WorldWideScience

Sample records for monolithic schottky diode

  1. Silicon Carbide Schottky Barrier Diode

    Science.gov (United States)

    Zhao, Jian H.; Sheng, Kuang; Lebron-Velilla, Ramon C.

    2004-01-01

    This chapter reviews the status of SiC Schottky barrier diode development. The fundamental of Schottky barrier diodes is first provided, followed by the review of high-voltage SiC Schottky barrier diodes, junction-barrier Schottky diodes, and merged-pin-Schottky diodes. The development history is reviewed ad the key performance parameters are discussed. Applications of SiC SBDs in power electronic circuits as well as other areas such as gas sensors, microwave and UV detections are also presented, followed by discussion of remaining challenges.

  2. Scaling of nano-Schottky-diodes

    NARCIS (Netherlands)

    Smit, G.D.J.; Rogge, S.; Klapwijk, T.M.

    2002-01-01

    A generally applicable model is presented to describe the potential barrier shape in ultrasmall Schottky diodes. It is shown that for diodes smaller than a characteristic length lc (associated with the semiconductor doping level) the conventional description no longer holds. For such small diodes th

  3. DC characteristics of the SiC Schottky diodes

    National Research Council Canada - National Science Library

    W Janke; A Hapka; M Oleksy

    2011-01-01

      DC characteristics of the SiC Schottky diodes The isothermal and non-isothermal characteristics of silicon carbide Schottky diodes in the wide range of currents and ambient temperatures are investigated in this paper...

  4. SiC Schottky diode electrothermal macromodel

    OpenAIRE

    Masana Nadal, Francisco

    2010-01-01

    This paper presents a SiC Schottky diode model including static, dynamic and thermal features implemented as separate parameterized blocks constructed from SPICE Analog Behavioral Modeling (ABM) controlled sources. The parameters for each block are easy to extract, even from readily available diode data sheet information. The model complexity is low thus allowing reasonably long simulation times to cope with the rather slow self heating process and yet accurate enough for practical purposes.

  5. 2-D Design of Schottky Diodes

    Science.gov (United States)

    2000-09-29

    Schottky diode with- Lb, rse = 2.5 ,im as can be observed in figure 3. 25 ........... ...... ..... Series roi~ttarce for *ý,,,,-io irm. Ii bsai.10in 0...epitaxial layer Wp ( rse < 𔃽 -4), which is typical 4D0 ............. . . for submillimeter varactors. Of course, the influence of the .............. ~ L

  6. Schottky diodes from 2D germanane

    Science.gov (United States)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  7. Schottky diodes from 2D germanane

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Nanda Gopal; Punetha, Vinay Deep [Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, Nainital, 263001 Uttarakhand (India); Esteves, Richard J; Arachchige, Indika U. [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Pestov, Dmitry [Nanomaterials Core Characterization Center, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); McLeskey, James T., E-mail: JamesMcLeskey@rmc.edu [Department of Physics, Randolph-Macon College, Ashland, Virginia 23005 (United States)

    2016-07-11

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe{sub 2} framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  8. Monolithic watt-level millimeter-wave diode-grid frequency tripler array

    Science.gov (United States)

    Hwu, R. J.; Luhmann, N. C., Jr.; Rutledge, D. B.; Hancock, B.; Lieneweg, U.

    1988-01-01

    In order to provide watt-level CW output power throughout the millimeter and submillimeter wave region, thousands of solid-state diodes have been monolithically integrated using a metal grid to produce a highly efficient frequency multiplier. Devices considered include GaAs Schottky diodes, thin MOS diodes, and GaAs Barrier-Intrinsic-N(+)diodes. The performance of the present compact low-cost device has been theoretically and experimentally validated.

  9. Destructive Single-Event Failures in Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Gigliuto, Robert A.; Wilcox, Edward P.; Phan, Anthony M.; Kim, Hak; Chen, Dakai; LaBel, Kenneth A.

    2014-01-01

    This presentation contains test results for destructive failures in DC-DC converters. We have shown that Schottky diodes are susceptible to destructive single-event effects. Future work will be completed to identify parameter that determines diode susceptibility.

  10. SiC-based Schottky diode gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, G.W.; Neudeck, P.G.; Chen, L.Y. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Knight, D. [Cortez/NASA Lewis Research Center, Cleveland, OH (United States); Liu, C.C.; Wu, Q.H. [Electronics Design Center, Case Western Reserve Univ., Cleveland, OH (United States)

    1998-08-01

    Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor array for versatile high temperature gas sensing applications. (orig.) 6 refs.

  11. SiC-Based Schottky Diode Gas Sensors

    Science.gov (United States)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai

    1997-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor arrays for versatile high temperature gas sensing applications.

  12. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode

    OpenAIRE

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-01-01

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increa...

  13. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.

    Science.gov (United States)

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-05-06

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.

  14. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  15. Vertical semiconducting single-walled carbon nanotube Schottky diode

    Science.gov (United States)

    Jung, Sunghwan

    2014-07-01

    This paper presents a vertical semiconducting single-walled carbon nanotube (sSWCNT)-based Schottky device. For the first time, the author successfully demonstrated a vertical s-SWCNT Schottky diode on an anodized aluminum oxide (AAO) template. In the vertical pores of an AAO template s-SWCNTs were vertically grown and aligned. The vertical growth of s-SWCNTs inside the pores was achieved by successfully isolating the catalyst at the bottom of the pores by using redeposition enabled angled ion milling. The ends of the grown s-SWCNTs were coated with palladium and titanium to form Schottky and Ohmic contacts, respectively. The I-V characteristics of the vertical s-SWCNT paths engaging the Schottky and Ohmic contacts well demonstrated Schottky diode rectification.

  16. Physical based Schottky barrier diode modeling for THz applications

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Michaelsen, Rasmus Schandorph;

    2013-01-01

    In this work, a physical Schottky barrier diode model is presented. The model is based on physical parameters such as anode area, Ohmic contact area, doping profile from epitaxial (EPI) and substrate (SUB) layers, layer thicknesses, barrier height, specific contact resistance, and device...... temperature. The effects of barrier height lowering, nonlinear resistance from the EPI layer, and hot electron noise are all included for accurate characterization of the Schottky diode. To verify the diode model, measured I-V and C-V characteristics are compared with the simulation results. Due to the lack...

  17. Monolithic resonant optical reflector laser diodes

    Science.gov (United States)

    Hirata, T.; Suehiro, M.; Maeda, M.; Hihara, M.; Hosomatsu, H.

    1991-10-01

    The first monolithic resonant optical reflector laser diode that has a waveguide directional coupler and two DBR reflectors integrated by compositional disordering of quantum-well heterostructures is described. A linewidth of 440 kHz was obtained, and this value is expected to be greatly decreased by reducing the propagation loss in the integrated waveguide.

  18. Study of Reduced Graphene Oxide for Trench Schottky Diode

    Science.gov (United States)

    Samihah Khairir, Nur; Rofei Mat Hussin, Mohd; Nasir, Iskhandar Md; Mukhter Uz-Zaman, A. S. M.; Fazlida Hanim Abdullah, Wan; Sabirin Zoolfakar, Ahmad

    2015-11-01

    This paper presents the study of reduced Graphene Oxide (RGO) for trench Schottky diode by replacing conventional metal layer that forms schottky contact with a nanostructured carbon thin film via Reduced Graphene Oxide (RGO) technique. The RGO was synthesis by chemical exfoliation in which modified Hummer's method was approached. It was then deposited on the trench schottky pattern substrate by pressurized spray coating. The sample was then characterized by FESEM, Raman Spectroscopy and I-V test. The results of FESEM and Raman showed good characteristics and well deposited nanostructures of RGO flakes. The two-point I-V test showed that the samples have a low turn-on voltage and a higher break-down voltage, which is better than the conventional schottky diode used in the market.

  19. Terahertz pulse detection by the GaAs Schottky diodes

    Science.gov (United States)

    Laperashvili, Tina; Kvitsiani, Orest; Imerlishvili, Ilia; Laperashvili, David

    2010-06-01

    We present the results of experimental studies of physical properties of the detection process of GaAs Schottky diodes for terahertz frequency radiation. The development of technology in the THz frequency band has a rapid progress recently. Considered as an extension of the microwave and millimeter wave bands, the THz frequency offers greater communication bandwidth than is available at microwave frequencies. The Schottky barrier contact has an important role in the operation of many GaAs devices. GaAs Schottky diodes have been the primary nonlinear device used in millimeter and sub millimeter wave detectors and receivers. GaAs Schottky diodes are especially interesting due to their high mobility transport characteristics, which allows for a large reduction of the resistance-capacitance (RC) time constant and thermal noise. In This work are investigated the electrical and photoelectric properties of GaAs Schottky diodes. Samples were obtained by deposition of different metals (Au, Ni, Pt, Pd, Fe, In, Ga, Al) on semiconductor. For fabrication metal-semiconductor (MS) structures is used original method of metal electrodepositing. In this method electrochemical etching of semiconductor surface occurs just before deposition of metal from the solution, which contains etching material and metal ions together. For that, semiconductor surface cleaning processes and metal deposition carries out in the same technological process. In the experiments as the electrolyte was used aqueous solution of chlorides. Metal deposition was carried out at room temperature.

  20. 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF

    Science.gov (United States)

    Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta; Rodriguez, Bryan

    2012-01-01

    GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.

  1. I-V characteristics simulation of silicon carbide Ti/4H-SiC Schottky diode

    Science.gov (United States)

    Panchenko, P.; Rybalka, S.; Malakhanov, A.; Krayushkina, E.; Radkov, A.

    2016-12-01

    The simulation of current-voltage characteristics for 4H-SiC Schottky diode with Ti Schottky contact has been carried out with used of TCAD program. Obtained current-voltage characteristics has been analyzed and compared with theoretical and experimental results. It is established that the Schottky diode parameters (forward current, ideality coefficient, Schottky barrier height, breakdown voltage) obtained in proposed model are good agreement with data for such type diodes.

  2. Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode

    Directory of Open Access Journals (Sweden)

    Rajiv K. Pandey

    2013-12-01

    Full Text Available We report formation of polycarbazole (PCz–graphene nanocomposite over indium tin oxide (ITO coated glass substrate using electrochemical technique for fabrication of high performance Schottky diodes. The synthesized nanocomposite is characterized before fabrication of devices for confirmation of uniform distribution of graphene nanosheets in the polymer matrix. Pure PCz and PCz-graphene nanocomposites based Schottky diodes are fabricated of configuration Al/PCz/ITO and Al/PCz-graphene nanocomposite/ITO, respectively. The current density–voltage (J-V characteristics and diode performance parameters (such as the ideality factor, barrier height, and reverse saturation current density are compared under ambient condition. Al/PCz-graphene nanocomposite/ITO device exhibits better ideality factor in comparison to the device formed using pure PCz. It is also observed that the Al/PCz-graphene nanocomposite/ITO device shows large forward current density and low turn on voltage in comparison to Al/PCz/ITO device.

  3. Examinations of Selected Thermal Properties of Packages of SiC Schottky Diodes

    Directory of Open Access Journals (Sweden)

    Bisewski Damian

    2016-09-01

    Full Text Available This paper describes the study of thermal properties of packages of silicon carbide Schottky diodes. In the paper the packaging process of Schottky diodes, the measuring method of thermal parameters, as well as the results of measurements are presented. The measured waveforms of transient thermal impedance of the examined diodes are compared with the waveforms of this parameter measured for commercially available Schottky diodes.

  4. Monte Carlo modelling of Schottky diode for rectenna simulation

    Science.gov (United States)

    Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.

    2017-09-01

    Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.

  5. Interdigitated planar Schottky varactor diodes for tunable MMIC applications

    OpenAIRE

    Lucyszyn, Stepan; Green, Ged; Robertson, Ian D.

    1992-01-01

    Techniques are presented for scale modelling interdigitated Planar Schottky Varactor Diodes (PSVDs) using an equivalent circuit model. A selection of low cost GaAs devices, with variations in the finger width and number of anode fingers, have been fabricated, measured and accurately characterized - well into the millimetric frequency range. From the results, a number of useful design rules are presented for the optimal choice of interdigitated PSVD topography. With the use of these rules, a 2...

  6. Optimum Barrier Height for SiC Schottky Barrier Diode

    OpenAIRE

    Mohamed Abd El-Latif; Alaa El-Din Sayed Hafez

    2013-01-01

    The study of barrier height control and optimization for Schottky barrier diode (SBD) from its physical parameters have been introduced using particle swarm optimization (PSO) algorithm. SBD is the rectifying barrier for electrical conduction across the metal semiconductor (MS) junction and, therefore, is of vital importance to the successful operation of any semiconductor device. 4H-SiC is used as a semiconductor material for its good electrical characteristics with high-power semiconductor ...

  7. High-temperature current conduction through three kinds of Schottky diodes

    Institute of Scientific and Technical Information of China (English)

    Li Fei; Zhang Xiao-Ling; Duan Yi; Xie Xue-Song; Lü Chang-Zhi

    2009-01-01

    Fundamentals of the Schottky contacts and the high-temperature current conduction through three kinds of Schottky diodes are studied. N-Si Schottky diodes, GaN Schottky diodes and AlGaN/GaN Schottky diodes are investigated by I-V-T measurements ranging from 300 to 523 K. For these Schottky diodes, a rise in temperature is accompanied with an increase in barrier height and a reduction in ideality factor. Mechanisms are suggested, including thermionic emission, field emission, trap-assisted tunnelhng and so on. The most remarkable finding in the present paper is that these three kinds of Sehottky diodes are revealed to have different behaviours of high-temperature reverse currents. For the n-Si Sehottky diode, a rise in temperature is accompanied by an increase in reverse current. The reverse current of the GaN Schottky diode decreases first and then increases with rising temperature. The AIGaN/GaN Schottky diode has a trend opposite to that of the GaN Schottky diode, and the dominant mechanisms are the effects of the piezoelectric polarization field and variation of two-dimensional electron gas charge density.

  8. Radiation hardness of n-GaN schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A. A., E-mail: shura.lebe@mail.ioffe.ru; Belov, S. V.; Mynbaeva, M. G.; Strel’chuk, A. M.; Bogdanova, E. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Makarov, Yu. N. [Nitride Crystals Group (Russian Federation); Usikov, A. S. [Nitride Crystals Inc. (United States); Kurin, S. Yu.; Barash, I. S.; Roenkov, A. D. [Nitride Crystals Group (Russian Federation); Kozlovski, V. V. [St. Petersburg State Polytechnic University (Russian Federation)

    2015-10-15

    Schottky-barrier diodes with a diameter of ∼10 µm are fabricated on n-GaN epitaxial films grown by hydride vapor-phase epitaxy (HVPE) on sapphire substrates. The changes in the parameters of the diodes under irradiation with 15 MeV protons are studied. The carrier removal rate was found to be 130–145 cm{sup –1}. The linear nature of the dependence N = f(D) (N is the carrier concentration, and D, the irradiation dose) shows that compensation of the material is associated with transitions of electrons from shallow donors to deep acceptor levels which are related to primary radiation defects.

  9. Additional electric field in real trench MOS barrier Schottky diode

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2016-04-01

    In real trench MOS barrier Schottky diode (TMBS diode) additional electric field (AEF) the whole is formed in the near contact region of the semiconductor and its propagation space is limited with the barrier metal and the metallic electrodes of MOS structures. Effective potential barrier height TMBS diode is formed via resulting electric field of superposition AEF and electric field of space charge region (SCR) semiconductor. The dependence of the resulting electric field intensity of the distance towards the inside the semiconductor is nonlinear and characterized by a peak at a certain distance from the interface. The thickness of the SCR in TMBS diode becomes equal to the trench depth. Force and energy parameters of the AEF, and thus resulting electric field in the SCR region, become dependent on the geometric design parameters TMBS diode. The forward I-V characteristic TMBS diode is described by the thermionic emission theory as in conventional flat Scottky diode, and in the reverse bias, current is virtually absent at initial voltage, appears abruptly at a certain critical voltage.

  10. Electric field breakdown of lateral-type Schottky diodes formed on lightly doped homoepitaxial diamond

    Science.gov (United States)

    Teraji, Tokuyuki; Koizumi, Satoshi; Koide, Yasuo; Ito, Toshimichi

    2008-07-01

    The reverse current of lateral-type Schottky diodes fabricated on p-type homoepitaxial diamond was analyzed by changing the distance between Schottky and Ohmic electrodes and the metal materials in the Schottky electrodes. The maximum electric field at breakdown was 0.56 MV cm -1 for the Au Schottky contact and less than 0.26 MV cm -1 for the Al Schottky contact. The breakdown voltage depended on the electrode distance when the diamond surface was revealed in vacuum, whereas the Schottky diodes sustained the applied voltage of 500 V, corresponding to 0.69 MV cm -1, after covering of the diamond surface with an insulating liquid. Diamond surface protection is an indispensable technique for fabrication of high-voltage Schottky diodes based on diamond.

  11. Nickel-gallium arsenide high-voltage power Schottky diodes

    Science.gov (United States)

    Ashkinazi, G.; Hadas, Tz.; Meyler, B.; Nathan, M.; Zolotarevski, L.; Zolotarevski, O.

    1993-01-01

    A power GaAs Schottky diode (SD) with a chemically deposited Ni barrier was designed, fabricated and tested. The diode has a reverse breakdown voltage VBR of 140 V, forward voltage drop VF (at 50 A/cm 2) of 0.7 V at 23°C, 0.5 V at 150°C and 0.3 V at 250°C, and reverse leakage current densities jR (at -50 V) of 0.1 μA/cm 2 at 23°C and 1 mA/cm 2 at 150°C. Calculated forward and reverse I- V characteristics using a simple self-consistent computer model are in good agreement with measured values. Calculated characteristics of a silicon SD with identical structure parameters, using the same model, show much poorer VBR, VF and jR values. The theoretical maximum value of VBR is physically limited by the largest allowed VF. For a V Fof ⋍1.6 V, V BR.maxis ⋍200 V in Si and ⋍800 simple technology allows manufacturing of large area GaAs Schottky diodes with average currents up to V in GaAs SDs. Our relatively 100 A.

  12. An Ultra-Wideband Schottky Diode Based Envelope Detector for 2.5 Gbps signals

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Valdecasa, Guillermo Silva; Granja, Angel Blanco

    2016-01-01

    In this paper an ultra-wideband (UWB) Schottky diode based envelope detector is reported. The detector consists of an input matching network, a Schottky diode and wideband output filtering network. The output network is tailored to demodulate ultra-wideband amplitude shift keying (ASK) signals up...

  13. Modeling of Schottky Barrier Diode Millimeter-Wave Multipliers at Cryogenic Temperatures

    DEFF Research Database (Denmark)

    Johansen, Tom K.; Rybalko, Oleksandr; Zhurbenko, Vitaliy

    2015-01-01

    We report on the evaluation of Schottky barrier diode GaAs multipliers at cryogenic temperatures. A GaAs Schottky barrier diode model is developed for theoretical estimation of doubler performance. The model is used to predict efficiency of doublers from room to cryogenic temperatures...

  14. Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode

    Science.gov (United States)

    Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Shim, Kyu-Hwan; Cho, Hyunjin; Kim, Myung-Jong; Lee, Sung-Nam; Jeong, Jae-chan; Hong, Hyobong; Choi, Chel-Jong

    2016-03-01

    We investigated the electrical properties of chemical vapor deposition-grown monolayer graphene/n-type germanium (Ge) Schottky barrier diodes (SBD) using current-voltage (I-V) characteristics and low frequency noise measurements. The Schottky barrier parameters of graphene/n-type Ge SBDs, such as Schottky barrier height (VB), ideality factor (n), and series resistance (Rs), were extracted using the forward I-V and Cheung's methods. The VB and n extracted from the forward ln(I)-V plot were found to be 0.63 eV and 1.78, respectively. In contrast, from Cheung method, the VB and n were calculated to be 0.53 eV and 1.76, respectively. Such a discrepancy between the values of VB calculated from the forward I-V and Cheung's methods indicated a deviation from the ideal thermionic emission of graphene/n-type Ge SBD associated with the voltage drop across graphene. The low frequency noise measurements performed at the frequencies in the range of 10 Hz-1 kHz showed that the graphene/n-type Ge SBD had 1/f γ frequency dependence, with γ ranging from 1.09 to 1.12, regardless of applied forward biases. Similar to forward-biased SBDs operating in the thermionic emission mode, the current noise power spectral density of graphene/n-type Ge SBD was linearly proportional to the forward current.

  15. Neutron irradiation effects on gallium nitride-based Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Han; Katz, Evan J.; Zhang, Zhichun [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States); Qiu, Jie; Cao, Lei [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Mishra, Umesh K. [Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of California, Santa Barbara, California 93106 (United States); Brillson, Leonard J. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus Ohio 43210 (United States); Department of Physics and Center for Materials Research, The Ohio State University, Columbus, Ohio 43210 (United States)

    2013-10-14

    Depth-resolved cathodoluminescence spectroscopy (DRCLS), time-resolved surface photovoltage spectroscopy, X-ray photoemission spectroscopy (XPS), and current-voltage measurements together show that fast versus thermal neutrons differ strongly in their electronic and morphological effects on metal-GaN Schottky diodes. Fast and thermal neutrons introduce GaN displacement damage and native point defects, while thermal neutrons also drive metallurgical reactions at metal/GaN interfaces. Defect densities exhibit a threshold neutron fluence below which thermal neutrons preferentially heal versus create new native point defects. Scanning XPS and DRCLS reveal strong fluence- and metal-dependent electronic and chemical changes near the free surface and metal interfaces that impact diode properties.

  16. Lateral IBIC analysis of GaAs Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Vittone, E. [Experimental Physics Department, ' Nanostructured interfaces and surfaces' (NIS) Centre of Excellence of the University of Torino, and INFN - Torino (Italy) and INFM, Research Unit of Torino-University, Via P. Giuria 1, 10125 Torino (Italy)]. E-mail: vittone@to.infn.it; Olivero, P. [Experimental Physics Department, ' Nanostructured interfaces and surfaces' (NIS) Centre of Excellence of the University of Torino, and INFN - Torino (Italy) and INFM, Research Unit of Torino-University, Via P. Giuria 1, 10125 Torino (Italy)]. E-mail: p.olivero@physics.unimelb.edu.au; Nava, F. [INFN and Departimento di Fisica, Universita di Modena e Reggio Emilia, Via Campi, 213/A - 41100 Modena (Italy); Manfredotti, C. [Experimental Physics Department, ' Nanostructured interfaces and surfaces' (NIS) Centre of Excellence of the University of Torino, and INFN - Torino (Italy); INFM, Research Unit of Torino-University, Via P. Giuria 1, 10125 Torino (Italy); Lo Giudice, A. [INFM, Research Unit of Torino-University, Via P. Giuria 1, 10125 Torino (Italy); Fizzotti, F. [Experimental Physics Department, ' Nanostructured interfaces and surfaces' (NIS) Centre of Excellence of the University of Torino, and INFN - Torino (Italy); INFM, Research Unit of Torino-University, Via P. Giuria 1, 10125 Torino (Italy); Egeni, G. [INFN - Laboratori Nazionali di Legnaro, Viale dell' Universita 2, 35020 Legnaro (Pd) (Italy)

    2005-04-01

    Charge collection efficiency (CCE) profiles of a semi-insulating (SI) gallium arsenide LEC (Liquid Encapsulated Czochralski) Schottky diode have been investigated by lateral Ion Beam Induced Charge collection (IBIC) technique. A focussed 2.4 MeV proton microbeam was scanned over the cleaved surface of a SI-GaAs diode and the charge collection efficiency was evaluated as a function of the ion beam position at different bias voltages. By fitting the CCE profiles with the equations derived by the Shockley-Ramo-Gunn's theorem, drift lengths of electrons and holes were obtained. Experimental results are consistent with previous OBIC (Optical Beam Induced Current) and SP (Surface Potential) measurements and confirm the model based on the formation of a Mott barrier due to the enhanced electron capture cross section in high field conditions.

  17. Tension assisted metal transfer of graphene for Schottky diodes onto wafer scale substrates.

    Science.gov (United States)

    Lee, Jooho; Lee, Su Chan; Kim, Yongsung; Heo, Jinseong; Lee, Kiyoung; Lee, Dongwook; Kim, Jaekwan; Lee, Sunghee; Lee, Chang Seung; Nam, Min Sik; Jun, Seong Chan

    2016-02-19

    We developed an effective graphene transfer method for graphene/silicon Schottky diodes on a wafer as large as 6 inches. Graphene grown on a large scale substrate was passivated and sealed with a gold layer, protecting graphene from any possible contaminant and keeping good electrical contact. The Au/graphene was transferred by the tension-assisted transfer process without polymer residues. The gold film itself was used directly as the electrodes of a Schottky diode. We demonstrated wafer-scale integration of graphene/silicon Schottky diode using the proposed transfer process. The transmission electron microscopy analysis and relatively low ideality factor of the diodes indicated fewer defects on the interface than those obtained using the conventional poly(methyl methacrylate)-assisted transfer method. We further demonstrated gas sensors as an application of graphene Schottky diodes.

  18. Tension assisted metal transfer of graphene for Schottky diodes onto wafer scale substrates

    Science.gov (United States)

    Lee, Jooho; Lee, Su Chan; Kim, Yongsung; Heo, Jinseong; Lee, Kiyoung; Lee, Dongwook; Kim, Jaekwan; Lee, Sunghee; Lee, Chang Seung; Nam, Min Sik; Jun, Seong Chan

    2016-02-01

    We developed an effective graphene transfer method for graphene/silicon Schottky diodes on a wafer as large as 6 inches. Graphene grown on a large scale substrate was passivated and sealed with a gold layer, protecting graphene from any possible contaminant and keeping good electrical contact. The Au/graphene was transferred by the tension-assisted transfer process without polymer residues. The gold film itself was used directly as the electrodes of a Schottky diode. We demonstrated wafer-scale integration of graphene/silicon Schottky diode using the proposed transfer process. The transmission electron microscopy analysis and relatively low ideality factor of the diodes indicated fewer defects on the interface than those obtained using the conventional poly(methyl methacrylate)-assisted transfer method. We further demonstrated gas sensors as an application of graphene Schottky diodes.

  19. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Science.gov (United States)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  20. Electrical characterization of MEH-PPV based Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Nimith, K. M., E-mail: nimithkm@gmail.com; Satyanarayan, M. N., E-mail: satya-mn@nitk.edu.in; Umesh, G., E-mail: umesh52@gmail.com [Optoelectronics Laboratory (OEL), Department of Physics, National Institute of Technology Karnataka (NITK),Surathkal, PO Srinivasnagar, Mangalore, DK-575025 (India)

    2016-05-06

    MEH-PPV Schottky diodes with and without Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) have been fabricated and characterized. The highlight of this work is that all the fabrication and characterization steps had been carried out in the ambient conditions and the device fabrication was done without any UV-Ozone surface treatment of ITO anodes. Current Density-Voltage characteristics shows that the addition of hole injection layer (HIL) enhances the charge injection into the polymer layer by reducing the energy barrier across the Indium Tin Oxide (ITO)-Organic interface. The rectification ratio increases to 2.21 from 0.76 at 5V for multilayer devices compared to single layer devices. Further we investigated the effect of an alkali metal fluoride (LiF) by inserting a thin layer in between the organic layer and Aluminum (Al) cathode. The results of these investigations will be discussed in detail.

  1. Graphene-Based Reversible Nano-Switch/Sensor Schottky Diode

    Science.gov (United States)

    Miranda, Felix A.; Meador, Michael A.; Theofylaktos, Onoufrios; Pinto, Nicholas J.; Mueller, Carl H.; Santos-Perez, Javier

    2010-01-01

    This proof-of-concept device consists of a thin film of graphene deposited on an electrodized doped silicon wafer. The graphene film acts as a conductive path between a gold electrode deposited on top of a silicon dioxide layer and the reversible side of the silicon wafer, so as to form a Schottky diode. By virtue of the two-dimensional nature of graphene, this device has extreme sensitivity to different gaseous species, thereby serving as a building block for a volatile species sensor, with the attribute of having reversibility properties. That is, the sensor cycles between active and passive sensing states in response to the presence or absence of the gaseous species.

  2. Electrical characterization of MEH-PPV based Schottky diodes

    Science.gov (United States)

    Nimith, K. M.; Satyanarayan, M. N.; Umesh, G.

    2016-05-01

    MEH-PPV Schottky diodes with and without Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) have been fabricated and characterized. The highlight of this work is that all the fabrication and characterization steps had been carried out in the ambient conditions and the device fabrication was done without any UV-Ozone surface treatment of ITO anodes. Current Density-Voltage characteristics shows that the addition of hole injection layer (HIL) enhances the charge injection into the polymer layer by reducing the energy barrier across the Indium Tin Oxide (ITO)-Organic interface. The rectification ratio increases to 2.21 from 0.76 at 5V for multilayer devices compared to single layer devices. Further we investigated the effect of an alkali metal fluoride (LiF) by inserting a thin layer in between the organic layer and Aluminum (Al) cathode. The results of these investigations will be discussed in detail.

  3. Deep-level transient spectroscopy on an amorphous InGaZnO4 Schottky diode

    NARCIS (Netherlands)

    Chasin, A.; Simoen, E.; Bhoolokam, A.; Nag, M.; Genoe, J.; Gielen, G.; Heremans, P.

    2014-01-01

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier

  4. Simulation of a perfect CVD diamond Schottky diode steep forward current–voltage characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, V.A., E-mail: vakuk@appl.sci-nnov.ru [Institute of Applied Physics of the Russian Academy of Science, 46 Ulyanov St., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State University named after N.I. Lobachevsky, 23 Gagarin pr., 603950 Nizhny Novgorod (Russian Federation)

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current–voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  5. The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance

    OpenAIRE

    Meisam Rahmani; Razali Ismail; Mohammad Taghi Ahmadi; Mohammad Javad Kiani; Mehdi Saeidmanesh; F. A. Hediyeh Karimi; Elnaz Akbari; Komeil Rahmani

    2013-01-01

    Bilayer graphene nanoribbon is a promising material with outstanding physical and electrical properties that offers a wide range of opportunities for advanced applications in future nanoelectronics. In this study, the application of bilayer graphene nanoribbon in schottky-barrier diode is explored due to its different stacking arrangements. In other words, bilayer graphene nanoribbon schottky-barrier diode is proposed as a result of contact between a semiconductor (AB stacking) and metal (AA ...

  6. Simulation of a perfect CVD diamond Schottky diode steep forward current-voltage characteristic

    Science.gov (United States)

    Kukushkin, V. A.

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current-voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  7. Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yebing [Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Hu Rui; Yang Yuqing; Wang Guanquan [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Luo Shunzhong, E-mail: Luoshzh@caep.ca.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Liu Ning [Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China)

    2012-03-15

    An Au-Si Schottky barrier diode was studied as the energy conversion device of betavoltaic batteries. Its electrical performance under radiation of Ni-63 and H-3 sources and radiation degradation under Am-241 were investigated and compared with those of the p-n junction. The results show that the Schottky diode had a higher I{sub sc} and harder radiation tolerance but lower V{sub oc} than the p-n junction. The results indicated that the Schottky diode can be a promising candidate for energy conversion of betavoltaic batteries. - Highlights: Black-Right-Pointing-Pointer The Schottky diode was used as the converter of the betavoltaic battery. Black-Right-Pointing-Pointer The radiation damage of converter was accelerated by using alpha particles. Black-Right-Pointing-Pointer The Schottky diode has higher radiation resistance than that of the p-n junction. Black-Right-Pointing-Pointer The Schottky diode could still be a promising converter of the betavoltaic battery.

  8. Ni based planar Schottky diodes on gallium nitride (GaN) grown on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Menard, Olivier [Universite de Francois Rabelais, Laboratoire de Microelectronique de Puissance, 16 Rue Pierre et Marie Curie, BP7155, 37071 Tours (France); STMicroelectronics, 16 Rue Pierre et Marie Curie, BP7155, 37071 Tours (France); Cayrel, Frederic; Alquier, Daniel [Universite de Francois Rabelais, Laboratoire de Microelectronique de Puissance, 16 Rue Pierre et Marie Curie, BP7155, 37071 Tours (France); Collard, Emmanuel [STMicroelectronics, 16 Rue Pierre et Marie Curie, BP7155, 37071 Tours (France)

    2010-01-15

    In this work, Schottky barrier diodes (SBD), made using lift-off process, were realized on low doped n-type GaN grown by MOCVD. Schottky to Schottky structures were first realized, allowing to select convenient process parameters that reduce the leakage current, such as surface cleaning, thickness of the metallic contact and annealing time or temperature. Then, planar Schottky diodes were patterned and characterized to extract barrier height and ideality factor. Results show that good rectifying behaviour can be obtained with a 300nm thick Ni Schottky contact annealed in RTA at 450 C during 3 min under Argon. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Planar Schottky barrier mixer diodes for space applications at submillimeter wavelengths

    Science.gov (United States)

    Bishop, W. L.; Crowe, T. W.; Mattauch, R. J.; Ostdiek, P. H.

    1991-01-01

    Available planar diodes for space-based applications at submillimeter wavelengths have not achieved either the required low junction capacitance or the low series resistance-junction capacitance product. Here, the development of a novel planar diode structure that overcomes both of these difficulties is outlined. The characteristics of these Schottky barrier mixer diodes are presented and electron micrographs are shown. The diode structure will allow planar technology to be extended throughout the submillimeter wavelength range.

  10. Electrical transport measurements and degradation of graphene/n-Si Schottky junction diodes

    Energy Technology Data Exchange (ETDEWEB)

    Park, No-Won; Lee, Won-Yong; Lee, Sang-Kwon; Koh, Jung-Hyuk [Chung-Ang University, Seoul (Korea, Republic of); Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Hong, Chang-Hee [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Keun-Soo [Sejong University, Seoul (Korea, Republic of)

    2015-01-15

    We report on the electrical properties, such as the ideality factors and Schottky barrier heights, that were obtained by using current density - voltage (J - V ) and capacitance - voltage (C - V ) characteristics. To fabricate circularly- and locally-contacted Au/Gr/n-Si Schottky diode, we deposited graphene through the chemical vapor deposition (CVD) growth technique, and we employed reactive ion etching to reduce the leakage current of the Schottky diodes. The average values of the barrier heights and the ideality factors from the J .V characteristics were determined to be ∼0.79 ± 0.01 eV and ∼1.80 ± 0.01, respectively. The Schottky barrier height and the doping concentration from the C - V measurements were ∼0.85 eV and ∼1.76 x 10{sup 15} cm{sup -3}, respectively. From the J - V characteristics, we obtained a relatively low reverse leakage current of ∼2.56 x 10{sup -6} mA/cm{sup -2} at -2 V, which implies a well-defined rectifying behavior. Finally, we found that the Gr/n-Si Schottky diodes that were exposed to ambient conditions for 7 days exhibited a ∼3.2-fold higher sheet resistance compared with the as-fabricated Gr/n-Si diodes, implying a considerable electrical degradation of the Gr/n-Si Schottky diodes.

  11. Revised diode equation for Ideal Graphene-Semiconductor Schottky Junction

    OpenAIRE

    Liang, Shi-Jun; Ang, Lay Kee

    2015-01-01

    In this paper we carry out a theoretical and experimental study of the nature of graphene/semiconductor Schottky contact. We present a simple and parameter-free carrier transport model of graphene/semiconductor Schottky contact derived from quantum statistical theory, which is validated by the quantum Landauer theory and first-principle calculations. The proposed model can well explain experimental results for samples of different types of graphene/semiconductor Schottky contact.

  12. The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance

    Directory of Open Access Journals (Sweden)

    Meisam Rahmani

    2013-01-01

    Full Text Available Bilayer graphene nanoribbon is a promising material with outstanding physical and electrical properties that offers a wide range of opportunities for advanced applications in future nanoelectronics. In this study, the application of bilayer graphene nanoribbon in schottky-barrier diode is explored due to its different stacking arrangements. In other words, bilayer graphene nanoribbon schottky-barrier diode is proposed as a result of contact between a semiconductor (AB stacking and metal (AA stacking layers. To this end, an analytical model joint with numerical solution of carrier concentration for bilayer graphene nanoribbon in the degenerate and nondegenerate regimes is presented. Moreover, to determine the proposed diode performance, the carrier concentration model is adopted to derive the current-voltage characteristic of the device. The simulated results indicate a strong bilayer graphene nanoribbon geometry and temperature dependence of current-voltage characteristic showing that the forward current of the diode rises by increasing of width. In addition, the lower value of turn-on voltage appears as the more temperature increases. Finally, comparative study indicates that the proposed diode has a better performance compared to the silicon schottky diode, graphene nanoribbon homo-junction contact, and graphene-silicon schottky diode in terms of electrical parameters such as turn-on voltage and forward current.

  13. ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode

    Indian Academy of Sciences (India)

    Sefa B K Aydin; Dilber E Yildiz; Hatice Kanbur Çavuş; Recep Şahingöz

    2014-12-01

    Electrical analysis of Al/p-Si Schottky diode with titanium dioxide (TiO2) thin film was performed at room temperature. The forward and reverse bias current–voltage (–) characteristics of diode were studied. Using thermionic emission (TE) theory, the main electrical parameters of the Al/TiO2/p-Si Schottky diode such as ideality factor (), zero bias barrier height (Bo) and series resistance (s) were estimated from forward bias – plots. At the same time, values of , Bo and s were obtained from Cheung’s method. It was shown that electrical parameters obtained from TE theory and Cheung’s method exhibit close agreement with each other. The reverse-bias leakage current mechanism of Al/TiO2/p-Si Schottky barrier diodes was investigated. The – curves in the reverse direction are taken and interpreted via both Schottky and Poole–Frenkel effects. Schottky effect was found to be dominant in the reverse direction. In addition, the capacitance–voltage (–) and conductance–voltage (/–) characteristics of diode were investigated at different frequencies (50–500 kHz). The frequency dependence of interface states density was obtained from the Hill–Coleman method and the voltage dependence of interface states density was obtained from the high–low frequency capacitance method.

  14. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    Science.gov (United States)

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  15. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes.

    Science.gov (United States)

    Kumar, Ashutosh; Heilmann, M; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M; Christiansen, Silke H; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained.

  16. Temperature dependence of current–voltage characteristics of Au/-GaAs epitaxial Schottky diode

    Indian Academy of Sciences (India)

    R Singh; S K Arora; Renu Tyagi; S K Agarwal; D Kanjilal

    2000-12-01

    The influence of temperature on current–voltage (–) characteristics of Au/-GaAs Schottky diode formed on -GaAs epitaxial layer grown by metal organic chemical vapour deposition technique has been investigated. The dopant concentration in the epitaxial layer is 1 × 1016 cm−3 . The change in various parameters of the diode like Schottky barrier height (SBH), ideality factor and reverse breakdown voltage as a function of temperature in the range 80−300 K is presented. The variation of apparent Schottky barrier height and ideality factor with temperature has been explained considering lateral inhomogeneities in the Schottky barrier height in nanometer scale lengths at the metal–semiconductor interface.

  17. Bias stress instability involving subgap state transitions in a-IGZO Schottky barrier diodes

    Science.gov (United States)

    Qian, Huimin; Wu, Chenfei; Lu, Hai; Xu, Weizong; Zhou, Dong; Ren, Fangfang; Chen, Dunjun; Zhang, Rong; Zheng, Youdou

    2016-10-01

    Vertical Schottky barrier diodes (SBDs) based on amorphous indium-gallium-zinc-oxide (a-IGZO) with either a top or bottom Schottky contact are fabricated by controlling the oxygen partial pressure during a-IGZO deposition. Although Au electrodes are employed for both Schottky and Ohmic contacts, it is found that Schottky contacts are preferentially formed on a-IGZO film in lower oxygen vacancy concentrations. The effect of negative bias stress on device performance is studied. The Schottky barrier height and series resistance of the a-IGZO SBD are found to increase upon negative bias stress, which is correlated with a reduction of the trap state and background carrier concentration within the a-IGZO film. A physical model based on subgap state transitions from ionized V\\text{O}2+ states to neutralized V O states is proposed to explain the observed electrical instability behavior.

  18. Capacitance-frequency Spectrum Characterization of Organics/Metal Schottky Diodes

    Institute of Scientific and Technical Information of China (English)

    GUO Wen-ge; ZHANG Yan-cao; ZHANG Shou-gang

    2006-01-01

    An organics/metal Schottky diode is fabricated using 3, 4∶9, 10-perylenetetracarboxylic-dianhydride(PTCDA) thin film sandwiched between ITO and Au by simple thermal evaporation technique. The current-voltage(I-V) characteristics are investigated at room temperature in open air. The results show the rectification ratio is in excess of 100. From the capacitance-frequency(C-f) and capacitance-voltage(C-V) measurements, the Schottky barrier height between 0.2~0.3 eV is obtained according to standard Schottky theory.

  19. Fabrication and characterization of flexible Ag/ZnO Schottky diodes on polyimide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, XinAn; Zhai, JunXia; Yu, XianKun; Ding, LingHong; Zhang, WeiFeng, E-mail: wfzhang@henu.edu.cn

    2013-12-02

    In this paper, we report on the fabrication of flexible Ag/ZnO Schottky diodes on polyimide substrates by pulsed laser deposition. The structural and optical properties of the ZnO films were investigated by X-ray diffractometry and spectrophotometry. The current–voltage (I–V) characteristics of flexible Schottky diodes with and without bending were measured at room temperature. The results show that the devices have good rectifying behaviors with an ideality factor of 2.8 and a Schottky barrier height of 0.54 eV according to the I–V characteristics. It was seen that the forward bias current–voltage characteristics at sufficiently large voltages have shown the effect of series resistance. The values of the ideality factor, series resistance and barrier height obtained from Cheung and Norde methods were compared, and it was seen that there was an agreement with each other. The results show that the electrical properties of flexible diodes change little when measured with or without bending condition, indicating that the devices have potential applications in flexible electronics. - Highlights: • Flexible Ag/ZnO Schottky diodes were fabricated. • The electrical parameters of the diodes were obtained and analyzed. • The electrical properties of the diodes with bending were also discussed.

  20. Semi-transparent SiC Schottky diodes for X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lees, J.E. [Space Research Centre, Department of Physics and Astronomy, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH (United Kingdom)]. E-mail: lee@star.le.ac.uk; Bassford, D.J. [Space Research Centre, Department of Physics and Astronomy, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH (United Kingdom); Fraser, G.W. [Space Research Centre, Department of Physics and Astronomy, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH (United Kingdom); Horsfall, A.B. [Semiconductor Technology Group, School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle, Newcastle NE1 7RU (United Kingdom); Vassilevski, K.V. [Semiconductor Technology Group, School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle, Newcastle NE1 7RU (United Kingdom); Wright, N.G. [Semiconductor Technology Group, School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle, Newcastle NE1 7RU (United Kingdom); Owens, A. [Office of Science Payload and Advanced Concepts, European Space Agency ESTEC SCI-A, Postbus 299, 2200AG Noordwijk (Netherlands)

    2007-07-21

    We describe a novel SiC Schottky diode architecture. The semi-transparent SiC Schottky diode has an 'ultra-thin' (18 nm Ni/Ti) Schottky contact, a gold annular overlayer and a gold corner-contact pad. We show that the new architecture exhibits the same essential characteristics as a more conventional 'thick-contact' Schottky diode ({>=}100 nm). Such diodes will have a higher efficiency for low-energy (<5 keV) X-rays than that of conventional structures combined with minimal self-fluorescence from the electrode materials. We present X-ray spectra from {sup 55}Fe, {sup 109}Cd and {sup 241}Am radioactive sources that show these diodes can be used for spectroscopy with promising energy resolution (1.47 keV FWHM at 22 keV) at room temperature (23 {sup o}C). The reduction in contact thickness, however, does reduce the barrier height of the new diodes in comparison to those fabricated using the conventional process, and requires a trade-off between the low-energy detection threshold and the noise in the detector.

  1. On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers

    Science.gov (United States)

    Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)

    2015-01-01

    A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.

  2. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Directory of Open Access Journals (Sweden)

    Manjari Garg

    2016-01-01

    Full Text Available Current-voltage (I-V measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu Schottky diodes fabricated on Gallium Nitride (GaN epitaxial films. An ideality factor of 1.7 was found at room temperature (RT, which indicated deviation from thermionic emission (TE mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS was used to investigate the plausible reason for observing Schottky barrier height (SBH that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu2O layer at the interface between Cu and GaN. With Cu2O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu2O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  3. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Manjari, E-mail: meghagarg142@gmail.com; Kumar, Ashutosh; Singh, R. [Department of Physics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016 (India); Nagarajan, S.; Sopanen, M. [Department of Micro and Nanosciences, Aalto University, P.O. Box 13500, FI-00076, Aalto (Finland)

    2016-01-15

    Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu{sub 2}O) layer at the interface between Cu and GaN. With Cu{sub 2}O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu{sub 2}O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  4. Guard-ring termination for high-voltage SiC Schottky barrier diodes; Guard ring shutan kozo wo sonaeta kotaiatsu SiC Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Urushidani, T.; Seki, Y. [Fuji Electric Corporate Research and Development, Ltd., Kanagawa (Japan)

    1996-03-10

    Silicon carbide (SiC) has been attracting attention as a material for power devices, and has already demonstrated its favorable characteristics in Schottky barrier diodes (SBD) with gold or platinum. However, few researchers have discussed the device terminal structures, and the authors propose a simple, efficient guard-ring terminal structure. The SBD of SiC is prepared, with Al/Ti as the Schottky metals. The Al/Ti electrode forms a Schottky barrier with the n-type drift region, and an ohmic contact with the p-type region, i.e., guard-ring region. Resistance of this structure to voltage is determined by that of the mesa section of the p-n junction, and the mesa structure is formed by selective oxidation. The SBD shows a break-down voltage of 550V, which is roughly twice as high as that of an SBD having no guard-ring structure. 7 refs., 3 figs.

  5. Effect of CO on Characteristics of AlGaN/GaN Schottky Diode

    Institute of Scientific and Technical Information of China (English)

    FENG Chun; WANG Zhan-Guo; WANG Xiao-Liang; YANG Cui-Bai; XIAO Hong-Ling; ZHANG Ming-Lan; JIANG Li-Juan; TANG Jian; HU Guo-Xin; WANG Jun-Xi

    2008-01-01

    @@ Pt Schottky diode gas sensors for CO are fabricated using AlGaN/GaN high electron mobility transistor (HEMTs) structure. The diodes show a remarkable sensor signal (3 mA, in N2; 2mA in air ambient) biased 2 V after 1% CO is introduced at 50℃. The Schottky barrier heights decrease for 36 meV and 27 meV in the two cases respectively. The devices exhibit a slow recovery characteristic in air ambient but almost none in the background of pure N2, which reveals that oxygen molecules could accelerate the desorption of CO and offer restrictions to CO detection.

  6. Parameter extraction for a Ti/4H-SiC Schottky diode

    Institute of Scientific and Technical Information of China (English)

    王守国; 张义门; 张玉明

    2003-01-01

    Based on the MIS model, a simple method to extract parameters of SiC Schottky diodes is presented using the I-V characteristics. The interface oxide capacitance Ci is extracted for the first time, as far as we know. Parameters of 4H-SiC Schottky diodes fabricated for testing in this paper are: the ideality factor n, the series resistance Rs, the zero-field barrier height φB0, the interface state density Dit, the interface oxide capacitance Ci and the neutral level of interface states φ0.

  7. Characterization of plasma etching damage on p -type GaN using Schottky diodes

    OpenAIRE

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was ...

  8. Monolithically Peltier-cooled laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hava, S.; Hunsperger, R.G.; Sequeira, H.B.

    1984-04-01

    A new method of cooling a GaAs/GaAlAs laser in an optical integrated circuit or on a discrete chip, by adding an integral thermoelectric (Peltier) cooling and heat spreading device to the laser, is presented. This cooling both reduces and stabilizes the laser junction temperature to minimize such deleterious effects as wavelength drift due to heating. A unified description of the electrical and thermal properties of a monolithic semiconductor mesa structure is given. Here it is shown that an improvement in thermal characteristics is obtained by depositing a relatively thick metallic layer, and by using this layer as a part of an active Peltier structure. Experimental results reveal a 14-percent increase in emitted power (external quantum efficiency) due to passive heat spreading and a further 8-percent if its Peltier cooler is operated. Fabrication techniques used to obtain devices exhibiting the above performance characteristics are given. 21 references.

  9. Effects of sulfide treatment on electronic transport of graphene/n-type Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jian-Jhou; Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw

    2014-05-01

    The present work reports the fabrication and detailed electrical properties of graphene/n-type Si Schottky diodes with and without sulfide treatment. The graphene/n-type Si Schottky diode without sulfide treatment shows a poor rectifying behavior with an ideality factor (η) of 4.2 and high leakage. η > 2 implies that the interfacial defects influence the electronic conduction through the device. However, the graphene/n-type Si Schottky diode with sulfide treatment for 5 min shows a good rectifying behavior with η of 1.8 and low leakage. Such an improvement indicates that a good passivation is formed at the interface as a result of the reduction of the defect density. These experimental demonstrations suggest that it may be possible to minimize the adverse effects of the interface states to obtain functional devices using sulfide treatment. In addition, the graphene/n-type Si Schottky diode with sulfide treatment for 10 min shows a poor rectifying behavior with η of 2.5 and high leakage. Note, a suitable sulfide treatment time is an important issue for improving the device performance. - Highlights: • Graphene/Si diodes with sulfide treatment for 5 min show a good rectifying behavior. • Graphene/Si diodes without sulfide treatment show a poor rectifying behavior. • The interfacial defects of Schottky diodes were controlled by sulfide treatment. • Such an improvement indicates that a good passivation is formed at the interface. • A suitable sulfide treatment time is an important issue for improving performances.

  10. 1/f noise in forward biased high voltage 4H-SiC Schottky diodes

    Science.gov (United States)

    Shabunina, Eugenia I.; Levinshtein, Michael E.; Shmidt, Natalia M.; Ivanov, Pavel A.; Palmour, John W.

    2014-06-01

    The 1/f noise has been investigated for the first time at 300 and 77 K in high-quality 4H-SiC Schottky diodes. It is shown that, at 77 K, the dependence of the spectral noise density on current, SI(I), differs fundamentally between the cases of the current flowing through the main part of the diode with a comparatively high barrier and the current flowing through the nano-sized patches with a comparatively low barrier.

  11. Electrical noise used as a tool for assessing the defectivity of SiC Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Royet, A.S. [ENSERG, Grenoble (France). Lab. de Physique des Composants a Semiconducteurs; LEMO, ENSERG, Grenoble (France); Ouisse, T. [ENSERG, Grenoble (France). Lab. de Physique des Composants a Semiconducteurs; Billon, T.; Jaussaud, C. [LETI-CEA, Dept. de Microtechnologies, Grenoble (France); Cabon, B. [LEMO, ENSERG, Grenoble (France)

    1999-07-30

    We report the observation of random telegraph signals (RTS) occurring in the forward regime of silicon carbide Schottky diodes. RTS noise is attributed to the modulation of the conductivity either by the trapping/detrapping of a single electron or by the switching of a bistable defect, in the neighbourhood of a localized current path. Noise measurement is therefore a convenient and non-destructive method for assessing the defectivity of SiC power diodes. (orig.)

  12. Mixing of 10-microm radiation in room-temperature Schottky diodes.

    Science.gov (United States)

    Tannenwald, P E; Fetterman, H R; Freed, C; Parker, C D; Clifton, B J; O'Donnell, R G

    1981-10-01

    Schottky diodes have been used as room-temperature mixers of CO(2)-laser radiation. When a microwave local oscillator signal was introduced directly into the diode, beat notes between lasers separated by up to 69 GHz were observed. At CO(2) frequencies (30 THz) the photon energy exceeds the measured dc nonlinearities, and the device is expected to approach operation as a photon counter rather than a classical resistive mixer.

  13. A low-cost fabrication method for sub-millimeter wave GaAs Schottky diode

    Science.gov (United States)

    Jenabi, Sarvenaz; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.

    2017-10-01

    In this paper, a submillimeter-wave Schottky diode is designed and simulated. Effect of Schottky layer thickness on cut-off frequency is studied. A novel microfabrication process is proposed and implemented. The presented microfabrication process avoids electron-beam (e-beam) lithography which reduces the cost. Also, this process provides more flexibility in selection of design parameters and allows significant reduction in the device parasitic capacitance. A key feature of the process is that the Schottky contact, the air-bridges, and the transmission lines, are fabricated in a single lift-off step. This process relies on a planarization method that is suitable for trenches of 1–10 μm deep and is tolerant to end-point variations. The fabricated diode is measured and results are compared with simulations. A very good agreement between simulation and measurement results are observed.

  14. An X-band Schottky diode mixer in SiGe technology with tunable Marchand balun

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2016-01-01

    In this paper, we propose a double balanced mixer with a tunable Marchand balun. The circuit is designed in a SiGe BiCMOS process using Schottky diodes. The tunability of the Marchand balun is used to enhance critical parameters for double balanced mixers. The local oscillator-IF isolation can be...

  15. New GaN Schottky barrier diode employing a trench on AlGaN/GaN heterostructure

    Science.gov (United States)

    Ha, Min-Woo; Lee, Seung-Chul; Choi, Young-Hwan; Kim, Soo-Seong; Yun, Chong-Man; Han, Min-Koo

    2006-10-01

    A new GaN Schottky barrier diode employing a trench structure, which is proposed and fabricated, successfully decreases a forward voltage drop without sacrificing any other electric characteristics. The trench is located in the middle of Schottky contact during a mesa etch. The Schottky metal of Pt/Mo/Ti/Au is e-gun evaporated on the 300 nm-deep trench as well as the surface of the proposed GaN Schottky barrier diode. The trench forms the vertical Au Schottky contact and lateral Pt Schottky contact due to the evaporation sequence of Schottky metal. The forward voltage drops of the proposed diode and conventional one are 0.73 V and 1.25 V respectively because the metal work function (5.15 eV) of the vertical Au Schottky contact is considerably less than that of the lateral Pt Schottky contact (5.65 eV). The proposed diode exhibits the low on-resistance of 1.58 mΩ cm 2 while the conventional one exhibits 8.20 mΩ cm 2 due to the decrease of a forward voltage drop.

  16. Silicon Schottky photovoltaic diodes for solar energy conversion

    Science.gov (United States)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  17. On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers

    Science.gov (United States)

    Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.

    2013-01-01

    A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.

  18. Fabrication of polymer Schottky diode with Al-PANI/MWCNT-Au structure

    Directory of Open Access Journals (Sweden)

    A Hajibadali

    2014-11-01

    Full Text Available In this research, Schottky diode with Al-PANI/MWCNT-Au structure was fabricated using spin coating of composite polymer and physical vapor deposition of metals. For this purpose, a thin layer of gold was coated on glass and then composite of polyaniline/multi-walled carbon nanotube was synthesized and spin-coated on gold layer. Finally, a thin layer of aluminum was coated on polymer layer. The current-voltage characteristics of diode were studied and found that I-V curve is nonlinear and nonsymmetrical, showing rectifying behavior. I-V characteristics plotted on a logarithmic scale for Schottky diode showed two distinct power law regions. At lower voltages, the mechanism follows Ohm’s Law and at higher voltages, the mechanism is consistent with space charge limited conduction (SCLC emission. The parameters extracted from I-V characteristics were also calculated.

  19. Fabrication and characteristics of a 4H-SiC junction barrier Schottky diode*

    Institute of Scientific and Technical Information of China (English)

    Chen Fengping; Zhang Yuming; Lü Hongliang; Zhang Yimen; Guo Hui; Guo Xin

    2011-01-01

    4H-SiC junction barrier Schottky (JBS) diodes with four kinds of design have been fabricated and characterized using two different processes in which one is fabricated by making the P-type ohmic contact of the anode independently, and the other is processed by depositing a Schottky metal multi-layer on the whole anode. The reverse performances are compared to find the influences of these factors. The results show that JBS diodes with field guard rings have a lower reverse current density and a higher breakdown voltage, and with independent Ptype ohmic contact manufacturing, the reverse performance of 4H-SiC JBS diodes can be improved effectively.Furthermore, the P-type ohmic contact is studied in this work.

  20. Fabrication and characteristics of a 4H-SiC junction barrier Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Fengping; Zhang Yuming; Lue Hongliang; Zhang Yimen; Guo Hui; Guo Xin, E-mail: fpchen@yeah.net [School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi' an 710071 (China)

    2011-06-15

    4H-SiC junction barrier Schottky (JBS) diodes with four kinds of design have been fabricated and characterized using two different processes in which one is fabricated by making the P-type ohmic contact of the anode independently, and the other is processed by depositing a Schottky metal multi-layer on the whole anode. The reverse performances are compared to find the influences of these factors. The results show that JBS diodes with field guard rings have a lower reverse current density and a higher breakdown voltage, and with independent P-type ohmic contact manufacturing, the reverse performance of 4H-SiC JBS diodes can be improved effectively. Furthermore, the P-type ohmic contact is studied in this work. (semiconductor devices)

  1. 1700 V SiC Schottky diodes scaled to 25 A

    Energy Technology Data Exchange (ETDEWEB)

    Peters, D.; Dohnke, K.O.; Hecht, C.; Stephani, D. [SiCED Electronics Development Ltd., Erlangen (Germany)

    2001-07-01

    This paper reports on a study of SiC Schottky diodes focused on high current rating and high blocking voltage: 25 A / 1200 V and 1700V, resp. With an active area of 10 mm{sup 2} we successfully explored new ground for SiC devices. The device concept, fabrication process, yield aspects and measured results of static and dynamic characteristics as well as the temperature behavior are described. The reverse currents are very low (<500 {mu}A) even at 125 C and their temperature dependence is lower than expected by thermionic emission since tunneling mechanisms through the Schottky barrier rule the current transport at high blocking voltages. (orig.)

  2. Electronic and Interfacial Properties of PD/6H-SiC Schottky Diode Gas Sensors

    Science.gov (United States)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Bansal, Gaurav; Petit, Jeremy B.; Knight, Dak; Liu, Chung-Chiun; Wu, Qinghai

    1996-01-01

    Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature from 100 C to 200 C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at 425 C up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas sensitivity. The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying characteristics are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray Spectrometry studies of the Pd surface after the heating show cluster formation and background regions with grain structure observed in both regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles revealed that the heat treating promoted interdiffusion and reaction between the Pd and SiC dw broadened the interface region. This work shows that Pd/SiC Schottky diodes have significant potential as high temperature gas sensors, but stabilization of the structure is necessary to insure their repeatability in long-term, high temperature applications.

  3. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    Science.gov (United States)

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-01

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.

  4. Schottky diode based on WS2 crossed with PEDOT/PSSA

    Science.gov (United States)

    Ortiz, Deliris; Pinto, Nicholas; Naylor, Carl; Johnson, A. T. Charlie

    An easy technique to fabricate a Schottky diode with WS2 and PEDOT-PSSA under ambient conditions is presented. WS2 is an air stable transition metal dichalcogenide semiconductor. When connected as a field effect transistor, WS2 exhibited n-type behavior with a charge mobility of ~7cm2/V-s on SiO2. PEDOT/PSSA is a conducting polymer that can be electro-spun to form fibers with a conductivity of ~1 S/cm. In this work we fabricated a Schottky diode by crossing a CVD grown monolayer WS2 crystal with a single electro-spun PEDOT/PSSA fiber. The resulting diode characteristics were analyzed assuming the standard thermionic emission model of a Schottky junction. Analysis of the results includes the ideality parameter of 4.75, diode rectification ratio ~10, and a turn on voltage of 1.4V. Efforts to investigate if these parameters are tunable with a back gate will also be presented. This work was supported by NSF-DMR-1523463 and NSF DMR RUI-1360772. ATJ acknowledges support from EFRI 2DARE EFMA-1542879.

  5. Electron Density and Capacitance at the interface of Au-ZnO Based Schottky Diode

    Science.gov (United States)

    Wu, Chin-Sheng

    ZnO with wide direct band gap (3.37 eV) is a well-known and an interesting compound semiconducting material, which have been used for the fabrication of optical, electrical, and piezoelectric devices such as light emitting diodes, solar cells. Schottky diodes are associated with quicker switching and lower turn on voltages compared to p-n junction diodes. J-V characteristics exhibit nonlinear rectifying behavior with threshold voltage of 2.1 V. The barrier heights were found to be 0.61 eV. The measured capacitance for the Schottky junction depends on the reverse bias potential and frequency. At the lower frequencies the capacitance has the higher values due to the trapping occurred at the interface through the surface roughness and lattice mismatch. We perform model potential calculation with quantum well around the interface. Model potentials allow some degree of freedom in the design of the emitted wavelength through adjustment of the energy levels. We apply the various well width w and barrier height V in order to match the device information made by Willander. Solving the Schrödinger equation with exchange- correlation energy and effective mass of electrons will produce values of the energy levels and states. The variational barrier heights result in the change of the electron density This accounts for the excessive capacitance at the interface of Schottky diode.

  6. Fabrication and Characterization of Al/p-CuInAlSe2 Thin Film Schottky Diodes

    Directory of Open Access Journals (Sweden)

    Usha Parihar

    2013-05-01

    Full Text Available Al/p-CuInAlSe2 polycrystalline schottky diodes fabricated by flash evaporation method were undertaken for their electrical analysis at room temperature. Diode parameters of the undertaken diodes were then derived from the current-voltage (I-V as well as capacitance-voltage (C-V characteristics. It has been observed that the schottky barrier height deduced from the room temperature I-V is lower to that obtained from the C-V characteristics and is attributed to the fact that I-V analysis includes both the image force and dipole lowering effects and is also reduced by the tunneling and leakage currents. The slope variation of the frequency dependent C – 2-V characteristics for the Al/p-CuInAlSe2 Schottky diode at varying frequency values from 50 kHz to 1 MHz suggests a large density of slow traps or interface states at the M-S junction. As emerging from the parameters values energy band diagram of Al and P-CuInAlSe2 has been reconstructed.

  7. Hydrogen-Sensing Behaviors of Pd-and Pt-SiC Schottky Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyo; Lee, Joo Hun; Hong, Chin Soo [Soonchunhyang University (Korea); Cho, Nam Ihn [Sunmoon University (Korea)

    2000-07-01

    Hydrogen-sensing behaviors of Pd-and Pt-SiC Schottky diodes, fabricated on the same SiC substrate, have been systematically compared and analyzed as a function of hydrogen concentration and temperature by I-V and {delta}I-t methods under steady-state and transient conditions. The effects of hydrogen adsorption on the device parameters such as the barrier height are investigated. The significant differences in their hydrogen sensing characteristics have been examined in terms of sensitivity limit, linearity of response, response rate, and response time. For the investigated temperature range, Pd-SiC Schottky diode shows better performance for H{sub 2} detection than Pt-SiC Schottky diode under the same testing conditions. The physical and chemical mechanisms responsible for hydrogen detection are discussed. Analysis of the steady-state reaction kinetics using I-V method confirmed that the atomistic hydrogen process is responsible for the barrier height change in the diodes. (author). 16 refs., 10 figs.

  8. Piezoelectric Response to Coherent Longitudinal and Transverse Acoustic Phonons in a Semiconductor Schottky Diode

    Science.gov (United States)

    Srikanthreddy, D.; Glavin, B. A.; Poyser, C. L.; Henini, M.; Lehmann, D.; Jasiukiewicz, Cz.; Akimov, A. V.; Kent, A. J.

    2017-02-01

    We study the generation of microwave electronic signals by pumping a (311) GaAs Schottky diode with compressive and shear acoustic phonons, generated by the femtosecond optical excitation of an Al film transducer and mode conversion at the Al-GaAs interface. They propagate through the substrate and arrive at the Schottky device on the opposite surface, where they induce a microwave electronic signal. The arrival time, the amplitude, and the polarity of the signals depend on the phonon mode. A theoretical analysis is made of the polarity of the experimental signals. This analysis includes the piezoelectric and deformation potential mechanisms of electron-phonon interaction in a Schottky contact and shows that the piezoelectric mechanism is dominant for both transverse and longitudinal modes with frequencies below 250 and 70 GHz, respectively.

  9. First results from the LHC Schottky Monitor operated with Direct Diode Detection

    CERN Document Server

    Gasior, M

    2012-01-01

    The LHC is equipped with a Schottky diagnostic system based on 4.8 GHz resonant pick-ups. Their signals are processed according to a three-stage down-mixing scheme, working well in most beam conditions. An important exception is the period of energy ramp of proton beams, when the noise floor of the observed beam spectrum increases dramatically and the Schottky sidebands disappear. To study beam spectra in such conditions the signals from the Schottky pick-ups were split and the second half of their power was processed with a copy of the LHC tune measurement electronics, modified for this application. The experimental set-up is based on simple diode detectors followed by signal processing in the kHz range and 24-bit audio ADCs. With such a test system LHC beam spectra were successfully observed. This contribution presents the used hardware and obtained results.

  10. Structural analysis of SiC Schottky diodes failure mechanism under current overload

    Science.gov (United States)

    León, J.; Berthou, M.; Perpiñà, X.; Banu, V.; Montserrat, J.; Vellvehi, M.; Godignon, P.; Jordà, X.

    2014-02-01

    1.2 kV-10 A tungsten Schottky diodes (W-SBD) have been aged and tested at limit under current overload (surge current pulses) to determine their structural weakest spots. All devices showed no ageing at 40 A amplitudes and a surge current capability higher than 60 A. Infrared lock-in measurements have located the weakest spots on the surface of failed chips and allowed us to non-invasively infer their origin: Schottky barrier modification by metal contact change. After, a focused ion beam coupled with scanning electron microscope has been used to analyse the physical signature at these locations. These inspections have revealed that the destruction mechanism responsible for their failure was the electromigration and thermomigration of tungsten into aluminum, locally modifying the electrical behaviour of the Schottky barrier (loss of blocking capability).

  11. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.

    Science.gov (United States)

    Lee, Seula; Lee, Jinseon; Kang, Tai-Young; Kyoung, Sinsu; Jung, Eun Sik; Kim, Kyung Hwan

    2015-11-01

    In this paper, we present the preparation and characterization of Schottky barrier diodes based on silicon carbide with various Schottky metal layer thickness values. In this structure, molybdenum and aluminum were employed as the Schottky barrier metal and top electrode, respectively. Schottky metal layers were deposited with thicknesses ranging from 1000 to 3000 Å, and top electrodes were deposited with thickness as much as 3000 Å. The deposition of both metal layers was performed using the facing target sputtering (FTS) method, and the fabricated samples were annealed with the tubular furnace at 300 degrees C under argon ambient for 10 min. The Schottky barrier height, series resistance, and ideality factor was calculated from the forward I-V characteristic curve using the methods proposed by Cheung and Cheung, and by Norde. For as-deposited Schottky diodes, we observed an increase of the threshold voltage (V(T)) as the thickness of the Schottky metal layer increased. After the annealing, the Schottky barrier heights (SBHs) of the diodes, including Schottky metal layers of over 2000 Å, increased. In the case of the Schottky metal layer deposited to 1000 Å, the barrier heights decreased due to the annealing process. This may have been caused by the interfacial penetration phenomenon through the Schottky metal layer. For variations of V(T), the SBH changed with a similar tendency. The ideality factor and series resistance showed no significant changes before or after annealing. This indicates that this annealing condition is appropriate for Mo SiC structures. Our results confirm that it is possible to control V(T) by adjusting the thickness of the Schottky metal layer.

  12. Influence of surface cleaning effects on properties of Schottky diodes on 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Kwietniewski, N. [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw (Poland)], E-mail: nkwietni@ite.waw.pl; Sochacki, M.; Szmidt, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw (Poland); Guziewicz, M.; Kaminska, E.; Piotrowska, A. [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2008-10-15

    Ir/4H-SiC and IrO{sub 2}/4H-SiC Schottky diodes are reported in terms of different methods of surface pretreatment before contact deposition. In order to find the effect of surface preparation processes on Schottky characteristics the SiC wafers were respectively cleaned using the following processes: (1) RCA method followed by buffered HF dip. Next, the surface was oxidized (5.5 nm oxide) using a rapid thermal processing reactor chamber and circular geometry windows were opened in the oxide layer before metallization deposition; (2) the same as sequence (1) but with an additional in situ sputter etching step before metallization deposition; (3) cleaning in organic solvents followed by buffered HF dip. The I-V characteristics of Schottky diodes were analyzed to find a correlation between extracted parameters and surface treatment. The best results were obtained for the sequence (1) taking into account theoretical value of Schottky barrier height. The contacts showed excellent Schottky behavior with ideality factors below 1.08 and barrier heights of 1.46 eV and 1.64 eV for Ir and IrO{sub 2}, respectively. Very promising results were obtained for samples prepared using the sequence (2) taking into account the total static power losses because the modified surface preparation results in a decrease in the forward voltage drop and reverse leakage current simultaneously. The contacts with ideality factor below 1.09 and barrier height of 1.02 eV were fabricated for Ir/4H-SiC diodes in sequence (2)

  13. Avalanche robustness of SiC Schottky diode

    OpenAIRE

    Dchar, Ilyas; Buttay, Cyril; Morel, Hervé

    2016-01-01

    International audience; Reliability is one of the key issues for the application of Silicon carbide (SiC) diode in high power conversion systems. For instance, in high voltage direct current (HVDC) converters, the devices can be submitted to high voltage transients which yield to avalanche. This paper presents the experimental evaluation of SiC diodes submitted to avalanche, and shows that the energy dissipation in the device can increase quickly and will not be uniformly distributed across t...

  14. Optimized design of 4H-SiC floating junction power Schottky barrier diodes

    Institute of Scientific and Technical Information of China (English)

    Pu Hongbin; Cao Lin; Chen Zhiming; Ren Jie

    2009-01-01

    SiC floating junction Schottky barrier diodes were simulated with software MEDICI 4.0 and their device structures were optimized based on forward and reverse electrical characteristics.Compared with the conventional power Schottky barrier diode,the device structure is featured by a highly doped drift region and embedded floating junction region,which can ensure high breakdown voltage while keeping lower specific on-state resistance,solved the contradiction between forward voltage drop and breakdown voltage.The simulation results show that with optimized structure parameter,the breakdown voltage Can reach 4 kV and the specific on-resistance is 8.3 mΩ·cm2.

  15. Impedance spectroscopic analysis of nanoparticle functionalized graphene/p-Si Schottky diode sensors

    Science.gov (United States)

    Uddin, Md Ahsan; Singh, Amol; Daniels, Kevin; Vogt, Thomas; Chandrashekhar, M. V. S.; Koley, Goutam

    2016-11-01

    Metallic nanoparticle (NP) functionalized graphene/p-Si Schottky diode (chemidiode) sensors have been investigated through dc amperometric and ac impedance spectroscopic (IS) measurements. Four fold sensitivity enhancement for NH3 is demonstrated after Pt nanoparticle functionalization of graphene/p-Si Schottky diode sensor, and the response is also orders of magnitude higher compared to functionalized graphene chemiresistor. Experimentally obtained impedance spectra were modeled utilizing an equivalent circuit for both sensor types, and the junction resistance and capacitance were extracted for various gaseous analytes exposure. Variations in junction resistance, capacitance and 3-dB cut-off frequency plotted in three-dimensional (3D) enables extraction of unique signatures for various analyte gases.

  16. A 55-kW Three-Phase Inverter with Si IGBTs and SiC Schottky Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL; Chinthavali, Madhu Sudhan [ORNL; Mantooth, Homer A [ORNL; Kashyap, Avinash S [ORNL

    2009-01-01

    Silicon carbide (SiC) power devices are expected to have an impact on power converter efficiency, weight, volume, and reliability. Currently, only SiC Schottky diodes are commercially available at relatively low current ratings. Oak Ridge National Laboratory has collaborated with Cree and Semikron to build a Si insulated-gate bipolar transistor-SiC Schottky diode hybrid 55-kW inverter by replacing the Si p-n diodes in Semikron's automotive inverter with Cree's made-to-order higher current SiC Schottky diodes. This paper presents the developed models of these diodes for circuit simulators, shows inverter test results, and compares the results with those of a similar all-Si inverter.

  17. A 55 kW Three-Phase Inverter With Si IGBT s and SiC Schottky Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, Burak [ORNL; Chinthavali, Madhu Sudhan [ORNL; Tolbert, Leon M [ORNL; Kashyap, Avinash S [ORNL; Mantooth, Homer A [ORNL

    2006-01-01

    Silicon carbide (SiC) power devices are expected to have an impact on power converter efficiency, weight, volume, and reliability. Currently, only SiC Schottky diodes are commercially available at relatively low current ratings. Oak Ridge National Laboratory has collaborated with Cree and Semikron to build a Si insulated-gate bipolar transistor-SiC Schottky diode hybrid 55-kW inverter by replacing the Si p-n diodes in Semikron's automotive inverter with Cree's made-to-order higher current SiC Schottky diodes. This paper presents the developed models of these diodes for circuit simulators, shows inverter test results, and compares the results with those of a similar all-Si inverter.

  18. Limitations in THz Power Generation with Schottky Diode Varactor Frequency Multipliers

    DEFF Research Database (Denmark)

    Krozer, Viktor; Loata, G.; Grajal, J.

    2002-01-01

    We discuss the limitations in power generation with Schottky diode and HBV (heterostructure barrier varactor) diode frequency multipliers. It is shown that at lower frequencies the experimental results achieved so far approach the theoretical limit of operation for the employed devices. However......, at increasing frequencies the power drops with f-3 instead of the f-2 predicted by theory. In this contribution we provide an overview of state-of-the-art results. A comparison with theoretically achievable multiplier performance reveals that the devices employed at higher frequencies are operating...

  19. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    Science.gov (United States)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  20. X-ray detection with zinc-blende (cubic) GaN Schottky diodes.

    Science.gov (United States)

    Gohil, T; Whale, J; Lioliou, G; Novikov, S V; Foxon, C T; Kent, A J; Barnett, A M

    2016-01-01

    The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At -5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At -5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm(-2) and (189.0 ± 0.2) mA cm(-2), respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics.

  1. Si and SiC Schottky diodes in smart power circuits: a comparative study by I-V-T and C-V measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hadzi-Vukovic, J [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria); Jevtic, M [Institute for Physics, Pregrevica 118, 11080 Zemun (Serbia and Montenegro); Rothleitner, H [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria); Croce, P Del [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria)

    2005-01-01

    In this paper we analyze a possibility of manufacturing and implementation of Schottky diodes in the smart power circuits. Three different Schottky diodes, in three different technologies, are realized in Si and SiC processes. The electrical characterizations with I-V-T and C-V measurements are done for all structures. It is shown that Si based Schottky diodes also are suitable to be integrated in the typical smart power circuits.

  2. The effects of nuclear radiation on Schottky power diodes and power MOSFETs

    Science.gov (United States)

    Kulisek, Jonathan Andrew

    NASA is exploring the potential use of nuclear reactors as power sources for future space missions. These missions will require electrical components, consisting of power circuits and semiconductor devices, to be placed in close vicinity to the reactor, in the midst of a high neutron and gamma-ray radiation field. Therefore, the primary goal of this research is to examine the effects of a mixed neutron and gamma-ray radiation field on the static and dynamic electrical performance of power Schottky diodes and power MOSFETs in order to support future design efforts of radiation-hard power semiconductors and circuits. In order to accomplish this, non-radiation hardened commercial power Si and SiC Schottky power diodes, manufactured by International Rectifier and Cree, respectively, were irradiated in the Ohio State University Research Reactor (OSURR), and their degradation in electrical performance was observed using I-V characterization. Key electrical performance parameters were extracted using least squares curve-fits of the corresponding semiconductor physics model equations to the experimental data, and these electrical performance parameters were used to model the diodes in PSpice. A half-wave rectifier circuit containing Cree SiC Schottky diodes, rated for 5 A DC forward current and 1200 V DC blocking voltage, was also tested and modeled in order to determine and analyze changes in overall circuit performance and diode power dissipation as a function of radiation dose. Also, electrical components will be exposed to charged particle radiation from space, such as high energy protons in the Van Allen Radiation Belts surrounding earth. Therefore, the results from this study, with respect to the Si and SiC Schottky power diodes, were compared to results published by NASA, which had tested the same diode models at the Indiana University Cyclotron Facility (IUCF) with a 203 MeV proton beam. The comparison was made on the basis of displacement damage dose, calculated

  3. Evaluation of SiC schottky diodes using pressure contacts

    OpenAIRE

    Ortiz Gonzalez, Jose; Alatise, Olayiwola; Aliyu, Attahir; Rajaguru, Pushparajah; Castellazzi, Alberto; Ran, Li; Mawby, Philip; Bailey, Chris

    2017-01-01

    The thermomechanical reliability of SiC power devices and modules is increasingly becoming of interest especially for high power applications where power cycling performance is critical. Press-pack assemblies are a trusted and reliable packaging solution that has traditionally been used for high power thyristor- based applications in FACTS/HVDC, although press-pack IGBTs have become commercially available more recently. These press-pack IGBTs require anti-parallel PiN diodes for enabling reve...

  4. High-voltage (> 1 kV) SiC Schottky barrier diodes with low on-resistance

    Energy Technology Data Exchange (ETDEWEB)

    Kimoto, Tsunenobu; Urushidani, Tatsuo; Kobayashi, Sota; Matsunami, Hiroyuki (Kyoto Univ. (Japan). Dept. of Electrical Engineering)

    1993-12-01

    Au/6H-SiC Schottky barrier diodes with high blocking voltages were successfully fabricated using layers grown by step-controlled epitaxy. A breakdown voltage over 1,100 V could be achieved, which is the highest ever reported for silicon carbide (SiC) Schottky barrier diodes. These high-voltage SiC rectifiers had specific on-resistances lower than the theoretical limits of Si rectifiers by more than one order of magnitude. The specific on-resistance increased with temperature according to T[sup 2.0] dependence. The diodes showed good characteristics at temperature as high as 400 C.

  5. Influence of illumination intensity on the electrical characteristics and photoresponsivity of the Ag/ZnO Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, RuiJuan; Zhang, XinAn, E-mail: xinanzhang@henu.edu.cn; Zhao, JunWei; Li, RuoPing; Zhang, WeiFeng

    2015-05-15

    Highlights: • Ag/ZnO Schottky diodes were fabricated. • The electrical parameters of the diodes were obtained and analyzed. • The electrical properties under UV illuminations were discussed. - Abstract: In this article, the ZnO thin films were grown by RF-magnetron sputtering on ITO glass substrates. The Schottky diodes with the configuration of Ag/ZnO/ITO have been fabricated and it has been observed that the diodes exhibit a good rectification. The structural and optical properties of the ZnO films were investigated by X-ray diffractometry and spectrophotometry. The current–voltage (I–V) characteristics of the Ag/ZnO diode were measured under various illuminations. We use the forward bias current–voltage measurements to determine the electrical parameters such as ideality factor, barrier height and series resistance of the diode. The Ag/ZnO Schottky diode exhibits a non-ideal behavior due to the interfacial layer, the interface states and the series resistance. It is found that the barrier height and ideality factor values are strong functions of illumination intensity. The results show that the ideality factor and the barrier height decrease with increasing illumination intensity. The values of R{sub s} obtained from Cheung and Norde methods are decreased with increasing illumination intensity. Photoresponse characteristics of the diode have been analyzed and it is clear that the diode shows a fast response. It is evaluated that the prepared diodes can be used as optoelectronic devices.

  6. Evaluation of Schottky barrier height on 4H-SiC m-face \\{ 1\\bar{1}00\\} for Schottky barrier diode wall integrated trench MOSFET

    Science.gov (United States)

    Kobayashi, Yusuke; Ishimori, Hiroshi; Kinoshita, Akimasa; Kojima, Takahito; Takei, Manabu; Kimura, Hiroshi; Harada, Shinsuke

    2017-04-01

    We proposed an Schottky barrier diode wall integrated trench MOSFET (SWITCH-MOS) for the purposes of shrinking the cell pitch and suppressing the forward degradation of the body diode. A trench Schottky barrier diode (SBD) was integrated into a trench gate MOSFET with a wide shielding p+ region that protected the trench bottoms of both the SBD and the MOS gate from high electrical fields in the off state. The SBD was placed on the trench sidewall of the \\{ 1\\bar{1}00\\} plane (m-face). Static and transient simulations revealed that SWITCH-MOS sufficiently suppressed the bipolar current that induced forward degradation, and we determined that the optimum Schottky barrier height (SBH) was from 0.8 to 2.0 eV. The SBH depends on the crystal planes in 4H-SiC, but the SBH of the m-face was unclear. We fabricated a planar m-face SBD for the first time, and we obtained SBHs from 1.4 to 1.8 eV experimentally with titanium or nickel as a Schottky metal.

  7. The electrical characterization and response to hydrogen of Schottky diodes with a resistive metal electrode-rectifying an oversight in Schottky diode investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, P; Feng, L; Penate-Quesada, L [Centre for Nanostructured Media, School of Maths and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Hill, G [EPSRC National Centre for III-V Technologies, Mappin Street, University ofSheffield, Sheffield S1 3JD (United Kingdom); Mitra, J, E-mail: P.dawson@qub.ac.uk

    2011-03-30

    Schottky-barrier structures with a resistive metal electrode are examined using the 4-point probe method where the probes are connected to the metal electrode only. The observation of a significant decrease in resistance with increasing temperature (over a range of {approx}100 K) in the diode resistance-temperature (R{sub D}-T) characteristic is considered due to charge carrier confinement to the metal electrode at low temperature (high resistance), with the semiconductor progressively opening up as a parallel current carrying channel (low resistance) with increasing temperature due to increasing thermionic emission across the barrier. A simple model is constructed, based on thermionic emission at quasi-zero bias, that generates good fits to the experimental data. The negative differential resistance (NDR) region in the R{sub D}-T characteristic is a general effect and is demonstrated across a broad temperature range for a variety of Schottky structures grown on Si-, GaAs- and InP-substrates. In addition the NDR effect is harnessed in micro-scaled Pd/n-InP devices for the detection of low levels of hydrogen in an ambient atmosphere of nitrogen.

  8. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  9. Demonstration of a 4H SiC Betavoltaic Nuclear Battery Based on Schottky Barrier Diode

    Institute of Scientific and Technical Information of China (English)

    QIAO Da-Yong; YUAN Wei-Zheng; GAO Peng; YAO Xian-Wang; ZANG Bo; ZHANG Lin; GUO Hui; ZHANG Hong-Jian

    2008-01-01

    A 4H SiC betavoltaic nuclear battery is demonstrated. A Schottky barrier diode is utilized for carrier separation.Under illumination of Ni-63 source with an apparent activity of 4mCi/cm2, an open circuit voltage of 0.49 V and a short circuit current density of 29.44 nA/cm2 are measured. A power conversion effciency of 1.2% is obtained.The performance of the device is limited by low shunt resistance, backscattering and attenuation of electron energy in air and Schottky electrode. It is expected to be significantly improved by optimizing the design and processing technology of the device.

  10. Schottky diode via dielectrophoretic assembly of reduced graphene oxide sheets between dissimilar metal contacts

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Muhammad R; Joung, Daeha; Khondaker, Saiful I, E-mail: saiful@mail.ucf.edu [Nanoscience Technology Center, School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32826 (United States)

    2011-03-15

    We demonstrate the fabrication of reduced graphene oxide (RGO) Schottky diodes via dielectrophoretic (DEP) assembly of RGO between two dissimilar metal contacts. Titanium (Ti) was used to make a Schottky contact, while palladium (Pd) was used to make an Ohmic contact. From the current-voltage characteristics, we obtain rectifying behavior with a rectification ratio of up to 600. The ideality factor was high (4.9), possibly due to the presence of a large number of defects in the RGO sheets. The forward biased turn-on voltage was 1 V, whereas the reverse biased breakdown voltage was -3.1 V, which improved further upon mild annealing at 200 deg. C and can be attributed to an increase in the work function of RGO due to annealing.

  11. Effect of neutron irradiation on charge collection efficiency in 4H-SiC Schottky diode

    Science.gov (United States)

    Wu, Jian; Jiang, Yong; Lei, Jiarong; Fan, Xiaoqiang; Chen, Yu; Li, Meng; Zou, Dehui; Liu, Bo

    2014-01-01

    The charge collection efficiency (CCE) in 4H-SiC Schottky diode is studied as a function of neutron fluence. The 4H-SiC diode was irradiated with fast neutrons of a critical assembly in Nuclear Physics and Chemistry Institute and CCE for 3.5 MeV alpha particles was then measured as a function of the applied reverse bias. It was found from our experiment that an increase of neutron fluence led to a decrease of CCE. In particular, CCE of the diode was less than 1.3% at zero bias after an irradiation at 8.26×1014 n/cm2. A generalized Hecht's equation was employed to analyze CCE in neutron irradiated 4H-SiC diode. The calculations nicely fit the CCE of 4H-SiC diode irradiated at different neutron fluences. According to the calculated results, the extracted electron μτ product (μτ)e and hole μτ product (μτ)h of the irradiated 4H-SiC diode are found to decrease by increasing the neutron fluence.

  12. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    Science.gov (United States)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  13. Optoelectronic properties of Zn 0.52Se 0.48/Si Schottky diodes

    Science.gov (United States)

    Venkatachalam, S.; Kumar, Rajendra; Mangalaraj, D.; Narayandass, Sa. K.; Kim, Kyunghae; Yi, Junsin

    2004-12-01

    Zn0.52Se0.48/Si Schottky diodes are fabricated by depositing zinc selenide (Zn0.52Se0.48) thin films onto Si(1 0 0) substrates by vacuum evaporation technique. Rutherford backscattering spectrometry (RBS) analysis shows that the deposited films are nearly stoichiometric in nature. X-ray diffractogram of the films reveals the preferential orientation of the films along (1 1 1) direction. Structural parameters such as crystallite size (D), dislocation density (δ), strain (ε), and the lattice parameter are calculated as 29.13 nm, 1.187 × 10-15 lin/m2, 1.354 × 10-3 lin-2 m-4 and 5.676 × 10-10 m respectively. From the I-V measurements on the Zn0.52Se0.48/p-Si Schottky diodes, ideality and diode rectification factors are evaluated, as 1.749 (305 K) and 1.04 × 104 (305 K) respectively. The built-in potential, effective carrier concentration (NA) and barrier height were also evaluated from C-V measurement, which are found to be 1.02 V, 5.907 × 1015 cm-3 and 1.359 eV respectively.

  14. Improved designs of Si-based quantum wells and Schottky diodes for IR detection

    Energy Technology Data Exchange (ETDEWEB)

    Moeen, M., E-mail: moeen@kth.se [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Kolahdouz, M. [School of Electrical and Computer Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Salemi, A.; Abedin, A.; Östling, M. [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Radamson, H.H., E-mail: rad@kth.se [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden)

    2016-08-31

    Novel structures of intrinsic or carbon-doped multi quantum wells (MQWs) and intrinsic or carbon-doped Si Schottky diodes (SD), individually or in combination, have been manufactured to detect the infrared (IR) radiation. The carbon concentration in the structures was 5 × 10{sup 20} cm{sup −3} and the MQWs are located in the active part of the IR detector. A Schottky diode was designed and formed as one of the contacts (based on NiSi(C)/TiW) to MQWs where on the other side the structure had an Ohmic contact. The thermal response of the detectors is expressed in terms of temperature coefficient of resistance (TCR) and the quality of the electrical signal is quantified by the signal-to-noise ratio. The noise measurements provide the K{sub 1/f} parameter which is obtained from the power spectrum density. An excellent value of TCR = − 6%/K and K{sub 1/f} = 4.7 × 10{sup −14} was measured for the detectors which consist of the MQWs in series with the SD. These outstanding electrical results indicate a good opportunity to manufacture low cost Si-based IR detectors in the near future. - Highlights: • SiGe (C)/Si(C) multi quantum wells (MQWs) are evaluated to detect IR radiation. • Schottky diodes (SDs), individually or in series with MQWs are also fabricated. • Detectors consisted of MQWs in series with SD show excellent thermal sensing. • The noise values are also extremely low for MQWs in series with SD.

  15. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    Science.gov (United States)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Manaf Hashim, Abdul; Fadzli Abd Rahman, Shaharin; Rahman, Abdul Rahim Abdul; Nizam Osman, Mohd

    2011-02-01

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  16. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    Energy Technology Data Exchange (ETDEWEB)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul [Material Innovations and Nanoelectronics Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Osman, Mohd Nizam, E-mail: manaf@fke.utm.my [Telekom Research and Development, TM Innovation Centre, 63000 Cyberjaya (Malaysia)

    2011-02-15

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  17. Temperature dependent IBIC study of 4H-SiC Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Vittone, E. [Experimental Physics Department, Nanostructured Interfaces and Surfaces (NIS), Centre of Excellence of the University of Torino, and INFN, via Pietro Giuria 1, 10125 Torino (Italy) and INFM, Research Unit of Torino - University, via Pietro Giuria 1, Torino 10125 (Italy)]. E-mail: vittone@to.infn.it; Rigato, V. [INFN, Laboratori Nazionali di Legnaro, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Olivero, P. [Experimental Physics Department, Nanostructured Interfaces and Surfaces (NIS), Centre of Excellence of the University of Torino (Italy) and INFN, via Pietro Giuria 1, 10125 Torino (Italy)]. E-mail: p.olivero@physics.unimelb.edu.au; Nava, F. [INFN and Dipartimento di Fisica, Universita di Modena e Reggio Emilia, via Campi, 213/A, 41100 Modena (Italy); Manfredotti, C. [Experimental Physics Department, Nanostructured Interfaces and Surfaces (NIS), Centre of Excellence of the University of Torino, and INFN, via Pietro Giuria 1, 10125 Torino (Italy); INFM, Research Unit of Torino - University, via Pietro Giuria 1, Torino 10125 (Italy); LoGiudice, A. [INFM, Research Unit of Torino - University, via Pietro Giuria 1, Torino 10125 (Italy); Garino, Y. [Experimental Physics Department, Nanostructured Interfaces and Surfaces (NIS), Centre of Excellence of the University of Torino, and INFN, via Pietro Giuria 1, 10125 Torino (Italy); INFM, Research Unit of Torino - University, via Pietro Giuria 1, Torino 10125 (Italy); Fizzotti, F. [INFM, Research Unit of Torino - University, via Pietro Giuria 1, Torino 10125 (Italy)

    2005-04-01

    Ion beam induced charge collection measurements have been performed on an epitaxial 4H-SiC Schottky diode with a focussed 1.5 MeV H beam in the temperature range of 120-380 K. The experimental procedure consisted in measuring the charge collection efficiency (CCE) at different bias voltages (V) for each fixed temperature. The CCE versus V curves were analyzed in terms of the Schockley-Ramo-Gunn theory and the minority carrier (hole) diffusion length was obtained as a function of temperature.

  18. Catalytic-Metal/PdO(sub x)/SiC Schottky-Diode Gas Sensors

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Lukco, Dorothy

    2006-01-01

    Miniaturized hydrogen- and hydrocarbon-gas sensors, heretofore often consisting of Schottky diodes based on catalytic metal in contact with SiC, can be improved by incorporating palladium oxide (PdOx, where 0 less than or equal to x less than or equal to 1) between the catalytic metal and the SiC. In prior such sensors in which the catalytic metal was the alloy PdCr, diffusion and the consequent formation of oxides and silicides of Pd and Cr during operation at high temperature were observed to cause loss of sensitivity. However, it was also observed that any PdOx layers that formed and remained at PdCr/SiC interfaces acted as barriers to diffusion, preventing further deterioration by preventing the subsequent formation of metal silicides. In the present improvement, the lesson learned from these observations is applied by placing PdOx at the catalytic metal/SiC interfaces in a controlled and uniform manner to form stable diffusion barriers that prevent formation of metal silicides. A major advantage of PdOx over other candidate diffusion-barrier materials is that PdOx is a highly stable oxide that can be incorporated into gas sensor structures by use of deposition techniques that are standard in the semiconductor industry. The PdOx layer can be used in a gas sensor structure for improved sensor stability, while maintaining sensitivity. For example, in proof-of-concept experiments, Pt/PdOx/SiC Schottky-diode gas sensors were fabricated and tested. The fabrication process included controlled sputter deposition of PdOx to a thickness of 50 Angstroms on a 400-m-thick SiC substrate, followed by deposition of Pt to a thickness of 450 Angstroms on the PdOx. The SiC substrate (400 microns in thickness) was patterned with photoresist and a Schottky-diode photomask. A lift-off process completed the definition of the Schottky-diode pattern. The sensors were tested by measuring changes in forward currents at a bias potential of 1 V during exposure to H2 in N2 at temperatures

  19. Anomalous forward I-V characteristics of Ti/Au SiC Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, D.J.; Wright, N.G.; Johnson, C.M.; O' Neill, A.G. [Newcastle upon Tyne Univ. (UK). Dept. of Electr. and Electron. Eng.; Hilton, K.P.; Uren, M.J. [Defence Evaluation Research Agency, Malvern, Worcestershire (United Kingdom)

    1999-07-30

    The aim of this study was to improve the adhesion of Au Schottky contacts to SiC. In order to do this, before the deposition of the Au layer, a thin layer of Ti was deposited. However, this resulted in an anomalous step in the forward bias electrical characteristic for some diodes. An equivalent circuit model is introduced to explain this irregularity in terms of two barrier heights. PSPICE is used to simulate this model. Simulated and experimental data are in good agreement over the temperature range 25 to 250 C. (orig.)

  20. Investigation on the charge collection properties of a 4H-SiC Schottky diode detector

    CERN Document Server

    Verzellesi, G; Nava, F; Canali, C

    2002-01-01

    We present experimental and theoretical data on the charge collection properties of a 4H-SiC epitaxial Schottky diode exposed to 5.48- and 2.00-MeV alpha particles. Hundred percent Charge Collection Efficiency (CCE) is, in particular, demonstrated for the 2.00-MeV alpha particles at reverse voltages higher than 40 V. By comparing measured CCE values with the outcomes of drift-diffusion simulations, a value of 500 ns is inferred for the hole lifetime within the lowly doped, active layer of virgin samples. The contributions of diffusion and funneling-assisted drift to CCE at low reverse voltages are pointed out.

  1. Temperature dependence of the inhomogeneous parameters of the Mo/4H-SiC Schottky barrier diodes

    Science.gov (United States)

    Latreche, A.; Ouennoughi, Z.; Weiss, R.

    2016-08-01

    The inhomogeneous parameters of Mo/4H-SiC Schottky barrier diodes were determined from current-voltage (I-V) characteristics in the temperature range of 303-498 K by using a general approach for the real Schottky diode. In this approach the total series resistances is divided into two resistances; the first one (R P) is the sum of the series resistances (r) of the particular diodes connected in parallel and the second is the common resistance (R C) to all particular diodes. The mean barrier height (\\bar{φ }) and the standard deviation (σ) decrease linearly with decreasing temperature and they are between the values for the diodes with the two limiting cases; no current spreading and full current spreading. The series resistance R C increases, while the series resistance R P slightly decreases with decreasing temperature.

  2. Dopant concentration dependence of the response of SiC Schottky diodes to light ions

    Energy Technology Data Exchange (ETDEWEB)

    De Napoli, M. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Giacoppo, F. [Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica, Universita degli Studi di Messina, Via Salita Sperone 31, I-98166 Messina (Italy); Raciti, G. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Isituto Nazionale di Fisica Nucleare, Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy)], E-mail: raciti@lns.infn.it; Rapisarda, E. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Isituto Nazionale di Fisica Nucleare, Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy)

    2009-03-11

    The responses of Silicon Carbide (SiC) Schottky diodes of different dopant concentration to {sup 12}C ions at 14.2, 28.1 and 37.6 MeV incident energies are compared. The relation between the applied reverse bias and the thickness of the depleted epitaxial region is studied for different dopant concentrations. The experimental data show that SiC diodes with lower dopant concentration need lower reverse bias to be depleted. Moreover it has been observed that the energy resolution, measured as a function of the applied reverse bias and of the ions incident energies, does not depend on the dopant concentration. The radiation damage, produced by irradiating SiC diodes of different dopant concentration with {sup 16}O ions at 35.2 MeV, was evaluated by measuring the degradation of both the signal pulse-height and the energy resolution as a function of the {sup 16}O fluence. Diodes having a factor 20 lower dopant concentration exhibit a radiation hardness reduced by 60%. No inversion in the signal at the breakdown fluence was observed for {sup 16}O ions stopped inside the diode epitaxial region.

  3. Small signal thermal analysis of local multibarrier behaviour in SiC Schottky diodes

    Science.gov (United States)

    León, J.; Perpiñà, X.; Vellvehi, M.; Jordà, X.; Berthou, M.; Godignon, P.

    2014-09-01

    A nickel-based silicon carbide Schottky barrier diode presenting multibarrier behaviour was inspected by Small sIgnal Modulation for Thermal Analysis (SIMTA) to detect the weak spots responsible for this behaviour. SIMTA thermally modulates in frequency such weak spots with a small signal voltage while the device is electrically biased in an operating point of its static I/V curve (20 A-1 kV capability). This allows for quantitative studying of them in a thermal steady state as heat sources by lock-in thermography depending on the device operating regime. Using SIMTA, the barrier height and the area of each weak spot were determined by thermal means, yielding to an electrical model that fits the observed multibarrier behaviour. Results suggest that these spots were caused by surface areas of high density of states (due to 3C-SiC stacking faults) created during the wire bonding process, which locally shifted the Schottky barrier due to Fermi level pinning. Their origin was confirmed by scanning electron microscope inspections after milling these locations with a focused on beam, detecting Schottky metal contact degradation at weak spot locations due to an excessive bonding pressure.

  4. Metal-oxide-semiconductor capacitors and Schottky diodes studied with scanning microwave microscopy at 18 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, M. [Christian Doppler Laboratory for Nanoscale Methods in Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz (Austria); Gramse, G. [Biophysics Institute, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz (Austria); Hoffmann, J. [METAS, National Metrology Institute of Switzerland, Lindenweg 50, 3003 Bern-Wabern (Switzerland); Gaquiere, C. [MC2 technologies, 5 rue du Colibri, 59650 Villeneuve D' ascq (France); Feger, R.; Stelzer, A. [Institute for Communications Engineering and RF-Systems, Johannes Kepler University, Altenberger Str. 69, 4040 Linz (Austria); Smoliner, J. [Vienna University of Technology, Institute for Solid State Electronics, Floragasse 7, 1040 Vienna (Austria); Kienberger, F., E-mail: ferry-kienberger@keysight.com [Keysight Technologies Austria, Measurement Research Lab, Gruberstrasse 40, 4020 Linz (Austria)

    2014-11-14

    We measured the DC and RF impedance characteristics of micrometric metal-oxide-semiconductor (MOS) capacitors and Schottky diodes using scanning microwave microscopy (SMM). The SMM consisting of an atomic force microscopy (AFM) interfaced with a vector network analyser (VNA) was used to measure the reflection S11 coefficient of the metallic MOS and Schottky contact pads at 18 GHz as a function of the tip bias voltage. By controlling the SMM biasing conditions, the AFM tip was used to bias the Schottky contacts between reverse and forward mode. In reverse bias direction, the Schottky contacts showed mostly a change in the imaginary part of the admittance while in forward bias direction the change was mostly in the real part of the admittance. Reference MOS capacitors which are next to the Schottky diodes on the same sample were used to calibrate the SMM S11 data and convert it into capacitance values. Calibrated capacitance between 1–10 fF and 1/C{sup 2} spectroscopy curves were acquired on the different Schottky diodes as a function of the DC bias voltage following a linear behavior. Additionally, measurements were done directly with the AFM-tip in contact with the silicon substrate forming a nanoscale Schottky contact. Similar capacitance-voltage curves were obtained but with smaller values (30–300 aF) due to the corresponding smaller AFM-tip diameter. Calibrated capacitance images of both the MOS and Schottky contacts were acquired with nanoscale resolution at different tip-bias voltages.

  5. Field plate engineering for GaN-based Schottky barrier diodes

    Institute of Scientific and Technical Information of China (English)

    Lei Yong; Shi Hongbiao; Lu Hai; Chen Dunjun; Zhang Rong; Zheng Youdou

    2013-01-01

    The practical design of GaN-based Schottky barrier diodes (SBDs) incorporating a field plate (FP)structure necessitates an understanding of their working mechanism and optimization criteria.In this work,the influences of the parameters of FPs upon breakdown of the diode are investigated in detail and the design rules of FP structures for GaN-based SBDs are presented for a wide scale of material and device parameters.By comparing three representative dielectric materials (SiO2,Si3N4 and A12O3) selected for fabricating FPs,it is found that the product of dielectric permittivity and critical field strength of a dielectric material could be used as an index to predict its potential performance for FP applications.

  6. Electrical characterization of the organic semiconductor Ag/CuPc/Au Schottky diode

    Institute of Scientific and Technical Information of China (English)

    Mutabar Shah; M. H. Sayyad; Kh. S. Karimov

    2011-01-01

    This paper reports on the fabrication and investigation of a surface-type organic semiconductor copper phthalocyanine (CuPc) based diode. A thin film of CuPc of thickness 100 nm was thermally sublimed onto a glass substrate with preliminary deposited metallic electrodes to form a surface-type Ag/CuPc/Au Schottky diode. The current-voltage characteristics were measured at room temperature under dark conditions. The barrier height was calculated as 1.05 eV. The values of mobility and conductivity was found to be 1.74 x l0-9 cm2/(V.s) and 5.5 x 10-6 Ω-1. cm-1, respectively. At low voltages the device showed ohmic conduction and the space charge limited current conduction mechanisms were dominated at higher voltages.

  7. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.

    Science.gov (United States)

    Das, Achintya; Duttagupta, Siddhartha P

    2015-12-01

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Ni/SiC–6H Schottky Barrier Diode interfacial states characterization related to temperature

    Energy Technology Data Exchange (ETDEWEB)

    Benamara, Mekki [Applied Microelectronics Laboratory (AMEL), Electronics Department, Faculty of Technology, Djillali Liabes University of Sidi Bel Abbes, BP 89, 22000 Sidi Bel Abbes (Algeria); Anani, Macho, E-mail: anani66@yahoo.fr [Laboratoire des Réseaux de Communications, d’Architecture et de Multimédia, Electronics Department, Faculty of Technology, Djillali Liabes University of Sidi Bel Abbes, BP 89, 22000 Sidi Bel Abbes (Algeria); Akkal, Boudali; Benamara, Zineb [Applied Microelectronics Laboratory (AMEL), Electronics Department, Faculty of Technology, Djillali Liabes University of Sidi Bel Abbes, BP 89, 22000 Sidi Bel Abbes (Algeria)

    2014-08-01

    Highlights: • This article is dealing with the evaluation of the mean interfacial states density of a Ni/SiC–6H Schottky Barrier Diode related to temperature. It appears a phenomenon of two barriers materializing one high diode and one low one. The other conclusion is that the interfacial states are diminishing when temperature is increasing. • This article has not, also, been published previously, is not under consideration for publication elsewhere, and its publication is approved by all authors. • The article has been correctly and thoroughly inspected and revised according to the reviewers’ recommendations. - Abstract: This study presents a Ni/SiC–6H Schottky Barrier Diode (SBD) characterization at different temperatures going from 77 K to 450 K. The electronic properties of this diode were reported by the analysis of its C(V{sub G}) and I(V{sub G}) characteristics as a function of temperature. At low temperature when T < 100 K the high part ideality factors n{sup H} were close to 2 showing that the conduction is dominated by the generation–recombination at deep centers. Also, the values of low part ideality factor n{sup L} varied from 2.69 down to 1.89. These values were also much closer to 2, showing that the conduction mechanism was then dominated by a tunneling current assisted by default. The mean interfacial states density D{sub s(mean)} decreased with increasing temperature from 1.2×10{sup 13} eV{sup −1} cm{sup −2} to 6.3 × 10{sup 12} eV{sup −1} cm{sup −2}. This reducing appeared to be due to the restructuring and rearrangement which occurs under molecules thermal activation within the Ni/SiC–6H metal/semiconductor interface.

  9. Analysis of current transport properties in nonpolar a-plane ZnO-based Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hogyoung [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Haeri; Kim, Dongwook [Ewha Womans University, Seoul (Korea, Republic of)

    2014-09-15

    Using current-voltage (I - V) measurements, we investigated the temperature-dependent transport properties in Ag/nonpolar a-plane ZnO Schottky diodes. The bias-dependent ideality factors were altered by the different temperatures and showed a hump at lower temperatures. The series resistance of the diode depended on the temperatures, which was related to the number of free carriers contributing to the series resistance. For high forward bias, the slope m obtained from the lnI - lnV curves decreased with increasing temperature, assuring the space-charge-limited-current (SCLC) model controlled by an exponential distribution of traps. The reverse-biased current transport was associated with the Schottky effect, with a thermally-assisted tunneling for lower voltages and the Poole-Frenkel effect for higher voltages. The density of localized states (N{sub t}) was obtained by applying the theory of SCLC transport, which yielded a N{sub t} value of 8.32 x 10{sup 11} eV{sup -1}cm{sup -3}.

  10. Modified electrical characteristics of Pt/n-type Ge Schottky diode with a pyronine-B interlayer

    Science.gov (United States)

    Jyothi, I.; Janardhanam, V.; Rajagopal Reddy, V.; Choi, Chel-Jong

    2014-11-01

    The electrical characteristics of a Pt/n-type Ge Schottky diode with a pyronine-B (PYR-B) interlayer prepared by spin coating was investigated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. It was observed that the barrier height of Pt/PYR-B/n-type Ge (0.65 eV) was higher than that of the conventional Pt/n-type Ge Schottky diode (0.58 eV). This is attributed to the fact that the organic interlayer increases the effective barrier height by influencing the space-charge region of Ge. The introduction of the PYR-B interlayer led to a reduction of the interface state density in the Pt Schottky contact to n-type Ge. The electric field dependence of the reverse leakage current revealed that Schottky emission and Poole-Frenkel emission mechanisms dominated the reverse current in the Pt/n-type Ge and Pt/PYR-B/n-type Ge Schottky diodes, respectively.

  11. Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz.

    Science.gov (United States)

    Zhang, Jiawei; Li, Yunpeng; Zhang, Binglei; Wang, Hanbin; Xin, Qian; Song, Aimin

    2015-07-03

    Mechanically flexible mobile phones have been long anticipated due to the rapid development of thin-film electronics in the last couple of decades. However, to date, no such phone has been developed, largely due to a lack of flexible electronic components that are fast enough for the required wireless communications, in particular the speed-demanding front-end rectifiers. Here Schottky diodes based on amorphous indium-gallium-zinc-oxide (IGZO) are fabricated on flexible plastic substrates. Using suitable radio-frequency mesa structures, a range of IGZO thicknesses and diode sizes have been studied. The results have revealed an unexpected dependence of the diode speed on the IGZO thickness. The findings enable the best optimized flexible diodes to reach 6.3 GHz at zero bias, which is beyond the critical benchmark speed of 2.45 GHz to satisfy the principal frequency bands of smart phones such as those for cellular communication, Bluetooth, Wi-Fi and global satellite positioning.

  12. Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz

    Science.gov (United States)

    Zhang, Jiawei; Li, Yunpeng; Zhang, Binglei; Wang, Hanbin; Xin, Qian; Song, Aimin

    2015-07-01

    Mechanically flexible mobile phones have been long anticipated due to the rapid development of thin-film electronics in the last couple of decades. However, to date, no such phone has been developed, largely due to a lack of flexible electronic components that are fast enough for the required wireless communications, in particular the speed-demanding front-end rectifiers. Here Schottky diodes based on amorphous indium-gallium-zinc-oxide (IGZO) are fabricated on flexible plastic substrates. Using suitable radio-frequency mesa structures, a range of IGZO thicknesses and diode sizes have been studied. The results have revealed an unexpected dependence of the diode speed on the IGZO thickness. The findings enable the best optimized flexible diodes to reach 6.3 GHz at zero bias, which is beyond the critical benchmark speed of 2.45 GHz to satisfy the principal frequency bands of smart phones such as those for cellular communication, Bluetooth, Wi-Fi and global satellite positioning.

  13. Application of well characterized e - beam evaporated WSe2 thin films in Schottky Barrier diodes

    Science.gov (United States)

    Patel, Mayurkumar M.

    The studies of semiconductor thin films and their junctions such as metal semiconductor junctions (Schottky Barriers) have received much attention due to their applications in various electronic and optoelectronic devices including high frequency switching device, Schottky barrier devices, solar cells etc. But, realization of any electronic device using a combination of bulk and thin film or all bulk or all thin film components essentially requires metallization of metal contacts for electrical signals to flow into and out of the device. Thus junction between two metals and metal-semiconductor is an integral part of the device without which communication to the external circuit components would not be possible. In this reference stable metalsemiconductor contacts of ohmic as well as rectifying nature are very much important from technological point of view. In both cases preparation of reliable and efficient metal contacts with high yield and stability is challenging task for devices operating at high frequencies when packing density is increased by many fold. Thus, the behavior of metal-semiconductor contacts at microscopic scale may be explored for the development of future technology. The subject matter of such contacts is well documented in many books with review of developments in the recent past. Earlier devices were prepared on the bulk elemental semiconductors as an active region which was then followed by crystalline/amorphous compound semiconductors in bulk as well as thin film forms like Solar cells, p-n junction diodes, Schottky barrier devices etc. in recent past. Normally bulk crystalline'or amorphous substrate is used to support device structure made from crystalline/amorphous bulk and thin film. However, to the best of author's knowledge no attempts have been made to study the devices prepared by depositing semiconductor thin film with thin metal film supported by a by a non-conducting glass substrate. For this purpose, studies were carried out on

  14. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    Directory of Open Access Journals (Sweden)

    Jotinder Kaur

    2016-05-01

    Full Text Available Barium Hexaferrite (BaM is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm/silicon substrate was used to grow the BaM thin films (100-150 nm using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc voltage much larger.

  15. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    Science.gov (United States)

    Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.

    2016-05-01

    Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.

  16. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation); Senkov, V. M. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Avenue, Moscow 119991 (Russian Federation); Nalivaiko, O. Y. [JSC “Integral” – “Integral” Holding Management Company, 121A, Kazintsa I. P. Street, Minsk 220108 (Belarus); Novikau, A. G.; Gaiduk, P. I. [Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus)

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  17. Millimeter-wave fixed-tuned subharmonic mixers with planar Schottky diodes

    Institute of Scientific and Technical Information of China (English)

    Yao Changfei; Zhou Ming; Luo Yunsheng; Wang Yigang; Xu Conghai

    2012-01-01

    Two different frequency bandwidth subharmonic mixers (SHM) using planar Schottky mixing diodes are discussed and fabricated.Full-wave analysis is carried out to find the optimum diode embedding impedances with a lumped port for modeling the nonlinear junction.The SHM circuit is divided into several different parts and each part is optimized using the calculated diode impedances.The divided parts are then combined and optimized together.The exported S-parameter files of the global circuit are used for conversion loss (CL) discussion.For the 150 GHz SHM,the lowest measured CL is 10.7 dB at 153 GHz,and typical CL is 12.5 dB in the frequency range of 135-165 GHz.The lowest measured CL of the 180 GHz SHM is 5.8 dB at 240 GHz,and typical CL is 13.5 dB and 11.5 dB in the frequency range of 165-200 GHz and 210-240 GHz,respectively.

  18. Effect of nanopatches on electrical behavior of Ni/n-type Si Schottky diode

    Science.gov (United States)

    Rahmatallahpur, Sh.; Yegane, M.

    2011-04-01

    Topological surface measurement of thin metal film using a conducting probe atomic force microscope (C-AFM) shows that thin metal film deposited on Ni/n-Si Schottky diode (SD) consists of patches. These patches are sets of parallel connected and electrically cooperating nano-contacts of size between 50 and 100nm. Every individual patch acts as an individual diode with different I- V curve, barrier height (BH) and ideality factor ( n). Between these diodes or patches, there are spot field distributions; the patches with different local work functions are in direct electric contact with surrounding patches. As a result, a potential difference between surfaces of patches, the so-called electrostatic spot field Ef, is formed. It is shown that in real metal-semiconductor (MS) contacts, patches with quite different configurations, various geometrical sizes and local work functions are randomly distributed on the surface of metal; hence direction and intensity of spot field are non-uniformly distributed along the surface of metal. There is a linear dependence between barrier height and ideality factor, which is the consequence of reduction of distance of the maximum of BH from the interface. This dependency is the sign of reduction of contribution of a peripheral current.

  19. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Science.gov (United States)

    Yuryev, V. A.; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P.; Senkov, V. M.; Nalivaiko, O. Y.; Novikau, A. G.; Gaiduk, P. I.

    2015-05-01

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si3N4/SiO2/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about -2%/ °C in the temperature interval from 25 to 50 °C.

  20. 4H-SiC Schottky diode arrays for X-ray detection

    Science.gov (United States)

    Lioliou, G.; Chan, H. K.; Gohil, T.; Vassilevski, K. V.; Wright, N. G.; Horsfall, A. B.; Barnett, A. M.

    2016-12-01

    Five SiC Schottky photodiodes for X-ray detection have been electrically characterized at room temperature. One representative diode was also electrically characterized over the temperature range 20°C to 140 °C. The performance at 30 °C of all five X-ray detectors, in both current mode and for photon counting X-ray spectroscopy was investigated. The diodes were fabricated in an array form such that they could be operated as either a 2×2 or 1×3 pixel array. Although the devices showed double barrier heights, high ideality factors and higher than expected leakage current at room temperature (12 nA/cm2 at an internal electric field of 105 kV/cm), they operated as spectroscopic photon counting soft X-ray detectors uncooled at 30 °C. The measured energy resolution (FWHM at 17.4 keV, Mo Kα) varied from 1.36 to 1.68 keV among different diodes.

  1. Schottky diode characteristics and 1/f noise of high sensitivity reduced graphene oxide/Si heterojunction photodetector

    Science.gov (United States)

    Zhu, Miao; Li, Xinming; Li, Xiao; Zang, Xiaobei; Zhen, Zhen; Xie, Dan; Fang, Ying; Zhu, Hongwei

    2016-03-01

    Reduced graphene oxide (RGO)/Si Schottky diode has been reported nowadays to show excellent performances in photodetection and other photoelectrical devices. Different from pure graphene, there are large amounts of function groups and structural defects left on the base plane of RGO, which may influence the interfacial properties of RGO/Si Schottky diode. Herein, the barrier inhomogeneity and junction characteristics were systematically investigated to help to describe the interface of RGO/Si diode. From the perspective of its applications, the influences of gas molecule and noise properties are considered to be important. Thus, the photovoltaic performance of RGO/Si devices in air and vacuum is investigated to analyze their effects. Meanwhile, 1/f noise of RGO/Si diodes is investigated under air/vacuum conditions and varied temperatures. It is found that the devices in vacuum and under higher power incident light show much lower 1/f noise. These results are meaningful to the noise control and performance improvement in the development of Schottky diode based devices.

  2. Frequency dependent capacitance and conductance properties of Schottky diode based on rubrene organic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2013-10-01

    Al/rubrene/p-Si Schottky diode has been fabricated by forming a rubrene layer on p type Si by using the spin coating method. The frequency dependent capacitance–voltage (C–V–f) and conductance–voltage (G–V–f) characteristics of Al/rubrene/p-Si Schottky diyotes has been investigated in the frequency range of 5 kHz–500 kHz at room temperature. The C–V plots show a peak for each frequency. The capacitance of the device decreased with increasing frequency. The decrease in capacitance results from the presence of interface states. The plots of series resistance–voltage (R{sub s}−V) gave a peak in the depletion region at all frequencies. The density of interface states (N{sub ss}) and relaxation time (τ) distribution profiles as a function of applied voltage bias have been determined from the C–V and G–V measurements. The values of the N{sub ss} and τ have been calculated in the ranges of 8.37×10{sup 11}–4.85×10{sup 11} eV{sup −1} cm{sup −2} and 5.17×10{sup −6}–1.02×10{sup −5} s, respectively.

  3. Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor.

    Science.gov (United States)

    Singh, Amol; Uddin, Ahsan; Sudarshan, Tangali; Koley, Goutam

    2014-04-24

    A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface barrier height, thus affecting the junction current exponentially when operated in reverse bias and resulting in ultrahigh sensitivity. By operating the device in reverse bias, the work function of graphene, and hence the barrier height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. Compared to a conventional graphene amperometric sensor fabricated on the same chip, the proposed sensor demonstrated 13 times higher sensitivity for NO₂ and 3 times higher for NH₃ in ambient conditions, while consuming ∼500 times less power for same magnitude of applied voltage bias. The sensing mechanism based on heterojunction Schottky barrier height change has been confirmed using capacitance-voltage measurements.

  4. Fabrication of a 600-V/20-A 4H-SiC schottky barrier diode

    Science.gov (United States)

    Kang, In-Ho; Kim, Sang-Cheol; Moon, Jung-Hyeon; Bahng, Wook; Kim, Nam-Kyun

    2014-06-01

    In this study, 600-V/20-A 4H-SiC Schottky barrier diodes (SBDs) were fabricated to investigate the effect of key processing steps, especially before and after the formation of a Schottky contact, on the electrical performances of SBDs and on their long-term reliabilities. The results show that 4H-SiC SBDs that had been subjected to a hydrogen-ambient annealing at 470 °C for 10 min and sacrificial treatment right after ion activation exhibited a lower forward voltage drop (V F ) at a rated current of 20 A, a higher blocking voltage of 800 V, and a very short reverse recovery time of 17.5 ns. Despite the harsh reverse bias condition and temperature, a long-term reliability test showed that changes in the forward voltage drop and the reverse leakage current (I R ) were 0.7% and 8.9% and that the blocking voltage was enhanced. This is attributed to the presence of a stabilized interface between the passivation layer and the SiC due to aging.

  5. Electrical Characterization of High Energy Electron Irradiated Ni/4 H-SiC Schottky Barrier Diodes

    Science.gov (United States)

    Paradzah, A. T.; Omotoso, E.; Legodi, M. J.; Auret, F. D.; Meyer, W. E.; Diale, M.

    2016-08-01

    The effect of high energy electron irradiation on Ni/4 H-SiC Schottky barrier diodes was evaluated by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements at room temperature. Electron irradiation was achieved by using a radioactive strontium source with peak emission energy of 2.3 MeV. Irradiation was performed in fluence steps of 4.9 × 1013 cm-2 until a total fluence of 5.4 × 1014 cm-2 was reached. The Schottky barrier height determined from I- V measurements was not significantly changed by irradiation while that obtained from C- V measurements increased with irradiation. The ideality factor was obtained before irradiation as 1.05 and this value did not significantly change as a result of irradiation. The series resistance increased from 47 Ω before irradiation to 74 Ω after a total electron fluence of 5.4 × 1014 cm-2. The net donor concentration decreased with increasing irradiation fluence from 4.6 × 1014 cm-3 to 3.0 × 1014 cm-3 from which the carrier removal rate was calculated to be 0.37 cm-1.

  6. Analysis of Reverse-Bias Leakage Current Mechanisms in Metal/GaN Schottky Diodes

    Directory of Open Access Journals (Sweden)

    P. Pipinys

    2010-01-01

    Full Text Available Temperature-dependent reverse-bias current-voltage characteristics obtained by other researchers for Schottky diodes fabricated on GaN are reinterpreted in terms of phonon-assisted tunneling (PhAT model. Temperature dependence of reverse-bias leakage current is shown could be caused by the temperature dependence of electron tunneling rate from traps in the metal-semiconductor interface to the conduction band of semiconductor. A good fit of experimental data with the theory is received in a wide temperature range (from 80 K to 500 K using for calculation the effective mass of 0.222 me. and for the phonon energy the value of 70 meV. The temperature and bias voltages dependences of an apparent barrier height (activation energy are also explicable in the framework of the PhAT model.

  7. Performances of 4H-SiC Schottky diodes as neutron detectors

    Science.gov (United States)

    Lo Giudice, Alessandro; Fasolo, Floriana; Durisi, Elisabetta; Manfredotti, Claudio; Vittone, Ettore; Fizzotti, Franco; Zanini, Alba; Rosi, Giancarlo

    2007-12-01

    Large area 4H-SiC Schottky diodes equipped with a 6LiF converter were tested as neutron detectors in the epithermal column realized for Boron Neutron Capture Therapy (BNCT) applications at the fast reactor TAPIRO (ENEA Casaccia Roma). The neutron spectra were assessed using the Monte Carlo code MCNP-4C. The performances of SiC detectors were evaluated with neutron fluences in the range of 10 9-10 13 cm -2 which is typical for BNCT. Spectra of alpha and tritium particles generated by 6Li(n,α) 3H reaction were collected at various neutron fluences and spectra obtained by interposing polyethylene moderators of different thickness. Only weak damaging effects primarily due to the alpha particles were observed; at neutron fluence of 10 13 cm -2 the count rate decreased by <0.3%. The experimental results were compared with the theoretical ones calculated using MCNP-4C and SRIM codes.

  8. High performance visible-near-infrared PbS-quantum-dots/indium Schottky diodes for photodetectors

    Science.gov (United States)

    Mi, Longfei; Wang, Hui; Zhang, Yan; Yao, Xudong; Chang, Yajing; Li, Guopeng; Li, Guohua; Jiang, Yang

    2017-02-01

    Here we fabricate self-powered photodetectors based on PbS-quantum-dots/indium Schottky barrier diodes successfully. These devices exhibit excellent repeatability and stability at a high frequency (up to1 MHz), and show a typical fast rise time/fall time of ˜0.8 μs/3.2 μs. They also show excellent rectification ratios up to 104 with bias from -0.5 V to +0.5 V in the dark and a pronounced photovoltaic performance under light illumination. Moreover, the devices demonstrate high sensitivity in weak light illumination detection (detectivity) approaching 1012 Jones and low noise currents <1 pAHz-1/2. These findings suggest great application potential of PbS-quantum-dots for advanced fast response, low noise current, high detectivity and high stability photodetectors.

  9. Angle resolved IBIC analysis of 4H-SiC Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lo Giudice, A. [Experimental Physics Department, ' Nanostructured Interfaces and Surfaces' (NIS), Centre of Excellence of the University of Torino, and CNR-INFM, via P.Giuria 1, 10125 Turin (Italy); Garino, Y. [Experimental Physics Department, ' Nanostructured Interfaces and Surfaces' (NIS), Centre of Excellence of the University of Torino, and CNR-INFM, via P.Giuria 1, 10125 Turin (Italy); INFN-Torino, via P.Giuria 1, 10125 Turin (Italy); Manfredotti, C. [Experimental Physics Department, ' Nanostructured Interfaces and Surfaces' (NIS), Centre of Excellence of the University of Torino, and CNR-INFM, via P.Giuria 1, 10125 Turin (Italy); INFN-Torino, via P.Giuria 1, 10125 Turin (Italy); Rigato, V. [INFN-Laboratori Nazionali di Legnaro (Pd) (Italy); Vittone, E. [Experimental Physics Department, ' Nanostructured Interfaces and Surfaces' (NIS), Centre of Excellence of the University of Torino, and CNR-INFM, via P.Giuria 1, 10125 Turin (Italy) and INFN-Torino, via P.Giuria 1, 10125 Turin (Italy)]. E-mail: vittone@to.infn.it

    2006-08-15

    We present a new experimental procedure based on the ion beam induced charge collection (IBIC) to characterise semiconductor detectors and devices. It consists in measuring the charge collection efficiency ({eta}) as a function of the angle of incidence ({alpha}) of a strongly penetrating MeV ion beam focussed onto a partially depleted semiconductor detector. The unidimensional model based on the drift-diffusion model derived from the Shockley-Ramo-Gunn's theorem gives the theoretical background to fit the {eta}({alpha}) curve and to estimate both the extension of the depletion layer, the dead layer thickness and the minority carrier diffusion length. To illustrate the analytical capability of this technique, a 2 MeV proton beam was focussed at different incident angles onto a 4H-SiC Schottky diode; the experimental results and the theoretical approach are presented and discussed.

  10. Characterization of breakdown behavior of diamond Schottky barrier diodes using impact ionization coefficients

    Science.gov (United States)

    Driche, Khaled; Umezawa, Hitoshi; Rouger, Nicolas; Chicot, Gauthier; Gheeraert, Etienne

    2017-04-01

    Diamond has the advantage of having an exceptionally high critical electric field owing to its large band gap, which implies its high ability to withstand high voltages. At this maximum electric field, the operation of Schottky barrier diodes (SBDs), as well as FETs, may be limited by impact ionization, leading to avalanche multiplication, and hence the devices may breakdown. In this study, three of the reported impact ionization coefficients for electrons, αn, and holes, αp, in diamond at room temperature (300 K) are analyzed. Experimental data on reverse operation characteristics obtained from two different diamond SBDs are compared with those obtained from their corresponding simulated structures. Owing to the crucial role played by the impact ionization rate in determining the carrier transport, the three reported avalanche parameters implemented affect the behavior not only of the breakdown voltage but also of the leakage current for the same structure.

  11. Evaluation of Schottky barrier diodes fabricated directly on processed 4H-SiC(0001) surfaces.

    Science.gov (United States)

    Sano, Yasuhisa; Shirasawa, Yuki; Okamoto, Takeshi; Yamauchi, Kazuto

    2011-04-01

    Silicon carbide (SiC) is a suitable substrate for low-power-consumption power devices and high-temperature applications. However, this material is difficult to machine because of its hardness and chemical inertness, and many machining methods have been studied intensively in recent years. In this paper, we present a simple method to evaluate the electrical properties of the processed surface using the ideal factor n of a Schottky barrier diode (SBD) fabricated directly on the processed surface. Upon comparing the values of n for SBDs fabricated on a damaged SiC surface and a non-damaged SiC surface, we found that there is a significant difference in the dispersion and magnitude of n. Furthermore, by combining this technique with slope etching, we were able to estimate the thickness of the damaged sub-surface layer.

  12. Heavy ion-induced damage in SiC Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Kamezawa, C. [Japan Aerospace Exploration Agency, Tsukuba Space Center, 2-1-1 Sengen, Ibaraki 305-8505 (Japan)]. E-mail: kamezawa.chihiro@jaxa.jp; Sindou, H. [Japan Aerospace Exploration Agency, Tsukuba Space Center, 2-1-1 Sengen, Ibaraki 305-8505 (Japan); Hirao, T. [Japan Atomic Energy Research Institute, Gunma 370-1292 (Japan); Ohyama, H. [Kumamoto National College of Technology, Kumamoto 861-1102 (Japan); Kuboyama, S. [Japan Aerospace Exploration Agency, Tsukuba Space Center, 2-1-1 Sengen, Ibaraki 305-8505 (Japan)

    2006-04-01

    Silicon carbide (SiC) is a very promising material for future electronic devices. Also it is an attractive material for space applications, that require long-term endurance and higher efficiency, where tolerance to space radiations is a major problem. In this study, we have performed some irradiation examinations and evaluations on a commercial SiC Schottky barrier diode by looking at the damage caused by ion incidence using heavy ions. Ions of Xe, Kr, Ar, Ne, and N, with specific energies, were used in the irradiation process. Sudden breakdown condition at higher bias voltage and gradual damage created by heavy ion incidence were confirmed. The collected charge spectra were also obtained and revealed mechanisms that resulted to permanent damage. The observed anomalous charge collection was an essential factor for the susceptibility. This indicates a problem that need to be solved in the future for SiC space application.

  13. Defect-induced performance degradation of 4H-SiC Schottky barrier diode particle detectors

    Science.gov (United States)

    Iwamoto, N.; Johnson, B. C.; Hoshino, N.; Ito, M.; Tsuchida, H.; Kojima, K.; Ohshima, T.

    2013-04-01

    The formation and evolution of defects in 4H-SiC Schottky barrier diode high-energy particle detectors have been investigated and correlated with the detectors' properties. Low temperature annealing at 300 °C is found to significantly recover the charge collection efficiency as degraded by 1 MeV electron irradiation. At higher temperatures, an anneal-induced degradation in the detector's performance is observed. Current-voltage, capacitance-voltage, and deep level transient spectroscopy (DLTS) measurements are used to ascertain the effect of defects on the detector performance. The latter reveals that the DLTS defect levels, EH1 and EH3, are related to the initial recovery of the charge collection efficiency.

  14. Analysis on partial thermal resistances of packaged SiC schottky barrier diodes at elevated temperatures

    Science.gov (United States)

    Kim, Taehwa; Funaki, Tsuyoshi

    2016-04-01

    This paper investigates the temperature dependence of partial thermal resistances of a packaged SiC schottky barrier diode (SBD) for high temperature applications. Transient thermal resistances of the packaged SiC SBD were measured and characterized in temperature range from 27 to 275 °C. The partial thermal resistances were extracted and analyzed using the cumulative and differential thermal structure functions. The extracted partial thermal resistances were compared to the results from the finite difference thermal model, and both results were in good agreement. The temperature dependence of the partial thermal resistance of the SiC device and the Si3N4 substrate contributes to the overall thermal characteristics variation of the packaged SiC SBD.

  15. Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode

    Science.gov (United States)

    Bouzid, Fayçal; Pezzimenti, Fortunato; Dehimi, Lakhdar; Megherbi, Mohamed L.; Della Corte, Francesco G.

    2017-09-01

    In this paper, using a numerical simulator, we investigated the current-voltage characteristics of a Pt/n-GaN thin Schottky diode on the basis of the thermionic emission (TE) theory in the 300 to 500 K temperature range. During the simulations, the effect of different defect states within the n-GaN bulk with different densities and spatial locations is considered. The results show that the diode ideality factor and the threshold voltage decrease with increasing temperature, while at the same time, the zero-bias Schottky barrier height (Φb0) extracted from the forward current density-voltage (J-V) characteristics increases. The observed behaviors of the ideality factor and zero-bias barrier height are analyzed on the basis of spatial barrier height inhomogeneities at the Pt/GaN interface by assuming a Gaussian distribution (GD). The plot of apparent barrier height (Φb,App) as a function of q/2kT gives a straight line, where the mean zero-bias barrier height (\\overline{Φ \\text{b0}}) and the standard deviation (σ0) are 1.48 eV and 0.047 V, respectively. The plot of the modified activation energy against q/kT gives an almost the same value of \\overline{Φ \\text{b0}} and an effective Richardson constant A* of 28.22 A cm-2 K-2, which is very close to the theoretical value for n-type GaN/Pt contacts. As expected, the presence of defect states with different trap energy levels has a noticeable impact on the device electrical characteristics.

  16. SiC polytypes and doping nature effects on electrical properties of ZnO-SiC Schottky diodes

    OpenAIRE

    Rebaoui, Z.; Bouiajra, W.B.; Abboun Abid, M.; Saidane, A.; Jameel, D.; HENINI, M.; Felix, J. F.

    2017-01-01

    Electrical properties of ZnO/SiC Schottky diodes with two SiC polytypes and N and P doping are investigated. Characterization was performed through I–V and C–V–f measurements. Schottky barrier height (Φb), ideality factor (n), and series resistance (Rs) were extracted from forward I–V characteristics. (Φb), carrier’s concentrations (Nd-Na) and (Rs) frequency dependence were extracted from C–V–f characteristics. The extracted n values suggest that current transport is dominated by interface ge...

  17. Enhancement of electric field properties of Pt/nanoplatelet MoO{sub 3}/SiC Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J; Shafiei, M; Wlodarski, W; Kalantar-zadeh, K [Sensor Technology Laboratory, School of Electrical and Computer Engineering, RMIT University, Melbourne (Australia); Li, Y X, E-mail: j.yu@student.rmit.edu.a [Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai (China)

    2010-01-20

    A comprehensive investigation of the electric field enhancement on a novel reverse biased Schottky contact induced by nanoplateleted morphology is presented. The phenomenon that causes the enhancement of the electric field in nanoplatelets is discussed and the equations describing it are derived. Pt/nanoplatelet MoO{sub 3}/SiC Schottky diode based devices are fabricated to show the dependence of the current voltage (I-V) characteristics to the enhanced electric field at different temperatures. The devices are used as sensors as they were exposed to 1% hydrogen (H{sub 2}) gas to show the effect of free carrier density change.

  18. Control of GaAs Microwave Schottky Diode Electrical Characteristics by Contact Geometry: The Gap Diode.

    Science.gov (United States)

    1982-05-01

    versus incident RF power of a Gap diode (V- bO ) .. . . . Ii i.... .. l -- _ _ __ll .. . I -82- c"-)) IZDn UU Figure 36. Single-ended mixer conversion...267 (1970). (12] C.J. Madams , D.V. Morgan, J.M. Howes, "Outmigratlon of Gallium from Au-GaAs Interfaces", Electronic Letters, Vol. 11(24), 574 (1975

  19. The TiO(2) nanoparticle effect on the performance of a conducting polymer Schottky diode.

    Science.gov (United States)

    Yoo, K H; Kang, K S; Chen, Y; Han, K J; Kim, Jaehwan

    2008-12-17

    Among the conjugate polymers, poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) has been paid a great deal of attention for various application fields. The absorption intensity of the whole UV-visible range increases linearly, as the concentration of PEDOT:PSS increases. When a small amount of TiO(2) nanoparticles are dispersed in the PEDOT:PSS solution, the absorption in the visible range normally increases, but the UV range absorption (TiO(2) absorption area) is greatly depressed as the concentration of PEDOT:PSS increases. Various weight ratios of TiO(2) nanoparticles in PEDOT:PSS were prepared. The TiO(2)/PEDOT:PSS solution was spin-coated onto the Al electrode and thermally treated to remove water molecules and densify the film. These thermal processes generated nanocracks and nanoholes on the surface of the TiO(2)/PEDOT:PSS film. As the heating temperature increased, wider and longer nanocracks were generated. These nanocracks and nanoholes can be removed by subsequent coating and heating processes. Schottky diodes were fabricated using four different concentrations of TiO(2)-PEDOT:PSS solution. The forward current increased nearly two orders of magnitude by doping approximately 1% of TiO(2) nanoparticles in PEDOT:PSS. Increasing the TiO(2) nanoparticles in the PEDOT:PSS matrix, the forward current was continuously enhanced. The enhancement of forward current is nearly four orders of magnitude with respect to the pristine PEDOT:PSS Schottky diode. The possible conduction mechanisms were examined by using various plotting and curve-fitting methods including a space-charge-limited conduction mechanism [Ln(J) versus Ln(V)], Schottky emission mechanism [Ln(J) versus E(1/2)], and Poole-Frenkel emission mechanism [Ln(J/V) versus E(1/2)]. The plot of Ln(J) versus Ln(V) shows a linear relationship, implying that the major conduction mechanism is SCLC. As the concentration of TiO(2) increased, the conduction mechanism slightly detracted from the

  20. Laser-diode-pumped 1319-nm monolithic non-planar ring single-frequency laser

    Institute of Scientific and Technical Information of China (English)

    Qing Wang(王青); Chunqing Gao(高春清); Yan Zhao(赵严); Suhui Yang(杨苏辉); Guanghui Wei(魏光辉); Dongmei Hong(洪冬梅)

    2003-01-01

    Single-frequency 1319-nm laser was obtained by using a laser-diode-pumped monolithic Nd:YAG crystalwith a non-planar ring oscillator (NPRO). When the NPRO laser was pumped by an 800-μm fiber coupledlaser diode, the output power of the single-frequency 1319-nm laser was 220 mW, and the slope efficiencywas 16%. With a 100-μm fiber coupled diode laser pumped, 99-mW single-frequency 1319-nm laser wasobtained with a slope efficiency of 29%.

  1. Investigation of Current-Voltage Characteristics of Ni/GaN Schottky Barrier Diodes for Potential HEMT Applications

    Directory of Open Access Journals (Sweden)

    Ashish Kumar

    2011-01-01

    Full Text Available In the present work, the I-V characteristics of Ni/GaN Schottky diodes have been studied. The Schottky diodes, having different sizes using Ni/Au and ohmic contacts using Ti/Al/Ni/Au were made on n-GaN. The GaN was epitaxially grown on c-plane sapphire by metal organic chemical vapor deposition (MOCVD technique and had a thickness of about 3.7 µm. The calculated ideality factor and barrier height from current-voltage (I-V characteristics (at 300 K for two GaN Schottky diodes were close to ~1.3 and ~ 0.8 eV respectively. A high reverse leakage current in the order of 10 – 4A/cm2 (at – 1 V was observed in both diodes. A careful analysis of forward bias I-V characteristics showed very high series resistance and calculation for ideality factor indicated presence of other current transport mechanism apart from thermionic model at room temperature.

  2. Microscopic analysis of electron noise in GaAs Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, T.; Pardo, D. [Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Reggiani, L. [Istituto Nazionale di Fisica della Materia, Dipartimento di Scienza dei Materiali, Universita di Lecce, Via Arnesano, 73100 Lecce (Italy); Varani, L. [Centre dElectronique et de Micro-Optoelectronique de Montpellier (CNRS UMR 5507), Universite Montpellier II, F-34095 Montpellier Cedex 5 (France)

    1997-09-01

    A microscopic analysis of current and voltage fluctuations in GaAs Schottky barrier diodes under forward-bias conditions in the absence of 1/f contributions is presented. Calculations are performed by coupling self-consistently an ensemble Monte Carlo simulator with a one-dimensional Poisson solver. By using current- and voltage-operation modes the microscopic origin and the spatial location of the noise sources, respectively, is provided. At different voltages the device exhibits different types of noise (shot, thermal, and excess), which are explained as a result of the coupling between fluctuations in carrier velocity and self-consistent field. The essential role of the field fluctuations to correctly determine the noise properties in these diodes is demonstrated. The results obtained for the equivalent noise temperature are found to reproduce the typical behavior of experimental measurements. An equivalent circuit is proposed to predict and explain the noise spectra of the device under thermionic emission-based operation. {copyright} {ital 1997 American Institute of Physics.}

  3. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  4. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells.

    Science.gov (United States)

    Khurelbaatar, Zagarzusem; Hyung, Jung-Hwan; Kim, Gil-Sung; Park, No-Won; Shim, Kyu-Hwan; Lee, Sang-Kwon

    2014-06-01

    We demonstrate locally contacted PEDOT:PSS Schottky diodes with excellent rectifying behavior, fabricated on n-type Si substrates using a spin-coating process and a reactive-ion etching process. Electrical transport characterizations of these Schottky diodes were investigated by both current-voltage (I-V) and capacitance-voltage (C-V) measurements. We found that these devices exhibit excellent modulation in the current with an on/off ratio of - 10(6). Schottky junction solar cells composed of PEDOT:PSS and n-Si structures were also examined. From the current density-voltage (J-V) measurement of a solar cell under illumination, the short circuit current (I(sc)), open circuit voltage (V(oc)), and conversion efficiency (eta) were - 19.7 mA/cm2, - 578.5 mV, and - 6.5%, respectively. The simple and low-cost fabrication process of the PEDOT:PSS/n-Si Schottky junctions makes them a promising candidate for further high performance solar cell applications.

  5. InGaAs Schottky barrier diode array detectors integrated with broadband antenna (Conference Presentation)

    Science.gov (United States)

    Park, Dong Woo; Lee, Eui Su; Park, Jeong-Woo; Kim, Hyun-Soo; Lee, Il-Min; Park, Kyung Hyun

    2017-02-01

    Terahertz (THz) waves have been actively studied for the applications of astronomy, communications, analytical science and bio-technologies due to their low energy and high frequency. For example, THz systems can carry more information with faster rates than GHz systems. Besides, THz waves can be applied to imaging, sensing, and spectroscopy. Furthermore, THz waves can be used for non-destructive and non-harmful tomography of living objects. In this reasons, Schottky barrier diodes (SBD) have been widely used as a THz detector for their ultrafast carrier transport, high responsivity, high sensitivity, and excellent noise equivalent power. Furthermore, SBD detectors envisage developing THz applications at low cost, excellent capability, and high yield. Since the major concerns in the THz detectors for THz imaging systems are the realizations of the real-time image acquisitions via a reduced acquisition time, rather than the conventional raster scans that obtains an image by pixel-by-pixel acquisitions, a line-scan based systems utilizes an array detector with an 1 × n SBD array is preferable. In this study, we fabricated the InGaAs based SBD array detectors with broadband antennas of log-spiral and square-spiral patterns. To optimize leakage current and ideality factor, the dependence to the doping levels of ohmic and Schottky layers have been investigated. In addition, the dependence to the capacitance and resistance to anode size are also examined as well. As a consequence, the real-time THz imaging with our InGaAs SBD array detector have been successfully obtained.

  6. Impact of high energy electron irradiation on high voltage Ni/4H-SiC Schottky diodes

    Science.gov (United States)

    Kozlovski, V. V.; Lebedev, A. A.; Levinshtein, M. E.; Rumyantsev, S. L.; Palmour, J. W.

    2017-02-01

    We report the results of the high energy (0.9 MeV) electron irradiation impact on the electrical properties of high voltage Ni/4H-SiC Schottky diodes. Within the range of the irradiation dose from 0.2 × 1016 cm-2 to 7 × 1016 cm-2, electron irradiation led to 6 orders of magnitude increase in the base resistance, appearance of slow relaxation processes at pico-ampere current range, and increase in the ideality factor.

  7. Transverse modes of a diode-laser pumped monolithic unidirectional non-planar ring laser

    Institute of Scientific and Technical Information of China (English)

    Keying Wu(吴克瑛); Suhui Yang(杨苏辉); Guanghui Wei(魏光辉)

    2003-01-01

    Diode-laser pumped monolithic single-frequency non-planar ring laser has the advantages of compactness,reliability and high efficiency. But when the pump power is high enough, the thermal effect will be seriousand the high-order transverse modes will appear. Therefore the single-mode output power is limited. Inthis paper, the mechanism of generating the high-order transverse modes in the monolithic unidirectionalnon-planar ring cavity is analyzed using ray tracing method. The calculated results are in agreement withthe experiments.

  8. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Science.gov (United States)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  9. High energy electron radiation effect on Ni and Ti/4H-SiC Schottky barrier diodes at room temperature

    Institute of Scientific and Technical Information of China (English)

    Zhang Lin; Zhang Yi-Men; Zhang Yu-Ming; Han Chao; Ma Yong-Ji

    2009-01-01

    This paper reports that Ni and Ti/4H-SiC Schottky barrier diodes (SBDs) were fabricated and irradiated with 1 MeV electrons up to a dose of 3.43×1014 e/cm2. After radiation, the Schottky barrier height φB of the Ni/4H-SiC SBD increased from 1.20 eV to 1.21 eV, but decreased from 0.95 eV to 0.94 eV for the Ti/4H-SiC SBD. The degradation of φB could be explained by interface states of changed Schottky contacts. The on-state resistance RS of both diodes increased with the dose, which can be ascribed to the radiation defects. The reverse current of the Ni/4H-SiC SBD slightly increased, but for the Ti/4H-SiC SBD it basically remained the same. At room temperature, φB of the diodes recovered completely after one week, and the RS partly recovered.

  10. The barrier-height inhomogeneity in identically prepared Ni/n-type 6H-SiC Schottky diodes

    Science.gov (United States)

    Duman, S.; Dogan, S.; Gürbulak, B.; Türüt, A.

    2008-05-01

    The effective barrier heights and ideality factors of identically fabricated Ni/n-type 6 H-SiC Schottky diodes (23 dots) have been calculated from their experimental forward bias current voltage (I V) and reverse bias capacitance voltage (C V) characteristics. A statistical study related to the experimental barrier heights (BHs) and ideality factors of the diodes has been made. The effective Schottky barrier heights (SBHs) and ideality factors obtained from the I V and C V characteristics have differed from diode to diode. The BHs obtained from the I V characteristics varied from 0.85 to 1.03 eV, the ideality factors varied from 1.13 to 1.40 and the BHs from C-2 V characteristics varied from 1.10 to 1.70 eV. The experimental BH and ideality factor distributions obtained from the I V characteristics are fitted by a Gaussian function, and their mean values are found to be 0.92±0.04 eV and 1.29±0.08 eV, respectively. The lateral homogeneous SBH value of 1.16 eV for the Ni/n-type 6H-SiC diodes has been calculated from a linear extrapolation of the effective barrier heights to nif=1.03.

  11. Current Transport Behaviour of Au/n-GaAs Schottky Diodes Grown on Ge Substrate With Different Epitaxial Layer Thickness Over a Wide Temperature Range

    Directory of Open Access Journals (Sweden)

    N. Padha

    2011-01-01

    Full Text Available The work presents temperature dependent forward and reverse current-voltage (I-V analyses of n-GaAs/Au Schottky Diodes grown on n+ Ge substrate with different epitaxial layer thicknesses. While some of the Schottky diodes follow TED mechanism, others exceed significantly from this theory due to existence of patches of reduced barrier height embedded in the Schottky interface. The zero bias barrier heights (φbo increase (0.649 to 0.809 eV while the ideality factors (η decrease (1.514 to 1.052 with increase in epitaxial layer thickness (1-4 μm, thus, indicating similar behaviour to that observed for the I-V characteristics of the undertaken Schottky diodes with decreasing temperature. It all indicated the existence of barrier inhomogenities over the M-S interface. The breakdown behaviour analysis of these diodes showed some interesting results; the breakdown voltage (VBR decreases with temperature and shows ‘Defect Assisted Tunneling’ phenomenon through surface or defect states in the 1 μm thick epitaxial layer Schottky diode while VBR increases with temperature in 3 μm and 4 μm thick epitaxial layer Schottky diodes which demonstrate ‘Avalanche Multiplication’ mechanism responsible for junction breakdown. The reverse breakdown voltage is also seen to increase (2.7-5.9 Volts with the increase in epitaxial layer thickness of the diodes. The undertaken diodes have been observed to follow TFE mechanism at low temperatures (below 200 K in which the tunneling current component increases with epitaxial layer thickness which has been ascribed as an impact of GaAs/Ge hetero-interface over the Au/n-GaAs Schottky barrier.

  12. Modification of electrical properties of Au/n-type InP Schottky diode with a high-k Ba0.6Sr0.4TiO3 interlayer

    Science.gov (United States)

    Thapaswini, P. Prabhu; Padma, R.; Balaram, N.; Bindu, B.; Rajagopal Reddy, V.

    2016-05-01

    Au/Ba0.6Sr0.4TiO3 (BST)/n-InP metal/insulator/semiconductor (MIS) Schottky diodes have been analyzed by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The surface morphology of the BST films on InP is fairly smooth. The Au/BST/n-InP MIS Schottky diode shows better rectification ratio and low leakage current compared to the conventional Au/n-InP metal-semiconductor (MS) Schottky diode. Higher barrier height is achieved for the MIS Schottky diode compared to the MS Schottky diode. The Norde and Cheung's methods are employed to determine the barrier height, ideality factor and series resistance. The interface state density (NSS) is determined from the forward bias I-V data for both the MS and MIS Schottky diodes. Results reveal that the NSS of the MIS Schottky diode is lower than that of the MS Schottky diode. The Poole-Frenkel emission is found dominating the reverse current in both Au/n-InP MS and Au/BST/n-InP MIS Schottky diodes, indicating the presence of structural defects and trap levels in the dielectric film.

  13. A Study of the Parasitic Properties of the Schottky Barrier Diode

    Science.gov (United States)

    Ren, Tianhao; Zhang, Yong; Liu, Shuang; Guo, Fangzhou; Jin, Zhi; Zhou, Jingtao; Yang, Chengyue

    2016-09-01

    In this paper, we present a newly designed parameter extraction method of the Schottky barrier diode (SBD) with the purpose of measuring and studying its parasitic properties. This method includes three kinds of auxiliary configurations and is named as three-configuration parameter extraction method (TPEM). TPEM has such features as simplicity of operation, self-consistence, and accuracy. With TPEM, the accurate parasitic parameters of the diode can be easily obtained. Taking a GaAs SBD as an example, the pad-to-pad capacitance is 7 fF, the air-bridge finger self-inductance 11 pH, the air-bridge finger self-resistance 0.6 Ω, and the finger-to-pad capacitance 2.1 fF. A more accurate approach to finding the value of the series resistant of the SBD is also proposed, and then a complete SBD model is built. The evaluation of the modeling technology, as well as TPEM, is implemented by comparing the simulated and measured I-V curves and the S-parameters. And good agreements are observed. By using TPEM, the influence of the variation of the geometric parameters is studied, and several ways to reduce the parasitic effect are presented. The results show that the width of the air-bridge finger and the length of the channel are the two largest influencing parameters, with the normalized impact factors 0.56 and 0.29, respectively. By using TPEM and the modeling technology presented in this paper, a design process of the SBD is proposed. As an example, a type of SBD suitable for 500-600 GHz zero-biased detection is designed, and the agreement between the simulated and measured results has been improved. SBDs for other applications could be designed in a similar way.

  14. A Study of the Parasitic Properties of the Schottky Barrier Diode

    Science.gov (United States)

    Ren, Tianhao; Zhang, Yong; Liu, Shuang; Guo, Fangzhou; Jin, Zhi; Zhou, Jingtao; Yang, Chengyue

    2017-02-01

    In this paper, we present a newly designed parameter extraction method of the Schottky barrier diode (SBD) with the purpose of measuring and studying its parasitic properties. This method includes three kinds of auxiliary configurations and is named as three-configuration parameter extraction method (TPEM). TPEM has such features as simplicity of operation, self-consistence, and accuracy. With TPEM, the accurate parasitic parameters of the diode can be easily obtained. Taking a GaAs SBD as an example, the pad-to-pad capacitance is 7 fF, the air-bridge finger self-inductance 11 pH, the air-bridge finger self-resistance 0.6 Ω, and the finger-to-pad capacitance 2.1 fF. A more accurate approach to finding the value of the series resistant of the SBD is also proposed, and then a complete SBD model is built. The evaluation of the modeling technology, as well as TPEM, is implemented by comparing the simulated and measured I-V curves and the S-parameters. And good agreements are observed. By using TPEM, the influence of the variation of the geometric parameters is studied, and several ways to reduce the parasitic effect are presented. The results show that the width of the air-bridge finger and the length of the channel are the two largest influencing parameters, with the normalized impact factors 0.56 and 0.29, respectively. By using TPEM and the modeling technology presented in this paper, a design process of the SBD is proposed. As an example, a type of SBD suitable for 500-600 GHz zero-biased detection is designed, and the agreement between the simulated and measured results has been improved. SBDs for other applications could be designed in a similar way.

  15. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    Science.gov (United States)

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta'Ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-07-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.

  16. Optimization of chemical structure of Schottky-type selection diode for crossbar resistive memory.

    Science.gov (United States)

    Kim, Gun Hwan; Lee, Jong Ho; Jeon, Woojin; Song, Seul Ji; Seok, Jun Yeong; Yoon, Jung Ho; Yoon, Kyung Jean; Park, Tae Joo; Hwang, Cheol Seong

    2012-10-24

    The electrical performances of Pt/TiO(2)/Ti/Pt stacked Schottky-type diode (SD) was systematically examined, and this performance is dependent on the chemical structures of the each layer and their interfaces. The Ti layers containing a tolerable amount of oxygen showed metallic electrical conduction characteristics, which was confirmed by sheet resistance measurement with elevating the temperature, transmission line measurement (TLM), and Auger electron spectroscopy (AES) analysis. However, the chemical structure of SD stack and resulting electrical properties were crucially affected by the dissolved oxygen concentration in the Ti layers. The lower oxidation potential of the Ti layer with initially higher oxygen concentration suppressed the oxygen deficiency of the overlying TiO(2) layer induced by consumption of the oxygen from TiO(2) layer. This structure results in the lower reverse current of SDs without significant degradation of forward-state current. Conductive atomic force microscopy (CAFM) analysis showed the current conduction through the local conduction paths in the presented SDs, which guarantees a sufficient forward-current density as a selection device for highly integrated crossbar array resistive memory.

  17. Comprehensive study on hydrogen sensing properties of a Pd-AlGaN-based Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Tsung-Han; Hung, Ching-Wen; Hsu, Chia-Hao; Chen, Li-Yang; Chu, Kuei-Yi; Liu, Wen-Chau [Department of Electrical Engineering, Institute of Microelectronics, National Cheng-Kung University, 1 University Road, Tainan 70101 (China); Chen, Huey-Ing [Department of Chemical Engineering, National Cheng-Kung University, 1 University Road, Tainan 70101 (China); Lin, Kun-Wei [Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung County (China)

    2008-06-15

    In this work, the temperature dependences of a Pd/AlGaN Schottky diode-type hydrogen sensor are investigated. The effects of temperature on parameters such as breakdown voltage, response time, and series resistance are presented. Experimentally, under a fixed current bias of -2 x 10{sup -5} A a reverse voltage response as high as 6 V is observed. The hydrogen adsorption effect also exhibits influences on the series resistance which is decreased by 18 {omega} upon exposing to hydrogen gas at 200 C. Besides, the ideality factor n shows a decreasing trend with the introduction of hydrogen gas. The voltage dependence on sensor performance is also studied. By increasing the voltage from 0.35 to 1 V, the response time is decreased by 15 s under the 1010 ppm H{sub 2}/air gas. Furthermore, based on the kinetic adsorption analysis the rate constant k{sub r} increases from 6.22 x 10{sup -1} to 1.54 s{sup -1} at 300 C with exposing to 99.4 and 9660 ppm H{sub 2}/air gases, respectively. Therefore, on the basis of the compatibility with AlGaN-based microwave devices, the studied Pd/AlGaN hydrogen sensor shows the promise for fabricating the on-chip wireless senor systems. (author)

  18. Graphene/Silicon heterojunction Schottky diode for vapors sensing using impedance spectroscopy.

    Science.gov (United States)

    Fattah, Ali; Khatami, Saeid; Mayorga-Martinez, Carmen C; Medina-Sánchez, Mariana; Baptista-Pires, Luis; Merkoçi, Arben

    2014-10-29

    A graphene(G)/Silicon(Si) heterojunction Schottky diode and a simple method that evaluates its electrical response to different chemical vapors using electrochemical impedance spectroscopy (EIS) are implemented. To study the impedance response of the device of a given vapor, relative impedance change (RIC) as a function of the frequency is evaluated. The minimum value of RIC for different vapors corresponds to different frequency values (18.7, 12.9 and 10.7 KHz for chloroform, phenol, and methanol vapors respectively). The impedance responses to phenol, beside other gases used as model analytes for different vapor concentrations are studied. The equivalent circuit of the device is obtained and simplified, using data fitting from the extracted values of resistances and capacitances. The resistance corresponding to interphase G/Si is used as a parameter to compare the performance of this device upon different phenol concentrations and a high reproducibility with a 4.4% relative standard deviation is obtained. The efficiency of the device fabrication, its selectivity, reproducibility and easy measurement mode using EIS makes the developed system an interesting alternative for gases detection for environmental monitoring and other industrial applications.

  19. Surface Passivation of Ti/4H-SiC Schottky Barrier Diode

    Institute of Scientific and Technical Information of China (English)

    Muhammad Khalid; Saira Riaz; Shahzad Naseem

    2012-01-01

    Surface properties of SiC power devices mostly depend on the passivation layer (PL).This layer has direct influence on electrical characteristics of devices.2D numerical simulation of forward and reverse characteristics with and without different (PLs) (SiO2,HfO2 and Si3N4) has been performed.Simulation results show that the breakdown voltage increases with increasing PL thickness,and there is a lesser significant effect on forward characteristics.The maximum breakdown voltage with and without SiO2 PL is 1240 V and 276 V,respectively.SiO2 PL has compatibility with SiC surface providing high breakdown voltage,6 and 8% higher than that of HfO2 and Si3N4 respectively.Low leakage current is observed which then further decreases on reducing the thickness of PL.Furthermore,variation of forward current with dielectric constant and thickness of PLs was observed.Finally,it is suggested that matches of our results with published experimental results indicate that the Sentaurus TCAD simulator is a predictive tool for the SiC Schottky barrier diode simulation.

  20. Spin-dependent electrical conduction in a pentacene Schottky diode explored by electrically detected magnetic resonance

    Science.gov (United States)

    Fukuda, Kunito; Asakawa, Naoki

    2017-02-01

    Reported is the observation of dark spin-dependent electrical conduction in a Schottky barrier diode with pentacene (PSBD) using electrically detected magnetic resonance at room temperature. It is suggested that spin-dependent conduction exists in pentacene thin films, which is explored by examining the anisotropic linewidth of the EDMR signal and current density-voltage (J-V) measurements. The EDMR spectrum can be decomposed to Gaussian and Lorentzian components. The dependency of the two signals on the applied voltage was consistent with the current density-voltage (J-V) of the PSBD rather than that of the electron-only device of Al/pentacene/Al, indicating that the spin-dependent conduction is due to bipolaron formation associated with hole polaronic hopping processes. The applied-voltage dependence of the ratio of intensity of the Gaussian line to the Lorentzian may infer that increasing current density should make conducting paths more dispersive, thereby resulting in an increased fraction of the Gaussian line due to the higher dispersive g-factor.

  1. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    Science.gov (United States)

    Al-Ta'Ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-05-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors.

  2. High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

    Science.gov (United States)

    Zheng, Liu; Zhang, Feng; Liu, Sheng-Bei; Dong, Lin; Liu, Xing-Fang; Fan, Zhong-Chao; Liu, Bin; Yan, Guo-Guo; Wang, Lei; Zhao, Wan-Shun; Sun, Guo-Sheng; He, Zhi; Yang, Fu-Hua

    2013-09-01

    4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm2 with a total active area of 2.46 × 10-3 cm2. Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250°C in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9 × 10-5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure.

  3. Effect of thermal treatment on the characteristics of iridium Schottky barrier diodes on n-Ge (1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, A., E-mail: albert.chawanda@up.ac.za [Department of Physics, University of Pretoria, 0002 (South Africa); Department of Physics, Midlands State University, Bag 9055, Gweru (Zimbabwe); Coelho, S.M.M.; Auret, F.D.; Mtangi, W. [Department of Physics, University of Pretoria, 0002 (South Africa); Nyamhere, C. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Nel, J.M.; Diale, M. [Department of Physics, University of Pretoria, 0002 (South Africa)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Ir/n-Ge (1 0 0) Schottky diodes were characterized using I-V, C-V and SEM techniques under various annealing conditions. Black-Right-Pointing-Pointer The variation of the electrical and structural properties can be due to effects phase transformation during annealing. Black-Right-Pointing-Pointer Thermal stability of these diodes is maintained up to 500 Degree-Sign C anneal. Black-Right-Pointing-Pointer SEM results depicts that the onset temperature for agglomeration in 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C. - Abstract: Iridium (Ir) Schottky barrier diodes were deposited on bulk grown (1 0 0) Sb-doped n-type germanium by using the electron beam deposition system. Electrical characterization of these contacts using current-voltage (I-V) and capacitance-voltage (C-V) measurements was performed under various annealing conditions. The variation of the electrical properties of these Schottky diodes can be attributed to combined effects of interfacial reaction and phase transformation during the annealing process. Thermal stability of the Ir/n-Ge (1 0 0) was observed up to annealing temperature of 500 Degree-Sign C. Furthermore, structural characterization of these samples was performed by using a scanning electron microscopy (SEM) at different annealing temperatures. Results have also revealed that the onset temperature for agglomeration in a 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C.

  4. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  5. Resonant-cavity based monolithic white light-emitting diode

    Science.gov (United States)

    Huang, Lirong; Huang, Dexiu; Wen, Feng

    2007-11-01

    We propose a new scheme of resonant-cavity (RC) based monolithic white LED, it relaxes the hard requirement of high internal quantum efficiency of yellow multi-quantum (MQW) and offers an easy way to obtain high luminous efficacy white light emission. In the proposed white LED, the blue MQW and yellow MQW active layer are embedded in a resonant-cavity defined by the bottom distributed Bragg reflector(DBR) and top DBR. For a optimal design of RC-based white LED, the extraction efficiency for yellow light is enhanced, while that for blue light is suppressed, thus intensity ratio of yellow light in the emitting light is increased, which not only helps to obtain white emission in spite of the low internal quantum efficiency of yellow light, but also doubles luminous efficacy. The color coordinates and luminous flux of the emitting light from RC-based white LED are calculated and the performance dependence on directionality is investigated.

  6. Using Atom-Probe Tomography to Understand Zn O ∶Al /SiO 2/Si Schottky Diodes

    Science.gov (United States)

    Jaramillo, R.; Youssef, Amanda; Akey, Austin; Schoofs, Frank; Ramanathan, Shriram; Buonassisi, Tonio

    2016-09-01

    We use electronic transport and atom-probe tomography to study Zn O ∶Al /SiO 2/Si Schottky diodes on lightly doped n - and p -type Si. We vary the carrier concentration in the ZnO ∶Al films by 2 orders of magnitude, but the Schottky barrier height remains nearly constant. Atom-probe tomography shows that Al segregates to the interface, so that the ZnO ∶Al at the junction is likely to be metallic even when the bulk of the ZnO ∶Al film is semiconducting. We hypothesize that the observed Fermi-level pinning is connected to the insulator-metal transition in doped ZnO. This implies that tuning the band alignment at oxide/Si interfaces may be achieved by controlling the transition between localized and extended states in the oxide, thereby changing the orbital hybridization across the interface.

  7. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q., E-mail: qingyang@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027 (China); Hasan, T. [Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecture offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.

  8. Effect of temperature on the carrier transport property of 4H-SiC based Schottky barrier diode

    Directory of Open Access Journals (Sweden)

    TONG Wulin

    2015-08-01

    Full Text Available In this paper,the current-voltage (I-V measurement under different temperatures was carried out on the 4H-SiC Schottky barrier diode (SBD purchased from Cree Inc.The carrier transport mechanism and the temperature effect of SBD were investigated through the theoretical simulation based on the experimental data.The Schottky barrier height is decreased and leakage current is increased sharply for SBD when the temperatures are increased.The SBD forward bias obeys the hot electron emission mechanism.Taking the image force correction and tunneling effect into consideration,the high leakage current under reverse bias can be reasonably explained and is good agreement with the experiment results.

  9. 6H-SiC Schottky diode edge terminated using amorphous SiC by sputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K.; Chen, Y.; Kuzmik, J.; Nishino, S. [Kyoto Inst. of Tech. (Japan). Dept. of Electronics and Information Science

    1998-08-01

    In this paper, we describe the experimental methods and the results on the evaluation of the Schottky barrier which is formed by vacuum-evaporation aluminum on chemically etched n-type 6H-SiC. And we report the effects of edge termination of amorphous SiC using reactive ion etching (RIE) and sputtering method. Edge termination was done by amorphous SiC in the trench etched by RIE using CF4 and O2. Amorphous SiC was formed by sputtering poly-SiC. Schottky barrier diodes have higher breakdown voltage at 300 V and lower leakage current than those without the edge termination. (orig.) 4 refs.

  10. Progress Toward a Monolithically Integrated Coherent Diode Laser Array.

    Science.gov (United States)

    1981-02-20

    B-i C. DBR AND ACTIVE-PASSIVE LASER FABRICATION PROCEDURE ............... C-I D. ELECTROCHEMICAL DEPOSITION OF OHMIC CONTACTS FOR DIODE... LASER FABRICATION PROCEDURE C.1 SAMPLE EXAMINATION 1. Etch sample in 1:1:8 A-B etch (A:B:H 20 mp) for 5 sec. 2. Photograph all four corners of sample to...GaAlAs waveguide att ,uation coeffi- cients; 1 6 the assumption that K remains the same for both DBRs simplifies con- siderably the actual DBR laser

  11. Current-voltage characteristics and charge DLTS spectra of proton-bombarded Schottky diodes on semi-insulating GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Thurzo, I. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia)); Hrubcin, L. (Inst. of Electrical Engineering, Slovak Academy of Sciences, Bratislava (Slovakia)); Bartos, J. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia)); Pincik, E. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia))

    1993-10-01

    Changes in the current-voltage characteristics and charge DLTS spectra of Schottky diodes on semi-insulating GaAs after irradiation by protons at different energies and doses are presented and discussed. Apart from a progressive degradation of the Schottky barriers with enhanced proton energy and dose, there is a threshold, positioned between 10[sup 14] and 10[sup 15] protons/cm[sup 2], for observing trap-limited transients. (orig.)

  12. 60Co gamma irradiation effects on the the capacitance and conductance characteristics of Au/PMI/n-Si Schottky diodes

    Science.gov (United States)

    Tuğluoğlu, N.; Karadeniz, S.; Yüksel, Ö. F.; Şafak, H.; Kuş, M.

    2015-08-01

    In this work, the perylene-monoimide/n-Si (100) Schottky structures have been fabricated by spin coating process. We have studied the capacitance-voltage ( C- V) and conductance-voltage ( G- V) characteristics of the Au/perylene-monoimide/n-Si diodes at 500 kHz before and after 60Co γ-ray irradiation. The effects of 60Co γ -ray irradiation on the electrical characteristics of a perylene-monoimide/n-Si Schottky diode have been investigated. A decrease both in the capacitance and conductance has been observed after 60Co γ -ray irradiation. This has been attributed to a decrease in the net ionized dopant concentration that occurred as a result of 60Co γ-ray irradiation. Some contact parameters such as barrier height (Φ B ) interface state density ( N ss ) and series resistance ( R s ) have been calculated from the C- V and G- V characteristics of the diode before and after irradiation. It has been observed that the Φ B and N ss values are decreased after the applied radiation, while the R s value is increased.

  13. Schottky barrier height of Ni/TiO2/4H-SiC metal-insulator-semiconductor diodes

    Science.gov (United States)

    Kaufmann, Ivan R.; Pereira, Marcelo B.; Boudinov, Henri I.

    2015-12-01

    Ni/TiO2/4H-SiC diodes were analysed through measurements of current-voltage curves varying the temperature. The Schottky Barrier Height (SBH) which increased with temperature was studied by simulation of the Thermionic Emission Model, considering Ni/SiC Schottky structures with an insulator layer between the metal and semiconductor. This model shows that a new method of calculation should be applied to diodes that have a metal-insulator-semiconductor structure. Misleading results for SBH are obtained if the thin insulator layer is not considered. When applying the suggested method to the Ni/TiO2/4H-SiC diodes it was necessary to consider not only the deposited TiO2 layer, but also a second dielectric layer of native SiCxOy at the surface of SiC. By measuring I-V-T curves for two samples with different thicknesses of TiO2, the suggested method allows one to estimate the thicknesses of both dielectric layers: TiO2 and SiOxCy.

  14. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    Science.gov (United States)

    Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J.

    2013-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University’s Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm – 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H+), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles (4He++). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms. PMID:24058378

  15. Theoretical Analysis of Current Crowding Effect in Metal/AlGaN/GaN Schottky Diodes and Its Reduction by Using Polysilicon in Anode

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-Rong; HAN Qi-Feng; DUAN Cheng-Hong; ZHOU Xiu-Ju; CHEN Wen-Jin; WANG Yu-Qi; QIU Kai; LI Xin-Hua; ZHONG Fei; YIN Zhi-Jun; JI Chang-Jian; CAO Xian-Cun

    2007-01-01

    There exists a current crowding effect in the anode of A1GaN/GaN heteto junction Schottky diodes, causing local overheating when working at high power density, and undermining their performance. The seriousness of this effect is illustrated by theoretical analysis. A method of reducing this effect is proposed by depositing a polysilicon layer on the Schottky barrier metal. The effectiveness of this method is provided through computer simulation.Power consumption of the polysilicon layer is also calculated and compared to that of the Schottky junction to ensure the applicability of this method.

  16. Barrier height enhancement of InP-based n-Ga(0.47)In(0.53)As Schottky-barrier diodes grown by molecular beam epitaxy

    Science.gov (United States)

    Kim, J. H.; Li, S. S.; Figueroa, L.

    1988-01-01

    Barrier height enhancement of an InP-based p(+)n-Ga(0.47)In(0.53)As Schottky diode grown by MBE has been demonstrated for infra-red photodetector applications. A barrier height of 0.35 eV for n-Ga(0.47)In(0.53)As Schottky barrier diodes, was increased to the effective barrier height of 0.55 eV, with a p(+)-Ga(0.47)In(0.53)As surface layer of 30 nm thick. The results show a reverse leakage current density of 0.0015 A/sq cm and a junction capacitance of 0.3 pF, which are comparable to those of p-Ga(0.47)In(0.53)As Schottky-barrier diodes at a reverse bias voltage of 5 V.

  17. W-band photonic-wireless link with a Schottky diode envelope detector and bend insensitive fiber

    DEFF Research Database (Denmark)

    Rommel, Simon; Cavalcante, Lucas Costa Pereira; Quintero, Alexander Galvis;

    2016-01-01

    The performance and potential of a W-band radio-over-fiber link is analyzed, including a characterization of the wireless channel. The presented setup focuses on minimizing complexity in the radio frequency domain, using a passive radio frequency transmitter and a Schottky diode based envelope...... detector. Performance is experimentally validated with carriers at 75–87GHz over wireless distances of 30–70m. Finally the necessity for and impact of bend insensitive fiber for on-site installation are discussed and experimentally investigated....

  18. Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes

    Science.gov (United States)

    Kasu, Makoto; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oshima, Takayoshi; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu

    2016-12-01

    We fabricated Schottky barrier diodes (SBDs) on the entire surface of a (0\\bar{1}0) β-Ga2O3 single crystal, and investigated the leakage current in both forward and reverse directions. Subsequently, we investigated the distribution of dislocation and void etch pits on the entire surface. The dislocation etch pit density on the surface ranged from void etch pit density on the surface ranged from void etch pit densities, we found that dislocations are closely related to the SBD reverse leakage current, and that not all voids produce the leakage current.

  19. Performance Evaluation of Split Output Converters with SiC MOSFETs and SiC Schottky Diodes

    OpenAIRE

    Yan, Qingzeng; Yuan, Xibo; Geng, Yiwen; Charalambous, Apollo; Wu, Xioajie

    2017-01-01

    The adoption of silicon carbide (SiC) MOSFETS and SiC Schottky diodes in power converters promises a further improvement of the attainable power density and system efficiency, while it is restricted by several issues caused by the ultra-fast switching, such as phase-leg shoot-through (‘crosstalk’ effect), high turn-on losses, electromagnetic interference (EMI), etc. This paper presents a split output converter which can overcome the limitations of the standard two-level voltage source convert...

  20. Correlation of EBIC and SWBXT Imaged Defects and Epilayer Growth Pits in 6H-SiC Schottky Diodes

    Science.gov (United States)

    Schnable, C. M.; Tabib-Azar, M.; Neudeck, P. G.; Bailey, S. G.; Su, H. B.; Dudley, M.; Raffaelle, R. P.

    2000-01-01

    We show the first direct experimental correlation between the presence of closed core screw dislocations in 6H-SiC epilayers with recombination centers, as well as with some of the small growth pits on the epilayer surface in lightly-doped 6H-SiC Schottky diodes. At every Synchrotron White-Beam X-ray Topography (SWBXT)-identified closed core screw dislocation, an Electron Beam Induced Current (EBIC) image showed a dark spot indicating a recombination center, and Nomarski optical microscope and Atomic Force Microscope (AFM) images showed a corresponding small growth pit with a sharp apex on the surface of the epilayer.

  1. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2011-08-01

    Full Text Available A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT structure. Current-voltage (I-V measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  2. Monolithic photonic integration of suspended light emitting diode, waveguide and photodetector

    CERN Document Server

    Wang, Yongjin; Gao, Xumin; Cai, Wei; Xu, Yin; Yuan, Jialei; Zhu, Guixia; Yang, Yongchao; Cao, Xun; Zhu, Hongbo; Gruenberg, Peter

    2015-01-01

    We report here a monolithic photonic integration of light emitting diode (LED) with waveguide and photodetector to build a highly-integrated photonic system to perform functionalities on the GaN-on-silicon platform. Suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) are used for device fabrication. Part of the LED emission is coupled into suspended waveguide and then, the guided light laterally propagates along the waveguide and is finally sensed by the photodetector. Planar optical communication experimentally demonstrates that the proof-of-concept monolithic photonic integration system can achieve the on-chip optical interconnects. This work paves the way towards novel active electro-optical sensing system and planar optical communication in the visible range.

  3. Phosphor-Free, Color-Tunable Monolithic InGaN Light-Emitting Diodes

    Science.gov (United States)

    Li, Hongjian; Li, Panpan; Kang, Junjie; Li, Zhi; Li, Zhicong; Li, Jing; Yi, Xiaoyan; Wang, Guohong

    2013-10-01

    We have demonstrated phosphor-free color-tunable monolithic GaN-based light-emitting diodes (LEDs) by inserting an ultrathin 1-nm-thick InGaN shallow quantum well (QW) between deep InGaN QWs and GaN barriers. Without using any phosphors, this monolithic LED chip can be tuned to realize wide-range multicolor emissions from red to yellow under different injection currents. In partical, when the injection current reaches an upper level above 100 mA, the LEDs will achieve white emission with a very high color rending index (CRI) of 85.6. This color-tunable characteristic is attributed to the carrier redistribution in the shallow/deep QWs and the energy band filling effect as well.

  4. Structural, morphological, optical and electrical properties of Schottky diodes based on CBD deposited ZnO:Cu nanorods

    Science.gov (United States)

    Mwankemwa, Benard S.; Legodi, Matshisa J.; Mlambo, Mbuso; Nel, Jackie M.; Diale, Mmantsae

    2017-07-01

    Undoped and copper doped zinc oxide (ZnO) nanorods have been synthesized by a simple chemical bath deposition (CBD) method at a temperature of 90 °C. Structural, morphological, optical and electrical properties of the synthesized ZnO nanorods were found to be dependent on the Cu doping percentage. X-ray diffraction (XRD) patterns revealed strong diffraction peaks of hexagonal wurtzite of ZnO, and no impurity phases from metallic zinc or copper. Scanning electron microscopy (SEM) images showed changes in diameter and shape of nanorods, where by those doped with 2 at.% and 3 at.% aggregated and became compact. Selected area electron diffraction (SAED) patterns indicates high quality, single crystalline wurtzite structure ZnO and intensities of bright spots varied with copper doping concentration. UV-visible absorption peaks of ZnO red shifted with increasing copper doping concentration. Raman studies demonstrated among others, strong and sharp E2 (low) and E2 (high) optical phonon peaks confirming crystal structure of ZnO. Current-voltage measurements based on the gold/ZnO nanorods/ITO showed good rectifying behavior of the Schottky diode. The predicted Schottky barrier height of 0.60 eV was obtained which is not far from the theoretical Schottky-Mott value of 0.80 eV.

  5. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner.

    Science.gov (United States)

    Han, Sang-Pil; Ko, Hyunsung; Park, Jeong-Woo; Kim, Namje; Yoon, Young-Jong; Shin, Jun-Hwan; Kim, Dae Yong; Lee, Dong Hun; Park, Kyung Hyun

    2013-11-04

    We present a terahertz (THz) broadband antenna-integrated 1 × 20 InGaAs Schottky barrier diode (SBD) array detector with an average responsivity of 98.5 V/W at a frequency of 250 GHz, which is measured without attaching external amplifiers and Si lenses, and an average noise equivalent power (NEP) of 106.6 pW/√Hz. The 3-dB bandwidth of the SBD detector is also investigated at approximately 180 GHz. For implementing an array-type SBD detector by a simple fabrication process to achieve a high yield, a structure comprising an SiN(x) layer instead of an air bridge between the anode and the cathode is designed. THz line beam imaging using a Gunn diode emitter with a center frequency of 250 GHz and a 1 × 20 SBD array detector is successfully demonstrated.

  6. Electronic transport for graphene/n-type Si Schottky diodes with and without H{sub 2}O{sub 2} treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian-Huang; Zeng, Jian-Jhou; Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw

    2014-01-01

    Developing better contacts on Si is one of the main challenges for Si-based device technology. The present work reports the fabrication and detailed electrical properties of graphene/n-type Si Schottky diodes. The graphene/n-type Si Schottky diode without H{sub 2}O{sub 2} treatment shows a poor rectifying behavior with an ideality factor (η) of 3.5 and high leakage. η > 2 implies that the interfacial defects influence the electronic conduction through the device. However, the graphene/n-type Si Schottky diode with H{sub 2}O{sub 2} treatment shows a good rectifying behavior with η of 1.9 and low leakage. Such an improvement indicates that a good passivation is formed at the interface as a result of the reduction of the defect density. These experimental demonstrations suggest that it may be possible to minimize the adverse effects of the interface states to obtain functional devices using H{sub 2}O{sub 2} treatment. - Highlights: • The electrical properties of graphene/n-Si Schottky diodes were researched. • The graphene/H{sub 2}O{sub 2}-treated n-Si diode showed a good rectifying behavior. • The enhanced responsivity can be interpreted by the device rectifying performance. • More hydrophilic surface is in favor of the wet graphene sheet contact to n-Si.

  7. Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodes

    Science.gov (United States)

    Parihar, Usha; Ray, Jaymin; Panchal, C. J.; Padha, Naresh

    2016-06-01

    Al/p-CuInAlSe2 Schottky diodes were fabricated using the optimized thin layers of CuInAlSe2 semiconductor. These diodes were used to study their temperature-dependent current-voltage (I-V) and capacitance-voltage (C-V) analysis over a wide range of 233-353 K. Based on these measurements, diode parameters such as ideality factor ( η), barrier height (ϕbo) and series resistance ( R s) were determined from the downward curvature of I-V characteristics using Cheung and Cheung method. The extracted parameters were found to be strongly temperature dependent; ϕbo increases, while η and R s decrease with increasing temperature. This behavior of ϕbo and η with change in temperature has been explained on the basis of barrier inhomogeneities over the MS interface by assuming a Gaussian distribution (GD) of the ϕbo at the interface. GD of barrier height (BH) was confirmed from apparent BH (ϕap) versus q/2 kT plot, and the values of the mean BH and standard deviation (σs) obtained from this plot at zero bias were found to be 1.02 and 0.14 eV, respectively. Also, a modified ln ( {J_{{s}} /T2 } ) - q2 σ_{{s}}2 /2k2 T2 versus q/ kT plot for Al/p-CuInAlSe2 Schottky diodes according to the GD gives ϕbo and Richardson constant ( A ** ) as 1.01 eV and 26 Acm-2 K-2, respectively. The Richardson constant value of 26 Acm-2 K-2 is very close to the theoretical value of 30 Acm-2 K-2. The discrepancy between BHs obtained from I-V and C-V measurements has also been interpreted.

  8. InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate.

    Science.gov (United States)

    Jiang, Qi; Tang, Mingchu; Chen, Siming; Wu, Jiang; Seeds, Alwyn; Liu, Huiyun

    2014-09-22

    We report the first InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) monolithically grown on a Ge substrate by molecular beam epitaxy. The QD SLD exhibits a 3 dB emission bandwidth of ~60 nm centered at 1252 nm with output power of 27 mW at room temperature. The 3 dB bandwidth is very stable over the temperature range from 20 °C to 100 °C, which highlights the potential for integration with high performance ICs.

  9. Electrical Characteristics of Co/n-Si Schottky Barrier Diodes Using I-V and C-V Measurements

    Institute of Scientific and Technical Information of China (English)

    G.Gfüler; (O).Güllü; (S).Karata(s); (O).F.Bakkalo(g)lu

    2009-01-01

    Electrical characteristics of Co/n-Si Schottky barrier diodes are analysed by current-voltage (I- V) and capacitancevoltage (C-V) techniques at room temperature.The electronic parameters such as ideality factor,barrier height and average series resistance are determined.The barrier height 0.76 eV obtained from the C-V measurements is higher than that of the value 0.70 eV obtained from the I-V measurements.The series resistance Rs and the ideality factor n are determined from the d ln( I ) / dV plot and are found to be 193.62Ω and 1.34,respectively.The barrier height and the Rs value are calculated from the H(I) - I plot and are found to be 0.71 eV and 205.95Ω.Furthermore,the energy distribution of the interface state density is determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height.The interface state density Nss ranges from 6.484×1011 cm-2eV-1 in (Ec-0.446) eV to 2.801×1010 cm-2eV-1 in (Ec-0.631) eV,of the Co/n-Si Schottky barrier diode.The results show the presence of a thin interracial layer between the metal and the semiconductor.

  10. Schottky diodes between Bi{sub 2}S{sub 3} nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sudip K.; Pal, Amlan J., E-mail: sspajp@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-07-07

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi{sub 2}S{sub 3} nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi{sub 2}S{sub 3} nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells.

  11. Control of pn-junction turn-on voltage in 4H-SiC merged PiN Schottky diode

    Science.gov (United States)

    Park, Junbo; Park, Kun-Sik; Won, Jong-il; Kim, Ki-hwan; Koo, Sangmo; Kim, Sang-gi; Mun, Jae-Kyoung

    2017-04-01

    We present numerical simulation results and experimental measurements that explain the physical mechanism behind the high critical voltage, Vcrit, required to turn on a pn junction in a merged PiN Schottky (MPS) diode. The 2D simulation of potential distribution within a unit MPS cell demonstrated that the potential gradient set by the Schottky junction raises the potential barrier formed at the pn junction, thereby increasing Vcrit. Based on this knowledge, we propose that changing the ratio of the Schottky contact and the p+ region area, as well as shallow p-doping of the Schottky interface, can be used to control the magnitude of Vcrit. We present simulation and measurement results that demonstrate the feasibility of our approach.

  12. External quantum efficiency of Pt/n-GaN Schottky diodes in the spectral range 5-500nm

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, Shahid [Raytheon ITSS, 4400 Forbes Boulevard, Lanham, MD 20706 (United States) and Goddard Space Flight Center, NASA, Bld. 11, Rm E015, Greenbelt, MD 20771 (United States)]. E-mail: saslam@pop200.gsfc.nasa.gov; Vest, Robert E. [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States); Franz, David [Raytheon ITSS, 4400 Forbes Boulevard, Lanham, MD 20706 (United States); Goddard Space Flight Center, NASA, Bld. 11, Rm E015, Greenbelt, MD 20771 (United States); Yan Feng [Raytheon ITSS, 4400 Forbes Boulevard, Lanham, MD 20706 (United States); Goddard Space Flight Center, NASA, Bld. 11, Rm E015, Greenbelt, MD 20771 (United States); Zhao Yuegang [Keithley Instruments, Inc., 30500 Bainbridge Rd., Cleveland, OH 44139-2216 (United States); Mott, Brent [Goddard Space Flight Center, NASA, Bld. 11, Rm E015, Greenbelt, MD 20771 (United States)

    2005-02-21

    The external quantum efficiency in the spectral wavelength range 5-500nm of a large active area Pt/n-type GaN Schottky photodiode that exhibits low reverse bias leakage current, is reported. The Schottky photodiodes were fabricated from n{sup -}/n{sup +} epitaxial layers grown by low pressure metalorganic vapour phase epitaxy on single crystal c-plane sapphire. The current-voltage (I-V) characteristics of several 0.25cm{sup 2} devices are presented together with the capacitance-voltage (C-V) characteristics of one of these devices. A leakage current as low as 14 pA at 0.5V reverse bias is reported, for a 0.25cm{sup 2} diode. The ultraviolet quantum efficiency measurements show that the diodes can be used as radiation hard detectors for the 5-365nm spectral range without the use of visible blocking filters. A peak responsivity of 77.5mA/W at 320nm is reported for one of the fabricated devices, corresponding to a spectral detectivity, D*=1.5x10{sup 14}cmHz{sup 1/2}W{sup -1}. The average detectivity between 250 and 350nm, for the same device, is reported to be D-bar*=1.3x10{sup 14}cmHz{sup 1/2}W{sup -1}. The spatial responsivity uniformity variation was established, using H{sub 2} Lyman-{alpha} radiation, to be +/-3% across the surface of a typical 0.25cm{sup 2} diode.

  13. Study of barrier inhomogeneities using I–V–T characteristics of Mo/4H–SiC Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Ouennoughi, Z. [Laboratoire optoélectronique et composants, Department of Physics, Sétif (Algeria); Toumi, S., E-mail: sihem.toumi@gmail.com [Laboratoire optoélectronique et composants, Department of Physics, Sétif (Algeria); Weiss, R. [FIIS, Schottkystrasse 10, 91058 Erlangen (Germany)

    2015-01-01

    In the present work we investigate the forward current–voltage (I–V) characteristics, over a wide temperature range 298–498 K, of Mo/4H–SiC Schottky diode for which aluminum ion implantation was used to create the high resistivity layer forming the guard ring. The (I–V) analysis based on Thermionic Emission (TE) theory shows a decrease of the barrier height ϕ{sub B} and an increase of the ideality factor n when the temperature decreases. These anomalies are mainly due to the barrier height inhomogeneities at the metal/semiconductor interface as we get a Gaussian distribution of the barrier heights when we plot the apparent barrier height ϕ{sub ap} versus q/2kT. The mean barrier height and the standard deviation obtained values are ϕ{sup ¯}{sub B0}=1.160 eV and σ{sub 0}=88.049 mV, respectively. However, by means of the modified Richardson plot Ln(I{sub s}/T{sup 2})−(q{sup 2}σ{sub 0}{sup 2}/2k{sup 2}T{sup 2}) versus q/kT, the mean barrier height and the Richardson constant values obtained are ϕ{sup ¯}{sub B0}=1.139 eV and A{sup *}=129.425 A/cm{sup 2} K{sup 2}, respectively. The latter value of ϕ{sup ¯}{sub B0} matches very well with the mean barrier height obtained from the plot of ϕ{sub ap} versus q/2kT. The Richardson constant is much closer to the theoretical value of 146 A/cm{sup 2} K{sup 2}. The series resistance R{sub s} is also estimated from the forward current–voltage characteristics of Mo/4H–SiC Schottky contact. This parameter shows strong temperature dependence. The T{sub 0} effect is validated for the 298–498 K temperature range for the used Schottky diode and provides a clear evidence for the barrier inhomogeneity at the Mo/4H–SiC interface. Finally, we note the impact of the implantation process as well as the choice of the used ion on the characterized parameters of the Schottky contact.

  14. Study of barrier inhomogeneities using I-V-T characteristics of Mo/4H-SiC Schottky diode

    Science.gov (United States)

    Ouennoughi, Z.; Toumi, S.; Weiss, R.

    2015-01-01

    In the present work we investigate the forward current-voltage (I-V) characteristics, over a wide temperature range 298-498 K, of Mo/4H-SiC Schottky diode for which aluminum ion implantation was used to create the high resistivity layer forming the guard ring. The (I-V) analysis based on Thermionic Emission (TE) theory shows a decrease of the barrier height ϕB and an increase of the ideality factor n when the temperature decreases. These anomalies are mainly due to the barrier height inhomogeneities at the metal/semiconductor interface as we get a Gaussian distribution of the barrier heights when we plot the apparent barrier height ϕap versus q/2kT. The mean barrier height and the standard deviation obtained values are ϕbarB0=1.160 eV and σ0=88.049 mV, respectively. However, by means of the modified Richardson plot Ln (Is /T2) - (q2 σ 0 2 / 2k2T2) versus q/kT, the mean barrier height and the Richardson constant values obtained are ϕbarB0=1.139 eV and A*=129.425 A/cm2 K2, respectively. The latter value of ϕbarB0 matches very well with the mean barrier height obtained from the plot of ϕap versus q/2kT. The Richardson constant is much closer to the theoretical value of 146 A/cm2 K2. The series resistance Rs is also estimated from the forward current-voltage characteristics of Mo/4H-SiC Schottky contact. This parameter shows strong temperature dependence. The T0 effect is validated for the 298-498 K temperature range for the used Schottky diode and provides a clear evidence for the barrier inhomogeneity at the Mo/4H-SiC interface. Finally, we note the impact of the implantation process as well as the choice of the used ion on the characterized parameters of the Schottky contact.

  15. GaAs Schottky versus p/i/n diodes for pixellated X-ray detectors

    CERN Document Server

    Bourgoin, J C

    2002-01-01

    We discuss the performances of GaAs p/i/n structures and Schottky barriers for application as photodetectors for high-energy photons. We compare the magnitude of the leakage current and the width of the depleted region for a given reverse bias. We mention the effect of states present at the metal-semiconductor interface on the extension of the space charge region in Schottky barriers. We illustrate this effect by a description of the capacitance behaviour of a Au-GaAs barrier under gamma irradiation.

  16. Effects of Annealing on Electrical Characteristics and Current Transport Mechanisms of the Y/ p-GaN Schottky Diode

    Science.gov (United States)

    Reddy, V. Rajagopal; Asha, B.; Choi, Chel-Jong

    2016-07-01

    This study investigates the effects of annealing on the electrical properties and current transport mechanism of Y/ p-GaN Schottky barrier diodes (SBDs). We found no significant change in the surface morphology of the Y Schottky contacts during the annealing process. The Schottky barrier height (SBH) of the as-deposited Y/ p-GaN SBD was estimated to be 0.95 eV ( I- V)/1.19 eV ( C- V). The SBH increased upon annealing at 400°C and 500°C, and then decreased slightly with annealing at 600°C. Thus the maximum SBH of the Y/ p-GaN SBD was achieved at 500°C, with values of 1.01 eV ( I- V)/1.29 eV ( C- V). In addition, the SBH values were estimated by Cheung's, Norde, and Ψs- V plots and were found to be in good agreement with one another. Series resistance ( R S) values were also calculated by I- V, Cheung's, and Norde functions at different annealing temperatures, with results showing a decrease in the interface state density of the SBD with annealing at 500°C, followed by a slight increase upon annealing at 600°C. The forward-bias current transport mechanism of SBD was investigated by the log I-log V plot at different annealing temperatures. Our investigations revealed that the Poole-Frenkel emission mechanism dominated the reverse leakage current in Y/ p-GaN SBD at all annealing temperatures.

  17. Surface and Interface Properties of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    Science.gov (United States)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    The surface and interface properties of Pd(0.9,)Cr(0.1)/SiC Schottky diode gas sensors both before and after annealing are investigated using Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd,Si only in a very narrow interfacial region. After annealing for 250 h ,It 425 C, the surface of the Schottky contact area his much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Palladium silicides (Pd(x)Si) formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(0.9)Cr(0.1) film are likely responsible for significantly improved device sensitivity.

  18. Surface and Interface Study of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    Science.gov (United States)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    The surface and interface properties of Pd(sub 0.9)Cr(sub 0.1/SiC Schottky diode gas sensor both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(sub x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 deg. C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Pd(sub x)Si formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(sub 0.9)Cr(sub 0.1) film are likely responsible for significantly improved device sensitivity.

  19. ON-state characteristics of proton irradiated 4H-SiC Schottky diode: The calibration of model parameters for device simulation

    Science.gov (United States)

    Vobecký, J.; Hazdra, P.; Záhlava, V.; Mihaila, A.; Berthou, M.

    2014-04-01

    4H silicon carbide Schottky diodes were irradiated by 550 keV protons with the aim to place the ion range into the low-doped n-type epitaxial layer. The diodes were characterized using DLTS, C-V profiling and forward I-V curves. Calibration procedure of model parameters for device simulation has been carried out. It is based on modeling the doping compensation of the n-type epitaxial layer caused by the deep acceptor levels resulting from radiation damage. It is shown that the agreement of simulated and measured forward I-V curves of proton irradiated diodes can be achieved, if the profiles of deep levels are calibrated with respect to irradiation dose, the degradation of electron mobility due to charged deep levels is accounted of and the Schottky barrier height is properly adjusted. The proposed methodology introduces a starting point for exact calibration of ion irradiated SiC unipolar devices.

  20. Influence of series resistance and cooling conditions on I-V characteristics of SiC merged PiN Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hapka, Aneta, E-mail: hapka@ie.tu.koszalin.pl [Department of Electronics and Computer Science, Koszalin University of Technology, J. J. Sniadeckich 2, Koszalin, Postal Code: 75-453 (Poland); Janke, Wlodzimierz; Krasniewski, Jaroslaw [Department of Electronics and Computer Science, Koszalin University of Technology, J. J. Sniadeckich 2, Koszalin, Postal Code: 75-453 (Poland)

    2012-09-01

    The paper presents the exemplary electro-thermal models of merged PiN Schottky diode - a diode with the parallel PiN junction, protecting the device against the uncontrolled voltage rise, causing so-called thermal runaway. In the presented models, the conductivity modulation effect in the PiN junction is taken into account. The influence of the PiN junction on the non-isothermal I-V characteristics of MPS diodes, for various cooling conditions, is discussed. It is shown, that the thermal runaway is possible, in spite of presence of protecting PiN junction.

  1. Simulation study of a mixed terminal structure for 4H-SiC merged PiN/Schottky diode

    Institute of Scientific and Technical Information of China (English)

    Huang Jian-Hua; Lü Hong-Liang; Zhang Yu-Ming; Zhang Yi-Men; Tang Xiao-Yan; Chen Feng-Ping; Song Qing-Wen

    2011-01-01

    In this paper,a mixed terminal structure for the 4H-SiC merged PiN/Schottky diode (MPS) is investigated,which is a combination of a field plate,a junction termination extension and floating limiting rings.Optimization is performed on the terminal structure by using the ISE-TCAD.Further analysis shows that this structure can greatly reduce the sensitivity of the breakdown voltage to the doping concentration and can effectively suppress the effect of the interface charge compared with the structure of the junction termination extension.At the same time,the 4H-SiC MPS with this termination structure can reach a high and stable breakdown voltage.

  2. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  3. Correlation between phonon and impurity scatterings, potential fluctuations and leakage conduction of graphene/n-type Si Schottky diodes

    Science.gov (United States)

    Lin, Yow-Jon

    2015-12-01

    A correlation between the temperature-dependent leakage conduction, phonon and impurity scatterings and potential fluctuations of graphene/n-type Si Schottky diodes is identified. For applying a sufficiently high reverse-bias voltage, the significantly increase in the leakage current density with voltage at low temperature is mainly the result of graphene's Fermi-energy shifts. However, the high-field saturating leakage current is observed at high temperature. This is because of the competition among the phonon and impurity scatterings. In the graphene film transferred onto the n-type Si substrate, the Femi energy level is lower and the phonon coupling is stronger, giving a stronger dependence in the carrier velocity with temperature and a weaker dependence in the leakage current density with reserve-bias voltage.

  4. Effect of high energy electron irradiation on low frequency noise in 4H-SiC Schottky diodes

    Science.gov (United States)

    Kozlovski, V. V.; Lebedev, A. A.; Levinshtein, M. E.; Rumyantsev, S. L.; Palmour, J. W.

    2017-03-01

    The low-frequency noise in high voltage Ni/4H-SiC Schottky diodes irradiated with high energy (0.9 MeV) electrons was studied in the frequency range from 1 Hz to 50 kHz, temperature interval 295-410 K, and irradiation dose Φ from 0.2 × 1016 cm-2 to 7 × 1016 cm-2. The noise amplitude was found monotonically increasing with the irradiation dose. With the irradiation dose increase, the noise spectra on the linear part of the current voltage characteristic transform from the 1/f noise to the generation recombination noise of at least two trap levels. One of these levels can be classified as Z1/2 with the capture cross section determined from the noise measurements to be ˜10-15 cm2.

  5. 4H-SiC Schottky barrier diodes with semi-insulating polycrystalline silicon field plate termination

    Science.gov (United States)

    Yuan, Hao; Tang, Xiao-Yan; Zhang, Yi-Men; Zhang, Yu-Ming; Song, Qing-Wen; Yang, Fei; Wu, Hao

    2014-05-01

    Based on the theoretical analysis of the 4H-SiC Schottky-barrier diodes (SBDs) with field plate termination, 4H-SiC SBD with semi-insulating polycrystalline silicon (SIPOS) FP termination has been fabricated. The relative dielectric constant of the SIPOS dielectric first used in 4H-SiC devices is 10.4, which is much higher than that of the SiO2 dielectric, leading to benefitting the performance of devices. The breakdown voltage of the fabricated SBD could reach 1200 V at leakage current 20 μA, about 70% of the theoretical breakdown voltage. Meanwhile, both of the simulation and experimental results show that the length of the SIPOS FP termination is an important factor for structure design.

  6. DLTS analysis of electron and hole traps in proton implanted VPE grown n-GaAs using Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Auret, F.D.; Nel, M.; Snyman, H.C.

    1988-02-01

    Schottky barrier diodes (SBDs) were used for Deep Level Transient Spectroscopy (DLTS) characterization of electrically active defects in proton implanted n-GaAs. Although SBDs are usually only used for the detection of majority carrier defects (electron traps in n-GaAs), the fabrication of high barrier height SBDs on lowly doped ( less than or equal to 1 x 10/sup 15/cm/sup 3/) n-GaAs in conjunction with a forward bias DLTS filling pulse enabled the detection of minority carrier defects (hole traps in n-GaAs) as well, without using optical excitation. The most prominent electron and hole traps detected had properties that corresponded with those of the well known irradiation-induced electron traps E1-E4 and hole traps H0-H4, associated with the damage produced during high energy particle irradiation.

  7. Large barrier, highly uniform and reproducible Ni-Si/4H-SiC forward Schottky diode characteristics: testing the limits of Tung's model

    Science.gov (United States)

    Omar, Sabih U.; Sudarshan, Tangali S.; Rana, Tawhid A.; Song, Haizheng; Chandrashekhar, M. V. S.

    2014-07-01

    We report highly ideal (n < 1.1), uniform nickel silicide (Ni-Si)/SiC Schottky barrier (1.60-1.67 eV with a standard deviation <2.8%) diodes, fabricated on 4H-SiC epitaxial layers grown by chemical vapour deposition. The barrier height was constant over a wide epilayer doping range of 1014-1016 cm-3, apart from a slight decrease consistent with image force lowering. This remarkable uniformity was achieved by careful optimization of the annealing of the Schottky interface to minimize non-idealities that could lead to inhomogeneity. Tung's barrier inhomogeneity model was used to quantify the level of inhomogeneity in the optimized annealed diodes. The estimated ‘bulk’ barrier height (1.75 eV) was consistent with the Shockley-Mott limit for the Ni-Si/4H-SiC interface, implying an unpinned Fermi level. But the model was not useful to explain the poor ideality in unoptimized, as-deposited Schottky contacts (n = 1.6 - 2.5). We show analytically and numerically that only idealities n < 1.21 can be explained using Tung's model, irrespective of material system, indicating that the barrier height inhomogeneity is not the only cause of poor ideality in Schottky diodes. For explaining this highly non-ideal behaviour, other factors (e.g. interface traps, morphological defects, extrinsic impurities, etc) need to be considered.

  8. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J. [Electrical Communication Engineering, Indian Institute of Science, Bangalore, India 560012 (India); Roul, Basanta; Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore, India 560012 (India)

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

  9. Laser diode monolithically integrated with an electroabsorption modulator and dual-waveguide spot-size converter

    Science.gov (United States)

    Hou, Lianping; Wang, Wei; Feng, Wen; Liang, Song; Zhu, Hongliang; Zhou, Fan; Wang, Lufeng; Bian, Jing

    2005-06-01

    A 1.60-µm laser diode and electroabsorption modulator monolithically integrated with a dual-waveguide spot-size converter output for low-loss coupling to cleaved single-mode optical fiber is demonstrated. The devices emit in a single transverse and quasi-single longitudinal mode with a side mode suppression ratio of 25.6 dB. These devices exhibit a 3-dB modulation bandwidth of 16.0 GHz, and modulator extinction ratios of 16.2 dB dc. The beam divergence angle is about 7.3×10.6 deg, resulting in 3.0-dB coupling loss with cleaved single-mode optical fiber.

  10. Design and characterisations of double-channel GaAs pHEMT Schottky diodes based on vertically stacked MMICs for a receiver protection limiter

    Science.gov (United States)

    Haris, Norshakila; Kyabaggu, Peter B. K.; Rezazadeh, Ali A.

    2016-07-01

    A microwave receiver protection limiter circuit has been designed, fabricated and tested using vertically stacked GaAs MMIC technology. The limiter circuit with a dimension of 2.5 × 1.3 mm2 is formed by using double-channel AlGaAs/InGaAs pseudomorphic HEMT (pHEMT) Schottky diodes integrated with a low-loss V-shaped coplanar waveguide multilayer structure. The electrical parameter characteristics of the pHEMT Schottky diodes are presented including the C-V profile showing the presence of a double channel in the device layer structure. This unique feature can also be seen from the double-peak responses of the electron density as a function of the device layer width, which represent the high electron concentration at two different 2-DEG layers of the structure. An equivalent circuit model of pHEMT Schottky diodes is demonstrated showing good agreement with the measurement results. At zero-bias condition, the devices show high performance in diode detector applications with voltage sensitivities of more than 89 mV μW-1 at 10 GHz and at least 5.4 mV μW-1 at 35 GHz. The measurement results of the limiter circuit demonstrated the blocking of input power signals greater than 20 dBm input power at 3 GHz. To the best of our knowledge this is the first demonstration of the use of pHEMT Schottky diodes in microwave power limiter applications.

  11. Barrier height of Pt–In[sub x]Ga[sub 1−x]N (0≤x≤0.5) nanowire Schottky diodes

    KAUST Repository

    Guo, Wei

    2011-01-01

    The barrier height of Schottky diodes made on Inx Ga 1-x N nanowires have been determined from capacitance-voltage measurements. The nanowires were grown undoped on n-type (001) silicon substrates by plasma-assisted molecular beam epitaxy. The length, diameter and density of the nanowires are ∼1 μm, 20 nm, and 1× 1011 cm-2. The Schottky contact was made on the top surface of the nanowires with Pt after planarizing with parylene. The measured barrier height B varies from 1.4 eV (GaN) to 0.44 eV (In0.5 Ga0.5 N) and agrees well with the ideal barrier heights in the Schottky limit. © 2011 American Institute of Physics.

  12. Electrical parameters and series resistance analysis of Au/Y/p-InP/Pt Schottky barrier diode at room temperature

    Science.gov (United States)

    Rao, L. Dasaradha; Reddy, V. Rajagopal

    2016-05-01

    The current-voltage (I-V) characteristics of Au/Y/p-InP/Pt Schottky barrier diode (SBD) are analyzed at room temperature. The Au/Y/p-InP/Pt SBD shows a good rectification behavior. The ideality factor (n), barrier height (Φb), series resistance (Rs) and shunt resistance (Rsh) are determined from the I-V measurements. The n and Φb values of Au/Y/p-InP/Pt SBD are found to be 1.32 and 0.62 eV respectively. The value of barrier height (BH) obtained from Norde function is compared with those calculated from Cheung's functions. The series resistance (Rs) is calculated from Cheung's and modified Norde functions. Additionally, it is found that n, Φb, Rs, and Rsh have strong correlation with the applied bias. Furthermore, at low and high voltage regions, ohmic and space-charge-limited conduction mechanisms are found to govern the current flow in the diode.

  13. Electrical properties of Ni/n-GaN Schottky diodes on freestanding m-plane GaN substrates

    Science.gov (United States)

    Yamada, Hisashi; Chonan, Hiroshi; Takahashi, Tokio; Shimizu, Mitsuaki

    2017-04-01

    The electrical properties of m-plane Ni/n-GaN Schottky diodes grown via metalorganic chemical vapor deposition were investigated. Under growth at 1,120 °C with a V/III ratio of 1,000 (growth rate of 100 nm/min), the residual Si, O, and C impurity concentrations in the m-plane GaN layer were below the secondary-ion mass spectroscopy detection limit. The surface of the Si-doped n-GaN epitaxial layer on the 5°-off m-plane GaN substrate consisted of steps and terraces. A linear correlation between the carrier concentration and the Si atomic concentration was clearly observed from 1 × 1017 to 5 × 1015 cm‑3. The reverse current–voltage curves were fitted using the thermionic field-emission model at the measured carrier concentration and qϕB. The leakage current of the diodes under a reverse bias was effectively suppressed at a low carrier concentration of 4.6 × 1015 cm‑3.

  14. Schottky Diode Applications of the Fast Green FCF Organic Material and the Analyze of Solar Cell Characteristics

    Science.gov (United States)

    Çaldiran, Z.; Aydoğan, Ş.; İncekara, Ü.

    2016-05-01

    In this study, a device applications of organic material Fast Green FCF (C37H34N2Na2O10S3Na2) has been investigated. After chemical cleaning process of boron doped H-Si crystals, Al metal was coated on the one surface of crystals by thermal evaporation and fast green organic materials were coated on other surface of crystals with spin coating method (coating parameters; 800 rpm for 60 s). Finally, Ni metal was coated on Fast Green by sputtering and we obtained the Ni/Fast Green FCF/n-Si/Al Schottky type diode. And then we calculated the basic diode parameters of device with current-voltage (I-V) and capacitance- voltage (C-V) measurements at the room temperature. We calculated the ideality factory (n), barrier height (Φb) of rectifing contact from I-V measurements using thermionic emission methods. Furthermore, we calculated ideality factory (n), barrier height (Φb) and series resistance (Rs) of device using Cheung and Norde functions too. The diffusion potential, barrier height, Fermi energy level and donor concentration have been determined from the linear 1/C2-V curves at reverse bias, at room temperature and various frequencies. Besides we measured the current-voltage (I-V) at under light and analyzed the characteristics of the solar cell device.

  15. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    Science.gov (United States)

    Pastuović, Željko; Capan, Ivana; Cohen, David D.; Forneris, Jacopo; Iwamoto, Naoya; Ohshima, Takeshi; Siegele, Rainer; Hoshino, Norihiro; Tsuchida, Hidekazu

    2015-04-01

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 1014 cm-3) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He2+ ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z1/2 center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1-6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 1011 cm-2.

  16. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Pastuović, Željko, E-mail: zkp@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Capan, Ivana [Material Physics Division, Institute Rudjer Boskovic, PO Box 180, 10000 Zagreb (Croatia); Cohen, David D. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Forneris, Jacopo [Physics Department and NIS Excellence Centre, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Iwamoto, Naoya; Ohshima, Takeshi [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Siegele, Rainer [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Hoshino, Norihiro; Tsuchida, Hidekazu [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan)

    2015-04-01

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 10{sup 14} cm{sup −3}) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He{sup 2+} ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z{sub 1/2} center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1–6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 10{sup 11} cm{sup −2}.

  17. On drift fields in CMOS Monolithic Active Pixel Sensors with point-like collection diodes

    CERN Document Server

    Deveaux, M; Dorokhov, A; Doering, D; Heymes, J; Kachel, M; Koziel, M; Linnik, B; Müntz, C; Stroth, J

    2016-01-01

    CMOS Monolithic Active Pixel Sensors for charged particle tracking are considered as technology for numerous experiments in heavy ion and particle physics. To match the requirements for those applications in terms of tolerance to non-ionizing radiation, it is being tried to deplete the sensitive volume of the, traditionally non-depleted, silicon sensors. We study the feasibility of this approach for the common case that the collection diodes of the pixel are small as compared to the pixel pitch. An analytic equation predicting the thickness of the depletion depth and the capacity of this point-like junction is introduced. We find that the predictions of this equations differs qualitatively from the usual results for flat PN junctions and that $dC/dU$-measurements are not suited to measure the depletion depth of diodes with point-like geometry. The predictions of the equation is compared with measurements on the depletion depth of CMOS sensors, which were carried out with a novel measurement protocol. It is fo...

  18. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics

    Science.gov (United States)

    He, Qiming; Mu, Wenxiang; Dong, Hang; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tang, Minghua; Tao, Xutang; Liu, Ming

    2017-02-01

    The Pt/β-Ga2O3 Schottky barrier diode and its temperature-dependent current-voltage characteristics were investigated for power device application. The edge-defined film-fed growth (EFG) technique was utilized to grow the (100)-oriented β-Ga2O3 single crystal substrate that shows good crystal quality characterized by X-ray diffraction and high resolution transmission electron microscope. Ohmic and Schottky electrodes were fabricated by depositing Ti and Pt metals on the two surfaces, respectively. Through the current-voltage (I-V) measurement under different temperature and the thermionic emission modeling, the fabricated Pt/β-Ga2O3 Schottky diode was found to show good performances at room temperature, including rectification ratio of 1010, ideality factor (n) of 1.1, Schottky barrier height (ΦB) of 1.39 eV, threshold voltage (Vbi) of 1.07 V, ON-resistance (RON) of 12.5 mΩ.cm2, forward current density at 2 V (J@2V) of 56 A/cm2, and saturation current density (J0) of 2 × 10-16 A/cm2. The effective donor concentration Nd - Na was calculated to be about 2.3 × 1014 cm3. Good temperature dependent performance was also found in the device. The Schottky barrier height was estimated to be about 1.3 eV-1.39 eV at temperatures ranging from room temperature to 150 °C. With increasing temperature, parameters such as RON and J@2V become better, proving that the diode can work well at high temperature. The EFG grown β-Ga2O3 single crystal is a promising material to be used in the power devices.

  19. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals.

    Science.gov (United States)

    Shtepliuk, Ivan; Eriksson, Jens; Khranovskyy, Volodymyr; Iakimov, Tihomir; Lloyd Spetz, Anita; Yakimova, Rositsa

    2016-01-01

    A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current-voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium-graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I-V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  20. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

    Directory of Open Access Journals (Sweden)

    Ivan Shtepliuk

    2016-11-01

    Full Text Available A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium–graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I–V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  1. Diameter-dependent electronic transport properties of Au-catalyst/Ge-nanowire Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, S Thomas [Los Alamos National Laboratory; Leonard, Francois [SNL; Swartzentruber, Brian S [SNL; Talin, A Alee [SNL

    2008-01-01

    We present electronic transport measurements in individual Au-catalyst/Ge-nanowire interfaces demonstrating the presence of a Schottky barrier. Surprisingly, the small-bias conductance density increases with decreasing diameter. Theoretical calculations suggest that this effect arises because electron-hole recombination in the depletion region is the dominant charge transport mechanism, with a diameter dependence of both the depletion width and the electron-hole recombination time. The recombination time is dominated by surface contributions and depends linearly on the nanowire diameter.

  2. High-temperature characteristics of AixGa1-xN/GaN Schottky diodes

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaoling; Li Fei; Lv Changzhi; Xie Xuesong; Li Ying; Mohammad S N

    2009-01-01

    High-temperature characteristics of the metal/AlxGa1_xN/GaN M/S/S (M/S/S) diodes have been studied with current-voltage (I-V) and capacitance-voltage (C-V) measurements at high temperatures. Due to the presence of the piezoelectric polarization field and a quantum well at the AIxGa1_xN/GaN interface, the AIxGa1_xN/GaNdiodes show properties distinctly different from those of the AIxGa1_xN diodes. For the AIxGa1_xN/GaN diodes, an increase in temperature accompanies an increase in barrier height and a decrease in ideality factor, while the AIxGa1_xN diodes are opposite. Furthermore, at room temperature, both reverse leakage current and reverse break-down voltage are superior for the AIxGa1_xN/GaN diodes to those for the AIxGa1_xN diodes.

  3. Accurate surface potential determination in Schottky diodes by the use of a correlated current and capacitance voltage measurements.Application to n-InP

    Institute of Scientific and Technical Information of China (English)

    Ali Ahaitouf; Abdelaziz Ahaitouf; Jean Paul Salvestrini; Hussein Srour

    2011-01-01

    Based on current voltage (I-Vg) and capacitance voltage (C-Vg) measurements,a reliable procedure is proposed to determine the effective surface potential Vd (Vg) in Schottky diodes.In the framework of thermionic emission,our analysis includes both the effect of the series resistance and the ideality factor,even voltage dependent.This technique is applied to n-type indium phosphide (n-InP) Schottky diodes with and without an interfacial layer and allows us to provide an interpretation of the observed peak on the C-Vg measurements.The study clearly shows that the depletion width and the flat band barrier height deduced from C-Vg,which are important parameters directly related to the surface potential in the semiconductor,should be estimated within our approach to obtain more reliable information.

  4. Rapid thermal annealing effects on the electrical and structural properties of Ru/V/n-InP Schottky barrier diode

    Science.gov (United States)

    Padma, R.; Shanthi Latha, K.; Rajagopal Reddy, V.; Choi, Chel-Jong

    2015-07-01

    A Ru/V/n-InP Schottky barrier diode (SBD) is fabricated and investigated its electrical and structural properties as a function of annealing temperature. Measurements showed that the barrier height (BH) of the as-deposited Ru/V/n-InP SBD is found to be 0.83 eV (I-V) and 1.03 eV (C-V). Experimental results indicate that the SBD with high BH and low ideality factors (0.87 eV (I-V), 1.20 eV (C-V), and 1.12) can be achieved after annealing at 400 °C for 1 min in N2 atmosphere. Further, it is observed that the BH slightly decreases to 0.85 eV (I-V) and 1.09 eV (C-V) upon annealing at 500 °C. The BH, ideality factor and series resistance are also determined by Cheung's functions and Norde method. Further, the energy distribution of interface state density of Ru/V/n-InP SBD is calculated from the forward bias I-V characteristics as a function of annealing temperature. It is found that the interface state density decreases upon annealing at 400 °C and then slightly increases after annealing at 500 °C. The AES and XRD results revealed that the formation of indium phases at the Ru/V/n-InP interface could be the reason for the increase of BH upon annealing at 400 °C. The formation of phosphide phases at the interface may be the cause for the decrease of BH after annealing at 500 °C. The overall surface morphology of Ru/V Schottky contacts is considerably smooth at elevated temperatures.

  5. Temperature dependence of current-and capacitance-voltage characteristics of an Au/4H-SiC Schottky diode

    Science.gov (United States)

    Gülnahar, Murat

    2014-12-01

    In this study, the current-voltage (I-V) and capacitance-voltage (C-V) measurements of an Au/4H-SiC Schottky diode are characterized as a function of the temperature in 50-300 K temperature range. The experimental parameters such as ideality factor and apparent barrier height presents to be strongly temperature dependent, that is, the ideality factor increases and the apparent barrier height decreases with decreasing temperature, whereas the barrier height values increase with the temperature for C-V data. Likewise, the Richardson plot deviates at low temperatures. These anomaly behaviors observed for Au/4H-SiC are attributed to Schottky barrier inhomogeneities. The barrier anomaly which relates to interface of Au/4H-SiC is also confirmed by the C-V measurements versus the frequency measured in 300 K and it is interpreted by both Tung's lateral inhomogeneity model and multi-Gaussian distribution approach. The values of the weighting coefficients, standard deviations and mean barrier height are calculated for each distribution region of Au/4H-SiC using the multi-Gaussian distribution approach. In addition, the total effective area of the patches NAe is obtained at separate temperatures and as a result, it is expressed that the low barrier regions influence meaningfully to the current transport at the junction. The homogeneous barrier height value is calculated from the correlation between the ideality factor and barrier height and it is noted that the values of standard deviation from ideality factor versus q/3kT curve are in close agreement with the values obtained from the barrier height versus q/2kT variation. As a result, it can be concluded that the temperature dependent electrical characteristics of Au/4H-SiC can be successfully commented on the basis of the thermionic emission theory with both models.

  6. Fabrication, characterization and simulation of 4H-SiC Schottky diode alpha particle detectors for pyroprocessing actinide monitoring

    Science.gov (United States)

    Garcia, Timothy Richard

    Pyroprocessing is a method of using high-temperature molten salts and electric fields to separate and collect fuel isotopes of used nuclear fuel. It has been has been tested in the U.S. at Idaho National Laboratory as a key step in closing the nuclear fuel cycle. One technical problem with the pyroprocessing method is a lack of knowledge regarding the actinide concentrations in the salt bath during operation, since on-line techniques for measuring these concentrations are not presently available. 4H-SiC Schottky diode detectors can potentially fulfill this need. Such detectors would operate in contact with the molten salt, and measure concentrations via alpha-particle spectroscopy. This work seeks to fabricate and characterize 4H-SiC Schottky diode detectors at high temperature, model the alpha particle spectrum expected in a molten salt, and model the operation of the detectors to confirm the physics of operation is as expected. In this work, 4H-SiC Schottky diode detectors were fabricated at OSU Nanotech West. After fabrication, these detectors were characterized using both I-V curves and Am-241 alpha-particle energy spectra. All measurements were made as a function of temperature, from room temperature up to 500°C. The average energy required to create an electron-hole pair was observed to decrease with an increase of temperature, due to a decrease of both the 4H-SiC bandgap and non-linear energy loss terms. Furthermore, the FWHM of the spectra was observed to be dependent on the leakage current at a certain temperature, and not dependent on the temperature itself. Secondly, the alpha particle energy spectrum in the pyroprocessing environment was modeled using SRIM. The molten salt was modeled in 3 different geometries, with or without a protective cover material on top of the detector. Due to the loss of alpha-particle energy in the molten salt itself, a high-energy alpha emitter may completely cover the spectrum from a lower-energy alpha emitter. Each of the

  7. Electronic parameters of high barrier Au/Rhodamine-101/n-Inp Schottky diode with organic Latin-Small-Letter-Dotless-I nterlayer

    Energy Technology Data Exchange (ETDEWEB)

    Guellue, Oe. [Batman University, Faculty of Sciences and Arts, Department of Physics, Batman (Turkey); Aydogan, S., E-mail: saydogan@atauni.edu.tr [Atatuerk University, Faculty of Sciences, Department of Physics, 25240-Erzurum (Turkey); Tueruet, A. [Atatuerk University, Faculty of Sciences, Department of Physics, 25240-Erzurum (Turkey)

    2012-01-01

    In this work, we present that Rhodamine-101 (Rh-101) organic molecules can control the electrical characteristics of conventional Au/n-InP metal-semiconductor contacts. An Au/n-InP Schottky junction with Rh-101 interlayer has been formed by using a simple cast process. A potential barrier height as high as 0.88 eV has been achieved for Au/Rh-101/n-InP Schottky diodes, which have good current-voltage (I-V) characteristics. This good performance is attributed to the effect of formation of interfacial organic thin layer between Au and n-InP. By using capacitance-voltage measurement of the Au/Rh-101/n-InP Schottky diode the diffusion potential and the barrier height have been calculated as 0.78 V and 0.88 eV, respectively. From the I-V measurement of the diode under illumination, short circuit current and open circuit voltage have been extracted as 1.70 {mu}A and 240 mV, respectively.

  8. Calculation of focal positions in an optical head for parallel data processing with a monolithic four-beam laser diode.

    Science.gov (United States)

    Shinoda, M

    2001-03-01

    A method for calculating focal positions in a multibeam optical head by use of a multibeam laser diode, in which conditions for misalignment of the light source are taken into consideration, is introduced. One calculates the focal positions by using the practical characteristics of a monolithic four-beam laser diode and the practical specifications of the optics in an optical head. The results show that each focal position is defocused mainly as a result of curvature of the fields of the lenses. The adaptability of focal positions for various calculated conditions is discussed from the standpoint of depth of focus.

  9. Nanocrystalline Zn{sub 1−x}Mn{sub x}O thin film based transparent Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gayen, R.N. [Department of Physics, Presidency University, Kolkata 700073 (India); Paul, R., E-mail: rajiv2008juniv@gmail.com [Birck Nanotechnology Center, Purdue University, IN 47907 (United States)

    2016-04-30

    Highly transparent and nanocrystalline Zn{sub 1−x}Mn{sub x}O (x = 0, 0.008, 0.017, 0.046) thin films have been synthesized by sol–gel spin coating technique on glass and SnO{sub 2} coated glass substrates. The microstructural and compositional analyses confirm the incorporation of Mn in hexagonal ZnO lattice without affecting its structure. Zn{sub 1−x}Mn{sub x}O thin films are highly transparent in the visible region of electromagnetic spectrum. The optical band gap, estimated from the transmittance spectra, decreases from 3.32 to 3.21 eV with the increase in Mn content in ZnO films. Photoluminescence study reveals that Mn introduces more defects in ZnO suppressing the excitonic recombination by the defect center (oxygen vacancy) induced recombination. The non-linear current–voltage characteristics at room temperature reveal Schottky barrier junction formation of Zn{sub 1−x}Mn{sub x}O films with Ag. The diode parameters, extracted from the thermionic emission model, vary with Mn incorporation in ZnO. Both the ideality factor and potential barrier height decrease from 6.5 and 0.63 for pure ZnO to 4.7 and 0.54 respectively, for Zn{sub 0.954}Mn{sub 0.046}O film. The series resistance that arises from the defect distributions at the interface and effects the charge transport through the junction, also decreases for higher percentage of Mn in Zn{sub 1−x}Mn{sub x}O thin films. - Highlights: • Mn doped transparent ZnO thin film synthesis using sol–gel spin coating • Particle size and optical band-gap decreases with increasing Mn doping. • Absence of any secondary phase upto 4.6 at.% of Mn which substitutes Zn sites in ZnO lattice • Interesting Schottky diode characteristics with Ag contact • Ideality factor and barrier height decreases with increasing Mn content.

  10. Diode multipliers for submillimeter-wave InAlAs/InGaAs heterostructure monolithic integrated circuits

    Science.gov (United States)

    Kwon, Y.; Pavlidis, D.

    1991-01-01

    InAlAs/InGaAs heterostructures are studied as multiplier elements for submillimeter-wave monolithic integrated circuits. The designs considered for this purpose are based on the principle of conventional HEMT, HEMT with n+ bottom layer, and a new proposed scheme of quantum-confined modulated charge (QCMC). The QCMC diode is analyzed theoretically and experimentally showing its potential operation capability at 1.5 THz.

  11. DLTS detection of hole traps in MBE grown p-GaAs using Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Auret, F.D.; Goodman, S.A.; Myburg, G. (Univ. of Pretoria (South Africa))

    1992-12-01

    The presence of hole traps has been studied by deep level transient spectroscopy (DLTS) characterization of low carrier density p-type GaAs grown by MBE on p[sup +]-GaAs substrates using Al and Co Schottky contacts. The results obtained indicate the presence of several hole traps with energy levels of between 0.06 and 0.65 eV above the valence band in concentrations up to 2 [times] 10[sup 12]/cm[sup 3]. Some of these defects, e.g. Cu, are ascribed to system-, source- or substrate-related impurities, but the origin of several other defects is unknown. 18 refs., 2 figs., 1 tab.

  12. Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite based thin films for Schottky diode application

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Bhavana, E-mail: bgupta1206@gmail.com [Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre of Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Mehta, Minisha, E-mail: mehta.mini@gmail.com [Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre of Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Melvin, Ambrose [Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha, Pune 411008 (India); Kamalakannan, R.; Dash, S.; Kamruddin, M.; Tyagi, A.K. [Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre of Atomic Research, Kalpakkam, Tamil Nadu 603102 (India)

    2014-10-15

    Transparent, conductive films of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite were synthesized by in-situ oxidative polymerization and investigated for their Schottky diode property. The prepared films were characterized by UV–Vis spectroscopy, thermal gravimetric analysis (TGA), surface resistivity, cyclic voltametery, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). SEM reveals the formation of homogeneous and adhesive polymer films while HRTEM confirms the uniform wrapping of polymer chains around the nanotube walls for PEDOT-FWCNT film. Improved thermal stability, conductivity and charge storage property of PEDOT in the presence of FWCNT is observed. Among different compositions, 5 wt. % of FWCNT is found to be optimum with sheet resistance and transmittance of 500 Ω sq{sup −1} and 77%, respectively. Moreover, the electronic and junction properties of polymer films were studied and compared by fabricating sandwich type devices with a configuration of Al/PEDOT or PEDOT-FWCNT nanocomposite/indium tin oxide (ITO) coated glass. The measured current density-voltage characteristics show typical rectifying behavior for both configurations. However, enhanced rectification ratio and higher forward current density is observed in case of PEDOT-FWCNT based Schottky diode. Furthermore, reliability test depicts smaller hysteresis effect and better performance of PEDOT-FWCNT based diodes. - Highlights: • Single step synthesis of PEDOT and PEDOT-FWCNT nanocomposites films via in-situ oxidative polymerization. • Thermal, electrical and electrochemical properties of films show positive effect of FWCNT on PEDOT films. • Schottky diodes based on metal Al/PEDOT or PEDOT-FWCNT composites/ITO glass are fabricated. • Improved electrical characteristics with better reliability is achieved for PEDOT-FWCNT based diodes.

  13. Monte Carlo analysis of a lateral IBIC experiment on a 4H-SiC Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, P. [Experimental Physics Dept./NIS Excellence Centre, University of Torino, and INFN-Sez. di Torino via P. Giuria 1, 10125 Torino (Italy); Ruder Boskovic Institute, Bijenicka 54, P.O. Box 180, 10002 Zagreb (Croatia); Forneris, J.; Gamarra, P. [Experimental Physics Dept./NIS Excellence Centre, University of Torino, and INFN-Sez. di Torino via P. Giuria 1, 10125 Torino (Italy); Jaksic, M. [Ruder Boskovic Institute, Bijenicka 54, P.O. Box 180, 10002 Zagreb (Croatia); Lo Giudice, A.; Manfredotti, C. [Experimental Physics Dept./NIS Excellence Centre, University of Torino, and INFN-Sez. di Torino via P. Giuria 1, 10125 Torino (Italy); Pastuovic, Z.; Skukan, N. [Ruder Boskovic Institute, Bijenicka 54, P.O. Box 180, 10002 Zagreb (Croatia); Vittone, E., E-mail: ettore.vittone@unito.it [Experimental Physics Dept./NIS Excellence Centre, University of Torino, and INFN-Sez. di Torino via P. Giuria 1, 10125 Torino (Italy)

    2011-10-15

    The transport properties of a 4H-SiC Schottky diode have been investigated by the ion beam induced charge (IBIC) technique in lateral geometry through the analysis of the charge collection efficiency (CCE) profile at a fixed applied reverse bias voltage. The cross section of the sample orthogonal to the electrodes was irradiated by a rarefied 4 MeV proton microbeam and the charge pulses have been recorded as function of incident proton position with a spatial resolution of 2 {mu}m. The CCE profile shows a broad plateau with CCE values close to 100% occurring at the depletion layer, whereas in the neutral region, the exponentially decreasing profile indicates the dominant role played by the diffusion transport mechanism. Mapping of charge pulses was accomplished by a novel computational approach, which consists in mapping the Gunn's weighting potential by solving the electrostatic problem by finite element method and hence evaluating the induced charge at the sensing electrode by a Monte Carlo method. The combination of these two computational methods enabled an exhaustive interpretation of the experimental profiles and allowed an accurate evaluation both of the electrical characteristics of the active region (e.g. electric field profiles) and of basic transport parameters (i.e. diffusion length and minority carrier lifetime).

  14. Monte Carlo analysis of a lateral IBIC experiment on a 4H-SiC Schottky diode

    Science.gov (United States)

    Olivero, P.; Forneris, J.; Gamarra, P.; Jakšić, M.; Giudice, A. Lo; Manfredotti, C.; Pastuović, Ž.; Skukan, N.; Vittone, E.

    2011-10-01

    The transport properties of a 4H-SiC Schottky diode have been investigated by the ion beam induced charge (IBIC) technique in lateral geometry through the analysis of the charge collection efficiency (CCE) profile at a fixed applied reverse bias voltage. The cross section of the sample orthogonal to the electrodes was irradiated by a rarefied 4 MeV proton microbeam and the charge pulses have been recorded as function of incident proton position with a spatial resolution of 2 μm. The CCE profile shows a broad plateau with CCE values close to 100% occurring at the depletion layer, whereas in the neutral region, the exponentially decreasing profile indicates the dominant role played by the diffusion transport mechanism. Mapping of charge pulses was accomplished by a novel computational approach, which consists in mapping the Gunn's weighting potential by solving the electrostatic problem by finite element method and hence evaluating the induced charge at the sensing electrode by a Monte Carlo method. The combination of these two computational methods enabled an exhaustive interpretation of the experimental profiles and allowed an accurate evaluation both of the electrical characteristics of the active region (e.g. electric field profiles) and of basic transport parameters (i.e. diffusion length and minority carrier lifetime).

  15. The effect of annealing temperature on the electrical characterization of Co/n type GaP Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Orak, İ., E-mail: ikramorak@gmail.com [Vocational School of Health Services, Bingöl University, 12000 Bingöl (Turkey); Ejderha, K. [Vocational School of Technical Sciences, Bingöl University, 12000 Bingöl (Turkey); Sönmez, E. [Department of Physics, Kazim Karabekir Education Faculty, Atatürk University, Erzurum 25240 (Turkey); Alanyalıoğlu, M. [Faculty of Science, Department of Chemistry, 25240 Erzurum (Turkey); Turut, A. [Faculty of Sciences, Department of Engineering Physics, Istanbul Medeniyet University, 34730 Istanbul (Turkey)

    2015-01-15

    The Co/n-GaP nano-Schottky diodes have been fabricated to investigate effect of annealing temperature on the characteristics of the device. DC Magnetron sputtering technique has been used for Co metallic contact. The samples have been annealed for three minutes at 400 °C and 600 °C. XRD analyzes of the devices subjected to thermal annealing process have been investigated. Surface images have been taken with atomic force microscopy (AFM) in order to examine the morphology of the surface of the metal layer before and after the annealing the sample. The current–voltage (I–V) measurements taken at room temperature have shown that the ideality factor and series resistance decrease with the increasing annealing temperature. The ideality factor was found to be 1.02 for sample annealed at 400 °C. Before and after annealing, depending on the temperature measurement, the capacitance–frequency (C–f), and conductance–frequency (G–f) have been measured, and graphs have been plotted.

  16. High-k dielectrics based field plate edge termination engineering in 4H-SiC Schottky diode

    Science.gov (United States)

    Shankar, Bhawani; Gupta, Sanjeev K.; Taube, William R.; Akhtar, J.

    2016-12-01

    This paper develops a deep insight into the behaviour of high-k dielectric-based field plate on Ni/4H-SiC Schottky diode. It tries to explain the mechanism by which high-k materials outperform silicon dioxide, when used under the field plate. Phenomena like modulation of field enhancement factor, reshaping of equipotential contours and expansion of depletion region while maintaining fixed depletion ratio (length/width = 2.3) helps to understand the electrical behaviour of high-k dielectric-based field plate. High-k materials relaxed the equipotential contours under the field plate edge which resulted in electric field reduction up to 88% and significant drop from 6.6 to 2.2 in field enhancement factor at device edges. The study considers the field plate of different dielectrics (SiO2, Si3N4, Al203, HfO2) and in each case, analytically explores the optimisation of field plate parameters (overlap length and dielectric thickness, dielectric constant). All the investigations have been done using numerical simulations on calibrated setup.

  17. Monte Carlo analysis of a lateral IBIC experiment on a 4H-SiC Schottky diode

    CERN Document Server

    Olivero, P; Gamarra, P; Jaksic, M; Giudice, A Lo; Manfredotti, C; Pastuovic, Z; Skukan, N; Vittone, E

    2016-01-01

    The transport properties of a 4H-SiC Schottky diode have been investigated by the Ion Beam Induced Charge (IBIC) technique in lateral geometry through the analysis of the charge collection efficiency (CCE) profile at a fixed applied reverse bias voltage. The cross section of the sample orthogonal to the electrodes was irradiated by a rarefied 4 MeV proton microbeam and the charge pulses have been recorded as function of incident proton position with a spatial resolution of 2 um. The CCE profile shows a broad plateau with CCE values close to 100% occurring at the depletion layer, whereas in the neutral region, the exponentially decreasing profile indicates the dominant role played by the diffusion transport mechanism. Mapping of charge pulses was accomplished by a novel computational approach, which consists in mapping the Gunn's weighting potential by solving the electrostatic problem by finite element method and hence evaluating the induced charge at the sensing electrode by a Monte Carlo method. The combina...

  18. Influences of ICP etching damages on the electronic properties of metal field plate 4H-SiC Schottky diodes

    Science.gov (United States)

    Hui, Wang; Yingxi, Niu; Fei, Yang; Yong, Cai; Zehong, Zhang; Zhongming, Zeng; Minrui, Wang; Chunhong, Zeng; Baoshun, Zhang

    2015-10-01

    Inductively coupled plasma (ICP) etching of 4H-SiC using SF6/O2 gas mixture was studied systematically and the effect of etching was examined by metal field plate SiC Schottky diodes (SBDs). It was found that the etch rate as well as SiC surface morphology were related with ICP power, RF power, pressure, the flow of SF6 and O2. Etching damages (the cone-in-pits and pits) generated at high chuck self-bias were observed, and they were thought to be caused by SiC defects. The degradation of both the reverse and forward I-V performances of SiC SBDs was ascribed to the cone-in-pits and pits. Moreover, the absolute value of forward current is even less than the reverse counterpart in the absolute value voltage range of 0-50 V for SiC SBDs with etching damages. Project supported by the Suzhou Research Fund (No. BY2011129) and the State Grid Corporation of China Research Fund (No. 525500140003).

  19. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Windl, Wolfgang [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States)

    2013-01-28

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

  20. Development of CdTe pixel detectors combined with an aluminum Schottky diode sensor and photon-counting ASICs

    Science.gov (United States)

    Toyokawa, H.; Saji, C.; Kawase, M.; Wu, S.; Furukawa, Y.; Kajiwara, K.; Sato, M.; Hirono, T.; Shiro, A.; Shobu, T.; Suenaga, A.; Ikeda, H.

    2017-01-01

    We have been developing CdTe pixel detectors combined with a Schottky diode sensor and photon-counting ASICs. The hybrid pixel detector was designed with a pixel size of 200 μ m by 200 μm and an area of 19 mm by 20 mm or 38.2 mm by 40.2 mm. The photon-counting ASIC, SP8-04F10K, has a preamplifier, a shaper, 3-level window-type discriminators and a 24-bits counter in each pixel. The single-chip detector with 100 by 95 pixels successfully operated with a photon-counting mode selecting X-ray energy with the window comparator and stable operation was realized at 20 degrees C. We have performed a feasibility study for a white X-ray microbeam experiment. Laue diffraction patterns were measured during the scan of the irradiated position in a silicon steel sample. The grain boundaries were identified by using the differentials between adjacent images at each position.

  1. Measurement of mobility and lifetime of electrons and holes in a Schottky CdTe diode

    OpenAIRE

    Ariño-Estrada, G.; Chmeissani, M.; De Lorenzo, G.; Kolstein, M.; Puigdengoles, C; García, J; Cabruja, E.

    2014-01-01

    We report on the measurement of drift properties of electrons and holes in a CdTe diode grown by the travelling heating method (THM). Mobility and lifetime of both charge carriers has been measured independently at room temperature and fixed bias voltage using charge integration readout electronics. Both electrode sides of the detector have been exposed to a 241Am source in order to obtain events with full contributions of either electrons or holes. The drift time has been measured to obtain ...

  2. Monolithic Integration of GaAs-Based Resonant Tunneling Diode and High Electron Mobility Transistor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The resonant tunneling diode (RTD) is a kind of novel ultra-high speed and ultra-high frequency negative differential resistance nanoelectronic device. Integration of RTD and other three-terminal compound semiconductor devices is one important direction of high speed integrated circuit development. In this paper, monolithic integration technology of RTD and high electron mobility transistor (HEMT) based on GaAs substrate was discussed. A top-RTD and bottom-HEMT material structure was proposed and epitaxyed. Based on wet chemical etching, electron beam lithography,metal lift-off and air bridge technology, RTD and HEMT were fabricated on the same wafer. The peak-to-valley current ratio of RTD is 4 and the peak voltage is 0.5 V. The maximal transconductance is 120 mS/mm for a 0.25 μm gate length depletion mode HEMT. Current levels of two devices are basically suited. The results validate the feasibility of the designed integration process.

  3. Analysis of Schottky Contact Formation in Coplanar Au/ZnO/Al Nanogap Radio Frequency Diodes Processed from Solution at Low Temperature.

    Science.gov (United States)

    Semple, James; Rossbauer, Stephan; Anthopoulos, Thomas D

    2016-09-01

    Much work has been carried out in recent years in fabricating and studying the Schottky contact formed between various metals and the n-type wide bandgap semiconductor zinc oxide (ZnO). In spite of significant progress, reliable formation of such technologically interesting contacts remains a challenge. Here, we report on solution-processed ZnO Schottky diodes based on a coplanar Al/ZnO/Au nanogap architecture and study the nature of the rectifying contact formed at the ZnO/Au interface. Resultant diodes exhibit excellent operating characteristics, including low-operating voltages (±2.5 V) and exceptionally high current rectification ratios of >10(6) that can be independently tuned via scaling of the nanogap's width. The barrier height for electron injection responsible for the rectifying behavior is studied using current-voltage-temperature and capacitance-voltage measurements (C-V) yielding values in the range of 0.54-0.89 eV. C-V measurements also show that electron traps present at the Au/ZnO interface appear to become less significant at higher frequencies, hence making the diodes particularly attractive for high-frequency applications. Finally, an alternative method for calculating the Richardson constant is presented yielding a value of 38.9 A cm(-2) K(-2), which is close to the theoretically predicted value of 32 A cm(-2) K(-2). The implications of the obtained results for the use of these coplanar Schottky diodes in radio frequency applications is discussed.

  4. 基于高速肖特基二极管的100 ps瞬态取样门设计与仿真%Design and simulation of 100 ps transient sampling gate based on high speed Schottky diode

    Institute of Scientific and Technical Information of China (English)

    陈宇晓; 尹显东; 唐丹; 杨谟华

    2006-01-01

    The picosecond transient sampling gate is mainly applied in laser fusion and high energy physics experiments for single high-speed pulse real-time sampling. A new balanced sampling gate based on monolithic Schottky bridge quad diodes is put forward in this paper as well as its model and circuit design. The circuit simulation shows that the symmetric strobe design ensures that the sampling interval is 100 ps and the sampling gate bandwidth is 4.4 GHz when the strobe pulse width is 100 ps. The gate can be used in multi-beam ultrashort laser pulses sampling.%皮秒级瞬态取样门主要应用于激光聚变实验和高能物理实验中,对单次高速脉冲进行实时取样.提出了一种新颖的基于肖特基二极管桥的平衡取样门,给出其模型和具体电路设计.电路仿真结果表明,对称的选通设计保证了选通脉宽为100 ps时,取样间隔也为100 ps,取样门带宽为4.4 GHz,可应用于多路超短激光脉冲取样.

  5. (In,Sn)2O3/TiO2/Pt Schottky-type diode switch for the TiO2 resistive switching memory array

    Science.gov (United States)

    Shin, Yong Cheol; Song, Jaewon; Kim, Kyung Min; Choi, Byung Joon; Choi, Seol; Lee, Hyun Ju; Kim, Gun Hwan; Eom, Taeyong; Hwang, Cheol Seong

    2008-04-01

    A Schottky-type diode switch consisting of a Pt /(In,Sn)2O3/TiO2/Pt stack was fabricated for applications to cross-bar type resistive-switching memory arrays. The high (0.55eV) and low potential barrier at the TiO2/Pt and TiO2/(In,Sn)2O3 junctions, respectively, constitute the rectifying properties of the stacked structure. The forward/reverse current ratio was as high as ˜1.6×104 at an applied voltage of ˜1V. When Pt /TiO2/Pt memory was connected to this diode in series, there was an insignificant interference on the memory function from the diode under the forward bias and virtually no resistive switching under a reverse bias.

  6. Electroluminescence from a forward-biased Schottky barrier diode on modulation Si {delta}-doped GaAs/InGaAs/AlGaAs heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Babinski, Adam; Witczak, P.; Twardowski, A.; Baranowski, J. M.

    2001-06-18

    Electroluminescence (EL) from a forward-biased Schottky barrier diode on modulation Si {delta}-doped pseudomorphic GaAs/InGaAs/AlGaAs heterostructure with high mobility electron gas is investigated in this work. It has been found that the EL from the InGaAs quantum well can be observed at temperatures up to 90 K. The EL line shape depends on the current density, which reflects the filling of the InGaAs channel with electrons. The total integrated EL intensity depends linearly on the current density. We propose that hole diffusion from an inversion layer at the Schottky barrier is responsible for the observed optical recombination with electrons in the InGaAs quantum well. {copyright} 2001 American Institute of Physics.

  7. AC Impedance Analysis of the Al/ZnO/p-Si/Al Schottky Diode: C-V Plots and Extraction of Parameters

    Directory of Open Access Journals (Sweden)

    M. Benhaliliba

    2015-06-01

    Full Text Available In this research, we report on the measurement of the capacitance-voltage (C-V characteristics Al / ZnO / p-Si / Al Schottky diode at room temperature and in dark condition fabricated by spray pyrolysis process. C-V characteristics, within the range of frequencies 5 kHz-5 MHz, are investigated and microelectronic parameters are extracted. Donor density and diffusion potential vary with frequency from 15 to 28 1014 cm – 3, 0.21 to 0.45 V. Besides, the interface state density of Al /ZnO /pSi/Al Schottky is determined and found to be 1012 (eV·cm² – 1. Calculated at 1 MHz, the interfacial layer thickness and depletion layer width are of 760 Å and 0.28 μm.

  8. Measurement of mobility and lifetime of electrons and holes in a Schottky CdTe diode

    Science.gov (United States)

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Kolstein, M.; Puigdengoles, C.; García, J.; Cabruja, E.

    2014-12-01

    We report on the measurement of drift properties of electrons and holes in a CdTe diode grown by the travelling heating method (THM). Mobility and lifetime of both charge carriers has been measured independently at room temperature and fixed bias voltage using charge integration readout electronics. Both electrode sides of the detector have been exposed to a 241Am source in order to obtain events with full contributions of either electrons or holes. The drift time has been measured to obtain the mobility for each charge carrier. The Hecht equation has been employed to evaluate the lifetime. The measured values for μτe/h (mobility-lifetime product) are in agreement with earlier published data.

  9. Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser

    CERN Document Server

    Forget, S; Balembois, F; Georges, P; Landru, N; Feve, J P; Lin, J; Weng, Z; Forget, Sebastien; Druon, Frederic; Balembois, Francois; Georges, Patrick; Landru, Nicolas; Feve, Jean Philippe; Lin, Jiali; Weng, Zhiming

    2006-01-01

    the realization of high repetition rate passively Q-switched monolithic microlaser is a challenge since a decade. To achieve this goal, we report here on the first passively Q-switched diode-pumped microchip laser based on the association of a Nd:GdVO4 crystal and a Cr4+:YAG saturable absorber. The monolithic design consists of 1 mm long 1% doped Nd:GdVO4 optically contacted on a 0.4 mm long Cr4+:YAG leading to a plano-plano cavity. A repetition rate as high as 85 kHz is achieved. The average output power is approximately 400 mW for 2.2 W of absorbed pump power and the pulse length is 1.1 ns.

  10. Monolithic white light emitting diodes using a (Ga,In)N-based light converter

    Science.gov (United States)

    Damilano, Benjamin; Lekhal, Kaddour; Kim-Chauveau, Hyonju; Hussain, Sakhawat; Frayssinet, Eric; Brault, Julien; Chenot, Sébastien; Vennéguès, Philippe; De Mierry, Philippe; Massies, Jean

    2014-03-01

    Commercially available inorganic white light emitting diodes (LEDs) are essentially based on the combination of a blue InGaN based LED chip covered by a long wavelength emitting (yellow, red) phosphor. We propose to avoid this step of phosphor deposition by taking advantage of the fact that yellow to red emission can be achieved using InGaN alloys. By stacking an InGaN/GaN multiple quantum well (QW) emitting in the yellow, acting as a light converter, and a short wavelength blue-violet pump LED grown on top, white light emission can be obtained. Furthermore, if we extend the emission spectrum of the light converter into the red, a warm white light color is demonstrated when a pump LED is grown on top. However, the high In content InGaN QWs of the light converter have a low thermal stability and the QW efficiency tends to degrade during the growth of the pump LED. Three different solutions are explored to avoid the thermal degradation of the light converter. The monolithic LED structures were grown by molecular beam epitaxy (MBE), by a combination of both MBE and metal-organic chemical vapor phase epitaxy (MOCVD), or by a low temperature full-MOCVD process. The best results are obtained using a complete MOCVD growth process. The structure and the MOCVD growth conditions are specifically adapted in order to avoid the thermal degradation of the large In composition InGaN QWs emitting at long wavelength during the growth of the subsequent layers.

  11. Red emitting monolithic dual wavelength DBR diode lasers for shifted excitation Raman difference spectroscopy

    Science.gov (United States)

    Sumpf, B.; Maiwald, M.; Müller, A.; Bugge, F.; Fricke, J.; Ressel, P.; Pohl, J.; Erbert, G.; Tränkle, G.

    2014-02-01

    Raman lines are often obscured by background light or fluorescence especially when investigating biological samples or samples containing impurities. Shifted excitation Raman difference spectroscopy (SERDS) is a technique to overcome this. By exciting the sample with two slightly shifted wavelengths, it is possible to separate the Raman lines and distortions. In this paper, monolithic dual wavelength DBR diode lasers meeting the demands of Raman spectroscopy and SERDS will be presented. The wavelengths are stabilized and selected by using deeply-etched 10th order surface gratings with different periods manufactured using i-line wafer stepper lithography. Two possible resonator concepts, i.e. a mini-array of two parallel DBR RW-lasers and a Y-branch DBR laser, will be compared. Established excitation wavelengths for Raman spectroscopy at 671 nm and 785 nm are chosen. The total laser length is 3 mm; the ridge width is 2.2 μm for the 785 nm devices and 5 μm for the 671 nm lasers. The length of the DBR gratings is 500 μm. The devices at 671 nm reach output powers up to 100 mW having an emission width smaller than 12 pm (FWHM). The 785 nm lasers show output powers up to 200 mW and a narrow emission below 22 pm. For the dual wavelength lasers the spectral distance between the two excitation lines is about 0.5 nm as targeted. The power consumption at both wavelengths is below 1 W. These data proof that the devices are well suited for their application in portable Raman measurement systems such as handheld devices using SERDS.

  12. Estimation of power dissipation of a 4H-SiC Schottky barrier diode with a linearly graded doping profile in the drift region

    Directory of Open Access Journals (Sweden)

    Rajneesh Talwar

    2009-09-01

    Full Text Available The aim of this paper is to establish the importance of a linearly graded profile in the drift region of a 4H-SiC Schottky barrier diode (SBD. The power dissipation of the device is found to be considerably lower at any given current density as compared to its value obtained for a uniformly doped drift region. The corresponding values of breakdown voltages obtained are similar to those obtained with uniformly doped wafers of 4H-SiC.

  13. Monolithic Y-branch dual wavelength DBR diode laser at 671nm for shifted excitation Raman difference spectroscopy

    Science.gov (United States)

    Maiwald, M.; Fricke, J.; Ginolas, A.; Pohl, J.; Sumpf, B.; Erbert, G.; Tränkle, G.

    2013-05-01

    A dual-wavelength laser diode source suitable for shifted excitation Raman difference spectroscopy (SERDS) is presented. This monolithic device contains two ridge waveguide (RW) sections with wavelengths adjusted distributed Bragg reflection (DBR) gratings as rear side mirrors. An integrated Y-branch coupler guides the emission into a common output aperture. The two wavelengths are centered at 671 nm with a well-defined spectral spacing of about 0.5 nm, i.e. 10 cm-1. Separate RW sections can be individually addressed by injection current. An output power up to 110 mW was achieved. Raman experiments demonstrate the suitability of these devices for SERDS.

  14. GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate.

    Science.gov (United States)

    Chuang, Linus C; Sedgwick, Forrest G; Chen, Roger; Ko, Wai Son; Moewe, Michael; Ng, Kar Wei; Tran, Thai-Truong D; Chang-Hasnain, Connie

    2011-02-09

    Monolithic integration of III-V compound semiconductor devices with silicon CMOS integrated circuits has been hindered by large lattice mismatches and incompatible processing due to high III-V epitaxy temperatures. We report the first GaAs-based avalanche photodiodes (APDs) and light emitting diodes, directly grown on silicon at a very low, CMOS-compatible temperature and fabricated using conventional microfabrication techniques. The APDs exhibit an extraordinarily large multiplication factor at low voltage resulting from the unique needle shape and growth mode.

  15. Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel Schottky diodes on 4H-SiC

    Science.gov (United States)

    Omotoso, E.; Meyer, W. E.; Auret, F. D.; Paradzah, A. T.; Diale, M.; Coelho, S. M. M.; Janse van Rensburg, P. J.; Ngoepe, P. N. M.

    2015-12-01

    Current-voltage, capacitance-voltage and conventional deep level transient spectroscopy at temperature ranges from 40 to 300 K have been employed to study the influence of alpha-particle irradiation from an 241Am source on Ni/4H-SiC Schottky contacts. The nickel Schottky barrier diodes were resistively evaporated on n-type 4H-SiC samples of doping density of 7.1 × 1015 cm-3. It was observed that radiation damage caused an increase in ideality factors of the samples from 1.04 to 1.07, an increase in Schottky barrier height from 1.25 to 1.31 eV, an increase in series resistance from 48 to 270 Ω but a decrease in saturation current density from 55 to 9 × 10-12 A m-2 from I-V plots at 300 K. The free carrier concentration of the sample decreased slightly after irradiation. Conventional DLTS showed peaks due to four deep levels for as-grown and five deep levels after irradiation. The Richardson constant, as determined from a modified Richardson plot assuming a Gaussian distribution of barrier heights for the as-grown and irradiated samples were 133 and 151 A cm-2 K-2, respectively. These values are similar to literature values.

  16. Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel Schottky diodes on 4H–SiC

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Department of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Paradzah, A.T.; Diale, M.; Coelho, S.M.M.; Janse van Rensburg, P.J.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2015-12-15

    Current–voltage, capacitance–voltage and conventional deep level transient spectroscopy at temperature ranges from 40 to 300 K have been employed to study the influence of alpha-particle irradiation from an {sup 241}Am source on Ni/4H–SiC Schottky contacts. The nickel Schottky barrier diodes were resistively evaporated on n-type 4H–SiC samples of doping density of 7.1 × 10{sup 15} cm{sup −3}. It was observed that radiation damage caused an increase in ideality factors of the samples from 1.04 to 1.07, an increase in Schottky barrier height from 1.25 to 1.31 eV, an increase in series resistance from 48 to 270 Ω but a decrease in saturation current density from 55 to 9 × 10{sup −12} A m{sup −2} from I–V plots at 300 K. The free carrier concentration of the sample decreased slightly after irradiation. Conventional DLTS showed peaks due to four deep levels for as-grown and five deep levels after irradiation. The Richardson constant, as determined from a modified Richardson plot assuming a Gaussian distribution of barrier heights for the as-grown and irradiated samples were 133 and 151 A cm{sup −2} K{sup −2}, respectively. These values are similar to literature values.

  17. Extracted Electronic Parameters of a Novel Ag/SnO2:In/Si/Au Schottky Diode for Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Mostefa Benhaliliba

    2015-06-01

    Full Text Available The effect of indium on the characteristics of Ag / SnO2 : In / Si / Au Schottky diode (SD is studied. The electronic parameters, ideal factor, the effective barrier, flat band barrier height, the series resistance, the saturation current density of the diodes were extracted from the current voltage (I-V and capacitance voltage (C-V characteristics. The series resistance (Rs determined by Cheung method increases (508-534 Ω with In doping level while the barrier height still constant around 0.57 V. Norde approximation gives a similar barrier height values of 0.69 V but the series resistance reaches higher values of 5500 Ω.

  18. Fabrication and Characterization of Planar Dipole Antenna Integrated with GaAs Based-Schottky Diode for On-chip Electronic Device Application

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, Farahiyah; Hashim, Abdul Manaf; Parimon, Norfarariyanti; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul [Material Innovations and Nanoelectronics Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Osman, Mohd Nizam [Telekom Research and Development, TM Innovation Centre, 63000 Cyberjaya (Malaysia); Aziz, Azlan Abdul; Hashim, Md Roslan, E-mail: manaf@fke.utm.my [Nano-Optoelectronics Research, Faculty of Physics, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia)

    2011-02-15

    The design and RF characteristics of planar dipole antennas facilitated with coplanar waveguide (CPW) structure on semi-insulated GaAs are performed and confirmed to work in super high frequency (SHF) range. As expected, the fundamental resonant frequency shifts to higher frequency when the length of antenna decreases. Interestingly, the resonant frequencies of antenna are almost unchanged with the variation of antenna width and metal thickness. It is shown experimentally that return loss down to -54 dB with a metal thickness of 50 nm is obtainable. Preliminary investigation on design, fabrication, and DC and RF characteristics of the integrated device (planar dipole antenna + Schottky diode) on AlGaAs/GaAs HEMT structure is presented. From the preliminary direct irradiation experiments using the integrated device, the Schottky diode is not turned on due to weak reception of RF signal by dipole antenna. Further extensive considerations on the polarization of irradiation etc. need to be carried out in order to improve the signal reception. These preliminary results provide a new breakthrough for on-chip electronic device application in nanosystems.

  19. Analysis of temperature-dependant current–voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mayimele, M A, E-mail: meehleketo@gmail.com; Rensburg, J P van. Janse; Auret, F D; Diale, M

    2016-01-01

    We report on the analysis of current voltage (I–V) measurements performed on Pd/ZnO Schottky barrier diodes (SBDs) in the 80–320 K temperature range. Assuming thermionic emission (TE) theory, the forward bias I–V characteristics were analysed to extract Pd/ZnO Schottky diode parameters. Comparing Cheung’s method in the extraction of the series resistance with Ohm’s law, it was observed that at lower temperatures (T<180 K) the series resistance decreased with increasing temperature, the absolute minimum was reached near 180 K and increases linearly with temperature at high temperatures (T>200 K). The barrier height and the ideality factor decreased and increased, respectively, with decrease in temperature, attributed to the existence of barrier height inhomogeneity. Such inhomogeneity was explained based on TE with the assumption of Gaussian distribution of barrier heights with a mean barrier height of 0.99 eV and a standard deviation of 0.02 eV. A mean barrier height of 0.11 eV and Richardson constant value of 37 A cm{sup −2} K{sup −2} were determined from the modified Richardson plot that considers the Gaussian distribution of barrier heights.

  20. Spectroscopic properties and radiation damage investigation of a diamond based Schottky diode for ion-beam therapy microdosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Verona, C.; Marinelli, Marco; Verona-Rinati, G. [INFN - Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata,” Roma (Italy); Magrin, G.; Solevi, P.; Mayer, R. [EBG MedAustron Marie Curie-St. 5, 2700 Wiener Neustadt (Austria); Grilj, V.; Jakšić, M. [Ruder Boškovic Institute, Bijenicka cesta 54, P.O. Box 180, 10002 Zagreb (Croatia)

    2015-11-14

    In this work, a detailed analysis of the properties of a novel microdosimeter based on a synthetic single crystal diamond is reported. Focused ion microbeams were used to investigate the device spectropscopic properties as well as the induced radiation damage effects. A diamond based Schottky diode was fabricated by chemical vapor deposition with a very thin detecting region, about 400 nm thick (approximately 1.4 μm water equivalent thickness), corresponding to the typical size in microdosimetric measurements. A 200 × 200 μm{sup 2} square metallic contact was patterned on the diamond surface by standard photolithography to define the sensitive area. Experimental measurements were carried out at the Ruder Boškovic′ Institute microbeam facility using 4 MeV carbon and 5 MeV silicon ions. Ion beam induced charge maps were employed to characterize the microdosimeter response in terms of its charge collection properties. A stable response with no evidence of polarization or memory effects was observed up to the maximum investigated ion beam flux of about 1.7 × 10{sup 9} ions·cm{sup −2}·s{sup −1}. A homogeneity of the response about 6% was found over the sensitive region with a well-defined confinement of the response within the active area. Tests of the radiation damage effect were performed by selectively irradiating small areas of the device with different ion fluences, up to about 10{sup 12} ions/cm{sup 2}. An exponential decrease of the charge collection efficiency was observed with a characteristic decay constant of about 4.8 MGy and 1 MGy for C and Si ions, respectively. The experimental data were analyzed by means of GEANT4 Monte Carlo simulations. A direct correlation between the diamond damaging effect and the Non Ionizing Energy Loss (NIEL) fraction was found. In particular, an exponential decay of the charge collection efficiency with an exponential decay as a function of NIEL is observed, with a characteristic constant of about

  1. One-Watt level mid-IR output, singly resonant, continuous-wave optical parametric oscillator pumped by a monolithic diode laser

    NARCIS (Netherlands)

    Nieuwenhuis, Albert F.; Lee, Christopher James; Sumpf, Bernd; van der Slot, Petrus J.M.; Erbert, Götz; Boller, Klaus J.

    2010-01-01

    We report more than 1.1 Watt of idler power at 3373 nm in a singly resonant optical parametric oscillator (SRO), directly pumped by a single-frequency monolithic tapered diode laser. The SRO is based on a periodically poled MgO:LiNbO3 crystal in a four mirror cavity and is excited by 8.05 W of 1062

  2. Capacitance-conductance spectroscopic investigation of interfacial oxide layer in Ni/4H-SiC (0 0 0 1) Schottky diode

    Science.gov (United States)

    Gupta, Sanjeev K.; Shankar, Bhawani; Taube, William R.; Singh, Jitendra; Akhtar, J.

    2014-02-01

    In this reported work the interface properties of a process-induced thin interfacial oxide layer present between Ni and 4H-SiC substrate was examined systematically for fabricated Ni/4H-SiC (0 0 0 1) Schottky barrier diodes. Moreover, their contribution in the form of interface traps level density was investigated employing capacitance-conductance (C-C) spectroscopy techniques. The distinctive parameters of interface at Ni and 4H-SiC substrate were determined from the C-C spectroscopy under forward bias condition. The increase in capacitance value towards lower frequencies results from the presence of interface traps at the Ni/4H-SiC interface however the observed maximums peaks in the normalized conductance curve of the diode indicates the presence of an interfacial layer in the fabricated Schottky barrier diode. It has been found that the density of interface traps level decreases (1.25×1013-1.16×1013 cm-2 eV-1) and time constant of interface traps (3.16×10-5-1.47×10-3 s) increases with bias voltage at anode in the range of Ec-0.06 to Ec-1.06 eV from the top of conduction band toward midgap of n-type 4H-SiC substrate. Furthermore, the capture cross section was found to vary from 9.31×10-10 cm2 in (Ec-0.06) eV to 4.43×10-11 cm2 in (Ec-1.06) eV.

  3. High-voltage (900 V) 4 H-SiC Schottky diodes with a boron-implanted guard p-n junction

    Energy Technology Data Exchange (ETDEWEB)

    Grekhov, I. V.; Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Il' inskaya, N. D.; Kon' kov, O. I.; Potapov, A. S.; Samsonova, T. P. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2008-02-15

    High-voltage (900 V) 4H-SiC Schottky diodes terminated with a guard p-n junction were fabricated and studied. The guard p-n junction was formed by room-temperature boron implantation with subsequent high-temperature annealing. Due to transient enhanced boron diffusion during annealing, the depth of the guard p-n junction was equal to about 1.7 {mu}m, which is larger by approximately 1 {mu}m than the projected range of 11 B ions in 4H-SiC. The maximum reverse voltage of fabricated 4H-SiC Schottky diodes is found to be limited by avalanche breakdown of the planar p-n junction; the value of the breakdown voltage (910 V) is close to theoretical estimate in the case of the impurity concentration N = 2.5 Multiplication-Sign 10{sup 15} cm{sup -3} in the n-type layer, thickness of the n-type layer d = 12.5 {mu}m, and depth of the p-n junction r{sub j} = 1.7 {mu}m. The on-state diode resistance (3.7 m{Omega} cm{sup 2}) is controlled by the resistance of the epitaxial n-type layer. The recovery charge of about 1.3 nC is equal to the charge of majority charge carriers that are swept out of an epitaxial n-type layer under the effect of a reverse voltage.

  4. Capacitance–conductance spectroscopic investigation of interfacial oxide layer in Ni/4H–SiC (0 0 0 1) Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sanjeev K., E-mail: sanjeev@ceeri.ernet.in; Shankar, Bhawani; Taube, William R.; Singh, Jitendra; Akhtar, J.

    2014-02-01

    In this reported work the interface properties of a process-induced thin interfacial oxide layer present between Ni and 4H–SiC substrate was examined systematically for fabricated Ni/4H–SiC (0 0 0 1) Schottky barrier diodes. Moreover, their contribution in the form of interface traps level density was investigated employing capacitance–conductance (C–C) spectroscopy techniques. The distinctive parameters of interface at Ni and 4H–SiC substrate were determined from the C–C spectroscopy under forward bias condition. The increase in capacitance value towards lower frequencies results from the presence of interface traps at the Ni/4H–SiC interface however the observed maximums peaks in the normalized conductance curve of the diode indicates the presence of an interfacial layer in the fabricated Schottky barrier diode. It has been found that the density of interface traps level decreases (1.25×10{sup 13}–1.16×10{sup 13} cm{sup −2} eV{sup −1}) and time constant of interface traps (3.16×10{sup −5}–1.47×10{sup −3} s) increases with bias voltage at anode in the range of Ec-0.06 to Ec-1.06 eV from the top of conduction band toward midgap of n-type 4H–SiC substrate. Furthermore, the capture cross section was found to vary from 9.31×10{sup −10} cm{sup 2} in (E{sub c}-0.06) eV to 4.43×10{sup –11} cm{sup 2} in (E{sub c}-1.06) eV.

  5. W band detector based on planar Schottky diode%基于平面肖特基二极管的W波段检波器

    Institute of Scientific and Technical Information of China (English)

    刘海瑞; POWELL Jeff; VIEGAS Colin; ALDERMAN Byron; 俞俊生

    2016-01-01

    肖特基二极管技术为常温下毫米波信号的检测提供了有效的解决方案。它具有极低的寄生电容和级联电阻,可用于该频段的倍频器、混频器和检波器当中。相比于Galey Cell和热辐射测定器(Bolometer),基于肖特基二极管的直接检波技术具有低噪声、高反应率和常温使用的特点。本文介绍了一种基于波导结构的零偏置肖特基二极管检波器,采用 E面探针传输波导基模电磁波,通过阻抗匹配实现微带线到二极管的耦合。测试结果表明,在-30 dBm输入功率下:电压反应率的峰值可达8900 V/W;在75 GHz~105 GHz的频率范围内,电压反应率在1000 V/W以上。%Schottky diodes technology provides an efficient solution for millimeter wave detection under room temperature. It offers low parasitic capacitance and series resistance when used as mixers, multipliers and detectors. Some Schottky detectors can operate under room temperature and have an extremely fast response compared with other detectors, such as micro-bolometers and Golay cells. A zero biased waveguide detector based on Schottky diode is presented. It utilizes an E-plane probe as a transition from waveguide to micro-strip line, and couples the signal to the diode by impedance matching. The measurement results show that: with a -30dBm input power, the circuit can achieve a peak voltage responsivity around 8900V/W, and over 1000V/W from 75GHz to 105GHz.

  6. Study of optimization of Al/a-SiC:H Schottky diodes by means of annealing process of a-SiC:H thin films sputtered at three different hydrogen flow rates

    Directory of Open Access Journals (Sweden)

    L. Magafas

    2008-01-01

    Full Text Available The aim of the present work is to study the optimization of the electrical and optical properties of a-SiC:H Schottky di-odes using thermal annealing process to a-SiC:H thin films in the range from 300oC up to 675oC. The films were depos-ited onto c-Si(n using the rf sputtered method at three different hydrogen flow rates, 9sccm, 14sccm, and 20sccm. Sub-sequently, Al dots evaporated onto a-SiC:H in order to form Schottky contacts. The measurements of logI-V character-istics have shown that the Al/a-SiC:H Schottky diodes are optimized at 550oC, 575oC, and 600oC , for hydrogen flow rates 9 sccm, 14 sccm and 20 sccm respectively. At these temperatures the logI-V curves are linear for more than seven orders of magnitude, and the majority carries are transported by thermal emission mechanism. The measurements of op-tical response of these diodes present two maximum values (>70%, one in the range from 550nm up to 625nm and the other at 850nm which are attributed to Al/a-SiC:H junction and to a-SiC:H/c-Si(n heterojunction, respectively. From the overall study of the electrical and optical measurements of the Schottky diodes it is concluded that at hydrogen flow rate 20 sccm and annealing temperature 600oC is achieved the optimum Al/a-SiC:H Schottky diode. This result is in full agreement with the properties of the a-SiC:H.

  7. Monolithic Integration of a Novel Microfluidic Device with Silicon Light Emitting Diode-Antifuse and Photodetector

    NARCIS (Netherlands)

    LeMinh, P.; Holleman, J.; Berenschot, J.W.; Tas, N.R.; Berg, van den A.

    2002-01-01

    Light emitting diode antifuse has been integrated into a microfluidic device that is realized with extended standard CMOS technological steps. The device comprises of a microchannel sandwiched between a photodiode detector and a nanometer-scale diode antifuse light emitter. Within this contribution,

  8. Color mixing from monolithically integrated InGaN-based light-emitting diodes by local strain engineering

    Science.gov (United States)

    Chung, Kunook; Sui, Jingyang; Demory, Brandon; Ku, Pei-Cheng

    2017-07-01

    Additive color mixing across the visible spectrum was demonstrated from an InGaN based light-emitting diode (LED) pixel comprising red, green, and blue subpixels monolithically integrated and enabled by local strain engineering. The device was fabricated using a top-down approach on a metal-organic chemical vapor deposition-grown sample consisting of a typical LED epitaxial stack. The three color subpixels were defined in a single lithographic step. The device was characterized for its electrical properties and emission spectra under an uncooled condition, which is desirable in practical applications. The color mixing was controlled by pulse-width modulation, and the degree of color control was also characterized.

  9. Monolithically integrated laser diode and electroabsorption modulator with dual-waveguide spot-size converter input and output

    Science.gov (United States)

    Hou, Lianping; Wang, Wei; Zhu, Hongliang; Zhou, Fan; Wang, Lufeng; Bian, Jing

    2005-08-01

    We have demonstrated a 1.60 µm ridge-structure laser diode and electroabsorption modulator monolithically integrated with buried-ridge-structure dual-waveguide spot-size converters at the input and output ports for low-loss coupling to a cleaved single-mode optical fibre by means of selective area growth and asymmetric twin waveguide technologies. The devices emit in single transverse and quasi-single longitudinal modes with a side mode suppression ratio of 25.6 dB. These devices exhibit 3 dB modulation bandwidth of 15.0 GHz and modulator extinction ratios of 14.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7.3° × 10.6°, respectively, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.

  10. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes

    Science.gov (United States)

    Yan, Ping; Huang, Yusheng; Sun, Junyi; Li, Dan; Wang, Xuejiao; Gong, Mali; Xiao, Qirong

    2017-08-01

    We report an all-fibre monolithic master oscillator power amplifier configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes. The Raman Effect and thermal problems can be effectively suppressed by the bidirectional pumping configuration. A small core diameter double-clad ytterbium-doped fibre is utilized in the amplifier for a refined beam quality control. As a result, a maximum output power of 3122 W and an optical-to-optical efficiency of 81.4% are achieved with near-diffraction-limitation beam quality. No mode instability was detected via a photodiode. Also, the output power instability was measured to be less than 0.6% during a continuous operation of 2 h.

  11. Properties of Schottky Barrier Diodes on (In(x)Ga(1-x))₂O₃ for 0.01 ≤ x ≤ 0.85 Determined by a Combinatorial Approach.

    Science.gov (United States)

    von Wenckstern, H; Splith, D; Werner, A; Müller, S; Lorenz, M; Grundmann, M

    2015-12-14

    We investigated properties of an (In(x)Ga(1-x))2O3 thin film with laterally varying cation composition that was realized by a large-area offset pulsed laser deposition approach. Within a two inch diameter thin film, the composition varies between 0.01 ≤ x ≤ 0.85, and three crystallographic phases (cubic, hexagonal, and monoclinic) were identified. We observed a correlation between characteristic parameters of Schottky barrier diodes fabricated on the thin film and its chemical and structural material properties. The highest Schottky barriers and rectification of the diodes were found for low indium contents. The thermal stability of the diodes is also best for Ga-rich parts of the sample. Conversely, the series resistance is lowest for large In content. Overall, the (In(x)Ga(1-x))2O3 alloy is well-suited for potential applications such as solar-blind photodetectors with a tunable absorption edge.

  12. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    Science.gov (United States)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2011-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW

  13. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    Science.gov (United States)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2011-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW

  14. Effects of N{sub 2}-annealing conditions on the sensing properties of Pt/HfO{sub 2}/SiC Schottky-diode hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.M., E-mail: wmtang@eee.hku.hk; Leung, C.H.; Lai, P.T.

    2010-10-29

    Hafnium oxide (HfO{sub 2}) used as the gate insulator of metal-insulator-SiC Schottky-diode hydrogen sensors is annealed in nitrogen at different temperatures and durations for achieving a better performance. The hydrogen-sensing properties of these samples are compared with each other by taking measurements under various temperatures and hydrogen concentrations using a computer-controlled measurement system. The sensor response of the device is found to increase with the annealing temperature and time because higher annealing temperature and longer annealing time can enhance the densification of the HfO{sub 2} film; improve the oxide stoichiometry and facilitate the growth of an interfacial layer to give better interface quality, thus causing a significant reduction of the current of the sensor under air ambient. The effects of hydrogen adsorption on the barrier height and conduction mechanism of the devices are also investigated.

  15. Influence of three-dimensional p-buried layer pattern on the performance of 4H-SiC floating junction Schottky barrier diode

    Science.gov (United States)

    Yang, Shuai; Zhang, Yuming; Song, Qingwen; Tang, Xiaoyan; Zhang, Yimen; Huo, Tianjia; Liu, Sicheng; Yuan, Hao

    2015-10-01

    4H-SiC floating junction Schottky barrier diodes (FJ-SBDs) are excellent SiC devices with high Baliga’s figure of merit (BFOM). However, the p-type buried layers in epilayers partially obstruct the current paths, and increase the on-resistance, while the buried layers of dot patterns can reduce the obstruction. In this paper, a three-dimensional (3D) simulation of 4H-SiC FJ-SBDs with dot patterns is reported for the first time. By comparing the results obtained from stripe, square, octagon, and circle patterns, dot patterns are proved to be good choices for buried layers in 4H-SiC FJ-SBDs, and the FJ-SBD with the circle pattern has the highest BFOM of 12.09 GW/cm2, which is 22.62% greater than that of the FJ-SBD with the stripe pattern.

  16. CoPt ferromagnetic injector in light-emitting Schottky diodes based on InGaAs/GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zdoroveyshchev, A. V., E-mail: zdorovei@gmail.com; Dorokhin, M. V.; Demina, P. B. [Lobachevsky State University of Nizhny Novgorod, Physical–Technical Research Institute (Russian Federation); Kudrin, A. V. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Vikhrova, O. V. [Lobachevsky State University of Nizhny Novgorod, Physical–Technical Research Institute (Russian Federation); Ved’, M. V.; Danilov, Yu. A. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Erofeeva, I. V. [Lobachevsky State University of Nizhny Novgorod, Physical–Technical Research Institute (Russian Federation); Krjukov, R. N.; Nikolichev, D. E. [Lobachevsky State University of Nizhny Novgorod (Russian Federation)

    2015-12-15

    The possibility of fabricating a ferromagnetic injector based on a near-equiatomic CoPt alloy with pronounced perpendicular magnetization anisotropy in the InGaAs/GaAs spin light-emitting diode is shown. The physical properties of experimental spin light-emitting diode prototypes are comprehensively studied. Circularly polarized electroluminescence of fabricated diodes is obtained in zero magnetic field due to the remanent magnetization of CoPt layers.

  17. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    Science.gov (United States)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  18. Pd/Ta2O5/SiC Schottky-diode hydrogen sensors formed by using rapid thermal oxidation of Ta thin films

    Science.gov (United States)

    Joo, Sung-Jae; Choi, Je Hoon; Kim, Seong Jeen; Kim, Sang-Cheol

    2013-11-01

    Pd/Ta2O5/SiC Schottky-diode hydrogen sensors were fabricated, and their hydrogen gas sensing performance was investigated at 573 K and 773 K. Interfacial Ta2O5 films of 120 nm in thickness were formed by using rapid thermal oxidation (RTO) of the sputtered Ta films on SiC. The crystallinity of the Ta and the Ta2O5 films were characterized by using X-ray diffraction (XRD). As-sputtered Ta films on 4H-SiC are composed of α-Ta (body-centered-cubic) and β-Ta (tetragonal), and α-Ta (110) is the dominant orientation. After RTO at 573 K, the Ta films are converted to β-Ta2O5 (orthorhombic). The diode sensors show high sensitivity to H2 even at the low H2 concentration of 500 ppm, and the voltage change of the sensor upon H2 exposure is proportional to the H2 concentration in the range of 500 ˜ 2000 ppm at 573 K. The response voltage ΔV is shown to arise mostly from the change in the series resistance component of the sensor upon H2 exposure; the main origin of that change is believed to be the Ta2O5 interfacial layer. The response time t90 of the sensor at 573 K was estimated to be approximately 8 s.

  19. Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode

    DEFF Research Database (Denmark)

    Ou, Yiyu; Corell, Dennis Dan; Dam-Hansen, Carsten

    2011-01-01

    simulation results show that a moth-eye structure enhances the light extraction efficiency over the entire visible light range with an extraction efficiency enhancement of up to 26 %. Also for the first time to our best knowledge, the influence of sub-wavelength structures on both the color rendering index......We have theoretically investigated the influence of antireflective sub-wavelength structures on a monolithic white light-emitting diode (LED). The simulation is based on the rigorous coupled wave analysis (RCWA) algorithm, and both cylinder and moth-eye structures have been studied in the work. Our...... (CRI) and the correlated color temperature (CCT) of the monolithic white LED have been demonstrated. The CRI of the monolithic white LED could be improved from 92.68 to around 94 by applying a cylinder structure, and the CCT could be modified in a very large range with appropriate design...

  20. Au/n-InP Schottky diodes using an Al2O3 interfacial layer grown by atomic layer deposition

    Science.gov (United States)

    Kim, Hogyoung; Kim, Min Soo; Yoon, Seung Yu; Choi, Byung Joon

    2017-02-01

    We investigated the effect of an Al2O3 interfacial layer grown by atomic layer deposition on the electrical properties of Au Schottky contacts to n-type InP. Considering barrier inhomogeneity, modified Richardson plots yielded a Richardson constant of 8.4 and 7.5 Acm-2K-2, respectively, for the sample with and without the Al2O3 interlayer (theoretical value of 9.4 Acm-2K-2 for n-type InP). The dominant reverse current flow for the sample with an Al2O3 interlayer was found to be Poole-Frenkel emission. From capacitance-voltage measurements, it was observed that the capacitance for the sample without the Al2O3 interlayer was frequency dependent. Sputter-induced defects as well as structural defects were passivated effectively with an Al2O3 interlayer.

  1. On the electrical behavior of V2O5/4H-SiC Schottky diodes

    Science.gov (United States)

    Bellone, S.; Di Benedetto, L.; Rubino, A.

    2013-06-01

    A complete analysis of the rectifying behavior of V2O5/4H-SiC (divanadium pentoxide/4H polytype of silicon carbide) junction is reported. The analysis of forward and reverse JD-VD curves of samples fabricated with 5 nm-thick V2O5 films shows that the carrier transport across junction is dominated by the field enhanced thermionic emission mechanism. All the physical and electrical parameters, such as Schottky barrier height, ideality factor, and series resistance, have been evaluated from temperature behavior of JD-VD curves in the range 100-425 K and from CD-VD measurements. It is shown that the barrier height extracted from measurements can be justified in terms of inhomogeneities localized at the interface.

  2. Fabrication of Schottky barrier diodes using H{sub 2}O{sub 2}-treated non-polar ZnO (101{sup ¯}0) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwaba, Yasuhiro, E-mail: kashi@sendai-nct.ac.jp [Sendai National College of Technology, Advanced Course of Information and Electronic System Engineering, 4-16-1 Ayashi-chuo, Sendai 989-3128 (Japan); Sakuma, Mio [Sendai National College of Technology, Advanced Course of Information and Electronic System Engineering, 4-16-1 Ayashi-chuo, Sendai 989-3128 (Japan); Abe, Takami; Nakagawa, Akira; Niikura, Ikuo; Kashiwaba, Yasube; Daibo, Masahiro; Osada, Hiroshi [Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan)

    2013-12-01

    Non-polar single crystal ZnO (101{sup ¯}0) substrates with hydrogen peroxide (H{sub 2}O{sub 2}) treatment were characterized and applied to Schottky barrier diodes. Formation of a ZnO{sub 2} layer with a polycrystalline structure was confirmed by 2θ scans of X-ray diffraction (XRD) measurements. Tails of the X-ray rocking curve of ZnO (101{sup ¯}0) planes were broadened with increase in H{sub 2}O{sub 2} treatment time. Grain structures were clearly observed on the surfaces of ZnO (101{sup ¯}0) substrates with H{sub 2}O{sub 2} treatment by an atomic force microscope, and the root mean square roughness of the ZnO{sub 2} surface was about 5 nm. The current density–voltage (J–V) characteristics of Pd/ZnO/Al structures using ZnO (101{sup ¯}0) substrates without H{sub 2}O{sub 2} treatment were ohmic. The J–V characteristics of Pd/ZnO{sub 2}/ZnO/Al structures using ZnO (101{sup ¯}0) substrates with H{sub 2}O{sub 2} treatment time of 5 min showed good rectifying characteristics. The ideality factor n of this diode was 1.7 and the barrier height between Pd films and the ZnO{sub 2} layer on the ZnO (101{sup ¯}0) plane was estimated to be 0.92 eV.

  3. Design of 340 GHz 2× and 4× Sub-Harmonic Mixers Using Schottky Barrier Diodes in Silicon-Based Technology

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-05-01

    Full Text Available This paper presents the design of terahertz 2× and 4× sub-harmonic down-mixers using Schottky Barrier Diodes fabricated in standard 0.13 μm SiGe BiCMOS technology. The 340 GHz sub-harmonic mixers (SHMs are designed based on anti-parallel-diode-pairs (APDPs. With the 2nd and 4th harmonic, local oscillator (LO frequencies of 170 GHz and 85 GHz are used to pump the two 340 GHz SHMs. With LO power of 7 dBm, the 2× SHM exhibits a conversion loss of 34.5–37 dB in the lower band (320–340 GHz and 35.5–41 dB in the upper band (340–360 GHz; with LO power of 9 dBm, the 4× SHM exhibits a conversion loss of 39–43 dB in the lower band (320–340 GHz and 40–48 dB in the upper band (340–360 GHz. The measured input 1-dB conversion gain compression point for the 2× and 4× SHMs are −8 dBm and −10 dBm at 325 GHz, respectively. The simulated LO-IF (intermediate frequency isolation of the 2× SHM is 21.5 dB, and the measured LO-IF isolation of the 4× SHM is 32 dB. The chip areas of the 2× and 4× SHMs are 330 μm × 580 μm and 550 μm × 610 μm, respectively, including the testing pads.

  4. Rayleigh length dependent SHG conversion at 488nm using a monolithic DBR tapered diode laser

    Science.gov (United States)

    Blume, G.; Uebernickel, M.; Fiebig, C.; Paschke, K.; Ginolas, A.; Eppich, B.; Güther, R.; Erbert, G.

    2008-02-01

    We present a study of the single pass SHG conversion as a function of the Rayleigh length (RL) and beam diameter (BD) using a monolithic distributed Bragg reflector (DBR) tapered laser. The DBR tapered laser has a 6th order surface grating and a ridge waveguide. Single longitudinal mode emission at 978nm with a side-mode suppression ratio of more than 40dB and at an output power of 2.7W at 15°C have been obtained in continuous wave operation. The beam was collimated using an aspheric and a cylindrical lens and focused using a variety of lenses with various focal lengths. The resulting caustics were acquired using a camera and used for SHG in a 5cm periodically poled LiNbO 3 (PPLN) crystal. This allowed an investigation of the dependency of the SHG conversion efficiency on the RLs and BDs. We obtained 330mW of output power at 488nm using the optimal focus length. The experiments showed that an optimum conversion requires longer focal length's then forecasted by Boyd-Kleinman's theory, which is explained due to the partial coherence. We developed an extension of that theory to account for that partial coherence, which bases in principle on a mismatch related general Agrawal's nonlinear integration kernel. We use this theory to explain the dependence of the SHG efficiency from the beam propagation factor M2.

  5. Correlation Between Morphological Defects, Electron Beam Induced Current Imaging, and the Electrical Properties of 4H-SiC Schottky Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang,Y.; Ali, G.; Mikhov, M.; Vaidyanathan, V.; Skromme, B.; Raghothamachar, B.; Dudley, M.

    2005-01-01

    Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier height within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis.

  6. Recrystallization effects of swift heavy {sup 209}Bi ions irradiation on electrical degradation in 4H-SiC Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhimei; Ma, Yao; Gong, Min [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Li, Yun [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Huang, Mingmin [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gao, Bo [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhao, Xin, E-mail: zhaoxin1234@scu.edu.cn [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-06-15

    In this paper, the phenomenon that the recrystallization effects of swift heavy {sup 209}Bi ions irradiation can partially recovery damage with more than 1 × 10{sup 10} ions/cm{sup 2} is investigated by the degradation of the electrical characteristics of 4H-SiC Schottky barrier diode (SBD) with swift heavy ion irradiation. Deep level transient spectroscopy (DLTS) and Current-Voltage (I-V) measurements clearly indicated that E{sub 0.62} defect induced by swift heavy ion irradiation, which was a recombination center, could result in the increase of reverse leakage current (I{sub R}) at fluence less than 1 × 10{sup 9} ions/cm{sup 2} and the recovery of I{sub R} at fluence more than 1 × 10{sup 10} ions/cm{sup 2} in 4H-SiC SBD. The variation tendency of I{sub R} is consisted with the change of E{sub 0.62} defect. Furthermore, it is reasonable explanation that the damage or defect formed at low fluence in SiC may be recovered by further swift heavy ion irradiation with high fluence, which is due to the melting with the ion tracks of the amorphous zones through a thermal spike and subsequent epitaxial recrystallization initiated from the neighboring crystalline regions.

  7. Optical pumping of deep traps in AlGaN/GaN-on-Si HEMTs using an on-chip Schottky-on-heterojunction light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-03-02

    In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R{sub on} and/or threshold voltage V{sub th} of the HEMT. The results show that the recovery processes of both dynamic R{sub on} and threshold voltage V{sub th} of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs.

  8. Low-Temperature Growth of Well-Aligned ZnO Nanorod Arrays by Chemical Bath Deposition for Schottky Diode Application

    Science.gov (United States)

    Yuan, Zhaolin

    2015-04-01

    A well-aligned ZnO nanorod array (ZNRA) was successfully grown on an indium tin oxide (ITO) substrate by chemical bath deposition at low temperature. The morphology, crystalline structure, transmittance spectrum and photoluminescence spectrum of as-grown ZNRA were investigated by field emission scanning electron microscopy, x-ray diffraction, ultraviolet-visible spectroscopy and spectrophotometer, respectively. The results of these measurements showed that the ZNRA contained densely packed, aligned nanorods with diameters from 30 nm to 40 nm and a wurtzite structure. The ZNRA exhibited good optical transparency within the visible spectral range, with >80% transmission. Gold (Au) was deposited on top of the ZNRA, and the current-voltage characteristics of the resulting ITO/ZNRA/Au device in the dark were evaluated in detail. The ITO/ZNRA/Au device acted as a Schottky barrier diode with rectifying behaviour, low turn-on voltage (0.6 V), small reverse-bias saturation current (3.73 × 10-6 A), a high ideality factor (3.75), and a reasonable barrier height (0.65 V) between the ZNRA and Au.

  9. Recrystallization effects of swift heavy 209Bi ions irradiation on electrical degradation in 4H-SiC Schottky barrier diode

    Science.gov (United States)

    Yang, Zhimei; Ma, Yao; Gong, Min; Li, Yun; Huang, Mingmin; Gao, Bo; Zhao, Xin

    2017-06-01

    In this paper, the phenomenon that the recrystallization effects of swift heavy 209Bi ions irradiation can partially recovery damage with more than 1 × 1010 ions/cm2 is investigated by the degradation of the electrical characteristics of 4H-SiC Schottky barrier diode (SBD) with swift heavy ion irradiation. Deep level transient spectroscopy (DLTS) and Current-Voltage (I-V) measurements clearly indicated that E0.62 defect induced by swift heavy ion irradiation, which was a recombination center, could result in the increase of reverse leakage current (IR) at fluence less than 1 × 109 ions/cm2 and the recovery of IR at fluence more than 1 × 1010 ions/cm2 in 4H-SiC SBD. The variation tendency of IR is consisted with the change of E0.62 defect. Furthermore, it is reasonable explanation that the damage or defect formed at low fluence in SiC may be recovered by further swift heavy ion irradiation with high fluence, which is due to the melting with the ion tracks of the amorphous zones through a thermal spike and subsequent epitaxial recrystallization initiated from the neighboring crystalline regions.

  10. Improved performance of Pd/WO3/SiC Schottky-diode hydrogen gas sensor by using fluorine plasma treatment

    Science.gov (United States)

    Liu, Y.; Tang, W. M.; Lai, P. T.

    2015-08-01

    A high-performance Pd/WO3/SiC Schottky-diode hydrogen gas sensor was fabricated by using fluorine plasma treatment on the WO3 film. From the electrical measurements under various hydrogen concentrations and temperatures, the plasma-treated sensor exhibited a maximum barrier-height change of 279 meV and a static gas sensitivity of more than 30 000, which is 30 times higher than that of the untreated sensor. This significant improvement is attributed to the larger adsorption area caused by the plasma-roughened WO3 film and the lower baseline leakage current induced by fluorine passivation of oxide traps. Additionally, the kinetics analysis and hydrogen coverage of the devices were studied to demonstrate the temperature dependence of the gas sensing behaviors. The hydrogen adsorption enthalpy at the Pd-WO3 interface significantly decreased from -31.2 kJ/mol to -57.6 kJ/mol after the plasma treatment. Therefore, the adsorption process on the plasma-treated sample is much easier and the suppression of sensing properties is more obvious at elevated temperatures above 423 K.

  11. Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode

    Science.gov (United States)

    Taşçıoğlu, İ.; Tüzün Özmen, Ö.; Şağban, H. M.; Yağlıoğlu, E.; Altındal, Ş.

    2017-04-01

    In this study, poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT:PCBM:F4-TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements in the frequency range of 10 kHz-2 MHz. The C- V- f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states ( N ss). The values of N ss located in semiconductor bandgap at the organic film/semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant ( ɛ') and dielectric loss ( ɛ″) decrease with increasing frequency, whereas loss tangent (tan δ) remains nearly the same. The decrease in ɛ' and ɛ″ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity ( σ ac) and electric modulus ( M' and M″) increase with increasing frequency.

  12. A theoretical model for Schottky diodes for excluding the sneak current in cross bar array resistive memory

    Science.gov (United States)

    Kim, Gun Hwan; Kim, Kyung Min; Seok, Jun Yeong; Lee, Hyun Ju; Cho, Deok-Yong; Han, Jeong Hwan; Hwang, Cheol Seong

    2010-09-01

    Kirchhoff's law was used to examine the electrical specifications of selection diodes, which are essential for suppressing the read interference problems in nano-scale resistive switching cross bar arrays with a high block density. The diode in the cross bar array with a 100 Mb block density should have a reverse/forward resistance ratio of > 108, and a forward current density of > 105 A cm - 2 for stable reading and writing operation. Whilst normal circuit simulators are heavily overloaded when the number of cells (m) connected to one bit and word line is larger (m\\gg 100 ), which is the desired range for high density cross bar arrays, the present model can provide a simple simulation. The validity of this new method was confirmed by a comparison with the previously reported method based on a voltage estimation.

  13. Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk GaN Substrates FY2016

    Science.gov (United States)

    2017-01-09

    crystal GaN substrate grown using the ammonothermal growth technique . To investigate the electrical performance of the SDs as a function of diode size...availability and use of high-quality native substrates, demonstrating an ideal route for achieving GaN-based device structures with low-threading dislocation...30 s on a hot plate and subsequently flood exposed for 8 s. After flood exposure, the sample was developed for 60 s in an AZ300 Metal Ion Free

  14. Analysis of frequency- and temperature-dependent interface states in PtSi/p-Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Sellai, A. [Physics Department, P.O. Box 36, Sultan Qaboos University 123, Muscat (Oman)], E-mail: asellai@squ.edu.om; Ouennoughi, Z. [Laboratoire Optoelectronique et Composants, Departement de Physique UFAS Setif Algerie (Algeria)

    2008-12-05

    To yield quantitative information about their interface states, PtSi/p-Si Schottky structures have been studied using conductance and capacitance measurements over a wide range of frequencies (1 kHz to 1 MHz) and at several temperatures (80-140 K). The increase in capacitance at lower frequencies is seen as a signature of interface states, the densities of which are evaluated to be of the order of {approx}10{sup 12} eV{sup -1} cm{sup -2}. The presence of interface states is also evidenced as a peak in the conductance-frequency characteristics that increases in magnitude with decreasing temperatures. The variations of interface conductance are best described by an analytical equation derived assuming an energy-dependent cross-section of these interface states. The conductance data is subsequently used to extract the relaxation times of interface states and their energy distribution with respect to the top of the valence band. Relaxation times, in particular, while temperature dependent with an average value of {approx}4 {mu}s, show a noticeably weak dependence on bias.

  15. Schottky Barrier CdTe(Cl) Detectors for Planetary Missions

    Science.gov (United States)

    Eisen, Yosef; Floyd, Samuel

    2002-10-01

    Schottky barrier cadmium telluride (CdTe) radiation detectors of dimensions 2mm × 2mm × 1mm and segmented monolithic 3cm × 3 cm × 1mm are under study at GSFC for future NASA planetary instruments. These instruments will perform x-ray fluorescence spectrometry of the surface and monitor the solar x-ray flux spectrum, the excitation source for the characteristic x-rays emitted from the planetary body. The Near Earth Asteroid Rendezvous (NEAR) mission is the most recent example of such a remote sensing technique. Its x-ray fluorescence detectors were gas proportional counters with a back up Si PIN solar monitor. Analysis of NEAR data has shown the necessity to develop a solar x-ray detector with efficiency extending to 30keV. Proportional counters and Si diodes have low sensitivity above 9keV. Our 2mm × 2mm × 1mm CdTe operating at -30°C possesses an energy resolution of 250eV FWHM for 55Fe with unit efficiency to up to 30keV. This is an excellent candidate for a solar monitor. Another ramification of the NEAR data is a need to develop a large area detector system, 20-30 cm2, with cosmic ray charged particle rejection, for measuring the characteristic radiation. A 3cm × 3cm × 1mm Schottky CdTe segmented monolithic detector is under investigation for this purpose. A tiling of 2-3 such detectors will result in the desired area. The favorable characteristics of Schottky CdTe detectors, the system design complexities when using CdTe and its adaptation to future missions will be discussed.

  16. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E., E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    Irradiation experiments have been carried out on 1.9×10{sup 16} cm{sup −3} nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×10{sup 10} to 9.2×10{sup 11} cm{sup −2}. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBH{sub I–V}) decreased from 1.47 to 1.34 eV. Free carrier concentration, N{sub d} decreased with increasing fluence from 1.7×10{sup 16} to 1.1×10{sup 16} cm{sup −2} at approximately 0.70 μm depth. The reduction in N{sub d} shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm{sup −1}. Alpha-particle irradiation introduced two electron traps (E{sub 0.39} and E{sub 0.62}), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E{sub 0.39} as attribute related to silicon or carbon vacancy, while the E{sub 0.62} has the attribute of Z{sub 1}/Z{sub 2}.

  17. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Science.gov (United States)

    Omotoso, E.; Meyer, W. E.; Auret, F. D.; Diale, M.; Ngoepe, P. N. M.

    2016-01-01

    Irradiation experiments have been carried out on 1.9×1016 cm-3 nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×1010 to 9.2×1011 cm-2. Current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBHI-V) decreased from 1.47 to 1.34 eV. Free carrier concentration, Nd decreased with increasing fluence from 1.7×1016 to 1.1×1016 cm-2 at approximately 0.70 μm depth. The reduction in Nd shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm-1. Alpha-particle irradiation introduced two electron traps (E0.39 and E0.62), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E0.39 as attribute related to silicon or carbon vacancy, while the E0.62 has the attribute of Z1/Z2.

  18. Calculation of the Electronic Parameters of an Al/DNA/p-Si Schottky Barrier Diode Influenced by Alpha Radiation

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-02-01

    Full Text Available Many types of materials such as inorganic semiconductors have been employed as detectors for nuclear radiation, the importance of which has increased significantly due to recent nuclear catastrophes. Despite the many advantages of this type of materials, the ability to measure direct cellular or biological responses to radiation might improve detector sensitivity. In this context, semiconducting organic materials such as deoxyribonucleic acid or DNA have been studied in recent years. This was established by studying the varying electronic properties of DNA-metal or semiconductor junctions when exposed to radiation. In this work, we investigated the electronics of aluminium (Al/DNA/silicon (Si rectifying junctions using their current-voltage (I-V characteristics when exposed to alpha radiation. Diode parameters such as ideality factor, barrier height and series resistance were determined for different irradiation times. The observed results show significant changes with exposure time or total dosage received. An increased deviation from ideal diode conditions (7.2 to 18.0 was observed when they were bombarded with alpha particles for up to 40 min. Using the conventional technique, barrier height values were observed to generally increase after 2, 6, 10, 20 and 30 min of radiation. The same trend was seen in the values of the series resistance (0.5889–1.423 Ω for 2–8 min. These changes in the electronic properties of the DNA/Si junctions could therefore be utilized in the construction of sensitive alpha particle detectors.

  19. Planar Schottky technology for submillimeter wavelengths

    Science.gov (United States)

    Crowe, Thomas W.; Bishop, William L.; Hesler, Jeffrey L.; Marazita, Steven M.; Koh, Philip J.; Porterfield, David W.

    1996-01-01

    Work carried out in relation to the development of planar integrated Schottky diodes with the aim of increasing the sensitivity, reliability and efficiency of spaceborne heterodyne receivers, is reported. The results of this work include a planar diode mixer at 585 GHz with a total receiver noise temperature of 2,380 K double side band, and planar diode multipliers. The prospects for further integration of circuit elements with the GaAs diodes are discussed.

  20. Monolithic microchannel heatsink

    Science.gov (United States)

    Benett, William J.; Beach, Raymond J.; Ciarlo, Dino R.

    1996-01-01

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.

  1. Frequency and voltage dependence of electric and dielectric properties of Au/TiO2/n-4H-SiC (metal-insulator-semiconductor) type Schottky barrier diodes

    Science.gov (United States)

    Tanrıkulu, E. E.; Yıldız, D. E.; Günen, A.; Altındal, Ş.

    2015-09-01

    The main electrical and dielectric properties of Au/TiO2/n-4H-SiC (MIS) type Schottky barrier diodes (SBDs) have been investigated as functions of frequency and applied bias voltage. We believe that the use of high dielectric interfacial layer between metal and semiconductor can improve the performance of Schottky diodes. From the experimental data, both electrical and dielectric parameters were found as strong function of frequency and applied bias voltage. The Fermi energy level (EF), the concentration of doping donor atoms (P), barrier height (ΦB) and series resistance (Rs) values were obtained from reverse and forward bias C-V characteristics. The changes in EF and ND with frequency are considerably low. Therefore, their values were taken at about constant. The real and imaginary parts of dielectric constant (\\varepsilon \\prime , \\varepsilon \\prime\\prime ), tangent loss (tanδ), ac electrical conductivity (σac), and real and imaginary parts of electric modulus (M‧ and M″) values were also obtained from reverse and forward bias C-V and G/ω-V characteristics. In addition, the voltage dependent profiles of all these electrical and dielectric parameters were drawn for each frequency. These results confirmed that both electrical and dielectric properties of Au/TiO2/n-4H-SiC (MIS) type SBD are quite sensitive to both the frequency and applied bias voltage due to surface polarization, density distribution of interface traps (Dit), and interfacial layer.

  2. Electrical Transport Characteristics of Pd/V/N-InP Schottky Diode From I-V-T and C-V-T Measurements

    Directory of Open Access Journals (Sweden)

    S. Sankar Naik

    2011-01-01

    Full Text Available The temperature dependence of current-voltage (I-V and capacitance-voltage (C-V characteristics of the Pd/V contacts on undoped n-type InP Schottky barrier diodes (SBDs have been systematically investigated in the temperature range of 200-400 K. The transition metal palladium (Pd is used as a second contact layer because it has high work function, it reacts with InP at low temperatures and improved contact morphology. The ideality factor (n and zero-bias barrier height are found to be strongly temperature dependent and while the zero-bias barrier height Φbo (I-V increases, the ideality factor n decreases with increasing temperature. The experimental values of BH and n for the devices are calculated as 0.48 eV (I-V, 0.85 eV (C-V and 4.87 at 200 K, 0.65 eV (I-V, 0.69 (C-V eV and 1.58 at 400 K respectively. The I-V characteristics are analyzed on the basis of thermionic emission (TE theory and the assumption of Gaussian distribution of barrier heights due to barrier inhomogeneities that prevail at the metal-semiconductor interface. The zero-bias barrier height Φbo versus 1/2kT plot has been drawn to obtain the evidence of a Gaussian distribution of the heights and the values of φ=0.89 eV and σ0= 145 meV for the mean barrier height and standard deviation. The conventional Richardson plot exhibits non-linearity with activation energy of 0.53 eV and the Richardson constant value of 4.25 × 10– 6 Acm– 2 K– 2. From the C-V characteristics, measured at 1 MHz the capacitance was determined to increase with increasing temperature. C-V measurements have resulted in higher barrier heights than those obtained from I-V measurements. As a result, it can be concluded that the temperature dependent characteristic parameters for Pd/V/n-InP SBDs can be successfully explained on the basis of TE mechanism with Gaussian distribution of the barrier heights.

  3. Analysis of temperature dependent current-conduction mechanisms in Au/TiO2/n-4H-SiC (metal/insulator/semiconductor) type Schottky barrier diodes

    Science.gov (United States)

    Alialy, S.; Altındal, Ş.; Tanrıkulu, E. E.; Yıldız, D. E.

    2014-08-01

    In order to determine the effective current-conduction mechanisms in Au/TiO2/n-4H-SiC (metal-insulator semiconductor) type Schottky barrier diodes (SBDs), their current-voltage (I-V) measurements were carried out in the temperature range of 200-380 K. Some electrical parameters, such as ideality factor (n), zero-bias barrier height (BH) (ΦBo), series and shunt resistances (Rs, Rsh), were obtained as 5.09, 0.81 eV, 37.43 Ω, and 435 kΩ at 200 K and 2.68, 0.95 eV, 5.99 Ω, and 73 kΩ at 380 K, respectively. The energy density distribution profile of surface states (Nss) was extracted from the forward-bias I-V data by taking into account voltage dependent of the ideality factor (nV), effective BH (Φe), and Rs for 200, 300, and 380 K. The Ln(I) vs V plots are completely parallel in the intermediate bias voltages, which may be well explained by field emission (FE) mechanism for each temperature. On the other hand, the high value of n cannot be explained with this mechanism. Therefore, to explain the change in BH and n with temperature, ΦBo vs q/2kT plot was drawn to obtain an evidence of a Gaussian distribution (GD) of the BHs and thus the mean value of BH (Φ¯Bo) and standard deviation (σso) values were found from this plot as 1.396 eV and 0.176 V, respectively. The Φ¯Bo and Richardson constant (A*) values were found as 1.393 eV and 145.5 A.cm-2 K-2 using modified Ln(Io/T2)-(q2σs2/2k2T2) vs q/kT plot, respectively. It is clear that all of the obtained main electrical parameters were found as a strong function of temperature. These results indicated that the current conduction mechanism in Au/TiO2/n-4 H-SiC (SBD) well obey the FE and GD mechanism rather than other mechanisms.

  4. Metal Organic Vapor Phase Epitaxy of Monolithic Two-Color Light-Emitting Diodes Using an InGaN-Based Light Converter

    Science.gov (United States)

    Damilano, Benjamin; Kim-Chauveau, Hyonju; Frayssinet, Eric; Brault, Julien; Hussain, Sakhawat; Lekhal, Kaddour; Vennéguès, Philippe; De Mierry, Philippe; Massies, Jean

    2013-09-01

    Monolithic InGaN-based light-emitting diodes (LEDs) using a light converter fully grown by metal organic vapor phase epitaxy are demonstrated. The light converter, consisting of 10-40 InGaN/GaN quantum wells, is grown first, followed by a violet pump LED. The structure and growth conditions of the pump LED are specifically adapted to avoid thermal degradation of the light converter. Electroluminescence analysis shows that part of the pump light is absorbed by the light converter and reemitted at longer wavelength. Depending on the emission wavelength of the light converter, different LED colors are achieved. In particular, for red-emitting light converters, a color temperature of 2100 K corresponding to a tint between warm white and candle light is demonstrated.

  5. Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaojun; Ma, Jun; Huang, Tongde; Liu, Chao; May Lau, Kei, E-mail: eekmlau@ust.hk [Photonics Technology Center, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-03-03

    In this Letter, we report selective epitaxial growth of monolithically integrated GaN-based light emitting diodes (LEDs) with AlGaN/GaN high-electron-mobility transistor (HEMT) drivers. A comparison of two integration schemes, selective epitaxial removal (SER), and selective epitaxial growth (SEG) was made. We found the SER resulted in serious degradation of the underlying LEDs in a HEMT-on-LED structure due to damage of the p-GaN surface. The problem was circumvented using the SEG that avoided plasma etching and minimized device degradation. The integrated HEMT-LEDs by SEG exhibited comparable characteristics as unintegrated devices and emitted modulated blue light by gate biasing.

  6. Monolithic integration of enhancement-mode vertical driving transistorson a standard InGaN/GaN light emitting diode structure

    Science.gov (United States)

    Lu, Xing; Liu, Chao; Jiang, Huaxing; Zou, Xinbo; Zhang, Anping; Lau, Kei May

    2016-08-01

    In this letter, monolithic integration of InGaN/GaN light emitting diodes (LEDs) with vertical metal-oxide-semiconductor field effect transistor (VMOSFET) drivers have been proposed and demonstrated. The VMOSFET was achieved by simply regrowing a p- and n-GaN bilayer on top of a standard LED structure. After fabrication, the VMOSFET is connected with the LED through the conductive n-GaN layer, with no need of extra metal interconnections. The junction-based VMOSFET is inherently an enhancement-mode (E-mode) device with a threshold voltage of 1.6 V. By controlling the gate bias of the VMOSFET, the light intensity emitted from the integrated VMOSFET-LED device could be well modulated, which shows great potential for various applications, including solid-state lighting, micro-displays, and visible light communications.

  7. GaN Schottky Diode with TiW Electrodes on Silicon Substrate Based on AlN/AlGaN Buffer Layer

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We report the fabrication of GaN Schottky photodiodes (PDs on Si(111 substrates coated with an AlN/AlGaN buffer multilayer. It was found that their dark current was much smaller than that of identical devices prepared on sapphire substrates. With an incident wavelength of 359 nm, the maximum responsivity of the n−-GaN Schottky photodetectors with TiW contact electrodes was 0.1544 A/W, corresponding to a quantum efficiency of 53.4%. For a given bandwidth of 1 kHz and bias of 5 V, the resultant noise equivalent power (NEP of n−-GaN Schottky photodetectors with TiW electrodes was 1.033×10-12 W, corresponding to a detectivity (D* of 1.079×1012 cm-Hz0.5 W−1.

  8. A new route for the synthesis of graphene oxide–Fe{sub 3}O{sub 4} (GO–Fe{sub 3}O{sub 4}) nanocomposites and their Schottky diode applications

    Energy Technology Data Exchange (ETDEWEB)

    Metin, Önder [Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum (Turkey); Aydoğan, Şakir [Department of Physics, Faculty of Science, Atatürk University, 25240 Erzurum (Turkey); Meral, Kadem, E-mail: kademm@atauni.edu.tr [Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum (Turkey)

    2014-02-05

    Highlights: • Graphene Oxide (GO)–Fe{sub 3}O{sub 4} nanocomposites were prepared by a novel and facile method. • The successful assembly of Fe{sub 3}O{sub 4} NPs onto GO sheets was displayed by TEM. • The GO–Fe{sub 3}O{sub 4} nanocomposites/p-Si junction showed good rectifying property. -- Abstract: Addressed herein is a facile method for the preparation of magnetic graphene oxide–Fe{sub 3}O{sub 4} (GO–Fe{sub 3}O{sub 4}) nanocomposites and the rectifying properties of (GO–Fe{sub 3}O{sub 4})/p-Si junction in a Schottky diode. GO–Fe{sub 3}O{sub 4} nanocomposites were prepared by a novel method in which as-prepared GO sheets were decorated with the monodisperse Fe{sub 3}O{sub 4} nanoparticles (NPs) in dimethylformamide/chloroform mixture via a sonication process. The successful assembly of Fe{sub 3}O{sub 4} NPs onto GO sheets was displayed by transmission electron microscopy (TEM). Inductively couple plasma optical emission spectroscopy (ICP-OES) analysis of the GO–Fe{sub 3}O{sub 4} nanocomposite showed that the nanocomposite consists of 20.1 wt% Fe{sub 3}O{sub 4} NPs which provides a specific saturation magnetization (Ms) as 16 emu/g. The current–voltage (I–V) characteristics of the (GO–Fe{sub 3}O{sub 4})/p-Si junction in a Schottky diode were studied in the temperature range of 50–350 K in the steps of 25 K. It was determined that the barrier height and ideality factor of the Au/GO–Fe{sub 3}O{sub 4}/p-Si/Al Schottky diode were depended on temperature as the barrier height increased while the ideality factor decreased with increasing temperature. The experimental values of barrier height and ideality factor were varied from 0.12 eV and 11.24 at 50 K to 0.76 eV and 2.49 at 350 K, respectively. The Richardson plot exhibited non-linearity at low temperatures that was attributed to the barrier inhomogeneities prevailing at the GO–Fe{sub 3}O{sub 4}/p-Si junction.

  9. Schottky Contact of Gallium on p-Type Silicon

    Directory of Open Access Journals (Sweden)

    B.P. Modi

    2011-01-01

    Full Text Available The evolution of barrier at Schottky contact and its stabilization to value characterized by the barrier height and unambiguous measurement is still being curiously perused as they hold the key control and manufacture of tailor made Schottky devices for a host of existing and potential for future applications in electronics, optoelectronics and microwave devices. In this context, gallium – silicon Schottky diode has been fabricated and analyzed.

  10. Monolithically integrated multi-wavelength MQW-DBR laser diodes fabricated by selective metalorganic vapor phase epitaxy

    Science.gov (United States)

    Sasaki, Tatsuya; Yamaguchi, Masayuki; Kitamura, Mitsuhiro

    1994-12-01

    Selective metalorganic vapor phase epitaxy (MOVPE) was used to grow InGaAsP/InP layers for fabricating multi-wavelength laser diodes. Multiple quantum well (MQW) active and passive waveguides were simultaneously grown by one step selective growth. The selectively grown layer thickness increases with the mask stripe width. This growth enhancement can be used to control the lasing wavelength of distributed Bragg reflector (DBR) laser diodes, because the effective refractive index of the MQW passive waveguide at the DBR region can be controlled by the mask stripe width. This simple technique was used to fabricate multi-wavelength MQW-DBR laser diodes. In the selective growth, the MQW structure was grown under 150 Torr to obtain large bandgap energy shift for the MQW passive waveguides compared to the active waveguide, which was effective for wide wavelength tuning range. On the contrary, a bulk InGaAsP guide layer was grown under 35 Torr to prevent too much composition shift and maintain high crystalline quality of the MQW passive waveguide. For 10 consecutive laser diodes, a wavelength span of over 20 nm with accurate wavelength control was achieved.

  11. The modulation of Schott ky barrier height of NiSi/n-Si Schottky diodes by silicide as diffusion source technique

    Institute of Scientific and Technical Information of China (English)

    An Xia; Fan Chun-Hui; Huang Ru; Guo Yue; Xu Cong; Zhang Xing; Wang Yang-Yuan

    2009-01-01

    This paper reports that the Schottky barrier height modulation of NiSi/n-si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique. which avoids the damage to the NiSi/Si interface induced from the conventional dopant segregation method. In addition, the impact of post-BF_2 implantation after silicidation on the surface morphology of Ni silicides is also illustrated. The thermal stability of Ni silicides can be improved by sihcideas-diffusion-source technique. Besides, the electron Schottky barrier height is successfully modulated by 0.11 eV at a boron dose of 10~(15) cm~(-2) in comparison with the non. implanted samples. The change of barrier height is not attributed to the phase change of silicide films but due to the boron pile-up at the interface of NiSi and Si substrate which causes the upward bending of conducting band. The results demonstrate the feasibility of novel silicide-as-diffusion-source technique for the fabrication of Schottky source/drain Si MOS devices.

  12. Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics

    KAUST Repository

    Zhao, Chao

    2016-07-28

    A droop-free nitride light-emitting diode (LED) with the capacity to operate beyond the “green gap” has been a subject of intense scientific and engineering interest. While several properties of nanowires on silicon make them promising for use in LED development, the high aspect ratio of individual nanowires and their laterally discontinuous features limit phonon transport and device performance. Here, we report on the monolithic integration of metal heat-sink and droop-free InGaN/GaN quantum-disks-in-nanowire LEDs emitting at ∼710 nm. The reliable operation of our uncooled nanowire-LEDs (NW-LEDs) epitaxially grown on molybdenum was evident in the constant-current soft burn-in performed on a 380 μm × 380 μm LED. The square LED sustained 600 mA electrical stress over an 8 h period, providing stable light output at maturity without catastrophic failure. The absence of carrier and phonon transport barriers in NW-LEDs was further inferred from current-dependent Raman measurements (up to 700 mA), which revealed the low self-heating. The radiative recombination rates of NW-LEDs between room temperature and 40 °C was not limited by Shockley–Read–Hall recombination, Auger recombination, or carrier leakage mechanisms, thus realizing droop-free operation. The discovery of reliable, droop-free devices constitutes significant progress toward the development of nanowires for practical applications. Our monolithic approach realized a high-performance device that will revolutionize the way high power, low-junction-temperature LED lamps are manufactured for solid-state lighting and for applications in high-temperature harsh environment.

  13. Investigation and modelling of static and dynamic behaviour if silicon-PSN- and silicon-carbide-Schottky-diodes for low currents

    NARCIS (Netherlands)

    Neeb, C.; Luerkens, P.

    2009-01-01

    High voltage generators for X-ray applications are moving to increasing switching frequency. As a consequence switching losses, namely turn-on losses, of high voltage diodes are becoming dominant. Data sheets of preferred diodes do not contain relevant data in this respect, and simulation models of

  14. Comparison Study of Super junction and Floating Junction Schottky Barrier Diodes%超结与浮结型肖特基势垒二极管的比较研究

    Institute of Scientific and Technical Information of China (English)

    曹琳; 蒲红斌; 陈治明

    2011-01-01

    对浮结型及超结型肖特基势垒二极管静态及动态特性进行了解析及模拟.静态特性通过解析击穿电压与导通电阻之间的关系得到.反向恢复特性通过二极管电容随反向电压变化关系解释,商用混合模拟器MEDICI模拟结果表明浮结结构具有软恢复特性,软度因子为0.949.超结结构恢复特性较硬,软度因子为0.7807.当考虑这两种耐压结构时,必须权衡静态及动态之间的关系.%In this paper,the static and dynamic characteristics of superjunction and floating junction Schottky barrier diodes were analyzed and simulated.Work principles of the device were reported,tradeoff between breakdown voltage and specific resistance was theoretically calculated and compared.The reverse recovery characteristics were analyzed by diode capacitance as function of diode reverse voltage,the mixed circuit-device simulator MEDICI shown that floating junction had softness factor 0.949,while hard recovery characteristics were obtain for superjunction structure with softness factor 0.780 7.Trade-off must be made when static and dynamic performance is considered.

  15. The interface states and series resistance effects on the forward and reverse bias I-V, C-V and G/{omega}-V characteristics of Al-TiW-Pd{sub 2}Si/n-Si Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Uslu, H.; Altindal, S.; Aydemir, U. [Department of Physics, Gazi University, 06500 Ankara (Turkey); Doekme, I., E-mail: ilbilgedokme@gazi.edu.t [Science Education Department, Gazi Education Faculty, Gazi University, 06500 Ankara (Turkey); Afandiyeva, I.M. [Baku State University, Baku (Azerbaijan)

    2010-07-30

    Illumination intensity effects on the electrical characteristics of Al-TiW-Pd{sub 2}Si/n-Si Schottky structures have been investigated in this study for the first time. The electrical parameters such as ideality factor (n), zero-bias-barrier height ({Phi}{sub B0}), series resistance (R{sub s}), depletion layer width (W{sub D}) and dopping concentration (N{sub D}) of Al-TiW-Pd{sub 2}Si/n-Si Schottky barrier diodes (SBDs) have been investigated by using the forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G/{omega}-V) measurements in dark and under illumination conditions at room temperature. The values of C and G/{omega} increase with increasing illumination intensity due to the illumination induced electron-hole pairs in the depletion region. The density of interface states (N{sub ss}) distribution profiles as a function of (E{sub c} - E{sub ss}) was extracted from the forward I-V measurements by taking into account the bias dependence of the effective barrier heights ({Phi}{sub e}) for device in dark and under various illumination intensities. The high values of N{sub ss} were responsible for the nonideal behavior of I-V, C-V and G/{omega} characteristics. The values of R{sub s} obtained from Cheung and Nicollian methods decrease with increasing illumination intensity. The high values of n and R{sub s} have been attributed to the particular distribution of N{sub ss}, surface preparation, inhomogeneity of interfacial layer and barrier height at metal/semiconductor (M/S) interface. As a result, the characteristics of SBD are affected not only in N{sub ss} but also in R{sub s}, and these two parameters strongly influence the electrical parameters.

  16. Effects of sputtering power Schottky metal layers on rectifying performance of Mo-SiC Schottky contacts

    Science.gov (United States)

    Lee, Seula; Lee, Jinseon; You, Sslimsearom; Kyoung, Sinsu; Kim, Kyung Hwan

    2016-01-01

    In this study, Schottky barrier diodes based on silicon carbide with various levels of Schottky metal layer input power were prepared and characterized. In this structure, molybdenum and aluminum were employed as the Schottky metal and top electrode, respectively. Schottky metal layers were deposited with input power ranging from 30 to 210 W. Schottky metal layers and top electrodes were deposited with a thickness of 3000 Å. The Schottky barrier heights, series resistances, and ideality factor were calculated from current-voltage (I-V) curves obtained using the Cheung-Cheung and Norde methods. All deposition processes were conducted using a facing targets sputtering system. Turn on voltage was minimized when the input power was 90 W, at which point electrical characteristics were observed to have properties superior to those at other levels of input power.

  17. Magnetic tunnel transistor with a perpendicular Co/Ni multilayer sputtered on a Si/Cu(1 0 0) Schottky diode

    Science.gov (United States)

    Vautrin, C.; Lu, Y.; Robert, S.; Sala, G.; Lenoble, O.; Petit-Watelot, S.; Devaux, X.; Montaigne, F.; Lacour, D.; Hehn, M.

    2016-09-01

    We have studied a magnetic tunnel transistor (MTT) structure based on a MgO tunnelling barrier emitter and a [Co/Ni]5/Cu multilayer base on a Si (0 0 1) substrate. Evident links between the Schottky barrier preparation techniques and the properties of perpendicular magnetic anisotropy (PMA) in the [Co/Ni] multilayer have been revealed by combined x-ray diffraction and magnetometry analyses. The Si surface treated by hydrofluoric acid (HF) is found to favour a Cu [1 0 0] texture growth which is detrimental to the [Co/Ni]5 PMA properties. However, a Ta layer insertion can restore the [1 1 1] texture required for the PMA appearance. By carefully engineering the base crystallographic texture structure, we obtain both a good quality of Schottky barrier and PMA property; a magneto-current ratio of 162% has been measured for MTTs with a spin-valve base composed of one magnetic layer having in-plane anisotropy and another one with out-of-plane anisotropy.

  18. III-nitride disk-in-nanowire 1.2 μm monolithic diode laser on (001)silicon

    Science.gov (United States)

    Hazari, Arnab; Aiello, Anthony; Ng, Tien-Khee; Ooi, Boon S.; Bhattacharya, Pallab

    2015-11-01

    III-nitride nanowire diode heterostructures with multiple In0.85Ga0.15N disks and graded InGaN mode confining regions were grown by molecular beam epitaxy on (001)Si substrates. The aerial density of the 60 nm nanowires is ˜3 × 1010 cm-2. A radiative recombination lifetime of 1.84 ns in the disks is measured by time-resolved luminescence measurements. Edge-emitting nanowire lasers have been fabricated and characterized. Measured values of Jth, T0, and dg/dn in these devices are 1.24 kA/cm2, 242 K, and 5.6 × 10-17 cm2, respectively. The peak emission is observed at ˜1.2 μm.

  19. Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes.

    Science.gov (United States)

    Gallivanoni, A; Rech, I; Resnati, D; Ghioni, M; Cova, S

    2006-06-12

    A new integrated active quenching circuit (i-AQC) designed in a standard CMOS process is presented, capable of operating with any available single photon avalanche diode (SPAD) over wide temperature range. The circuit is suitable for attaining high photon timing resolution also with wide-area SPADs. The new i-AQC integrates the basic active-quenching loop, a patented low-side timing circuit comprising a fast pulse pick-up scheme that substantially improves time-jitter performance, and a novel active-load passive quenching mechanism (consisting of a current mirror rather than a traditional high-value resistor) greatly improves the maximum counting rate. The circuit is also suitable for portable instruments, miniaturized detector modules and SPAD-array detectors. The overall features of the circuit may open the way to new developments in diversified applications of time-correlated photon counting in life sciences and material sciences.

  20. A 640 GHz Planar-Diode Fundamental Mixer/Receiver

    Science.gov (United States)

    Siegel, P.; Mehdi, I.; Dengler, R.; Lee, T.; Humphrey, D.; Pease, A.

    1998-01-01

    The design and performance of a 640 GHz solid-state receiver using a fundamental planar-Schottky-diode mixer, InP Gunn diode oscillator, whisker-contacted Schottky-varactor-diode sextupler and folded-Fabry-Perot diplexer are reported.

  1. A comparative study on the electrical parameters of Au/n-Si Schottky diodes with and without interfacial (Ca1.9Pr0.1Co4Ox) layer

    Science.gov (United States)

    Kaya, A.; Çetinkaya, H. G.; Altındal, Ş.; Uslu, I.

    2016-05-01

    In order to compare the main electrical parameters such as ideality factor (n), barrier height (BH) (ΦI-V), series (Rs) and shunt (Rsh) resistances and energy density distribution profile of surface states (Nss), the Au/n-Si (MS) Schotthy diodes (SDs), with and without interfacial (Ca1.9Pr0.1Co4Ox) layer were obtained from the current-voltage (I-V ) measurements at room temperature. The other few electrical parameters such as Fermi energy level (EF), BH (ΦC-V), Rs and voltage dependence of Nss profile were also obtained from the capacitance-voltage (C-V ) measurements. The voltage dependence of Nss profile has two distinctive peaks in the depletion region for two diodes and they were attributed to a particular distribution of Nss located at metal-semiconductor (MS) interface. All of these results have been investigated at room temperature and results have been compared with each other. Experimental results confirmed that interfacial (Ca1.9Pr0.1Co4Ox) layer enhanced diode performance in terms of rectifier rate (RR = IF/IR at ± 3.4V), Nss (at 0.5eV) and Rsh (-3.4V) with values of 265, 5.38 × 1013eV-1 ṡcm-2 and 7.87 × 104Ω for MS type Schottky barrier diode and 2.56 × 106, 1.15 × 1013eV-1 ṡcm-2 and 7.50 × 108Ω for metal-insulator-semiconductor (MIS) type SBD, respectively. It is clear that the rectifying ratio of MIS type SBD is about 9660 times greater than MS type SBD. The value of barrier height (BH) obtained from C-V data is higher than the forward bias I-V data and it was attributed to the nature of measurements. These results confirmed that the interfacial (Ca1.9Pr0.1Co4Ox) layer has considerably improved the performance of SD.

  2. AIN Monolithic Microchannel Cooled Heatsink for High Power Laser Diode Array%应用于大功率激光二极管列阵的单片集成微通道制冷热沉

    Institute of Scientific and Technical Information of China (English)

    马杰慧; 方高瞻; 蓝永生; 马骁宇

    2005-01-01

    介绍了一种应用于大功率激光二极管列阵的新型单片集成微通道制冷热沉.这种热沉已制造并经过测试.10叠层的激光二极管列阵的热阻为0.121℃/W.相邻两个激光条的间距是1.17mm.在20%高占空比条件下,波长为808nm左右,峰值功率可以达到611W.%A novel AIN monolithic microchannel cooled heatsink for high power laser diode array is introduced.The high power stack laser diode array with an AIN monolithic microchannel heatsink is fabricated and tested.The thermal impedance of a 10 stack laser diode array is 0.121℃/W.The pitch between two adjacent bars is 1.17mm.The power level of 611W is achieved under the 20% duty factor condition at an emission wavelength around 808nm.

  3. III-nitride disk-in-nanowire 1.2 μm monolithic diode laser on (001)silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hazari, Arnab; Aiello, Anthony; Bhattacharya, Pallab [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Ng, Tien-Khee; Ooi, Boon S. [Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2015-11-09

    III-nitride nanowire diode heterostructures with multiple In{sub 0.85}Ga{sub 0.15}N disks and graded InGaN mode confining regions were grown by molecular beam epitaxy on (001)Si substrates. The aerial density of the 60 nm nanowires is ∼3 × 10{sup 10} cm{sup −2}. A radiative recombination lifetime of 1.84 ns in the disks is measured by time-resolved luminescence measurements. Edge-emitting nanowire lasers have been fabricated and characterized. Measured values of J{sub th}, T{sub 0}, and dg/dn in these devices are 1.24 kA/cm{sup 2}, 242 K, and 5.6 × 10{sup −17} cm{sup 2}, respectively. The peak emission is observed at ∼1.2 μm.

  4. Design analysis of phosphor-free monolithic white light-emitting-diodes with InGaN/ InGaN multiple quantum wells on ternary InGaN substrates

    OpenAIRE

    Yu Kee Ooi; Jing Zhang

    2015-01-01

    Phosphor-free monolithic white light emitting diodes (LEDs) based on InGaN/ InGaN multiple quantum wells (MQWs) on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs) employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW) and high external quantum efficiency (EQE) (∼ 50%). The chromaticity c...

  5. High-temperature isothermal capacitance transient spectroscopy study on SiN deposition damages for low-Mg-doped p-GaN Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shiojima, Kenji, E-mail: shiojima@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Wakayama, Hisashi; Aoki, Toshichika [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Kaneda, Naoki [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Research and Development Laboratory, Corporate Advanced Technology Group, Hitachi Cable Ltd., 3550 Kidamari, Tsuchiura, Ibaraki 300-0026 (Japan); Nomoto, Kazuki [Department of Electrical Engineering, University of Notre Dame, 228 Stinson Remick, Norte Dame, IN 46556 (United States); Mishima, Tomoyoshi [Research and Development Laboratory, Corporate Advanced Technology Group, Hitachi Cable Ltd., 3550 Kidamari, Tsuchiura, Ibaraki 300-0026 (Japan)

    2014-04-30

    Attempt to achieve a surface passivation of p-type GaN was conducted on low-Mg-doped p-GaN by employing SiN films depositions by an Ar-plasma-sputtering and a plasma-enhancement chemical vapor deposition. Process induced damages were then characterized by using a high-temperature isothermal capacitance transient spectroscopy. A large single peak, likely attributed to acceptor-type surface states, was detected in the as-grown samples. The energy level was measured to be 1.18 eV above the valence band edge, which is close to a Ga-vacancy (V{sub Ga}) reported elsewhere. It was suggested that a small portion of Ga atoms were missing from the surface, and a large density of V{sub Ga} were created in a few surface layers. The peak intensity was found to significantly decrease by the SiN depositions, irrespective of the deposition methods, and further decreases upon annealing at 800 °C. After the SiN deposition and the annealing, the peak intensity decreased: the pure Ga vacancies may transform into complex defects in the course of the SiN deposition and annealing. These results show that the present characterization method with the low-Mg-doped p-GaN Schottky contacts is effective and serves as sensitive characterization of the surface defects. - Highlights: • Process induced damages on a surface passivation of p-type GaN were characterized. • Acceptor-type single surface-states were detected at 1.18 eV from the valence band. • The peak intensity was found to significantly decrease by the SiN depositions.

  6. Fabrication of Ni/Ti/Al Schottky contact to n-type 4H-SiC under various annealing conditions

    Science.gov (United States)

    Yousuf Zaman, M.; Ferrero, S.; Perrone, D.; Scaltrito, L.; Shahzad, N.; Pugliese, D.

    2013-06-01

    Forward I-V characteristics of a silicon carbide Schottky diode, with triple layer metallization Ni/Ti/Al as Schottky contact, are presented. Effects of different annealing conditions on the Schottky barrier height and ideality factor are discussed. The diodes were annealed in inert Ar atmosphere for 30 minutes at temperatures ranging from 600 °C to 800 °C. The ideality factors of the four diodes, chosen out of 20 diodes, range from 1.02 to 1.13 and the Schottky barrier heights range from 1.47 eV to 3.17 eV.

  7. Design analysis of phosphor-free monolithic white light-emitting-diodes with InGaN/ InGaN multiple quantum wells on ternary InGaN substrates

    Directory of Open Access Journals (Sweden)

    Yu Kee Ooi

    2015-05-01

    Full Text Available Phosphor-free monolithic white light emitting diodes (LEDs based on InGaN/ InGaN multiple quantum wells (MQWs on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW and high external quantum efficiency (EQE (∼ 50%. The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28 with correlated color temperature (CCT of ∼ 8200 K at J = 50 A/cm2. A reference LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.

  8. Design analysis of phosphor-free monolithic white light-emitting-diodes with InGaN/ InGaN multiple quantum wells on ternary InGaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, Yu Kee, E-mail: Yu.Kee.Ooi@rit.edu; Zhang, Jing, E-mail: Jing.Zhang@rit.edu [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, New York 14623 (United States)

    2015-05-15

    Phosphor-free monolithic white light emitting diodes (LEDs) based on InGaN/ InGaN multiple quantum wells (MQWs) on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs) employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW) and high external quantum efficiency (EQE) (∼ 50%). The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28) with correlated color temperature (CCT) of ∼ 8200 K at J = 50 A/cm{sup 2}. A reference LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.

  9. Design analysis of phosphor-free monolithic white light-emitting-diodes with InGaN/ InGaN multiple quantum wells on ternary InGaN substrates

    Science.gov (United States)

    Ooi, Yu Kee; Zhang, Jing

    2015-05-01

    Phosphor-free monolithic white light emitting diodes (LEDs) based on InGaN/ InGaN multiple quantum wells (MQWs) on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs) employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (˜ 170 mW) and high external quantum efficiency (EQE) (˜ 50%). The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28) with correlated color temperature (CCT) of ˜ 8200 K at J = 50 A/cm2. A reference LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.

  10. Schottky-Like Photodetectors Using Narrow-Gap Semiconductor/silicon Interfaces

    Science.gov (United States)

    Scott, Gregory Stuart

    Infrared focal plane arrays utilizing PtSi/p-Si Schottky barriers have several advantages over narrow-gap semiconductors in the areas of uniformity, ease of manufacture, and potential for integration into monolithic circuits. However, these devices suffer from low quantum efficiency, as the high density of states near the Fermi level of the PtSi limits the efficiency of the optical absorption and hot carrier transport processes. Low transmission from the silicide to the silicon substrate also restricts the photoyield. This thesis presents a novel device concept for infrared detectors which utilizes a thin film of narrow -gap semiconductor deposited on a p-type silicon substrate. The operation of the device would be similar to a Schottky barrier detector, in that carriers would be excited from the overlayer into the substrate. However, the presence of the bandgap in the overlayer should reduce the high density of undesired states near the Fermi level. This would lead to a considerably higher absorption and transport efficiency. The transmission from the overlayer to the substrate should also be greatly increased. Calculations using a diffusion model adapted from one developed by Mercer and Helms for the behavior of Schottky barrier detectors indicate the potential for more than an order of magnitude improvement in quantum efficiency over present technology at a wavelength of 4 mum. The experimental work involved structures formed with films that are easily prepared by thermal evaporation, namely PbTe, SnTe, and Pb_{rm 1-x}Sn_{rm x} Te. Materials analysis showed that stoichiometric, highly oriented polycrystalline films were deposited. The SnTe/p-Si and Pb_{rm 1-x} Sn_{rm x}Te/p -Si devices exhibited Schottky-like behavior, while PbTe/p -Si diodes behaved as photoconductors in weak electrical contact to the substrate. The photoresponse did not display the expected increase in quantum efficiency over Schottky barriers, and investigation of the device electrical

  11. Radioisotope battery using Schottky barrier devices

    Energy Technology Data Exchange (ETDEWEB)

    Manasse, F.K. (Drexel Univ., Philadelphia); Tse, A.N.

    1976-05-01

    Based on the well-known betavoltaic effect, a new nuclear battery, which uses a Schottky barrier, has been used in place of the more standard p-n junction diode, along with /sup 147/Pm metal film rather than Pm/sub 2/O/sub 3/ oxide, as in the commercially available Betacel. Measurement of absorption, conversion efficiency, thickness, etc., as functions of resistivity and other cell parameters, and assessment of performance are being researched to design a prototype battery.

  12. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications

    Directory of Open Access Journals (Sweden)

    A. Tombak

    2015-01-01

    Full Text Available In the current paper, the physical properties and microelectronic parameters of direct current (DC sputtered p-type CuO film and diode have been investigated. The film of CuO as oxide and p-type semiconductor is grown onto glass and n-Si substrates by reactive DC sputtering at 250 °C. After deposition, a post-annealing procedure is applied at various temperatures in ambient. Through this research, several parameters are determined such structural, optical and electrical magnitudes. The thickness of CuO thin films goes from 122 to 254 nm. A (111-oriented cubic crystal structure is revealed by X-ray analysis. The grain size is roughly depending on the post-annealing temperature, it increases with temperature within the 144–285 nm range. The transmittance reaches 80% simultaneously in visible and infrared bands. The optical band gap is varied between 1.99 and 2.52 eV as a result of annealing temperature while the resistivity and the charge carrier mobility decrease with an increase in temperature from 135 to 14 Ω cm and 0.92 to 0.06 cm2/Vs, respectively. The surface of samples is homogenous, bright dots are visible when temperature reaches the highest value. As a diode, Ag/CuO/n-Si exhibits a non-ideal behavior and the ideality factor is about 3.5. By Norde method, the barrier height and the series resistance are extracted and found to be 0.96 V and 86.6 Ω respectively.

  13. 4H-SiC肖特基二极管α探测器研究%Study on 4H-SiC Schottky Diode Alpha-particle Detector

    Institute of Scientific and Technical Information of China (English)

    陈雨; 范晓强; 蒋勇; 吴健; 白立新; 柏松; 陈刚; 李理

    2013-01-01

    Silicon carbide (SiC) is a wide bandgap semiconductor material with excellent properties and an excellent medium for detectors. The resolution and relative rise - time of 3 mm × 3 mm 4H - SiC Schottky - diode are investigated with 5.486 MeV 241Am alpha - source. In the vacuum chamber,excellent signals from the SiC detector are observed exposing to alpha particles from 241Am source. The resolution of SiC detector for 5. 486 MeV alpha - particles is 3.4%. As the biased voltages increase, pulse height and relative rise - time from preamplifier FH1047 observed by oscilloscope are saturated to 35. 39 0.21mV and 137. 87 9.44ns, respectively. Well responded signals of SiC detector to alpha particles are observed, indicating that SiC can be used for alpha detection. Combining good resistance to radiation and high temperature, a kind of novel alpha detector and neutron detector with high resolution, fast rise times and high radiation resistance based on SiC Schottky - diode can be developed.%碳化硅(SiC)是一种具有优良物理性能的宽禁带半导体材料,可作为探测器的优良探测介质.用241Am源5.486 MeV的α粒子研究4H-SiC肖特基二极管α探测器的能量分辨率和信号相对上升时间等特性.在真空室中,使SiC探测器暴露在α粒子下,SiC探测器输出良好的响应信号.SiC二极管对5.486 MeVo粒子的能量分辨率最佳可达3.4%;经前置放大器FH1047输出和示波器观测,脉冲幅度随偏压增加而稳定在(35.39±0.21)mV;脉冲上升时间随偏压增加而稳定在(137.87 ±9.44) ns.4H-SiC肖特基二极管对α粒子响应良好,可用于α粒子强度测量.结合SiC耐辐照、耐高温等特性,进一步改进后有望制成分辨率更高、上升时间更快、耐辐照的新型α探测器和中子探测器.

  14. Modelling the inhomogeneous SiC Schottky interface

    OpenAIRE

    Gammon, P. M.; Pérez-Tomás, Amador; Shah, V A; Vavasour, O.; Donchev, E.; J.S. Pang; Myronov, Maksym; Fisher, Craig A.; Jennings, M. R.; Leadley, D. R.; Mawby, P. A. (Philip A.)

    2013-01-01

    For the first time, the I-V-T dataset of a Schottky diode has been accurately modelled, parameterised, and fully fit, incorporating the effects of interface inhomogeneity, patch pinch-off and resistance, and ideality factors that are both heavily temperature and voltage dependent. A Ni/SiC Schottky diode is characterised at 2 K intervals from 20 to 320 K, which, at room temperature, displays low ideality factors (n  8), voltage dependent ideality factors and evidence of the so-called "thermio...

  15. Gallium Nitride Schottky betavoltaic nuclear batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu Min, E-mail: mlu2006@sinano.ac.c [Su zhou Institute of Nano-technology and Nano-bionics, CAS, Su zhou 215125 (China); Zhang Guoguang [China Institute of Atomic Energy, Beijing 102413 (China); Fu Kai; Yu Guohao [Su zhou Institute of Nano-technology and Nano-bionics, CAS, Su zhou 215125 (China); Su Dan; Hu Jifeng [China Institute of Atomic Energy, Beijing 102413 (China)

    2011-04-15

    Research highlights: {yields} Gallium Nitride nuclear batteries with Ni-63 are demonstrated for the first time. {yields} Open circuit voltage of 0.1 V and conversion efficiency of 0.32% have been obtained. {yields} The limited performance is due to thin effective energy deposition layer. {yields} The output power is expected to greatly increase with growing thick GaN films. -- Abstract: Gallium Nitride (GaN) Schottky betavoltaic nuclear batteries (GNBB) are demonstrated in our work for the first time. GaN films are grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD), and then GaN Schottky diodes are fabricated by normal micro-fabrication process. Nickel with mass number of 63 ({sup 63}Ni), which emits {beta} particles, is loaded on the GaN Schottky diodes to achieve GNBB. X-ray diffraction (XRD) and photoluminescence (PL) are carried out to investigate the crystal quality for the GaN films as grown. Current-voltage (I-V) characteristics shows that the GaN Schottky diodes are not jet broken down at -200 V due to consummate fabrication processes, and the open circuit voltage of the GNBB is 0.1 V and the short circuit current density is 1.2 nA cm{sup -2}. The limited performance of the GNBB is due to thin effective energy deposition layer, which is only 206 nm to absorb very small partial energy of the {beta} particles because of the relatively high dislocation density and carrier concentration. However, the conversion efficiency of 0.32% and charge collection efficiency (CCE) of 29% for the GNBB have been obtained. Therefore, the output power of the GNBB are expected to greatly increase with growing high quality thick GaN films.

  16. Measuring Schottky barrier height at graphene/SiC junction

    Science.gov (United States)

    Tomer, D.; Hudy, L.; Rajput, S.; Li, L.

    2014-03-01

    When graphene is interfaced with a semiconductor, a Schottky junction forms with rectifying properties. In this work, we measured the Schottky barrier heights of graphene/SiC Schottky diodes using current-voltage (I-V) measurement. Chemical vapor deposited graphene was transferred onto semiconductor surfaces of opposite polarization: the hydrogen-terminated Si- and C-faces of α-SiC, which was confirmed by Raman spectroscopy and scanning tunneling microscopy. The Schottky barrier height is found to be sensitive to the polarization of the substrate and surface preparation. On the Si-face, a barrier of 0.47 eV is found. These results will be compared with earlier work as well as our in situ scanning tunneling spectroscopy results. Supported by DOE (DE-FG02-07ER46228).

  17. Schottky contacts to In2O3

    Directory of Open Access Journals (Sweden)

    H. von Wenckstern

    2014-04-01

    Full Text Available n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.

  18. Fluorine plasma treatment induced deep level traps and their effect on current transportation in Al0.83In0.17N/AlN/GaN Schottky barrier diodes

    Science.gov (United States)

    Xiang, Yong; Yu, Tongjun; Ji, Cheng; Cheng, Yutian; Yang, Xuelin; Kang, Xiangning; Shen, Bo; Zhang, Guoyi

    2016-08-01

    The deep level traps and the electrical properties of fluorine plasma treated (F-treated) and non-treated Al0.83In0.17N/AlN/GaN Schottky barrier diodes (SBDs) were investigated by the temperature-dependent current-voltage (I-V) and deep level transient spectroscopy (DLTS) measurements. Three deep level traps were detected in the SBD after F-treatment at ~E c  -  0.17 eV, ~E c  -  0.27 eV and ~E c  -  1.14 eV. One of the deep level traps at ~E c  -  1.14 eV is mainly located in the Al0.83In0.17N barrier layer with a captured cross section (σ) of ~6.50  ×  10-18 cm2. This F-related deep level trap has 3-4 orders of magnitude of the larger σ and ~0.46 eV greater active energy than that of the dislocation-related one at ~E c  -  0.68 eV with σ of ~1.92  ×  10-21 cm2. Meanwhile, the leakage current of F-treated SBD at  -5 V is reduced by ~2 orders of magnitude compared with that of the non-treated one. This leakage current reduction is mainly attributed to the increase of the Poole-Frenkel emission barrier height from ~0.09 eV in non-treated SBD to ~0.46 eV in the F-treated one. It is believed that the main reverse current transportation is the Poole-Frenkel emission from the F-related deep level trap states into the continuum states of the dislocations in F-treated Al0.83In0.17N/AlN/GaN SBD.

  19. Monolithic spectrometer

    Science.gov (United States)

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  20. Varactor diodes for millimeter and submillimeter wavelengths

    Science.gov (United States)

    Rizzi, Brian J.; Hesler, Jeffrey L.; Dossal, Hasan; Crowe, Thomas W.

    1992-01-01

    Whisker-contacted GaAs Schottky barrier varactor diodes are the most common high-frequency multiplier element in use today. They are inherently simple devices that have very high frequency response and have been used to supply local oscillator power for Schottky heterodyne receivers to frequencies approaching 700 GHz. This paper discusses the development of improved varactor diode technology for space based applications at millimeter and submillimeter wavelengths.

  1. Silicon Schottky Diode Safe Operating Area

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Ladbury, Raymond L.; Wilcox, Edward P.; Phan, Anthony M.; Label, Kenneth A.

    2016-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacementdamage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  2. Monolithic Integration of GaN-based LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Jin-Ping, E-mail: jpao@ee.tokushima-u.ac.jp [Institute of Technology and Science, University of Tokushima 2-1 Minami-Josanjima, Tokushima 770-8506 (Japan)

    2011-02-01

    The technology of monolithically integrated GaN-based light-emitting diodes (LEDs) is reported. First, the technology details to realize monolithic integration are described, including the circuit design for high-voltage and alternating current (AC) operation and the technologies for device isolation. The performances of the fabricated monolithic LED arrays are then demonstrated. A monolithic series array with totally 40 LEDs exhibited expected operation function under AC bias. The operation voltage of the array is 72 V when 20 LEDs were connected in series. Some modified circuit designs for high-voltage operation and other monolithic LED arrays are finally reviewed.

  3. Eigenpolarization theory of monolithic nonplanar ring oscillators

    Science.gov (United States)

    Nilsson, Alan C.; Gustafson, Eric K.; Byer, Robert L.

    1989-01-01

    Diode-laser-pumped monolithic nonplanar ring oscillators (NPROs) in an applied magnetic field can operate as unidirectional traveling-wave lasers. The diode laser pumping, monolithic construction, and unidirectional oscillation lead to narrow linewidth radiation. Here, a comprehensive theory of the eigenpolarizations of a monolithic NPRO is presented. It is shown how the properties of the integral optical diode that forces unidirectional operation depend on the choice of the gain medium, the applied magnetic field, the output coupler, and the geometry of the nonplanar ring light path. Using optical equivalence theorems to gain insight into the polarization characteristics of the NPRO, a strategy for designing NPROs with low thresholds and large loss nonreciprocities is given. An analysis of the eigenpolarizations for one such NPRO is presented, alternative optimization approaches are considered, and the prospects for further reducing the linewidths of these lasers are briefly discussed.

  4. Analysis and modelling of GaN Schottky-based circuits at millimeter wavelengths

    Science.gov (United States)

    Pardo, D.; Grajal, J.

    2015-11-01

    This work presents an analysis of the capabilities of GaN Schottky diodes for frequency multipliers and mixers at millimeter wavelengths. By using a Monte Carlo (MC) model of the diode coupled to a harmonic balance technique, the electrical and noise performances of these circuits are investigated. Despite the lower electron mobility of GaN compared to GaAs, multipliers based on GaN Schottky diodes can be competitive in the first stages of multiplier chains, due to the excellent power handling capabilities of this material. The performance of these circuits can be improved by taking advantage of the lateral Schottky diode structures based on AlGaN/GaN HEMT technology.

  5. SiC merged p-n/Schottky rectifiers for high voltage applications

    Energy Technology Data Exchange (ETDEWEB)

    Held, R.; Kaminski, N.; Niemann, E. [Daimler-Benz AG, Frankfurt am Main (Germany). Forschung und Technik

    1998-08-01

    A method of reducing reverse currents and increasing breakdown voltages without inducing negative effects on switching behavior in silicon carbide Schottky diodes is proved successfully. Implantation of p-regions in the surface of the n-drift region below the Schottky metal form face to face p-n junctions which screen the Schottky contact from high electrical fields. This results in a reduction of the reverse current and an increase of the breakdown voltage to the limit of a `pure` SiC p-n diode. It is shown, that in contrast to silicon based devices, SiC merged p-n/Schottky (MPS) rectifier preserve their excellent unipolar switching behavior. (orig.) 5 refs.

  6. Extraction of amphetamines and methylenedioxyamphetamines from urine using a monolithic silica disk-packed spin column and high-performance liquid chromatography-diode array detection.

    Science.gov (United States)

    Namera, Akira; Nakamoto, Akihiro; Nishida, Manami; Saito, Takeshi; Kishiyama, Izumi; Miyazaki, Shota; Yahata, Midori; Yashiki, Mikio; Nagao, Masataka

    2008-10-24

    To overcome the limitations of solid-phase extraction, we developed a device comprising a spin column packed with octadecyl silane-bonded monolithic silica for extracting amphetamines and methylenedioxyamphetamines from urine. Urine (0.5mL), buffer (0.4mL), and methoxyphenamine (internal standard) were directly put into the preactivated column. The column was centrifuged (3000rpm, 5min) for sample loading and washed. The adsorbed analytes were eluted and analyzed by high-performance liquid chromatography, without evaporation. The results were as follows: linear curves (drug concentrations of 0.2-20microg/mL); correlation coefficients >0.99; detection limit, 0.1microg/mL. The proposed method is not only useful for drugs from biological materials but also highly reproducible for the analysis of these drugs in urine.

  7. Formation of a quasi-neutral region in Schottky diodes based on semi-insulating GaAs and the influence of the compensation mechanism on the particle detector performance

    CERN Document Server

    Rogalla, M

    1999-01-01

    A model for the electric field distribution beneath the Schottky contact in semi-insulating (SI) GaAs particle detectors is developed. The model is based on a field-enhanced electron capture of the EL2-defect. The influence of the compensation mechanism in SI-GaAs on the field distribution, leakage current density and charge collection properties of the detectors will be discussed. The detailed understanding allows then a device optimization. (author)

  8. Novel palladium germanide schottky contact for high performance schottky barrier ge MOSFETs and characterization of its leakage current mechanism.

    Science.gov (United States)

    Oh, Se-Kyung; Shin, Hong-Sik; Kang, Min-Ho; Lee, Ga-Won; Lee, Hi-Deok

    2012-07-01

    The leakage current mechanism of Palladium (Pd) germanide Schottky contact on n-type Ge-on-Si substrate is analyzed in depth. The electric field dependent analysis shows that the dominant leakage current mechanism is the Poole-Frenkel emission due to the existence of deep level traps in the depletion region of the Pd germanide/n-type Ge Schottky diode. The analysis of the dependence of leakage current on temperature also shows that the Poole-Frenkel emission and generation current are the dominant components below 100 degrees C and that the Schottky emission related to thermionic emission of majority carriers over a potential barrier is the main cause of this dominance at high temperature region.

  9. Destructive Single-Event Effects in Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Campola, Michael J.; Wilcox, Edward P.; Phan, Anthony M.; Label, Kenneth A.

    2017-01-01

    In this work, we discuss the observed single-event effects in a variety of types of diodes. In addition, we conduct failure analysis on several Schottky diodes that were heavy-ion irradiated. High- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images are used to identify and describe the failure locations.

  10. Optimization of a Common Buffer Platform for Monolithic Integration of InGaN/GaN Light-Emitting Diodes and AlGaN/GaN High-Electron-Mobility Transistors

    Science.gov (United States)

    Liu, Chao; Cai, Yuefei; Jiang, Huaxing; Lau, Kei May

    2016-04-01

    For the development of a metal-interconnection-free integration scheme for monolithic integration of InGaN/GaN light-emitting diodes (LEDs) and AlGaN/GaN high-electron-mobility transistors (HEMTs), a common buffer to achieve high brightness, low leakage current, and high breakdown in the integrated HEMT-LED device is essential. Different buffer structures have been investigated, and their impacts upon both the LED and HEMT parts of the HEMT-LED device have been analyzed. Results indicated that a GaN/AlN buffer structure is the most ideal to serve as a common buffer platform, offering both the excellent crystalline quality and superior buffer resistivity required by the HEMT-LED device. Growth of the AlN layer was particularly crucial for engineering the dislocation density, surface morphology, as well as resistivity of the buffer layer. Using the optimized GaN/AlN buffer structure, the LED part of the HEMT-LED device was improved, showing greatly enhanced light output power and suppressed reverse leakage current, while the breakdown characteristics of the HEMT part were also improved.

  11. Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy

    Science.gov (United States)

    Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.

    2016-04-01

    Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.

  12. Boron implantation effects on Au:GaAs Schottky barrier

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Roura, P.; Esteve, J.; Altelarrea, H.; Anton, J.A.; Cornet, A.; Morante, J.R.

    1987-01-01

    In this work, we analyse the use of boron implantation in order to change the barrier height of GaAs Schottky contacts. The dependence on the annealing temperature and implantation dose of the barrier height variation, as well as of the diode quality factor are also reported. In both cases, the observed behaviour is related to the presence of defects created by implantation in the surface layer, and their annealing kinetics.

  13. SCHOTTKY MEASUREMENTS DURING RHIC 2000.

    Energy Technology Data Exchange (ETDEWEB)

    CAMERON,P.; CUPOLO,J.; DEGEN,C.; HAMMONS,L.; KESSELMAN,M.; LEE,R.; MEYER,A.; SIKORA,R.

    2001-06-18

    The 2GHz Schottky system was a powerful diagnostic during RHIC 2000 commissioning. A continuous monitor without beam excitation, it provided betatron tune, chromaticity, momentum spread relative emittance, and synchrotron tune. It was particularly useful during transition studies. In addition, a BPM was resonated at 230MHz for Schottky measurements.

  14. Position and mode dependent coupling of terahertz quantum cascade laser fields to an integrated diode

    Science.gov (United States)

    Dyer, Gregory C.; Nordquist, Christopher D.; Cich, Michael J.; Ribaudo, Troy; Grine, Albert D.; Fuller, Charles T.; Reno, John L.; Wanke, Michael C.

    2013-10-01

    A Schottky diode integrated into a terahertz quantum cascade laser waveguide couples directly to the internal laser fields. In a multimode laser, the diode response is correlated with both the instantaneous power and the coupling strength to the diode of each lasing mode. Measurements of the rectified response of diodes integrated in two quantum cascade laser cavities at different locations indicate that the relative diode position strongly influences the laser-diode coupling.

  15. Position and mode dependent coupling of terahertz quantum cascade laser fields to an integrated diode

    CERN Document Server

    Dyer, Gregory C; Cich, Michael J; Ribaudo, Troy; Grine, Albert D; Fuller, Charles T; Reno, John L; Wanke, Michael C

    2016-01-01

    A Schottky diode integrated into a terahertz quantum cascade laser waveguide couples directly to the internal laser fields. In a multimode laser, the diode response is correlated with both the instantaneous power and the coupling strength to the diode of each lasing mode. Measurements of the rectified response of diodes integrated in two quantum cascade laser cavities at different locations indicate that the relative diode position strongly influences the laser-diode coupling.

  16. High Voltage GaN Schottky Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  17. Schottky barrier parameters and structural properties of rapidly annealed Zr Schottky electrode on p-type GaN

    Science.gov (United States)

    Rajagopal Reddy, V.; Asha, B.; Choi, Chel-Jong

    2017-06-01

    The Schottky barrier junction parameters and structural properties of Zr/p-GaN Schottky diode are explored at various annealing temperatures. Experimental analysis showed that the barrier height (BH) of the Zr/p-GaN Schottky diode increases with annealing at 400 °C (0.92 eV (I-V)/1.09 eV (C-V)) compared to the as-deposited one (0.83 eV (I-V)/0.93 eV (C-V)). However, the BH decreases after annealing at 500 °C. Also, at different annealing temperatures, the series resistance and BH are assessed by Cheung's functions and their values compared. Further, the interface state density (N SS) of the diode decreases after annealing at 400 °C and then somewhat rises upon annealing at 500 °C. Analysis reveals that the maximum BH is obtained at 400 °C, and thus the optimum annealing temperature is 400 °C for the diode. The XPS and XRD analysis revealed that the increase in BH may be attributed to the creation of Zr-N phases with increasing annealing up to 400 °C. The BH reduces for the diode annealed at 500 °C, which may be due to the formation of Ga-Zr phases at the junction. The AFM measurements reveal that the overall surface roughness of the Zr film is quite smooth during rapid annealing process. Project supported by the R&D Program for Industrial Core Technology (No. 10045216) and the Transfer Machine Specialized Lighting Core Technology Development Professional Manpower Training Project (No. N0001363) Funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

  18. A user oriented computer program for the analysis of microwave mixers, and a study of the effects of the series inductance and diode capacitance on the performance of some simple mixers

    Science.gov (United States)

    Siegel, P. H.; Kerr, A. R.

    1979-01-01

    A user oriented computer program for analyzing microwave and millimeter wave mixers with a single Schottky barrier diode of known I-V and C-V characteristics is described. The program first performs a nonlinear analysis to determine the diode conductance and capacitance waveforms produced by the local oscillator. A small signal linear analysis is then used to find the conversion loss, port impedances, and input noise temperature of the mixer. Thermal noise from the series resistance of the diode and shot noise from the periodically pumped current in the diode conductance are considered. The effects of the series inductance and diode capacitance on the performance of some simple mixer circuits using a conventional Schottky diode, a Schottky diode in which there is no capacitance variation, and a Mott diode are studied. It is shown that the parametric effects of the voltage dependent capacitance of a conventional Schottky diode may be either detrimental or beneficial depending on the diode and circuit parameters.

  19. Flicker noise comparison of direct conversion mixers using Schottky and HBT dioderings in SiGe:C BiCMOS technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2015-01-01

    In this paper, we present flicker noise measurements of two X-band direct conversion mixers implemented in a SiGe:C BiCMOS technology. Both mixers use a ring structure with either Schottky diodes or diode-connected HBTs for double balanced operation. The mixers are packaged in a metal casing...... on an Arlon 25N substrate to shield the sensitive noise measurement. Conversion loss measurements of both mixers is performed both for on-wafer and packaged versions. The experimental results shows that the Schottky diode mixer exhibits a 1/f noise corner frequency of 250 kHz, while the diode connected HBT...

  20. Carrier transport in reverse-biased graphene/semiconductor Schottky junctions

    Science.gov (United States)

    Tomer, D.; Rajput, S.; Hudy, L. J.; Li, C. H.; Li, L.

    2015-04-01

    Reverse-biased graphene (Gr)/semiconductor Schottky diodes exhibit much enhanced sensitivity for gas sensing. However, carrier transport across these junctions is not fully understood yet. Here, Gr/SiC, Gr/GaAs, and Gr/Si Schottky junctions under reverse bias are investigated by temperature-dependent current-voltage measurements. A reduction in barrier height with increasing bias is observed for all junctions, suggesting electric-field enhanced thermionic emission. Further analysis of the field dependence of the reverse current reveals that while carrier transport in Gr/SiC Schottky junctions follows the Poole-Frenkel mechanism, it deviates from both the Poole-Frankel and Schottky mechanisms in Gr/Si and Gr/GaAs junctions, particularly for low temperatures and fields.

  1. Monolithically integrated optoelectronic down-converter (MIOD)

    Science.gov (United States)

    Portnoi, Efrim L.; Venus, G. B.; Khazan, A. A.; Gorfinkel, Vera B.; Kompa, Guenter; Avrutin, Evgenii A.; Thayne, Iain G.; Barrow, David A.; Marsh, John H.

    1995-06-01

    Optoelectronic down-conversion of very high-frequency amplitude-modulated signals using a semiconductor laser simultaneously as a local oscillator and a mixer is proposed. Three possible constructions of a monolithically integrated down-converter are considered theoretically: a four-terminal semiconductor laser with dual pumping current/modal gain control, and both a passively mode-locked and a passively Q-switched semiconductor laser monolithically integrated with an electroabsorption or pumping current modulator. Experimental verification of the feasibility of the concept of down conversion in a laser diode is presented.

  2. INTERFACE STRUCTURE AND SCHOTTKY BARRIERS AT EPITAXIAL SI(111)/PB INTERFACES

    NARCIS (Netherlands)

    WEITERING, HH; HIBMA, T; HESLINGA, DR; KLAPWIJK, TM

    1991-01-01

    Two different epitaxial Si(111)/Pb interfaces can be prepared, i.e. a metastable interface with a (7 x 7) and a stable interface with an incommensurate but close to (square-root 3 x square-root 3)R30-degrees surface unit cell. Schottky barrier heights of diodes made by depositing thick Pb layers on

  3. Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics.

    Science.gov (United States)

    Hertel, S; Waldmann, D; Jobst, J; Albert, A; Albrecht, M; Reshanov, S; Schöner, A; Krieger, M; Weber, H B

    2012-07-17

    Graphene is an outstanding electronic material, predicted to have a role in post-silicon electronics. However, owing to the absence of an electronic bandgap, graphene switching devices with high on/off ratio are still lacking. Here in the search for a comprehensive concept for wafer-scale graphene electronics, we present a monolithic transistor that uses the entire material system epitaxial graphene on silicon carbide (0001). This system consists of the graphene layer with its vanishing energy gap, the underlying semiconductor and their common interface. The graphene/semiconductor interfaces are tailor-made for ohmic as well as for Schottky contacts side-by-side on the same chip. We demonstrate normally on and normally off operation of a single transistor with on/off ratios exceeding 10(4) and no damping at megahertz frequencies. In its simplest realization, the fabrication process requires only one lithography step to build transistors, diodes, resistors and eventually integrated circuits without the need of metallic interconnects.

  4. Monoliths in Bioprocess Technology

    Directory of Open Access Journals (Sweden)

    Vignesh Rajamanickam

    2015-04-01

    Full Text Available Monolithic columns are a special type of chromatography column, which can be used for the purification of different biomolecules. They have become popular due to their high mass transfer properties and short purification times. Several articles have already discussed monolith manufacturing, as well as monolith characteristics. In contrast, this review focuses on the applied aspect of monoliths and discusses the most relevant biomolecules that can be successfully purified by them. We describe success stories for viruses, nucleic acids and proteins and compare them to conventional purification methods. Furthermore, the advantages of monolithic columns over particle-based resins, as well as the limitations of monoliths are discussed. With a compilation of commercially available monolithic columns, this review aims at serving as a ‘yellow pages’ for bioprocess engineers who face the challenge of purifying a certain biomolecule using monoliths.

  5. A Novel Current-Mode Full-Wave Rectifier Based on One CDTA and Two Diodes

    Directory of Open Access Journals (Sweden)

    F. Khateb

    2010-09-01

    Full Text Available Precision rectifiers are important building blocks for analog signal processing. The traditional approach based on diodes and operational amplifiers (OpAmps exhibits undesirable effects caused by limited OpAmp slew rate and diode commutations. In the paper, a full-wave rectifier based on one CDTA and two Schottky diodes is presented. The PSpice simulation results are included.

  6. Monolithically integrated AlN/GaN electronics for harsh environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recently, resonant-tunneling-diode (RTD) based circuits employing monolithically-integrated RTD on high electron mobility (HEMT) structures have been developed in a...

  7. Spectrally dependent photovoltages in Schottky photodiode based on (100) B-doped diamond

    Energy Technology Data Exchange (ETDEWEB)

    Čermák, Jan, E-mail: cermakj@fzu.cz; Rezek, Bohuslav [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 16200 Prague 6 (Czech Republic); Koide, Yasuo [Sensor Materials Center, National Institute for Material Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Takeuchi, Daisuke [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-02-07

    Spectrally and spatially resolved photovoltages were measured by Kelvin probe force microscopy (KPFM) on a Schottky photo-diode made of a 4 nm thin tungsten-carbide (WC) layer on a 500 nm oxygen-terminated boron-doped diamond epitaxial layer (O-BDD) that was grown on a Ib (100) diamond substrate. The diode was grounded by the sideways ohmic contact (Ti/WC), and the semitransparent Schottky contact was let unconnected. The electrical potentials across the device were measured in dark (only 650 nm LED of KPFM being on), under broad-band white light (halogen lamp), UV (365 nm diode), and deep ultraviolet (deuterium lamp) illumination. Illumination induced shift of the electrical potential remains within 210 mV. We propose that the photovoltage actually corresponds to a shift of Fermi level inside the BDD channel and thereby explains orders of magnitude changes in photocurrent.

  8. Longitudinal peak detected Schottky spectrum

    CERN Document Server

    Shaposhnikova, E

    2009-01-01

    The "peak detected Schottky" spectrum is a diagnostic used since the late seventies for beam observation in the SPS and now already applied to the LHC. This tool was always believed, however without proof, to give a good picture of the particle distribution in synchrotron frequencies similar to the longitudinal Schottky spectrum of unbunched beam for revolution frequencies.In this paper an analysis of this measurement technique is presented both in a general form and for the particular realisation in the SPS. In addition the limitations of the present experimental set-up are discussed together with possible improvements. The analysis shows that for an optimised experimental set-up the spectrum of the peak detected signal is very close to the synchrotron frequency distribution inside the bunch - much closer than that given by the traditional longitudinal bunched-beam Schottky spectrum.

  9. Phase Transition Sensitive Schottky Barriers In Ga-Si(P Contacts

    Directory of Open Access Journals (Sweden)

    B.P. Modi

    2013-05-01

    Full Text Available Investigation and understanding of Schottky diodes continue to be interesting both for basic as well as technological points of view. Even now the evolutionary aspects of such contacts are not very clearly understood. In this paper it is shown that in respect of interfacial strain contribution to the barrier heights of such contacts semiconductor – liquid metal contacts are relatively better placed than solid semiconductor-solid metal contacts. Results on Ga-Si(p contact are discussed in this paper to show phase sensitive contribution to the barrier height of such Schottky contacts.

  10. Millimeter and Submillimeter-Wave Integrated Horn Antenna Schottky Receivers.

    Science.gov (United States)

    Ali-Ahmad, Walid Youssef

    1993-01-01

    Fundamental Schottky-diode mixers are currently used in most millimeter-wave receivers above 100GHz. The mixers use either a whisker-contacted diode or a planar Schottky diode suspended in a machined waveguide with an appropriate RF matching network. However, waveguide mounts are very expensive to machine for frequencies above 200GHz. Also, the whisker-contacted structure is not compatible with integrated mixers which represent the leading technology used for millimeter- and submillimeter-wave applications such as plasma diagnostics imaging arrays, radiometers, and anti-collision radars. In this work, a novel quasi-integrated horn antenna has been used for the receiver antenna. This antenna has a high gain and a high Gaussian coupling efficiency (97%), similar to machined scalar feed horns, but with the advantage of being easily fabricated up to at least 1.5THz. The quasi-integrated horn antenna is based on the integrated horn antenna structure. The integrated horn antenna consists of a pyramidal cavity with a 70^circ flare angle etched anisotropically in silicon. The cavity focuses the incoming energy on dipole-probe suspended on a membrane inside the horn. The integrated horn antenna does not suffer from dielectric losses or substrate mode losses since the feeding dipole antenna is integrated on a very thin dielectric layer. The mixer circuit, along with the feed dipole, are both integrated on the membrane wafer. The mixer diode is the University of Virginia surface channel planar diode which has a low parasitic capacitance. The diode is epoxied directly at the dipole apex without the need for an RF matching network, and with no mixer tuning required. At 92GHz,the DSB antenna-mixer conversion loss and noise temperature are 5.5dB and 770K, respectively. This represents the best reported results to this date for a quasi-optical mixer with a planar diode, at room temperature. At 335GHz, the DSB antenna-mixer noise temperature is 1750K and it is within 1dB of the

  11. Electrical parameters and current conduction mechanism in Cr/Au/n-InP Schottky structure at different annealing temperatures

    Science.gov (United States)

    Reddy, M. Bhaskar; Padma, R.; Reddy, V. Rajagopal

    2015-06-01

    Cr/Au/n-InP Schottky structures are fabricated and their electrical characteristics are investigated at different annealing temperatures. As-deposited Cr/Au/n-InP Schottky diode exhibits a barrier height of 0.51 eV (I-V) and 0.64 eV (C-V), which increases to 0.63 eV (I-V) and 0.75 eV (C-V) after annealing at 100 °C. A maximum barrier height of 0.71 eV (I-V) and 0.81 eV (C-V) is achieved for the Cr/Au Schottky contacts after annealing at 200 °C. Further, it is observed that the Schottky barrier height slightly decreases upon annealing at temperature of 300 °C and the obtained values are 0.58 eV (I-V), 0.69 eV (C-V). The reverse-bias leakage current mechanism of Cr/Au/n-InP Schottky barrier diode is investigated. Investigations reveal that the Schottky emission is the dominant mechanism and the Poole-Frenkel emission occurs only in the high voltage region.

  12. Planar GaAs diodes for THz frequency mixing applications

    Science.gov (United States)

    Bishop, William L.; Crowe, Thomas W.; Mattauch, Robert J.; Dossal, Hasan

    1992-01-01

    Schottky barrier diodes for terahertz applications are typically fabricated as a micron to sub-micron circular anode metallization on GaAs which is contacted with a sharp wire (whisker). This structure has the benefits of the simplicity of the fabrication of the diode chip, the minimal shunt capacitance of the whisker contact and the ability of the whisker wire to couple energy to the diode. However, whisker-contacted diodes are costly to assembly and difficult to qualify for space applications. Also, complex receiver systems which require many diodes are difficult to assemble. The objective of this paper is to discuss the advantages of planar Schottky diodes for high frequency receiver applications and to summarize the problems of advancing the planar technology to the terahertz frequency range. Section 2 will discuss the structure, fabrication and performance of state-of-the-art planar Schottky diodes. In Section 3 the problems of designing and fabricating planar diodes for terahertz frequency operation are discussed along with a number of viable solutions. Section 4 summarizes the need for further research and cooperation between diode designers and RF engineers.

  13. Plastic Schottky barrier solar cells

    Science.gov (United States)

    Waldrop, James R.; Cohen, Marshall J.

    1984-01-24

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

  14. Electrical characteristics of Pt-ZnO Schottky nano-contact

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The electrical characteristics of Pt-ZnO Schottky nano-contact have been studied. Well aligned ZnO nanorod arrays were synthesized by two-step wet-chemical method. A Pt-coated conducting probe of atomic force microscope was placed on the head face of the ZnO nanorod, thereby forming a Pt-ZnO nano-contact. The I-V characteristic curve shows that the Pt-ZnO nano-contact exhibits rectifying effect, like a Schottky diode with an ideality factor of 3.2 and a reverse-bias breakdown voltage more than -10 V. The study suggests that a high electric field is induced on the ZnO beneath the contact point when a bias voltage is applied, hence, the Schottky barrier thickness is decreased, and results in easier tunneling across the Pt-ZnO interface and a large ideality factor.

  15. Modelling the inhomogeneous SiC Schottky interface

    Science.gov (United States)

    Gammon, P. M.; Pérez-Tomás, A.; Shah, V. A.; Vavasour, O.; Donchev, E.; Pang, J. S.; Myronov, M.; Fisher, C. A.; Jennings, M. R.; Leadley, D. R.; Mawby, P. A.

    2013-12-01

    For the first time, the I-V-T dataset of a Schottky diode has been accurately modelled, parameterised, and fully fit, incorporating the effects of interface inhomogeneity, patch pinch-off and resistance, and ideality factors that are both heavily temperature and voltage dependent. A Ni/SiC Schottky diode is characterised at 2 K intervals from 20 to 320 K, which, at room temperature, displays low ideality factors (n 8), voltage dependent ideality factors and evidence of the so-called "thermionic field emission effect" within a T0-plot, suggest significant inhomogeneity. Two models are used, each derived from Tung's original interactive parallel conduction treatment of barrier height inhomogeneity that can reproduce these commonly seen effects in single temperature I-V traces. The first model incorporates patch pinch-off effects and produces accurate and reliable fits above around 150 K, and at current densities lower than 10-5 A cm-2. Outside this region, we show that resistive effects within a given patch are responsible for the excessive ideality factors, and a second simplified model incorporating these resistive effects as well as pinch-off accurately reproduces the entire temperature range. Analysis of these fitting parameters reduces confidence in those fits above 230 K, and questions are raised about the physical interpretation of the fitting parameters. Despite this, both methods used are shown to be useful tools for accurately reproducing I-V-T data over a large temperature range.

  16. Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer

    Science.gov (United States)

    Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Gill, John; Velebir, James; Tsang, Raymond; Dengler, Robert; Lin, Robert

    2010-01-01

    This device is a biasable, submillimeter-wave, balanced mixer fabricated using JPL s monolithic membrane process a simplified version of planar membrane technology. The primary target application is instrumentation used for analysis of atmospheric constituents, pressure, temperature, winds, and other physical and chemical properties of the atmospheres of planets and comets. Other applications include high-sensitivity gas detection and analysis. This innovation uses a balanced configuration of two diodes allowing the radio frequency (RF) signal and local oscillator (LO) inputs to be separated. This removes the need for external diplexers that are inherently narrowband, bulky, and require mechanical tuning to change frequency. Additionally, this mixer uses DC bias-ability to improve its performance and versatility. In order to solve problems relating to circuit size, the GaAs membrane process was created. As much of the circuitry as possible is fabricated on-chip, making the circuit monolithic. The remainder of the circuitry is precision-machined into a waveguide block that holds the GaAs circuit. The most critical alignments are performed using micron-scale semiconductor technology, enabling wide bandwidth and high operating frequencies. The balanced mixer gets superior performance with less than 2 mW of LO power. This can be provided by a simple two-stage multiplier chain following an amplifier at around 90 GHz. Further, the diodes are arranged so that they can be biased. Biasing pushes the diodes closer to their switching voltage, so that less LO power is required to switch the diodes on and off. In the photo, the diodes are at the right end of the circuit. The LO comes from the waveguide at the right into a reduced-height section containing the diodes. Because the diodes are in series to the LO signal, they are both turned on and off simultaneously once per LO cycle. Conversely, the RF signal is picked up from the RF waveguide by the probe at the left, and flows

  17. Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation

    Science.gov (United States)

    Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M. G.; Petwal, V. C.; Dwivedi, Jishnu; Choudhary, R. J.

    2017-06-01

    The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I-V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (ΦB), ideality factor (n) and series resistance (Rs). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of ΦB was observed as a function of EBI dose. The improved n with increased ΦB is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune Schottky contact parameters by metal deposition on the electron beam irradiated n-Si wafers.

  18. Fabrication and characterization of graphene/AlGaN/GaN ultraviolet Schottky photodetector

    Science.gov (United States)

    Kumar, M.; Jeong, H.; Polat, K.; Okyay, A. K.; Lee, D.

    2016-07-01

    We report on the fabrication and characterization of a Schottky ultraviolet graphene/AlGaN/GaN photodetector (PD). The fabricated device clearly exhibits rectification behaviour, indicating that the Schottky barrier is formed between the AlGaN and the mechanically transferred graphene. The Schottky parameters are evaluated using an equivalent circuit with two diodes connected back-to-back in series. The PD shows a low dark current of 4.77  ×  10-12 A at a bias voltage of  -2.5 V. The room temperature current-voltage (I-V) measurements of the graphene/AlGaN/GaN Schottky PD exhibit a large photo-to-dark contrast ratio of more than four orders of magnitude. Furthermore, the device shows peak responsivity at a wavelength of 350 nm, corresponding to GaN band edge and a small hump at 300 nm associated to the AlGaN band edge. In addition, we examine the behaviour of Schottky PDs with responsivities of 0.56 and 0.079 A W-1 at 300 and 350 nm, respectively, at room temperature.

  19. New Type Far IR and THz Schottky Barrier Detectors for Scientific and Civil Application

    Directory of Open Access Journals (Sweden)

    V. G. Ivanov

    2011-01-01

    Full Text Available The results of an experimental investigation into a new type of VLWIR detector based on hot electron gas emission and architecture of the detector are presented and discussed. The detectors (further referred to as HEGED take advantage of the thermionic emission current change effect in a semiconductor diode with a Schottky barrier (SB as a result of the direct transfer of the absorbed radiation energy to the system of electronic gas in the quasimetallic layer of the barrier. The possibility of detecting radiation having the energy of quantums less than the height of the Schottky diode potential barrier and of obtaining a substantial improvement of a cutoff wavelength to VLWIR of the PtSi/Si detector has been demonstrated. The complementary contribution of two physical mechanisms of emanation detection—“quantum” and hot electrons gas emission—has allowed the creation of a superwideband IR detector using standard silicon technology.

  20. Silicon Carbide Diodes Characterization at High Temperature and Comparison With Silicon Devices

    Science.gov (United States)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry D., Jr.

    2004-01-01

    Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers rated at 200, 300, 600, and 1200 V, were electrically tested and characterized as a function of temperature up to 300 C. Electrical tests included both steady state and dynamic tests. Steady state tests produced forward and reverse I-V characteristic curves. Transient tests evaluated the switching performance of the diodes in either a hard-switched DC to DC buck converter or a half-bridge boost converter. For evaluation and comparison purposes, the same tests were performed with current state-of-the-art ultra fast silicon (Si) pn-junction diodes of similar ratings and also a Si Schottky diode. The comparisons made were forward voltage drop at rated current, reverse current at rated voltage, and turn-off peak reverse recovery current and reverse recovery time. In addition, efficiency measurements were taken for the buck DC to DC converter using both the SiC Schottky diodes and the Si pn-junction diodes at different temperatures and frequencies. The test results showed that at high temperature, the forward voltage drop for SiC Schottky diodes is higher than the forward drop of the ultra fast Si pn-junction diodes. As the temperature increased, the forward voltage drop of the SiC Schottky increased while for the ultra fast Si pn-junction diodes, the forward voltage drop decreased as temperature increased. For the elevated temperature steady state reverse voltage tests, the SiC Schottky diodes showed low leakage current at their rated voltage. Likewise, for the transient tests, the SiC Schottky diodes displayed low reverse recovery currents over the range of temperatures tested. Conversely, the Si pn-junction diodes showed increasing peak reverse current values and reverse recovery times with increasing temperature. Efficiency measurements in the DC to DC buck converter showed the advantage of the SiC Schottky diodes over the ultra fast Si pn-junction diodes, especially at the

  1. Schottky signal analysis: tune and chromaticity computation

    CERN Document Server

    Chanon, Ondine

    2016-01-01

    Schottky monitors are used to determine important beam parameters in a non-destructive way. The Schottky signal is due to the internal statistical fluctuations of the particles inside the beam. In this report, after explaining the different components of a Schottky signal, an algorithm to compute the betatron tune is presented, followed by some ideas to compute machine chromaticity. The tests have been performed with offline and/or online LHC data.

  2. Mo1-xWxSe2-Based Schottky Junction Photovoltaic Cells.

    Science.gov (United States)

    Yi, Sum-Gyun; Kim, Sung Hyun; Park, Sungjin; Oh, Donggun; Choi, Hwan Young; Lee, Nara; Choi, Young Jai; Yoo, Kyung-Hwa

    2016-12-14

    We developed Schottky junction photovoltaic cells based on multilayer Mo1-xWxSe2 with x = 0, 0.5, and 1. To generate built-in potentials, Pd and Al were used as the source and drain electrodes in a lateral structure, and Pd and graphene were used as the bottom and top electrodes in a vertical structure. These devices exhibited gate-tunable diode-like current rectification and photovoltaic responses. Mo0.5W0.5Se2 Schottky diodes with Pd and Al electrodes exhibited higher photovoltaic efficiency than MoSe2 and WSe2 devices with Pd and Al electrodes, likely because of the greater adjusted band alignment in Mo0.5W0.5Se2 devices. Furthermore, we showed that Mo0.5W0.5Se2-based vertical Schottky diodes yield a power conversion efficiency of ∼16% under 532 nm light and ∼13% under a standard air mass 1.5 spectrum, demonstrating their remarkable potential for photovoltaic applications.

  3. X-Ray Photoelectron Spectroscopy Study of the Heating Effects on Pd/6H-SiC Schottky Structure

    Science.gov (United States)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    X-ray photoelectron spectroscopy is used to study the effects of heat treatment on the Pd/6H-SiC Schottky diode structure. After heating the structure at 425 C for 140 h, a very thin surface layer of PdO mixed with SiO(x) formed on the palladium surface of the Schottky structure. Heat treatment promoted interfacial diffusion and reaction which significantly broadened the interfacial region. In the interfacial region, the palladium concentration decreases with depth, and the interfacial products are Pd(x)Si (x = 1,2,3,4). In the high Pd concentration regions, Pd4Si is the major silicide component while gr and Pd2Si are major components in the low Pd concentration region. At the center of the interface, where the total palladium concentration equals that of silicon, the concentrations of palladium associated with various palladium silicides (Pd(x)Si, x= 1,2,3,4) are approximately equal. The surface passivation layer composed of PdO and SiO, may significantly affect the electronic and catalytic properties of the surface of the Schottky diode which plays a major role in gas detection. The electronic properties of the Schottky structure may be dominated by a (Pd+Pd(x)Si)/SiC interface. In order to stabilize the properties of the Schottky structure the surface and interface diffusion and reactions must be controlled.

  4. Current Transport in Copper Schottky Contacts to a-Plane/c-Plane n-Type MoSe2

    Institute of Scientific and Technical Information of China (English)

    C. K. Sumesh; K. D. Patel; V. M. Pathak; R. Srivastav

    2011-01-01

    @@ We identically prepared Cu-nMoSe2(a-plane) and Cu-nMoSe2(c-plane) Schottky barrier diodes(SBDs) on the same n-type MoSe2 single crystal.The effective Schottky barrier heights(SBHs) and ideality factors were obtained from the current-voltage-temperature(I-V-T) characteristics.The barrier height and ideality factor,estimated from the conventional thermionic emission model by assuming a Gaussian barrier distribution, are highly dependent on temperature.A notable deviation from the theoretical Richardson constant value is also observed in the conventional Richardson plot.The decrease in the experimental barrier height φBO and an increase in the ideality factor n with a decrease in temperature have been explained on the basis of barrier height inhomogeneities at the metal-semiconductor interface.It is proven that the presence of a distribution of barrier heights is responsible for the apparent decrease of the zero bias barrier height.The voltage dependence of the standard deviation causes the increase of the ideality factor at low temperatures.The value of the Richardson constant obtained without considering the inhomogeneous barrier heights is much closer than the theoretical value.The Cu-nMoSe2(a-plane) Schottky diode shows better results in comparison with the nMoSe2(c-plane)Schottky diode.

  5. Silicon Carbide Diodes Performance Characterization and Comparison With Silicon Devices

    Science.gov (United States)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Trapp, Scott

    2003-01-01

    Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers were electrically tested and characterized at room temperature. Performed electrical tests include steady state forward and reverse I-V curves, as well as switching transient tests performed with the diodes operating in a hard switch dc-to-dc buck converter. The same tests were performed in current state of the art silicon (Si) and gallium arsenide (GaAs) Schottky and pn junction devices for evaluation and comparison purposes. The SiC devices tested have a voltage rating of 200, 300, and 600 V. The comparison parameters are forward voltage drop at rated current, reverse current at rated voltage and peak reverse recovery currents in the dc to dc converter. Test results show that steady state characteristics of the tested SiC devices are not superior to the best available Si Schottky and ultra fast pn junction devices. Transient tests reveal that the tested SiC Schottky devices exhibit superior transient behavior. This is more evident at the 300 and 600 V rating where SiC Schottky devices showed drastically lower reverse recovery currents than Si ultra fast pn diodes of similar rating.

  6. NiSi(C) Schottky diodes for IR detection

    OpenAIRE

    Moeen, Mahdi

    2012-01-01

    Un-cooled bolometer arrays have been considered as good choices for detection of infrared waves in the ranges of 3-5μm (MWIR: mid wavelength infrared) and 8-12μm (LWIR: long wavelength infrared). Advantages are found in their relative simplicity of mechanism and design, hence, fabrication cost, when compared to detectors working based on photon detection mechanisms. A temperature dependent resistor (or thermistor) is the core element of a bolometer. The rate of resistance dependency to temper...

  7. Adapting Schottky Diode Detector Technology to a Space Platform

    Science.gov (United States)

    1988-02-10

    temperature in SBS Camera band 4.2-2 Candidate solid cryogens for SBS Camera 4.2-3 Sample split- Stirling cooling engine 4.2-4 Physical dimensions of...to 40 percent of the sky , the horizon is a convenient reference to use. The earth horizon is most definate in the strongly absorbing atmospheric...horizon sensors employ some method of scanning 1he sky over the sensor with a relatively small field of view detector since wide FOV sensors (like the

  8. Advanced Gunn diode as high power terahertz source for a millimetre wave high power multiplier

    Science.gov (United States)

    Amir, F.; Mitchell, C.; Farrington, N.; Missous, M.

    2009-09-01

    An advanced step-graded Gunn diode is reported, which has been developed through joint modelling-experimental work. The ~ 200 GHz fundamental frequency devices have been realized to test GaAs based Gunn oscillators at sub-millimetre wave for use as a high power (multi mW) Terahertz source in conjunction with a mm-wave multiplier, with novel Schottky diodes. The epitaxial growth of both the Gunn diode and Schottky diode wafers were performed using an industrial scale Molecular Beam Epitaxy (V100+) reactor. The Gunn diodes were then manufactured and packaged by e2v Technologies (UK) Plc. Physical models of the high power Gunn diode sources, presented here, are developed in SILVACO.

  9. Schottky Noise and Beam Transfer Functions

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz M.; Blaskiewicz M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  10. Monolithic series-connected gallium arsenide converter development

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, M.B.; McClelland, R.W.; Dingle, B.D.; Dingle, J.E.; Hill, D.S. (Kopin Corp., Taunton, MA (United States)); Rose, B.H. (Sandia National Labs., Albuquerque, NM (United States))

    1991-01-01

    We report the development of monolithic GaAs photovoltaic devices intended to convert light generated by a laser or other bright source to electricity. The converters described here can provide higher operating voltage than is possible using a single-junction converter, owing to use of a monolithic circuit that forms a planar series-connected string of single-junction sub-cells. This planar monolithic circuit is arranged to deliver the desired voltage and current during operation at the maximum power point. The paper describes two-, six-, and twelve-junction converters intended for illumination by a laser diode with a wavelength of 0.8 {mu}m. Design and characterization data are presented for optical power in the range of 100 mW to 1 W. The best conversion efficiency exceeds 50%. 9 refs., 4 figs., 2 tabs.

  11. Extreme ultraviolet detection using AlGaN-on-Si inverted Schottky photodiodes

    Science.gov (United States)

    Malinowski, Pawel E.; Duboz, Jean-Yves; De Moor, Piet; Minoglou, Kyriaki; John, Joachim; Horcajo, Sara Martin; Semond, Fabrice; Frayssinet, Eric; Verhoeve, Peter; Esposito, Marco; Giordanengo, Boris; BenMoussa, Ali; Mertens, Robert; Van Hoof, Chris

    2011-04-01

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky diodes for extreme ultraviolet (EUV) detection. AlGaN layers were grown on silicon wafers by molecular beam epitaxy with the conventional and inverted Schottky structure, where the undoped, active layer was grown before or after the n-doped layer, respectively. Different current mechanisms were observed in the two structures. The inverted Schottky diode was designed for the optimized backside sensitivity in the hybrid imagers. A cut-off wavelength of 280 nm was observed with three orders of magnitude intrinsic rejection ratio of the visible radiation. Furthermore, the inverted structure was characterized using a EUV source based on helium discharge and an open electrode design was used to improve the sensitivity. The characteristic He I and He II emission lines were observed at the wavelengths of 58.4 nm and 30.4 nm, respectively, proving the feasibility of using the inverted layer stack for EUV detection.

  12. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device

    Science.gov (United States)

    Di Bartolomeo, Antonio; Giubileo, Filippo; Luongo, Giuseppe; Iemmo, Laura; Martucciello, Nadia; Niu, Gang; Fraschke, Mirko; Skibitzki, Oliver; Schroeder, Thomas; Lupina, Grzegorz

    2017-03-01

    We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 {{A}} {{{W}}}-1 for white LED light at 3 {{mW}} {{{cm}}}-2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters, and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. We also introduce a new phenomenological graphene/semiconductor diode equation, which well describes the experimental I-V characteristics both in forward and reverse bias.

  13. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  14. Modeling of Schottky Barrier Height and Volt-Amper Characteristics for Transition Metal-solid Solution (SіC1 – x(AlNx

    Directory of Open Access Journals (Sweden)

    V.I. Altukhov

    2016-11-01

    Full Text Available Proposed nonlinear defect concentration model of metal-semiconductor contact. It is shown that taking into account nonlinear dependence of the Fermi energy EF defect concentration leads to higher barrier Schottky in 15-25 %. Calculated Volt-Amper characteristics of the diodes are consistent with experiment.

  15. Mechanisms of the degradation of Schottky-barrier photodiodes based on ZnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Korsunska, N. E.; Shulga, E. P.; Stara, T. R., E-mail: stara-t@ukr.net; Litvin, P. M.; Bondarenko, V. A. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine)

    2016-01-15

    The effect of ultraviolet (UV) illumination on the electrical and spectral characteristics of Schottky-barrier photodiodes based on ZnS single crystals is studied. It is found that irradiation deteriorates their photosensitivity and changes the current–voltage and capacitance–voltage characteristics and the surface profile of the blocking electrode. It is shown that the main reason for a decrease in the photosensitivity of the diodes is the photoinduced drift of mobile donors in the electric field of the barrier. This drift depends on the crystallographic orientation of the surface being irradiated. Another photoinduced process observed in the diodes is photolysis of the ZnS crystal. This process mainly determines the change in the electrical characteristics of the diodes and in the surface profile of the electrode at an insignificant change in the photosensitivity.

  16. Instrumentation And Diagnostics Using Schottky Signals

    CERN Document Server

    Nolden, F

    2001-01-01

    Schottky signal measurements are a widely used tool for the determination of longitudinal and transverse dynamical properties of hadron beams in circular accelerators and storage rings. When applied to coasting beams, it is possible to deduce properties as the momentum distribution. the Qx,y-values and the average betatron amplitudes. Scientific applications have been developed in the past few years, as well, namely nuclear Schottky mass spectrometry and lifetime measurements. Schottky signals from a coasting beam are random signals which appear at every revolution harmonic and the respective betatron sidebands. Their interpretation is more or less straightforward unless the signal is perturbed by collective effects in the case of high phase space density. Schottky signals from bunched beams reveal the synchrotron oscillation frequency, from which the effective rf voltage seen by the beam can be deduced. The detection devices can be broad-band or narrowband. The frequency range is usually in the range between...

  17. Graphene-GaN Schottky Photodiodes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Integration of graphene as the top metal on GaN Schottky. This will replace platinum, which is 50% transparent at the desired wavelength, with graphene, which has...

  18. Characterization of deep electron traps in 4H-SiC Junction Barrier Schottky rectifiers

    Science.gov (United States)

    Gelczuk, Ł.; Dąbrowska-Szata, M.; Sochacki, M.; Szmidt, J.

    2014-04-01

    Conventional deep level transient spectroscopy (DLTS) technique was used to study deep electron traps in 4H-SiC Junction Barrier Schottky (JBS) rectifiers. 4H-SiC epitaxial layers, doped with nitrogen and grown on standard n+-4H-SiC substrates were exposed to low-dose aluminum ion implantation process under the Schottky contact in order to form both JBS grid and junction termination extension (JTE), and assure good rectifying properties of the diodes. Several deep electron traps were revealed and attributed to impurities or intrinsic defects in 4H-SiC epitaxial layers, on the basis of comparison of their electrical parameters (i.e. activation energies, apparent capture cross sections and concentrations) with previously published results.

  19. Embedded-monolith armor

    Science.gov (United States)

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  20. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature

    Science.gov (United States)

    Villa, E.; Aja, B.; de la Fuente, L.; Artal, E.

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  1. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.

    Science.gov (United States)

    Villa, E; Aja, B; de la Fuente, L; Artal, E

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  2. Organic modification of metal / semiconductor Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Pinzon, H.A.

    2006-07-10

    In the present work a Metal / organic / inorganic semiconductor hybrid heterostructure (Ag / DiMe-PTCDI / GaAs) was built under UHV conditions and characterised in situ. The aim was to investigate the influence of the organic layer in the surface properties of GaAs(100) and in the electrical response of organic-modified Ag / GaAs Schottky diodes. The device was tested by combining surface-sensitive techniques (Photoemission spectroscopy and NEXAFS) with electrical measurements (current-voltage, capacitance-voltage, impedance and charge transient spectroscopies). Core level examination by PES confirms removal of native oxide layers on sulphur passivated (S-GaAs) and hydrogen plasma treated GaAs(100) (H+GaAs) surfaces. Additional deposition of ultrathin layers of DiMe-PTCDI may lead to a reduction of the surface defects density and thereby to an improvement of the electronic properties of GaAs. The energy level alignment through the heterostructure was deduced by combining UPS and I-V measurements. This allows fitting of the I-V characteristics with electron as majority carriers injected over a barrier by thermionic emission as a primary event. For thin organic layers (below 8 nm thickness) several techniques (UPS, I-V, C-V, QTS and AFM) show non homogeneous layer growth, leading to formation of voids. The coverage of the H+GaAs substrate as a function of the nominal thickness of DiMe-PTCDI was assessed via C-V measurements assuming a voltage independent capacitance of the organic layer. The frequency response of the device was evaluated through C-V and impedance measurements in the range 1 kHz-1 MHz. The almost independent behaviour of the capacitance in the measured frequency range confirmed the assumption of a near geometrical capacitor, which was used for modelling the impedance with an equivalent circuit of seven components. From there it was found a predominance of the space charge region impedance, so that A.C. conduction can only takes place through the

  3. Schottky barrier height of Ni to β-(AlxGa1‑x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1‑x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance–voltage measurements revealed a very low (current–voltage (I–V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1‑x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I–V measurements could be similar for β-(AlxGa1‑x)2O3 films with different compositions.

  4. Monolithic MACS micro resonators

    Science.gov (United States)

    Lehmann-Horn, J. A.; Jacquinot, J.-F.; Ginefri, J. C.; Bonhomme, C.; Sakellariou, D.

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1 /√{ P } is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4 mm rotor at 500 MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials.

  5. The MONOLITH prototype

    CERN Document Server

    Ambrosio, M; Bencivenni, G; Candela, A M; Chiarini, A; Chignoli, F; De Deo, M; D'Incecco, M; Gerli, S; Giusti, P; Gómez, F; Gustavino, C; Lindozzi, M; Mannocchi, G; Menghetti, H; Morello, C; Murtas, F; Paoluzzi, G; Pilastrini, R; Redaelli, N G; Santoni, M; Sartorelli, G; Terranova, F; Trinchero, G C

    2000-01-01

    MONOLITH (Massive Observatory for Neutrino Oscillation or LImits on THeir existence) is the project of an experiment to study atmospheric neutrino oscillations with a massive magnetized iron detector. The baseline option is a 34 kt iron detector based on the use of about 50000 m/sup 2/ of the glass Resistive Plate Chambers (glass RPCs) developed at the Laboratori Nazionali del Gran Sasso (LNGS). An 8 ton prototype equipped with 23 m/sup 2/ of glass RPC has been realized and tested at the T7-PS beam at CERN. The energy resolution for pions follows a 68%/ square root (E(GeV))+2% law for orthogonally incident particles, in the energy range between 2 and 10 GeV. The time resolution and the tracking capability of the glass RPC are suitable for the MONOLITH experiment. (7 refs).

  6. Functionalized graphene/silicon chemi-diode H₂ sensor with tunable sensitivity.

    Science.gov (United States)

    Uddin, Md Ahsan; Singh, Amol Kumar; Sudarshan, Tangali S; Koley, Goutam

    2014-03-28

    A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to vary exponentially in reverse bias. The reverse bias operation also enables low power consumption, as well as modulation of the atomically thin graphene's Fermi level, leading to tunable sensitivity and detection of H₂ down to the sub-ppm range.

  7. New tunnel schottky SiC devices using mixed conduction ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Cerda, J. [S-SENCE and Div. of Applied Physics, Linkoeping Univ., Linkoeping (Sweden); Electronic Materials and Engineering, Electronics Dept., Univ. of Barcelona, Barcelona (Spain); Morante, J.R. [Electronic Materials and Engineering, Electronics Dept., Univ. of Barcelona, Barcelona (Spain); Lloyd Spetz, A. [S-SENCE and Div. of Applied Physics, Linkoeping Univ., Linkoeping (Sweden)

    2003-07-01

    A new tunnel Schottky diode based on SiC and a mixed conductor of BaSnO{sub 3} as the gate has been investigated. I-V curves at different operating temperatures and two different gas atmospheres have been measured. The device shows sensitivity to oxygen, with maximum at 400 C. A model that describes the behaviour of the device is proposed, which takes into account the different types of conduction of the BaSnO{sub 3} due to the temperature. (orig.)

  8. Influence of annealing temperature on the electrical and structural properties of palladium Schottky contacts on n-type 4H-SiC

    Science.gov (United States)

    Ramesha, C. K.; Rajagopal Reddy, V.

    2014-12-01

    We have investigated the electrical and structural properties of Pd/4H-SiC Schottky diodes as a function of annealing temperature using I-V, C-V, AES and XRD measurements. The barrier height (BH) of the as-deposited Pd/4H-SiC Schottky diode is found to be 0.71 eV (I-V) and 1.18 eV (C-V), respectively. When the Pd/4H-SiC Schottky diode is annealed at 300 °C, a maximum BH is achieved and corresponding values are 0.89 eV (I-V) and 1.30 eV (C-V). Further, an increase in annealing temperature up to 400 °C, the BH decreases to 0.81 eV (I-V) and 1.20 eV (C-V). Using Cheung's functions, the barrier height (ϕb), ideality factor (n), and series resistance (Rs) are also calculated. Experimental results clearly indicate that the optimum annealing temperature for the Pd Schottky contact to 4H-SiC is 300 °C. According to the Auger electron spectroscopy (AES) and X-ray diffraction (XRD) results, the formation of interfacial phases at the Pd/4H-SiC interface could be the reason for the increase or decrease in BH upon annealing at elevated temperatures. The overall surface morphology of the Pd/4H-SiC Schottky diode is fairly smooth upon annealing temperatures.

  9. Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED

    OpenAIRE

    Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.

    2014-01-01

    Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperat...

  10. Photovoltaic-module bypass-diode encapsulation. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-20

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented in this annual report. A comprehensive survey of available pad-mounted PN junction and Schottky diodes led to the selection of Semicon PN junction diode cells for this application. Diode junction-to-heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1/sup 0/C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150/sup 0/C. Based on the results of a detailed thermal analysis, which covered the range of bypass currents from 2 to 20 amperes, three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed and fabricated. Thermal testing of these modules has enabled the formation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally-mounted packaged diodes. An assessment of bypass diode reliability, which relies heavily on rectifying diode failure rate data, leads to the general conclusion that, when proper designed and installed, these devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  11. InP Gunn Diodes with Current Limiting Contact for High Efficiency Gunn Oscillators

    Science.gov (United States)

    Kim, Mi-Ra; Rhee, Jin-Koo; Lee, Chang-Woo; Chae, Yeon-Sik; Choi, Jae-Hyun; Kim, Wan-Joo

    We fabricated and examined current limiting effect for InP Gunn diodes with stable depletion layer mode operation of diodes for high efficiency Gunn oscillators. Current limiting at the cathode was achieved by a shallow Schottky barrier at the interface. We discussed fabrication procedure, the results for negative differential resistance and rf tests for InP Gunn diodes. It was shown that the fabricated Gunn diodes have the output power of 10.22dBm at a frequency of 90.13GHz. Its input voltage and corresponding current were 8.55V and 252mA, respectively.

  12. Bioaffinity chromatography on monolithic supports

    NARCIS (Netherlands)

    Tetala, K.K.R.; Beek, van T.A.

    2010-01-01

    Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bi

  13. Bioaffinity chromatography on monolithic supports

    NARCIS (Netherlands)

    Tetala, K.K.R.; Beek, van T.A.

    2010-01-01

    Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bi

  14. Design of monoliths through their mechanical properties.

    Science.gov (United States)

    Podgornik, Aleš; Savnik, Aleš; Jančar, Janez; Krajnc, Nika Lendero

    2014-03-14

    Chromatographic monoliths have several interesting properties making them attractive supports for analytics but also for purification, especially of large biomolecules and bioassemblies. Although many of monolith features were thoroughly investigated, there is no data available to predict how monolith mechanical properties affect its chromatographic performance. In this work, we investigated the effect of porosity, pore size and chemical modification on methacrylate monolith compression modulus. While a linear correlation between pore size and compression modulus was found, the effect of porosity was highly exponential. Through these correlations it was concluded that chemical modification affects monolith porosity without changing the monolith skeleton integrity. Mathematical model to describe the change of monolith permeability as a function of monolith compression modulus was derived and successfully validated for monoliths of different geometries and pore sizes. It enables the prediction of pressure drop increase due to monolith compressibility for any monolith structural characteristics, such as geometry, porosity, pore size or mobile phase properties like viscosity or flow rate, based solely on the data of compression modulus and structural data of non-compressed monolith. Furthermore, it enables simple determination of monolith pore size at which monolith compressibility is the smallest and the most robust performance is expected. Data of monolith compression modulus in combination with developed mathematical model can therefore be used for the prediction of monolith permeability during its implementation but also to accelerate the design of novel chromatographic monoliths with desired hydrodynamic properties for particular application.

  15. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Wang, Jiannong [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  16. All-carbon nanotube diode and solar cell statistically formed from macroscopic network

    Institute of Scientific and Technical Information of China (English)

    Albert G. Nasibulin[1,2,3; Adinath M. Funde[3,4; Ilya V. Anoshkin[3; Igor A. Levitskyt[5,6

    2015-01-01

    Schottky diodes and solar cells are statistically created in the contact area between two macroscopic films of single-walled carbon nanotubes (SWNTs) at the junction of semiconducting and quasi-metallic bundles consisting of several high quality tubes. The n-doping of one of the films allows for photovoltaic action, owing to an increase in the built-in potential at the bundle-to-bundle interface. Statistical analysis demonstrates that the Schottky barrier device contributes significantly to the I-V characteristics, compared to the p-n diode. The upper limit of photovoltaic conversion efficiency has been estimated at N20%, demonstrating that the light energy conversion is very efficient for such a unique solar cell. While there have been multiple studies on rectifying SWNT diodes in the nanoscale environment, this is the first report of a macroscopic all-carbon nanotube diode and solar cell.

  17. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    Clayton Cozzan

    2016-10-01

    Full Text Available With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min. The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  18. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    Science.gov (United States)

    Cozzan, Clayton; Brady, Michael J.; O'Dea, Nicholas; Levin, Emily E.; Nakamura, Shuji; DenBaars, Steven P.; Seshadri, Ram

    2016-10-01

    With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  19. Porous polymer monolithic col

    Directory of Open Access Journals (Sweden)

    Lydia Terborg

    2015-05-01

    Full Text Available A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water and ion exchange chromatographic modes (applying gradient of salt in water, respectively.

  20. Schottky contact formation on polar and non-polar AlN

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Pramod; Bryan, Isaac; Bryan, Zachary; Tweedie, James; Kirste, Ronny; Collazo, Ramon; Sitar, Zlatko [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States)

    2014-11-21

    The interfaces of m- and c-plane AlN with metals of different work functions and electro-negativities were characterized and the Schottky barrier heights were measured. The Schottky barrier height was determined by measuring the valence band maximum (VBM) with respect to the Fermi level at the surface (interface) before (after) metallization. VBM determination included accurate modeling and curve fitting of density of states at the valence band edge with the XPS data. The experimental behavior of the barrier heights could not be explained by the Schottky-Mott model and was modeled using InterFace-Induced Gap States (IFIGS). A slope parameter (S{sub X}) was used to incorporate the density of surface states and is a measure of Fermi level pinning. The experimental barriers followed theoretical predictions with a barrier height at the surface Fermi level (Charge neutrality level (CNL)) of ∼2.1 eV (∼2.7 eV) on m-plane (c-plane) and S{sub X} ∼ 0.36 eV/Miedema unit. Slope parameter much lower than 0.86 implied a surface/interface states dominated behavior with significant Fermi level pinning and the measured barrier heights were close to the CNL. Titanium and zirconium provided the lowest barriers (1.6 eV) with gold providing the highest (2.3 eV) among the metals analyzed on m-plane. It was consistently found that barrier heights decreased from metal polar to non-polar surfaces, in general, due to an increasing CNL. The data indicated that charged IFIGS compensate spontaneous polarization charge. These barrier height and slope parameter measurements provided essential information for designing Schottky diodes and other contact-based devices on AlN.

  1. Temperature-dependent Schottky barrier in high-performance organic solar cells

    Science.gov (United States)

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-01

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions.

  2. Alternative current source based Schottky contact with additional electric field

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  3. Biobased monoliths for adenovirus purification.

    Science.gov (United States)

    Fernandes, Cláudia S M; Gonçalves, Bianca; Sousa, Margarida; Martins, Duarte L; Barroso, Telma; Pina, Ana Sofia; Peixoto, Cristina; Aguiar-Ricardo, Ana; Roque, A Cecília A

    2015-04-01

    Adenoviruses are important platforms for vaccine development and vectors for gene therapy, increasing the demand for high titers of purified viral preparations. Monoliths are macroporous supports regarded as ideal for the purification of macromolecular complexes, including viral particles. Although common monoliths are based on synthetic polymers as methacrylates, we explored the potential of biopolymers processed by clean technologies to produce monoliths for adenovirus purification. Such an approach enables the development of disposable and biodegradable matrices for bioprocessing. A total of 20 monoliths were produced from different biopolymers (chitosan, agarose, and dextran), employing two distinct temperatures during the freezing process (-20 °C and -80 °C). The morphological and physical properties of the structures were thoroughly characterized. The monoliths presenting higher robustness and permeability rates were further analyzed for the nonspecific binding of Adenovirus serotype 5 (Ad5) preparations. The matrices presenting lower nonspecific Ad5 binding were further functionalized with quaternary amine anion-exchange ligand glycidyltrimethylammonium chloride hydrochloride by two distinct methods, and their performance toward Ad5 purification was assessed. The monolith composed of chitosan and poly(vinyl) alcohol (50:50) prepared at -80 °C allowed 100% recovery of Ad5 particles bound to the support. This is the first report of the successful purification of adenovirus using monoliths obtained from biopolymers processed by clean technologies.

  4. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    Directory of Open Access Journals (Sweden)

    Zdansky Karel

    2011-01-01

    Full Text Available Abstract Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd nanoparticles (NPs in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures.

  5. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    Science.gov (United States)

    Zdansky, Karel

    2011-08-01

    Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd) nanoparticles (NPs) in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures.

  6. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band.

    Science.gov (United States)

    Goykhman, Ilya; Desiatov, Boris; Khurgin, Jacob; Shappir, Joseph; Levy, Uriel

    2012-12-17

    We experimentally demonstrate an on-chip compact and simple to fabricate silicon Schottky photodetector for telecom wavelengths operating on the basis of internal photoemission process. The device is realized using CMOS compatible approach of local-oxidation of silicon, which enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. The photodetector demonstrates enhanced internal responsivity of 12.5mA/W for operation wavelength of 1.55µm corresponding to an internal quantum efficiency of 1%, about two orders of magnitude higher than our previously demonstrated results [22]. We attribute this improved detection efficiency to the presence of surface roughness at the boundary between the materials forming the Schottky contact. The combination of enhanced quantum efficiency together with a simple fabrication process provides a promising platform for the realization of all silicon photodetectors and their integration with other nanophotonic and nanoplasmonic structures towards the construction of monolithic silicon opto-electronic circuitry on-chip.

  7. Epitaxial diodes of a half-metallic ferromagnet on an oxide semiconductor

    NARCIS (Netherlands)

    Postma, F.M.; Ramaneti, R.; Banerjee, T.; Gokcan, H.; Haq, E.; Blank, D.H.A.; Jansen, R.; Lodder, J.C.

    2004-01-01

    We report on the fabrication and electrical characterization of epitaxial Schottky diodes of a half-metallic ferromagnet on an oxide semiconductor. La0.67Sr0.33MnO3 thin films are grown by pulsed laser deposition on niobium-doped SrTiO3 semiconductor substrates with two doping concentrations and a T

  8. Barrier characteristics of Pt/Ru Schottky contacts on -type GaN based on –– and –– measurements

    Indian Academy of Sciences (India)

    N Nanda Kumar Reddy; V Rajagopal Reddy

    2012-02-01

    We have investigated the current–voltage (–) and capacitance–voltage (–) characteristics of Ru/Pt/-GaN Schottky diodes in the temperature range 100–420 K. The calculated values of barrier height and ideality factor for the Ru/Pt/-GaN Schottky diode are 0.73 eV and 1.4 at 420 K, 0.18 eV and 4.2 at 100 K, respectively. The zero-bias barrier height ($\\Phi_{\\text{b}0}$) calculated from – characteristics is found to be increased and the ideality factor () decreased with increasing temperature. Such a behaviour of $\\Phi_{\\text{b}0}$ and n is attributed to Schottky barrier (SB) inhomogeneities by assuming a Gaussian distribution (GD) of barrier heights (BHs) at themetal/semiconductor interface. The current–voltage–temperature (––) characteristics of the Ru/Pt/-GaN Schottky diode have shown a double Gaussian distribution having mean barrier heights ($\\bar{\\Phi}_{\\text{b}0}$) of 1.001 eV and 0.4701 eV and standard deviations ($\\sigma_{0}$) of 0.1491 V and 0.0708 V, respectively. The modified ln($J_{0}/T^{2}$) − ($q^{2}\\sigma^{2}_{0}/2k^{2}T^{2}$) vs 10$^{3}/T$ plot gives $\\bar{\\Phi}_{\\text{b}0}$ and Richardson constant values as 0.99 eV and 0.47 eV, and 27.83 and 10.29 A/cm2K2, respectively without using the temperature coefficient of the barrier height. The difference between the apparent barrier heights (BHs) evaluated from the – and – methods has been attributed to the existence of Schottky barrier height inhomogeneities.

  9. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    OpenAIRE

    Clayton Cozzan; Brady, Michael J.; Nicholas O’Dea; Emily E. Levin; Shuji Nakamura; Steven P. DenBaars; Ram Seshadri

    2016-01-01

    With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). The resulting transluc...

  10. Plastic Schottky-barrier solar cells

    Science.gov (United States)

    Waldrop, J.R.; Cohen, M.J.

    1981-12-30

    A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

  11. Graphene applications in Schottky barrier solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lancellotti, L., E-mail: laura.lancellotti@enea.it [ENEA Research Centre Portici, Piazzale E. Fermi 1, 80055 Portici (Napoli) (Italy); Polichetti, T.; Ricciardella, F. [ENEA Research Centre Portici, Piazzale E. Fermi 1, 80055 Portici (Napoli) (Italy); Tari, O., E-mail: orlando.tari@unina.it [University of Naples ' Federico II' , Dept. of Electronic Engineering, Via Claudio 21, 80125 Napoli (Italy); Gnanapragasam, S. [ENEA Research Centre Portici, Piazzale E. Fermi 1, 80055 Portici (Napoli) (Italy); Daliento, S. [University of Naples ' Federico II' , Dept. of Electronic Engineering, Via Claudio 21, 80125 Napoli (Italy); Di Francia, G. [ENEA Research Centre Portici, Piazzale E. Fermi 1, 80055 Portici (Napoli) (Italy)

    2012-11-01

    We report a theoretical study about the performances of graphene on semiconductor Schottky barrier solar cells with the aim to show the potentiality of this kind of device. The simulations are carried by a generalized equivalent circuit model, where the circuital parameters are strictly dependent on the physical properties of the graphene and semiconductor which form the Schottky junction. We have realized graphene samples and characterized them by optical and atomic force microscopy, and Raman spectroscopy. Capacitance-voltage measurements have been made on some 'ad hoc' graphene based devices in order to obtain graphene workfunction, a very essential physical parameter. The estimated value is compatible with four layer graphene. This result is in agreement with the morphological characterizations of our material. - Highlights: Black-Right-Pointing-Pointer An equivalent circuit model simulates graphene based Schottky barrier solar cells. Black-Right-Pointing-Pointer Graphene flakes are identified through Raman spectroscopy and Atomic Force Microscopy. Black-Right-Pointing-Pointer Workfunction estimation by Capacitance-Voltage (C-V) on graphene based devices Black-Right-Pointing-Pointer A multilayered structure is evidenced by morphological and C-V characterization.

  12. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    Science.gov (United States)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  13. Deforming super Riemann surfaces with gravitinos and super Schottky groups

    Energy Technology Data Exchange (ETDEWEB)

    Playle, Sam [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino,Via P. Giuria 1, I-10125 Torino (Italy)

    2016-12-12

    The (super) Schottky uniformization of compact (super) Riemann surfaces is briefly reviewed. Deformations of super Riemann surface by gravitinos and Beltrami parameters are recast in terms of super Schottky group cohomology. It is checked that the super Schottky group formula for the period matrix of a non-split surface matches its expression in terms of a gravitino and Beltrami parameter on a split surface. The relationship between (super) Schottky groups and the construction of surfaces by gluing pairs of punctures is discussed in an appendix.

  14. Integrated SiC Super Junction Transistor-Diode Devices for High-Power Motor Control ModulesOoperating at 500 C Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Monolithic Integrated SiC Super Junction Transistor-JBS diode (MIDSJT) devices are used to construct 500

  15. Progress toward a monolithically integrated coherent diode laser array

    Science.gov (United States)

    Evans, G. A.; Garmire, E. M.; Stoll, H. M.; Osmer, J. A.; Soady, W. E.; Lee, A. B.; Ziegler, M. P.

    1981-02-01

    Progress toward the design and fabrication of a GaAlAs semiconductor laser array capable of high average power levels (0.1 to 1.0 watt) and low (approx 1 millirad) beam divergence is reported. A large optical cavity (LOC) configuration is grown by liquid phase epitaxy. The LOC structure is characterized by photoluminescence scans, ion microprobe mass analysis (IMMA), and optical waveguiding measurements. Fabry-Perot, active-passive, and DBR lasers are fabricated using chemical and ion beam etching. Gratings formed using holographic and ion beam etching techniques provide third order feedback for the DBR lasers, and are also used as distributed beam deflectors (DBDs) and output couplers. Comparisons of the results of experiments performed on DBR lasers, DBDs, and coupled lasers are made with theoretical models. Details of the material growth, material characterization, device fabrication, experiments, and theoretical models are presented in this report.

  16. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  17. Electrical Characterization of Semiconductor Diode Using Alternating Signal Measurements at Forward Bias

    Institute of Scientific and Technical Information of China (English)

    赵锋; 沈君; 朱传云; 李乐; 王存达

    2003-01-01

    The general analysis of the forward AC behavior of a semiconductor diode under series mode is pre-sented for the first time.A new method without any particular assumption to characterize a diode was developed. This method can accurately measure the dependence of series resistance, junction capacitance, junction vol-tage, ideality factor, and interfacial layer impedance on forward biases. The measurements confirm that the ne-gative capacitance (NC) of Schottky diode is an effect of the junction, and the interfacial layer can be consi-dered as a layer structure with nonlinear resistance and capacitance.

  18. Zinc Selenide-Based Schottky Barrier Detectors for Ultraviolet-A and Ultraviolet-B Detection

    Directory of Open Access Journals (Sweden)

    V. Naval

    2010-01-01

    Full Text Available Wide-bandgap semiconductors such as zinc selenide (ZnSe have become popular for ultraviolet (UV photodetectors due to their broad UV spectral response. Schottky barrier detectors made of ZnSe in particular have been shown to have both low dark current and high responsivity. This paper presents the results of electrical and optical characterization of UV sensors based on ZnSe/Ni Schottky diodes fabricated using single-crystal ZnSe substrate with integrated UV-A (320–400 nm and UV-B (280–320 nm filters. For comparison, characteristics characterization of an unfiltered detector is also included. The measured photoresponse showed good discrimination between the two spectral bands. The measured responsivities of the UV-A and UV-B detectors were 50 mA/W and 10 mA/W, respectively. A detector without a UV filter showed a maximum responsivity of about 110 mA/W at 375 nm wavelength. The speed of the unfiltered detector was found to be about 300 kHz primarily limited by the RC time constant determined largely by the detector area.

  19. Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes

    Science.gov (United States)

    Lee, Young Keun; Choi, Hongkyw; Lee, Hyunsoo; Lee, Changhwan; Choi, Jin Sik; Choi, Choon-Gi; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Carrier multiplication (i.e. generation of multiple electron–hole pairs from a single high-energy electron, CM) in graphene has been extensively studied both theoretically and experimentally, but direct application of hot carrier multiplication in graphene has not been reported. Here, taking advantage of efficient CM in graphene, we fabricated graphene/TiO2 Schottky nanodiodes and found CM-driven enhancement of quantum efficiency. The unusual photocurrent behavior was observed and directly compared with Fowler’s law for photoemission on metals. The Fowler’s law exponent for the graphene-based nanodiode is almost twice that of a thin gold film based diode; the graphene-based nanodiode also has a weak dependence on light intensity—both are significant evidence for CM in graphene. Furthermore, doping in graphene significantly modifies the quantum efficiency by changing the Schottky barrier. The CM phenomenon observed on the graphene/TiO2 nanodiodes can lead to intriguing applications of viable graphene-based light harvesting.

  20. Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors.

    Science.gov (United States)

    Nie, Biao; Hu, Ji-Gang; Luo, Lin-Bao; Xie, Chao; Zeng, Long-Hui; Lv, Peng; Li, Fang-Ze; Jie, Jian-Sheng; Feng, Mei; Wu, Chun-Yan; Yu, Yong-Qiang; Yu, Shu-Hong

    2013-09-09

    A new Schottky junction ultraviolet photodetector (UVPD) is fabricated by coating a free-standing ZnO nanorod (ZnONR) array with a layer of transparent monolayer graphene (MLG) film. The single-crystalline [0001]-oriented ZnONR array has a length of about 8-11 μm, and a diameter of 100∼600 nm. Finite element method (FEM) simulation results show that this novel nanostructure array/MLG heterojunction can trap UV photons effectively within the ZnONRs. By studying the I-V characteristics in the temperature range of 80-300 K, the barrier heights of the MLG film/ZnONR array Schottky barrier are estimated at different temperatures. Interestingly, the heterojunction diode with typical rectifying characteristics exhibits a high sensitivity to UV light illumination and a quick response of millisecond rise time/fall times with excellent reproducibility, whereas it is weakly sensitive to visible light irradiation. It is also observed that this UV photodetector (PD) is capable of monitoring a fast switching light with a frequency as high as 2250 Hz. The generality of the above results suggest that this MLG film/ZnONR array Schottky junction UVPD will have potential application in future optoelectronic devices.

  1. Au nanoparticles embedded at the interface of Al/4H-SiC Schottky contacts for current density enhancement

    Science.gov (United States)

    Gorji, Mohammad Saleh; Cheong, Kuan Yew

    2015-01-01

    Nanostructured contacts, comprised of nanoparticles (NPs) embedded at the interface of contact/semiconductor, offer a viable solution in modification of Schottky barrier height (SBH) in Schottky contacts. The successful performance of devices with such nanostructured contacts requires a feasible selection of NPs/contact material based on theoretical calculations and a cost effective and reproducible route for NPs deposition. Acidification of commercially available colloidal Au NPs solution by HF has been selected here as a simple bench-top technique for deposition of Au NPs on n- and p-type 4H-SiC substrates. Theoretical calculations based on the model of inhomogeneity in SBH (ISBH) were used to make a more appropriate selection of NPs type (Au) and size (5 and 10 nm, diameter) with respect to contact metal (Al). Al/Au NPs/SiC Schottky barrier diodes were then fabricated, and their electrical characteristics exhibited current density enhancement due to the SBH lowering. The source of SBH lowering was determined to be the local electric field enhancement due to NPs effect, which was further investigated using the models of ISBH and tunneling enhancement at triple interface.

  2. Fabrication and characterization of well-aligned zinc oxide nanowire arrays and their realizations in Schottky-device applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin Mun; Grote, Fabian; Sun, Hui; Lei, Yong [Institute of Materials Physics, Center for Nanotechnology, University of Muenster (Germany); Wen, Liaoyong; Fang, Yaoguo [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China)

    2011-07-01

    Highly ordered arrays of vertical zinc oxide (ZnO) nanowires (NWs) or nanopores were fabricated in our group by first thermal evaporating a thin film of gold on the ultrathin alumina membrane (UTAM). The UTAM was then utilized as a substrate for the growth of the ordered arrays using a chemical vapour deposition (CVD) process. Alternatively, a modified CVD process was also used to fabricate ultra-long ZnO NWs with the length of the nanowire exceeding 100 micrometres. Subsequently, densely packed arrays of ZnO NWs Schottky diodes were synthesized by transferring the long NWs on a substrate using a dry contact printing method and the electrical contacts were made on the NWs with a photolithographic process. The interesting electrical properties of the ZnO NWs, diodes or other metal oxide NWs such as the field emission, electron transport and piezoelectric properties were characterized by current-voltage or by other appropriate measurements.

  3. Effect of side-chain length on rectification and photovoltaic characteristics of poly(3-alkylthiophene) Schottky barriers

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yih; Chen Showan (Dept. of Chemical Engineering, National Tsing-Hua Univ., Hsinchu (Taiwan)); Chu, M.L. (Inst. of Electro-Optical Engineering, National Chiao-Tung Univ., Hsinchu (Taiwan))

    1992-10-15

    Schottky diodes of aluminium/poly(3-alkylthiophene) (P3AT)/indium-tin oxide (ITO) with large area (0.15-0.5 cm[sup 2]) are prepared using the proposed new casting technique. The P3ATs investigated involve poly(3-butylthiophene) (P3BT), poly(3-octylthiophene) (P3OT) and poly(3-dodecylthiophene) (P3DDT), which are prepared using the chemical method. The diodes, in which P3AT behaves as a p-type semiconductor, exhibit a moderate rectifying behaviour and low leakage current. Photovoltaic measurements show a power conversion efficiency of about 10[sup -2]-10[sup -3]% at a light intensity of 0.5-5 mW/cm[sup 2], which decreases with increasing light intensity. The longer alkyl side-chain length of P3ATs can cause a lower rectifying effect, barrier height, depletion region width and photovoltaic conversion efficiency. (orig.).

  4. In situ Fabrication of Monolithic Copper Azide

    Science.gov (United States)

    Li, Bing; Li, Mingyu; Zeng, Qingxuan; Wu, Xingyu

    2016-04-01

    Fabrication and characterization of monolithic copper azide were performed. The monolithic nanoporous copper (NPC) with interconnected pores and nanoparticles was prepared by decomposition and sintering of the ultrafine copper oxalate. The preferable monolithic NPC can be obtained through decomposition and sintering at 400°C for 30 min. Then, the available monolithic NPC was in situ reacted with the gaseous HN3 for 24 h and the monolithic NPC was transformed into monolithic copper azide. Additionally, the copper particles prepared by electrodeposition were also reacted with the gaseous HN3 under uniform conditions as a comparison. The fabricated monolithic copper azide was characterized by Fourier transform infrared (FTIR), inductively coupled plasma-optical emission spectrometry (ICP-OES), and differential scanning calorimetry (DSC).

  5. Enhanced Plasmonic Light Absorption for Silicon Schottky-Barrier Photodetectors

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Farzad, Mahmood Hosseini; Mortensen, N. Asger;

    2013-01-01

    Quantum efficiency of the silicon Schottky-barrier photodetector is limited by the weak interaction between the photons and electrons in the metal. By engineering the metal surfaces, metallic groove structures are proposed to achieve strong light absorption in the metal, where most of the energy...... is transferred into hot carriers near the Schottky barrier. The proposed broadband photodetector with a bi-grating metallic structure on the silicon substrate enables to absorb 76 % of the infrared light in the metal with a 200-nm bandwidth, while staying insensitive to the incident angle. These results pave...... a new promising way to attain high quantum efficiency silicon Schottky-barrier photodetectors....

  6. Composite resonator vertical cavity laser diode

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Hou, H.Q.; Chow, W.W.; Geib, K.M.; Hammons, B.E.

    1998-05-01

    The use of two coupled laser cavities has been employed in edge emitting semiconductor lasers for mode suppression and frequency stabilization. The incorporation of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. Composite resonators can be utilized to control spectral and temporal properties within the laser; previous studies of coupled cavity vertical cavity lasers have employed photopumped structures. The authors report the first composite resonator vertical cavity laser diode consisting of two optical cavities and three monolithic distributed Bragg reflectors. Cavity coupling effects and two techniques for external modulation of the laser are described.

  7. Active multi-mode-interferometer broadband superluminescent diodes

    Science.gov (United States)

    Feifei, Wang; Peng, Jin; Ju, Wu; Yanhua, Wu; Fajie, Hu; Zhanguo, Wang

    2016-01-01

    We report a new quantum dot superluminescent diode with a new device structure. In this device, a multi-mode-interferometer configuration and a J-bend structure were monolithically integrated. Owing to the multi-mode-interferometer structure, the superluminescent diode exhibits 60% increase in output power and 43% reduction in the differential resistance compared with the uniform waveguide width superluminescent diode fabricated from the same wafer. Our device produces an emission spectrum as wide as 103.7 nm with an output power of 2.5 mW at 600 mA continue-wave injection current. This broadband emission spectrum makes the axial resolution of the optical coherence tomography system employing the superluminescent diode to 6 μm in theory, which is high enough for most tissue imaging. Project supported by the National Natural Science Foundation of China (No. 61274072) and the National High Technology Research and Development Program of China (No. 2013AA014201).

  8. Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

    Directory of Open Access Journals (Sweden)

    Christoph Schreyvogel

    2016-11-01

    Full Text Available In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV− on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10–100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV− and a nuclear spin (of 15N or 13C for example of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters – embedded in photonic structures for example – can be realized which would be vital for quantum communication and cryptography.

  9. Diode pumped solid-state laser oscillators for spectroscopic applications

    Science.gov (United States)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  10. Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED

    Science.gov (United States)

    Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.

    2014-03-01

    Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.

  11. Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts

    KAUST Repository

    Hu, Youfan

    2010-05-31

    A Schottky barrier can be formed at the interface between a metal electrode and a semiconductor. The current passing through the metal-semiconductor contact is mainly controlled by the barrier height and barrier width. In conventional nanodevices, Schottky contacts are usually avoided in order to enhance the contribution made by the nanowires or nanotubes to the detected signal. We present a key idea of using the Schottky contact to achieve supersensitive and fast response nanowire-based nanosensors. We have illustrated this idea on several platforms: UV sensors, biosensors, and gas sensors. The gigantic enhancement in sensitivity of up to 5 orders of magnitude shows that an effective usage of the Schottky contact can be very beneficial to the sensitivity of nanosensors. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Summary of LHC MD:377: Schottky pick-up

    CERN Document Server

    Betz, Michael; Lefevre, Thibaut; CERN. Geneva. ATS Department

    2015-01-01

    The main objective of this MD was to record Schottky spectra under well known machine conditions. In summary, 7 set-points for the chromaticity and 8 for the emittance have been established and Schottky spectra have been recorded for each setting. The data will be used to benchmark and develop different fitting algorithms. This note presents the initial attempt of curve-fitting and discusses its shortcomings.

  13. Electronic properties of Al/DNA/p-Si MIS diode: Application as temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Guellue, O., E-mail: omergullu@gmail.com [Batman University, Science and Art Faculty, Department of Physics, 72060 Batman (Turkey); Osmaniye Korkut Ata University, Science and Art Faculty, Department of Physics, 80000 Osmaniye (Turkey); Tueruet, A. [Atatuerk University, Science Faculty, Department of Physics, 25240 Erzurum (Turkey)

    2011-01-21

    Research highlights: > This work proposes that DNA molecules should be considered, among other candidates, as a potential organic thin film for metal-interface layer-semiconductor devices. > We successfully fabricated Al/DNA/p-Si device with interlayer by a simple cast method. > The temperature is found to significantly effect the electrical properties of the Al/DNA/p-Si device. > The facts: (i) that the technology of the fabrication of a Al/DNA/p-Si Schottky diode much simpler and economical than that for the Si p-n junction and (ii) the sensibility of the Al/DNA/p-Si Schottky diode as temperature sensor is 42% higher than that of a Si p-n junction, indicate that the Al/DNA/p-Si Schottky diode is a good alternative as temperature sensor. - Abstract: The current-voltage (I-V) measurements were performed in the temperature range (200-300 K) on Al/DNA/p-Si Schottky barrier type diodes. The Schottky diode shows non-ideal I-V behaviour with ideality factors n equal to 1.34 {+-} 0.02 and 1.70 {+-} 0.02 at 300 K and 200 K, respectively, and is thought to have a metal-interface layer-semiconductor (MIS) configuration. The zero-bias barrier height {Phi}{sub b} determined from the I-V measurements was 0.75 {+-} 0.01 eV at 300 K and decreases to 0.61 {+-} 0.01 eV at 200 K. The forward voltage-temperature (V{sub F}-T) characteristics were obtained from the I-V measurements in the temperature range 200-300 K at different activation currents (I{sub F}) in the range 20 nA-6 {mu}A. The V{sub F}-T characteristics were linear for three activation currents in the diode. From the V{sub F}-T characteristics at 20 nA, 100 nA and 6 {mu}A, the values of the temperature coefficients of the forward bias voltage (dV{sub F}/dT) for the diode were determined as -2.30 mV K{sup -1}, -2.60 mV K{sup -1} and -3.26 mV K{sup -1} with a standard error of 0.05 mV K{sup -1}, respectively.

  14. Silicon Carbide Diodes Performance Characterization at High Temperatures

    Science.gov (United States)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry

    2004-01-01

    NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.

  15. Monolithic Fuel Fabrication Process Development

    Energy Technology Data Exchange (ETDEWEB)

    C. R. Clark; N. P. Hallinan; J. F. Jue; D. D. Keiser; J. M. Wight

    2006-05-01

    The pursuit of a high uranium density research reactor fuel plate has led to monolithic fuel, which possesses the greatest possible uranium density in the fuel region. Process developments in fabrication development include friction stir welding tool geometry and cooling improvements and a reduction in the length of time required to complete the transient liquid phase bonding process. Annealing effects on the microstructures of the U-10Mo foil and friction stir welded aluminum 6061 cladding are also examined.

  16. Pressure drop in CIM disk monolithic columns.

    Science.gov (United States)

    Mihelic, Igor; Nemec, Damjan; Podgornik, Ales; Koloini, Tine

    2005-02-11

    Pressure drop analysis in commercial CIM disk monolithic columns is presented. Experimental measurements of pressure drop are compared to hydrodynamic models usually employed for prediction of pressure drop in packed beds, e.g. free surface model and capillary model applying hydraulic radius concept. However, the comparison between pressure drop in monolith and adequate packed bed give unexpected results. Pressure drop in a CIM disk monolithic column is approximately 50% lower than in an adequate packed bed of spheres having the same hydraulic radius as CIM disk monolith; meaning they both have the same porosity and the same specific surface area. This phenomenon seems to be a consequence of the monolithic porous structure which is quite different in terms of the pore size distribution and parallel pore nonuniformity compared to the one in conventional packed beds. The number of self-similar levels for the CIM monoliths was estimated to be between 1.03 and 2.75.

  17. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    Science.gov (United States)

    Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du

    2016-02-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).

  18. Graphene-supported metal oxide monolith

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah

    2017-01-10

    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  19. Graphene-supported metal oxide monolith

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah

    2017-01-10

    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  20. Radiation hardness studies on CMOS monolithic pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Marco [Department of Physics, University of California at Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bisello, Dario [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy); Contarato, Devis, E-mail: DContarato@lbl.go [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Denes, Peter; Doering, Dionisio [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Giubilato, Piero [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy); Sung Kim, Tae [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Mattiazzo, Serena [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy); Radmilovic, Velimir [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Zalusky, Sarah [Department of Physics, University of California at Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-12-11

    This paper presents irradiation studies performed on a CMOS monolithic pixel sensor prototype implementing different optimizations of the pixel cell aimed at a superior radiation tolerance. Irradiations with 200 keV electrons up to a total dose of 1.1 Mrad have been performed in view of the utilization of such a design in Transmission Electron Microscopy (TEM) applications. Comparative irradiations were performed with 29 MeV protons up to a 2 Mrad total dose and with 1-14 MeV neutrons up to fluences in excess of 10{sup 13} n{sub eq} cm{sup -2}. Experimental results show an improved performance of pixels designed with Enclosed Layout Transistor (ELT) rules and an optimized layout of the charge collecting diodes.

  1. An 86-106 GHz quasi-integrated low noise Schottky receiver

    Science.gov (United States)

    Ali-Ahmad, Walid Y.; Bishop, William L.; Crowe, Thomas W.; Rebeiz, Gabriel M.

    1993-04-01

    An integrated planar receiver was developed and tested over the 82-112 GHz bandwidth. The quasi-integrated antenna used in the receiver has a high gain, a high Gaussian coupling efficiency, and a wide bandwidth. The novel mixer design consists of a planar GaAs Schottky diode placed at the feed of a dipole-probe suspended inside an integrated horn antenna. The diode uses an etched surface channel and a planar air bridge for reduced parasitic capacitance. At 92 GHz, the room-temperature antenna-mixer exhibits a double sideband conversion loss and noise temperature of 5.5 +/- 0.5 dB and 770 K +/- 50 K, respectively. The measured DSB conversion loss and noise temperature over a 20 GHz bandwidth (86 GHz-106 GHz) remain less than 6.2 dB +/- 0.5 dB and 1000 K +/- 50 K, respectively. The low cost of fabrication and simplicity of the design makes it ideal for millimeter- and submillimeter-wave receivers.

  2. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    Science.gov (United States)

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics.

  3. Study of Au, Ni-(n)ZnSe Thin Film Schottky Barrier Junctions

    Science.gov (United States)

    Chaliha, Sumbit; Borah, Mothura Nath; Sarmah, P. C.; Rahman, A.

    2010-10-01

    Schottky barrier junctions of Al-doped n-type Zinc selenide (ZnSe) thin films of doping concentrations up to 9.7 × 1014 cm -3 have been fabricated with Au and Ni electrodes on glass substrates by sequential thermal evaporation. All of the junctions of different doping concentrations exhibited rectifying current-voltage characteristics with a non-saturating reverse current. From the current-voltage characteristics, the different junction parameters such as ideality factor, saturation current density, series resistance, etc., were measured. Both types of junctions were found to possess a high ideality factor and a high series resistance. The barrier heights of the junctions were measured from Richardson plots and found to be around 0.8 eV. The structures were found to exhibit a poor photovoltaic effect with a fill factor not greater than 0.4. The diode quality as well as the photovoltaic performance of the diodes were improved following a short heat treatment in vacuum.

  4. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

    DEFF Research Database (Denmark)

    Criado, A. R.; de Dios, C.; Acedo, P.;

    2012-01-01

    In this paper, two different Passive Mode-Locked Laser Diodes (PMLLD) structures, a Fabry–Perot cavity and a ring cavity laser are characterized and evaluated as monolithic Optical Frequency Comb Generators (OFCG) for CW sub-THz generation. An extensive characterization of the devices under study...

  5. Monolithic white LED based on AlxGa1-x N/InyGa1-yN DBR resonant-cavity

    Science.gov (United States)

    Yu, Chen; Lirong, Huang; Shanshan, Zhu

    2009-01-01

    A monolithic white light-emitting diode (LED) with blue and yellow light active regions has been designed and studied. With the AlxGa1-xN/InyGa1-yN distributed Bragg reflector (DBR) resonant-cavity, the extraction efficiency and power of the yellow light are enhanced so that high quality white light can be obtained.

  6. AlxGa1-xN/InyGa1-yN DBR resonant-cavity based monolithic white LED

    Science.gov (United States)

    Chen, Yu; Huang, Lirong; Zhu, Shanshan

    2008-12-01

    A monolithic white light-emitting diode (LED) with blue and yellow light active regions has been designed and studied. With the AlxGa1-xN / InyGa1-yN distributed Bragg reflector (DBR) resonant-cavity, the extraction efficiency and power of the yellow light are enhanced so that high quality white light can be obtained.

  7. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  8. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  9. a 530-590 GHZ Schottky Heterodyne Receiver for High-Resolution Molecular Spectroscopy with Lille's Fast-Scan Fully Solid-State DDS Spectrometer

    Science.gov (United States)

    Pienkina, A.; Margulès, L.; Motiyenko, R. A.; Wiedner, Martina C.; Maestrini, Alain; Defrance, Fabien

    2017-06-01

    Laboratory spectroscopy, especially at THz and mm-wave ranges require the advances in instrumentation techniques to provide high resolution of the recorded spectra with precise frequency measurement that facilitates the mathematical treatment. We report the first implementation of a Schottky heterodyne receiver, operating at room temperature and covering the range between 530 and 590 GHz, for molecular laboratory spectroscopy. A 530-590 GHz non-cryogenic Schottky solid-state receiver was designed at LERMA, Observatoire de Paris and fabricated in partnership with LPN- CNRS (Laboratoire de Photonique et de Nanostructures), and was initially developed for ESA Jupiter Icy Moons Explorer (JUICE), intended to observe Jupiter and its icy moon atmospheres. It is based on a sub-harmonic Schottky diode mixer, designed and fabricated at LERMA-LPN, pumped by a Local Oscillator (LO), consisting of a frequency Amplifier/Multiplier chains (AMCs) from RPG (Radiometer Physics GmBh). The performance of the receiver was demonstrated by absorption spectroscopy of CH_3CH_2CN with Lille's fast-scan DDS spectrometer. A series of test measurements showed the receiver's good sensitivity, stability and frequency accuracy comparable to those of 4K QMC bolometers, thus making room-temperature Schottky receiver a competitive alternative to 4K QMC bolometers to laboratory spectroscopy applications. We will present the first results with such a combination of a compact room temperature Schottky heterodyne receiver and a fast-scan DDS spectrometer. J. Treuttel, L. Gatilova, A. Maestrini et al., 2016, IEEE Trans. Terahertz Science and Tech., 6, 148-155. This work was funded by the French ANR under the Contract No. ANR-13-BS05-0008-02 IMOLABS.

  10. Contact Whiskers for Millimeter Wave Diodes

    Science.gov (United States)

    Kerr, A. R.; Grange, J. A.; Lichtenberger, J. A.

    1978-01-01

    Several techniques are investigated for making short conical tips on wires (whiskers) used for contacting millimeter-wave Schottky diodes. One procedure, using a phosphoric and chromic acid etching solution (PCE), is found to give good results on 12 microns phosphor-bronze wires. Full cone angles of 60 degrees-80 degrees are consistently obtained, compared with the 15 degrees-20 degrees angles obtained with the widely used sodium hydroxide etch. Methods are also described for cleaning, increasing the tip diameter (i.e. blunting), gold plating, and testing the contact resistance of the whiskers. The effects of the whisker tip shape on the electrical resistance, inductance, and capacitance of the whiskers are studied, and examples given for typical sets of parameters.

  11. High performance 1.3 μm InGaAsN superluminescent diodes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    High performance 1.3 μm InGaAsN superluminescent diodes (SLDs) were fabricated with Schottky contact. The structure was grown by metal organic chemical vapor deposition (MOCVD). Output power of 3 mW was obtained in continuous wave (CW) mode at room temperature. The full width at half maximum (FWHM) of the emission spectrum was 30 nm. The devices operated up to 100℃.

  12. Design of a ×4 subharmonic sub-millimeter wave diode mixer, based on an analytic expression for small-signal conversion admittance parameters

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Krozer, Viktor

    2013-01-01

    of the small-signal admittance in a Schottky-diode mixer where the phase can be set arbitrarily. It is shown that only for the case of a fundamental frequency mixer this admittance becomes a purely real valued conductance. To test the theory a ×4 subharmonic sub-millimeter wave mixer is designed and simulated...

  13. Schottky Heterodyne Receivers With Full Waveguide Bandwidth

    Science.gov (United States)

    Hesler, Jeffrey; Crowe, Thomas

    2011-01-01

    Compact THz receivers with broad bandwidth and low noise have been developed for the frequency range from 100 GHz to 1 THz. These receivers meet the requirements for high-resolution spectroscopic studies of planetary atmospheres (including the Earth s) from spacecraft, as well as airborne and balloon platforms. The ongoing research is significant not only for the development of Schottky mixers, but also for the creation of a receiver system, including the LO chain. The new receivers meet the goals of high sensitivity, compact size, low total power requirement, and operation across complete waveguide bands. The exceptional performance makes these receivers ideal for the broader range of scientific and commercial applications. These include the extension of sophisticated test and measurement equipment to 1 THz and the development of low-cost imaging systems for security applications and industrial process monitoring. As a particular example, a WR-1.9SHM (400-600 GHz) has been developed (see Figure 1), with state-of-the-art noise temperature ranging from 1,000-1,800 K (DSB) over the full waveguide band. Also, a Vector Network Analyzer extender has been developed (see Figure 2) for the WR1.5 waveguide band (500 750 GHz) with 100-dB dynamic range.

  14. Monolithically integrated absolute frequency comb laser system

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  15. Nanosecond monolithic CMOS readout cell

    Science.gov (United States)

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  16. Compact monolithic capacitive discharge unit

    Science.gov (United States)

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  17. A new fabrication technique for back-to-back varactor diodes

    Science.gov (United States)

    Smith, R. Peter; Choudhury, Debabani; Martin, Suzanne; Frerking, Margaret A.; Liu, John K.; Grunthaner, Frank A.

    1992-01-01

    A new varactor diode process has been developed in which much of the processing is done from the back of an extremely thin semiconductor wafer laminated to a low-dielectric substrate. Back-to-back BNN diodes were fabricated with this technique; excellent DC and low-frequency capacitance measurements were obtained. Advantages of the new technique relative to other techniques include greatly reduced frontside wafer damage from exposure to process chemicals, improved capability to integrate devices (e.g. for antenna patterns, transmission lines, or wafer-scale grids), and higher line yield. BNN diodes fabricated with this technique exhibit approximately the expected capacitance-voltage characteristics while showing leakage currents under 10 mA at voltages three times that needed to deplete the varactor. This leakage is many orders of magnitude better than comparable Schottky diodes.

  18. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor

    KAUST Repository

    Wei, Te-Yu

    2009-12-09

    A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gases and the amplification role played by the nanowire to Schottky barrier effect, an ultrahigh sensitivity of 32 000% was achieved using the Schottky contacted device operated in reverse bias mode at 275 °C for detection of 400 ppm CO, which is 4 orders of magnitude higher than that obtained using an Ohmic contact device under the same conditions. In addition, the response time and reset time have been shortened by a factor of 7. The methodology and principle illustrated in the paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems. © 2009 American Chemical Society.

  19. Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon.

    Science.gov (United States)

    Nam, Ju Hyung; Afshinmanesh, Farzaneh; Nam, Donguk; Jung, Woo Shik; Kamins, Theodore I; Brongersma, Mark L; Saraswat, Krishna C

    2015-06-15

    A germanium-on-insulator (GOI) p-i-n photodetector, monolithically integrated on a silicon (Si) substrate, is demonstrated. GOI is formed by lateral-overgrowth (LAT-OVG) of Ge on silicon dioxide (SiO(2)) through windows etched in SiO(2) on Si. The photodetector shows excellent diode characteristics with high on/off ratio (6 × 10(4)), low dark current, and flat reverse current-voltage (I-V) characteristics. Enhanced light absorption up to 1550 nm is observed due to the residual biaxial tensile strain induced during the epitaxial growth of Ge caused by cooling after the deposition. This truly Si-compatible Ge photodetector using monolithic integration enables new opportunities for high-performance GOI based photonic devices on Si platform.

  20. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    Science.gov (United States)

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.