoto, Y; Rivetti, A; Chalmet, P; Mugnier, H; Silvestrin, L

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV Fe-55 double peak at room temperature. To achieve high granularity (10-20 mu m pitch pixels) over large detector areas maintaining high readout speed, a complet...

  3. THE CHANGE IN DEFORMATION CHARACTERISTICS OF CONCRETE MONOLITHIC HIGH-RISE BUILDINGS

    Directory of Open Access Journals (Sweden)

    V. V. Punahin

    2009-03-01

    Full Text Available In the article results of studies of deformation features of concrete on actuate cement for monolithic high-altitude buildings are presented. It is shown that in construction of the high-altitude monolithic buildings in a summer period of a year one should take into account the character of changing the concrete elasticity and plasticity in time, which differs from the same indices for the concrete of normal hardening.

  4. Preparation of polymer monolithic column functionalized by arsonic acid groups for mixed-mode capillary liquid chromatography.

    Science.gov (United States)

    Qin, Zhang-Na; Yu, Qiong-Wei; Wang, Ren-Qi; Feng, Yu-Qi

    2018-04-27

    A mixed-mode polymer monolithic column functionalized by arsonic acid groups was prepared by single-step in situ copolymerization of monomers p-methacryloylaminophenylarsonic acid (p-MAPHA) and pentaerythritol triacrylate (PETA). The prepared poly(p-MAPHA-co-PETA) monolithic column has a homogeneous monolithic structure with good permeability and mechanical stability. Zeta potential measurements reveal that the monolithic stationary phase holds a negative surface charge when the mobile phase resides in the pH range of 3.0-8.0. The retention mechanisms of prepared monolithic column are explored by the separation of selected polycyclic aromatic hydrocarbons (PAHs), nucleosides, and three basic compounds. The results indicate that the column functions in three different separation modes associated with reversed-phase chromatography based on hydrophobic interaction, hydrophilic interaction chromatography, and cation-exchange chromatography. The column efficiency of prepared monolithic column is estimated to be 70,000 and 76,000 theoretical plates/m for thiourea and naphthalene, respectively, at a linear flow velocity of 0.85 mm/s using acetonitrile/H 2 O (85/15, v/v) as the mobile phase. Furthermore, an analysis of the retention factors obtained for the PAHs indicates that the prepared monolithic column exhibits good reproducibility with relative standard deviations of 2.9%, 4.0%, and 4.7% based on run-to-run injections, column-to-column preparation, and batch-to-batch preparation, respectively. Finally, we investigate the separation performance of the proposed monolithic column for select phenols, sulfonamides, nucleobases and nucleosides. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    International Nuclear Information System (INIS)

    Vazquez, Mercedes; Paull, Brett

    2010-01-01

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  6. Monolithic millimeter-wave and picosecond electronic technologies

    International Nuclear Information System (INIS)

    Talley, W.K.; Luhmann, N.C.

    1996-01-01

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band (∼8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies

  7. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  8. Carprofen-imprinted monolith prepared by reversible addition-fragmentation chain transfer polymerization in room temperature ionic liquids.

    Science.gov (United States)

    Ban, Lu; Han, Xu; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng

    2013-10-01

    To obtain fast separation, ionic liquids were used as porogens first in combination with reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare a new type of molecularly imprinted polymer (MIP) monolith. The imprinted monolithic column was synthesized using a mixture of carprofen (template), 4-vinylpyridine, ethylene glycol dimethacrylate, [BMIM]BF4, and chain transfer agent (CTA). Some polymerization factors, such as template-monomer molar ratio, the degree of crosslinking, the composition of the porogen, and the content of CTA, on the column efficiency and imprinting effect of the resulting MIP monolith were systematically investigated. Affinity screening of structurally similar compounds with the template can be achieved in 200 s on the MIP monolith due to high column efficiency (up to 12,070 plates/m) and good column permeability. Recognition mechanism of the imprinted monolith was also investigated.

  9. Monoliths of activated carbon from coconut shell and impregnation with nickel and copper

    International Nuclear Information System (INIS)

    Giraldo, Liliana; Moreno, Juan

    2008-01-01

    A series of different monoliths of activated carbon were prepared from coconut shell By means of chemical activation with phosphoric acid at different concentrations Without using binders or plastics. The monolith that developed the biggest surface area was impregnated by humidic route with solutions of Ni and Cu at different molar relations. The structures were characterized by N2 adsorption at 77 K, and the morphology was explored by means of scanning electron microscopy. The carbonaceous materials obtained, Nickel-Copper-Monolith, were analyzed by Thermal Programmed Reduction (TPR). The experimental results indicated that the activation with the acid generated a micro porosity, with micropores volume between 0.40 and 0.81 cm 3 g-1 and surface areas between 703 and 1450 m 2 g-1, and a good mechanical properties. It shows that, both the copper and the nickel, are fixed to the monolith and TPR's results are interpreted when these molar relation are modified.

  10. Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air.

    Science.gov (United States)

    Sakwa-Novak, Miles A; Yoo, Chun-Jae; Tan, Shuai; Rashidi, Fereshteh; Jones, Christopher W

    2016-07-21

    The development of practical and effective gas-solid contactors is an important area in the development of CO2 capture technologies. Target CO2 capture applications, such as postcombustion carbon capture and sequestration (CCS) from power plant flue gases or CO2 extraction directly from ambient air (DAC), require high flow rates of gas to be processed at low cost. Extruded monolithic honeycomb structures, such as those employed in the catalytic converters of automobiles, have excellent potential as structured contactors for CO2 adsorption applications because of the low pressure drop imposed on fluid moving through the straight channels of such structures. Here, we report the impregnation of poly(ethylenimine) (PEI), an effective aminopolymer reported commonly for CO2 separation, into extruded monolithic alumina to form structured CO2 sorbents. These structured sorbents are first prepared on a small scale, characterized thoroughly, and compared with powder sorbents with a similar composition. Despite consistent differences observed in the filling of mesopores with PEI between the monolithic and powder sorbents, their performance in CO2 adsorption is similar across a range of PEI contents. A larger monolithic cylinder (1 inch diameter, 4 inch length) is evaluated under conditions closer to those that might be used in large-scale applications and shows a similar performance to the smaller monoliths and powders tested initially. This larger structure is evaluated over five cycles of CO2 adsorption and steam desorption and demonstrates a volumetric capacity of 350 molCO2  m-3monolith and an equilibration time of 350 min under a 0.4 m s(-1) linear flow velocity through the monolith channels using 400 ppm CO2 in N2 as the adsorption gas at 30 °C. This volumetric capacity surpasses that of a similar technology considered previously, which suggested that CO2 could be removed from air at an operating cost as low as $100 per ton. © 2016 WILEY-VCH Verlag

  11. Preparation of epoxy-based macroporous monolithic columns for the fast and efficient immunofiltration of Staphylococcus aureus.

    Science.gov (United States)

    Ott, Sonja; Niessner, Reinhard; Seidel, Michael

    2011-08-01

    Macroporous epoxy-based monolithic columns were used for immunofiltration of bacteria. The prepared monolithic polymer support is hydrophilic and has large pore sizes of 21 μm without mesopores. A surface chemistry usually applied for immobilization of antibodies on glass slides is successfully transferred to monolithic columns. Step-by-step, the surface of the epoxy-based monolith is hydrolyzed, silanized, coated with poly(ethylene glycol diamine) and activated with the homobifunctional crosslinker di(N-succinimidyl)carbonate for immobilization of antibodies on the monolithic columns. The functionalization steps are characterized to ensure the coating of each monolayer. The prepared antibody-immobilized monolithic column is optimized for immunofiltration to enrich Staphylococcus aureus as an important food contaminant. Different kinds of geometries of monolithic columns, flow rates and elution buffers are tested with the goal to get high recoveries in the shortest enrichment time as possible. An effective capture of S. aureus was achieved at a flow rate of 7.0 mL/min with low backpressures of 20.1±5.4 mbar enabling a volumetric enrichment of 1000 within 145 min. The bacteria were quantified by flow cytometry using a double-labeling approach. After immunofiltration the sensitivity was significantly increased and a detection limit of the total system of 42 S. aureus/mL was reached. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Package Holds Five Monolithic Microwave Integrated Circuits

    Science.gov (United States)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  13. TANDEM

    Data.gov (United States)

    Federal Laboratory Consortium — The Tandem Van de Graaff facility provides researchers with beams of more than 40 different types of ions - atoms that have been stripped of their electrons. One of...

  14. A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography

    International Nuclear Information System (INIS)

    Wang Yu; Deng Qiliang; Fang Guozhen; Pan Mingfei; Yu Yang; Wang Shuo

    2012-01-01

    Highlights: ► ILs as functional monomer for capillary monolithic column. ► Separation of alkylbenzenes, thiourea analogues, and amino acids. ► The column generate a stable reversed EOF from pH 2.0 to 12.0. ► The column efficiency of 147,000 plates m −1 was obtained for thiourea. - Abstract: A novel ionic liquid (IL) monolithic capillary column was successfully prepared by thermal free radical copolymerization of IL (1-vinyl-3-octylimidazolium chloride, ViOcIm + Cl − ) together with lauryl methacrylate (LMA) as the binary functional monomers and ethylene dimethacrylate (EDMA) as the cross-linker in binary porogen. The proportion of monomers, porogens and cross-linker in the polymerization mixture was optimized in detail. The resulting IL-monolithic column could not only generate a stable reversed electroosmotic flow (EOF) in a wide pH range (2.0–12.0), but also effectively eliminate the wall adsorption of the basic analytes. The obtained IL-monolithic columns were examined by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). These results indicated that the IL-monolithic capillary column possessed good pore properties, mechanical stability and permeability. The column performance was also evaluated by separating different kinds of compounds, such as alkylbenzenes, thiourea and its analogues, and amino acids. The lowest plate height of ∼6.8 μm was obtained, which corresponded to column efficiency (theoretical plates, N) of ∼147,000 plates m −1 for thiourea. ILs, as a new type of functional monomer, present a promising option in the fabrication of the organic polymer-based monolithic columns in CEC.

  15. NREL, CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-01

    Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. National Renewable Energy Laboratory (NREL) and Swiss Center for Electronics and Microtechnology (CSEM) scientists have collaborated to create a novel tandem solar cell that operates at 29.8% conversion efficiency under non-concentrator (1-sun) conditions. In comparison, the 1-sun efficiency of a silicon (Si) single-junction solar cell is probably still a few years away from converging on its practical limit of about 26%.

  16. Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Specific Case of Perovskites/Silicon Devices

    KAUST Repository

    Dupre, Olivier

    2018-01-05

    Multijunction cells may offer a cost-effective route to boost the efficiency of industrial photovoltaics. For any technology to be deployed in the field, its performance under actual operating conditions is extremely important. In this perspective, we evaluate the impact of spectrum, light intensity, and module temperature variations on the efficiency of tandem devices with crystalline silicon bottom cells with a particular focus on perovskite top cells. We consider devices with different efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional loss for the two-terminal tandem configuration caused by current mismatch reduces its performance ratio by only 1.7% when an optimal top cell bandgap is used. Additionally, the unusual bandgap temperature dependence of perovskites is shown to have a positive, compensating effect on current mismatch.

  17. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed A.; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  18. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  19. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: an attractive technology.

    Science.gov (United States)

    Ladner, Y; Cretier, G; Faure, K

    2015-01-01

    Electrochromatography (EC) on a porous monolithic stationary phase prepared within the channels of a microsystem is an attractive alternative for on-chip separation. It combines the separation mechanisms of electrophoresis and liquid chromatography. Moreover, the porous polymer monolithic materials have become popular as stationary phase due to the ease and rapidity of fabrication via free radical photopolymerization. Here, we describe a hexyl acrylate (HA)-based porous monolith which is simultaneously in situ synthesized and anchored to the inner walls of the channel of a cyclic olefin copolymer (COC) device in only 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is realized.

  20. Numerical Simulation of Fluid Dynamics in a Monolithic Column

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yamamoto

    2017-01-01

    Full Text Available As for the measurement of polycyclic aromatic hydrocarbons (PAHs, ultra-performance liquid chromatography (UPLC is used for PAH identification and densitometry. However, when a solvent containing a substance to be identified passes through a column of UPLC, a dedicated high-pressure-proof device is required. Recently, a liquid chromatography instrument using a monolithic column technology has been proposed to reduce the pressure of UPLC. The present study tested five types of monolithic columns produced in experiments. To simulate the flow field, the lattice Boltzmann method (LBM was used. The velocity profile was discussed to decrease the pressure drop in the ultra-performance liquid chromatography (UPLC system.

  1. Potential measurements in tandem mirrors

    International Nuclear Information System (INIS)

    Glowienka, J.C.

    1985-11-01

    The US mirror program has begun conducting experiments with a thermal barrier tandem mirror configuration. This configuration requires a specific axial potential profile and implies measurements of potential for documentation and optimization of the configuration. This report briefly outlines the motivation for the thermal barrier tandem mirror and then outlines the techniques used to document the potential profile in conventional and thermal barrier tandem mirrors. Examples of typical data sets from the world's major tandem mirror experiments, TMX and TMX-U at Lawrence Livermore National Laboratory (LLNL) and Gamma 10 at Tsukuba University in Japan, and the current interpretation of the data are discussed together with plans for the future improvement of measurements of plasma potential

  2. A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography.

    Science.gov (United States)

    Wang, Yu; Deng, Qi-Liang; Fang, Guo-Zhen; Pan, Ming-Fei; Yu, Yang; Wang, Shuo

    2012-01-27

    A novel ionic liquid (IL) monolithic capillary column was successfully prepared by thermal free radical copolymerization of IL (1-vinyl-3-octylimidazolium chloride, ViOcIm(+)Cl(-)) together with lauryl methacrylate (LMA) as the binary functional monomers and ethylene dimethacrylate (EDMA) as the cross-linker in binary porogen. The proportion of monomers, porogens and cross-linker in the polymerization mixture was optimized in detail. The resulting IL-monolithic column could not only generate a stable reversed electroosmotic flow (EOF) in a wide pH range (2.0-12.0), but also effectively eliminate the wall adsorption of the basic analytes. The obtained IL-monolithic columns were examined by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). These results indicated that the IL-monolithic capillary column possessed good pore properties, mechanical stability and permeability. The column performance was also evaluated by separating different kinds of compounds, such as alkylbenzenes, thiourea and its analogues, and amino acids. The lowest plate height of ~6.8 μm was obtained, which corresponded to column efficiency (theoretical plates, N) of ~147,000 plates m(-1) for thiourea. ILs, as a new type of functional monomer, present a promising option in the fabrication of the organic polymer-based monolithic columns in CEC. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.

    Science.gov (United States)

    Yonekawa, H; Tomita, Y; Watanabe, Y

    2004-01-01

    This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.

  4. Test of the TRAPPISTe monolithic detector system

    Science.gov (United States)

    Soung Yee, L.; Álvarez, P.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic pixel detector named TRAPPISTe-2 has been developed in Silicon-on-Insulator (SOI) technology. A p-n junction is implanted in the bottom handle wafer and connected to readout electronics integrated in the top active layer. The two parts are insulated from each other by a buried oxide layer resulting in a monolithic detector. Two small pixel matrices have been fabricated: one containing a 3-transistor readout and a second containing a charge sensitive amplifier readout. These two readout structures have been characterized and the pixel matrices were tested with an infrared laser source. The readout circuits are adversely affected by the backgate effect, which limits the voltage that can be applied to the metal back plane to deplete the sensor, thus narrowing the depletion width of the sensor. Despite the low depletion voltages, the integrated pixel matrices were able to respond to and track a laser source.

  5. Theoretical modeling of a new structure of III-V tandem solar cells by ...

    African Journals Online (AJOL)

    junction solar cell is theoretically investigated by optimizing the thickness of GaAs and GaInPandusing a new optical model to separate the junction between the two solar cell in order to solve problems of tunnel junction and difficulties of fabrication.

  6. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Rui M., E-mail: ruimnovais@ua.pt; Buruberri, L.H.; Seabra, M.P.; Labrincha, J.A.

    2016-11-15

    Highlights: • Porous fly ash containing-geopolymer monoliths for lead adsorption were developed. • Geopolymers’ porosity and pH of the ion solution controls the adsorption capacity. • Lead adsorption by the geopolymer monoliths up to 6.34 mg/g was observed. • These novel adsorbents can be used in packed beds that are easily collected. • The reuse of biomass fly ash wastes as raw material ensures waste valorization. - Abstract: In this study novel porous biomass fly ash-containing geopolymer monoliths were produced using a simple and flexible procedure. Geopolymers exhibiting distinct total porosities (ranging from 41.0 to 78.4%) and low apparent density (between 1.21 and 0.44 g/cm{sup 3}) were fabricated. Afterwards, the possibility of using these innovative materials as lead adsorbents under distinct conditions was evaluated. Results demonstrate that the geopolymers’ porosity and the pH of the ion solution strongly affect the lead adsorption capacity. Lead adsorption by the geopolymer monoliths ranged between 0.95 and 6.34 mg{sub lead}/g{sub geopolymer}. More porous geopolymers presented better lead removal efficiency, while higher pH in the solution reduced their removal ability, since metal precipitation is enhanced. These novel geopolymeric monoliths can be used in packed beds that are easily collected when exhausted, which is a major advantage in comparison with the use of powdered adsorbents. Furthermore, their production encompasses the reuse of biomass fly-ash, mitigating the environmental impact associated with this waste disposal, while decreasing the adsorbents production costs.

  7. Recent Advances and Uses of Monolithic Columns for the Analysis of Residues and Contaminants in Food

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Bao

    2015-02-01

    Full Text Available Monolithic columns are gaining interest as excellent substitutes to conventional particle-packed columns. These columns show higher permeability and lower flow resistance than conventional liquid chromatography columns, providing high-throughput performance, resolution and separation in short run times. Monoliths possess also great potential for the clean-up and preparation of complex mixtures. In situ polymerization inside appropriate supports allows the development of several microextraction formats, such as in-tube solid-phase and pipette tip-based extractions. These techniques using porous monoliths offer several advantages, including miniaturization and on-line coupling with analytical instruments. Additionally, monoliths are ideal support media for imprinting template-specific sites, resulting in the so-called molecularly-imprinted monoliths, with ultra-high selectivity. In this review, time-saving LC columns and preparative applications applied to the analysis of residues and contaminants in food in 2010–2014 are described, focusing on recent improvements in design and with emphasis in automated on-line systems and innovative materials and formats.

  8. Polymer-Polymer Förster Resonance Energy Transfer Significantly Boosts the Power Conversion Efficiency of Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Gupta, Vinay; Bharti, Vishal; Kumar, Mahesh; Chand, Suresh; Heeger, Alan J

    2015-08-01

    Optically resonant donor polymers can exploit a wider range of the solar spectrum effectively without a complicated tandem design in an organic solar cell. Ultrafast Förster resonance energy transfer (FRET) in a polymer-polymer system that significantly improves the power conversion efficiency in bulk heterojunction polymer solar cells from 6.8% to 8.9% is demonstrated, thus paving the way to achieving 15% efficient solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS

    Directory of Open Access Journals (Sweden)

    Malakhova Anna Nikolaevna

    2016-06-01

    Full Text Available One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor slabs. The article provides constructive solutions of precast hollow core floor slabs and solid monolithic slabs that were used in the construction of buildings before wide use of large precast hollow core floor slabs. The article considers the application of caisson hollow core floor slabs for modern monolithic multi-storeyed buildings. The design solutions of such floor slabs, experimental investigations and computer modeling of their operation under load were described in this article. The comparative analysis of the calculation results of computer models of a hollow slabs formed of rod or plastic elements showed the similarity of calculation results.

  10. LePIX: First results from a novel monolithic pixel sensor

    International Nuclear Information System (INIS)

    Mattiazzo, S.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, N.; Giubilato, P.; Ikemoto, Y.; Kloukinas, K.; Mansuy, C.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.; Wyss, J.

    2013-01-01

    We present a monolithic pixel sensor developed in the framework of the LePIX project aimed at tracking/triggering tasks where high granularity, low power consumption, material budget, radiation hardness and production costs are a concern. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This maintains the advantages usually offered by Monolithic Active Pixel Sensors (MAPS), like a low input capacitance, having a single piece detector and using a standard CMOS production line, but offers charge collection by drift from a depleted region and therefore an excellent signal to noise ratio and a radiation tolerance superior to conventional undepleted MAPS. Measurement results obtained with the first prototypes from laser, radioactive source and beam test experiments are described. The excellent signal-to-noise performance is demonstrated by the capability of the device to separate the peaks in the spectrum of a 55 Fe source. We will also highlight the interaction between pixel cell design and architecture which points toward a very precise direction in the development of such depleted monolithic pixel devices for high energy physics

  11. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics

    KAUST Repository

    Beiley, Zach M.

    2013-10-07

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In situ synthesis of metal-organic frameworks in a porous polymer monolith as the stationary phase for capillary liquid chromatography.

    Science.gov (United States)

    Yang, Shengchao; Ye, Fanggui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2015-04-21

    In this study, HKUST-1 was synthesized in situ on the porous polymer monolith as the stationary phase for capillary liquid chromatography (cLC). The unique carboxyl functionalized poly(methacrylic acid-co-ethylene dimethacrylate) (poly(MAA-co-EDMA)) monolith was used as a support to directly grow HKUST-1 by a controlled layer-by-layer self-assembly strategy. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectroscopy of the resulting HKUST-1-poly(MAA-co-EDMA) monoliths indicated that HKUST-1 was successfully grafted onto the pore surface of the poly(MAA-co-EDMA) monolith. The column performance of HKUST-1-poly(MAA-co-EDMA) monoliths for the separation of various small molecules, such as benzenediols, xylenes, ethylbenzenes, and styrenes, was evaluated. The chromatographic performance was found to improve with increasing HKUST-1 density, and the column efficiencies and resolutions of HKUST-1-poly(MAA-co-EDMA) monoliths were 18 320-19 890 plates m(-1) and 1.62-6.42, respectively, for benzenediols. The HKUST-1-poly(MAA-co-EDMA) monolith displayed enhanced resolution for the separation of positional isomers when compared to the traditional C18 and HKUST-1 incorporated polymer monoliths. Hydrophobic, π-π, and hydrogen bonding interactions within the HKUST-1-poly(MAA-co-EDMA) monolith were observed in the separation of small molecules. The results showed that the HKUST-1-poly(MAA-co-EDMA) monoliths are promising stationary phases for cLC.

  13. A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array

    International Nuclear Information System (INIS)

    Toeppen, J.S.; Bliss, E.S.; Long, T.W.; Salmon, J.T.

    1991-07-01

    we have developed a video Hartmann wavefront sensor that incorporates a monolithic array of microlenses as the focusing elements. The sensor uses a monolithic array of photofabricated lenslets. Combined with a video processor, this system reveals local gradients of the wavefront at a video frame rate of 30 Hz. Higher bandwidth is easily attainable with a camera and video processor that have faster frame rates. When used with a temporal filter, the reconstructed wavefront error is less than 1/10th wave

  14. STATIONARY DISTRIBUTION OF A TANDEM QUEUE WITH ADDITIONAL FLOWS ON THE STATIONS OF THE TANDEM

    Directory of Open Access Journals (Sweden)

    V. I. Klimenok

    2017-01-01

    Full Text Available A tandem queueing system consisting of a finite number of multi-server stations without buffers is analized. The input flow at the first station is a ???????????? (Markovian arrival process. The customers from this flow aim to be served at all stations of the tandem. For any station, besides transit customers proceeding from the previous station, an additional ???????????? flow of new customers arrives at this station directly. Customers from this flow aim to be served at this station and all subsequent stations of the tandem. The service times of customer at the stations are exponentially distributed with the service rate depending of number of the station. The algorithms for culculation of stationary distributions and the loss probabilities associated with the tandem are given.

  15. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Science.gov (United States)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  16. Numerical simulation research on rolling process of monolithic nuclear fuel plate

    International Nuclear Information System (INIS)

    Wan Jibo; Kong Xiangzhe; Ding Shurong; Xu Hongbin; Huo Yongzhong

    2015-01-01

    For the strain-rate-dependent constitutive relation of zircaloy cladding in UMo monolithic nuclear fuel plates, the three-dimensional stress updating algorithm was derived out, and the corresponding VUMAT subroutine to define its constitutive relation was developed and validated; the finite element model was built to simulate the frame rolling process of UMo monolithic nuclear fuel plates; with the explicit dynamic finite element method, the evolution rules of the deformation and contact pressure during the rolling process within the composite slab were obtained and analyzed. The research results indicate that it is convenient and efficient to define the strain-rate- dependent constitutive relations of materials with the user-defined material subroutine VUMAT; the rolling-induced contact pressure between the fuel meat and the covers varies with time, and the maximum pressure exits at the symmetric plane along the plate width direction. This study supplies a foundation and a computation method for optimizing the processing parameters to manufacture UMo monolithic nuclear fuel plates. (authors)

  17. Tandem accelerator operation and improvements

    International Nuclear Information System (INIS)

    Yang Bingfan; Zhang Canzhe; Qin Jiuchang; Hu Yueming; Zhang Guilian; Jiang Yongliang; Hou Deyi; Yang Weimin; Yang Zhiren; Su Shengyong; Kan Chaoxin; Liu Dezhong; Wang Liyong; Bao Yiwen; You Qubo; Yang Tao; Zhang Yan; Zhou Lipeng; Chai Shiqin; Wang Meiyan

    1998-01-01

    The scheduled operation of HI-13 tandem accelerator for various experiments was performed well in 1996 and 1997. The machine running time was 4600 h and 4182 h while the beam time was 3845 h and 3712 h in 1996 and 1997, respectively. The operation of HI-13 tandem accelerator is pretty well. The beam distribution with terminal voltage and the distribution of beam time with ion species are shown out. The development of accelerating tubes for HI-13 tandem is in progress

  18. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry.

    Science.gov (United States)

    Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-04-05

    In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. High-temperature oxidation behavior of dense SiBCN monoliths: Carbon-content dependent oxidation structure, kinetics and mechanisms

    International Nuclear Information System (INIS)

    Li, Daxin; Yang, Zhihua; Jia, Dechang; Wang, Shengjin; Duan, Xiaoming; Zhu, Qishuai; Miao, Yang; Rao, Jiancun; Zhou, Yu

    2017-01-01

    Highlights: •The scale growth for all investigated monoliths at 1500 °C cannot be depicted by a linear or parabolic rate law. •The carbon-rich monoliths oxidize at 1500 °C according to a approximately linear weight loss equation. •The excessive carbon in SiBCN monoliths deteriorates the oxidation resistance. •The oxidation resistance stems from the characteristic oxide structures and increased oxidation resistance of BN(C). -- Abstract: The high temperature oxidation behavior of three SiBCN monoliths: carbon-lean SiBCN with substantial Si metal, carbon-moderate SiBCN and carbon-rich SiBCN with excessive carbon, was investigated at 1500 °C for times up to15 h. Scale growth for carbon-lean and −moderate monoliths at 1500 °C cannot be described by a linear or parabolic rate law, while the carbon-rich monoliths oxidize according to a approximately linear weight loss equation. The microstructures of the oxide scale compose of three distinct layers. The passivating layer of carbon and boron containing amorphous SiO 2 and increased oxidation resistance of BN(C) both benefit the oxidation resistance.

  20. Monolithic Inorganic ZnO/GaN Semiconductors Heterojunction White Light-Emitting Diodes.

    Science.gov (United States)

    Jeong, Seonghoon; Oh, Seung Kyu; Ryou, Jae-Hyun; Ahn, Kwang-Soon; Song, Keun Man; Kim, Hyunsoo

    2018-01-31

    Monolithic light-emitting diodes (LEDs) that can generate white color at the one-chip level without the wavelength conversion through packaged phosphors or chip integration for photon recycling are of particular importance to produce compact, cost-competitive, and smart lighting sources. In this study, monolithic white LEDs were developed based on ZnO/GaN semiconductor heterojunctions. The electroluminescence (EL) wavelength of the ZnO/GaN heterojunction could be tuned by a post-thermal annealing process, causing the generation of an interfacial Ga 2 O 3 layer. Ultraviolet, violet-bluish, and greenish-yellow broad bands were observed from n-ZnO/p-GaN without an interfacial layer, whereas a strong greenish-yellow band emission was the only one observed from that with an interfacial layer. By controlled integration of ZnO/GaN heterojunctions with different postannealing conditions, monolithic white LED was demonstrated with color coordinates in the range (0.3534, 0.3710)-(0.4197, 0.4080) and color temperatures of 4778-3349 K in the Commission Internationale de l'Eclairage 1931 chromaticity diagram. Furthermore, the monolithic white LED produced approximately 2.1 times higher optical output power than a conventional ZnO/GaN heterojunction due to the carrier confinement effect at the Ga 2 O 3 /n-ZnO interface.

  1. Exceptionally stable and hierarchically porous self-standing zeolite monolith based on a solution-mediated and solid-state transformation synergistic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Do, Manh Huy [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Cheng, Dang-guo, E-mail: dgcheng@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Chen, Fengqiu [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhan, Xiaoli [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2015-11-15

    Although many strategies exist for fabricating hierarchical zeolite monolith, it is still challenging to synthesize pure hierarchical zeolite monolith with intracrystalline meso-/macropores and stability suitable for industrial application in a general and efficient process. Here we describe a simple quasi-solid gel crystallization route to prepare hierarchical self-standing ZSM-5 zeolite monolith via the use of Na{sup +} and OH{sup −} as counterions to modify the breaking and remaking of T–O–T (T = Si or Al) bonds. X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microscopy (TEM), laser scan confocal microscopy (LSCM), N{sub 2} adsorption–desorption, mercury porosimetry, solid-state nuclear magnetic resonance (NMR), and compression mechanical testing were applied to elucidate the structure and mechanical stability of the obtained monolith. The self-standing monolith is composed of self-interconnected meso-/macroporous MFI crystals with tunable intracrystalline meso-/macropores and possesses an unusually mechanical stability with a crushing strength of 5.01 MPa. Combined with controllable structure of the defect-free membrane layer on the monolith top, the self-standing zeolite monolith should widen their potential applications. - Highlights: • Hierarchical self-standing MFI zeolite monoliths were synthesized via a facile method. • Na{sup +} and OH{sup −} are used as counterions for breaking and remaking of T–O–T (T = Si or Al) bonds. • Hierarchical self-standing MFI zeolite monoliths result from zeolite crystal intergrowth. • Self-standing zeolite monolith has an excellent mechanical stability with tunable intracrystalline meso-/macropores.

  2. Tandem accelerators, 1973--1974

    International Nuclear Information System (INIS)

    Howard, F.T.

    1974-01-01

    High voltage tandem accelerators are very important instruments in the field of nuclear physics research, especially in the acceleration of heavy ions. This survey identifies 77 tandems installed in 21 countries; of these, 34 are in the United States. Most installations have supplied data sheets identifying their machines and briefly characterizing their research programs. (U.S.)

  3. Fiber-based monolithic columns for liquid chromatography.

    Science.gov (United States)

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.

  4. Application of monolithic polycapillary focusing optics in MXRF

    International Nuclear Information System (INIS)

    Gao, N.; Ponomarev, I.; Xiao, Q.F.; Gibson, W.M.

    1996-01-01

    A monolithic polycapillary focusing optic, consisting of hundreds of thousands of small tapered glass capillaries, can collect a large solid angle of x rays from a point source and guide them through the capillaries by multiple total reflections to form an intense focused beam. Such a focused beam has many applications in microbeam x-ray fluorescence (MXRF) analysis. Two monolithic polycapillary focusing optics were tested and characterized in a MXRF set-up using a microfocusing x-ray source (50microm x 10microm). For the Cu K α line, the measured focal spot sizes of these optics were 105microm and 43microm Full-Width-Half-Maximum (FWHM), respectively. When the source was operated at 16W, the average Cu K α intensities over the focal spots were measured to be 2.4 x 10 4 photons/s/microm 2 and 8.9 x 10 4 photons/s/microm 2 , respectively. When the authors compared the monolithic optics to straight monocapillary optics (single channel capillary) with approximately the same output beam sizes, intensity gains of 16 and 44 were obtained. The optics were applied to the MXRF set-up to analyze trace elements in various samples and a Minimum Detection Limit (MDL) of about 2 pg was achieved for the transition elements (V, Cr, Mn, and Fe). The optics were also used to map the distributions of trace elements in various samples

  5. High-density 3D graphene-based monolith and related materials, methods, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah

    2017-03-21

    A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.

  6. On-line immunoaffinity column-liquid chromatography-tandem mass spectrometry method for trace analysis of diuron in wastewater treatment plant effluent sample.

    Science.gov (United States)

    Zhang, Xiuli; Martens, Dieter; Krämer, Petra M; Kettrup, Antonius A; Liang, Xinmiao

    2006-11-10

    An on-line immunoaffinity column with liquid chromatography/tandem mass spectrometry (IAC-LC-MS/MS) method for the determination of diuron in water matrices was described. This method used a sol-gel immunoaffinity column (20 mm x 4 mm I.D.) for on-line sample cleanup and enrichment, a monolithic analytical column (100 mm x 4.6 mm I.D.) for separation, and a triple quadrupole mass spectrometer for quantitation. The major challenges for the on-line set-up were discussed. The optimized on-line protocol was emphasized by the fact that low limit of quantitation (LOQ) of 1.0 ng/L was achieved with only 2.5-mL sample. In addition, a satisfactory accuracy ( approximately 90% of recovery) and precision (effect, the on-line IAC-LC-MS/MS analysis method can reliably determine diuron in wastewater treatment plant effluent sample.

  7. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes.

    Science.gov (United States)

    Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J

    2015-04-21

    A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.

  8. Fast preparation of hybrid monolithic columns via photo-initiated thiol-yne polymerization for capillary liquid chromatography.

    Science.gov (United States)

    Ma, Shujuan; Zhang, Haiyang; Li, Ya; Li, Yanan; Zhang, Na; Ou, Junjie; Ye, Mingliang; Wei, Yinmao

    2018-02-23

    Although several approaches have been developed to fabricate hybrid monoliths, it would still take a few hours to finish the formation of monoliths. Herein, photo-initiated thiol-yne polymerization was first adopted to in situ fabricate hybrid monoliths within the confines of UV-transparent fused-silica capillary. A silicon-containing diyne (1,3-diethynyltetramethyl-disiloxane, DYDS) was copolymerized with three multithiols, 1,6-hexanedithiol, trimethylolpropane tris(3-mercaptopropionate) and pentaerythriol tetrakis(3-mercaptopropionate), by using a binary porogenic system of diethylene glycol diethyl ether (DEGDE)/poly(ethylene glycol) (PEG200) within 10 min. Several characterizations of three hybrid monoliths (assigned as I, II and III, respectively) were performed. The results showed that these hybrid monoliths possessed bicontinuous porous structure, which was remarkably different from that via typical free-radical polymerization. The highest column efficiency of 76,000 plates per meter for butylbenzene was obtained on the column I in reversed-phase liquid chromatography (RPLC). It was observed that the efficiencies for strong-retained butylbenzene were almost close to those of weak-retained benzene, indicating a retention-independent efficient performance of small molecules on hybrid column I. The surface area of this hybrid monolith was very small in the dry state (less than 10.0 m 2 /g), and the chromatographic behavior of hybrid monolithic columns would be possibly explained by radical-mediated step-growth process of thiol-yne polymerization. Finally, the column I was applied for separation of BSA tryptic digest by cLC-MS/MS, indicating satisfactory separation ability for complicated samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Preparation of polyhedral oligomeric silsesquioxane based hybrid monoliths by ring-opening polymerization for capillary LC and CEC.

    Science.gov (United States)

    Lin, Hui; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Ou, Junjie; Zou, Hanfa

    2013-09-01

    A new organic-inorganic hybrid monolith was prepared by the ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with 1,4-butanediamine (BDA) using 1-propanol, 1,4-butanediol, and PEG 10,000 as a porogenic system. Benefiting from the moderate phase separation process, the resulting poly(POSS-co-BDA) hybrid monolith possessed a uniform microstructure and exhibited excellent performance in chromatographic applications. Neutral, acidic, and basic compounds were successfully separated on the hybrid monolith in capillary LC (cLC), and high column efficiencies were achieved in all of the separations. In addition, as the amino groups could generate a strong EOF, the hybrid monolith was also applied in CEC for the separation of neutral and polar compounds, and a satisfactory performance was obtained. These results demonstrate that the poly(POSS-co-BDA) hybrid monolith is a good separation media in chromatographic separations of various types of compounds by both cLC and CEC. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Microchip-based monolithic column for high performance liquid chromatography

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed microchip based monolithic columns that can be used for liquid chromatography of small organic molecules, as well as, macromolecules such as...

  11. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins.

    Science.gov (United States)

    Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El

    2017-06-27

    HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  12. MHD stability of tandem mirrors

    International Nuclear Information System (INIS)

    Poulsen, P.; Molvik, A.; Shearer, J.

    1982-01-01

    The TMX-Upgrade experiment was described, and the manner in which various plasma parameters could be affected was discussed. The initial analysis of the MHD stability of the tandem mirror was also discussed, with emphasis on the negative tandem configuration

  13. Study of monolithic prestressed reinforced concrete overhead road.

    Directory of Open Access Journals (Sweden)

    Ya.I. Kovalchyk

    2011-12-01

    Full Text Available Results of inspection and testing of monolithic prestressed reinforced concrete road trestle built in Kyiv are considered. The analysis of the gained results has shown that parametres correspond to the requirements of current standards on design of bridges.

  14. Brief-stimulus presentations on multiform tandem schedules

    OpenAIRE

    Reed, Phil

    1994-01-01

    Three experiments examined the influence of a brief stimulus (a light) on the behavior of food-deprived rats whose lever pressing on tandem schedules comprising components of different schedule types resulted in food presentation. In Experiment 1, either a tandem variable-ratio variable-interval or a tandem variable-interval variable-ratio schedule was used. The variable-interval requirement in the tandem variable-ratio variable-interval schedule was yoked to the time taken to complete the va...

  15. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  16. Low frequency seismic noise acquisition and analysis with tunable monolithic horizontal sensors

    Science.gov (United States)

    Acernese, Fausto; De Rosa, Rosario; Giordano, Gerardo; Romano, Rocco; Vilasi, Silvia; Barone, Fabrizio

    2011-04-01

    In this paper we describe the scientific data recorded mechanical monolithic horizontal sensor prototypes located in the Gran Sasso Laboratory of the INFN. The mechanical monolithic sensors, developed at the University of Salerno, are placed, in thermally insulating enclosures, onto concrete slabs connected to the bedrock. The main goal of this experiment is to characterize seismically the sites in the frequency band 10-4 ÷ 10Hz and to get all the necessary information to optimize the sensor.

  17. Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths.

    Science.gov (United States)

    Guo, Jialiang; Xiao, Yuan; Lin, Yuanjing; Zhang, Qiaoxuan; Chang, Yiqun; Crommen, Jacques; Jiang, Zhengjin

    2016-05-15

    In order to investigate the effect of the linking spacer on the enantioseparation ability of β-cyclodextrin (β-CD) functionalized polymeric monoliths, three β-CD-functionalized organic polymeric monoliths with different spacer lengths were prepared by using three amino-β-CDs, i.e. mono-6-amino-6-deoxy-β-CD, mono-6-ethylenediamine-6-deoxy-β-CD, mono-6-hexamethylenediamine-6-deoxy-β-CD, as starting materials. These amino-β-CDs reacted with glycidyl methacrylate to produce functional monomers which were then copolymerized with ethylene dimethacrylate. The enantioseparation ability of the three monoliths was evaluated using 14 chiral acidic compounds, including mandelic acid derivatives, nonsteroidal anti-inflammatory drugs, N-derivatized amino acids, and chiral herbicides under optimum chromatographic conditions. Notably, the poly(GMA-NH2-β-CD-co-EDMA) column provides higher enantioresolution and enantioselectivity than the poly(GMA-EDA-β-CD-co-EDMA) and poly(GMA-HDA-β-CD-co-EDMA) columns for most tested chiral analytes. Furthermore, the enantioseparation performance of triazole-linker containing monoliths was compared to that of ethylenediamine-linker containing monoliths. The results indicate that the enantioselectivity of β-CD monolithic columns is strongly related to the length and type of spacer tethering β-CD to the polymeric support. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Small solar system bodies as granular systems

    Science.gov (United States)

    Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo

    2017-06-01

    Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  19. Rapid and simple preparation of thiol-ene emulsion-templated monoliths and their application as enzymatic microreactors

    DEFF Research Database (Denmark)

    Lafleur, Josiane P; Senkbeil, Silja; Novotny, Jakub

    2015-01-01

    A novel, rapid and simple method for the preparation of emulsion-templated monoliths in microfluidic channels based on thiol-ene chemistry is presented. The method allows monolith synthesis and anchoring inside thiol-ene microchannels in a single photoinitiated step. Characterization by scanning...... electron microscopy showed that the methanol-based emulsion templating process resulted in a network of highly interconnected and regular thiol-ene beads anchored solidly inside thiol-ene microchannels. Surface area measurements indicate that the monoliths are macroporous, with no or little micro...

  20. Monolithic junction field-effect transistor charge preamplifier for calorimetry at high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Rehn, L.A.; Manfredi, P.F.; Speziali, V.

    1991-11-01

    The outstanding noise and radiation hardness characteristics of epitaxial-channel junction field-effect transistors (JFET) suggest that a monolithic preamplifier based upon them may be able to meet the strict specifications for calorimetry at high luminosity colliders. Results obtained so far with a buried layer planar technology, among them an entire monolithic charge-sensitive preamplifier, are described

  1. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Kurdi Said El

    2017-06-01

    Full Text Available HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5 and precision (RSD ≤ 0.6 %. Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  2. Chiral monolithic absorbent constructed by optically active helical-substituted polyacetylene and graphene oxide: preparation and chiral absorption capacity.

    Science.gov (United States)

    Li, Weifei; Wang, Bo; Yang, Wantai; Deng, Jianping

    2015-02-01

    Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical-substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral-substituted acetylene monomer (Ma), cross-linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV-vis absorption, scanning electron microscopy (SEM), FT-IR, Raman, energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio-differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modeling of InGaN/Si tandem cells: comparison between 2-contacts/4-contacts

    Directory of Open Access Journals (Sweden)

    El-Huni Walid

    2017-01-01

    Full Text Available Due to its electrical and optical interesting properties, InGaN alloy is being intensively studied to be combined with silicon in order to achieve low-cost high-efficiency solar cell. However, a relatively thick monophasic layer of InGaN is difficult to grow due to the relaxation issue in material. This issue can be avoided by semibulk structure. In this work, we present an InGaN/Si double-junction solar cell modeled using Silvaco-ATLAS TCAD software. We have taken into account polarization effect in III-N materials. We have shown that 50% of indium is needed to ensure the current matching between the top cell and the bottom cell in 2-terminal configuration. Such high indium composition is technologically challenging to grow. Thus, we have modeled a 4-terminals solar cell with relatively low indium composition (In = 25% where current matching is not needed. With technologically feasible structural parameters, we have shown that an efficiency near to 30% can be achieved with InGaN/Si 4-contact tandem cell.

  4. Modeling of InGaN/Si tandem cells: comparison between 2-contacts/4-contacts

    Science.gov (United States)

    El-Huni, Walid; Migan, Anne; Alamarguy, David; Djebbour, Zakaria

    2017-03-01

    Due to its electrical and optical interesting properties, InGaN alloy is being intensively studied to be combined with silicon in order to achieve low-cost high-efficiency solar cell. However, a relatively thick monophasic layer of InGaN is difficult to grow due to the relaxation issue in material. This issue can be avoided by semibulk structure. In this work, we present an InGaN/Si double-junction solar cell modeled using Silvaco-ATLAS TCAD software. We have taken into account polarization effect in III-N materials. We have shown that 50% of indium is needed to ensure the current matching between the top cell and the bottom cell in 2-terminal configuration. Such high indium composition is technologically challenging to grow. Thus, we have modeled a 4-terminals solar cell with relatively low indium composition (In = 25%) where current matching is not needed. With technologically feasible structural parameters, we have shown that an efficiency near to 30% can be achieved with InGaN/Si 4-contact tandem cell.

  5. Theoretical study of optical properties of anti phase domains in GaP

    Energy Technology Data Exchange (ETDEWEB)

    Tea, E., E-mail: etea.contact@gmail.com [Institute of R and D on Photovoltaic Energy (IRDEP) (UMR 7174, EDF-CNRS-ENSCP), 6 Quai Watier BP 49, 78401 Chatou cedex (France); FOTON INSA-Rennes (UMR 6082 CNRS), Université Européenne de Bretagne, 20 Avenue des Buttes de Coësmes, 35708 Rennes (France); Vidal, J.; Laribi, S.; Guillemoles, J.-F. [Institute of R and D on Photovoltaic Energy (IRDEP) (UMR 7174, EDF-CNRS-ENSCP), 6 Quai Watier BP 49, 78401 Chatou cedex (France); Pedesseau, L.; Cornet, C.; Jancu, J.-M.; Even, J.; Durand, O. [FOTON INSA-Rennes (UMR 6082 CNRS), Université Européenne de Bretagne, 20 Avenue des Buttes de Coësmes, 35708 Rennes (France)

    2014-02-14

    III-V/Si heterostructures are currently investigated for silicon photonics and solar energy conversion. In particular, dilute nitride alloy GaAsPN grown on a GaP/Si platform exhibits lattice match with Si and an optimal band gap configuration for tandem solar cell devices. However, monolithic “coherent” growth of the GaP thin layer on Si suffers from the nucleation of extended structural defects, which can hamper device operation as well as the GaP/Si interface level and through their propagation inside the overall heterostructure. However, the effect of such structural defects on optical and transport properties is actually not well understood in details. In this letter, we investigate the anti phase domains defect (also called inversion domains) by means of ab initio calculations giving insights into the alteration of optical and transport properties of GaP due to the defective GaP/Si interface.

  6. Preparation and characterization of fluorophenylboronic acid-functionalized affinity monolithic columns for the selective enrichment of cis-diol-containing biomolecules.

    Science.gov (United States)

    Li, Qianjin; Liu, Zhen

    2015-01-01

    Boronate affinity monolithic columns have been developed into an important means for the selective recognition and capture of cis-diol-containing biomolecules, such as glycoproteins, nucleosides and saccharides. The ligands of boronic acids are playing an important role in boronate affinity monolithic columns. Although several boronate affinity monoliths with high affinity toward cis-diol-containing biomolecules have been reported, only few publications are focused on their detailed procedures for preparation and characterization. This chapter describes in detail the preparation and characterization of a boronate affinity monolithic column applying 2,4-difluoro-3-formyl-phenylboronic acid (DFFPBA) as a ligand. The DFFPBA-functionalized monolithic column not only exhibited an ultrahigh boronate affinity toward cis-diol-containing biomolecules, but also showed great potential for the selective enrichment of cis-diol-containing biomolecules in real samples.

  7. Comparison of Membrane Chromatography and Monolith Chromatography for Lactoferrin and Bovine Serum Albumin Separation

    Directory of Open Access Journals (Sweden)

    Chalore Teepakorn

    2016-09-01

    Full Text Available These last few decades, membranes and monoliths have been increasingly used as stationary phases for chromatography. Their fast mass transfer is mainly based on convection, which leads to reduced diffusion, which is usually observed in resins. Nevertheless, poor flow distribution, which causes inefficient binding, remains a major challenge for the development of both membrane and monolith devices. Moreover, the comparison of membranes and monoliths for biomolecule separation has been very poorly investigated. In this paper, the separation of two proteins, bovine serum albumin (BSA and lactoferrin (LF, with similar sizes, but different isoelectric points, was investigated at a pH of 6.0 with a BSA-LF concentration ratio of 2/1 (2.00 mg·mL−1 BSA and 1.00 mg·mL−1 LF solution using strong cation exchange membranes and monoliths packed in the same housing, as well as commercialized devices. The feeding flow rate was operated at 12.0 bed volume (BV/min for all devices. Afterward, bound LF was eluted using a phosphate-buffered saline solution with 2.00 M NaCl. Using membranes in a CIM housing from BIA Separations (Slovenia with porous frits before and after the membrane bed, higher binding capacities, sharper breakthrough curves, as well as sharper and more symmetric elution peaks were obtained. The monolith and commercialized membrane devices showed lower LF binding capacity and broadened and non-symmetric elution peaks.

  8. In situ detection of tandem DNA repeat length

    Energy Technology Data Exchange (ETDEWEB)

    Yaar, R.; Szafranski, P.; Cantor, C.R.; Smith, C.L. [Boston Univ., MA (United States)

    1996-11-01

    A simple method for scoring short tandem DNA repeats is presented. An oligonucleotide target, containing tandem repeats embedded in a unique sequence, was hybridized to a set of complementary probes, containing tandem repeats of known lengths. Single-stranded loop structures formed on duplexes containing a mismatched (different) number of tandem repeats. No loop structure formed on duplexes containing a matched (identical) number of tandem repeats. The matched and mismatched loop structures were enzymatically distinguished and differentially labeled by treatment with S1 nuclease and the Klenow fragment of DNA polymerase. 7 refs., 4 figs.

  9. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...

  10. Design for an 8 Meter Monolithic UV/OIR Space Telescope

    Science.gov (United States)

    Stahl, H. Philip; Postman, Marc; Hornsby, Linda; Hopkins, Randall; Mosier, Gary E.; Pasquale, Bert A.; Arnold, William R.

    2009-01-01

    ATLAST-8 is an 8-meter monolithic UV/optical/NIR space observatory to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V cargo launch vehicle. The ATLAST-8 will yield fundamental astronomical breakthroughs. The mission concept utilizes two enabling technologies: planned Ares-V launch vehicle (scheduled for 2019) and autonomous rendezvous and docking (AR&D). The unprecedented Ares-V payload and mass capacity enables the use of a massive, monolithic, thin-meniscus primary mirror - similar to a VLT or Subaru. Furthermore, it enables simple robust design rules to mitigate cost, schedule and performance risk. AR&D enables on-orbit servicing, extending mission life and enhancing science return.

  11. Continuous-Flow Monolithic Silica Microreactors with Arenesulphonic Acid Groups: Structure–Catalytic Activity Relationships

    Directory of Open Access Journals (Sweden)

    Agnieszka Ciemięga

    2017-08-01

    Full Text Available The performance of monolithic silica microreactors activated with sulphonic acid groups and a packed bed reactor with Amberlyst 15 resin were compared in the esterification of acetic acid with n-butanol. The monolithic microreactors were made of single silica rods with complex pore architecture, differing in the size of mesopores, and in particular, flow-through macropores which significantly affected the flow characteristic of the continuous system. The highest ester productivity of 105.2 mol·molH+−1·h−1 was achieved in microreactor M1 with the largest porosity, characterized by a total pore volume of 4 cm3·g−1, mesopores with 20 nm diameter, and large flow-through macropores 30–50 μm in size. The strong impact of the permeability of the monoliths on a reaction kinetics was shown.

  12. Assessment of the Grouted IXC Monolith in Support of K East Basin Hazard Categorization

    Energy Technology Data Exchange (ETDEWEB)

    Short, Steven M.; Dodson, Michael G.; Alzheimer, James M.; Meyer, Perry A.

    2007-10-12

    Addendum to original report updating the structural analysis of the I-beam accident to reflect a smaller I-beam than originally assumed (addendum is 2 pages). The K East Basin currently contains six ion exchange columns (IXCs) that were removed from service over 10 years ago. Fluor Hanford plans to immobilize the six ion exchange columns (IXCs) in place in a concrete monolith. PNNL performed a structural assessment of the concrete monolith to determine its capability to absorb the forces imposed by postulated accidents and protect the IXCs from damage and thus prevent a release of radioactive material. From this assessment, design specifications for the concrete monolith were identified that would prevent a release of radioactive material for any of the postulated hazardous conditions.

  13. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    International Nuclear Information System (INIS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S.C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55 Fe double peak at room temperature. To achieve high granularity (10–20 µm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption

  14. Chromatographic selectivity of poly(alkyl methacrylate-co-divinylbenzene) monolithic columns for polar aromatic compounds by pressure-driven capillary liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shu-Ling; Wang, Chih-Chieh; Fuh, Ming-Ren, E-mail: msfuh@scu.edu.tw

    2016-10-05

    In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16–1.20%, RSD; n = 3) and column-to-column (0.26–2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns. - Highlights: • First investigation on chromatographic selectivity of AlMA-DVB monolithic columns. • Good run-to-run/column-to-column repeatability (<3%) on AlMA-DVB monolithic columns. • Efficient separation of phenylurea herbicides and sulfonamides on AlMA-DVB columns.

  15. Monolithic microwave integrated circuit with integral array antenna

    International Nuclear Information System (INIS)

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  16. Preparation and characterization of Au/CeO{sub 2}-Al{sub 2}O{sub 3} monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Gawel, Bartlomiej; Lambrechts, Kalle [Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway); Oye, Gisle, E-mail: gisle.oye@chemeng.ntnu.no [Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A facile method for preparing Au/CeO{sub 2}-Al{sub 2}O{sub 3} monoliths with hierarchical porosity. Black-Right-Pointing-Pointer Continuous-flow testing of the monoliths in liquid-phase oxidation of glucose. Black-Right-Pointing-Pointer Increased catalytic activity in the presence of cerium oxide (stirred-batch tests). - Abstract: Porous CeO{sub 2}-Al{sub 2}O{sub 3} monoliths with hierarchical pore structure were prepared by mixing boehmite particles with solutions containing different amounts of cerium chloride and aluminum nitrate. The monoliths were functionalized with gold nanoparticles using the incipient wetness method. The resulting materials were characterized by X-ray diffraction, nitrogen sorption, mercury porosimetry, UV-vis spectroscopy and transmission electron microscopy. The catalysts were tested in liquid phase glucose oxidation, comparing continuously stirred batch reactor and continuous-flow fix-bed reactor setups.

  17. Iminodiacetic acid functionalised organopolymer monoliths: application to the separation of metal cations by capillary high-performance chelation ion chromatography.

    Science.gov (United States)

    Moyna, Áine; Connolly, Damian; Nesterenko, Ekaterina; Nesterenko, Pavel N; Paull, Brett

    2013-03-01

    Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35%, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC(4)D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.

  18. Fabrication of a novel hemin-based monolithic column and its application in separation of protein from complex bio-matrix.

    Science.gov (United States)

    Jiang, Xiaoya; Zhang, Doudou; Li, Xueying; Wang, Xixi; Bai, Ligai; Liu, Haiyan; Yan, Hongyuan

    2017-05-10

    A novel polymer-based monolithic column was prepared via redox initiation system within the confines of a stainless steel column with 4.6mm i.d. In the processes, hemin and lauryl methacrylate were used as co-monomers; ethylene dimethacrylate as crosslinking agent; n-butyl alcohol, ethanediol, and N, N-dimethylformamide as tri-porogens; benzoyl peroxide and N, N-dimethyl aniline as redox initiation system. The resulting polymer-based monolithic columns were characterized by scanning electron microscopy, nitrogen adsorption-desorption instrument, and mercury intrusion porosimeter, respectively. The results illustrated that the improved monolith had relative uniform porous structure, good permeability, and low back pressure. Aromatic compounds were used to test the chromatographic behavior of the monolith, resulting in highest column efficiency of 19 880 plates per meter with reversed-phase mechanism. Furthermore, the homemade monolith was used as the stationary phase of high performance liquid chromatography to separate proteins from complex bio-matrix, including human plasma, egg white, and snailase. The results showed that the monolithic column occupied good separation ability with these complex bio-samples. Excellent specific character of the homemade hemin-based monolith was that it could simultaneously remove high-abundance proteins (including human serum albumin, immunoglobulin G, and human fibrinogen) from human plasma and separate other proteins to different fractions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. JAERI 20 MV tandem accelerator

    International Nuclear Information System (INIS)

    Tsukada, Kineo; Harada, Kichinosuke

    1977-01-01

    Accelerators have been developed as the experimental apparatuses for the studies on nuclei and elementary particles. One direction of the development is the acceleration of protons and electrons to more and more high energy, and another direction is the acceleration of heavy ions up to uranium to several MeV up to several hundreds MeV. However recently, accelerators are used as the useful tools for the studies in wider fields. There are electrostatic acceleration and high frequency acceleration in ion acceleration, and at present, super-large accelerators are high frequency acceleration type. In Japan Atomic Energy Research Institute, it was decided in 1975 to construct an electrostatic accelerator of tandem type in order to accelerate heavy ions. In case of the electrostatic acceleration, the construction is relatively simple, the acceleration of heavy ions is easy, the property of the ion beam is very good, and the energy is stable. Especially, the tandem type is convenient for obtaining high energy. The tandem accelerator of 20 MV terminal voltage was ordered from the National Electrostatics Corp., USA, and is expected to be completed in 1978. The significance of heavy ion acceleration in the development and research of atomic energy, tandem van de Graaff accelerators, the JAERI 20MV tandem accelerator, and the research project with this accelerator are described. (Kako, I.)

  20. Monolithic integration of microfluidic channels and semiconductor lasers

    Science.gov (United States)

    Cran-McGreehin, Simon J.; Dholakia, Kishan; Krauss, Thomas F.

    2006-08-01

    We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

  1. Development of stable monolithic wide-field Michelson interferometers.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. © 2011 Optical Society of America

  2. Formation of double-layered TiO2 structures with selectively-positioned molecular dyes for efficient flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kim, Eun Yi; Yu, Sora; Moon, Jeong Hoon; Yoo, Seon Mi; Kim, Chulhee; Kim, Hwan Kyu; Lee, Wan In

    2013-01-01

    Graphical abstract: A novel flexible tandem dye-sensitized solar cell, selectively loading different dyes in discrete layers, was successfully formed on a plastic substrate by transferring the high-temperature-processed N719/TiO 2 over an organic dye-adsorbed TiO 2 film by a typical compression process at room temperature. -- Highlights: • A novel flexible dye-sensitized solar cell, selectively loading two different dyes in discrete layers, was successfully formed on a plastic substrate. • η of the flexible tandem cell obtained by transferring the high-temperature-processed TiO 2 layer was enhanced from 2.91% to 6.86%. • Interface control between two TiO 2 layers is crucial for the efficient transport of photo-injected electrons from the top to bottom TiO 2 layer. -- Abstract: To fabricate flexible dye-sensitized solar cells (DSCs) utilizing full solar spectrum, the double-layered TiO 2 films, selectively loading two different dyes in discrete layers, were formed on a plastic substrate by transferring the high-temperature-processed N719/TiO 2 over an organic dye (TA-St-CA)-sensitized TiO 2 film by a typical compression process at room temperature. It was found that interface control between two TiO 2 layers is crucial for the efficient transport of photo-injected electrons from the N719/TiO 2 to the TA-St-CA/TiO 2 layer. Electron impedance spectra (EIS) and transient photoelectron spectroscopic analyses exhibited that introduction of a thin interfacial TiO 2 layer between the two TiO 2 layers remarkably decreased the resistance at the interface, while increasing the electron diffusion constant (D e ) by ∼10 times. As a result, the photovoltaic conversion efficiency (η) of the flexible tandem DSC was 6.64%, whereas that of the flexible cell derived from the single TA-St-CA/TiO 2 layer was only 2.98%. Another organic dye (HC-acid), absorbing a short wavelength region of solar spectrum, was also applied to fabricate flexible tandem DSC. The η of the cell

  3. Effect of Non-Stoichiometric Solution Chemistry on Improving the Performance of Wide-Bandgap Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Mengjin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Donghoe [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Zhen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reid, Obadiah G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yue [University of Toledo; Song, Zhaoning [University of Toledo; Zhao, Dewei [University of Toledo; Wang, Changlei [University of Toledo; Li, Liwei [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Meng, Yuan [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Guo, Ted [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Yan, Yanfa [University of Toledo

    2017-10-18

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA0.83Cs0.17Pb(I0.6Br0.4)3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I. Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.

  4. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    Science.gov (United States)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: line. Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along the cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and the interaction layer between the U-Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.

  5. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  6. United theory of planet formation (i): Tandem regime

    Science.gov (United States)

    Ebisuzaki, Toshikazu; Imaeda, Yusuke

    2017-07-01

    The present paper is the first one of a series of papers that present the new united theory of planet formation, which includes magneto-rotational instability and porous aggregation of solid particles in an consistent way. We here describe the ;tandem; planet formation regime, in which a solar system like planetary systems are likely to be produced. We have obtained a steady-state, 1-D model of the accretion disk of a protostar taking into account the magneto-rotational instability (MRI) and and porous aggregation of solid particles. We find that the disk is divided into an outer turbulent region (OTR), a MRI suppressed region (MSR), and an inner turbulent region (ITR). The outer turbulent region is fully turbulent because of MRI. However, in the range, rout(= 8 - 60 AU) from the central star, MRI is suppressed around the midplane of the gas disk and a quiet area without turbulence appears, because the degree of ionization of gas becomes low enough. The disk becomes fully turbulent again in the range rin(= 0.2 - 1 AU), which is called the inner turbulent region, because the midplane temperature become high enough (>1000 K) due to gravitational energy release. Planetesimals are formed through gravitational instability at the outer and inner MRI fronts (the boundaries between the MRI suppressed region (MSR) and the outer and inner turbuent regions) without particle enhancement in the original nebula composition, because of the radial concentration of the solid particles. At the outer MRI front, icy particles grow through low-velocity collisions into porous aggregates with low densities (down to ∼10-5 gcm-3). They eventually undergo gravitational instability to form icy planetesimals. On the other hand, rocky particles accumulate at the inner MRI front, since their drift velocities turn outward due to the local maximum in gas pressure. They undergo gravitational instability in a sub-disk of pebbles to form rocky planetesimals at the inner MRI front. They are likely

  7. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.

    2011-09-26

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  8. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.; Švec, František; Frechet, Jean

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  9. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    Science.gov (United States)

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. Copyright © 2011 Wiley Periodicals, Inc.

  10. Development of a syngas-fired catalytic combustion system for hybrid solar-thermal applications

    International Nuclear Information System (INIS)

    Gupta, Mayank; Pramanik, Santanu; Ravikrishna, R.V.

    2016-01-01

    Highlights: • Syngas-fired combustor concept as hybrid heat source for solar thermal application. • Experimental characterization of catalytic combustor under fuel-rich conditions. • Stable operation, quick startup, and high turn-down ratio demonstrated. • Reacting flow CFD simulations of single channel of catalytic monolith. - Abstract: This paper describes the development and operation of a catalytic combustion system for use with syngas as an important component of a hybrid heating source for solar-thermal power generation. The reactor consists of a cylindrical ceramic monolith with porous alumina washcoat in which platinum is distributed as the catalyst. Two fuel-rich equivalence ratios were studied over a range of flow rates. The fuel-rich conditions permit low temperature combustion without the problem of hotspots likely to occur under fuel-lean conditions with hydrogen-containing fuels. Experimental data of temperature and species concentration at the exit of the reactor have been reported for a maximum fuel thermal input of 34 kW. The system exhibited quick start-up with a light-off time of around 60 s and a steady-state time of around 200 s as determined from the transient temperature profiles. The experimental results have also been complemented with detailed two-dimensional numerical simulations for improved understanding of the combustion characteristics in the reactor. The simulations suggest that the combustion system can be operated at a turn-down ratios far in excess of 1.67, which is the maximum value that has been investigated in the present setup. Stable operation, quick startup, and high turn-down ratio are some of the key features that enable the proposed combustion system to accommodate the transients in solar-thermal applications.

  11. Effect of accelerated aging on translucency of monolithic zirconia

    Directory of Open Access Journals (Sweden)

    O. Abdelbary

    2016-12-01

    Conclusion: Thickness of zirconia has significant effect on translucency. Aging has significant effect on thinner sections of zirconia. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

  12. Mathematical Modelling of Optimization of Structures of Monolithic Coverings Based on Liquid Rubbers

    Science.gov (United States)

    Turgumbayeva, R. Kh; Abdikarimov, M. N.; Mussabekov, R.; Sartayev, D. T.

    2018-05-01

    The paper considers optimization of monolithic coatings compositions using a computer and MPE methods. The goal of the paper was to construct a mathematical model of the complete factorial experiment taking into account its plan and conditions. Several regression equations were received. Dependence between content components and parameters of rubber, as well as the quantity of a rubber crumb, was considered. An optimal composition for manufacturing the material of monolithic coatings compositions was recommended based on experimental data.

  13. Novel design of low-jitter 10 GHz all-active monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Christiansen, Lotte Jin

    2004-01-01

    Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared.......Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared....

  14. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  15. A hybrid monolithic column based on boronate-functionalized graphene oxide nanosheets for online specific enrichment of glycoproteins.

    Science.gov (United States)

    Zhou, Chanyuan; Chen, Xiaoman; Du, Zhuo; Li, Gongke; Xiao, Xiaohua; Cai, Zongwei

    2017-05-19

    A hybrid monolithic column based on aminophenylboronic acid (APBA)-functionalized graphene oxide (GO) has been developed and used for selective enrichment of glycoproteins. The APBA/GO composites were homogeneously incorporated into a polymer monolithic column with the help of oligomer matrix and followed by in situ polymerization. The effect of dispersion of APBA/GO composites in the polymerization mixture on the performance of the monolithic column was explored in detail. The presence of graphene oxide not only enlarged the BET surface area from 6.3m 2 /g to 169.4m 2 /g, but also provided abundant boronic acid moieties for glycoprotein extraction, which improved the enrichment selectivity and efficiency for glycoproteins. The APBA/GO hybrid monolithic column was incorporated into a sequential injection system, which facilitated online extraction of proteins. Combining the superior properties of extraordinary surface area of GO and the affinity interaction of APBA to glycoproteins, the APBA/GO hybrid monolithic column showed higher enrichment factors for glycoproteins than other proteins without cis-diol-containing groups. Also, under comparable or even shorter processing time and without the addition of any organic solvent, it showed higher binding capacity toward glycoproteins compared with the conventional boronate affinity monolithic column. The practical applicability of this system was demonstrated by processing of egg white samples for extraction of ovalbumin and ovotransferrin, and satisfactory results were obtained by assay with SDS-PAGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The synthesis of weak acidic type hybrid monolith via thiol-ene click chemistry and its application in hydrophilic interaction chromatography.

    Science.gov (United States)

    Zeng, Jiao; Liu, Shengquan; Wang, Menglin; Yao, Shouzhuo; Chen, Yingzhuang

    2017-05-01

    In this work, a porous structure and good permeability monolithic column was polymerized in UV transparent fused-silica capillaries via photo-initiated thiol-ene click polymerization of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane (TMTVS), pentaerythritol tetra(3-mercaptopropionate)(PETMP), itaconic acid, respectively, in the presence of porogenic solvents (tetrahydrofuranand methanol) and an initiator (2,2-dimethoxy-2-phenylacetophenone) (DMPA) within 30 min. The physical properties of this monolith were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and nitrogen adsorption/desorption measurements. For an overall evaluation of the monolith in chromatographic application, separations of polycyclic aromatic hydrocarbons (PAHs), phenols, amides and bases were carried out. The column efficiency of this monolith could be as high as 112 560 N/m. It also possesses a potential application in fabrication of monoliths with high efficiency for c-LC. In addition, the resulting monolithic column demonstrated the potential use in analysis of environment waters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tandemly Arrayed Genes in Vertebrate Genomes

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2008-01-01

    Full Text Available Tandemly arrayed genes (TAGs are duplicated genes that are linked as neighbors on a chromosome, many of which have important physiological and biochemical functions. Here we performed a survey of these genes in 11 available vertebrate genomes. TAGs account for an average of about 14% of all genes in these vertebrate genomes, and about 25% of all duplications. The majority of TAGs (72–94% have parallel transcription orientation (i.e., they are encoded on the same strand in contrast to the genome, which has about 50% of its genes in parallel transcription orientation. The majority of tandem arrays have only two members. In all species, the proportion of genes that belong to TAGs tends to be higher in large gene families than in small ones; together with our recent finding that tandem duplication played a more important role than retroposition in large families, this fact suggests that among all types of duplication mechanisms, tandem duplication is the predominant mechanism of duplication, especially in large families. Finally, several species have a higher proportion of large tandem arrays that are species-specific than random expectation.

  18. Experimental analysis and performance evaluation of a tandem photovoltaic–thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Kossyvakis, D.N.; Voutsinas, G.D.; Hristoforou, E.V.

    2016-01-01

    Highlights: • Experimental and theoretical investigation of a PV–TEG system has been conducted. • Poly-Si and dye-sensitized solar cells have been employed. • Thermoelectric generators of different thermoelement length have been tested. • A wide range considering cell’s operating temperature has been examined. - Abstract: Although photovoltaics have been established as the dominant technology considering the field of solar energy conversion systems, issues regarding their relatively low efficiency still remain practically unsolved. Very recently, the possibility of combining photovoltaic (PV) cells and thermoelectric generators (TEGs) in hybrid systems, as a means of improving the overall conversion efficiency, has attracted particular attention. In this paper, the performance of a tandem PV–TEG hybrid, employing poly-Si as well as dye-sensitized solar cells, has been examined experimentally. Thermoelectric devices of different thermoelement geometry have been tested in order to identify the corresponding performance effect. In addition, the outcomes of the experimental process have been exploited in order to evaluate the performance of the system under real operating conditions. The analysis conducted indicates that the utilization of TEGs with shorter thermoelements results in enhanced power output levels, when conditions of actual operation are considered. Moreover, although improved power output is obtained by the setup employing the polycrystalline cell, dye-sensitized technology could become particularly attractive when the incorporation of solar cells in PV–TEG hybrids operating under conditions of elevated temperature is examined.

  19. Catalytic Oxidation of Cyanogen Chloride over a Monolithic Oxidation Catalyst

    National Research Council Canada - National Science Library

    Campbell, Jeffrey

    1997-01-01

    The catalytic oxidation of cyanogen chloride was evaluated over a monolithic oxidation catalyst at temperatures between 200 and 300 deg C in air employing feed concentrations between 100 and 10,000 ppm...

  20. Solar Cell Polymer Based Active Ingredients PPV and PCBM

    Science.gov (United States)

    Hardeli, H.; Sanjaya, H.; Resikarnila, R.; Nitami H, R.

    2018-04-01

    A polymer solar cell is a solar cell based on a polymer bulk heterojunction structure using the method of thin film, which can convert solar energy into electrical energy. Absorption of light is carried by active material layer PPV: PCBM. This study aims to make solar cells tandem and know the value of converting solar energy into electrical energy and increase the value of efficiency generated through morphological control, ie annealing temperature and the ratio of active layer mixture. The active layer is positioned above the PEDOT:PSS layer on ITO glass substrate. The characterization results show the surface morphology of the PPV:PCBM active layer is quite evenly at annealing temperature of 165 ° C. The result of conversion of electrical energy with a UV light source in annealing samples with temperature 165 ° C is 0.03 mA and voltage of 4.085 V with an efficiency of 2.61% and mixed ratio variation was obtained in comparison of P3HT: PCBM is 1: 3

  1. Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kawakami, S.; Yamanaka, Y.; Kato, K.; Asano, H.; Ueda, H.

    1999-01-01

    The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction by the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: ρd of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density (ρd: 1.4--2.0 Mg/m 3 ) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10 -13 m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite

  2. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    Science.gov (United States)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  3. InGaAs/InP solar cells for space application

    Science.gov (United States)

    Karlina, L. B.; Kazantsev, A. B.; Kozlovskii, V. V.; Mokina, I. A.; Shvarts, M. Z.

    1995-01-01

    The effects of irradiation of In(0.53)Ga(0.47)As/InP (InGaAs/InP) solar cells illuminated through a transparent InP substrate with 1 MeV electrons were measured. These solar cells were developed for bottom cells in tandem solar photovoltaic cell structures. Some InGaAs/InP heterostructures with four layers were grown by liquid phase epitaxy. The structure of the solar cells allowed lightly doped materials in n and p photoactive layers to be used. The base dopant levels ranged from 1.10(exp 17) to 5.10(exp 17) cm(exp -3). The open circuit voltage and the short circuit current were moderately degraded after irradiation with 10(exp 16) cm(exp-2) 1 MeV electrons. This behavior is explained in terms of the device structure and the n and p layer thicknesses.

  4. Specially Treated Aramid Fiber Stabilized Gel-Emulsions: Preparation of Porous Polymeric Monoliths and Highly Efficient Removing of Airborne HCHO.

    Science.gov (United States)

    Liu, Jianfei; Chen, Xiangli; Wang, Pei; Fu, Xuwei; Liu, Kaiqiang; Fang, Yu

    2017-08-01

    Porous polymeric monoliths with densities as low as ≈0.060 g cm -3 are prepared in a gel-emulsion template way, of which the stabilizer employed is a newly discovered acidified aramid fiber that is so efficient that 0.05% (w/v, accounts for continuous phase) is enough to gel the system. The porous monoliths as obtained can be dried at ambient conditions, avoiding energy-consuming processes. Importantly, the monoliths show selective adsorption to HCHO, and the corresponding adsorption capacity (M6) is ≈2700 mg g -1 , the best result that is reported until now. More importantly, the monoliths can be reused after drying. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tandems as injectors for synchrotrons

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1993-01-01

    This is a review on the use of tandem electrostatic accelerators for injection and fitting of synchrotrons to accelerate intense beams of heavy ions to relativistic energies. The paper emphasizes the need of operating the tandems in pulsed mode for this application. It has been experimentally demonstrated that at present this type of accelerator still provides the most reliable and best performance. (orig.)

  6. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns.

    Science.gov (United States)

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-02-01

    The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃-55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

  7. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for development of extra-high efficiency solar cells (fundamental research on extra-high efficiency III-V compound semiconductor tandem solar cells); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Chokokoritsu taiyo denchi no gijutsu kaihatsu no tame no kaiseki hyoka (chokokoritsu III-V zoku kagobutsu taiyo denchi gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, T; Kawanami, H; Sakata, I; Nagai, K; Matsumoto, K; Miki, K [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for development of extra-high efficiency III-V compound semiconductor tandem solar cells. Heteroepitaxial structures of compound semiconductors, such as GaAs, on silicon substrates are analyzed and evaluated by EXAFS, Raman and RHEED for the initial stage of the film growth and heterointerfaces. The device capable of in-situ observation of the growing surface structures during the period of heteroepitaxial film growth is introduced, to investigate the effects of rise-up and initial growth conditions on defects. The effects of atomic hydrogen on growth of a GaAs film on a silicon substrate are investigated from photoluminescence and solar cell characteristics, to confirm the effects of reducing defects. Heteroepitaxial growth of InGaP, which has the optimum band width for forming multi-junction silicon solar cells, on a silicon substrate is investigated, to find that an interfacial buffer layer is necessary to form a good film. 2 figs.

  8. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells

    Science.gov (United States)

    Swanson, Drew E.; Reich, Carey; Abbas, Ali; Shimpi, Tushar; Liu, Hanxiao; Ponce, Fernando A.; Walls, John M.; Zhang, Yong-Hang; Metzger, Wyatt K.; Sampath, W. S.; Holman, Zachary C.

    2018-05-01

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.

  9. Efficiency loss prevention in monolithically integrated thin film solar cells by improved front contact

    NARCIS (Netherlands)

    Deelen, J. van; Barink, M.; Klerk, L.; Voorthuijzen, P.; Hovestad, A.

    2015-01-01

    Modeling indicates a potential efficiency boost of 17% if thin-film solar panels are featured with a metallic grid. Variations of transparent conductive oxide sheet resistance, cell length, and grid dimensions are discussed. These parameters were optimized simultaneously to obtain the best result.

  10. Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules.

    Science.gov (United States)

    Yang, Shengchao; Ye, Fanggui; Lv, Qinghui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2014-09-19

    Metal-organic framework (MOF) HKUST-1 nanoparticles have been incorporated into poly(glycidyl methacrylate-co-ethylene dimethacrylate) (HKUST-1-poly(GMA-co-EDMA)) monoliths to afford stationary phases with enhanced chromatographic performance of small molecules in the reversed phase capillary liquid chromatography. The effect of HKUST-1 nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. While the bare poly(GMA-co-EDMA) monolith exhibited poor resolution (RsHKUST-1 nanoparticles to the polymerization mixture provide high increased resolution (Rs≥1.3) and high efficiency ranged from 16,300 to 44,300plates/m. Chromatographic performance of HKUST-1-poly(GMA-co-EDMA) monolith was demonstrated by separation of various analytes including polycyclic aromatic hydrocarbons, ethylbenzene and styrene, phenols and aromatic acids using a binary polar mobile phase (CH3CN/H2O). The HKUST-1-poly(GMA-co-EDMA) monolith displayed enhanced hydrophobic and π-π interaction characteristics in the reversed phase separation of test analytes compared to the bare poly(GMA-co-EDMA) monolith. The experiment results showed that HKUST-1-poly(GMA-co-EDMA) monoliths are an alternative to enhance the chromatographic separation of small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Solar Fuels: Photocatalytic Water Splitting Using a 2‐Photon Approach

    DEFF Research Database (Denmark)

    Seger, Brian; Mei, Bastian Timo; Bae, Dowon

    2014-01-01

    While the sun provides orders of magnitude more energy than we consume on earth, it is intermittent, and thus we must have storage reservoirs for when it is dark. Plants have realized early on that storing this energy in the form of molecular fuels is quite effective. In our work, we take...... a similarapproach and look to use solar cells to electrolyze water into hydrogen fuel and an oxygen byproduct. Modelling has shown that to optimize photoelectrolysis efficiency, a 2 photon tandem device (back toback solar cells) should be used. The underlying principle is that one solar cell should absorb high...... these issues and how to integrate them seamlessly together. In this talk I will discuss a) our optimizations of our solar cell, b) how we protect the solar cells from corrosion and c) our H2 and O2evolution catalysts. The talk will focus on what areas of the device we think are highly optimized and whatareas...

  12. Actualization of the Tandem-E N Accelerator of the Nuclear Centre of Mexico; Actualizacion del Acelerador Tandem-EN del Centro Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Villasenor S, P.; Aguilera R, E.; Aspiazu F, J.; Fernandez A, J.; Fernandez B, M.; Garcia R, B.; Lopez M, J.; Martinez Q, E.; Mendez G, B.; Moreno B, E.; Murillo O, G.; Policroniades R, R.; Ramirez T, J.; Reynoso V, R.; Varela G, A.; Vega C, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    In this work, the activities are described carried out to change the tubes accelerators and original resistances of the accelerator Tandem-E N of the Nuclear Center, for tubes DOWLISH and resistances again design, both donated ones for ORNL. This way same, the problem is described that imply this changes, and like it was solved by the personnel of the laboratory, without having to appeal to external services, what there is redounded in a considerable increment in the costs. In form preliminary the improvements are described observed after the rehabilitation of the Accelerator. (Author)

  13. Monolithic stabilized Yb-fiber All-PM laser directly delivering nJ-level femtosecond pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality.......We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality....

  14. Development and applications of femtosecond monolithic Yb-doped fiber chirped-pulse amplifiers

    International Nuclear Information System (INIS)

    Zhu, L.

    2011-01-01

    In the past few years, compact and environmentally stable high-energy ultrashort pulse laser sources have been broadly utilized in many different applications. Fiber lasers offer big practical advantages over bulk solid-state laser systems in terms of flexibility, compactness, reliability, cost effectiveness and turn-key operability. Moreover, thermal effects are dramatically reduced due to the large surface-to-volume ratio of an optical fiber, and good spatial mode quality can be ensured by its waveguiding property. Therefore, a fiber-based laser system is considered to be the preferred laser architecture. The main theme of this thesis is the development of various femtosecond monolithic Yb-doped fiber chirped-pulse-amplification (FCPA) system and their applications. We demonstrate an ultrafast high-energy monolithic Yb-doped FCPA system in which the pulse fidelity is preserved by weakening the nonlinear effects via a substantial level of temporal stretching of the seed pulses and by using highly doped active fibers as amplifying media. The presented monolithic FCPA delivers up to ∼ 25 μJ diffraction-limited pulses that can be recompressed to sub-200 fs duration, and the pulse quality has been confirmed through the second-harmonic-generation (SHG) conversion efficiency of over 52%. Improved dispersion and nonlinearity management schemes of the FCPA system allowing substantial pulse energy scaling in the monolithic format as well as methods for overcoming a series of technological challenges are reported. Three different types of Yb-doped fiber oscillators have been developed and built in the course of this PhD work. First, we compare two oscillator types that are based on the all-normal-dispersion (ANDi) regime and the dispersion-managed (DM) regime. Both of them have been tested as the seed-pulse source of the monolithic Yb-doped FCPA system. Then we introduce another novel design based on higher-order-mode (HOM) dispersion management that competes with a

  15. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  16. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    Science.gov (United States)

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  17. Parametric studies of tandem mirror reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Boghosian, B.M.; Fink, J.H.; Myall, J.O.; Neef, W.S. Jr.

    1979-01-01

    This report, along with its companion, An Improved Tandem Mirror Reactor, discusses the recent progress and present status of our tandem mirror reactor studies. This report presents the detailed results of parametric studies up to, but not including, the very new ideas involving thermal barriers

  18. 10Gbps monolithic silicon FTTH transceiver for PON

    Science.gov (United States)

    Zhang, J.; Liow, T. Y.; Lo, G. Q.; Kwong, D. L.

    2010-05-01

    We propose a new passive optical network (PON) configuration and a novel silicon photonic transceiver architecture for optical network unit (ONU), eliminating the need for an internal laser source in ONU. We adopt dual fiber network configuration. The internal light source in each of the ONUs is eliminated. Instead, an extra seed laser source in the optical line termination (OLT) operates in continuous wave mode to serve the ONUs in the PON as a shared and centralized laser source. λ1 from OLT Tx and λ2 from the seed laser are combined by using a WDM combiner and connected to serve the multiple ONUs through the downstream fibers. The ONUs receive the data in λ1. Meanwhile, the ONUs encode and transmit data in λ2, which are sent back to OLT. The monolithic ONU transceiver contains a wavelength-division-multiplexing (WDM) filter component, a silicon modulator and a Ge photo-detector. The WDM in ONU selectively guides λ1 to the Ge-PD where the data in λ1 are detected and converted to electrical signals, and λ2 to the transmitter where the light is modulated by upstream data. The modulated optical signals in λ2 from ONUs are connected back to OLT through upstream fibers. The monolithic ONU transceiver chip size is only 2mm by 4mm. The crosstalk between the Tx and Rx is measured to be less than -20dB. The transceiver chip is integrated on a SFP+ transceiver board. Both Tx and Rx demonstrated data rate capabilities of up to 10Gbps. By implementing this scheme, the ONU transceiver size can be significantly reduced and the assembly processes will be greatly simplified. The results demonstrate the feasibility of mass manufacturing monolithic silicon ONU transceivers via low cost

  19. Role of the substrate in monolithic AlGaAs nonlinear nanoantennas

    Directory of Open Access Journals (Sweden)

    Gili Valerio Flavio

    2017-06-01

    Full Text Available We report the effect of the aluminum oxide substrate on the emission of monolithic AlGaAs-on-insulator nonlinear nanoantennas. By coupling nonlinear optical measurements with electron diffraction and microscopy observations, we find that the oxidation-induced stress causes negligible crystal deformation in the AlGaAs nanostructures and only plays a minor role in the polarization state of the harmonic field. This result highlights the reliability of the wet oxidation of thick AlGaAs optical substrates and further confirms the bulk χ(2 origin of second harmonic generation at 1.55 μm in these nanoantennas, paving the way for the development of AlGaAs-on-insulator monolithic metasurfaces.

  20. A compact narrow-linewidth laser with a low-Q monolithic cavity

    International Nuclear Information System (INIS)

    Peng, Yu

    2013-01-01

    We demonstrate an approach to narrowing the linewidth of a diode laser to around 15×10 3 Hz with a compact setup of confocal and parallel monolithic Fabry–Perot cavities (MFCs). Resonances of the confocal and parallel MFCs with low finesse are obtained. Diode lasers with optical feedback from confocal and parallel monolithic MFCs are demonstrated. The frequency could be tuned 80×10 6 Hz by changing the grating position of the external cavity diode laser based on the confocal MFC, and 100×10 6 Hz by tuning the temperature of the plane MFC over 0.02 ° C for the external cavity diode laser based on the parallel MFC. (paper)

  1. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Longguang [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  2. Monolithically integrated Helmholtz coils by 3-dimensional printing

    International Nuclear Information System (INIS)

    Li, Longguang; Abedini-Nassab, Roozbeh; Yellen, Benjamin B.

    2014-01-01

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  3. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  4. Monolithic dual-band HgCdTe infrared detector structure

    CSIR Research Space (South Africa)

    Parish, G

    1997-07-01

    Full Text Available A monolithic HgCdTe photoconductive device structure is presented that is suitable for dual-band optically registered infrared photodetection in the two atmospheric transmission windows of 3-5 mu m and 8-12 mu m, which correspond to the mid...

  5. Edge diagnostics for tandem mirror machines

    International Nuclear Information System (INIS)

    Allen, S.L.

    1984-01-01

    The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed

  6. Introduction to tandem mirror physics

    International Nuclear Information System (INIS)

    Kesner, J.; Gerver, M.J.; Lane, B.G.; McVey, B.D.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.

    1983-09-01

    This monograph, prepared jointly by the MIT Plasma Fusion Center Mirror Fusion group and SAI, Boulder, Colorado, presents a review of the development of mirror fusion theory from its conception some thirty years ago to the present. Pertinent historic experiments and their contribution are discussed to set the stage for a detailed analysis of current experiments and the problems which remain to be solved in bringing tandem mirror magnetic confinement fusion to fruition. In particular, Chapter III discusses in detail the equilibrium and stability questions which must be dealt with before tandem mirror reactors become feasible, while Chapters IV and V discuss some of the current machines and those under construction which will help to resolve critical issues in both physics and engineering whose solutions are necessary to the commercialization of tandem mirror fusion

  7. Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Thompson, M.G.; Marinelli, C.; Chu, Y.

    Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance.......Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance....

  8. Synthesis and Textural Characterization of Mesoporous and Meso-/Macroporous Silica Monoliths Obtained by Spinodal Decomposition

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2016-04-01

    Full Text Available Silica monoliths featuring either mesopores or flow-through macropores and mesopores in their skeleton are prepared by combining spinodal phase separation and sol-gel condensation. The macroporous network is first generated by phase separation in acidic medium in the presence of polyethyleneoxides while mesoporosity is engineered in a second step in alkaline medium, possibly in the presence of alkylammonium cations as surfactants. The mesoporous monoliths, also referred as aerogels, are obtained in the presence of alkylpolyethylene oxides in acidic medium without the use of supercritical drying. The impact of the experimental conditions on pore architecture of the monoliths regarding the shape, the ordering, the size and the connectivity of the mesopores is comprehensively discussed based on a critical appraisal of the different models used for textural analysis.

  9. Advanced Laser Architecture for Two-Step Laser Tandem Mass Spectrometer

    Science.gov (United States)

    Fahey, Molly E.; Li, Steven X.; Yu, Anthony W.; Getty, Stephanie A.

    2016-01-01

    Future astrobiology missions will focus on planets with significant astrochemical or potential astrobiological features, such as small, primitive bodies and the icy moons of the outer planets that may host diverse organic compounds. These missions require advanced instrument techniques to fully and unambiguously characterize the composition of surface and dust materials. Laser desorptionionization mass spectrometry (LDMS) is an emerging instrument technology for in situ mass analysis of non-volatile sample composition. A recent Goddard LDMS advancement is the two-step laser tandem mass spectrometer (L2MS) instrument to address the need for future flight instrumentation to deconvolve complex organic signatures. The L2MS prototype uses a resonance enhanced multi-photon laser ionization mechanism to selectively detect aromatic species from a more complex sample. By neglecting the aliphatic and inorganic mineral signatures in the two-step mass spectrum, the L2MS approach can provide both mass assignments and clues to structural information for an in situ investigation of non-volatile sample composition. In this paper we will describe our development effort on a new laser architecture that is based on the previously flown Lunar Orbiter Laser Altimeter (LOLA) laser transmitter for the L2MS instrument. The laser provides two discrete midinfrared wavelengths (2.8 m and 3.4 m) using monolithic optical parametric oscillators and ultraviolet (UV) wavelength (266 nm) on a single laser bench with a straightforward development path toward flight readiness.

  10. The Health Risk Assessment of Pb and Cr leachated from fly ash monolith landfill

    International Nuclear Information System (INIS)

    Hung, Ming-Lung; Wu, Sheng-Yao; Chen, Yen-Chuan; Shih, Hsiu-Ching; Yu, Yue-Hwa; Ma, Hwong-wen

    2009-01-01

    As of 2004, nearly two hundred thousand tons of fly ash monoliths are created each year in Taiwan to confine heavy metals for reducing the leaching quantity by precipitation. However, due to abnormal monolith fracture, poorly liner quality or exceeding usage over designed landfill capacity, serious groundwater pollution of the landfills has been reported. This research focuses on Pb and Cr leaching from monolithic landfill to assess the risk of groundwater pollution in the vicinity. The methodology combines water budget simulations using HELP model with fate and risk simulations using MMSOILS model for 5 kinds of landfill structures and 2 types of leaching models, and calculates the risk distribution over 400 grids in the down gradient direction of groundwater. The results demonstrated that the worst liner quality will cause the largest risk and the most significant exposure pathway is groundwater intake, which accounted for 98% of the total risk. Comparing Pb and Cr concentrations in the groundwater with the drinking water standards, only 14.25% of the total grids are found to be under 0.05 mg/L of Pb, and over 96.5% of the total grids are in the safety range of Cr. It indicates that Pb leaching from fly ash monolithic landfills may cause serious health risks. Without consideration of the parameters uncertainty, the cancer and noncancer risk of Pb with the sanitary landfill method was 4.23E-07 and 0.63, respectively, both under acceptable levels. However, by considering the parameters uncertainty, the non-carcinogenic risk of Pb became 1.43, exceeding the acceptable level. Only under the sealed landfill method was the hazard quotient below 1. It is important to use at least the sealed landfill for fly ash monoliths containing lead to effectively reduce health risks.

  11. Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Specific Case of Perovskites/Silicon Devices

    KAUST Repository

    Dupre, Olivier; Niesen, Bjö rn; De Wolf, Stefaan; Ballif, Christophe

    2018-01-01

    efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional

  12. Synthesis and applications of crack-free SiO2 monolith containing CdSe/ZnS quantum dots as passive lighting sources.

    Science.gov (United States)

    Yi, Dong Kee

    2008-09-01

    A reverse microemulsion technique has been used to synthesize quantum dot nanocomposites within a SiO2 surface coating. With this approach, the unique optical properties of the CdSe/ZnS quantum dots were preserved. CdSe/ZnS/SiO2 nanoparticles were homogeneously distributed in a tetramethyl orthosilicate ethanol solution and gelation process was initiated within a 10 min, and was left over night at room temperature and dried fully to achieve a solid SiO, monolith. The resulting monolith was transparent and fluorescent under ultraviolet (UV) lamp. Moreover the monolith produced was crack-free. Further studies on the photo stability of the monolith were performed using a high power UV LED device. Remarkably, quantum dots in the SiO, monolith showed better photo stability compared with those dispersed in a polymer matrix.

  13. North-American MP Tandem accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.; Thieberger, P.

    1977-01-01

    There are six North-American MP Tandem accelerators: Yale; Minnesota; Chalk River; Rochester; and two at Brookhaven. The current status and operating characteristics of these six tandem accelerators are discussed. Upgrade and special improvements of the different machines is reviewed and new developments since the last Electrostatic Conference are discussed in detail. The overall operating characteristics of the different machines during the last year of operation are compared

  14. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  15. Long-lived monolithic micro-optics for multispectral GRIN applications.

    Science.gov (United States)

    Lepicard, Antoine; Bondu, Flavie; Kang, Myungkoo; Sisken, Laura; Yadav, Anupama; Adamietz, Frederic; Rodriguez, Vincent; Richardson, Kathleen; Dussauze, Marc

    2018-05-09

    The potential for realizing robust, monolithic, near-surface refractive micro-optic elements with long-lived stability is demonstrated in visible and infrared transmitting glasses capable of use in dual band applications. Employing an enhanced understanding of glass chemistry and geometric control of mobile ion migration made possible with electrode patterning, flat, permanent, thermally-poled micro-optic structures have been produced and characterized. Sub-surface (t~5-10 µm) compositional and structural modification during the poling process results in formation of spatially-varying refractive index profiles, exhibiting induced Δn changes up to 5 × 10 -2 which remain stable for >15 months. The universality of this approach applied to monolithic vis-near infrared [NIR] oxide and NIR-midwave infrared [MIR] chalcogenide glass materials is demonstrated for the first time. Element size, shape and gradient profile variation possible through pattern design and fabrication is shown to enable a variety of design options not possible using other GRIN process methodologies.

  16. Actualization of the Tandem-E N Accelerator of the Nuclear Centre of Mexico

    International Nuclear Information System (INIS)

    Villasenor S, P.; Aguilera R, E.; Aspiazu F, J.; Fernandez A, J.; Fernandez B, M.; Garcia R, B.; Lopez M, J.; Martinez Q, E.; Mendez G, B.; Moreno B, E.; Murillo O, G.; Policroniades R, R.; Ramirez T, J.; Reynoso V, R.; Varela G, A.; Vega C, J.

    2004-01-01

    In this work, the activities are described carried out to change the tubes accelerators and original resistances of the accelerator Tandem-E N of the Nuclear Center, for tubes DOWLISH and resistances again design, both donated ones for ORNL. This way same, the problem is described that imply this changes, and like it was solved by the personnel of the laboratory, without having to appeal to external services, what there is redounded in a considerable increment in the costs. In form preliminary the improvements are described observed after the rehabilitation of the Accelerator. (Author)

  17. Tandem-type organic solar cells by stacking different heterojunction materials

    International Nuclear Information System (INIS)

    Triyana, Kuwat; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2005-01-01

    Three layers of phthalocyanine/perylene heterojunction (HJ) components were stacked and sandwiched by an indium tin oxide (ITO) and a top metal electrode, which is denoted by a triple-HJ organic solar cell. The organic material in the middle-HJ component second from the ITO was varied to investigate the photovoltaic properties. The power conversion efficiency (PCE) was improved by the more balanced photo-generated carrier by use of the appropriate material for the second-HJ component. The optimized device showed higher PCE (1.38%) than the reference device (0.98%)

  18. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Ha, Seung-Ryong

    2016-06-01

    Surface polishing or glazing may increase the appearance of depth of monolithic zirconia restorations. The purpose of this in vitro study was to investigate the effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. Forty-five monolithic zirconia specimens (16.3×16.4×2.0 mm) were divided into groups I to V, according to the number of colorings each received. Each group was then divided into 3 subgroups (n=3) according to the surface treatment: N=no treatment; P=polished; and G=glazed. CIElab color coordinates were obtained relative to D65 on a reflection spectrophotometer. The translucency parameter (TP) and opalescence parameter (OP) were calculated. One specimen per subgroups I and V was selected for evaluation of surface roughness (Ra) and was examined with scanning electron microscopy (SEM). Data were analyzed with 2-way ANOVA and pairwise comparisons (α=.05). Statistical powers were verified to evaluate results (α=.05). The interaction effects of surface treatments combined with the number of colorings were significant for TP, OP, and Ra (P.05), whereas glazing significantly decreased OP and Ra in most groups. SEM images demonstrated that surface treatments affected the surface texture of monolithic zirconia ceramics. Surface treatments combined with coloring strongly affect the surface texture of dental monolithic zirconia ceramics. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Science with the solar optical telescope

    Science.gov (United States)

    Jordan, S. D.; Hogan, G. D.

    1984-01-01

    The Solar Optical Telescope (SOT) is designed to provide the solar physics community with the data necessary for solving several fundamental problems in the energetics and dynamics of the solar atmosphere. Among these problems are questions on the origin and evolution of the sun's magnetic field, heating of the outer solar atmosphere, and sources of the solar wind in the lower lying regions of the outer atmosphere. The SOT will be built under the management of NASA's Goddard Space Flight Center, with science instruments provided by teams led by Principal Investigators. The telescope will be built by the Perkin-Elmer Corporation, and the science instruments selected for the first flight will be provided by the Lockheed Palo Alto Research Laboratory (LPARL) and the California Institute of Technology, with actual construction of a combined science instrument taking place at the LPARL. The SOT has a 1.3-meter-diameter primary mirror that will be capable of achieving diffraction-limited viewing in the visible of 0.1 arc-second. This dimension is less than a hydrodynamic scale-height or a mean-free-path of a continuum photon in the solar atmosphere. Image stability will be achieved by a control system in the telescope, which moves both the primary and tertiary mirrors in tandem, and will be further enhanced by a correlation tracker in the combined science instrument. The SOT Facility is currently scheduled for its first flight on Spacelab at the beginning of the 1990's.

  20. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    Science.gov (United States)

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-07

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All

  1. Tandem Translation Classroom: A Case Study

    Science.gov (United States)

    Kim, Dohun; Koh, Taejin

    2018-01-01

    The transition to student-centred learning, advances in teleconferencing tools, and active international student exchange programmes have stimulated tandem learning in many parts of the world. This pedagogical model is based on a mutual language exchange between tandem partners, where each student is a native speaker in the language the…

  2. Hybrid bio-photo-electro-chemical cells for solar water splitting.

    Science.gov (United States)

    Pinhassi, Roy I; Kallmann, Dan; Saper, Gadiel; Dotan, Hen; Linkov, Artyom; Kay, Asaf; Liveanu, Varda; Schuster, Gadi; Adir, Noam; Rothschild, Avner

    2016-08-23

    Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox couple from the thylakoids to a transparent electrode serving as the anode, yielding a photocurrent density of 0.5 mA cm(-2). Hydrogen evolution occurs at the cathode at a bias as low as 0.8 V. A tandem cell comprising the BPEC cell and a Si photovoltaic module achieves overall water splitting with solar to hydrogen efficiency of 0.3%. These results demonstrate the promise of combining natural photosynthetic membranes and man-made photovoltaic cells in order to convert solar power into hydrogen fuel.

  3. Development of thin-film Si HYBRID solar module

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Akihiko; Gotoh, Masahiro; Sawada, Toru; Fukuda, Susumu; Yoshimi, Masashi; Yamamoto, Kenji; Nomura, Takuji [Kaneka Corporation, 2-1-1, Hieitsuji, Otsu, Shiga 520-0104 (Japan)

    2009-06-15

    The device current-voltage (I-V) characteristics of thin-film silicon stacked tandem solar modules (HYBRID modules), consisting of a hydrogenated amorphous silicon (a-Si:H) cell and a thin-film crystalline silicon solar cell ({mu}c-Si), have been investigated under various spectral irradiance distributions. The performance of the HYBRID module varied periodically in natural sunlight due to the current-limiting property of the HYBRID module and the environmental effects. The behavior based on the current-limiting property was demonstrated by the modelling of the I-V curves using the linear interpolation method for each component cell. The improvement of the performance for the HYBRID module in natural sunlight will also be discussed from the viewpoint of the device design of the component cells. (author)

  4. Influence of the mechanical properties of sputtered Mo solar cell back contacts on laser scribing

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Christof; Schuele, Manuel; Quaschning, Volker; Stegemann, Bert; Fink, Frank [University of Applied Sciences (HTW) Berlin, Wilhelminenhofstr. 75A, 12459 Berlin (Germany); Endert, Heinrich [Newport Spectra-Physics GmbH, Ruhlsdorfer Strasse 95, 14532 Stahnsdorf (Germany); Bonse, Joern [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Rau, Bjoern; Schlatmann, Rutger [PVcomB - Competence Centre Thin-Film and Nanotechnology for Photovoltaics Berlin, Schwarzschildstr. 3, 12489 Berlin (Germany)

    2012-07-01

    In thin-film photovoltaics complete laser structuring of the solar modules is aimed to perform appropriate monolithic serial interconnection. We have studied the laser ablation behavior of sputtered molybdenum back contacts for chalcopyrite solar cells. The properties of these Mo layer are sensitive to the sputter conditions. The process pressure influences the mechanical layer properties and, thus, contributes directly to the quality of the laser scribes. Precise, reliable and reproducible laser scribing requires the proper adaptation of the laser parameters to the material properties. In our study it was achieved by comprehensive analysis of the laser matter interaction and by detailed determination of the ablation thresholds as a function of the Mo layer thickness and ductility for different laser wavelengths and pulse durations, accompanied by thermal modeling.

  5. Periodic imidazolium-bridged hybrid monolith for high-efficiency capillary liquid chromatography with enhanced selectivity.

    Science.gov (United States)

    Qiao, Xiaoqiang; Zhang, Niu; Han, Manman; Li, Xueyun; Qin, Xinying; Shen, Shigang

    2017-03-01

    A novel periodic imidazolium-bridged hybrid monolithic column was developed. With diene imidazolium ionic liquid 1-allyl-3-vinylimidazolium bromide as both cross-linker and organic functionalized reagent, a new periodic imidazolium-bridged hybrid monolithic column was facilely prepared in capillary with homogeneously distributed cationic imidazolium by a one-step free-radical polymerization with polyhedral oligomeric silsesquioxane methacryl substituted. The successful preparation of the new column was verified by Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, and surface area analysis. Most interestingly, the bonded amount of 1-allyl-3-vinylimidazolium bromide of the new column is three times higher than that of the conventional imidazolium-embedded hybrid monolithic column and the specific surface area of the column reached 478 m 2 /g. The new column exhibited high stability, excellent separation efficiency, and enhanced separation selectivity. The column efficiency reached 151 000 plates/m for alkylbenzenes. Furthermore, the new column was successfully used for separation of highly polar nucleosides and nucleic acid bases with pure water as mobile phase and even bovine serum albumin tryptic digest. All these results demonstrate the periodic imidazolium-bridged hybrid monolithic column is a good separation media and can be used for chromatographic separation of small molecules and complex biological samples with high efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow.

    Science.gov (United States)

    Roper, Kimberley A; Berry, Malcolm B; Ley, Steven V

    2013-01-01

    The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed.

  7. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  8. High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template.

    Science.gov (United States)

    Jones, Brad H; Lodge, Timothy P

    2009-02-11

    Nanoporous ceramic with a unique pore structure was derived from an all-hydrocarbon polymeric bicontinuous microemulsion (BmuE). The BmuE was designed to allow facile removal of one phase, resulting in a nanoporous polymer monolith with BmuE-like structure. The pores were filled with a commercially available, polymeric precursor to nonoxide, Si-based ceramics. Pyrolysis resulted in a monolith of nanoporous ceramic, stable to at least 1000 degrees C, with a BmuE-like pore structure. The pore structure is disordered and 3-D continuous. Microscopy and gas sorption measurements suggest a well-defined pore size distribution spanning roughly 60-100 nm, sizes previously unattainable through related techniques.

  9. Fabrication of an ionic-liquid-based polymer monolithic column and its application in the fractionation of proteins from complex biosamples.

    Science.gov (United States)

    Zhang, Doudou; Zhang, Qian; Bai, Ligai; Han, Dandan; Liu, Haiyan; Yan, Hongyuan

    2018-05-01

    An ionic-liquid-based polymer monolithic column was synthesized by free radical polymerization within the confines of a stainless-steel column (50 mm × 4.6 mm id). In the processes, ionic liquid and stearyl methacrylate were used as dual monomers, ethylene glycol dimethacrylate as the cross-linking agent, and polyethylene glycol 200 and isopropanol as co-porogens. Effects of the prepolymerization solution components on the properties of the resulting monoliths were studied in detail. Scanning electron microscopy, nitrogen adsorption-desorption measurements, and mercury intrusion porosimetry were used to investigate the morphology and pore size distribution of the prepared monoliths, which showed that the homemade ionic-liquid-based monolith column possessed a relatively uniform macropore structure with a total macropore specific surface area of 44.72 m 2 /g. Compared to a non-ionic-liquid-based monolith prepared under the same conditions, the ionic-liquid-based monolith exhibited excellent selectivity and high performance for separating proteins from complex biosamples, such as egg white, snailase, bovine serum albumin digest solution, human plasma, etc., indicating promising applications in the fractionation and analysis of proteins from the complex biosamples in proteomics research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA

    Science.gov (United States)

    Christiansen, Martha E.; Znosko, Brent M.

    2009-01-01

    Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311

  11. Concrete embedded dye-synthesized photovoltaic solar cell.

    Science.gov (United States)

    Hosseini, T; Flores-Vivian, I; Sobolev, K; Kouklin, N

    2013-09-25

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology.

  12. Structure and Electromagnetic Properties of Cellular Glassy Carbon Monoliths with Controlled Cell Size

    Directory of Open Access Journals (Sweden)

    Andrzej Szczurek

    2018-05-01

    Full Text Available Electromagnetic shielding is a topic of high importance for which lightweight materials are highly sought. Porous carbon materials can meet this goal, but their structure needs to be controlled as much as possible. In this work, cellular carbon monoliths of well-defined porosity and cell size were prepared by a template method, using sacrificial paraffin spheres as the porogen and resorcinol-formaldehyde (RF resin as the carbon precursor. Physicochemical studies were carried out for investigating the conversion of RF resin into carbon, and the final cellular monoliths were investigated in terms of elemental composition, total porosity, surface area, micropore volumes, and micro/macropore size distributions. Electrical and electromagnetic (EM properties were investigated in the static regime and in the Ka-band, respectively. Due to the phenolic nature of the resin, the resultant carbon was glasslike, and the special preparation protocol that was used led to cellular materials whose cell size increased with density. The materials were shown to be relevant for EM shielding, and the relationships between those properties and the density/cell size of those cellular monoliths were elucidated.

  13. Fabrication of single-walled carbon nanohorns incorporated a monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Zhao, Hongyan; Wang, Yizhou; Cheng, Heyong; Wang, Yuanchao

    2017-08-01

    Single-walled carbon nanohorns have received great interest for their unique properties and diverse potential applications. Herein, we demonstrated the feasibility of single-walled carbon nanohorns incorporated poly(styrene-divinylbenzene) monolith as the stationary phase for capillary electrochromatography, which were prepared by one-step in situ copolymerization. Single-walled carbon nanohorns were dispersed in styrene to give a stable and homogeneous suspension. The monolithic column gave effective separation for a wide range of aromatic compounds, which was based on hydrophobicity and π-π electrostatic stacking of single-walled carbon nanohorns. The precisions of migration time and peak area varied in the ranges of 1.4-1.9% for intraday trials and 1.7-3.5% for interday trials, and 3.2-6.7% for intraday trials and 4.1-7.4% for interday trials, and 3.6-7.2% for inter-column trials and 5.2-21.3% for inter-column trials, respectively, indicating the good reproducibility of single-walled carbon nanohorns embedded monolithic columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shu-Ling; Wu, Yu-Ru; Lin, Tzuen-Yeuan; Fuh, Ming-Ren, E-mail: msfuh@scu.edu.tw

    2015-04-29

    Highlights: • Methacrylic acid (MAA) was used to increase hydrophilicity of polymeric monoliths. • Fast separation of phenol derivatives was achieved in 5 min using MAA-incorporated column. • Separations of aflatoxins and phenicol antibiotics were achieved using MAA-incorporated column. - Abstract: In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate–MAA ratios were investigated to prepare a series of 30% alkyl methacrylate–MAA–EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column.

  15. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.

    Science.gov (United States)

    Park, Sin Young; Cheong, Won Jo

    2015-09-01

    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polymethacrylate-based monoliths as stationary phases for separation of biopolymers and immobilization of enzymes.

    Science.gov (United States)

    Martinović, Tamara; Josić, Djuro

    2017-11-01

    The experiences in the production and application of polymethacrylate-based monolithic supports, since their development almost thirty years ago, are presented. The main driving force for the development of new chromatographic supports was the necessity for the isolation and separation of physiologically active biopolymers and their use for therapeutic purposes. For this sake, a development of a method for fast separation, preventing denaturation and preserving their biological activity was necessary. Development of polysaccharide-based supports, followed by the introduction of polymer-based chromatographic media, is shortly described. This development was followed by the advances in monolithic media that are now used for both large- and small-scale separation of biopolymers and nanoparticles. Finally, a short overview is given about the applications of monoliths for sample displacement chromatography, resulting in isolation of physiologically active biomolecules, such as proteins, protein complexes, and nucleic acid, as well as high-throughput sample preparation for proteomic investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector

    International Nuclear Information System (INIS)

    Kaanta, Bradley C; Zhang, Xin; Chen, Hua

    2010-01-01

    The monolithic integration of a high sensitivity detector with a gas chromatography (GC) separation column creates many potential advantages over the discrete components of a traditional chromatography system. In miniaturized high-speed GC systems, component interconnections can cause crucial errors and loss of fidelity during detection and analysis. A monolithically integrated device would eliminate the need to create helium-tight interconnections, which are bulky and labor intensive. Additionally, batch fabrication of integrated devices that no longer require expensive and fragile detectors can decrease the cost of micro GC systems through economies of scale. We present the design, fabrication and operation of a monolithic GC separation column and detector. Our device is able to separate nitrogen, methane and carbon dioxide within 30 s. This method of device integration could be applied to the existing wealth of column geometries and chemistries designed for specialized applications.

  18. Partial Coefficient System for the Design of Monolithic Vertical Breakwaters Considering Sliding and Rupture Failure of the Foundation

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Christiani, Erik; Sørensen, John Dalsgaard

    1995-01-01

    The main object is to present a set of calibrated partial coefficients for monolithic vertical breakwater failure modes. A preliminary design of the monolithic breakwater will be considered, which will be designed from existing partial coefficients, documented in Eurocode 7 (1994). From this desi...

  19. The Kyoto University tandem upgrading project

    International Nuclear Information System (INIS)

    Nakamura, Masanobu; Shimoura, Susumu; Takimoto, Kiyohiko; Sakaguchi, Harutaka; Kobayashi, Shinsaku

    1988-01-01

    A brief description on the Kyoto University tandem upgrading project. The project consists of replacing the old 5 MV tandem Van de Graaff by an 8UDH pelletron. The old pressure vessel and beam lines are used again without significant modification. The project is planned to be completed at the end of 1989. (orig.)

  20. Design of tandem mirror reactors with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1980-01-01

    End-plug technologies for tandem mirror reactors include high-field superconducting magnets, neutral beam injectors, and gyrotrons for electron cyclotron resonant heating (ECRH). In addition to their normal use for sustenance of the end-plug plasmas, neutral beam injectors are used for ''pumping'' trapped ions from the thermal barrier regions by charge exchange. An extra function of the axially directed pump beams is the removal of thermalized alpha particles from the reactor. The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror fusion Test Facility (MFTF-B) in 1984

  1. Argonne tandem as injector to a superconducting linac

    International Nuclear Information System (INIS)

    Yntema, J.L.; Den Hartog, P.K.; Henning, W.; Kutschera, W.

    1980-01-01

    The Argonne Tandem uses Pelletron chains, NEC accelerator tubes, and a dual closed-corona system. Its main function is to be an injector for a superconducting linear accelerator. As long as the transverse and longitudinal emittances are within the acceptance of the linac, the output beam quality of the tandem-linac system is essentially determined by the tandem. The sensitivity of the linac to the longitudinal emittance ΔEΔt of the incident beam makes the output beam quality dependent on the negative-ion velocity distribution in the source, transit-time effects in the tandem, molecular-beam dissociation, and stripper-foil uniformity. This paper discusses these beam-degrading effects

  2. Integration trends in monolithic power ICs: Application and technology challenges

    NARCIS (Netherlands)

    Rose, M.; Bergveld, H.J.

    2016-01-01

    This paper highlights the general trend towards further monolithic integration in power applications by enabling power management and interfacing solutions in advanced CMOS nodes. The need to combine high-density digital circuits, power-management circuits, and robust interfaces in a single

  3. Measurement of the denitrification in soil monoliths from grassland and arable soil by means of 15N techniques

    International Nuclear Information System (INIS)

    Lippold, H.; Foerster, I.

    1980-01-01

    Losses of fertilizer nitrogen by denitrification were determined in soil monoliths from two sites (loess chernozem and clay ranker). The monoliths were isolated by driving plastic pipes into the plots, and fertilized with 15 N-labelled ammonium nitrate. Emission spectrometric techniques were applied to measure the N 2 and N 2 O quantities released in the isolated atmospheric layer above the monolith. The considerable losses, especially on grassland soils (up to a maximum of 30 kg N/ha), indicate the influence of rainfalls and mean temperature at the 5 dates of sampling (end of March to mid-October). (author)

  4. Molecularly imprinted macroporous monoliths for solid-phase extraction: Effect of pore size and column length on recognition properties.

    Science.gov (United States)

    Vlakh, E G; Stepanova, M A; Korneeva, Yu M; Tennikova, T B

    2016-09-01

    The series of macroporous monolithic molecularly imprinted monoliths differed by pore size, column length (volume) and amount of template used for imprinting was synthesized using methacrylic acid and glycerol dimethacrylate as co-monomers and antibiotic ciprofloxacin as a template. The prepared monoliths were characterized regarding to their permeability, pore size, porosity, and resistance to the flow of a mobile phase. The surface morphology was also analyzed. The slight dependence of imprinting factor on flow rate, as well as its independence on pore size of macroporous molecularly imprinted monolithic media was observed. The column obtained at different conditions exhibited different affinity of ciprofloxacin to the imprinted sites that was characterized with Kdiss values in the range of 10(-5)-10(-4)M. The solid-phase extraction of ciprofloxacin from such biological liquids as human blood serum, human urine and cow milk serum was performed using the developed monolithic columns. In all cases, the extraction was found to be 95.0-98.6%. Additionally, the comparison of extraction of three fluoroqinolone analogues, e.g. ciprofloxacin, levofloxacin and moxifloxacin, from human blood plasma was carried out. Contrary to ciprofloxacin extracted with more than 95%, this parameter did not exceed 40% for its analogues. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow

    Directory of Open Access Journals (Sweden)

    Kimberley A. Roper

    2013-09-01

    Full Text Available The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed.

  6. A 60-GHz rectenna for monolithic wireless sensor tags

    NARCIS (Netherlands)

    Gao, H.; Johannsen, U.; Matters - Kammerer, M.; Milosevic, D.; Smolders, A.B.; Roermund, van A.H.M.; Baltus, P.G.M.

    2013-01-01

    This paper presents the design of a 60-GHz rectenna with an on-chip antenna and rectifier in 65nm CMOS technology. The rectenna is often the bottleneck in realizing a fully-integrated monolithic wireless sensor tag. In this paper, problems of the mm-wave rectifier are discussed, and the

  7. Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules

    KAUST Repository

    Chambers, Stuart D.

    2011-12-15

    Monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) and poly(butyl methacrylate-co-ethylene dimethacrylate) capillary columns, which incorporate the new monomer [6,6]-phenyl-C 61-butyric acid 2-hydroxyethyl methacrylate ester, have been prepared and their chromatographic performance have been tested for the separation of small molecules in the reversed phase. While addition of the C60-fullerene monomer to the glycidyl methacrylate-based monolith enhanced column efficiency 18-fold, to 85 000 plates/m at a linear velocity of 0.46 mm/s and a retention factor of 2.6, when compared to the parent monolith, the use of butyl methacrylate together with the carbon nanostructured monomer afforded monolithic columns with an efficiency for benzene exceeding 110 000 plates/m at a linear velocity of 0.32 mm/s and a retention factor of 4.2. This high efficiency is unprecedented for separations using porous polymer monoliths operating in an isocratic mode. Optimization of the chromatographic parameters affords near baseline separation of 6 alkylbenzenes in 3 min with an efficiency of 64 000 plates/m. The presence of 1 wt % or more of water in the polymerization mixture has a large effect on both the formation and reproducibility of the monoliths. Other factors such as nitrogen exposure, polymerization conditions, capillary filling method, and sonication parameters were all found to be important in producing highly efficient and reproducible monoliths. © 2011 American Chemical Society.

  8. Preparation of methacrylate-based anion-exchange monolithic microbore column for chromatographic separation of DNA fragments and oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Sabarudin, Akhmad, E-mail: sabarjpn@ub.ac.id [Division of Nano-materials Science, EcoTopia Science Institute, Nagoya University, Furu-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan); Department of Chemistry, Faculty of Science, Brawijaya University, Jl Veteran Malang 65145 (Indonesia); Huang, Junchao; Shu, Shin; Sakagawa, Shinnosuke [Division of Nano-materials Science, EcoTopia Science Institute, Nagoya University, Furu-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan); Umemura, Tomonari, E-mail: umemura@apchem.nagoya-u.ac.jp [Division of Nano-materials Science, EcoTopia Science Institute, Nagoya University, Furu-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan)

    2012-07-29

    Highlights: Black-Right-Pointing-Pointer Microbore-scale (1 mm i.d.) anion-exchange monolithic column. Black-Right-Pointing-Pointer Potentially preparative applications. Black-Right-Pointing-Pointer Separation of oligodeoxythymidylic acids and DNA fragments. - Abstract: In this paper, we report on the preparation of a microbore-scale (1 mm i.d.) anion-exchange monolithic column suitable not only for analytical purposes but also for potentially preparative applications. In order to meet the conflicting requirements of high permeability and good mechanical strength, the following two-step procedure was applied. First, an epoxy-containing monolith was synthesized by in situ copolymerization of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) within the confines of a silicosteel tubing of 1.02 mm i.d. and 1/16 Double-Prime o.d. in the presence of a ternary porogenic mixture of 1-propanol, 1,4-butanediol, and water. The monolithic matrix was subsequently converted into weak anion-exchanger via the ring-opening reaction of epoxy group with diethyl amine. The dynamic binding capacity was 21.4 mg mL{sup -1} for bovine serum albumin (BSA) at 10% breakthrough. The morphology and porous structure of this monolith were assessed by scanning electron microscope (SEM) and inverse size exclusion chromatography (ISEC). To optimize the separation efficiency, the effects of various chromatographic parameters upon the separation of DNA fragments were investigated. The resulting monolithic anion exchanger demonstrated good potential for the separation of both single- and double-stranded DNA molecules using a gradient elution with NaCl in Tris-HCl buffer (20 mM). Oligodeoxythymidylic acids (dT{sub 12}-dT{sub 18}) were successfully resolved at pH 8, while the fragments of 20 bp DNA ladder, 100 bp DNA ladder, and pBR322-HaeIII digest were efficiently separated at pH 9.

  9. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  10. Capital cost evaluation of liquid metal reactor by plant type - comparison of modular type with monolithic type -

    International Nuclear Information System (INIS)

    Mun, K. H.; Seok, S. D.; Song, K. D.; Kim, I. C.

    1999-01-01

    A preliminary economic comparison study was performed for KALIMER(Korea Advanced LIquid MEtal Reactor)between a modular plant type with 8 150MWe modules and a 1200MWe monolithic plant type. In both cases of FOAK (First-Of-A-Kind) Plant and NOAK (Nth-Of-A-Kind) Plant, the result says that the economics of monolithic plant is superior to its modular plant. In case of NOAK plant comparison, however, the cost difference is not significant. It means that modular plant can compete with monolithic plant in capital cost if it makes efforts of cost reduction and technical progress on the assumption that the same type of NOAK plant will be constructed continuously

  11. Characterization and testing of monolithic RERTR fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D.; Jue, J.F.; Burkes, D.E. [Idaho National Lab., Idaho Falls, ID (United States)

    2007-07-01

    Monolithic fuel plates are being developed as a LEU (low enrichment uranium) fuel for application in research reactors throughout the world. These fuel plates are comprised of a U-Mo alloy foil encased in aluminum alloy cladding. Three different fabrication techniques have been looked at for producing monolithic fuel plates: hot isostatic pressing (HIP), transient liquid phase bonding (TLPB), and friction stir welding (FSW). Of these three techniques, HIP and FSW are currently being emphasized. As part of the development of these fabrication techniques, fuel plates are characterized and tested to determine properties like hardness and the bond strength at the interface between the fuel and cladding. Testing of HIP-made samples indicates that the foil/cladding interaction behavior depends on the Mo content in the UMo foil, the measured hardness values are quite different for the fuel, cladding, and interaction zone phase and Ti, Zr and Nb are the most effective diffusion barriers. For FSW samples, there is a dependence of the bond strength at the foil/cladding interface on the type of tool that is employed for performing the actual FSW process. (authors)

  12. Comparison of monolithic silica and polymethacrylate capillary columns for LC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2004-01-01

    Roč. 27, 10-11 (2004), s. 789-800 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/02/0023 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.927, year: 2004

  13. Optical properties and light irradiance of monolithic zirconia at variable thicknesses.

    Science.gov (United States)

    Sulaiman, Taiseer A; Abdulmajeed, Aous A; Donovan, Terrence E; Ritter, André V; Vallittu, Pekka K; Närhi, Timo O; Lassila, Lippo V

    2015-10-01

    The aims of this study were to: (1) estimate the effect of polishing on the surface gloss of monolithic zirconia, (2) measure and compare the translucency of monolithic zirconia at variable thicknesses, and (3) determine the effect of zirconia thickness on irradiance and total irradiant energy. Four monolithic partially stabilized zirconia (PSZ) brands; Prettau® (PRT, Zirkonzahn), Bruxzir® (BRX, Glidewell), Zenostar® (ZEN, Wieland), Katana® (KAT, Noritake), and one fully stabilized zirconia (FSZ); Prettau Anterior® (PRTA, Zirkonzahn) were used to fabricate specimens (n=5/subgroup) with different thicknesses (0.5, 0.7, 1.0, 1.2, 1.5, and 2.0mm). Zirconia core material ICE® Zircon (ICE, Zirkonzahn) was used as a control. Surface gloss and translucency were evaluated using a reflection spectrophotometer. Irradiance and total irradiant energy transmitted through each specimen was quantified using MARC® Resin Calibrator. All specimens were then subjected to a standardized polishing method and the surface gloss, translucency, irradiance, and total irradiant energy measurements were repeated. Statistical analysis was performed using two-way ANOVA and post-hoc Tukey's tests (pgloss was significantly affected by polishing (p<0.05), regardless of brand and thickness. Translucency values ranged from 5.65 to 20.40 before polishing and 5.10 to 19.95 after polishing. The ranking from least to highest translucent (after polish) was: BRX=ICE=PRTmonolithic zirconia can affect the ultimate clinical outcome of the optical properties of zirconia restorations. FSZ is relatively more polishable and translucent than PSZ. Copyright © 2015 Academy of Dental Materials

  14. Characterization of polymer monolithic stationary phases for capillary HPLC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2003-01-01

    Roč. 26, č. 11 (2003), s. 1005-1016 ISSN 1615-9306 R&D Projects: GA ČR GA203/02/0023 Institutional research plan: CEZ:AV0Z4031919; CEZ:MSM 253100002 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.108, year: 2003

  15. Monolithic blue LED series arrays for high-voltage AC operation

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Jin-Ping [Satellite Venture Business Laboratory, University of Tokushima, Tokushima 770-8506 (Japan); Sato, Hisao; Mizobuchi, Takashi; Morioka, Kenji; Kawano, Shunsuke; Muramoto, Yoshihiko; Sato, Daisuke; Sakai, Shiro [Nitride Semiconductor Co. Ltd., Naruto, Tokushima 771-0360 (Japan); Lee, Young-Bae; Ohno, Yasuo [Department of Electrical and Electronic Engineering, University of Tokushima, Tokushima 770-8506 (Japan)

    2002-12-16

    Design and fabrication of monolithic blue LED series arrays that can be operated under high ac voltage are described. Several LEDs, such as 3, 7, and 20, are connected in series and in parallel to meet ac operation. The chip size of a single device is 150 {mu}m x 120 {mu}m and the total size is 1.1 mm x 1 mm for a 40(20+20) LED array. Deep dry etching was performed as device isolation. Two-layer interconnection and air bridge are utilized to connect the devices in an array. The monolithic series array exhibit the expected operation function under dc and ac bias. The output power and forward voltage are almost proportional to LED numbers connected in series. On-wafer measurement shows that the output power is 40 mW for 40(20+20) LED array under ac 72 V. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  16. Fabrication of Monolithic Bridge Structures by Vacuum-Assisted Capillary-Force Lithography

    KAUST Repository

    Kwak, Rhokyun; Jeong, Hoon Eui; Suh, Kahp Y.

    2009-01-01

    Monolithic bridge structures were fabricated by using capillary-force lithography (CFL), which was developed for patterning polymers over a large area by combining essential features of nanoimprint lithography and capillarity. A patterned soft mold

  17. Fabrication and characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic reactions and their application in the reduction of hexacyanoferrate

    International Nuclear Information System (INIS)

    Floris, Patrick; Twamley, Brendan; Nesterenko, Pavel N.; Paull, Brett; Connolly, Damian

    2014-01-01

    Polymer monoliths in capillary (100 μm i.d.) and polypropylene pipette tip formats (vol: 20 μL) were modified with gold nano-particles (AuNP) and subsequently used for flow-through catalytic reactions. Specifically, methacrylate monoliths were modified with amine-reactive monomers using a two-step photografting method and then reacted with ethylenediamine to provide amine attachment sites for the subsequent immobilisation of 4 nm, 7 nm or 16 nm AuNP. This was achieved by flushing colloidal suspensions of gold nano-particles through each aminated polymer monolith which resulted in a multi-point covalent attachment of gold via the lone pair of electrons on the nitrogen of the free amine groups. Field emission scanning electron microscopy and scanning capacitively coupled conductivity detection was used to characterise the surface coverage of AuNP on the monoliths. The catalytic activity of AuNP immobilised on the polymer monoliths in both formats was then demonstrated using the reduction of Fe(III) to Fe(II) by sodium borohydride as a model reaction by monitoring the reduction in absorbance of the hexacyanoferrate (III) complex at 420 nm. Catalytic activity was significantly enhanced on monoliths modified with smaller AuNP with almost complete reduction (95 %) observed when using monoliths agglomerated with 7 nm AuNPs. (author)

  18. ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering

    Directory of Open Access Journals (Sweden)

    Franziska Weichelt

    2010-12-01

    Full Text Available Porous monolithic inorganic/polymeric hybrid materials have been prepared via ring-opening metathesis copolymerization starting from a highly polar monomer, i.e., cis-5-cyclooctene-trans-1,2-diol and a 7-oxanorborn-2-ene-derived cross-linker in the presence of porogenic solvents and two types of inorganic nanoparticles (i.e., CaCO3 and calcium hydroxyapatite, respectively using the third-generation Grubbs initiator RuCl2(Py2(IMesH2(CHPh. The physico-chemical properties of the monolithic materials, such as pore size distribution and microhardness were studied with regard to the nanoparticle type and content. Moreover, the reinforced monoliths were tested for the possible use as scaffold materials in tissue engineering, by carrying out cell cultivation experiments with human adipose tissue-derived stromal cells.

  19. Packet models revisited: tandem and priority systems

    NARCIS (Netherlands)

    M.R.H. Mandjes (Michel)

    2004-01-01

    textabstractWe examine two extensions of traditional single-node packet-scale queueing models: tandem networks and (strict) priority systems. Two generic input processes are considered: periodic and Poisson arrivals. For the two-node tandem, an exact expression is derived for the joint distribution

  20. Preparation and evaluation of 400μm I.D. polymer-based hydrophilic interaction chromatography monolithic columns with high column efficiency.

    Science.gov (United States)

    Liu, Chusheng; Li, Haibin; Wang, Qiqin; Crommen, Jacques; Zhou, Haibo; Jiang, Zhengjin

    2017-08-04

    The quest for higher column efficiency is one of the major research areas in polymer-based monolithic column fabrication. In this research, two novel polymer-based HILIC monolithic columns with 400μm I.D.×800μm O.D. were prepared based on the thermally initiated co-polymerization of N,N-dimethyl-N-(3-methacrylamidopropyl)-N-(3-sulfopropyl) ammonium betaine (SPP) and ethylene glycol dimethacrylate (EDMA) or N,N'-methylenebisacrylamide (MBA). In order to obtain a satisfactory performance in terms of column permeability, mechanical stability, efficiency and selectivity, the polymerization parameters were systematically optimized. Column efficiencies as high as 142, 000 plates/m and 120, 000 plates/m were observed for the analysis of neutral compounds at 0.6mm/s on the poly(SPP-co-MBA) and poly(SPP-co-EDMA) monoliths, respectively. Furthermore, the Van Deemter plots for thiourea on the two monoliths were compared with that on a commercial silica based ZIC-HILIC column (3.5μm, 200Å, 150mm×300μm I.D.) using ACN/H 2 O (90/10, v/v) as the mobile phase at room temperature. It was noticeable that the Van Deemter curves for both monoliths, particularly the poly(SPP-co-MBA) monolith, are significantly flatter than that obtained for the ZIC-HILIC column, which indicates that in spite of their larger internal diameters, they yield better overall efficiency, with less peak dispersion, across a much wider range of usable linear velocities. A clearly better separation performance was also observed for nucleobases, nucleosides, nucleotides and small peptides on the poly(SPP-co-MBA) monolith compared to the ZIC-HILIC column. It is particularly worth mentioning that these 400μm I.D. polymer-based HILIC monolithic columns exhibit enhanced mechanical strength owing to the thicker capillary wall of the fused-silica capillaries. Copyright © 2017 Elsevier B.V. All rights reserved.