WorldWideScience

Sample records for monolithic ceramics sic

  1. Effect of Ti and Si interlayer materials on the joining of SiC ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Park, Jung Hwan; Kim, Hyun Gil; Park, Dong Jun; Park, Jeong Yong; Kim, Weon Ju [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ∼0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ∼100 MPa. The joint interface consisted of TiSi{sub 2}, Ti{sub 3}SiC{sub 2}, and SiC phases formed by a diffusion reaction of Ti and Si.

  2. Review of data on irradiation creep of monolithic SiC

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A.; Youngblood, G.E.; Hamilton, M.L. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01

    An effort is now underway to design an irradiation creep experiment involving SiC composites to SiC fibers. In order to successfully design such an experiment, it is necessary to review and assess the available data for monolithic SiC to establish the possible bounds of creep behavior for the composite. The data available show that monolithic SiC will indeed creep at a higher rate under irradiation compared to that of thermal creep, and surprisingly, it will do so in a temperature-dependant manner that is typical of metals.

  3. Constitutive Theory Developed for Monolithic Ceramic Materials

    Science.gov (United States)

    Janosik, Lesley A.

    1998-01-01

    with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  4. EFFECT OF SiC PARTICLE SIZE ON THE MATERIAL AND MECHANICAL PROPERTIES OF MULLITE BONDED SiC CERAMICS PROCESSED BY INFILTRATION TECHNIQUE

    National Research Council Canada - National Science Library

    Sanchita Baitalik; Nijhuma Kayal; Dey Atanu; Chakrabarti Omprakash

    2014-01-01

    The influence of SiC particles size on the bonding phase content, microstructure, SiC oxidation degree, flexural strength, porosity and pore size distribution of mullitebonded porous SiC ceramics were...

  5. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  6. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeon-Geun, E-mail: hglee@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Daejong [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Seung Jae [KEPCO Nuclear Fuel, 242, Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Park, Ji Yeon; Kim, Weon-Ju [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-01-15

    Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.

  7. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III

    1998-02-10

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.

  8. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, David A. (Clifton Park, NY); Bacchi, David P. (Schenectady, NY); Connors, Timothy F. (Watervliet, NY); Collins, III, Edwin L. (Albany, NY)

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  9. Effects of SiC and MgO on aluminabased ceramic foams filters

    Directory of Open Access Journals (Sweden)

    CAO Da-li

    2007-11-01

    Full Text Available Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phases after 1 hour sintering at 1 500 consist of alumina, silicon carbide, spinel and mullite.

  10. Mechanical Characteristics and Crack-Healing of ZIRCONIA(ZrO{sub 2}) Composite Ceramics with SiC and TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Woo [Pukyong National Univ., Busan (Korea, Republic of)

    2016-03-15

    This study evaluated the mechanical properties and crack-healing abilities of zirconia composite ceramics. The six kinds of specimens used were: partially stabilized zirconia (Z) and five zirconia composite (ZS, ZST1, ZST2, ZST3, and ZST5) with SiC and TiO{sub 2}. There was not a large difference between the Vickers hardness of the six types of zirconia ceramics. The bending strength of the ZS specimen degraded rapidly, but the zirconia specimens with TiO{sub 2}(ZST1, ZST2, ZST3, and ZST5) showed improved strength. Therefore, it was determined that the bending strength is affected by the crystallization, which is due to the addition of SiC and TiO{sub 2}. From the crack-healing conditions having the highest bending strength, monolithic zirconia retained its cracks, while the specimens of four types with SiC healed their cracks.

  11. High Speed Lapping of SiC Ceramic Material with Solid (Fixed) Abrasives

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; YANG Xin-hong; SHANG Chun-min; HU Xiao-yong; HU Zhong-hui

    2005-01-01

    An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of Ra 2.4nm can be achieved.

  12. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti{sub 3}SiC{sub 2} was investigated depending on the compositions of the preform and melt. In most cases, TiSi{sub 2} was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti{sub 3}SiC{sub 2} was the connection with the pressurizing.

  13. Research Progress on Preparation for Biomass-based SiC Ceramic

    Directory of Open Access Journals (Sweden)

    CUI He-shuai

    2017-08-01

    Full Text Available Silicon carbide (SiC ceramics prepared by the conventional process has excellent properties and wide application prospects, but the increased cost of high-temperature preparation process restricts its further development. In contrast, the abundant porous structure of biomass makes itself to be ideal replacement of SiC ceramic prepared at low temperature. This paper reviewed the structure characteristics, preparation methods, pyrolysis mechanism and influence parameters of biomass-based SiC ceramic, and eventually explored the current problems and development trends of the pretreatment of carbon source and silicon source, the pyrolysis process and the application research on the preparation for biomass-based SiC ceramic.

  14. Application of Monolithic Zirconia Ceramics in Dental Practice: A Case History Report.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk; Yeo, In-Sung

    2016-01-01

    Monolithic zirconia restorations increasingly have been used in dental practice in recent years and demonstrate superior mechanical performance compared with porcelain-veneered zirconia restorations. Recent advances in manufacturing technology have made possible the fabrication of translucent monolithic zirconia ceramics. This case report describes three clinical examples of monolithic zirconia fixed dental prostheses being used in the anterior and posterior regions and exhibiting acceptable esthetic results.

  15. Oxidation Resistance of ZrB2-SiC Multilayer Ceramics%ZrB2–SiC多层陶瓷的抗氧化性

    Institute of Scientific and Technical Information of China (English)

    左凤娟; 成来飞; 张立同

    2012-01-01

    ZrB2-SiC multilayer ceramic was prepared by a coneventional ceramic tape casting technology. The density was measured using the Archimede method. The microstructure of samples was observed by scanning electron microscopy. The oxidation resistance ofZrB2-SiC multilayer ceramics was also determined. The results indicate that for the product sintered at 1 950 ℃, the relative density is 99.7%. During the oxidation process of this material, the low melting phase is firstly volatilized, and then the oxidation layer is formed, which can diminish the further oxidation. The oxidation resistance of ZrB2-SiC multilayer ceramic was better than that of ZrB2-SiC monolithic ceramics.%用传统陶瓷的流延工艺制备ZrB2–SiC多层陶瓷。用Archimedes法测定ZrB2–SiC多层陶瓷的相对密度。用扫描电子显微镜观察其显微结构,并进行循环抗氧化性能评价。结果表明:ZrB2–SiC多层陶瓷在1 950℃烧结的致密度达到99.7%,材料的抗氧化过程主要可分为两个阶段:第一阶段低熔点相的挥发,出现质量损失;第二阶段氧化层的形成,降低进一步氧化速率。抗氧化性能较ZrB2–SiC复相陶瓷有很大提高。

  16. Microwave joining of SiC ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Silberglitt, R.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States); Katz, J.D. [Los Alamos National Lab., NM (United States)

    1997-04-01

    Potential applications of SiC include components for advanced turbine engines, tube assemblies for radiant burners and petrochemical processing and heat exchangers for high efficiency electric power generation systems. Reliable methods for joining SiC are required in order to cost-effectively fabricate components for these applications from commercially available shapes and sizes. This manuscript reports the results of microwave joining experiments performed using two different types of SiC materials. The first were on reaction bonded SiC, and produced joints with fracture toughness equal to or greater than that of the base material over an extended range of joining temperatures. The second were on continuous fiber-reinforced SiC/SiC composite materials, which were successfully joined with a commercial active brazing alloy, as well as by using a polymer precursor.

  17. Biomimetic synthesis of cellular SiC based ceramics from plant precursor

    Indian Academy of Sciences (India)

    O P Chakrabarti; H S Maiti; R Majumdar

    2004-10-01

    A novel biomimetic approach in designing and fabricating engineering ceramic materials has gained much interest in recent times. Following this approach, synthesis has been made of dense Si–SiC duplex ceramic composites and highly porous SiC ceramics in the image of the morphological features inherent in the caudex stem of a local monocotyledonous plant. The process route involves making of a carbonaceous biopreform and its subsequent reaction with an infiltrating silicon melt to yield the biomorphic Si–SiC ceramic composites with flexural strength and Young’s modulus of 264 MPa and 247 Gpa, respectively and loss in weight of only ∼ 9% during oxidative heating up to 1200°C in flowing air. The Si–SiC composites were transformed into porous (49 vol.%) SiC ceramics with complete preservation of microcellular anatomy of the parent plant, by depleting residual silicon phase in channel pores through reaction with carbon. SiC based materials so derived can be used in structural applications and in designing high temperature filters and catalyst supports.

  18. Microstructure of reactive sintered Al bonded Si3N4-SiC ceramics

    Institute of Scientific and Technical Information of China (English)

    CUI Chong; WANG Yuan-ting; JIANG Jin-guo; CHEN Guang; SUN Qiang-jin

    2006-01-01

    Aluminium nitride-silicon nitride-silicon carbide (AlN-Si3N4-SiC) composite ceramics were prepared to increase the bending strength and improve the phase structure of Si3N4-based ceramics. The ceramics were made by reactive sintering in N2 atmosphere at 1 360 ℃, using Al as sintering additive. The phase composing of ceramics was identified with an X-ray diffractometer and the microstructure of the materials was studied by scanning electron microscopy. The results indicate that the phase structure is affected remarkably and the interface modality is changed. The interface between Si3N4 and SiC becomes blurry and that between SiC and AlN matches more better at the same time. But the liquid-phase appears during the reactive sintering along with the addition of Al by which the melting point of Si is decreased. The appearance of liquid Si decreases the bending strength of the ceramics. Lower temperature nitrification technic was introduced to avoid the appearance of liquid-phase Si. The optimum addition of Al was investigated by XRD and SEM analysis in order to obtain the maximal bending strength of materials.

  19. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  20. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method has the potential to facilitate the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent efforts have focused on transferring the joining technology to industry. Several industrial partners have been identified and collaborative research projects are in progress. Investigations are focusing on applying the joining method to sintered a-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  1. Pulmonary retention of ceramic fibers in silicon carbide (SiC) workers.

    Science.gov (United States)

    Dufresne, A; Loosereewanich, P; Armstrong, B; Infante-Rivard, C; Perrault, G; Dion, C; Massé, S; Bégin, R

    1995-05-01

    The fibrous inorganic content of post-mortem lung material obtained from 15 men who worked in the primary silicon carbide (SiC) industry was evaluated. Five men had neither lung fibrosis nor lung cancer (NFNC), six had lung fibrosis (LF), and four had lung fibrosis and lung cancer (LFLC). The workers had 23 to 32 years of exposure. Mean duration of exposure was 23.4 (SD 6.9) years in the NFNC group, 28.8 (SD 5.5) in the LF, and 32.3 (SD 9.0) in the LFLC group. Concentrations of SiC ceramic fibers and other fibrous minerals and angular particles were determined by transmission electron microscopy and energy dispersive spectroscopy. The geometric mean and geometric standard deviation lung concentrations of SiC ceramic fibers 0.1). Pulmonary retention of SiC fibers > or = 5 microns showed an excess in LF and LFLC cases combined versus NFNC that approached statistical significance (Mann-Whitney, p = 0.06). There was a somewhat greater difference for lung retention of ferruginous bodies between NFNC and either LF or LFLC cases (Mann-Whitney, p = 0.02). SiC fibers > or = 5 microns and angular particles containing Si and especially ferruginous bodies were found at higher concentrations in LF and LFLC than in NFNC cases.

  2. Biomorphous SiC ceramics prepared from cork oak as precursor

    Science.gov (United States)

    Yukhymchuk, V. O.; Kiselov, V. S.; Valakh, M. Ya.; Tryus, M. P.; Skoryk, M. A.; Rozhin, A. G.; Kulinich, S. A.; Belyaev, A. E.

    2016-04-01

    Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:C:Si, SiC:C, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.

  3. Conversion of wood flour/SiO2/phenolic composite to porous SiC ceramic containing SiC whiskers

    Directory of Open Access Journals (Sweden)

    Li Zhong

    2013-01-01

    Full Text Available A novel wood flour/SiO2/phenolic composite was chosen to be converted into porous SiC ceramic containing SiC whiskers via carbothermal reduction. At 1550°C the composite is converted into porous SiC ceramic with pore diameters of 10~40μm, and consisting of β-SiC located at the position of former wood cell walls. β-SiC wire-like whiskers of less than 50 nm in diameter and several tens to over 100 μm in length form within the pores. The surface of the resulting ceramic is coated with β-SiC necklace-like whiskers with diameters of 1~2μm.

  4. Dynamic characterization of monolithic and composite ceramic materials using Hopkinson bar

    OpenAIRE

    2002-01-01

    5 pages, 11 figures. [EN] The mechanical behaviour of monolithic and composite ceramic materials was analysed under impact conditions, using the Hopkinson bar to study the response and failure modes. The materials considered were alumina (Al2O3) and silicon carbide platelet / alumina matrix (Al2O3/ SiCpl) composites. Because of the high hardness of ceramics, modifications of the conventional Hopkinson bar device were done to prevent the damage of the bars surface. Stress-strain curves obta...

  5. Micro porous SiO2-SiC ceramics from particle stabilized foams by direct foaming

    National Research Council Canada - National Science Library

    BHASKAR, Subhasree; CHO, Gae Hyung; PARK, Jung Gyu; KIM, Seong Won; KIM, Hyung Tae; KIM, Ik Jin

    2015-01-01

      Porous silicon carbide (SiC) ceramics have been a focus of interesting research in the field of porous materials due to their excellent thermal and mechanical properties, which results in wide spread applications in the industrial field...

  6. Acoustic Response of Laminated SiC Ceramics

    Science.gov (United States)

    Esquivel-Sirvent, Raul; Noguez, Cecilia

    1996-03-01

    We present a theoretical calculation of the reflectivity of compressional elastic waves propagating through a laminated structure made of alternate layers of SiC and porous SiC. During fabrication, defects like variation of the period of the structure or variations in the porosity, can be present. By calculating the reflectivity spectra, we can assess the feasibility of using acoustic measuring techniques to characterize these laminated structures. Our results show that, for an ordered structure where the period and porosity of the laminated structure is constant, the reflectivity spectra starts showing the characteristic band structure of waves propagating in infinite superlattices. To simulate fabrication defects, first the period of the structure is changed by randomly varing the thickness of the porous layers. The reflectivity shows that variations in the period induce strong changes in the reflectivity spectra (i.e transmission is enhanced). In comparison, when the period remains constant and the porosity of the SiC porous layers is varied randomly, we observe that even when the porosity changes randomly by up to 50%, the reflectivity spectra does not show significant changes. Finally the case when both period and porosity are varied and when one of the porous layers is missing from the structure will also be discussed.

  7. Thermomechanical Performance of Si-Ti-C-O and Sintered SiC Fiber-Bonded Ceramics at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Tadashi [ORNL; Lin, Hua-Tay [ORNL; Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Kajii, Shinji [Ube Industries, Ltd.; Matsunaga, Kenji [Ube Industries, Ltd.; Ishikawa, Toshihiro [Ube Industries, Ltd.

    2011-01-01

    The stress-temperature-lifetime response of Si-Ti-C-O fiber-bonded ceramic (Tyrannohex ) and sintered SiC fiber-bonded ceramic (SA-Tyrannohex ) materials were investigated in air from 500 to 1150 C and 500 to 1400 C, respectively. The apparent threshold stress of Si-Ti-C-O fiber-bonded ceramic was about 175 MPa in the 500-1150 C temperature range. When the applied stress of the sintered SiC fiber-bonded ceramic was below an apparent threshold stress (e.g., ~225MPa) for tests conducted 1150 C, no failures were observed for lifetimes up to 1000h. In the case of sintered SiC fiber-bonded ceramic, at the temperature of 1300 C, the apparent threshold stress decreased to 175 MPa. The decrease in strength seemed to be caused by grain growth which was confirmed from the SEM fractography. Both fiber-bonded ceramics exhibited much higher durability than a commercial SiC/SiC composite at temperatures above 500 C. In addition, results suggested that the sintered SiC fiber-bonded ceramic (SA-Tyrannohex) is more stable than a Hi-Nicalon/MI SiC composite with BN/SiC fiber coating at temperatures above 1300 C.

  8. The influence of ZrB2-SiC powders mechanical treatment on the structure of sintered ceramic composites

    Science.gov (United States)

    Buyakova, S.; Burlachenko, A.; Mirovoi, Yu; Sevostiyanova, I.; Kulkov, S.

    2016-07-01

    The effect of mechanical treatment by planetary ball milling on the properties of hot pressed ZrB2 - SiC ceramics was studied. It was shown that material densification after mechanical treatment is finished at initial stages of sintering process. Addition of SiC leads to an essential increase of sample density to 99% of theoretically achievable for powder with 2% of SiC, as compared with ZrB2 with the density less than 76%. It was demonstrated that all defects that were accumulated during mechanical treatment are annealed during hot pressing, and there are no changes of CDD values in sintered ceramics.

  9. Effect of endodontic access cavity preparation on monolithic and ceramic veneered zirconia restorations.

    Science.gov (United States)

    Grobecker-Karl, Tanja; Christian, Mirko; Karl, Matthias

    2016-01-01

    Due to the high chipping rates observed in veneered zirconia ceramic restorations, the use of monolithic zirconia restorations has been recommended. This study tried to compare veneered and monolithic zirconia fixed dental prostheses (FDPs) with respect to the amount of damage induced by endodontic access preparation. Monolithic and ceramic veneered (n = 10) three-unit restorations (retainers: first premolar and first molar; pontic: second premolar) were subject to endodontic access cavity preparation in both retainers using a diamond rotary instrument under continuous water cooling. The number of chipping fractures and microfractures detected using the fluorescent penetrant method were recorded. Statistical analysis was based on Wilcoxon rank sum tests with Bonferroni correction (level of significance α = .05). Only one microfracture could be identified in the group of monolithic FDPs while a maximum of seven microfractures and three chipping fractures per retainer crown were recorded in the group of veneered restorations. At the premolar site, the veneered restorations showed significantly more microfractures (P = .0055) and chipping fractures (P = .0008). At the molar site, no significant difference with respect to microfractures could be detected (P = .0767), while significantly more chipping fractures occurred in the veneered samples (P = .0293). Monolithic zirconia restorations seem to be less susceptible to damage when endodontic access cavities have to be prepared as compared to veneered zirconia reconstructions. However, no conclusions can be drawn on the long-term performance of a specific restoration based on this study.

  10. Calibrating the Johnson-Holmquist Ceramic Model for SiC using CTH

    Science.gov (United States)

    Cazamias, James

    2009-06-01

    The Johnson-Holmquist ceramic material model has been calibrated and successfully applied to numerically simulate ballistic events using the Lagrangian code EPIC. While the majority of the constants are ``physics'' based, two of the constants for the failed material response are calibrated using ballistic experiments conducted on a confined cylindrical ceramic target. The maximum strength of the failed ceramic is calibrated by matching the penetration velocity. The second refers to the equivalent plastic strain at failure under constant pressure and is calibrated using the dwell time. Use of these two constants in the CTH Eulerian hydrocode does not predict the ballistic response. This difference may be due to the phenomenological nature of the model and the different numerical schemes used by the codes. This paper determines the afore mentioned material constants for SiC suitable for simulating ballistic events using CTH.

  11. Letter report on PCT/Monolith glass ceramic corrosion tests

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline network while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).

  12. Study on porosity of ceramic SiC using small angle neutron scattering

    Institute of Scientific and Technical Information of China (English)

    李际周; Y.Ito

    1996-01-01

    The mechanical properties of functional heat-resistant ceramics SiC are significantly influenced by the concentration and idmensions of pores.Small angle neutron scattering measurements for 3 SiC samples with different densities are performed on C1-2 SANS instrument of the University of Tokyo.Two groups of the neutron data are obtained using 8 and 16m of secondary flight path,1 and 0.7 nm of neutron wave lengths,respectively,After deduction of background measurement and transmission correction,both neutron data are linked up with each other,The patterns of neutron data of 3 samples with Q range from 0.028-0.5nm-1 are almost with axial symmetry,showing that the shape of pores is almost spherical.Using Mellin transform,size distributions of pores in 3 samples are obtained.The average size (-19nm)of pores for hot-pressed SiC sample with higher density is smaller than the others (-21nm).It seems to be the reason why the density of hot-pressed SiC sample is higher than not hot-pressed sample.

  13. Monolithic and assembled polymer-ceramic composites for bone regeneration

    NARCIS (Netherlands)

    Nandakumar, A.; Cruz, C.; Mentink-Leusink, Anouk; Tahmasebi Birgani, Zeinab; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    The rationale for the use of polymer - ceramic composites for bone regeneration stems from the natural composition of bone, with collagen type I and biological apatite as main organic and inorganic constituents, respectively. In the present study, composite materials of PolyActive™ (PA), a poly

  14. Modeling and design of a monolithically integrated power converter on SiC

    Science.gov (United States)

    Yu, L. C.; Sheng, K.; Zhao, J. H.

    2008-10-01

    To fully explore the high temperature and high power density potential of the 4H-SiC material, not only power devices need to be fabricated on SiC, but also the circuitries for signal generation/processing, gate driver and control. In this paper, static and dynamic characteristics of SiC lateral JFET (LJFET) devices are numerically simulated and compact circuit models developed. Based on these models, analog and digital integrated circuits functional blocks such as OPAMP, gate driver and logic gates are then designed and simulated. Finally, a fully integrated power converter including pulse-width-modulation circuit, over-temperature protection circuit and a power boost converter is designed and simulated. The converter has an input of 200 V and an output voltage of 400 V, 2.5 A, operating at 1 kW and 5 MHz.

  15. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  16. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    Science.gov (United States)

    Ebrahimpour, Omid

    In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the

  17. Synergistically toughening effect of SiC whiskers and nanoparticles in Al2O3-based composite ceramic cutting tool material

    Science.gov (United States)

    Liu, Xuefei; Liu, Hanlian; Huang, Chuanzhen; Wang, Limei; Zou, Bin; Zhao, Bin

    2016-06-01

    In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiCnp advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vol% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730±95 MPa and fracture toughness is 5.6±0.6 MPa·m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.

  18. Synergistically toughening effect of SiC whiskers and nanoparticles in Al2O3-based composite ceramic cutting tool material

    Science.gov (United States)

    Liu, Xuefei; Liu, Hanlian; Huang, Chuanzhen; Wang, Limei; Zou, Bin; Zhao, Bin

    2016-09-01

    In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiCnp advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vol% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730±95 MPa and fracture toughness is 5.6±0.6 MPa·m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.

  19. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pcomposite resin resulted in less wear depth to human enamel compared with glass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. In situ toughened SiC ceramics with Al-B-C additions and oxide-coated SiC platelet/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-12-01

    This work aimed at fabrication and characterization of high toughness SiC ceramics through the applications of in situ toughening and SiC platelet reinforcement. The processing-microstructure-property relations of hot pressed SiC with Al, B, and C additions (designated as ABC-SiC) were investigated. Through a liquid phase sintering mechanism, dense SiC was obtained by hot pressing at a temperature as low as 1,700 C with 3 wt% Al, 0.6 wt% B, and 2 wt% C additions. These sintering aids also enhanced the {beta}-to-{alpha} (3C-to-4H) phase transformation, which promoted SiC grains to grow into plate-like shapes. Under optimal processing conditions, the microstructure exhibited high-aspect-ratio plate-shaped grains with a thin (< 1 nm) Al-containing amorphous grain boundary film. The mechanical properties of the toughened SiC and the composites were evaluated in comparison with a commercial Hexoloy SiC under identical test conditions. The C-curve behavior was examined using the strength-indentation load relationship and compared with that directly measured using precracked compact tension specimens. The in situ toughened ABC-SiC exhibited much improved flaw tolerance and a significantly rising R-curve behavior. A steady-state toughness in excess of 9 MPam{sup 1/2} was recorded for the ABC-SiC in comparison to a single valued toughness below 3 MPam{sup 1/2} for the Hexoloy. Toughening in the ABC-SiC was mainly attributed to grain bridging and subsequent pullout of the plate-shaped grains. The high toughness ABC-SiC exhibited a bend strength of 650 MPa with a Weibull modulus of 19; in comparison, the commercial SiC showed a bend strength of 400 MPa with a Weibull modulus of 6. Higher fracture toughness was also achieved by the reinforcement of SiC platelets, encapsulated with alumina, yttria, or silica, in a SiC matrix.

  1. Temperature Fluctuation Synthesis/Simultaneous Densification and Microstructure Control of Titanium Silicon Carbide (Ti3SiC2) Ceramics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@A novel temperature fluctuation synthesis/simultaneous densification process was developed for the preparation of Ti3SiC2 bulk ceramics. In this process, Si is used as an in-situ liquid forming phase and it is favorable for both the solid-liquid synthesis and the densification of Ti3SiC2 ceramics. The present work demonstrated that the temperature fluctuation synthesis/simultaneous densification process is one of the most effective and simple methods for the preparation of Ti3SiC2 bulk materials providing relatively low synthesis temperature, short reaction time, and simultaneous synthesis and densification. This work also showed the capability to control the microstructure, e.g., the preferred orientation, of the bulk Ti3SiC2 materials simply by applying the hot pressing pressure at different stages of the temperature fluctuation process. And textured Ti3SiC2 bulk materials with {002} faces of laminated Ti3SiC2 grains normal to the hot pressing axis were prepared.

  2. Effect of organic additives on mechanical properties of SiC ceramics prepared by a modified gelcasting method

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2016-12-01

    Full Text Available A novel and simple gel system of isobutylene and maleic anhydride (PIBM was used to prepare SiC ceramics. The rheological behaviour of the SiC slurries was investigated as function of organic additives. The SiC slurries with 0.2 wt.% PIBM and 0.2 wt.% tetramethylammonium hydroxide (TMAH showed low viscosity, which was favourable for casting SiC green bodies. In order to obtain homogeneous green bodies, polyvinyl alcohol (PVA was used to assist the dispersion of carbon black in the slurries, and polyethylene glycol (PEG was added to inhibit the surface exfoliation of green bodies. The content of PVA was controlled carefully to avoid the warpage of green bodies during the drying process. Finally, homogeneous defect-free SiC green bodies were successfully fabricated via aqueous gelcasting. The SiC ceramics sintered at 2100 °C (prepared from slurries with solid content of 60 wt.% showed an average flexural strength of 305.7 MPa with porosity of 19.92%.

  3. A Geometrically Non-linear Model of Ceramic Crystals with Defects Applied to Silicon Carbide (SiC)

    Science.gov (United States)

    2010-03-01

    observed to occur at somewhat lower compressive stresses (~19–32 GPa) in polycrystalline SiC subject to ballistic impact (Shih et al., 2000...Wu, M. S.; Feng, R. Micromechanical investigation of heterogeneous microplasticity in ceramics deformed under high confining stress. Mech. Mater

  4. Fabrication of three-dimensional SiC ceramic microstructures with near-zero shrinkage via dual crosslinking induced stereolithography.

    Science.gov (United States)

    Park, Sungjune; Lee, Dong-Hoon; Ryoo, Hyang-Im; Lim, Tae-Woo; Yang, Dong-Yol; Kim, Dong-Pyo

    2009-08-28

    Three-dimensional SiC ceramic microstructures with near-zero shrinkage were fabricated from a simple inorganic polymer mixture by inducing dual photocuring routes to produce highly dense polymer features by stereolithography and subsequent pyrolysis at 600 degrees C.

  5. Corrosion resistant coatings for SiC and Si{sub 3}N{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Thierry; Shaokai Yang; J.J. Brown

    1998-09-01

    It is the goal of this program to (1) develop coatings for SiC and Si{sub 3}N{sub 4} that will enhance their performance as heat exchangers under coal combustion conditions and (2) to conduct an in-depth evaluation of the cause and severity of ceramic heat exchanger deterioration and failure under coal combustion conditions.

  6. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic; Elaboration de ceramiques nanostructurees en carbure de silicium (SiC): de la synthese de poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMA), 91 - Gif-sur-Yvette (France)

    2008-07-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC{sub f}/SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC{sub f}/SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  7. Effect of Y{sub 2}O{sub 3} addition on the properties of mullite bonded porous SiC ceramics prepared by an infiltration technique

    Energy Technology Data Exchange (ETDEWEB)

    Kayal, N.; Dey, O.; Chakrabarti, O.

    2013-10-01

    Mullite bonded porous SiC ceramics were synthesized by infiltrating a powder compact of SiC and Y{sub 2}O{sub 3} with a liquid precursor of mullite which on subsequent heat treatment at 1300-1500 degree centigrade produced mullite bonded porous SiC ceramics. The effect of Y{sub 2}O{sub 3} content and sintering temperature on phase composition, microstructure, oxidation degree of SiC, flexural strength, porosity and pore size distribution were studied. Due to enhance oxidation and well developed neck formation by the addition of Y{sub 2}O{sub 3} a high strength 49 MPa was achieved for the porous mullite bonded SiC ceramics with porosity 28 vol %. (Author)

  8. Cerium, manganese and cerium/manganese ceramic monolithic catalysts. Study of VOCs and PM removal

    Institute of Scientific and Technical Information of China (English)

    COLMAN-LERNER Esteban; PELUSO Miguel Andrs; SAMBETH Jorge; THOMAS Horacio

    2016-01-01

    Ceramic supported cerium, manganese and cerium-manganese catalysts were prepared by direct impregnation of aqueous precursor, and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) acidity measurements and electrical conductivity. The catalytic activity was evaluated for volatile organic compounds (VOC) (ethanol, methyl ethyl ketone and toluene) oxidation. Additionally, catalysts were tested in particulate matter (PM) combustion. The characterization results indicated that Ce was in the form of Ce4+ and Ce3+, and Mn existed in the form of Mn4+and Mn3+on the surface of the Mn/AC sample and in the form of Mn4+ in the Ce/Mn/AC monolith. VOC oxidation results revealed that the Ce/Mn/AC sample showed an excellent performance compared with ceramic supported CeO2 (Ce/AC) and MnOx (Mn/AC) samples. The PM combustion was also higher on Ce/Mn/AC monoliths. The enhanced catalytic activity was mainly attributed to the Ce and Mn interaction which enhanced the acidity, conductiv-ity and the reducibility of the oxides.

  9. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging

    NARCIS (Netherlands)

    Pereira, G.K.R.; Silvestri, T.; Camargo, R.; Rippe, M.P.; Amaral, M.; Kleverlaan, C.J.; Valandro, L.F.

    2016-01-01

    This study aimed to investigate the effects of grinding with diamond burs and low-temperature aging on the mechanical behavior (biaxial flexural strength and structural reliability), surface topography, and phase transformation of a Y-TZP ceramic for monolithic dental restorations. Disc-shaped speci

  10. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging

    NARCIS (Netherlands)

    Pereira, G.K.R.; Silvestri, T.; Camargo, R.; Rippe, M.P.; Amaral, M.; Kleverlaan, C.J.; Valandro, L.F.

    2016-01-01

    This study aimed to investigate the effects of grinding with diamond burs and low-temperature aging on the mechanical behavior (biaxial flexural strength and structural reliability), surface topography, and phase transformation of a Y-TZP ceramic for monolithic dental restorations. Disc-shaped

  11. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  12. Crack Propagation Behaviors of Multi-Layered SiC Composite Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejong; Lee, Donghee; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    SiC composite cladding has various advantages compared to current Zr alloy cladding in terms of accident resistance and neutron economy. However, its brittle properties and corresponding low reliability make it difficult for a use of SiC ceramics as cladding materials. In this study, fracture behaviors of several SiC composite cladding tubes, particularly crack propagation behavior were evaluated using an acoustic emission method. AE analysis is a useful tool for examination of the multi-layered SiC composite with complex structure which provides information of crack propagation. Failure of an inner monolith SiC in the triplex SiC composite tube will cause significant problems such as hermeticity, degradation of SiC{sub f}/SiC. Duplex SiC composite might be the alternative.

  13. 热压烧结SiC陶瓷的力学性能%Mechanical Properties of Hot-pressed Sintering SiC Ceramics

    Institute of Scientific and Technical Information of China (English)

    马静梅

    2016-01-01

    SiC ceramics was hot-pressed using different SiC type with different content BAS as sintering aid. The influences of different SiC type on the relative density,phase composition and mechanical properties were studied by means of Archimedes'principle,XRD and three-point bending methods. Experimental results showed that no phase transformation happened from β-SiC to α-SiC of the SiC ceramics using β-SiC raw powders. The densities of all sintered SiC ceramics were up to 98%,the Young’s modulus of the SiC ceramics were without the influence of SiC type and particle size. With the increase of BAS content,the room-flexural strength of the SiC ceramics decreased. With the increase of the density and BAS content,the fracture toughness of the SiC ceramics decreased,while the densities of the SiC ceramics were up to fully dense,the fracture toughness of the SiC ceramics increased.%分别以α-SiC和β-SiC为原始粉体,BAS为烧结助剂,采用热压烧结工艺制备了SiC陶瓷。采用阿基米德排水法,XRD及三点弯曲等分析测试手段,研究不同类型SiC对SiC陶瓷致密度、物相组成及力学性能的影响。实验结果表明,以β-SiC为原始粉体制备的SiC陶瓷中没有发生β-SiC到α-SiC的相变。所制备SiC陶瓷的致密度均超过了98%以上,此时,SiC陶瓷的弹性模量不受SiC类型及颗粒大小的影响。随着BAS含量的增加,SiC陶瓷的室温抗弯强度降低。随着SiC陶瓷致密度和BAS含量的增加,其断裂韧性减小,当SiC陶瓷达到完全致密时,随着BAS含量的增加,SiC陶瓷的断裂韧性提高。

  14. Annual Conference on Composites and Advanced Ceramic Materials, 13th, Cocoa Beach, FL, Jan. 15-18, 1989, Collection of Papers. Parts 1 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    The present conference on advanced ceramics discusses topics in matrix-infiltration and processing techniques, the failure analysis of monolithic ceramics, the processing of polycrystalline oxide-matrix ceramic composites, the processing and properties of monolithic ceramics, ceramic composite interface phenomena, and ceramic NDE and characterization. Attention is given to chemical vapor infiltration for composites, dense ceramics via controlled melt oxidation, supertough silicon nitride, the properties of pressureless-sintered alumina-matrix/30 vol pct SiC composites, and toughening in metal particulate/glass-ceramic composites. Also discussed are the joining of silicon nitride for heat-engine applications, nitridation mechanisms in silicon powder compacts, the synthesis and properties of ceramic fibers, a technique for interfacial bond strength measurement, the degradation of SiC whiskers at elevated temperatures, and the correlation of NDE and fractography in Si3N4.

  15. Oxidation of ZrB2 and ZrB2-SiC Ceramics With Tungsten Additions (Preprint)

    Science.gov (United States)

    2009-02-01

    Electrochemical Society . PAO Case Number: 88 ABW-2008-1143; Clearance Date: 26 Nov 2008. Paper contains color. 14. ABSTRACT The effect of tungsten...18 For submission to proceedings of the 214th meeting of the Electrochemical Society Oxidation of ZrB2 and ZrB2-SiC Ceramics with Tungsten...TaSi2 that form a protective SiO2-rich oxide scale at temperatures 1 For submission to proceedings of the 214th meeting of the Electrochemical Society above

  16. A hydrometallurgical process for recovering total metal values from waste monolithic ceramic capacitors.

    Science.gov (United States)

    Prabaharan, G; Barik, S P; Kumar, B

    2016-06-01

    A hydrometallurgical process for recovering the total metal values from waste monolithic ceramic capacitors was investigated. The process parameters such as time, temperature, acid concentration, hydrogen peroxide concentration and other reagents (amount of zinc dust and sodium formate) were optimized. Base metals such as Ba, Ti, Sn, Cu and Ni are leached out in two stages using HCl in stage 1 and HCl with H2O2 in stage 2. More than 99% of leaching efficiency for base metals (Cu, Ni, Ba, Ti and Sn) was achieved. Precious metals such as Au and Pd are leached out using aquaregia and nitric acid was used for the leaching of Ag. Base metals (Ba, Ti, Sn, Cu and Ni) are recovered by selective precipitation using H2SO4 and NaOH solution. In case of precious metals, Au and Pd from the leach solution were precipitated out using sodium metabisulphite and sodium formate, respectively. Sodium chloride was used for the precipitation of Ag from leach solution. Overall recovery for base metals and precious metals are 95% and 92%, respectively. Based on the results of the present study, a process flow diagram was proposed for commercial application.

  17. Characterization of production of free gluconic acid by Gluconobacter suboxydans adsorbed on ceramic honeycomb monolith.

    Science.gov (United States)

    Shiraishi, F; Kawakami, K; Kono, S; Tamura, A; Tsuruta, S; Kusunoki, K

    1989-05-01

    Gluconobacter suboxydans IFO 3290 was immobilized by adsorption on ceramic honeycomb monolith and continuous production of free gluconic acid from glucose was performed in an aerated reactor. The effects of reactor residence time, aeration rate, and glucose concentration were investigated on the gluconic acid yield. Observation of SEM photographs revealed that the cells were adsorbed with a high density not only on the outer surface of the support but also on the inner surface of large pores. From measurement of the number of the adsorbed cells, it was elucidated that the biofilm comprised a monolayer or bilayer of the cells. Maximum specific rate of growth was estimated for the free and adsorbed cells, and the adsorbed cells were found to grow at a fast rate compared with the free cells. In the continuous fermentation performed for one month at the glucose concentration of 100 kg/m(3), reactor residence time of 3.5 h and aeration rate of 900 cm(3)/min, the activity of the adsorbed cells was appreciably stable. The high productivity of 26.3 kg/(m(3)-reactor . h) was attained with the gluconic acid yield of 84.6% and glucose conversion of 94%.

  18. The formulation of a ceramic monolith; La formulazione di un monolita ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldo, A.; Roncari, R. [Consiglio Nazionale delle Ricerche, Faenza (Italy). Lab. di Ricerche Tecnologiche per la Ceramica

    1999-08-01

    Extrusion is a low cost forming process to realise in continuous a lot of objects with very complex shape; monolithic honeycomb catalytic are obtained using this technique. The different steps of the process are separately analysed with a particular attention to the paste formulation which is the critical step both for forming process itself and the characteristics of the final product. The role of played by the different components of the ceramic paste is presented; the knowledge of the behaviour with specific total and inorganic additives essential to obtain products with specific total porosity and mechanical strength. [Italian] Il processo di estrusione e' un processo a basso costo che consente la realizzazione in continuo di forme anche complesse tra cui i catalizzatori monolitici a nido d'ape. Il processo di formatura viene analizzato nelle sue diverse fasi ponendo in particolare evidenza l'importanza che la formulazione dell'impasto riveste nel determinare sia la buona riuscita del processo sia le caratteristiche del prodotto finale.

  19. Modeling of Thermal and Mechanical Behavior of ZrB2-SiC Ceramics after High Temperature Oxidation

    Directory of Open Access Journals (Sweden)

    Jun Wei

    2014-01-01

    Full Text Available The effects of oxidation on heat transfer and mechanical behavior of ZrB2-SiC ceramics at high temperature are modeled using a micromechanics based finite element model. The model recognizes that when exposed to high temperature in air ZrB2-SiC oxidizes into ZrO2, SiO2, and SiC-depleted ZrB2 layer. A steady-state heat transfer analysis was conducted at first and that is followed by a thermal stress analysis. A “global-local modeling” technique is used combining finite element with infinite element for thermal stress analysis. A theoretical formulation is developed for calculating the thermal conductivity of liquid phase SiO2. All other temperature dependent thermal and mechanical properties were obtained from published literature. Thermal stress concentrations occur near the pore due to the geometric discontinuity and material properties mismatch between the ceramic matrix and the new products. The predicted results indicate the development of thermal stresses in the SiO2 and ZrO2 layers and high residual stresses in the SiC-depleted ZrB2 layer.

  20. Study of indentation induced cracks in MoSi2-reaction bonded SiC ceramics

    Indian Academy of Sciences (India)

    O P Chakrabarti; P K Das; S Mondal

    2001-04-01

    MoSi2–RBSC composite samples were prepared by infiltration of Si–2 at.% Mo melt into a preform of commercial SiC and petroleum coke powder. The infiltrated sample had a density > 92% of the theoretical density (TD) and microstructurally contained SiC, MoSi2, residual Si and unreacted C. The material was tested for indentation fracture toughness at room temperature with a Vicker’s indenter and KIC was found to be 4.42 MPa√m which is around 39% higher than the conventional RBSC material. Enhancement in indentation fracture toughness is explained in terms of bowing of propagating cracks through MoSi2/SiC interface which is under high thermal stress arising from the thermal expansion mismatch between MoSi2 and SiC.

  1. Dissolution of Ceramic Monolith of Spent Catalytic Converters by Using Hydrometallurgical Methods / Rozpuszczanie Monolitu Ceramicznego Zużytych Katalizatorów Na Drodze Hydrometalurgicznej

    Directory of Open Access Journals (Sweden)

    Willner J.

    2015-12-01

    Full Text Available Catalytic converters contain the catalytic substance in their structure, which is a mixture of Platinum Group Metals (PGMs: platinum, palladium and rhodium. The prices of these metals and a growing demand for them in the market, make it necessary to recycle spent catalytic converters and recovery of PGMs. The ceramic monolith of catalytic converters is still a predominant material in its construction among of multitude of catalytic converters which are in circulation. In this work attempts were made to leach additional metals (excluding Pt from comminuted ceramic monolith. Classic leachant oxidizing media 10M H2SO4, HCl and H3PO4 were used considering the possibility of dissolution of the ceramic monolith.

  2. Effect of Y2O3 addition on the properties of mullite bonded porous SiC ceramics prepared by an infiltration technique

    Directory of Open Access Journals (Sweden)

    Kayal, N.

    2013-10-01

    Full Text Available Mullite bonded porous SiC ceramics were synthesized by infiltrating a powder compact of SiC and Y2O3 with a liquid precursor of mullite which on subsequent heat treatment at 1300-1500 ºC produced mullite bonded porous SiC ceramics. The effect of Y2O3 content and sintering temperature on phase composition, microstructure, oxidation degree of SiC, flexural strength, porosity and pore size distribution were studied. Due to enhance oxidation and well developed neck formation by the addition of Y2O3 a high strength 49 MPa was achieved for the porous mullite bonded SiC ceramics with porosity 28 vol %.Se han sintetizado materiales porosos de SiC-Mullita mediante la infiltración de polvo prensado de SiC y Y2O3 con un precursor líquido de mullita, el cual con un tratamiento térmico posterior a 1300-1500 °C da lugar a los materiales porosos de SiC-Mullita. Se estudió el efecto del contenido de Y2O3 y la temperatura de sinterización en la constitución mineralógica, en la microestructura, en el grado de oxidación del SiC, la resistencia a la flexión, la porosidad total y su distribución de tamaño. Debido a la oxidación y a la mejora en la formación de los cuellos por la adición de Y2O3, se alcanzan altos valores de resistencia, 49 MPa, para estos materiales porosos de SiC-Mullita con porosidad 28 % en volumen.

  3. Synthesis of ZrB{sub 2}-SiC ceramic composites from a single-source precursor

    Energy Technology Data Exchange (ETDEWEB)

    Arish, Dasan, E-mail: arishd@rediffmail.com [Université of Limoges, SPCTS-CNRS, UMR 7315, Centre Européen de la Céramique (CEC), 12 Rue Atlantis, F-87068, Limoges Cedex (France); Shiju, Chellan [Synthetic Products Division, Corporate R & D Center (CRDC), HLL Lifecare Limited, Thiruvananthapuram, Kerala (India); Joseyphus, Raphael Selwin, E-mail: rsjoseyphus@gmail.com [PG & Research, Department of Chemistry, Mar Ivanios College (Autonomous), Thiruvananthapuram, 695015, Kerala (India); Pushparajan, Joseph [Travancore Titanium Products Ltd., Kochuveli, Thiruvananthapuram, 695021, Kerala (India)

    2017-06-15

    Preceramic polymer zirconoborosiloxane was synthesized from the reaction with boric acid, diphenyldiethoxysilane and zirconium (IV) propoxide via solventless process. The thermogravimetric analysis of the polymer showed that ceramic yield as decomposition product at 900 °C was 71%. The pyrolysis of zirconoborosiloxane in an argon gas environment was investigated as standard pyrolytic process up to 1650 °C. Microstructure evolution of ceramic phases was made by means of Fourier transform infrared, Raman spectroscopy, X-ray diffraction and scanning electron microscope analysis. The results clearly demonstrated the pyrolysis products at 1650 °C consist of totally non-oxide ceramic phases of β-SiC, ZrB{sub 2} and free carbon. - Highlights: • Preceramic polymer zirconoborosiloxane was synthesized by non-aqueous solventless process. • Non-oxide ZrB{sub 2}-SiC composites could be obtained from the pyrolysed products at 1650 °C. • Free carbon content was identified by Raman spectroscopy.

  4. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  5. Performance of Ceramics in Severe Environments

    Science.gov (United States)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.

    2005-01-01

    Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.

  6. Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic vehicles leading–edges

    Indian Academy of Sciences (India)

    Xiao-Yi Han; Jun Wang; Hai-Feng Cheng

    2014-02-01

    Utilizing thermoelectric technology to aerodynamic heat harvesting on the leading-edge is worth noticing in the thermal protection systems. In this paper, a nose-tip model in a supersonic flow field is developed to predict the thermoelectric performance of SiC ceramics structures. The generation performance is numerically investigated in terms of the computational fluid dynamics and the thermal conduction theory. The output power and energy efficiency of the nose-tip model are obtained with Mach number varying from 2.5–4.5. The generated power reaches 1.708 W/m2 at a temperature difference of 757 K at = 4.5. With respect to the Thomson effect, the output power decreases rapidly. However, larger output power and energy efficiency would be obtained with the increase of Mach number, with or without considering the Thomson heat. Moreover, under the higher Mach numbers, larger range of output current value is available.

  7. Joining of SiC Fiber-Bonded Ceramics using Silver, Copper, Nickel, Palladium, and Silicon-Based Alloy Interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Asthana, Rajiv [University of Wisconsin-Stout, Menomonie; Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Lin, Hua-Tay [ORNL; Matsunaga, Kenji [Ube Industries, Ltd.; Ishikawa, Toshihiro [Ube Industries, Ltd.

    2013-01-01

    SiC fiber-bonded ceramics, SA-Tyrannohex, (SA-THX) with perpendicular and parallel fiber orientations were brazed using Ag-, Ni- and Pd-base brazes, and four Si X (X: Ti, Cr, Y, Ta) eutectics. Outcomes were variable, ranging from bonded joints through partially bonded to un-bonded joints. Prominent Ti- and Si-rich interfaces developed with Cusil-ABA, Ticusil, and Copper-ABA and Ni- and Si-rich layers with MBF-20. Stress rupture tests at 650 and 750 C on Cusil-ABA-bonded joints revealed a temperature-dependent behavior for the perpendicular joints but not for the parallel joints with failure occurring at brazed interface. Higher-use temperatures can be targeted with eutectic Si Ti and Si Cr alloys.

  8. Internal friction and microplasticity of carbon-fiber-reinforced SiC ceramics; Tanso sen`i kyoka SiC ceramics no hakai zenku katei ni okeru naibu masatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H.; Nishino, Y.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-08-20

    Mechanical responses of carbon-fiber-reinforced SiC ceramics before fracture were measured in the strain range below 2 {times} 10{sup {minus}3} by two experimental methods: mechanical hysteresis and internal friction. Load-deflection curves were obtained by the three-point bending deformation in loading-unloading cycles. A little permanent strain was found after the first cycle even in the range where fracture never occurred. A closed hysteresis loop was observed after several cycles and stabilized with a symmetrical shape after more than twenty cycles. Such a stabilized hysteresis loop is attributed to the steady-state microplastic deformation and may cause the amplitude-dependent internal friction. Internal friction was measured in the fundamental mode of free-free resonant vibration as a function of strain amplitude. With increasing the amount of prestrain in the bending deformation, internal friction increased and became sensitive to the strain amplitude. The amplitude-dependent internal friction in the composites is considered to originate from fiber pull-out or microcrack propagation. The internal friction data were analyzed on the basis of the microplasticity theory and converted into the plastic strain expressed as a function of stress. Therefore, it becomes possible to non-destructively study the forerunning process of fracture of the fiber-reinforced ceramics. 23 refs., 6 figs.

  9. Strength and corrosion behavior of SiC - based ceramics in hot coal combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Breder, K.; Parten, R.J. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    As part of an effort to evaluate the use of advanced ceramics in a new generation of coal-fired power plants, four SiC-based ceramics have been exposed to corrosive coal slag in a laboratory furnace and two pilot scale combustors. Initial results indicate that the laboratory experiments are valuable additions to more expensive pilot plant experiments. The results show increased corrosive attack with increased temperature, and that only slight changes in temperature may significantly alter the degree of strength degradation due to corrosive attack. The present results are part of a larger experimental matrix evaluating the behavior of ceramics in the coal combustion environment.

  10. Microstructure and Mechanical Properties of Mg-5Nb Metal-Metal Composite Reinforced with Nano SiC Ceramic Particles

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2012-06-01

    Full Text Available In this work, a Mg-5Nb metal–metal composite was reinforced with nano SiC (SiCn ceramic reinforcement of varying volume fractions, using the disintegrated melt deposition technique. The extruded Mg-5Nb-SiCn composites were characterized for their microstructure and mechanical properties. Based on the results obtained, it was observed that the volume fraction of nano-SiC reinforcement played an important role in determining the grain size and improving the mechanical properties. A comparison of properties with those of pure Mg and Mg-5Nb composite showed that while the improvement in hardness occurred at all volume fractions, a minimum volume fraction of ~0.27% SiCn was required to increase the tensile and compressive strengths. The observed mechanical response of the composites were investigated in terms of the effect of SiCn volume fraction, processing, distribution of metallic and ceramic reinforcements and the inherent properties of the matrix and reinforcements. The influences of these factors on the mechanical behavior of the composites are understood based on the structure–property relationship.

  11. Research Progress of Absorbing SiC Ceramics%吸波型SiC陶瓷材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    张亚君; 殷小玮; 张立同; 成来飞

    2014-01-01

    With the wide use of electronic products, electromagnetic (EM) wave leakage and interfer-ence have been a common problem. High-performance EM absorbing material is then in urgent need. SiC ceramics and ceramic matrix composites possess many advantages, such as high-temperature stability, resistance to corrosion and oxidation, high strength, low density and designable dielectric property, which make them good candidates for EM absorbing thermostructural material. Chemical vapor infiltration and polymer derived ceramics have drawn more and more attention because they can realize the de-sign of microstructures of ceramics, leading them the main methods to fabricate high-performance EM absorbing SiC ceramics. This paper reviewed the design, synthesis and EM absorbing mechanism of EM absorbing SiC ceramics.%随着电子产品的广泛应用,电磁波泄露和干扰成为普遍问题,迫切需要发展新一代高性能吸波材料。SiC陶瓷及陶瓷基复合材料具有耐高温、耐腐蚀、抗氧化、高强度、低密度、介电性能可设计等优异特性,是极具潜力的吸波型热结构材料。化学气相渗透和先驱体转化陶瓷法可实现陶瓷材料的微结构设计,是制备高性能吸波型热结构陶瓷的主要方法,日益受到关注。本文综述了吸波型热结构陶瓷的设计与制备方法及其吸波机理。

  12. New tunnel schottky SiC devices using mixed conduction ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Cerda, J. [S-SENCE and Div. of Applied Physics, Linkoeping Univ., Linkoeping (Sweden); Electronic Materials and Engineering, Electronics Dept., Univ. of Barcelona, Barcelona (Spain); Morante, J.R. [Electronic Materials and Engineering, Electronics Dept., Univ. of Barcelona, Barcelona (Spain); Lloyd Spetz, A. [S-SENCE and Div. of Applied Physics, Linkoeping Univ., Linkoeping (Sweden)

    2003-07-01

    A new tunnel Schottky diode based on SiC and a mixed conductor of BaSnO{sub 3} as the gate has been investigated. I-V curves at different operating temperatures and two different gas atmospheres have been measured. The device shows sensitivity to oxygen, with maximum at 400 C. A model that describes the behaviour of the device is proposed, which takes into account the different types of conduction of the BaSnO{sub 3} due to the temperature. (orig.)

  13. Thixoforming of SiC ceramic matrix composites in pseudo-semi-solid state

    Institute of Scientific and Technical Information of China (English)

    CHENG Yuan-sheng; LUO Shou-jing; DU Zhi-ming

    2005-01-01

    A new forming process, ceramic matrix composites thixoforming in pseudo-semi-solid state, was proposed based on powder metallurgy technology combined with the semi-solid metal forming process. The satellite angle-frames were prepared by this technology with Alp and SiCp materials mixed with different volume fractions. It is proved that it is feasible for the forming of the ceramic matrix composites by this technology through metallographic analyses and tensile tests. The results also show that the microstructures of samples are homogeneous and they have high hardness and certain plasticity.

  14. Ceramic Technology Project semiannual progress report for October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work is organized into the following elements: materials and processing (monolithics [SiC, SiN], ceramic composites, thermal and wear coatings, joining), materials design methodology, data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, NDE), and technology transfer. Individual abstracts were prepared for the individual contributions.

  15. 改善SiC陶瓷纤维吸波性能途径∗%The Way of Improve SiC Ceramic Fiber Absorbing Performance

    Institute of Scientific and Technical Information of China (English)

    康永

    2015-01-01

    介绍了 SiC陶瓷吸波材料的吸波机理,并分析了改 SiC陶瓷硅纤维吸波性能的途径。%In this paper,the absorbing mechanism of silicon carbide ceramic absorbing materials is introduced,and the way to improve the performance of SiC fiber is analyzed.

  16. Study of the tribological behavior of SiC and Si3N4 ceramic couples in terms of temperature: The reality

    Science.gov (United States)

    Platon, F.; Berthier, Y.

    1992-10-01

    Tribological analysis of ceramic couples (SiC and Si3N4) was carried out by identifying Velocity Accommodation Mechanisms (VAM) activated in different conditions. Results obtained in the temperature region 20 to 1000 C show raised values of friction and flow interest. To reduce these values, three artificial bodies, of solid lubricant type, such as cerium fluoride powder and 'plasma' coatings, are used.

  17. Effects of B4C addition on the micro- structural and thermal properties of hot pressed SiC ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    Z. Keçeli

    2009-12-01

    Full Text Available Purpose: The purpose of paper is to evaluate effects of B4C addition on the microstructural and thermal properties of hot pressed SiC ceramic matrix composites.Design/methodology/approach: The effect of B4C addition on microstructural and thermal properties of the SiC-B4C powder composites were investigated after high energy milling and hot pressing. SiC powders containing 5wt%, 10wt%, 15wt% B4C were mechanically alloyed in a high energy ball mill for 8 h.Findings: Microstructural characterisation investigations (SEM, XRD were carried out on mechanically alloyed SiC powder composites containing 5 wt %, 10 wt %, 15 wt % B4C powders and on these powder composites sintered in vacuum at 50 MPa at 2100ºC. The thermal properties were characterised using DTA, TGA and dilatometer. The results were evaluated.Research limitations/implications: In this study, the effect of B4C addition on microstructural and mechanical properties of the SiC-B4C powder composites was investigated after high energy milling and hot pressing.Originality/value: Ceramic matrix composite (CMC material systems are stimulating a lot of interest to be used and provide unique properties for aircraft and land-based turbine engines, defence applications, rocket motors, aerospace hot structures and industrial applications. Boron carbide (B4C-silicon carbide (SiC ceramic composites are very promising armour materials because they are intrinsically very hard. Advanced SiC-based armour is desired so that the projectile is completely defeated without penetrating the ceramic armour.

  18. Fabrication of a new porous glass-ceramic monolith using vanadium(III) calcium phosphate glass as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Mazali, Italo Odone; Alves, Oswaldo Luiz [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: mazali@iqm.unicamp.br

    2004-08-01

    Preliminary XRD, IR, Raman and SEM data indicate that porous glass-ceramic monoliths (pgc-LVCP) with skeleton of V(PO{sub 3}){sub 3} and Ca{sub 3}(VO{sub 4}){sub 2} with three-dimensional network structure using an original Li{sub 2}O-V{sub 2}O{sub 3}-CaO-P{sub 2}O{sub 5} glass as precursor was obtained. The pgc-LVCP is a promising porous host for integrated chemical systems because the Ca{sub 3}(VO{sub 4}){sub 2} has ferroelectric and luminophore properties while V(PO{sub 3}){sub 3} exhibits magnetic properties associated with high degree of mechanical, chemical and thermal stability. (author)

  19. The Fabrication and Properties of Biomorphic SiC Ceramics%仿生SiC陶瓷材料的制备和性能

    Institute of Scientific and Technical Information of China (English)

    朱丹; 高明霞; 巫红燕; 潘颐

    2012-01-01

    Biomorphic SiC ceramics are novel environmentally friendly materials. Due to their excellent properties such as low density, high mechanical strength, resistance on corrosion, friction and oxidation, absorbability and hioactivity, biomorphic SiC ceramics are promising materials which could be used in the fields of mechanics, chem- ical industry, catalysis and bio -medicine. This article summarizes the different fabrication techniques of the bio- morphic SiC ceramics and their mechanical, thermal and electrical properties, as well as their biological compati- bility. The analysis has been done for the existing problems, and the outlook for the development trends.%仿生SiC陶瓷材料是一种新兴的环境友好材料,因其具有密度低、强度高、耐腐蚀、耐磨损、抗氧化和生物相容性好等优点,在机械、化工、催化、生物医学等领域都有着广阔的应用前景。就仿生SiC陶瓷材料的多种制备工艺和其机械性能、热性能、电性能、生物相容性等进行了综述,并对其存在的问题进行了分析,对其发展趋势进行了展望。

  20. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Thermal and Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; Alvine, Kyle J.; Roosendaal, Timothy J.; Shin, Yongsoon; Nguyen, Ba Nghiep; Borlaug, Brennan A.; Jiang, Weilin

    2014-04-01

    SiC-polymers (pure polycarbosilane and polycarbosilane filled with SiC-particles) are being combined with Si and TiC powders to create a new class of polymer-derived ceramics for consideration as advanced nuclear materials in a variety of applications. Compared to pure SiC these materials have increased fracture toughness with only slightly reduced thermal conductivity. Future work with carbon nanotube (CNT) mats will be introduced with the potential to increase the thermal conductivity and the fracture toughness. At present, this report documents the fabrication of a new class of monolithic polymer derived ceramics, SiC + SiC/Ti3SiC2 dual phase materials. The fracture toughness of the dual phase material was measured to be significantly greater than Hexoloy SiC using indentation fracture toughness testing. However, thermal conductivity of the dual phase material was reduced compared to Hexoloy SiC, but was still appreciable, with conductivities in the range of 40 to 60 W/(m K). This report includes synthesis details, optical and scanning electron microscopy images, compositional data, fracture toughness, and thermal conductivity data.

  1. Effect of Two Polishing Systems on Surface Roughness, Topography, and Flexural Strength of a Monolithic Lithium Disilicate Ceramic.

    Science.gov (United States)

    Mohammadibassir, Mahshid; Rezvani, Mohammad Bagher; Golzari, Hossein; Moravej Salehi, Elham; Fahimi, Mohammad Amin; Kharazi Fard, Mohammad Javad

    2017-03-08

    To evaluate the effect of overglazing and two polishing procedures on flexural strength and quality and quantity of surface roughness of a monolithic lithium disilicate ceramic computer-aided design (CAD) after grinding. This in vitro study was conducted on 52 partially crystalized bar-shaped specimens (16 × 4 × 1.6 mm) of monolithic lithium disilicate ceramic. The specimens were wet polished with 600-, 800-, and 1200-grit silicon carbide papers for 15 seconds using a grinding/polishing machine at a speed of 300 rpm. Then, the specimens were crystalized and glaze-fired in one step simultaneously and randomly divided into four groups of 13: (I) Glazing group (control); (II) Grinding-glazing group, subjected to grinding with red band finishing diamond bur (46 μm) followed by glazing; (III) Grinding-D+Z group, subjected to grinding and then polishing by coarse, medium, and fine diamond rubber points (D+Z); and (IV) Grinding-OptraFine group, subjected to grinding and then polishing with a two-step diamond rubber polishing system followed by a final polishing step with an OptraFine HP brush and diamond polishing paste. The surface roughness (Ra and Rz) values (μm) were measured by a profilometer, and the mean values were compared using one-way ANOVA and Tamhane's test (post hoc comparison). One specimen of each group was evaluated under a scanning electron microscope (SEM) for surface topography. The three-point flexural strength values of the bars were measured using a universal testing machine at a 0.5 mm/min crosshead speed and recorded. The data were analyzed using one-way ANOVA and Tamhane's test (α = 0.05). Statistically significant differences were noted among the experimental groups for Ra, Rz (p quality of roughness compared to glazing. The flexural strength of lithium disilicate ceramic after polishing with the OptraFine system was similar to that after glazing (p = 0.86). Despite similar surface roughness after polishing with the two systems, the D

  2. Flash X-ray cinematography analysis of dwell and penetration of small caliber projectiles with three types of SiC ceramics

    Directory of Open Access Journals (Sweden)

    Elmar Strassburger

    2016-06-01

    Full Text Available In order to improve the performance of ceramic composite armor it is essential to know the mechanisms during each phase of the projectile–target interaction and their influence on the penetration resistance. Since the view on the crater zone and the tip of a projectile penetrating a ceramic is rapidly getting obscured by damaged material, a flash X-ray technique has to be applied in order to visualize projectile penetration. For this purpose, usually several flash X-ray tubes are arranged around the target and the radiographs are recorded on film. At EMI a flash X-ray imaging method has been developed, which provides up to eight flash radiographs in one experiment. A multi-anode 450 kV flash X-ray tube is utilized with this method. The radiation transmitted through the target is then detected on a fluorescent screen. The fluorescent screen converts the radiograph into an image in the visible wavelength range, which is photographed by means of a high-speed camera. This technique has been applied to visualize and analyze the penetration of 7.62 mm AP projectiles into three different types of SiC ceramics. Two commercial SiC grades and MICASIC (Metal Infiltrated Carbon derived SiC, a C-SiSiC ceramic developed by DLR, have been studied. The influences, not only of the ceramic but also the backing material, on dwell time and projectile erosion have been studied. Penetration curves have been determined and their relevance to the ballistic resistance is discussed.

  3. Surface oxidation of porous ZrB{sub 2}-SiC ceramic composites by continuous-wave ytterbium fibre laser

    Energy Technology Data Exchange (ETDEWEB)

    Mahmod, Dayang Salyani Abang, E-mail: dygsalyani@gmail.com [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Glandut, Nicolas [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France); Khan, Amir Azam [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Labbe, Jean-Claude [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France)

    2015-12-01

    Highlights: • Surface oxidation of ZrB{sub 2}-SiC ceramic composites by Yb-fibre laser. • Round spiral laser pattern created for the surface oxidation. • Presence of laser-formed oxide scale and unaffected beneath regions. • Crazed but uncracked surface oxide. • A dense glassy SiO{sub 2}-rich layer exhibited enhances oxidation resistance. - Abstract: Surface treatment of ceramic substrates by a laser beam can allow to incorporate interesting properties to these ceramics. In the present work, surface oxidation of ca. 30% porous ZrB{sub 2}-SiC ceramic composites by using an ytterbium fibre laser was conducted. Oxidation of ceramic substrates through this process under ambient conditions has certain advantages compared to the classical oxidation method. A particular spiral laser pattern was created in order to produce an oxidized structure on ZrB{sub 2}-SiC porous substrates. The laser parameters were as follows i.e., laser power of 50, 60 and 70 W, a beam diameter of 1.25 mm, velocity of 2 mm/s, acceleration and deceleration of 1 mm/s{sup 2}. The microstructural and morphological changes in the laser-treated region was examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. At laser power of 70 W, the sample exhibits uniform oxidation. It revealed that the very porous bulk beneath remained unaffected and unoxidized because this laser-formed oxide scale protects the substrate from oxidation. The presence of oxidized and unaffected regions indicated a high degree of heat localization. The dense glassy SiO{sub 2}-rich layer prevents the inward oxygen diffusion into the inner bulk hence enhances the oxidation resistance.

  4. Development of high temperature resistant ceramic matrix composites based on SiC- and novel SiBNC-fibres; Entwicklung hochtemperaturbestaendiger keramischer Faserverbundwerkstoffe auf der Basis von SiC- und neuartigen SiBNC-Fasern

    Energy Technology Data Exchange (ETDEWEB)

    Daenicke, Enrico

    2014-10-01

    Novel ceramic fibres in the quaternary system Si-B-C-N exhibit excellent high temperature stability and creep resistance. In th is work it was investigated, to what extent these outstanding properties of SiBNC-fibres can be transferred into ceramic matrix composites (CMC) in comparison to commercial silicon carbide (SiC) fibres. For the CMC development the liquid silicon infiltration (LSI) as well as the polymer infiltration and pyrolysis process (PIP) was applied. Extensive correlations between fibre properties, fibre coating (without, pyrolytic carbon, lanthanum phosphate), process parameters of the CMC manufacturing method and the mechanical and microstructural properties of the CMC before and after exposure to air could be established. Hence, the potential of novel CMCs can be assessed and application fields can be derived.

  5. Synthesis and characterization of polyaluminocarbosilane as SiC ceramic precursor

    Institute of Scientific and Technical Information of China (English)

    余煜玺; 李效东; 曹峰; 冯春祥

    2004-01-01

    Polyaluminocarbosilane (PACS) was synthesized by the reaction of aluminum acetylacetonate(Al(AcAc)3) with polysilacarbosilane (PSCS), which was prepared by thermolysis and condensation of polydimeth-ylsilane (PDMS). The sublimation of Al(AcAc)3 could be avoided by the use of PSCS as reactant. The empiricalformula of PACS was SiC2.01 H7. 66 O0.13 Al0.02, which has the relative molecular mass of 2 265. When the reaction ofPSCS with Al(AcAc)3 proceeds, an enormous decrease in the number of Si-H bonds in PSCS is observed, at thesame time, gas acetylacetonate is a by-product of the reaction based on the ligands of Al(AcAc)3. The reactionmechanism is found to be related to the increase in the molecular mass of PACS by the cross-linking reaction ofSi-H bonds in PSCS with Al(AcAc)3, which leads to the formation of Si-Al bonds.

  6. Probabilistic Failure Analysis for Wound Composite Ceramic Cladding Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Lara-Curzio, Edgar [ORNL

    2013-01-01

    Advanced ceramic matrix composites based on silicon carbide (SiC) are being considered as candidate material systems for nuclear fuel cladding in light water reactors. The SiC composite structure is considered due to its assumed exceptional performance under accident scenarios, where its excellent high-temperature strength and slow reaction kinetics with steam and associated mitigated hydrogen production are desirable. The specific structures of interest consist of a monolithic SiC cylinder surrounded by interphase-coated SiC woven fibers in a tubular form and infiltrated with SiC. Additional SiC coatings on the outermost surface of the assembly are also being considered to prevent hydrothermal corrosion of the fibrous structure. The inner monolithic cylinder is expected to provide a hermetic seal to contain fission products under normal conditions. While this approach offers the promise of higher burn-up rates and safer behavior in the case of LOCA events, the reliability of such structures must be demonstrated in advance. Therefore, a probability failure analysis study was performed of such monolithic-composite hybrid structures to determine the feasibility of these design concepts. This analysis will be used to predict the future performance of candidate systems in an effort to determine the feasibility of these design concepts and to make future recommendations regarding materials selection.

  7. Ceramic Technology Project database: September 1990 summary report. [SiC, SiN, whisker-reinforced SiN, ZrO-toughened aluminas, zirconias, joints

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1992-06-01

    Data generated within the Ceramic Technology Project (CTP) represent a valuable resource for both research and industry. The CTP database was created to provide easy access to this information in electronic and hardcopy forms by using a computerized database and by issuing periodic hardcopy reports on the database contents. This report is the sixth in a series of semiannual database summaries and covers recent additions to the database, including joined brazed specimen test data. It covers 1 SiC, 34 SiN, 10 whisker-reinforced SiN, 2 zirconia-toughened aluminas, 8 zirconias, and 34 joints.

  8. Defects annihilation behavior of neutron-irradiated SiC ceramics densified by liquid-phase-assisted method after post-irradiation annealing

    Directory of Open Access Journals (Sweden)

    Mohd Idzat Idris

    2016-12-01

    Full Text Available Numerous studies on the recovery behavior of neutron-irradiated high-purity SiC have shown that most of the defects present in it are annihilated by post-irradiation annealing, if the neutron fluence is less than 1×1026 n/m2 (>0.1MeV and the irradiation is performed at temperatures lower than 973K. However, the recovery behavior of SiC fabricated by the nanoinfiltrated and transient eutectic phase (NITE process is not well understood. In this study, the effects of secondary phases on the irradiation-related swelling and recovery behavior of monolithic NITE-SiC after post-irradiation annealing were studied. The NITE-SiC specimens were irradiated in the BR2 reactor at fluences of up to 2.0–2.5×1024 n/m2 (E>0.1MeV at 333–363K. This resulted in the specimens swelling up ∼1.3%, which is 0.1% higher than the increase seen in concurrently irradiated high-purity SiC. The recovery behaviors of the specimens after post-irradiation thermal annealing were examined using a precision dilatometer; the specimens were heated at temperatures of up to 1673K using a step-heating method. The recovery curves were analyzed using a first-order model, and the rate constants for each annealing step were obtained to determine the activation energy for volume recovery. The NITE-A specimen (containing 12 wt% sintering additives recovered completely after annealing at ∼1573K; however, it shrank because of the volatilization of the oxide phases at 1673K. The NITE-B specimen (containing 18wt% sintering additives did not recover fully, since the secondary phase (YAG was crystallized during the annealing process. The recovery mechanism of NITE-A SiC was based on the recombination of the C and Si Frenkel pairs, which were very closely sited or only slightly separated at temperatures lower than 1223K, as well as the recombination of the slightly separated C Frenkel pairs and the migration of C and Si interstitials at temperatures of 1223–1573K. That is to say, the

  9. Effect of Nano-ZrO2 on Microstructure and Thermal Shock Behaviour of Al2O3/SiC Composite Ceramics Used in Solar Thermal Power

    Institute of Scientific and Technical Information of China (English)

    XU Xiaohong; JIAO Guohao; WU Jianfeng; LENG Guanghui; FANG Binzheng; ZHAO Fang

    2011-01-01

    The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3, nano-ZrO2 and SiC powders under the condition of pressureless sintering. The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480 ℃were 3.222 g/cm3 and 160.4 MPa, respectively. The bending strength of samples after 7 times thermal shock tests (quenching from 1000 C to 25 ℃ in air medium) is 132.0 MPa, loss rate of bending strength is only 17%. The effect of nano-ZrO2 content on the microstructure and performance of A12O3-ZrO2(3Y)-SiC composite ceramic was investigated. The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased, because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive; Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.

  10. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC Materials

    Directory of Open Access Journals (Sweden)

    Roberto Orrù

    2013-04-01

    Full Text Available A wider utilization of ultra high temperature ceramics (UHTC materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS, consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step.

  11. Impact behavior of a SiC fiber-reinforced reaction bonded Si3N4 composite

    Science.gov (United States)

    Grady, J.; Bhatt, R.; Klima, S.

    1989-01-01

    Impact tests were performed on a series of ceramic plate specimens. Monolithic (unreinforced) and composite specimens with various fiber layups were tested to determine the effect that the fiber reinforcement has on impact damage initiation and dynamic response of the ceramic materials. Results show that a porous surface layer of Si3N4 on the composite specimens can enhance the energy absorbing capability of the composite specimens. The addition of SiC fiber reinforcement to the RBSN matrix material is also shown to significantly change the mode of failure and reduce the extent of damage due to impact.

  12. 1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation.

    Science.gov (United States)

    Divoky, Martin; Tokita, Shigeki; Hwang, Sungin; Kawashima, Toshiyuki; Kan, Hirofumi; Lucianetti, Antonio; Mocek, Tomas; Kawanaka, Junji

    2015-03-15

    Experimental amplification of 10-ns pulses to energy of 1 J at repetition rate of 10-100 Hz in cryogenic multipass total-reflection active-mirror (TRAM) amplifier is reported for the first time. By using a monolithic multi-TRAM, which is a YAG ceramic composite with three thin Yb:YAG active layers, efficient energy extraction was achieved without parasitic lasing. A detailed measurement of output characteristics of the laser amplifier is presented; results are discussed and compared with numerical calculations.

  13. Choque térmico em filtros cerâmicos do sistema Al2O3-SiC Thermal shock on ceramic filters in the system Al2O3-SiC

    Directory of Open Access Journals (Sweden)

    V. R. Salvini

    2002-03-01

    Full Text Available Em diversas aplicações as cerâmicas celulares são submetidas a tensões térmicas severas, tal como na filtração de metais fundidos. Contudo, há poucos estudos sobre o desempenho ao choque térmico destes materiais. Uma das razões é que a metodologia para análise desta classe de materiais deve ser distinta daquela utilizada para os materiais cerâmicos densos. Isto porque no caso dos materiais celulares para filtração de metais fundidos o meio causador do choque térmico infiltra-se rapidamente na estrutura reticular de poros, reduzindo o gradiente de temperatura entre a superfície externa e a do interior do corpo. Neste contexto, a proposta do presente trabalho é verificar os efeitos de algumas propriedades dos filtros cerâmicos em seu comportamento mecânico durante testes de choque térmico em água. As propriedades consideradas são a permeabilidade, a condutividade térmica e a área superficial específica dos filtros. Para isto foram utilizados os filtros cerâmicos do sistema de Al2O3-SiC de 8, 10, 20 e 30 ppi (poros por polegada linear.In many applications, open-cell ceramics are expected to undergo severe thermal stresses, for instance, in their use as molten metal filters. However, only a few studies have considered the thermal shock behavior of these materials. One of the main reasons is the theoretical approach used for dense ceramics which may not be valid for porous materials. In this context, the aim of this work is to analyze the effects of permeability, specific surface area and thermal conductivity on the mechanical behavior of ceramic filters subjected to water quenching tests. Al2O3-SiC filters with nominal cell sizes, expressed as the number of pores per linear inch (ppi, ranged from 8 to 30 ppi were used in the experimental tests.

  14. Reaction Induced Gelation Casting of SiC Ceramics%水解反应诱导凝胶化工艺成型碳化硅陶瓷

    Institute of Scientific and Technical Information of China (English)

    张兆泉; 谭寿洪; 江东亮

    2001-01-01

    It was found that sol-gel transition may occur to electrostatically stabilized silicon carbide suspensions when their pH values are shifted from alkaline region to neutral. SiC slips may set when they are neutralized by the hydrolysis or esters or lactones. This process was used in the forming of SiC ceramics. Rheological studies on various factors influencing the setting process by small amplitude oscillatory measurements show that the gelation of the SiC suspensions depends not only on the final pH, but also on the initial pH and the pH-shifting rates of the systems. These effects indicate that this solidification is not a simple coagulation process but a gelation process that takes place by forming Si-O-Si bonds between the particles. SiC ceramic green bodies with complex shapes were prepared with this method.%发现静电稳定的碳化硅浆料在碳化硅粉体表面的无定形氧化硅层的影响下,可以象氧化硅溶胶一样发生溶胶-凝胶转变,并将这一发现用于碳化硅陶瓷的成型。通过预先加入的酯或内酯的水解反应,把浆料的pH值从碱性区降至有利于凝胶的中性区,体系发生固化。 利用小幅震荡剪切技术对影响固化过程的各种因素进行研究表明,固化速度及固化强度不仅依赖于体系最终的pH值,还取决于体系最初的pH值以及pH值变化的速度。这些影响因素说明,体系的固化不是一个简单的凝聚的过程,而是一个凝胶的过程,浆料的固化是碳化硅颗粒间形成Si-O-Si键的结果。

  15. Effects of neutron irradiation on glass ceramics as pressure-less joining materials for SiC based components for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M., E-mail: monica.ferraris@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Casalegno, V.; Rizzo, S.; Salvo, M. [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Van Staveren, T.O. [NRG (Nuclear Research and Consultancy Group) Petten (Netherlands); Matejicek, J. [Institute of Plasma Physics, Prague (Czech Republic)

    2012-10-15

    This paper reports on the microstructure and properties of two glass-ceramics based on SiO{sub 2}-Al{sub 2}O{sub 3}-MgO (SAMg) and SiO{sub 2}-Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} (SAY), which have been designed to be used as pressure-less low activation joining materials for SiC/SiC and SiC based components for nuclear applications. Glass-ceramic pellets (SAY and SAMg) were irradiated for approximately 1 year in the reactor core of the LVR-15 research reactor at Nuclear Research Institute Rez, Czech Republic, at about 50 Degree-Sign C, 6.92 Multiplication-Sign 10{sup 24} n/m{sup 2} (E > 1 MeV, about 1 dpa in steel); SiC/SiC composites joined by SAY were irradiated about 1 year at High Flux Reactor (HFR), Petten, The Netherlands, 550 Degree-Sign C, 9-11 Multiplication-Sign 10{sup 24} n/m{sup 2} (E > 1 MeV, about 1.4-1.8 dpa in C), 600 Degree-Sign C, 16-22 Multiplication-Sign 10{sup 24} n/m{sup 2} (E > 1 MeV, about 2.6-3.3 dpa in C) and 820 Degree-Sign C 31-32 Multiplication-Sign 10{sup 24} n/m{sup 2}(E > 1 MeV, about 5 dpa in C). Optical microscopy with image analysis and scanning electron microscopy (SEM) with X-ray microanalysis (EDS) were used to investigate the glass-ceramics morphology and composition, showing a remarkable similarity before and after neutron irradiation for both glass-ceramics. Comparison of bending strength for irradiated and non-irradiated SAY joined SiC/SiC indicate that the mechanical strength is unaffected by irradiation at these conditions.

  16. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  17. Recent advances in Nicalon ceramic fibres including Hi-Nicalon types; Recentes decouvertes sur les fibres SiC Nicalon, en particulier la fibre Hi-Nicalon type S

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, H. [Nippon Carbon Co., Ltd., Chuo-kue, Tokyo (Japan)

    2000-11-01

    Polymer-derived Nicalon SiC fiber produced commercially has been widely applied in high temperature Ceramic Matrix Composites (CMCs). Recently, SiC fiber with a low oxygen content (Hi-Nicalon) was developed and produced commercially using an electron beam curing. This fiber has a higher elastic modulus and creep resistance, and much higher thermal stability up to 1600 deg. C than that of Nicalon fiber. High temperature mechanical properties of CMCs with Hi-Nicalon have much improved. However, creep and oxidation resistance of Hi-Nicalon CMCs are not satisfactory for high temperature structural materials, because Hi-Nicalon mainly consists of SiC micro-crystals and excess carbon. Therefore, we have developed an SiC fiber (Hi--Nicalon type S) with stoichiometric SiC composition and high crystallinity. Hi-Nicalon S fiber has high elastic modulus (420 GPa), good oxidation resistance at 1400 deg. C, and excellent creep resistance. In this paper, the recent development of these oxygen free SiC fibres including physical and mechanical properties, thermal stability and an environmental resistance are reported. (author)

  18. Full-mouth rehabilitation with monolithic CAD/CAM-fabricated hybrid and all-ceramic materials: A case report and 3-year follow up.

    Science.gov (United States)

    Selz, Christian F; Vuck, Alexander; Guess, Petra C

    2016-02-01

    Esthetic full-mouth rehabilitation represents a great challenge for clinicians and dental technicians. Computer-aided design/ computer-assisted manufacture (CAD/CAM) technology and novel ceramic materials in combination with adhesive cementation provide a reliable, predictable, and economic workflow. Polychromatic feldspathic CAD/CAM ceramics that are specifically designed for anterior indications result in superior esthetics, whereas novel CAD/CAM hybrid ceramics provide sufficient fracture resistance and adsorption of the occlusal load in posterior areas. Screw-retained monolithic CAD/CAM lithium disilicate crowns (ie, hybrid abutment crowns) represent a reliable and time- and cost-efficient prosthetic implant solution. This case report details a CAD/CAM approach to the full-arch rehabilitation of a 65-year-old patient with toothand implant-supported restorations and provides an overview of the applied CAD/CAM materials and the utilized chairside intraoral scanner. The esthetics, functional occlusion, and gingival and peri-implant tissues remained stable over a follow-up period of 3 years. No signs of fractures within the restorations were observed.

  19. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  20. Creep deformation of grain boundary in a highly crystalline SiC fibre.

    Science.gov (United States)

    Shibayama, Tamaki; Yoshida, Yutaka; Yano, Yasuhide; Takahashi, Heishichiro

    2003-01-01

    Silicon carbide (SiC) matrix composites reinforced by SiC fibres (SiC/SiC composites) are currently being considered as alternative materials in high Ni alloys for high-temperature applications, such as aerospace components, gas-turbine energy-conversion systems and nuclear fusion reactors, because of their high specific strength and fracture toughness at elevated temperatures compared with monolithic SiC ceramics. It is important to evaluate the creep properties of SiC fibres under tensile loading in order to determine their usefulness as structural components. However, it would be hard to evaluate creep properties by monoaxial tensile properties when we have little knowledge on the microstructure of crept specimens, especially at the grain boundary. Recently, a simple fibre bend stress relaxation (BSR) test was introduced by Morscher and DiCarlo to address this problem. Interpretation of the fracture mechanism at the grain boundary is also essential to allow improvement of the mechanical properties. In this paper, effects of stress applied by BSR test on microstructural evolution in advanced SiC fibres, such as Tyranno-SA including small amounts of Al, are described and discussed along with the results of microstructure analysis on an atomic scale by using advanced microscopy.

  1. Sintering Manufacture Process Research on Special Ceramics Fe—Si3N4 Bonded SiC

    Institute of Scientific and Technical Information of China (English)

    PENGDayan; ZHANGYong

    2003-01-01

    By the method of TG-DSC (thermo gravimetric analysis-differential scanning calorimeter), the chemical reactions of Fe-Si3N4 bonded SiC during the sintering process in nitriding furnace have been studied. Analyses have been conducted on the reason of disintegration of specimens when ferro-silicon was added greater than 15% and on the method to reduce damage. The result indicated that there are mainly three important reactions occurred during the nitriding process of samples, they are: the oxidation of carbon, the melting of ferro-silicon and the nitriding of feero-silicon. Controlling the balance of partial pressure of N2 and slowing down the rate of temperature rising can reduce the disintegration of samples.

  2. Sintering Manufacture Process Research on Special Ceramics Fe-Si3N4 Bonded SiC

    Institute of Scientific and Technical Information of China (English)

    PENG Dayan; ZHANG Yong

    2003-01-01

    By the method of TG-DSC ( thermo gravimetric analysis -differential scanning calorimeter), the chemical reactions of Fe -Si3 N4 bonded SiC during the sintering process in nitriding furnace have been studied. Analyses have been conducted on the reason of disintegration of specimens when ferro-silicon was added greater than 15% and on the method to reduce damage. The result indicated that there are mainly three important reactions occurred during the nitriding process of samples, they are: the oxidation of carbon, the melting of ferro-silicon and the nitriding of ferro -silicon. Controlling the balance of partial pressure of N2 and slowing down the rate of temperature rising can reduce the disintegration of samples.

  3. High frequency characteristic of a monolithic 500 °C OpAmp-RC integrator in SiC bipolar IC technology

    Science.gov (United States)

    Tian, Ye; Zetterling, Carl-Mikael

    2017-09-01

    This paper presents a comprehensive investigation of the frequency response of a monolithic OpAmp-RC integrator implemented in a 4H-SiC bipolar IC technology. The circuits and devices have been measured and characterized from 27 to 500 °C. The devices have been modelled to identify that the substrate capacitance is a dominant factor affecting the OpAmp's high-frequency response. Large Miller compensation capacitors of more than 540 pF are required to ensure stability of the internal OpAmp. The measured unit-gain-bandwidth product of the OpAmp is ∼1.1 MHz at 27 °C, and decreases to ∼0.5 MHz at 500 °C mainly due to the reduction of the transistor's current gain. On the other hand, it is not necessary to compensate the integrator in a relatively wide bandwidth ∼0.7 MHz over the investigated temperature range. At higher frequencies, the integrator's frequency response has been identified to be significantly affected by that of the OpAmp and load impedance. This work demonstrates the potential of this technology for high temperature applications requiring bandwidths of several megahertz.

  4. Liquid phase sintered SiC ceramics from starting materials of different grade Cerâmicas à base de SiC sinterizadas via fase líquida a partir de matérias-primas de diferentes purezas

    Directory of Open Access Journals (Sweden)

    V. A. Izhevskyi

    2004-09-01

    Full Text Available Possibility of high performance ceramics manufactured from commercial SiC powder of technical grade has been shown. Sintering behavior and microstructure formation under conditions of liquid phase sintering (LPS with oxynitride sintering aids (AlN-Y2O3 of three SiC-based compositions have been investigated. Two of the compositions were based on Alcoa 1000 SiC powder of technical grade, and the third one, which was used as a reference, was based on H.C. Starck UF-15 fine grade commercial powder. Milling process used for Alcoa 1000 SiC powder granulometry improvement has been investigated in detail, while chemical treatment of milled SiC powders has been used for pick-up impurities removal. Dilatometric experiments showed that SiC powder of technical grade after appropriate treatment exhibits sinterability comparable with the fine grade SiC. Microstructural investigations performed on sintered samples showed that the final microstructure of the Alcoa 1000 SiC based materials was practically identical with the H.C. Starck SiC based reference ones. Preliminary investigations of hardness and fracture toughness were carried out revealing excellent results for the materials produced from cheaper, nationally produced starting powder.Neste trabalho é apresentada a possibilidade de obtenção de cerâmicas de SiC de alto desempenho a partir de matéria-prima comercial de grau técnico. Foi realizado o estudo de sinterização via fase líquida e desenvolvimento microestrutural de três composições à base de SiC tendo como aditivos de sinterização AlN e Y2O3 . Duas destas composições são à base de SiC-1000 da Alcoa, grau técnico, e a terceira, utilizada como referência, à base do UF-15 da H.C. Starck - Alemanha, pó comercial de granulometria fina. O processo de moagem do pó SiC-1000 da Alcoa foi acompanhado por medidas de distribuição granulométrica e posterior ataque químico, para remoção de impurezas. Os pós de grau técnico, ap

  5. Analysis of neutron irradiation effects on thermal conductivity of SiC-based composites and monolithic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Senor, D.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    After irradiation of a variety of SiC-based materials to 33 or 43 dpa-SiC at 1000{degrees}C, their thermal conductivity values were degraded and became relatively temperature independent, which indicates that the thermal resistivity was dominated by point defect scattering. The magnitude of irradiation-induced conductivity degradation was greater at lower temperatures and typically was larger for materials with higher unirradiated conductivity. From these data, a K{sub irr}/K{sub unirr} ratio map which predicts the expected equilibrium thermal conductivity for most SiC-based materials as a function of irradiation temperature was derived. Due to a short-term EOC irradiation at 575{degrees} {+-} 60{degrees}C, a duplex irradiation defect structure was established. Based on an analysis of the conductivity and swelling recovery after post-irradiation anneals for these materials with the duplex defect structure, several consequences for irradiating SiC at temperatures of 1000{degrees}C or above are given. In particular, the thermal conductivity degradation in the fusion relevant 800{degrees}-1000{degrees}C temperature range may be more severe than inferred from SiC swelling behavior.

  6. Spark plasma sintering and spark plasma joining of refractory ceramics

    Science.gov (United States)

    Hoefer, Jeffrey Andrew

    Consolidation of refractory ceramics such as boron carbide (B4C) and silicon carbide (SiC) by conventional sintering techniques (pressure-less sintering, hot pressing, hot isostatic pressing etc.) can prove challenging due to the high temperatures required for sintering. Typically sintering additives are used in order to decrease sintering temperature, but at the sacrifice of purity. Typically B4C requires sintering temperatures above 2000°C without the use of additives, while SiC is generally considered not sinterable without additives, and requires temperatures above 2000°C even with additives. Spark Plasma Sintering (SPS) has emerged as a technology that can reduce the sintering temperature considerably compared to more conventional techniques. The simultaneous application of pressure, heat, and current can reduce sintering temperatures without the use of sintering aids to 1600°C and 2000°C for boron carbide and silicon carbide respectively. One shortcoming of SPS, however, is the difficulty in producing complex shapes. Therefore, for carbide materials such as B4C and SiC, which are difficult to machine, the ability to produce complex shapes is worthy of investigation. One means of creating complex shapes is by joining simple shapes. Joining of monolithic ceramics, in particular SiC, has been achieved, however in all cases an intermediate joining material is used (Ti foil, Silica Powder etc.). Joining of materials using SPS, or as it is called, Spark Plasma Joining, can eliminate the need for an intermediate joining material, producing a high purity and high strength joint. This study investigates SPS of 3 different B4C Powders, as well as SPS joining of simple shape monolithic SiC. Sintering parameters such as temperature, pressure, time, and heating rate are all considered. Influence of sintering parameters on density, grain size, mechanical strength, and joint quality is investigated in detail.

  7. Synthesis and characterization of AA 6061- Graphene - SiC hybrid nanocomposites processed through microwave sintering

    Science.gov (United States)

    Jauhari, Siddhartha; Prashantha Kumar, H. G.; Xavior, . M. Anthony

    2016-09-01

    As one of the most essential industrial and engineering materials, Aluminum alloy 6061 have been extensively used in automobile industries and many engineering applications due to its impending properties like low density, good structural rigidity, feasibility to incorporate and enhance the strength by addition of various reinforcing materials. The essential criteria in enhancing the properties without sacrificing the ductility is always challenging in Aluminum and its alloys based composites. In the recent years, enormous research has been carried on ceramic based and carbon based reinforcement materials used in Aluminum metal matrix composites. But the combination of both is never tried so far due to lack of processing methods. The current research work is carried out to process, synthesize and perform the characterization of Al 6061 matrix nanocomposites with Graphene of flake size 10 μm and SiC of particle size 10 pm as reinforcement combinations in various proportions (weight percentage) which are carried out through powder metallurgy (PM) approach. The powders are processed through ultrasonic liquid processing method and the mixtures were ball milled by adding SiC particles followed by uniaxial hot compaction. Thus prepared compacts are sintered (conventional and microwave) and mechanical properties like hardness, density are investigated as a function of Graphene and SiC concentrations (weight fraction). Relevant strengthening mechanism involved in the Al6061 - Graphene -SiC composites in comparison with monolithic Al 6061 alloy were discussed.

  8. Preparation of Hollow SiC Ceramic Microspheres With Drop-tower Technique%炉内成球法制备SiC空心陶瓷微球

    Institute of Scientific and Technical Information of China (English)

    李婧; 冯建鸿; 肖建建; 刘一杨; 李洁; 张占文; 李波

    2014-01-01

    采用干凝胶法,以聚碳硅烷(PCS )为原料,通过炉内成球技术制备了SiC空心陶瓷微球。并利用TG、IR、SEM、XRD等方法对陶瓷微球进行了成键结构、表面形貌等分析,讨论了有机聚合物的陶瓷化过程机理。结果表明,干凝胶成球技术能利用经纯化处理的聚碳硅烷在500~600℃下得到SiC空心陶瓷微球,采用乙醇作为发泡剂可使 PCS凝胶粒子得到良好发泡效果,提高载气中氦气含量至50%~80%可提高干凝胶粒子在吸热阶段的升温速率,微球经辐照后在850℃下碳化生成以β-SiC为主要相结构的球壳,球壳具有较好的表面平整度。%SiC ceramic microspheres were fabricated by drop-tower technique at low tem-perature using polycarbosilane (PCS ) as raw material . T he as-prepared microspheres were characterized by TG ,IR ,SEM and XRD .The reaction mechanism of organic poly-mer and the effects of process parameters (composition of furnace atmosphere and tem-perature) were investigated .The results show that ethanol as a blowing agent has a high blowing efficiency ,and the content of helium gas in the furnace atmosphere ranging rising to 50%-80% can increase the heating-up rate of gel particles in heat-absorbing stage .The high sphericity morphology is obtained at 500-600 ℃ .Moreover ,the SEM spectra indicate that irradiation can increase the surface finish quality and evenness of hollow SiC ceramic microspheres .

  9. Corrosion Issues for Ceramics in Gas Turbines

    Science.gov (United States)

    Jacobson, Nathan; Opila, Elizabeth; Nickel, Klaus G.

    2004-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Over the past forty years, a wealth of information on the behavior of ceramic materials in heat engine environments has been obtained. In the first part of the talk we summarize the behavior of monolithic SiC and Si3N4. These materials show excellent baseline behavior in clean, oxygen environments. However the aggressive components in a heat engine environment such as water vapor and salt deposits can be quite degrading. In the second part of the talk we discuss SiC-based composites. The critical issue with these materials is oxidation of the fiber coating. We conclude with a brief discussion of future directions in ceramic corrosion research.

  10. Corrosion Issues for Ceramics in Gas Turbines

    Science.gov (United States)

    Jacobson, Nathan; Opila, Elizabeth; Nickel, Klaus G.

    2004-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Over the past forty years, a wealth of information on the behavior of ceramic materials in heat engine environments has been obtained. In the first part of the talk we summarize the behavior of monolithic SiC and Si3N4. These materials show excellent baseline behavior in clean, oxygen environments. However the aggressive components in a heat engine environment such as water vapor and salt deposits can be quite degrading. In the second part of the talk we discuss SiC-based composites. The critical issue with these materials is oxidation of the fiber coating. We conclude with a brief discussion of future directions in ceramic corrosion research.

  11. Development of Boron-Containing Silicon Carbide Precursor for Ceramic Fibers%纤维用含硼 SiC 陶瓷先驱体的研究进展

    Institute of Scientific and Technical Information of China (English)

    朱旖华; 王浩; 邵长伟

    2013-01-01

    综述了硅硼碳(SiBC)先驱体、硅硼碳氧(SiBCO)先驱体和硅硼碳氮(SiBCN)先驱体等纤维用含硼碳化硅( SiC)陶瓷先驱体的合成方法,分析了不同陶瓷先驱体的组成、结构和性能,比较了几种合成含硼SiC先驱体方法的优缺点,提出了纤维用含硼SiC陶瓷先驱体的合成新思路。%The present paper gives an overview of the synthesis strategies from the polymeric precursors which are used to prepare boron-containing SiC ceramic fibers , such as SiBC , SiBCO and SiBCN .The struc-tures and the properties of the derived fibers are discussed , and the advantage and disadvantage of the different methods for synthesizing boron-containing silicon carbide precursor are compared .A novel route for preparing boron-containing SiC ceramic precursor is proposed .

  12. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Thermal and Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roosendaal, Timothy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shin, Yongsoon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Borlaug, Brennan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jiang, Weilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-01

    SiC-polymers (pure polycarbosilane and polycarbosilane filled with SiC-particles) are being combined with Si and TiC powders to create a new class of polymer-derived ceramics for consideration as advanced nuclear materials in a variety of applications. Compared to pure SiC these materials have increased fracture toughness with only slightly reduced thermal conductivity. Future work with carbon nanotube (CNT) mats will be introduced with the potential to increase the thermal conductivity and the fracture toughness. At present, this report documents the fabrication of a new class of monolithic polymer derived ceramics, SiC + SiC/Ti3SiC2 dual phase materials. The fracture toughness of the dual phase material was measured to be significantly greater than Hexoloy SiC using indentation fracture toughness testing. However, thermal conductivity of the dual phase material was reduced compared to Hexoloy SiC, but was still appreciable, with conductivities in the range of 40 to 60 W/(m K). This report includes synthesis details, optical and scanning electron microscopy images, compositional data, fracture toughness, and thermal conductivity data.

  13. Ultrahigh-Temperature Ceramics

    Science.gov (United States)

    Johnson, Sylvia M.; Ellerby, Donald T.; Beckman, Sarah E.; Irby, Edward; Gasch, Matthew J.; Gusman, Michael I.

    2007-01-01

    Ultrahigh temperature ceramics (UHTCs) are a class of materials that include the diborides of metals such as hafnium and zirconium. The materials are of interest to NASA for their potential utility as sharp leading edges for hypersonic vehicles. Such an application requires that the materials be capable of operating at temperatures, often in excess of 2,000 C. UHTCs are highly refractory and have high thermal conductivity, an advantage for this application. UHTCs are potentially applicable for other high-temperature processing applications, such as crucibles for molten-metal processing and high-temperature electrodes. UHTCs were first studied in the 1960 s by the U.S. Air Force. NASA s Ames Research Center concentrated on developing materials in the HfB2/SiC family for a leading-edge application. The work focused on developing a process to make uniform monolithic (2-phase) materials, and on the testing and design of these materials. Figure 1 shows arc-jet models made from UHTC materials fabricated at Ames. Figure 2 shows a cone being tested in the arc-jet. Other variations of these materials being investigated elsewhere include zirconium based materials and fiber-reinforced composites. Current UHTC work at Ames covers four broad topics: monoliths, coatings, composites, and processing. The goals include improving the fracture toughness, thermal conductivity and oxidation resistance of monolithic UHTCs and developing oxidation-resistant UHTC coatings for thermal-protection-system substrates through novel coating methods. As part of this effort, researchers are exploring compositions and processing changes that have yielded improvements in properties. Computational materials science and nanotechnology are being explored as approaches to reduce materials development time and improve and tailor properties.

  14. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  15. Fabrication and Measurements of Hoop Strength of a Multi-Layered SiC Composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejong; Lee, Jongmin; Kim, Weon Ju; Park, Ji Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the influence of the winding patterns of the SiC fiber on the fiber volume fraction and hoop strength were investigated. Silicon carbide has a low neutron absorption cross section, a high melting point, and low chemical interaction, making it possible to use as fuel cladding in light water reactors. A multi-layered SiC composite tube as the LWR fuel cladding is composed of the monolith SiC inner layer, SiC/SiC composite intermediate layer, and monolith SiC outer layer.

  16. Compact monolithic capacitive discharge unit

    Science.gov (United States)

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  17. SiC基太阳能热发电吸热陶瓷制备及热性能分析%Preparation and Thermal Properties of SiC Based Solar Heat Absorbing Ceramic

    Institute of Scientific and Technical Information of China (English)

    吴建锋; 刘孟; 徐晓虹; 张亚祥; 劳新斌; 李坤

    2012-01-01

    A heat-absorbing material of SiC based ceramic was prepared by a pressureless sintering method. Andalusite, SiC, Kaolin clay and quartz were used as the raw materials. The bending strength, thermal expansion coefficient, thermal shock resistance, thermal conductivity, refractoriness, growth rate of oxidation mass, phase composition and mierostrueture were analyzed.The results indicate that SiC based heat absorbing ceramic with the symmetrical microstructure has a higher refractoriness, a greater thermal conductivity, a lower thermal expansion coefficient, a lower growth rate of oxidation mass and a superior thermal shock resistance as well. The sample with optimized formulation with the bending strength of 32.52 MPa and the thermal expansion coefficient of 6.32 × 10^-6℃-1 was obtained at the sintering temperature of 1460 ℃. The phase composition is ct-SiC, mullite and cristobalite. It was observed that there are many connected pores with the sizes of 10-20 μm in the sample. When the absorber material is replaced by SiC based ce- ramic, the absorber exhibits a better stability, indicating its potential applications in intermediate and high temperature absorber in tower type solar thermal power generation.%吸热材料是塔式太阳能热发电中的核心部件,其热性能起着至关重要的作用。本工作研究了以红柱石、SiC、高岭土以及石英为原料,采用陶瓷制备工艺无压烧结制备 SiC 基吸热陶瓷。测试和分析了烧结样品的抗折强度、热膨胀系数、抗热震性、热导率、耐火度、氧化增重率、物相组成以及显微结构。结果表明:SiC 基吸热陶瓷样品具有高耐火度和热导率、低热膨胀系数和氧化增重率以及良好的抗热震性和均匀的微观结构。经 1460℃烧结后,最佳配方样品的抗折强度为 32.52 MPa、热膨胀系数为 6.32 × 10–6℃–1、30 次热震无裂纹且强度增加率为 11.15%、室温热导率为 10.03W/

  18. 气体静压轴承用多孔SiC陶瓷的制备及静态性能%Preparation and Static Properties of Porous SiC Ceramic as Aerostatic Bearing

    Institute of Scientific and Technical Information of China (English)

    于雪梅

    2011-01-01

    以α-SiC和β-SiC粉末为原料,羧甲基纤维素为造孔剂,制备了多孔SiC陶瓷.探讨了烧结温度、成型压力和造孔剂含量对SiC陶瓷的气孔率、显气孔率以及弯曲强度的影响,研究了用不同渗透率的多孔SiC陶瓷制备气体静压轴承的承载能力和静态刚度.结果表明:在高温下,β-SiC转变为α-SiC,同时,通过α-SiC的蒸发-凝聚过程实现了SiC陶瓷的烧结,并形成无收缩自结合结构;试样的气孔率和显气孔率随烧结温度和成型压力的增加而略有降低,但弯曲强度却增大;造孔剂含量越高,试样的气孔率和显气孔率越大,弯曲强度越低.添加质量分数为10%的造孔剂,经250 MPa冷等静压成型,在2 400℃下制备的试样气孔率和显气孔率分别为28.91%和24.03%,渗透率为7.74×10-13 m2,弯曲强度为63.8 MPa.因此,多孔siC陶瓷的渗透率越低,利用它制备的气体静压轴承的承载能力越低,静态刚度就越高.%Porous SiC ceramics were prepared with α-SiC and β-SiC powders, and carboxymethyl cellulose(CMC) as the pore entraining agent. The porosity, open porosity, and the flexural strength as functions of sintering temperatures, shaping pressures, and pore entraining agent content were investigated. The load capacity and the static stiffness of aerostatic bearing assembled by porous SiC ceramics with different permeability were studied. The results show that porous SiC ceramic is able to be prepared when the β-SiC converts to α-SiC by the aggregates connection in high temperature range. The porosity and the open porosity decrease and the flexural strength increases with increasing sintering temperatures and shaping pressures. The porosity and the open porosity increases and the flexural strength decreases with increase of pore entraining agent content. For the sample with 10% (mass fraction) CMC prepared at 250 MPa and 2 400 ℃, the porosity and open porosity get respectively 28.91% and 24.03%, the

  19. Defects annihilation behavior of neutron-irradiated SiC ceramics densified by liquid-phase-assisted method after post-irradiation annealing

    National Research Council Canada - National Science Library

    Idris, Mohd Idzat; Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko

    2016-01-01

    Numerous studies on the recovery behavior of neutron-irradiated high-purity SiC have shown that most of the defects present in it are annihilated by post-irradiation annealing, if the neutron fluence is less than 1×1026 n/m2 (>0.1MeV...

  20. THE OPTIMAL STRUCTURE DESIGN FOR THE SUPPORT PLATE OF Tl3SiC2/Al2O3 CERAMIC MATRIX COMPOSITE%Ti3SiC2/Al2O3陶瓷基复合材料支护托板结构优化设计

    Institute of Scientific and Technical Information of China (English)

    马永忠; 林金保; 吴烽华; 王超; 崔小朝

    2013-01-01

    Based on ANSYS optimization design basic theory,used ANSYS software for simulation analysis,the paper made structure optimization design for the support plate of Ti3SiC2/Al2O3 ceramic matrix composites,and finally got the mine support plate which met the required strength,easy molding and low cost.The paper also provides the basis for the optimization design of support plate in engineering.%本文以ANSYS优化设计基本理论为基础,以ANSYS为模拟分析软件,通过对Ti3SiC2/A12O3陶瓷基复合材料支护托板进行结构优化设计,最终得到满足强度要求、容易成型、且成本较低的矿用支护托板.为工程上的支护托板的优化设计提供了依据.

  1. Correlação entre permeabilidade e resistência mecânica de filtros cerâmicos no sistema Al2O3-SiC Relationship between permeability and mechanical strength of Al2O3-SiC ceramic filters

    Directory of Open Access Journals (Sweden)

    V. R. Salvini

    2000-06-01

    Full Text Available Tem sido crescente o uso de cerâmicas reticulares em processos de refino e purificação de metais fundidos, filtração de gases quentes e combustão catalítica. A aplicação depende da composição química e das propriedades físicas do material (número de poros por polegada linear (ppi, porosidade e diâmetro de poro. Há um consenso de que a melhoria das propriedades dos filamentos resulta em um melhor desempenho mecânico do filtro cerâmico. Entretanto, a análise dos valores de resistência mecânica não pode ser considerada isoladamente, uma vez que para filtros cerâmicos esta tem que estar associada à permeabilidade. Neste trabalho é feita uma análise entre as propriedades fluidodinâmicas e mecânicas de filtros cerâmicos no sistema Al2O3-SiC na faixa de 8 a 90 ppi. Os resultados obtidos permitem considerações tanto no aspecto do processamento cerâmico quanto no modelamento mecânico apresentado na literatura.Reticulate ceramics have been increasingly employed in purification of gases, liquid metals and in catalytic processes. The application area usually depends on the chemical composition and the physical properties (porosity, pore size and pore counting (ppi. In most cases, reticulate ceramics are submitted to compression loads at high temperatures, which makes the durability of these cellular materials be ultimately related to the mechanical quality of the struts. In filtration applications, it is also important the evaluation of fluid dynamic properties of the ceramic, specifically its permeability to fluid flow. In this work, a relationship between mechanical properties and permeability constants of Al2O3-SiC ceramic foam filters with 8 to 90 ppi is presented. Results were associated with the processing technique and with the mechanical modeling presented in the literature.

  2. Radiation-tolerant joining technologies for silicon carbide ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai, E-mail: katohy@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Snead, Lance L.; Cheng, Ting; Shih, Chunghao; Lewis, W. Daniel [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Koyanagi, Takaaki; Hinoki, Tatsuya [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Henager, Charles H. [Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States); Ferraris, Monica [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy)

    2014-05-01

    Silicon carbide (SiC) for nuclear structural applications, whether in the monolithic ceramic or composite form, will require a robust joining technology capable of withstanding the harsh nuclear environment. This paper presents significant progress made towards identifying and processing irradiation-tolerant joining methods for nuclear-grade SiC. In doing so, a standardized methodology for carrying out joint testing has been established consistent with the small volume samples mandated by neutron irradiation testing. Candidate joining technologies were limited to those that provide low induced radioactivity and included titanium diffusion bonding, Ti–Si–C MAX-phase joining, calcia–alumina glass–ceramic joining, and transient eutectic-phase SiC joining. Samples of these joints were irradiated in the Oak Ridge National Laboratory High Flux Isotope Reactor at 500 or 800 °C, and their microstructure and mechanical properties were compared to pre-irradiation conditions. Within the limitations of statistics, all joining methodologies presented retained their joint mechanical strength to ∼3 dpa at 500 °C, thus indicating the first results obtained on irradiation-stable SiC joints. Under the more aggressive irradiation conditions (800 °C, ∼5 dpa), some joint materials exhibited significant irradiation-induced microstructural evolution; however, the effect of irradiation on joint strength appeared rather limited.

  3. Radiation-tolerant joining technologies for silicon carbide ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai; Snead, Lance L.; Cheng, Ting; Shih, Chunghao; Lewis, W. Daniel; Koyanagi, Takaaki; Hinoki, Tatsuya; Henager, Charles H.; Ferraris, Monica

    2014-05-01

    Silicon carbide (SiC) for nuclear structural applications, whether in the monolithic ceramic or composite form, will require a robust joining technology capable of withstanding the harsh nuclear environment. This paper presents significant progress made towards identifying and processing irradiation-tolerant joining methods for nuclear-grade SiC. In doing so, a standardized methodology for carrying out joint testing has been established consistent with the small volume samples mandated by neutron irradiation testing. Candidate joining technologies were limited to those that provide low induced radioactivity and included titanium diffusion bonding, Ti–Si–C MAX-phase joining, calcia–alumina glass–ceramic joining, and transient eutectic-phase SiC joining. Samples of these joints were irradiated in the Oak Ridge National Laboratory High Flux Isotope Reactor at 500 or 800 °C, and their microstructure and mechanical properties were compared to pre-irradiation conditions. Within the limitations of statistics, all joining methodologies presented retained their joint mechanical strength to ~3 dpa at 500 °C, thus indicating the first results obtained on irradiation-stable SiC joints. Finally, under the more aggressive irradiation conditions (800 °C, ~5 dpa), some joint materials exhibited significant irradiation-induced microstructural evolution; however, the effect of irradiation on joint strength appeared rather limited.

  4. Monolithic spectrometer

    Science.gov (United States)

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  5. Selection and Application of Evaluation Method for SiC Ceramic Membrane Materials%碳化硅质陶瓷膜材料评价方法的选择及材料评价

    Institute of Scientific and Technical Information of China (English)

    曹俊; 薛友祥; 赵世凯

    2014-01-01

    T he criterions and methodes for evaluation of SiC ceramic membrane filtration material are little in domestic .To satisfy the working condition ,the material must have good mechanical strength ,resistance to high temperature and pressure ,good pore structure and permeability .From this ,the criterions and methodes are proposed and the SiC ceramic membrane samples were tested in this manuscipt .The bending strength ,porosity ,support and seperation membrane pore size of SiC ce‐ramic membrane material can reach 18 MPa ,34% ,60microns and 17 microns ,respectively .The ther‐mal expansion coefficient of material is 5 × 10-6/k and thermal shock performance could satisfy 10 times at 1000℃ .At the space velocity of 1m/min ,the pressure difference of the material is 750 Pa . The material must have good mechanical strength ,resistance to high temperature and pressure ,good asymmetric pore structure .%国内评价高温下碳化硅质陶瓷膜材料的标准和方法较少,本文基于碳化硅陶瓷膜材料具体实际应用工况条件,就材料的强度,耐高温、高压性能,孔结构及透气性能等方面,提出了系列测试标准和方法,并进行了测试。实验测得山东工陶院生产的碳化硅质陶瓷膜材料的抗弯曲强度能够达到18M Pa ,支撑体气孔率和孔径分别为34%和60μm ,分离膜平均孔径为17μm ,材料的线胀系数在5×10-6/k ,热震性能能够满足1000℃下10次不裂,在1m/min风速下材料的初始压降为750Pa。碳化硅陶瓷膜材料具有良好强度、高温热性能和较好的孔梯度结构。

  6. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes

    Science.gov (United States)

    Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju

    2017-08-01

    Multi-layered SiC composites consisting of monolithic SiC and a SiCf/SiC composite are one of the accident tolerant fuel cladding concepts in pressurized light water reactors. To evaluate the integrity of the SiC fuel cladding under normal operating conditions of a pressurized light water reactor, the hydrothermal corrosion behavior of multi-layered SiC composite tubes was investigated in the simulated primary water environment of a pressurized water reactor without neutron fluence. The results showed that SiC phases with good crystallinity such as Tyranno SA3 SiC fiber and monolithic SiC deposited at 1200 °C had good corrosion resistance. However, the SiC phase deposited at 1000 °C had less crystallinity and severely dissolved in water, particularly the amorphous SiC phase formed along grain boundaries. Dissolved hydrogen did not play a significant role in improving the hydrothermal corrosion resistance of the CVI-processed SiC phases containing amorphous SiC, resulting in a significant weight loss and reduction of hoop strength of the multi-layered SiC composite tubes after corrosion.

  7. Development of nanoporous TiO2 and SiC membranes for membrane filtration

    DEFF Research Database (Denmark)

    König, Katja; Vigna, Erika; Farsi, Ali

    reverse osmosis membranes by ceramic counterparts would provide higher fluxes and allow more efficient cleaning of the membranes. The aim of this work was to prepare defect-free nanoporous ceramic (TiO2 and SiC) layers on macroporous SiC supports by using electrophoretic deposition and dip...

  8. Experimental study of thermo-mechanical behavior of SiC composite tubing under high temperature gradient using solid surrogate

    Science.gov (United States)

    Alva, Luis; Shapovalov, Kirill; Jacobsen, George M.; Back, Christina A.; Huang, Xinyu

    2015-11-01

    Nuclear grade silicon carbide fiber (SiCf) reinforced silicon carbide matrix (SiCm) composite is a promising candidate material for accident tolerance fuel (ATF) cladding. A major challenge is ensuring the mechanical robustness of the ceramic cladding under accident conditions. In this work the high temperature mechanical response of a SiCf-SiCm composite tubing is studied using a novel thermo-mechanical test method. A solid surrogate tube is placed within and bonded to the SiCf-SiCm sample tube using a ceramic adhesive. The bonded tube pair is heated from the center using a ceramic glower. During testing, the outer surface temperature of the SiC sample tube rises up to 1274 K, and a steep temperature gradient develops through the thickness of the tube pair. Due to CTE mismatch and the temperature gradient, the solid surrogate tube induces high tensile stress in the SiC sample. During testing, 3D digital image correlation (DIC) method is used to map the strains on the outer surface of the SiC-composite, and acoustic emissions (AE) are monitored to detect the onset and progress of material damage. The thermo-mechanical behavior of SiC-composite sample is compared with that of monolithic SiC samples. Finite element models are developed to estimate stress-strain distribution within the tube assembly. Model predicted surface strain matches the measured surface strain using the DIC method. AE activities indicated a progressive damage process for SiCf-SiCm composite samples. For the composites tested in this study, the threshold mechanical hoop strain for matrix micro-cracking to initiate in SiCf-SiCm sample is found to be ∼300 microstrain.

  9. Environmental Effects on Non-oxide Ceramics

    Science.gov (United States)

    Jacobson, Nathan S.; Opila, Elizabeth J.

    1997-01-01

    Non-oxide ceramics such as silicon carbide (SiC) and silicon nitride (Si3N4) are promising materials for a wide range of high temperature applications. These include such diverse applications as components for heat engines, high temperature electronics, and re-entry shields for space vehicles. Table I lists a number of selected applications. Most of the emphasis here will be on SiC and Si3N4. Where appropriate, other non-oxide materials such as aluminum nitride (AlN) and boron nitride (BN) will be discussed. Proposed materials include both monolithic ceramics and composites. Composites are treated in more detail elsewhere in this volume, however, many of the oxidation/corrosion reactions discussed here can be extended to composites. In application these materials will be exposed to a wide variety of environments. Table I also lists reactive components of these environments.It is well-known that SiC and Si3N4 retain their strength to high temperatures. Thus these materials have been proposed for a variety of hot-gas-path components in combustion applications. These include heat exchanger tubes, combustor liners, and porous filters for coal combustion products. All combustion gases contain CO2, CO, H2, H2O, O2, and N2. The exact gas composition is dependent on the fuel to air ratio or equivalence ratio. (Equivalence ratio (EQ) is a fuel-to-air ratio, with total hydrocarbon content normalized to the amount of O2 and defined by EQ=1 for complete combustion to CO2 and H2O). Figure 1 is a plot of equilibrium gas composition vs. equivalence ratio. Note that as a general rule, all combustion atmospheres are about 10% water vapor and 10% CO2. The amounts of CO, H2, and O2 are highly dependent on equivalence ratio.

  10. Assessment of ceramic membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H. [and others

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  11. Phase stability, swelling, microstructure and strength of Ti3SiC2-TiC ceramics after low dose neutron irradiation

    Science.gov (United States)

    Ang, Caen; Zinkle, Steven; Shih, Chunghao; Silva, Chinthaka; Cetiner, Nesrin; Katoh, Yutai

    2017-01-01

    Mn+1AXn (MAX) phase Ti3SiC2 materials were neutron irradiated at ∼400, ∼630, and 700 °C to a fluence of ∼2 × 1025 n/m2 (E > 0.1 MeV). After irradiation at ∼400 °C, anisotropic c-axis dilation of ∼1.5% was observed. Room temperature strength was reduced from 445 ± 29 MPa to 315 ± 33 MPa and the fracture surfaces showed flat facets and transgranular cracks instead of typical kink-band deformation and bridging ligaments. XRD phase analysis indicated an increase of 10-15 wt% TiC. After irradiation at ∼700 °C there were no lattice parameter changes, ∼5 wt% decomposition to TiC occurred, and strength was 391 ± 71 MPa and 378 ± 31 MPa. The fracture surfaces indicated kink-band based deformation but with lesser extent of delamination than as-received samples. Ti3SiC2 appears to be radiation tolerant at ∼400 °C, and increasingly radiation resistant at ∼630-700 °C, but a higher temperature may be necessary for full recovery.

  12. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    Science.gov (United States)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  13. Influência das condições de processamento cerâmico na resistência mecânica e na permeabilidade dos filtros de Al2O3-SiC Influence of ceramic processing on the mechanical resistance and permeability of filters in the Al2O3-SiC system

    Directory of Open Access Journals (Sweden)

    V. R. Salvini

    2002-09-01

    Full Text Available Filtros cerâmicos devem apresentar alta permeabilidade e eficiência de retenção de inclusões sólidas, além de uma boa resistência mecânica. No entanto, estas propriedades variam de modos distintos para uma determinada estrutura celular. Poros grandes aumentam a permeabilidade, mas diminuem a eficiência de retenção das inclusões. Em relação ao desempenho do filtro, a porosidade aparente apresenta alta relevância, uma vez que a resistência mecânica diminui e a permeabilidade aumenta para valores de porosidade elevados. Neste trabalho investigou-se a relação entre a resistência mecânica e a permeabilidade para filtros do sistema Al2O3-SiC de 10 ppi (poros por polegada linear. A quantidade da suspensão impregnada na esponja, durante a fabricação do filtro, foi escolhida como variável de controle, pois por meio desta modifica-se a porosidade e o tamanho de poro do filtro. Os resultados obtidos foram comparados aos de filtros de 8 a 90 ppi.Ceramic filters must present not only high permeability and particle trapping efficiency, but also suitable mechanical strength. However, these parameters are influenced in different ways by the cellular structure. Large pores favor permeability, but lower removal efficiency of small particles. Small pores, on the other hand, enhance particle collection, although the filter pressure drop increases. The porosity is also essential for determining ceramic foam performance. Mechanical strength generally decreases with increasing porosity, even though permeability is improved. In this work, the relationship between mechanical strength and permeability has been investigated for 10 ppi (pores per linear inch Al2O3-SiC filters. The amount of slurry impregnated on the organic struts walls during processing has been chosen as the control variable. The results have been compared with those obtained from cellular structures where the pore count variation ranged from 10 to 90 ppi.

  14. Synthesis of High Purity SiC Powder for High-resistivity SiC Single Crystals Growth

    Institute of Scientific and Technical Information of China (English)

    Li WANG; Xiaobu HU; Xiangang XU; Shouzheng JIANG; Lina NING; Minhua JIANG

    2007-01-01

    High purity silicon carbide (SiC) powder was synthesized in-situ by chemical reaction between silicon and carbon powder. In order to ensure that the impurity concentration of the resulting SiC powder is suitable for high-resistivity SiC single crystal growth, the preparation technology of SiC powder is different from that of SiC ceramic. The influence of the shape and size of carbon particles on the morphology and phase composition of the obtained SiC powder were discussed. The phase composition and morphology of the products were investigated by X-ray diffraction, Raman microspectroscopy and scanning electron microscopy. The results show that the composition of resulting SiC by in-situ synthesis from Si/C mixture strongly depends on the nature of the carbon source, which corresponds to the particle size and shape, as well as the preparation temperature. In the experimental conditions, flake graphite is more suitable for the synthesis of SiC powder than activated carbon because of its relatively smaller particle size and flake shape, which make the conversion more complete. The major phase composition of the full conversion products is β-SiC, with traces of α-SiC.Glow discharge mass spectroscopy measurements indicated that SiC powder synthesized with this chemical reaction method can meet the purity demand for the growth of high-resistivity SiC single crystals.

  15. Spark plasma sintering of Ti{sub y}Nb{sub 1-y}C{sub x}N{sub 1-x} monolithic ceramics obtained by mechanically induced self-sustaining reaction

    Energy Technology Data Exchange (ETDEWEB)

    Borrell, Amparo, E-mail: aborrell@upvnet.upv.es [Instituto de Tecnologia de Materiales (ITM), Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN) (Consejo Superior de Investigaciones Cientificas - Universidad de Oviedo - Principado de Asturias), Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Salvador, Maria Dolores [Instituto de Tecnologia de Materiales (ITM), Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Garcia-Rocha, Victoria [ITMA Materials Technology, Parque Tecnologico de Asturias, 33428 Llanera (Asturias) (Spain); Fernandez, Adolfo [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN) (Consejo Superior de Investigaciones Cientificas - Universidad de Oviedo - Principado de Asturias), Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); ITMA Materials Technology, Parque Tecnologico de Asturias, 33428 Llanera (Asturias) (Spain); Chicardi, Ernesto; Gotor, Francisco J. [Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Calle Americo Vespucio 49, 41092 Sevilla (Spain)

    2012-05-01

    Nanometer-sized titanium-niobium carbonitride powders (Ti{sub y}Nb{sub 1-y}C{sub x}N{sub 1-x}) with different Ti/Nb atomic ratios were obtained by a mechanically induced self-sustaining reaction, and sintered by spark plasma sintering technique at 1500 Degree-Sign C for 1 min in a vacuum atmosphere. Mechanical properties such as hardness and Young's modulus were determined by nanoindentation technique and friction and wear coefficients assessed by ball-on-disk testing using alumina ball in dry sliding conditions. The fracture surface and wear tracks of samples were examined by scanning electron microscopy. Results showed that it is possible to obtain dense monolithic ceramics from the solid solution (Ti{sub y}Nb{sub 1-y}C{sub x}N{sub 1-x}) with good mechanical properties and excellent wear resistance. The optimum values of nanomechanical properties were found for the Ti{sub 0.3}Nb{sub 0.7}C{sub 0.5}N{sub 0.5} ceramic composition, which exhibited a high hardness over 26.0 GPa and Young's modulus around 400 GPa.

  16. A Monolithic Perovskite Structure for Use as a Magnetic Regenerator

    DEFF Research Database (Denmark)

    Pryds, Nini; Clemens, Frank; Menon, Mohan

    2011-01-01

    A La0.67Ca0.26Sr0.07Mn1.05O3 (LCSM) perovskite was prepared for the first time as a ceramic monolithic regenerator used in a regenerative magnetic refrigeration device. The parameters influencing the extrusion process and the performance of the regenerator, such as the nature of the monolith paste...

  17. 三维打印结合化学气相渗透制备Si3N4-SiC复相陶瓷%Si3N4-SiC Composite Ceramic Prepared by Three Dimensional Printing and Chemical Vapor Infiltration

    Institute of Scientific and Technical Information of China (English)

    封立运; 殷小玮; 李向明

    2012-01-01

    采用三维打印(3DP)技术成型Si3N4多孔陶瓷并结合化学气相渗透( CVI) SiC制备了Si3N4-SiC复相陶瓷.研究了烧结工艺对3DP Si3N4陶瓷线收缩率和孔隙率的影响.结果表明,3DP Si3N4坯体经热解除碳后再烧结,可以获得较小的线收缩率(<6%)及较大的气孔率(77.5%).对其进行CVI SiC近尺寸强化,研究了Si3N4-SiC复相陶瓷的抗弯强度随SiC体积分数的变化规律.%Porous Si3N4 ceramics are formed by three-dimensional printing, SiC is subsequently introduced into the porous Si3N4 for consolidation by chemical vapor infiltration, thus Si3N4-SiC composite ceramics is formed. The influence of sintering process on the linear shrinkages and porosity of the 3DP Si3N4 is investigated. The sintered Si3N4 ceramics gets the smaller linear shrinkages (<6%), and bigger porosity (77.5%) after pyrolysis. Consolidation by CVI is made to these samples without changing their dimensions, the variation of the bending strength of the Si3N4-SiC composite with the volume fraction of CVI SiC is investigated.

  18. Monolithic Continuous-Flow Bioreactors

    Science.gov (United States)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  19. Tension-Tension Fatigue Behavior of Unidirectional C/Sic Ceramic-Matrix Composite at Room Temperature and 800 °C in Air Atmosphere

    Directory of Open Access Journals (Sweden)

    Longbiao Li

    2015-06-01

    Full Text Available The tension-tension fatigue behavior of unidirectional C/SiC ceramic-matrix composite at room temperature and 800 °C under air has been investigated. The fatigue hysteresis modulus and fatigue hysteresis loss energy corresponding to different number of applied cycles have been analyzed. The fatigue hysteresis loops models for different interface slip cases have been derived based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading. The fiber/matrix interface shear stress has been estimated for different numbers of applied cycles. By combining the interface shear stress degradation model and fibers strength degradation model with fibers failure model, the tension-tension fatigue life S-N curves of unidirectional C/SiC composite at room temperature and 800 °C under air have been predicted.

  20. Edge chipping and flexural resistance of monolithic ceramics☆

    Science.gov (United States)

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  1. Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation

    Directory of Open Access Journals (Sweden)

    Sandeeran Govender

    2017-02-01

    Full Text Available Considerable research has been conducted on monolithic catalysts for various applications. Strategies toward coating monoliths are of equal interest and importance. In this paper, the preparation of monoliths and monolithic catalysts have been summarized. More specifically, a brief explanation for the manufacturing of ceramic and metallic monoliths has been provided. Also, different methods for coating γ-alumina, as a secondary support, are included. Techniques used to deposit metal-based species, zeolites and carbon onto monoliths are discussed. Furthermore, monoliths extruded with metal oxides, zeolites and carbon are described. The main foci are on the reasoning and understanding behind the preparation of monolithic catalysts. Ideas and concerns are also contributed to encourage better approaches when designing these catalysts. More importantly, the relevance of monolithic structures to reactions, such as the selective oxidation of alkanes, catalytic combustion for power generation and the preferential oxidation of carbon monoxide, has been described.

  2. Effects of Fiber Content on Mechanical Properties of CVD SiC Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    Science.gov (United States)

    Bansal, Narottam P.

    1996-01-01

    Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.

  3. Microstructure and mechanical properties of joints in sintered SiC fiber-bonded ceramics brazed with Ag Cu Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Asthana, Rajiv [University of Wisconsin-Stout, Menomonie; Ishikawa, Toshihiro [Ube Industries, Ltd.; Matsunaga, Tadashi [Ube Industries, Ltd.; Lin, Hua-Tay [ORNL

    2012-01-01

    Active metal brazing of a new high thermal conductivity sintered SiC-polycrystalline fiber-bonded ceramic (SA-Tyrannohexs) has been carried out using a Ti-containing Ag Cu active braze alloy (Cusil-ABAs). The brazed composite joints were characterized using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM EDS). The results show that this material can be successfully joined using judiciously selected off-the shelf active braze alloys to yield metallurgically sound joints possessing high integrity. Uniform and continuous joints were obtained irrespective of differences in the fiber orientation in the substrate material. Detailed interfacial microanalysis showed that the titanium reacts with C and Si to form TiC layer and a Ti Si compound, respectively. Furthermore, the evaluation of shear strength of the joints was also conducted at ambient and elevated temperatures in air using the single-lap offset (SLO) shear test. The perpendicular-type SA-Tyrannohex joints exhibited apparent shear strengths of about 42 MPa and 25 MPa at 650 1C and 750 1C, respectively. The fracture at the higher temperature occurred at the interface between the reactionformed TiC layer and braze. This might be caused by generation of stress intensity when a shear stress was applied, according to m-FEA simulation results.

  4. Effect of filler addition on porosity and strength of polysiloxane-derived porous silicon carbide ceramics

    National Research Council Canada - National Science Library

    KUMAR, B. V. Manoj; EOM, Jung-Hye; KIM, Young-Wook

    2011-01-01

    Polycarbosilane (PCS) or silicon carbide (SiC) fillers were used as fillers in fabricating partially interconnected, open-cell porous SiC ceramics by carbothermal reduction of polysiloxane-derived SiOC and subsequent sintering process...

  5. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Diffusion of Fission Product Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; Jiang, Weilin

    2014-11-01

    MAX phases, such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been suggested in the literature as a possible fuel cladding material. Prior to the application, it is necessary to investigate diffusivities of fission products in the ternary compound at elevated temperatures. This study attempts to obtain relevant data and make an initial assessment for Ti3SiC2. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti3SiC2, SiC, and a dual-phase nanocomposite of Ti3SiC2/SiC synthesized at PNNL. Thermal annealing and in-situ Rutherford backscattering spectrometry (RBS) were employed to study the diffusivity of the various implanted species in the materials. In-situ RBS study of Ti3SiC2 implanted with Au ions at various temperatures was also performed. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti3SiC2 occurs during ion implantation at 873 K. Cs in Ti3SiC2 is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Further studies of the related materials are recommended.

  6. Estudo da viabilidade de obtenção de cerâmicas de SiC por infiltração espontânea de misturas eutéticas de Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN Study of the viability to produce SiC ceramics by Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN spontaneous infiltration

    Directory of Open Access Journals (Sweden)

    G. C. R. Garcia

    2008-06-01

    Full Text Available As cerâmicas de carbeto de silício, SiC, apresentam excelentes propriedades quando obtidas por infiltração de determinados líquidos. Na infiltração o tempo de contato entre o líquido e o SiC a temperaturas elevadas é muito curto, diminuindo a probabilidade de formação dos produtos gasosos que interferem negativamente na resistência da peça final, como ocorre na sinterização via fase líquida. O objetivo deste trabalho é mostrar uma correlação entre molhabilidade e capacidade de infiltração de alguns aditivos em compactos de SiC. Foram preparados compactos de SiC por prensagem isostática a frio e posterior pré-sinterização via fase sólida. Nesses compactos foram infiltradas misturas de Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN, nas composições eutéticas, 10 ºC acima da temperatura de fusão das respectivas misturas por 4, 8 e 12 min. Após infiltração, as amostras foram analisadas quanto à densidade aparente e real, fases cristalinas, microestrutura e grau de infiltração, sendo que as amostras infiltradas com Y2O3-AlN apresentaram melhores resultados.Silicon carbide ceramics, SiC, obtained by liquid infiltration have shown excellent properties. In infiltration process the contact time of the liquid with SiC at elevated temperature is short, decreasing the probability to form gaseous products that contribute negatively in the final product properties. This phenomenon occurs during SiC liquid phase sintering. The purpose of the present study was to investigate the correlation between wettability and infiltration tendency of some additives in SiC compacts. SiC compacts were prepared by cold isostatic pressing followed by solid phase pre-sintering. Into the compacts were introduced Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN liquids with eutectic compositions at a temperature 10 ºC higher than the melting point of each mixture for 4, 8 and 12 min. Before infiltration, the samples were analyzed by determining densities, crystalline phases

  7. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  8. Integrated SiC Super Junction Transistor-Diode Devices for High-Power Motor Control ModulesOoperating at 500 C Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Monolithic Integrated SiC Super Junction Transistor-JBS diode (MIDSJT) devices are used to construct 500

  9. Tribo-mechanical behaviour of SiC filled glass-epoxy composites at ...

    African Journals Online (AJOL)

    Tribo-mechanical behaviour of SiC filled glass-epoxy composites at elevated temperatures. ... Username, Password, Remember me, or Register ... For instance, the introduction of ceramics such (SiC, Al2O3, TiC, etc.) as within the matrix ...

  10. Monoliths in Bioprocess Technology

    Directory of Open Access Journals (Sweden)

    Vignesh Rajamanickam

    2015-04-01

    Full Text Available Monolithic columns are a special type of chromatography column, which can be used for the purification of different biomolecules. They have become popular due to their high mass transfer properties and short purification times. Several articles have already discussed monolith manufacturing, as well as monolith characteristics. In contrast, this review focuses on the applied aspect of monoliths and discusses the most relevant biomolecules that can be successfully purified by them. We describe success stories for viruses, nucleic acids and proteins and compare them to conventional purification methods. Furthermore, the advantages of monolithic columns over particle-based resins, as well as the limitations of monoliths are discussed. With a compilation of commercially available monolithic columns, this review aims at serving as a ‘yellow pages’ for bioprocess engineers who face the challenge of purifying a certain biomolecule using monoliths.

  11. An irradiation test of heat-resistant ceramic composite materials. Interim report on post-irradiation examinations of the first preliminary irradiation test: 97M-13A

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shin-ichi; Takahashi, Tsuneo; Ishihara, Masahiro; Hayashi, Kimio; Sozawa, Shizuo; Saito, Takashi [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Suzuki, Yoshio [Nuclear Engineering, Co. Ltd., Osaka (Japan); Saito, Tamotsu; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The Japan Atomic Energy Research Institute (JAERI) has been carrying out the research on radiation damage mechanism of heat-resistant ceramic composite materials, as one of the subjects of the innovative basic research on high temperature engineering using the High Temperature Engineering Test Reactor (HTTR). A series of preliminary irradiation tests is being made using the Japan Materials Testing Reactor (JMTR). The present report describes results of post-irradiation examinations (PIE) so far on specimens irradiated in the first capsule, designated 97M-13A, to fast neutron fluences of 1.2-1.8x10{sup 24} m{sup -2} (E>1 MeV) at temperatures of 573, 673 and 843 K. In the PIE, measurements were made on (1) dimensional changes, (2) thermal expansions, (3) X-ray parameters and (4) {gamma}-ray spectra. The results for the carbon/carbon and SiC/SiC composites were similar to those in existing literatures. The temperature monitor effect was observed both for SiC fiber- and particle-reinforced SiC composites as in the case of monolithic SiC. Namely, the curve of the coefficient of thermal expansion (CTE) of these specimens showed a rapid drop above a temperature around the irradiation temperature +100 K in the first ramp (ramp rate: 10 K/min), while in the second ramp the CTE curves were almost the same as those of un-irradiated SiC specimens. (author)

  12. Preparation of patterned SiC and SiCN microstructures

    Institute of Scientific and Technical Information of China (English)

    WANG; Hao; SUNG; In-kyung; LI; Xiaodong; KIM; Dong-pyo

    2006-01-01

    Patterned SiC and SiCN microstructures were successfully fabricated on the silicon substrates by using polydimethylsiloxane (PDMS) elastometric stamp as template, polycarbosilane (PCS) and polysilazane (PSZ) as preceramic polymers. The preparing process was followed by precursor infiltration, the curing of the precursor, demolding of the template and pyrolysis of the cured preceramic polymer pattern. It shows that the dimensions of the ceramic patterns can be tailored by using the PDMS molds with different dimensions. The produced ceramic microstructures can be potentially applied in high temperature and high pressure environments due to the advanced properties of the SiC and SiCN ceramics.

  13. Annual Conference on Composites and Advanced Ceramic Materials, 11th, Cocoa Beach, FL, Jan. 18-23, 1987, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    The present conference on advanced ceramic materials discusses topics in the fields of NDE, coating/joining/tribology techniques, fracture and interface phenomena, whisker- and particulate-reinforced composites, fiber and whisker properties, SiC and Si/sub 3/N/sub 4/, glass/glass-ceramic matrix composites, alumina-matrix composites, ceramic materials for space structures, and SiC- and Si/sub 3/N/sub 4/-matrix composites. Attention is given to ceramic characterization by thermal wave imaging, an advanced ceramic-to-metal joining process, the fracture modes of brittle-matrix unidirectional composites, the oxidation of SiC-containing composites, particulate matter in SiC whiskers, corrosion reactions in SiC ceramics, melt-infiltrated ceramic-matrix composites, environmental effects in toughened ceramics, and a ceramic composite heat exchanger.

  14. Effect of oxygen content on tensile strength of polymer-derived SiC fibers

    Institute of Scientific and Technical Information of China (English)

    楚增勇; 冯春祥; 宋永才; 王应德; 李效东; 肖加余

    2002-01-01

    Air-curing is usually applied to the polymer-derived SiC fibers and, as a result, oxygen is embedded to the material. An effective relationship between oxygen content of the SiC fibers and mass gain of their precursor fibers was established. Results also showed that oxygen content has a great influence on the mechanical properties and excellent tensile strength is usually obtained at the oxygen content of 12%~13%, similar to the density of SiC fibers. Oxygen content has a positive effect on the ceramic yield, and thus, is good to the density and tensile strength; while, oxygen content is also negative to volume content of SiC phase and crystallization of the SiC fibers, and thus, detrimental to the density and tensile strength. Both of the two effects result in the peak behavior of the tensile strength of SiC fibers.

  15. Wetting behavior of aluminium and filtration with Al2O3 and SiC ceramic foam filters%铝的润湿行为以及Al2O3和SiC陶瓷过滤器的过滤行为

    Institute of Scientific and Technical Information of China (English)

    包萨日娜; Martin SYVERTSEN; Anne KVITHYLD; Thorvald ENGH

    2014-01-01

    检测了工业用Al2O3过滤器和SiC过滤器与液态铝的润湿性并在工厂使用以上2种陶瓷过滤器过滤铝液。实验结果表明:SiC 过滤器比 Al2O3过滤器更易于润湿液态铝。提高液态铝与过滤器的润湿性有助于铝液透过过滤器,提高夹杂物的去除率,同时,易于去除与铝不浸润的杂质。%The wetting behavior between liquid aluminium and substrates made from industrial Al2O3 and SiC based ceramic foam filters (CFF) was investigated. The same CFF filters were also tested in plant scale filtration experiments. The wetting experiment results show that the SiC based filter material is better wetted by liquid aluminium than the Al2O3 based filter material. This indicates that the improved wetting of aluminium on a filter material is an advantage for molten metal to infiltrate the filter during priming. Also, better wetting of Al-filter might increase the removal efficiency of inclusions during filtration due to better contact between filter and metal. Non-wetted inclusions are easier to be removed.

  16. Synthesis and characterization of SiC materials with hierarchical porosity obtained by replication techniques.

    Science.gov (United States)

    Sonnenburg, Kirstin; Adelhelm, Philipp; Antonietti, Markus; Smarsly, Bernd; Nöske, Robert; Strauch, Peter

    2006-08-14

    Porous silicon carbide monoliths were obtained using the infiltration of preformed SiO(2) frameworks with appropriate carbon precursors such as mesophase pitch. The initial SiO(2) monoliths possessed a hierarchical pore system, composed of an interpenetrating bicontinuous macropore structure and 13 nm mesopores confined in the macropore walls. After carbonization, further heat treatment at ca. 1,400 degrees C resulted in the formation of a SiC-SiO(2) composite, which was converted into a porous SiC monolith by post-treatment with ammonium fluoride solution. The resulting porous SiC featured high crystallinity, high chemical purity and showed a surface area of 280 m(2) g(-1) and a pore volume of 0.8 ml g(-1).

  17. Recent progress in ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.

    1998-09-01

    Both fundamental and practical aspects of ceramic joining are understood well enough for many, if not most, applications requiring moderate strengths at room temperature. This paper argues that the two greatest needs in ceramic joining are for techniques to join buried interfaces by selective heating, and methods for joining ceramics for use at temperatures of 800 to 1,200 C. Heating with microwave radiation or with high-energy electron beams has been used to join buried ceramic interfaces, for example SiC to SiC. Joints with varying levels of strength at temperatures of 600 to 1,000 C have been made using four techniques: (1) transient liquid phase bonding; (2) joining with refractory braze alloys; (3) joining with refractory glass compositions; and (4) joining using preceramic polymers. Joint strengths as high as 550 MPa at 1,000 C have been reported for silicon nitride-silicon nitride bonds tested in four-point flexure.

  18. Packaging Technology for SiC High Temperature Electronics

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  19. Anisotropically structured magnetic aerogel monoliths

    Science.gov (United States)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  20. U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    George W. Griffith

    2011-10-01

    A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows for ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.

  1. Compatibility of SiC and SiC Composites with Molten Lead

    Energy Technology Data Exchange (ETDEWEB)

    H Tunison

    2006-03-07

    The choice of structural material candidates to contain Lead at 1000 C are limited in number. Silicon carbide composites comprise one choice of possible containment materials. Short term screening studies (120 hours) were undertaken to study the behavior of Silicon Carbide, Silicon Nitride, elemental Silicon and various Silicon Carbide fiber composites focusing mainly on melt infiltrated composites. Isothermal experiments at 1000 C utilized graphite fixtures to contain the Lead and material specimens under a low oxygen partial pressure environment. The corrosion weight loss values (grams/cm{sup 2} Hr) obtained for each of the pure materials showed SiC (monolithic CVD or Hexoloy) to have the best materials compatibility with Lead at this temperature. Increased weight loss values were observed for pure Silicon Nitride and elemental Silicon. For the SiC fiber composite samples those prepared using a SiC matrix material performed better than Si{sub 3}N{sub 4} as a matrix material. Composites prepared using a silicon melt infiltration process showed larger corrosion weight loss values due to the solubility of silicon in lead at these temperatures. When excess silicon was removed from these composite samples the corrosion performance for these material improved. These screening studies were used to guide future long term exposure (both isothermal and non-isothermal) experiments and Silicon Carbide composite fabrication work.

  2. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    Science.gov (United States)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  3. Monolithic supports with unique geometries and enhanced mass transfer.

    Energy Technology Data Exchange (ETDEWEB)

    Stuecker, John Nicholas; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-01-01

    The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.

  4. Characterization of Ultra-high Temperature Ceramics via Transmission Electron Microscopy Relevant ZrB2-based Composites, TaC-based Composites and Oxides Containing SiC Chopped Fibers

    Science.gov (United States)

    2015-03-06

    Table 2: Composition, mean grain size and mechanical properties of ZrB2-WSi2 ceramic compared to other ZrB2- composites containing either transition metal ...and ZrO2. Among ZrB2, one first composite was produced with the purpose of obtaining a refractory ceramic with high strength up to high...WSi2 ceramic compared to other ZrB2-composites containing either transition metal silicides or W-compounds. m.g.s.: mean grain size, KIc: fracture

  5. Physical chemistry of the femtosecond and nanosecond laser-material interaction with SiC and a SiC-TiC-TiB{sub 2} composite ceramic compound

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, Pascale; Brzezinka, Klaus-Werner; Waesche, Rolf; Kautek, Wolfgang

    2003-03-15

    The interaction of nanosecond laser pulses in the ultraviolet wavelength range and femtosecond laser pulses in the near-infrared region with the semiconductor SiC and the composite compound SiC-TiC-TiB{sub 2} was investigated. Surface analytical techniques, such as XPS, depth profile (DP), and micro-Raman spectroscopy ({mu}-RS) were used to identify the chemical changes between untreated and laser-treated areas. Single-pulse irradiation led to material modifications in the condensed state in most instances. Multi-pulse results differed depending on the pulse duration. Crystal structure changes were observed as a consequence of laser-induced melting and resolidification. In air contact all components underwent oxidation reactions according to thermodynamic expectations. Exceptions were observed under exclusion of oxygen, SiC was reduced to elemental Si.

  6. Advanced Ceramics Property Measurements

    Science.gov (United States)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  7. Sintering of SiC ceramics, via liquid phase, with Al{sub 2}O{sub 3}-Yb{sub 2}O{sub 3} additives; Sinterizacao de ceramicas de SiC, via fase liquida, com aditivos de Al{sub 2}O{sub 3}-Yb{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Atilio, I.; Oliveira, M.R.; Garcia, G.C.R.; Ribeiro, S., E-mail: isabelaatilio@hotmail.com [Universidade de Sao Paulo (USP/EEL), Lorena, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materiais

    2012-07-01

    The objective of this work was to study the sintering of SiC, through liquid phase, using the additive system Al{sub 2}O{sub 3} and Yb{sub 2}O{sub 3} for the first time. The samples were sintered at temperatures of 1900, 1950 and 2000 deg C for 60 minutes. The melting point of the system was determined according to DIN 51730. It has been found the ability of wetting of SiC in the system. The densification results were: 86,36% at 1900 deg C, 88,25% at 1950 deg C and 82,09% at 2000 deg C. The average linear shrinkage was approximately 17%. There was a conversion of β-SiC in α-SiC at all temperatures and sintering phase formation Yb{sub 3}Al{sub 5}O{sub 12}. The melting temperature was 1850 deg C for de system, consistent with the value in the phase diagram, and the wetting angle of 20 deg. The system (Yb{sub 2}O{sub 3}-Al{sub 2}O{sub 3}) is promising to make liquid phase sintering of SiC, for presenting a good result of wettability. (author)

  8. Oxidation Resistance, Electrical and Thermal Conductivity, and Spectral Emittance of Fully Dense HfB2 and ZrB2 with SiC, TaSi2, and LaB6 Additives

    Science.gov (United States)

    2012-01-26

    ZrB2 . a. Single crystal SiC (R66) plotted in Watari et al. [16], based on Slack [17]. b. Mixture of α and β SiC hot pressed with BeO sintering aid, 100...Properties of ZrB2 and ZrB2-SiC Ceramics,” J. Am. Ceram. Soc., 91 [5] 1405-1411 (2008). [16] K. Watari , H. Nakano, K. Sato, K. Urabe, K. Ishizaki, S. Cao

  9. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; GuillonPresent Address: Forschungszentrum Jülich, Institut Für Energie-Und Klimaforschung 1: Werkstoffsynthese Und Herstellungsverfahren, Wilhelm-Johnen-Straße, D.-52425 Jülich., Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido

  10. Advanced SiC composites for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Schwarz, O.J. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    This is a short review of the motivation for and progress in the development of ceramic matrix composites for fusion. Chemically vapor infiltrated silicon carbide (SiC) composites have been fabricated from continuous fibers of either SiC or graphite and tested for strength and thermal conductivity. Of significance is the the Hi-Nicalon{trademark} SiC based fiber composite has superior unirradiated properties as compared to the standard Nicalon grade. Based on previous results on the stability of the Hi-Nicalon fiber, this system should prove more resistant to neutron irradiation. A graphite fiber composite has been fabricated with very good mechnical properties and thermal conductivity an order of magnitude higher than typical SiC/SiC composites.

  11. Characterization and functionalization by sol–gel route of SiC foams

    OpenAIRE

    Mollicone, Jessica; Ansart, Florence; Lenormand, Pascal; Duployer, Benjamin; Tenailleau, Christophe; Jérôme VICENTE (LEREPS-GRES)

    2014-01-01

    International audience; Ceramic foam materials are commonly used for various applications, including catalyst supports or solar receivers. SiC foams are good candidates for the latter application as solar receivers. Its efficiency is directly related to the geometry, which can be evidenced by X-ray microtomography, and optical properties of the receiver. A promising route to add functionalities with homogenous and adhering oxide coatings onto complex SiC foams in a single step process is prop...

  12. High temperature ceramic articles having corrosion resistant coating

    Science.gov (United States)

    Stinton, David P.; Lee, Woo Y.

    1997-01-01

    A ceramic article which includes a porous body of SiC fibers, Si.sub.3 N.sub.4 fibers, SiC coated fibers or Si.sub.3 N.sub.4 coated fibers, having at least one surface, the article having a coating of AlN adherently disposed throughout at least a portion of the porous body.

  13. Velcro-Inspired SiC Fuzzy Fibers for Aerospace Applications.

    Science.gov (United States)

    Hart, Amelia H C; Koizumi, Ryota; Hamel, John; Owuor, Peter Samora; Ito, Yusuke; Ozden, Sehmus; Bhowmick, Sanjit; Syed Amanulla, Syed Asif; Tsafack, Thierry; Keyshar, Kunttal; Mital, Rahul; Hurst, Janet; Vajtai, Robert; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-04-05

    The most recent and innovative silicon carbide (SiC) fiber ceramic matrix composites, used for lightweight high-heat engine parts in aerospace applications, are woven, layered, and then surrounded by a SiC ceramic matrix composite (CMC). To further improve both the mechanical properties and thermal and oxidative resistance abilities of this material, SiC nanotubes and nanowires (SiCNT/NWs) are grown on the surface of the SiC fiber via carbon nanotube conversion. This conversion utilizes the shape memory synthesis (SMS) method, starting with carbon nanotube (CNT) growth on the SiC fiber surface, to capitalize on the ease of dense surface morphology optimization and the ability to effectively engineer the CNT-SiC fiber interface to create a secure nanotube-fiber attachment. Then, by converting the CNTs to SiCNT/NWs, the relative morphology, advantageous mechanical properties, and secure connection of the initial CNT-SiC fiber architecture are retained, with the addition of high temperature and oxidation resistance. The resultant SiCNT/NW-SiC fiber can be used inside the SiC ceramic matrix composite for a high-heat turbo engine part with longer fatigue life and higher temperature resistance. The differing sides of the woven SiCNT/NWs act as the "hook and loop" mechanism of Velcro but in much smaller scale.

  14. A Monolithic Oxide-Based Transversal Thermoelectric Energy Harvester

    Science.gov (United States)

    Teichert, S.; Bochmann, A.; Reimann, T.; Schulz, T.; Dreßler, C.; Udich, S.; Töpfer, J.

    2016-03-01

    We report the fabrication and properties of a monolithic transversal thermoelectric energy harvester based on the combination of a thermoelectric oxide and a metal. The fabrication of the device is done with a ceramic multilayer technology using printing and co-firing processes. Five transversal devices were combined to a meander-like thermoelectric generator. Electrical measurements and finite element calculations were performed to characterize the resulting thermoelectric generator. A maximum experimental electrical power output of 30.2 mW at a temperature difference of {Δ }T = 208 K was found. The prepared monolithic thermoelectric generator provides at {Δ }T = 35 K sufficient energy to drive a simple electronic sensor application.

  15. Producing composite materials based on ZrB2, ZrB2-SiC

    Science.gov (United States)

    Mirovoi, Yu A.; Burlachenko, A. G.; Buyakova, S. P.; Sevostiyanova, I. N.; Kulkov, S. N.

    2016-11-01

    The effect of mechanical treatment by planetary ball milling on the properties of hot pressed ZrB2 - SiC ceramics was studied. It has been shown that material densification after mechanical treatment is finished at initial stages of sintering process. Addition of SiC causes a substantial increase in density of the sample to 99% of the theoretical powder containing 20% of silicon carbide, in comparison with samples ZrB2 density not exceeding 76%. It has been shown that all defects which were accumulated during mechanical treatment anneal in hot pressure process and there are no any changes of CDD values in sintered ceramics.

  16. Monolitni katalizatori i reaktori: osnovne značajke, priprava i primjena (Monolith catalysts and reactors: preparation and applications

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2004-12-01

    Full Text Available Monolithic (honeycomb catalysts are continuous unitary structures containing many narrow, parallel and usually straight channels (or passages. Catalytically active components are dispersed uniformly over the whole porous ceramic monolith structure (so-called incorporated monolithic catalysts or are in a layer of porous material that is deposited on the walls of channels in the monolith's structure (washcoated monolithic catalysts. The material of the main monolithic construction is not limited to ceramics but includes metals, as well. Monolithic catalysts are commonly used in gas phase catalytic processes, such as treatment of automotive exhaust gases, selective catalytic reduction of nitrogen oxides, catalytic removal of volatile organic compounds from industrial processes, etc. Monoliths continue to be the preferred support for environmental applications due to their high geometric surface area, different design options, low pressure drop, high temperature durability, mechanical strength, ease of orientation in a reactor and effectiveness as a support for a catalytic washcoat. As known, monolithic catalysts belong to the class of the structured catalysts and/or reactors (in some cases the distinction between "catalyst" and "reactor" has vanished. Structured catalysts can greatly intensify chemical processes, resulting in smaller, safer, cleaner and more energy efficient technologies. Monolith reactors can be considered as multifunctional reactors, in which chemical conversion is advantageously integrated with another unit operation, such as separation, heat exchange, a secondary reaction, etc. Finally, structured catalysts and/or reactors appear to be one of the most significant and promising developments in the field of heterogeneous catalysis and chemical engineering of the recent years. This paper gives a description of the background and perspectives for application and development of monolithic materials. Different methods and techniques

  17. An overview of monolithic zirconia in dentistry

    Directory of Open Access Journals (Sweden)

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  18. Thermal Conductivity Measurement and Analysis of Fully Ceramic Microencapsulated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, S. J. [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of)

    2015-10-15

    FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix in comparison with the current commercial UO2 fuel system of LWR. In addition to a safety enhancement of FCM fuel, thermal conductivity of SiC ceramic matrix is better than that of UO2 fuel. Because the centerline temperature of FCM fuel is lower than that of the current UO2 fuel due to the difference of thermal conductivity of fuel, an operational release of fission products from the fuel can be reduced. SiC ceramic has attracted for nuclear fuel application due to its high thermal conductivity properties with good radiation tolerant properties, a low neutron absorption cross-section and a high corrosion resistance. Thermal conductivity of ceramic matrix composite depends on the thermal conductivity of each component and the morphology of reinforcement materials such as fibers and particles. There are many results about thermal conductivity of fiber-reinforced composite like as SiCf/SiC composite. Thermal conductivity of SiC ceramics and FCM pellets with the volume fraction of TRISO particles were measured and analyzed by analytical models. Polycrystalline SiC ceramics and FCM pellets with TRISO particles were fabricated by hot press sintering with sintering additives. Thermal conductivity of the FCM pellets with TRISO particles of 0 vol.%, 10 vol.%, 20 vol.%, 30 vol.% and 40 vol.% show 68.4, 52.3, 46.8, 43.0 and 34.5 W/mK, respectively. As the volume fraction of TRISO particles increased, the measured thermal conductivity values closely followed the prediction of Maxwell's equation.

  19. An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites

    OpenAIRE

    Silvestre, J.; Silvestre, N; de Brito, J.

    2015-01-01

    Due to their prominent properties (mechanical, stiffness, strength, thermal stability), ceramic composite materials (CMC) have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMCs have been greatly improved in the last decade. CMCs are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxid...

  20. SICs and Algebraic Number Theory

    Science.gov (United States)

    Appleby, Marcus; Flammia, Steven; McConnell, Gary; Yard, Jon

    2017-08-01

    We give an overview of some remarkable connections between symmetric informationally complete measurements (SIC-POVMs, or SICs) and algebraic number theory, in particular, a connection with Hilbert's 12th problem. The paper is meant to be intelligible to a physicist who has no prior knowledge of either Galois theory or algebraic number theory.

  1. Effect of Steam Activation on Development of Light Weight Biomorphic Porous SiC from Pine Wood Precursor

    Science.gov (United States)

    Manocha, Satish M.; Patel, Hemang; Manocha, L. M.

    2013-02-01

    Biomorphic SiC materials with tailor-made microstructure and properties similar to ceramic materials manufactured by conventional method are a new class of materials derived from natural biopolymeric cellulose templates (wood). Porous silicon carbide (SiC) ceramics with wood-like microstructure have been prepared by carbothermal reduction of charcoal/silica composites at 1300-1600 °C in inert Ar atmosphere. The C/SiO2 composites were fabricated by infiltrating silica sol into porous activated biocarbon template. Silica in the charcoal/silica composite, preferentially in the cellular pores, was found to get transformed in forms of fibers and rods due to shrinkage during drying. The changes in the morphology of resulting porous SiC ceramics after heat treatment to 1600 °C, as well as the conversion mechanism of wood to activated carbon and then to porous SiC ceramic have been investigated using scanning electron microscope, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Activation of carbon prior to silica infiltration has been found to enhance conversion of charcoal to SiC. The pore structure is found to be uniform in these materials than in those made from as-such charcoal/silica composites. This provides a low-cost and eco-friendly route to advanced ceramic materials, with near-net shape potential.

  2. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  3. Ballistic performance and microstructure of four armor ceramics

    NARCIS (Netherlands)

    Abadjieva, E.; Carton, E.P.

    2013-01-01

    The ballistic behavior of four different armor ceramic materials with thicknesses varying from 3 mm to 14 mm has been investigated. These are two types of alumina Al2O3 armor grades and two types of SiC armor grades produced by different armor ceramic producers. The ballistic study has been performe

  4. Ballistic performance and microstructure of four armor ceramics

    NARCIS (Netherlands)

    Abadjieva, E.; Carton, E.P.

    2013-01-01

    The ballistic behavior of four different armor ceramic materials with thicknesses varying from 3 mm to 14 mm has been investigated. These are two types of alumina Al2O3 armor grades and two types of SiC armor grades produced by different armor ceramic producers. The ballistic study has been

  5. Microstructure and fracture analysis of fully ceramic microencapsulated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, S. J. [KEPCO, Daejeon (Korea, Republic of)

    2015-05-15

    Nuclear fuel enhancing the accident tolerance is satisfied two parts. First, the performance has to be retained compared to the existing UO{sub 2} nuclear fuel and zircaloy cladding system under the normal operation condition. Second, under the severe accident condition, the high temperature structural integrity has to be kept and the generation rate of hydrogen has to be reduced largely. FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix compared to the current commercial UO{sub 2} fuel system. SiC ceramic has excellent properties for fuel application. SiC ceramic has low neutron absorption cross-section, excellent irradiation resistivity and high thermal conductivity. Additionally, the relative thermal conductivity of the SiC ceramic as compared to UO{sub 2} is quite good, reducing operational release of fission products form the fuel. TRISO coating layer which is deposited on UO{sub 2} kernel is consists of PyC/SiC/PyC trialyer and buffer PyC layer. SiC matrix composite with TRISO particle was fabricated by hot pressing. 3 to 20 wt.% of sintering additives were added to investigate reaction between sintering additives and outer PyC layer of TRISO coating layer. The relative densities of all specimens show above 92%. The reaction between sintering additives and PyC is observed in most TRISO particles, the thickness of reactants shows about ten micrometers. The thermal shock resistance of SiC matrix composite was investigated.

  6. Feasibility study on the application of carbide (ZrC, SiC) for VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog; Kim, Si Hyeong; Jang, Moon Hee; Lee, Young Woo

    2006-08-15

    A feasibility study on the coating process of ZrC for the TRISO nuclear fuel and applications of SiC as high temperature materials for the core components has performed to develop the fabrication process for the advanced ZrC TRISO fuels and the high temperature structural components for VHTR, respectively. In the case of ZrC coating, studies were focused on the comparisons of the developed coating processes for screening of our technology, the evaluations of the reactions parameters for a ZrC deposition by the thermodynamic calculations and the preliminary coating experiments by the chloride process. With relate to SiC ceramics, our interesting items are as followings; an analysis of applications and specifications of the SiC components and collections of the SiC properties and establishments of data base. For these purposes, applications of SiC ceramics for the GEN-IV related components as well as the fusion reactor related ones were reviewed. Additionally, the on-going activities with related to the ZrC clad and the SiC composites discussed in the VHTR GIF-PMB, were reviewed to make the further research plans at the section 1 in chapter 3.

  7. Packaging Technologies for 500C SiC Electronics and Sensors

    Science.gov (United States)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  8. Failure analysis of various monolithic posterior aesthetic dental crowns using finite element method

    Science.gov (United States)

    Porojan, Liliana; Topală, Florin

    2017-08-01

    The aim of the study was to assess the effect of material stiffness and load on the biomechanical performance of the monolithic full-coverage posterior aesthetic dental crowns using finite element analysis. Three restorative materials for monolithic dental crowns were selected for the study: zirconia; lithium disilicate glass-ceramic, and resin-based composite. Stresses were calculated in the crowns for all materials and in the teeth structures, under different load values. The experiments show that dental crowns made from all this new aesthetic materials processed by CAD/CAM technologies would be indicated as monolithic dental crowns for posterior areas.

  9. Residual stress measurements in an SiC continuous fiber reinforced Ti matrix composite

    NARCIS (Netherlands)

    Willemse, P.F.; Mulder, F.M.; Wei, W.; Rekveldt, M.Th.; Knight, K.S.

    2000-01-01

    During the fabrication of ceramic fiber reinforced metal matrix composites mismatch stresses will be introduced due to differences in thermal expansion coefficients between the matrix and the fibers. Calculations, based on a coaxial cylinder model, [1 and 2] predict that, for a Ti matrix SiC

  10. Embedded-monolith armor

    Science.gov (United States)

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  11. Advanced Capacitor with SiC for High Temperature Applications

    Science.gov (United States)

    Tsao, B. H.; Ramalingam, M. L.; Bhattacharya, R. S.; Carr, Sandra Fries

    1994-07-01

    An advanced capacitor using SiC as the dielectric material has been developed for high temperature, high power, and high density electronic components for aircraft and aerospace application. The conventional capacitor consists of a large number of metallized polysulfone films that are arranged in parallel and enclosed in a sealed metal case. However, problems with electrical failure, thermal failure, and dielectric flow were experienced by Air Force suppliers for the component and subsystem for lack of suitable properties of the dielectric material. The high breakdown electrical field, high thermal conductivity, and high temperature operational resistance of SiC compared to similar properties of the conventional ceramic and polymer capacitor would make it a better choice for a high temperature, and high power capacitor. The quality of the SiC film was evaluated. The electrical parameters, such as the capacitance, dissipation factor, equivalent series resistance, and dielectric withstand voltage, were evaluated. The prototypical capacitors are currently being fabricated using SiC film.

  12. FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

    Directory of Open Access Journals (Sweden)

    WEON-JU KIM

    2013-08-01

    Full Text Available The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade SiCf/SiC composites are briefly reviewed. A CVI-processed SiCf/SiC composite with a PyC or (PyC-SiCn interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

  13. /SiC Composite to Titanium Alloy

    Science.gov (United States)

    Hernandez, X.; Jiménez, C.; Mergia, K.; Yialouris, P.; Messoloras, S.; Liedtke, V.; Wilhelmi, C.; Barcena, J.

    2014-08-01

    In view of aerospace applications, an innovative structure for joining a Ti alloy to carbon fiber reinforced silicon carbide has been developed. This is based on the perforation of the CMC material, and this procedure results in six-fold increase of the shear strength of the joint compared to the unprocessed CMC. The joint is manufactured using the active brazing technique and TiCuAg as filler metal. Sound joints without defects are produced and excellent wetting of both the composite ceramic and the metal is observed. The mechanical shear tests show that failure occurs always within the ceramic material and not at the joint. At the CMC/filler, Ti from the filler metal interacts with the SiC matrix to form carbides and silicides. In the middle of the filler region depletion of Ti and formation of Ag and Cu rich regions are observed. At the filler/Ti alloy interface, a layered structure of the filler and Ti alloy metallic elements is formed. For the perforation to have a significant effect on the improvement of the shear strength of the joint appropriate geometry is required.

  14. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  15. POWDER INJECTION MOLDING OF SIC FOR THERMAL MANAGEMENT V

    Directory of Open Access Journals (Sweden)

    Valmikanathan Onbattuvelli

    2012-06-01

    Full Text Available Silicon carbide (SiC exhibits many functional properties that are relevant to applications in electronics, aerospace, defense and automotive industries. However, the successful translation of these properties into final applications lies in the net-shaping of ceramics into fully dense microstructures. Increasing the packing density of the starting powders is one effective route to achieve high sintered density and dimensional precision. The present paper presents an in-depth study on the effects of nanoparticle addition on the powder injection molding process (PIM of SiC powder-polymer mixtures. In particular, bimodal mixtures of nanoscale and sub-micrometer particles are found to have significantly increased powder packing characteristics (solids loading in the powder-polymer mixtures. The influence of nanoparticle addition on the multi-step PIM process is examined. The above results provide new perspectives which could impact a wide range of materials, powder processing techniques and applications.

  16. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    Science.gov (United States)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  17. Monolithic MACS micro resonators

    Science.gov (United States)

    Lehmann-Horn, J. A.; Jacquinot, J.-F.; Ginefri, J. C.; Bonhomme, C.; Sakellariou, D.

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1 /√{ P } is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4 mm rotor at 500 MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials.

  18. The MONOLITH prototype

    CERN Document Server

    Ambrosio, M; Bencivenni, G; Candela, A M; Chiarini, A; Chignoli, F; De Deo, M; D'Incecco, M; Gerli, S; Giusti, P; Gómez, F; Gustavino, C; Lindozzi, M; Mannocchi, G; Menghetti, H; Morello, C; Murtas, F; Paoluzzi, G; Pilastrini, R; Redaelli, N G; Santoni, M; Sartorelli, G; Terranova, F; Trinchero, G C

    2000-01-01

    MONOLITH (Massive Observatory for Neutrino Oscillation or LImits on THeir existence) is the project of an experiment to study atmospheric neutrino oscillations with a massive magnetized iron detector. The baseline option is a 34 kt iron detector based on the use of about 50000 m/sup 2/ of the glass Resistive Plate Chambers (glass RPCs) developed at the Laboratori Nazionali del Gran Sasso (LNGS). An 8 ton prototype equipped with 23 m/sup 2/ of glass RPC has been realized and tested at the T7-PS beam at CERN. The energy resolution for pions follows a 68%/ square root (E(GeV))+2% law for orthogonally incident particles, in the energy range between 2 and 10 GeV. The time resolution and the tracking capability of the glass RPC are suitable for the MONOLITH experiment. (7 refs).

  19. Reliable Direct Bond Copper Ceramic Packages for High Temperature Power Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program will develop highly reliable, hermetic, Si3N4 ceramic multichip modules to integrate commercially available SiC power devices to build power...

  20. Development of ceramic based nanocomposites with high performance; Koseino ceramic kei nanocomposite no kaihatsu kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Niihara, K.; Sekino, T.; Choa, Y. [Osaka University, Osaka (Japan). The Institute and Industrial Research; Nakahira, A.

    1997-10-15

    Various ceramic-based nanocomposite materials with nano-scale ceramic or metal grains diffused thereinto are introduced. Oxide-based ceramics/ceramics nanocomposite materials such as those based on Al2O3/SiC and on natural mullite/SiC have been successfully produced using the ordinary sintering technology. As intragrain nanocomposite materials of the non-oxide base, those based on Si3N4/granular TiC and on SiC with stacking faults have been developed, and it is disclosed that fracture toughness improves two times in a stacking-fault composite. By the application of the method for manufacturing ceramics/metal-based materials, finer texture control can be exercised than by the application of the ceramics/ceramics-based nanocomposite manufacturing technology. The nanocomposite materials obtained so far include those based on Al2O3/W and on Al2O3/Mo. In the future, various ceramic materials will be manufactured to satisfy versatile requests for different performance, and it is believed that a ceramic material so tough as to withstand the maximum temperature will be realized by combining microcomposite materials and nanocomposite materials. 33 refs., 15 figs., 3 tabs.

  1. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  2. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  3. Silicon ceramic reinforced by endless fibres on liquid matrix precursor (with commercial C and SiC fibres); Endlosfaser-verstaerkte Siliciumkeramik aus fluessigem Matrixprecursor (mit kommerziellen C- und SiC-Fasern)

    Energy Technology Data Exchange (ETDEWEB)

    Nieder, D.

    1991-12-13

    In this work, the possibilities of manufacture of very strong or non-brittle fracturing silicon carbide/nitride compound bodies were examined using endless ceramic fibres and liquid silazane as matrix precursor. The experiments for the selection of the different reinforcement fibres showed the good suitability of high strength C fibres HT-7 (Toho). The high module fibres HM-12 (Sigri) and the intermediate fibre T800 (Toray) were used for comparison, without reaching the same values for the compound body properties as with the high strength fibre HT-7. However, typical differences were clearly shown in the reinforcement behaviour of the high strength and high module fibres, althoug the individual types of fibres originated from different manufacturing firms. (orig.) [Deutsch] In der Arbeit wurden Herstellungsmoeglichkeiten fuer hochfeste, bzw. nicht sproedbrechende Siliciumcarbid/-nitrid-Verbundkoerper unter Verwendung keramischer Endlos-Fasern sowie fluessiger Silazane als Matrix-Precursor untersucht. Die Versuche zur Auswahl der verschiedenen Verstaerkungsfasern ergaben eine gute Eignung der Hochfest-C-Faser HT-7 (Toho). Die Hochmodulfaser HM-12 (Sigri) und die Intermediatefaser T800 (Toray) wurden fuer Vergleichszwecke eingesetzt, ohne dass mit diesen die Werte fuer die Verbundkoerpereigenschaften wie mit der Hochfestfaser HT-7 erreicht wurden. Es kamen jedoch die typischen Unterschiede im Verstaerkungsverhalten der Hochfest- und Hochmodul-Fasern deutlich zum Ausdruck, obwohl die einzelnen Fasertypen von unterschiedlichen Herstellerfirmen stammten. (orig.)

  4. Multiscale Modeling of Ceramic Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  5. Annual Conference on Composites and Advanced Ceramic Materials, 9th, Cocoa Beach, FL, January 20-23, 1985, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-08-01

    The present conference discusses testing methods for ceramic matrix composites, developments in ceramic fibers, space transportation systems thermal protection materials, ceramics for heat engines and other severe environments, thermal sprayed coatings, the development status of ceramic tribology, and the fabrication of ceramics and hard metals. Specific attention is given to the mechanical characterization of ceramic and glass matrix composites, the application of fracture mechanics to fiber composites, the degradation properties of Nicalon SiC fibers, ceramic matrix toughening, SiC/glass composite phases, ceramic composite manufacture by infiltration, and ceramic coatings for the Space Shuttle's surface insulation. Also treated are design principles for anisotropic brittle materials, ceramics for intense radiant heat applications, ceramic-coated tip seals for turbojet engines, composite production by low pressure plasma deposition, tribology in military systems, lubrication for ceramics, a systems approach to the grinding of structural ceramics, and the fabrication of inorganic foams by microwave irradiation.

  6. Catastrophic failure of a monolithic zirconia prosthesis.

    Science.gov (United States)

    Chang, Jae-Seung; Ji, Woon; Choi, Chang-Hoon; Kim, Sunjai

    2015-02-01

    Recently, monolithic zirconia restorations have received attention as an alternative to zirconia veneered with feldspathic porcelain to eliminate chipping failures of veneer ceramics. In this clinical report, a patient with mandibular edentulism received 4 dental implants in the interforaminal area, and a screw-retained monolithic zirconia prosthesis was fabricated. The patient also received a maxillary complete removable dental prosthesis over 4 anterior roots. At the 18-month follow-up, all of the zirconia cylinders were seen to be fractured, and the contacting abutment surfaces had lost structural integrity. The damaged abutments were replaced with new abutments, and a new prosthesis was delivered with a computer-assisted design and computer-assisted manufacturing fabricated titanium framework with denture teeth and denture base resins. At the 6-month recall, the patient did not have any problems. Dental zirconia has excellent physical properties; however, care should be taken to prevent excessive stresses on the zirconia cylinders when a screw-retained zirconia restoration is planned as a definitive prosthesis.

  7. Integral Textile Ceramic Structures

    Science.gov (United States)

    Marshall, David B.; Cox, Brian N.

    2008-08-01

    A new paradigm for ceramic composite structural components enables functionality in heat exchange, transpiration, detailed shape, and thermal strain management that significantly exceeds the prior art. The paradigm is based on the use of three-dimensional fiber reinforcement that is tailored to the specific shape, stress, and thermal requirements of a structural application and therefore generally requires innovative textile methods for each realization. Key features include the attainment of thin skins (less than 1 mm) that are nevertheless structurally robust, transpiration holes formed without cutting fibers, double curvature, compliant integral attachment to other structures that avoids thermal stress buildup, and microcomposite ceramic matrices that minimize spalling and allow the formation of smooth surfaces. All these features can be combined into structures of very varied gross shape and function, using a wide range of materials such as all-oxide systems and SiC and carbon fibers in SiC matrices. Illustrations are drawn from rocket nozzles, thermal protection systems, and gas turbine engines. The new design challenges that arise for such material/structure systems are being met by specialized computational modeling that departs significantly in the representation of materials behavior from that used in conventional finite element methods.

  8. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application.

  9. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    Science.gov (United States)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2016-06-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  10. A study on the high densification process of CVI SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Doo Jin; Son, Ji Hye; Jun, Jin O. [Yonsei University, Seoul (Korea)

    2002-03-01

    A novel process called in-situ whisker growing and matrix filling was designed to overcome the problem of conventional ICVI process which make composites porous. Fiber reinforced SiC matrix composites were successfully fabricated by the process in the present study. Methyltrichlorosilane(CH{sub 3}SiCl{sub 3},MTS) was chosen as a source precursor of SiC. Hydrogen was used as a dilute gas for the in-situ whisker growing process and nitrogen was used as a dilute gas for the SiC matrix filling process. In order to increase the fracture toughness of the composites, the fibers were coated with a thin pyrolytic carbon layer at 1000 .deg. C before ICVI process. In case of the monolithic SiC-SiC composites, SiC whisker was grown at the temperature of 1100 .deg. C with the input gas ratio of 15. SiC-SiC composites obtained by the suggested process were denser than the composites obtained by conventional ICVI process. Also, in case of the stacked SiC-SiC composites, SiC whisker was grown at the temperature of 1100 .deg. C with the input gas ratio of 20 and 30. In addition, the SiC whisker was also grown at 1150 .deg.C with the input gas ratio of 20. The optimum condition of the in-situ whisker growing for the following matrix filling process is 1100 .deg. C, {alpha}=20, and 2hr. The designed process, in-situ whisker growing and matrix filling, was confirmed as a novel process which can fabricate high density fiber reinforced SiC matrix composites. 40 refs., 24 figs., 7 tabs. (Author)

  11. Bioaffinity chromatography on monolithic supports

    NARCIS (Netherlands)

    Tetala, K.K.R.; Beek, van T.A.

    2010-01-01

    Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bi

  12. Bioaffinity chromatography on monolithic supports

    NARCIS (Netherlands)

    Tetala, K.K.R.; Beek, van T.A.

    2010-01-01

    Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bi

  13. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    Science.gov (United States)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-10-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  14. On the impact of the plasma jet energy on the product of plasmadynamic synthesis in the Si-C system

    OpenAIRE

    Nikitin, Dmitry Sergeevich; Sivkov, Aleksandr Anatolyevich

    2015-01-01

    Silicon carbide (SiC) nanoparticles can be used for ceramics reinforcement, creation of nanostructured ceramics, microelectromechanical systems. The paper presents the results of plasmadynamic synthesis of silicon carbide nanopowders. This method was realized by the synthesis in an electrodischarge plasma jet generated by a high-current pulsed coaxial magnetoplasma accelerator. Powdered carbon and silicon were used as precursors for the reaction. Four experiments with different energy levels ...

  15. Design of monoliths through their mechanical properties.

    Science.gov (United States)

    Podgornik, Aleš; Savnik, Aleš; Jančar, Janez; Krajnc, Nika Lendero

    2014-03-14

    Chromatographic monoliths have several interesting properties making them attractive supports for analytics but also for purification, especially of large biomolecules and bioassemblies. Although many of monolith features were thoroughly investigated, there is no data available to predict how monolith mechanical properties affect its chromatographic performance. In this work, we investigated the effect of porosity, pore size and chemical modification on methacrylate monolith compression modulus. While a linear correlation between pore size and compression modulus was found, the effect of porosity was highly exponential. Through these correlations it was concluded that chemical modification affects monolith porosity without changing the monolith skeleton integrity. Mathematical model to describe the change of monolith permeability as a function of monolith compression modulus was derived and successfully validated for monoliths of different geometries and pore sizes. It enables the prediction of pressure drop increase due to monolith compressibility for any monolith structural characteristics, such as geometry, porosity, pore size or mobile phase properties like viscosity or flow rate, based solely on the data of compression modulus and structural data of non-compressed monolith. Furthermore, it enables simple determination of monolith pore size at which monolith compressibility is the smallest and the most robust performance is expected. Data of monolith compression modulus in combination with developed mathematical model can therefore be used for the prediction of monolith permeability during its implementation but also to accelerate the design of novel chromatographic monoliths with desired hydrodynamic properties for particular application.

  16. Matrix-grain-bridging contributions to the toughness of SiC composites with alumina-coated SiC platelets

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J.J.; He, Y.; MoberlyChan, W.J.; De Jonghe, L.C. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley Lab., CA (United States). Materials Science Div.

    1996-05-01

    Silicon carbide composites were fabricated through the incorporation of alumina-coated SiC platelets into a SiC matrix. Mechanical properties were evaluated in direct comparison with a commercial Hexoloy SiC. The fracture toughness of the composite, with a fine grained {beta}-SiC matrix, was twice that of the commercial material. The alumina-coating on the platelets provided a weak interface to promote crack deflection and platelet bridging, as well as easing densification of the composites. On the other hand, a three-fold increase in fracture toughness (9.1 MPa {radical}m) of an in situ toughened monolithic SiC was achieved by processing at higher temperatures, promoting the {beta}-to-{alpha} phase transformation and forming a microstructure containing high-aspect-ration plate-shaped grains. Efforts were made to combine the effects of coated-platelets reinforcement and in situ toughening in the matrix. Moderate high toughness (8 MPa {radical}m) was achieved by coupled toughening. The contribution of matrix-grain-bridging, however, was limited by the processing temperature at which the oxide coating was stable.

  17. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  18. Characterization of silicon-silicon carbide ceramic derived from carbon-carbon silicon carbide composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vijay K. [Indian Institute of Technology, Varanasi (India). Dept. of Mechanical Engineering; Krenkel, Walter [Univ. of Bayreuth (Germany). Dept. of Ceramic Materials Engineering

    2013-04-15

    The main objective of the present work is to process porous silicon - silicon carbide (Si - SiC) ceramic by the oxidation of carboncarbon silicon carbide (C/C - SiC) composites. Phase studies are performed on the oxidized porous composite to examine the changes due to the high temperature oxidation. Further, various characterization techniques are performed on Si- SiC ceramics in order to study the material's microstructure. The effects of various parameters such as fiber alignment (twill weave and short/chopped fiber) and phenolic resin type (resol and novolak) are characterized.

  19. Porous polymer monolithic col

    Directory of Open Access Journals (Sweden)

    Lydia Terborg

    2015-05-01

    Full Text Available A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water and ion exchange chromatographic modes (applying gradient of salt in water, respectively.

  20. Fabrication and characterization of monolithic solid oxide fuel cells

    Science.gov (United States)

    Minh, N. Q.; Horne, C. R.; Liu, F. S.; Moffatt, D. M.; Staszak, P. R.

    The monolithic solid oxide fuel cell (MSOFC) is an all-ceramic structure in which cell components are configured in a compact corrugated array. The MSOFC shows promise for use in a wide range of sizes (kilowatt to megawatt) and a broad spectrum of applications (electric utility, cogeneration, on-site, and aerospace power). A process based on the tape calendering technique is being developed for the fabrication of the MSOFC. MSOFC single cells have been fabricated by this process without cracking or delamination. Stacks of various sizes have been formed and processed to demonstrate fabricability of the monolithic structure. Extensive physical, chemical, electrical, and electrochemical characterization of fabricated samples has been carried out to confirm the required properties of each cell component. The characterization results reported have been used to support material and fabrication improvements.

  1. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    Clayton Cozzan

    2016-10-01

    Full Text Available With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min. The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  2. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    Science.gov (United States)

    Cozzan, Clayton; Brady, Michael J.; O'Dea, Nicholas; Levin, Emily E.; Nakamura, Shuji; DenBaars, Steven P.; Seshadri, Ram

    2016-10-01

    With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  3. Biobased monoliths for adenovirus purification.

    Science.gov (United States)

    Fernandes, Cláudia S M; Gonçalves, Bianca; Sousa, Margarida; Martins, Duarte L; Barroso, Telma; Pina, Ana Sofia; Peixoto, Cristina; Aguiar-Ricardo, Ana; Roque, A Cecília A

    2015-04-01

    Adenoviruses are important platforms for vaccine development and vectors for gene therapy, increasing the demand for high titers of purified viral preparations. Monoliths are macroporous supports regarded as ideal for the purification of macromolecular complexes, including viral particles. Although common monoliths are based on synthetic polymers as methacrylates, we explored the potential of biopolymers processed by clean technologies to produce monoliths for adenovirus purification. Such an approach enables the development of disposable and biodegradable matrices for bioprocessing. A total of 20 monoliths were produced from different biopolymers (chitosan, agarose, and dextran), employing two distinct temperatures during the freezing process (-20 °C and -80 °C). The morphological and physical properties of the structures were thoroughly characterized. The monoliths presenting higher robustness and permeability rates were further analyzed for the nonspecific binding of Adenovirus serotype 5 (Ad5) preparations. The matrices presenting lower nonspecific Ad5 binding were further functionalized with quaternary amine anion-exchange ligand glycidyltrimethylammonium chloride hydrochloride by two distinct methods, and their performance toward Ad5 purification was assessed. The monolith composed of chitosan and poly(vinyl) alcohol (50:50) prepared at -80 °C allowed 100% recovery of Ad5 particles bound to the support. This is the first report of the successful purification of adenovirus using monoliths obtained from biopolymers processed by clean technologies.

  4. Bonding of SiC and Ti by means of aluminum alloy (6063) insert metal; Aluminium gokin (6063) wo insert zai to shita SiC to Ti no setsugo

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchitori, I. [Hiroshima Industrial Research Institute, Hiroshima (Japan); Kikuchi, Y.; Ozawa, M. [Osaka University, Osaka (Japan). Joining and Welding Research Institute; Haji, A. [Seishin Tetrpack, Co., Kobe (Japan)

    1998-03-20

    The high bonding strength was obtained when SiC ceramic was joined with Titanium under vacuum by using the insert metal of 6063 alloy. The ultimate tensile strength of the bonded specimen of SiC to Ti by 6063 insert alloy showed up to 125 MPa. It was bonded under the conditions of 813K-60 min by diffusion bonding method in vacuum. Pure aluminum was used to as the stress relieving of joint interface. The fractured surfaces between SiC and 6063 alloy was observed and analyzed by SEM-EDX, Mg was enriched on the surface. The enriched regions were near the boundary between 6063 alloy and SiC. Then Oxygen is enriched in any place. It was found by TEM-EDX investigation that the region of the oxide of aluminum existed at the interface. 18 refs., 10 figs., 3 tabs.

  5. Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance

    Science.gov (United States)

    2013-10-01

    are modeled using SPH elements. Model validation runs with monolithic SiC tiles are conducted based on the DoP experiments described in reference...TERMS ,30cal AP M2 Projectile, 762x39 PS Projectile, SPH , Aluminum 5083, SiC, DoP Expeminets, AutoDyn Simulations, Tile Gap 16. SECURITY...Yarlagadda 19b. TELEPHONE NUMBER (include area code ) 302-831-4941 Standard Form 298 (Rev. 8-98) :..-.,.... „.,<-. C((j Z39.18 •MWl^ MONTHLY

  6. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Science.gov (United States)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-04-01

    In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (ICo/IRa) and effective atomic numbers (Zeff) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between ICo/IRa and Zeff was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Zeff differing from each other by only 0.01. The linear relationship between the variation of Zeff and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔCC, ΔCSi, and ΔCO were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  7. Low Shear Strength and Shear-Induced Failure in Ti3SiC2

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Shear strength and shear-induced Hertzian contact damage in Ti3SiC2 were investigated using double-notched-beamspecimen and steel spherical indenter, respectively. The shear strength of 40 MPa that was only about 10% of bendingstrength was obtained for this novel ceramic. The SEM fractograph of specimens failed in shear test indicated acombination of intergranular and transgranular fracture. Under a contact load, plastic indent without cone crackcould be formed on the surface of Ti3SiC2 sample. Optical observation on side view showed half-circle cracks aroundthe damage zone below the indent, and the crack shape was consistent with the contrail of the principal shearingstress. The low shear strength and the shearing-activated intergranular sliding were confirmed being the key factorsfor failure in Ti3SiC2.

  8. Testing of porous SiC with dense coating under relevant conditions for Flow Channel Insert application

    Energy Technology Data Exchange (ETDEWEB)

    Ordás, N., E-mail: nordas@ceit.es [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Bereciartu, A.; García-Rosales, C. [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Moroño, A.; Malo, M.; Hodgson, E.R. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Abellà, J.; Colominas, S. [Institut Químic de Sarrià, University Ramon Llull, Via Augusta 390, 08017 Barcelona (Spain); Sedano, L. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2014-10-15

    Highlights: • Porous SiC coated by CVD with a dense coating was developed for Flow Channel Inserts (FCI) in dual-coolant blanket concept. • Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives. • Flexural strength, thermal and electrical conductivity, and microstructure of uncoated and coated porous SiC are presented. • Adhesion of coating to porous SiC and its corrosion behavior under Pb-17.5Li at 700 °C are shown. - Abstract: Thermally and electrically insulating porous SiC ceramics are attractive candidates for Flow Channel Inserts (FCI) in dual-coolant blanket concepts thanks to its relatively inexpensive manufacturing route. To prevent tritium permeation and corrosion by Pb-15.7 a dense coating has to be applied on the porous SiC. Despite not having structural function, FCI must exhibit sufficient mechanical strength to withstand strong thermal gradients and thermo-electrical stresses during operation. This work summarizes the results on the development of coated porous SiC for FCI. Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives and a carbonaceous phase as pore former. Sintering was performed in inert gas at 1850–1950 °C during 15 min to 3 h, followed by oxidation at 650 °C to eliminate the carbonaceous phase. The most promising bulk materials were coated with a ∼30 μm thick dense SiC by CVD. Results on porosity, bending tests, thermal and electrical conductivity are presented. The microstructure of the coating, its adhesion to the porous SiC and its corrosion behavior under Pb-17.5Li are also shown.

  9. Crystalline SiCO: Implication on structure and thermochemistry of ternary silicon oxycarbide ceramics

    Science.gov (United States)

    Bodiford, Nelli

    The need for innovative refractory materials---materials that can sustain extreme temperatures---has been constantly growing within the modern industries. Basic requirements for usage at ultra-high-temperatures have been considered such as high melting point, high structural strength, exceptional resistance to oxidation, zero or almost zero creep. Monolithic ceramics alone cannot provide these properties, therefore, composite materials are sought to fulfill the demand. For example, silicon nitride and silicon carbide based ceramics have long been leading contenders for structural use in gas turbine engines. In the course of this work we are investigating amorphous SiCO formed via polymer-to-ceramic route. Previously a considerable amount of work has been done on structures of stoichiometric amorphous SiCO and a "perfect" random network was obtained (experimentally as well as supported by computational work) up to the phase content of 33 mol-% SiC. By "perfect" one assumes to have four fold coordinated Si atoms bonded to C and O; C atoms bond to Si atoms only and O is two fold connected to Si. Beyond 33 mol-% SiC within SiCO phase the structural imperfections and defects start to develop. Aside from the stoichiometric form of SiCO, the polymer-to-ceramic route allows for the incorporation of high molar amounts of carbon to create SiCO ceramic with excess carbon. The incorporation of carbon into silica glass improves high-temperature mechanical properties and increases resistance to crystallization of the amorphous material. The amount of 'free carbon' can be controlled through the choice of precursors used during synthesis. There were no ternary crystalline phases of SiCO observed. However, in systems such as MgO-SiO2, Na2O-Al2O 3-SiO2 there are ternary crystalline compounds (MgSiO 3, Mg2SiO4, NaAlSiO4, NaAlSi3 O8) that are of a greater energetic stability than glasses of the same composition. What makes the SiCO system different? In the approach proposed in this

  10. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  11. Monolithic microchannel heatsink

    Science.gov (United States)

    Benett, William J.; Beach, Raymond J.; Ciarlo, Dino R.

    1996-01-01

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.

  12. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  13. Residual stresses in bilayer dental ceramics.

    Science.gov (United States)

    Taskonak, Burak; Mecholsky, John J; Anusavice, Kenneth J

    2005-06-01

    It is clinically observed that lithia-disilicate-based all-ceramic fixed partial dentures (FPD) can fail because of the fragmentation of the veneering material. The hypothesis of this study is that the global residual stresses within the surface of those veneered FPDs may be responsible for partial fragmentation of the veneering ceramic. Bilayer and monolithic ceramic composites were prepared using a lithia disilicate based (Li2OSiO2) glass-ceramic core and a glass veneer. A four-step fracture mechanics approach was used to analyze residual stress in bilayered all-ceramic FPDs. We found a statistically significant increase in the mean flexural strengths of bilayer specimens compared with monolithic glass specimens (p < or = 0.05). There was a statistically significant difference between the mean longitudinal and transverse indentation-induced crack sizes in bilayer specimens (p < or = 0.05), which indicates the existence of residual stress. Global residual stresses in the veneer layer, calculated using a fracture mechanics equation, were determined to be responsible for the increased strength and observed chipping, i.e., spallation in bilayer ceramic composites.

  14. Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications

    Science.gov (United States)

    Kim, Daejong; Lee, Hyun-Geun; Park, Ji Yeon; Kim, Weon-Ju

    2015-03-01

    The SiC ceramics are under investigation for the fuel cladding in the light water nuclear reactors because of its excellent high temperature strength and corrosion resistance against hot steam under the severe accident conditions. In this study, the SiC triplex tubes consisting of a SiC inner layer, a SiC/PyC/SiC intermediate layer, and a SiC outer layer were fabricated by the chemical vapor processes. The hoop strength and fracture behaviors of the SiC triplex tube were investigated. The SiC triplex tubes fabricated at the high ratio of H2/MTS had a quite high average strength with a relatively small standard deviation. The hoop strength of the composite tubes tends to increase with the volume fraction of the reinforced fibers. The highest fiber volume fraction was obtained using Tyranno SA3-0.8k with the dense winding patterns such as bamboo-like mosaic pattern, which resulted in the high hoop strength compared to other fibers of Tyranno SA3-1.6k and Hi-Nicalon Type S. Hoop strength also increased slightly as the winding angle increased from 45° to 65°. Fracture behaviors of the SiC triplex tube were investigated via the observation of microstructure of the failed samples.

  15. Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejong, E-mail: dkim@kaeri.re.kr; Lee, Hyun-Geun; Park, Ji Yeon; Kim, Weon-Ju

    2015-03-15

    The SiC ceramics are under investigation for the fuel cladding in the light water nuclear reactors because of its excellent high temperature strength and corrosion resistance against hot steam under the severe accident conditions. In this study, the SiC triplex tubes consisting of a SiC inner layer, a SiC/PyC/SiC intermediate layer, and a SiC outer layer were fabricated by the chemical vapor processes. The hoop strength and fracture behaviors of the SiC triplex tube were investigated. The SiC triplex tubes fabricated at the high ratio of H{sub 2}/MTS had a quite high average strength with a relatively small standard deviation. The hoop strength of the composite tubes tends to increase with the volume fraction of the reinforced fibers. The highest fiber volume fraction was obtained using Tyranno SA3-0.8k with the dense winding patterns such as bamboo-like mosaic pattern, which resulted in the high hoop strength compared to other fibers of Tyranno SA3-1.6k and Hi-Nicalon Type S. Hoop strength also increased slightly as the winding angle increased from 45° to 65°. Fracture behaviors of the SiC triplex tube were investigated via the observation of microstructure of the failed samples.

  16. Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic

    Science.gov (United States)

    Pabel, Anne-Kathrin; Rödiger, Matthias

    2016-01-01

    The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS) ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM) of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa), optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow. PMID:27042362

  17. Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic

    Directory of Open Access Journals (Sweden)

    Sven Rinke

    2016-01-01

    Full Text Available The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa, optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow.

  18. SiC MODIFICATIONS TO MELCOR FOR SEVERE ACCIDENT ANALYSIS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brad J. Merrill; Shannon M Bragg-Sitton

    2013-09-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) Light Water Reactor (LWR) Sustainability Program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. The Fuels Pathway within this program focuses on fuel system components outside of the fuel pellet, allowing for alteration of the existing zirconium-based clad system through coatings, addition of ceramic sleeves, or complete replacement (e.g. fully ceramic cladding). The DOE-NE Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC) is also conducting research on materials for advanced, accident tolerant fuels and cladding for application in operating LWRs. To aide in this assessment, a silicon carbide (SiC) version of the MELCOR code was developed by substituting SiC in place of Zircaloy in MELCOR’s reactor core oxidation and material property routines. The purpose of this development effort is to provide a numerical capability for estimating the safety advantages of replacing Zr-alloy components in LWRs with SiC components. This modified version of the MELCOR code was applied to the Three Mile Island (TMI-2) plant accident. While the results are considered preliminary, SiC cladding showed a dramatic safety advantage over Zircaloy cladding during this accident.

  19. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    Science.gov (United States)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  20. Annual Conference on Composites and Advanced Ceramic Materials, 14th, Cocoa Beach, FL, Jan. 14-17, 1990, Collection of Papers. Parts 1 2

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Attention is given to such topics as national goals in engineering ceramics, microstructural effects on the mechanical properties of monolithic ceramics, whisker-reinforced composites, and reaction-based processing. Processing-microstructure-property relations in fiber-reinforced ceramic matrix composites are also considered.

  1. Preparation and Characterization of BAS Reinforced with SiC Platelets

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@BAS glass-ceramic powders were prepared by sol-gel processing. SiC platelets reinforced BAS glass-ceramic matrix composites with high density and uniform microstructure could be made using hot-pressing method. The related processing parameters were studied in this work, including effects of additional seed on transformation from H to M of barium aluminosilicate. DTA method was used to determine exact time to press mixture powders during hot-pressing for the purpose of effective densification. Microstructure and mechanical properties of the composites were investigated by mean of SEM, XRD and TEM techniques as well as three points bending test and single edge notched beam measurement. The results showed that the flexural strength and fracture toughness value of the BAS glass-ceramic matrix composites could be effectively improved by the addition of the SiC platelets. But the relative densities of composites were slightly decreased. The main toughening mechanism is crack deflection, platelets' pull-out and bridging. The increased value of flexural strength is contributed to the load transition effect from matrix to SiC platelets.

  2. Investigation on The Properties of Fe-Si3N4 Bonded SiC Composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; FENG Di; PENG Dayan

    2005-01-01

    The mechanical properties of pressureless sintering Fe-Si3N4 bonded SiC and Si3 N4 bonded SiC with same manufacture process have been compared in this paper.The oxidizing mechanism of Fe-Si3 N4 bonded SiC ceramic matrix composite has been investigated especially through TG-DSC (thermo gravimetric analysis-differential scanning calorimeter) experiment. During oxidation procedure the main reaction is the oxidation of SiC and Si3N4, SiO2 which form protecting film to prevent further oxidizing. And residual iron in the samples become Fe2 O3 and Fe3O4, the oxidation kinetics at 1100 ~ 1300℃ of re-Si3 N4 bonded SiC has been studied especially. The weight gain per unit area at initial stage changes according to beeline rule, in the middle according to conic, and in the last oxidation period follows parabola rule.

  3. Pore Formation Process of Porous Ti3SiC2 Fabricated by Reactive Sintering

    Directory of Open Access Journals (Sweden)

    Huibin Zhang

    2017-02-01

    Full Text Available Porous Ti3SiC2 was fabricated with high purity, 99.4 vol %, through reactive sintering of titanium hydride (TiH2, silicon (Si and graphite (C elemental powders. The reaction procedures and the pore structure evolution during the sintering process were systematically studied by X-ray diffraction (XRD and scanning electron microscope (SEM. Our results show that the formation of Ti3SiC2 from TiH2/Si/C powders experienced the following steps: firstly, TiH2 decomposed into Ti; secondly, TiC and Ti5Si3 intermediate phases were generated; finally, Ti3SiC2 was produced through the reaction of TiC, Ti5Si3 and Si. The pores formed in the synthesis procedure of porous Ti3SiC2 ceramics are derived from the following aspects: interstitial pores left during the pressing procedure; pores formed because of the TiH2 decomposition; pores formed through the reactions between Ti and Si and Ti and C powders; and the pores produced accompanying the final phase synthesized during the high temperature sintering process.

  4. Patches for Repairing Ceramics and Ceramic-Matrix Composites

    Science.gov (United States)

    Hogenson, Peter A.; Toombs, Gordon R.; Adam, Steven; Tompkins, James V.

    2006-01-01

    Patches consisting mostly of ceramic fabrics impregnated with partially cured polymers and ceramic particles are being developed as means of repairing ceramics and ceramic-matrix composites (CMCs) that must withstand temperatures above the melting points of refractory metal alloys. These patches were conceived for use by space-suited, space-walking astronauts in repairing damaged space-shuttle leading edges: as such, these patches could be applied in the field, in relatively simple procedures, and with minimal requirements for specialized tools. These design characteristics also make the patches useful for repairing ceramics and CMCs in terrestrial settings. In a typical patch as supplied to an astronaut or repair technician, the polymer would be in a tacky condition, denoted as an A stage, produced by partial polymerization of a monomeric liquid. The patch would be pressed against the ceramic or CMC object to be repaired, relying on the tackiness for temporary adhesion. The patch would then be bonded to the workpiece and cured by using a portable device to heat the polymer to a curing temperature above ambient temperature but well below the maximum operating temperature to which the workpiece is expected to be exposed. The patch would subsequently become pyrolized to a ceramic/glass condition upon initial exposure to the high operating temperature. In the original space-shuttle application, this exposure would be Earth-atmosphere-reentry heating to about 3,000 F (about 1,600 C). Patch formulations for space-shuttle applications include SiC and ZrO2 fabrics, a commercial SiC-based pre-ceramic polymer, and suitable proportions of both SiC and ZrO2 particles having sizes of the order of 1 m. These formulations have been tailored for the space-shuttle leading-edge material, atmospheric composition, and reentry temperature profile so as to enable repairs to survive re-entry heating with expected margin. Other formulations could be tailored for specific terrestrial

  5. Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R.; Zhang, Chonghong; Gou, Jie

    2015-05-16

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti3SiC2/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including x-ray diffraction, electron backscatter diffraction, energy dispersive x-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti3SiC2 within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti3SiC2 was also observed. Cs out-diffusion and release from Ti3SiC2 occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  6. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow

    Directory of Open Access Journals (Sweden)

    Sven Rinke

    2015-01-01

    Full Text Available This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa, excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow.

  7. On Ceramics.

    Science.gov (United States)

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  8. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  9. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ari-Wahjoedi, Bambang, E-mail: bambang-ariwahjoedi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar (Malaysia); Ginta, Turnad Lenggo [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tro (Malaysia); Parman, Setyamartana [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Abustaman, Mohd Zikri Ahmad [Kebabangan Petroleum Operating Company Sdn Bhd, Lvl. 52, Tower 2, PETRONAS Twin Towers, KLCC, 50088 Kuala Lumpur (Malaysia)

    2014-10-24

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  10. Making Ceramic Fibers By Chemical Vapor

    Science.gov (United States)

    Revankar, Vithal V. S.; Hlavacek, Vladimir

    1994-01-01

    Research and development of fabrication techniques for chemical vapor deposition (CVD) of ceramic fibers presented in two reports. Fibers of SiC, TiB2, TiC, B4C, and CrB2 intended for use as reinforcements in metal-matrix composite materials. CVD offers important advantages over other processes: fibers purer and stronger and processed at temperatures below melting points of constituent materials.

  11. Manufacturing and characterization of porous SiC for flow channel inserts in dual-coolant blanket designs

    Energy Technology Data Exchange (ETDEWEB)

    Bereciartu, Ainhoa [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Ordas, Nerea, E-mail: nordas@ceit.es [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Garcia-Rosales, Carmen [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Morono, Alejandro; Malo, Marta; Hodgson, Eric R. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Abella, Jordi [Institut Quimic de Sarria, University Ramon Llull, Via Augusta 390, 08017 Barcelona (Spain); Sedano, Luis [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2011-10-15

    SiC is the primary candidate for the flow channel inserts in dual-coolant blanket concepts. Porous SiC ceramics are attractive candidates for this non-structural application, since they can satisfy the required properties through a low cost manufacturing route, compared to SiC{sub f}/SiC. This work shows first results of the manufacturing of porous SiC ceramics prepared with different amounts of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} as sintering additives. C powders were used as pore-formers by their burnout during oxidation after sintering. Comparison of microstructure, porosity, flexural strength, thermal and electrical conductivity and corrosion under Pb-15.7Li of porous SiC without and with sintering additives is presented. The addition of 2.5 wt.% of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} improves the mechanical properties, and reduces the thermal and electrical conductivity down to reasonable values. Preliminary corrosion tests under Pb-15.7 Li at 500 deg. C show that the absence of a dense coating on porous SiC leads to poor corrosion behavior.

  12. Fabrication and Properties of Ti3SiC2/SiC Composites

    Institute of Scientific and Technical Information of China (English)

    YIN Hongfeng; FAN Qiang; REN Yun; ZHANG Junzhan

    2008-01-01

    Ti3SiC2/SiC composites were fabricated by reactive hot pressing method. Effects of hot pressing temperature, the content and panicle size of SiC on phase composition, densification, mechanical properties and behavior of stress-strain of the composites were investigated. The results showed that:(1)Hot-pressing temperature influenced the phase composition of Ti3SiC2/SiC composites. The flexural strength and fracture toughness of composites increased with hot pressing temperature.(2)It became more difficult for the composites to densify when the content of SiC in composites increased. It need be sintered at higher temperature to get denser composite. The flexural strength and fracture toughness of composites increased when the content of SiC added in composites increased. However, when the content of SiC reached 50 wt%, the flexural strength and fracture toughness of composites decreased due to high content of pore in composites.(3)When the content of SiC was same, Ti3SiC2/SiC composites were denser while the particle size of SiC added in composites is 12.8μm compared with the composites that the particle size of SiC added is 3μm.The flexural strength and fracture toughness of composites increased with the increase of particle size of SiC added in composites.(4)Ti3SiC2/SiC composites were non-brittle fracture at room temperature.

  13. Advanced Ceramics Property and Performance Measurements

    Science.gov (United States)

    Jenkins, Michael; Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2015-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the what, how, how not, and why for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committees inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of all of the standards in one volume.

  14. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  15. The Clinical Performance of Monolithic Lithium Disilicate Posterior Restorations After 5, 10, and 15 Years : A Retrospective Case Series

    NARCIS (Netherlands)

    van den Breemer, Carline R. G.; Vinkenborg, Carolien; van Pelt, Hans; Edelhoff, Daniel; Cune, Marco S.

    2017-01-01

    Purpose: Lithium disilicate (LDS) glass-ceramic restorations are routinely used, but results over a period longer than 10 years are rare. The objective of this study was to obtain long-term clinical data on monolithic LDS posterior crowns provided by a single restorative dentist. Materials and Metho

  16. The Clinical Performance of Monolithic Lithium Disilicate Posterior Restorations After 5, 10, and 15 Years : A Retrospective Case Series

    NARCIS (Netherlands)

    van den Breemer, Carline R. G.; Vinkenborg, Carolien; van Pelt, Hans; Edelhoff, Daniel; Cune, Marco S.

    2017-01-01

    PURPOSE: Lithium disilicate (LDS) glass-ceramic restorations are routinely used, but results over a period longer than 10 years are rare. The objective of this study was to obtain long-term clinical data on monolithic LDS posterior crowns provided by a single restorative dentist. MATERIALS AND METHO

  17. Polycrystalline SiC as source material for the growth of fluorescent SiC layers

    DEFF Research Database (Denmark)

    Kaiser, M.; Hupfer, T.; Jokubavicus, V.;

    2013-01-01

    Polycrystalline doped SiC act as source for fluorescent SiC. We have studied the growth of individual grains with different polytypes in the source material. We show an evolution and orientation of grains of different polytypes in polycrystalline SiC ingots grown by the Physical Vapor Transport...

  18. High temperature metal and ceramic composites

    Science.gov (United States)

    Signorelli, R. A.; Dicarlo, J. A.

    1985-01-01

    The Materials Division at NASA Lewis is engaged in research and development efforts on behalf of fiber-reinforced composite materials that are lighter, stiffer, and more structurally reliable than conventional monolithic alloys and ceramics in applications that range from the cryogenic to the refractory. Attention is presently given to metal matrix composites, in which high performance depends on stiff, strong and thermally stable large diameter fibers, with chemically stable interfacial bonding and good coefficient of thermal expansion matching between fibers and matrices, and to ceramic matrix composites, in which intermediate strength interfacial bonds must allow cracks to propagate through the matrix only, while retaining good load transfer characteristics between fiber and matrix.

  19. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow

    OpenAIRE

    Sven Rinke; Matthias Rödiger; Dirk Ziebolz; Anne-Kathrin Schmidt

    2015-01-01

    This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS) ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa), excellent optical properties, and optimum polishing characteristics...

  20. Transmission of Er:YAG laser through different dental ceramics.

    Science.gov (United States)

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (pCeramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  1. Alumina lightweight ceramics modified with plasma synthesized nanopowders

    Science.gov (United States)

    Zake, I.; Svinka, R.; Svinka, V.; Palcevskis, E.

    2011-12-01

    The aim of this study is to clarify possibilities of using plasma synthesized Al2O3 and SiC nanopowders as additives in alumina lightweight ceramics prepared by slip casting. Each plasma synthesized nanopowder (PSNP) was incorporated in the material by a different method, because of their diverse influence on the properties of slip. Al2O3 PSNP was introduced in the matrix in form of aqueous suspension. SiC nanopowder was added directly to raw materials. Bending strength, bulk density, apparent porosity and thermal shock resistance were determined to evaluate the influence of these additives. The effect of Al2O3 PSNP addition on the properties of material depends on the initial sintering temperature. SiC particles during sintering oxidize into SiO2 and then in the reaction with alumina form mullite. Addition of SiC considerably improves bending strength and thermal shock resistance.

  2. Surface Modification of Ceramic Materials Using Excimer Laser

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Changes of surface morphology following XeCl excimer laser irradiation were investigated for three engineering ceramic materials (Al2O3, Al2O3-SiC nanocomposite and Si3N4). Al2O3 and Al2O3-SiC nanocomposite samples exhibit a smooth rapid melt layer on the surface, and the formation of the metastable γ-Al2O3 was observed. A silicon-rich layer on the surface was formed after laser irradiation of Si3N4. The toughness K1c of the materials was measured by the indentation fracture method. After laser irradiation, the toughness of Al2O3, Al2O3-SiC nanocomposite and Si3N4 was improved to various degrees: Al2O3-SiC nanocomposite, 60% (max.); Al2O3, 40% (max.); Si3N4, 12% (max.).

  3. Silsesquioxane-derived ceramic fibres

    Science.gov (United States)

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  4. Dental ceramics: a review of new materials and processing methods.

    Science.gov (United States)

    Silva, Lucas Hian da; Lima, Erick de; Miranda, Ranulfo Benedito de Paula; Favero, Stéphanie Soares; Lohbauer, Ulrich; Cesar, Paulo Francisco

    2017-08-28

    The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I) monolithic zirconia restorations; II) multilayered dental prostheses; III) new glass-ceramics; IV) polymer infiltrated ceramics; and V) novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.

  5. Calculation of Growth Stress in SiO2 Scales Formed by Oxidation of SiC Fibers (PREPRINT)

    Science.gov (United States)

    2012-07-01

    Kinetics of High - Purity Silicon Carbide from 800 to 1100 C. J. Am. Ceram. Soc. 79, 2897-2911 (1996). 45 Ogbuji, U. J. T. & Opila, E. J. A Comparison...to SiO2 generates very large growth stresses. Microstructural evidence for these stresses exists for crystalline scales on SiC fibers. High ...dislocation densities in crystalline SiO2 near the SiC -SiO2 interface suggest high shear stresses exist during growth of new crystalline scale.1 Axial cracks

  6. LETTER TO THE EDITOR: Electronic structure and bonding properties in layered ternary carbide Ti3SiC2

    Science.gov (United States)

    Zhou, Yanchun; Sun, Zhimei

    2000-07-01

    Ab initio calculations based on the density-functional pseudopotential approach have been used to study the electronic structure and chemical bonding in layered machinable Ti3SiC2 ceramic. The calculations reveal that all three types of bonding - metallic, covalent and ionic - contribute to the bonding in Ti3SiC2. The high electric conductivity is attributed to the metallic bonding parallel to the basal plane and the high modulus and high melting point are attributed to the strong Ti-C-Ti-C-Ti covalent bond chains in the structure.

  7. Clinical assessment of enamel wear caused by monolithic zirconia crowns.

    Science.gov (United States)

    Stober, T; Bermejo, J L; Schwindling, F S; Schmitter, M

    2016-08-01

    The purpose of this study was to measure enamel wear caused by antagonistic monolithic zirconia crowns and to compare this with enamel wear caused by contralateral natural antagonists. Twenty monolithic zirconia full molar crowns were placed in 20 patients. Patients with high activity of the masseter muscle at night (bruxism) were excluded. For analysis of wear, vinylpolysiloxane impressions were prepared after crown incorporation and at 6-, 12-, and 24-month follow-up. Wear of the occlusal contact areas of the crowns, of their natural antagonists, and of two contralateral natural antagonists (control teeth) was measured by use of plaster replicas and a 3D laser-scanning device. Differences of wear between the zirconia crown antagonists and the control teeth were investigated by means of two-sided paired Student's t-tests and linear regression analysis. After 2 years, mean vertical loss was 46 μm for enamel opposed to zirconia, 19-26 μm for contralateral control teeth and 14 μm for zirconia crowns. Maximum vertical loss was 151 μm for enamel opposed to zirconia, 75-115 μm for control teeth and 60 μm for zirconia crowns. Statistical analysis revealed significant differences between wear of enamel by zirconia-opposed teeth and by control teeth. Gender, which significantly affected wear, was identified as a possible confounder. Monolithic zirconia crowns generated more wear of opposed enamel than did natural teeth. Because of the greater wear caused by other dental ceramics, the use of monolithic zirconia crowns may be justified.

  8. Switching Performance Evaluation of Commercial SiC Power Devices (SiC JFET and SiC MOSFET) in Relation to the Gate Driver Complexity

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    and JFETs. The recent introduction of SiC MOSFET has proved that it is possible to have highly performing SiC devices with a minimum gate driver complexity; this made SiC power devices even more attractive despite their device cost. This paper presents an analysis based on experimental results...... of the switching losses of various commercially available Si and SiC power devices rated at 1200 V (Si IGBTs, SiC JFETs and SiC MOSFETs). The comparison evaluates the reduction of the switching losses which is achievable with the introduction of SiC power devices; this includes analysis and considerations...

  9. Coating of SiC Powder with Nano YAG Phase

    Institute of Scientific and Technical Information of China (English)

    Zhang Ning; Cai Qingkui; Ru Hongqiang; Li Ying; Qiu Guanming; Sun Xudong

    2005-01-01

    SiC-YAG(Y3Al5O12) ceramic composite powders were prepared by co-precipitation coating method. Mechanism of co-precipitation coating of SiC powders with Y3+ and Al3+ precursors was investigated. If the concentration of [OH-] ion in the solution is controlled within the range between critical values for heterogeneous nucleation and homogeneous nucleation, Y3+ and Al3+ precipitation precursors can be coated on the surface of SiC particles. Y3+ and Al3+ precipitation precursors transform into YAG phase after calcining at 1000 ℃ without the formation of YAM and YAP phases. The formation temperature of YAG phase is about 600 ℃ lower than that of conventional powder mixing method. The effect of pH value of the solution and precipitant titration rate on coating quality of SiC-YAG composite powders was also studied. The results show that co-precipitation coating can be realized at a final pH of 9 and a precipitant titration rate of 5 ml·min-1.

  10. Microanalytical investigation of fibre-reinforced ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B.; Grathwohl, G.

    1989-03-01

    Microanalytical investigations have been made on samples of ceramic fibres (SiC fibres, (Nicalon) C fibre coated with TiN) and fibre-reinforced ceramics (SiC-and glass-matrices). High resolution Auger electron spectroscopy (HRAES), electron probe microanalysis (EPMA) and scanning electron microscopy were employed for these examinations. Analysis was best performed with HRAES on account of its lateral and depth resolution. Some of the problems involved in this technique are discussed e.g. electron beam effects. AES depth profiles of ceramic fibres are reported and compared with the surface analysis of fibres in the composites after being broken in situ.

  11. Characterization of rare-earth doped Si 3 N4 /SiC micro/nanocomposites

    Directory of Open Access Journals (Sweden)

    Peter Tatarko

    2010-03-01

    Full Text Available Influence of various rare-earth oxide additives (La2O3, Nd2O3, Sm2O3, Y2O3, Yb2O3 and Lu2O3 on the mechanical properties of hot-pressed silicon nitride and silicon nitride/silicon carbide micro/nano-composites has been investigated. The bimodal character of microstructures was observed in all studied materials where elongated β-Si3N4 grains were embedded in the matrix of much finer Si3N4 grains. The fracture toughness values increased with decreasing ionic radius of rare-earth elements. The fracture toughness of composites was always lower than that of monoliths due to their finer Si3N4/SiC microstructures. Similarly, the hardness and bending strength values increased with decreasing ionic radius of rare-earth elements either in monoliths or composites. On the other hand, the positive influence of finer microstructure of the composites on strength was not observed due to the present defects in the form of SiC clusters and non-reacted carbon zones. Wear resistance at room temperature also increased with decreasing ionic radius of rare-earth element. Significantly improved creep resistance was observed in case either of composite materials or materials with smaller radius of RE3+.

  12. Sporadic SICs and the Normed Division Algebras

    Science.gov (United States)

    Stacey, Blake C.

    2017-08-01

    Symmetric informationally complete quantum measurements, or SICs, are mathematically intriguing structures, which in practice have turned out to exhibit even more symmetry than their definition requires. Recently, Zhu classified all the SICs whose symmetry groups act doubly transitively. I show that lattices of integers in the complex numbers, the quaternions and the octonions yield the key parts of these symmetry groups.

  13. SiC nanowires: material and devices

    Science.gov (United States)

    Zekentes, K.; Rogdakis, K.

    2011-04-01

    SiC nanowires are of high interest since they combine the physical properties of SiC with those induced by their low dimensionality. For this reason, a large number of scientific studies have been dedicated to their fabrication and characterization as well as to their application in devices. SiC nanowires' growth involving different growth mechanisms and configurations was the main theme for the large majority of these studies. Various physical characterization methods have been employed for evaluating SiC nanowire quality. SiC nanowires with narrow-diameter (channel material. On the other hand, the grown nanowires are suitable for field-emission applications and to be used as reinforcing material in composite structures as well as for increasing the hydrophobicity of Si surfaces. All these aspects are examined in detail in different sections of this paper.

  14. Silicon carbide whisker reinforced ceramic composites and method for making same

    Science.gov (United States)

    Wei, George C.

    1985-01-01

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  15. Microstructure and Dielectric Properties of LPCVD/CVI-SiBCN Ceramics Annealed at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2017-06-01

    Full Text Available SiBCN ceramics were introduced into porous Si3N4 ceramics via a low-pressure chemical vapor deposition and infiltration (LPCVD/CVI technique, and then the composite ceramics were heat-treated from 1400 °C to 1700 °C in a N2 atmosphere. The effects of annealing temperatures on microstructure, phase evolution, dielectric properties of SiBCN ceramics were investigated. The results revealed that α-Si3N4 and free carbon were separated below 1700 °C, and then SiC grains formed in the SiBCN ceramic matrix after annealing at 1700 °C through a phase-reaction between free carbon and α-Si3N4. The average dielectric loss of composites increased from 0 to 0.03 due to the formation of dispersive SiC grains and the increase of grain boundaries.

  16. Development of nondestructive evaluation techniques for high-temperature ceramic heat exchanger components. Tenth quarterly report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D.S.; Yuhas, D.; Caines, M.J.

    1980-04-01

    The effectiveness of several conventional and unconventional NDE techniques for specific high-temperature ceramic components was determined. Techniques under study at ANL include dye-enhanced radiography, acoustic microscopy, conventional ultrasonic testing, acoustic-emission detection, acoustic impact testing, holography, interferometry, infrared scanning, internal friction measurements, and overload proof testing. The current effort involves SiC heat-exchanger tubes; previous ceramic NDE efforts at ANL have involved silicon-nitride gas-turbine rotors. Recent results on inspection of SiC heat-exchanger tubing by means of ultrasonic acoustic microscopy techniques and efforts initiated and planned for NDE of ceramic joints are discussed.

  17. In situ Fabrication of Monolithic Copper Azide

    Science.gov (United States)

    Li, Bing; Li, Mingyu; Zeng, Qingxuan; Wu, Xingyu

    2016-04-01

    Fabrication and characterization of monolithic copper azide were performed. The monolithic nanoporous copper (NPC) with interconnected pores and nanoparticles was prepared by decomposition and sintering of the ultrafine copper oxalate. The preferable monolithic NPC can be obtained through decomposition and sintering at 400°C for 30 min. Then, the available monolithic NPC was in situ reacted with the gaseous HN3 for 24 h and the monolithic NPC was transformed into monolithic copper azide. Additionally, the copper particles prepared by electrodeposition were also reacted with the gaseous HN3 under uniform conditions as a comparison. The fabricated monolithic copper azide was characterized by Fourier transform infrared (FTIR), inductively coupled plasma-optical emission spectrometry (ICP-OES), and differential scanning calorimetry (DSC).

  18. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  19. Ceramic Processing

    Energy Technology Data Exchange (ETDEWEB)

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  20. Polymer-Derived Ceramic Fibers

    Science.gov (United States)

    Ichikawa, Hiroshi

    2016-07-01

    SiC-based ceramic fibers are derived from polycarbosilane or polymetallocarbosilane precursors and are classified into three groups according to their chemical composition, oxygen content, and C/Si atomic ratio. The first-generation fibers are Si-C-O (Nicalon) fibers and Si-Ti-C-O (Tyranno Lox M) fibers. Both fibers contain more than 10-wt% oxygen owing to oxidation during curing and lead to degradation in strength at temperatures exceeding 1,300°C. The maximum use temperature is 1,100°C. The second-generation fibers are SiC (Hi-Nicalon) fibers and Si-Zr-C-O (Tyranno ZMI) fibers. The oxygen content of these fibers is reduced to less than 1 wt% by electron beam irradiation curing in He. The thermal stability of these fibers is improved (they are stable up to 1,500°C), but their creep resistance is limited to a maximum of 1,150°C because their C/Si atomic ratio results in excess carbon. The third-generation fibers are stoichiometric SiC fibers, i.e., Hi-Nicalon Type S (hereafter Type S), Tyranno SA, and Sylramic™ fibers. They exhibit improved thermal stability and creep resistance up to 1,400°C. Stoichiometric SiC fibers meet many of the requirements for the use of ceramic matrix composites for high-temperature structural application. SiBN3C fibers derived from polyborosilazane also show promise for structural applications, remain in the amorphous state up to 1,800°C, and have good high-temperature creep resistance.

  1. Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    GUO Xing-zhong; YANG Hui

    2005-01-01

    Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 860 ℃ with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging'.

  2. Early implementation of SiC cladding fuel performance models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

  3. Ultra High Temperature (UHT) SiC Fiber (Phase 2)

    Science.gov (United States)

    Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.

    2015-01-01

    Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT SiC

  4. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa

    2008-07-01

    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.

  5. Investigation of Embedded Si/C System Exposed to a Hybrid Reaction of Centrifugal-Assisted Thermite Method.

    Directory of Open Access Journals (Sweden)

    Reza Mahmoodian

    Full Text Available A novel method is proposed to study the behavior and phase formation of a Si+C compacted pellet under centrifugal acceleration in a hybrid reaction. Si+C as elemental mixture in the form of a pellet is embedded in a centrifugal tube. The pellet assembly and tube are exposed to the sudden thermal energy of a thermite reaction resulted in a hybrid reaction. The hybrid reaction of thermite and Si+C produced unique phases. X-ray diffraction pattern (XRD as well as microstructural and elemental analyses are then investigated. XRD pattern showed formation of materials with possible electronic and magnetic properties. The cooling rate and the molten particle viscosity mathematical model of the process are meant to assist in understanding the physical and chemical phenomena took place during and after reaction. The results analysis revealed that up to 85% of materials converted into secondary products as ceramics-matrix composite.

  6. Studies on the Codeposition of SiC Nanopowder with Nickel, Cobalt, and Co-Ni Alloys

    Directory of Open Access Journals (Sweden)

    Ewa Rudnik

    2014-01-01

    Full Text Available Electrodeposition of SiC nanopowder (approximately 120 nm with nickel, cobalt, and Co-Ni alloy matrix was studied. It was found that particles suspended in the bath affect slightly the reduction of metallic ions. Incorporation of the ceramic particles was governed mainly by the morphology of the matrix surface, while no strict correlation between the amount of cobalt ions adsorbed on the powder and the SiC content in the composites was found. Microhardness of nickel deposits was 585±5 HV, while for cobalt-rich coatings (84–95 wt.% Co the values were in the range of 260–290 HV, independently of the SiC content in the coatings. Fine-grained nickel deposits were characterized by good corrosion resistance, while cobalt and Co-Ni alloys showed high corrosion current densities.

  7. Lateral boron distribution in polycrystalline SiC source materials

    DEFF Research Database (Denmark)

    Linnarsson, M. K.; Kaiser, M.; Liljedahl, R.

    2013-01-01

    Polycrystalline SiC containing boron and nitrogen are used in growth of fluorescent SiC for white LEDs. Two types of doped polycrystalline SiC have been studied in detail with secondary ion mass spectrometry: sintered SiC and poly-SiC prepared by sublimation in a physical vapor transport setup...

  8. Fundamental alloy design of oxide ceramics and their composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I.W.

    1992-01-01

    The main research was on microstructural development of oxide ceramics. Projects were completed and the publications given. Abstracts are given on: Reactive CeO[sub 2]powders by homogeneous precipitation, SiC whisker-reinforced lithium aluminosilicate composite, solute drag on grain boundary in ionic solids (space charge effect), in-situ alumina/aluminate platelet composites, exaggerated texture and grain growth of superplastic silicon nitride (SiAlON), hot extrusion of ceramics, control of grain boundary pinning in Al[sub 2]O[sub 3]/ZrO[sub 2] composites with Ce[sup 3+]/Ce[sup 4+] doping, superplastic forming of ceramic composites, computer simulation of final stage sintering (model, kinetics, microstructure, effect of initial pore size), development of superplastic structural ceramics, and superplastic flow of two-phase ceramics containing rigid inclusions (zirconia/mullite composites). A proposed research program is outlined: materials, solute drag, densification and coarsening, and grain boundary electrical behavior.

  9. Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Manso, B.; Pablos, A. de; Belmonte, M.; Osendi, M. I.; Miranzo, P.

    2014-04-01

    Concentrated ceramic inks based on (SiC) powders, with different amounts of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} as sintering aids, are developed for the adequate production of SiC scaffolds, with different patterned morphologies, by the Robocasting technique. The densification of the as-produced 3D structures, previously heat treated in air at 600 degree centigrade for the organics burn-out, is achieved with a Spark Plasma Sintering (SPS) furnace. The effects of the amount of sintering additives (7 - 20 wt. %) and the size of the SiC powders (50 nm and 0.5 {mu}m) on the processing of the inks, microstructure, hardness and elastic modulus of the sintered scaffolds, are studied. The use of nano-sized (SiC) powders significantly restricts the attainable maximum solids volume fraction of the ink (0.32 compared to 0.44 of the submicron-sized powders-based ink), involving a much larger porosity of the green ceramic bodies. Furthermore, reduced amounts of additives improve the mechanical properties of the ceramic skeleton; particularly, the stiffness. The grain size and specific surface area of the starting powders, the ink solids content, green porosity, amount of sintering additives and SPS temperatures are the main parameters to be taken into account for the production of these SiC cellular ceramics. (Author)

  10. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  11. From SICs and MUBs to Eddington

    CERN Document Server

    Bengtsson, Ingemar

    2011-01-01

    This is a survey of some very old knowledge about Mutually Unbiased Bases (MUB) and Symmetric Informationally Complete POVMs (SIC). In prime dimensions the former are closely tied to an elliptic normal curve symmetric under the Heisenberg group, while the latter are believed to be orbits under the Heisenberg group in all dimensions. In dimensions 3 and 4 the SICs are understandable in terms of elliptic curves, but a general statement escapes us. The geometry of the SICs in 3 and 4 dimensions is discussed in some detail.

  12. Ceramic Methyltrioxorhenium

    CERN Document Server

    Herrmann, R; Eickerling, G; Helbig, C; Hauf, C; Miller, R; Mayr, F; Krug von Nidda, H A; Scheidt, E W; Scherer, W; Herrmann, Rudolf; Troester, Klaus; Eickerling, Georg; Helbig, Christian; Hauf, Christoph; Miller, Robert; Mayr, Franz; Nidda, Hans-Albrecht Krug von; Scheidt, Ernst-Wilhelm; Scherer, Wolfgang

    2006-01-01

    The metal oxide polymeric methyltrioxorhenium [(CH3)xReO3] is an unique epresentative of a layered inherent conducting organometallic polymer which adopts the structural motifs of classical perovskites in two dimensions (2D) in form of methyl-deficient, corner-sharing ReO5(CH3) octahedra. In order to improve the characteristics of polymeric methyltrioxorhenium with respect to its physical properties and potential usage as an inherentconducting polymer we tried to optimise the synthetic routes of polymeric modifications of 1 to obtain a sintered ceramic material, denoted ceramic MTO. Ceramic MTO formed in a solvent-free synthesis via auto-polymerisation and subsequent sintering processing displays clearly different mechanical and physical properties from polymeric MTO synthesised in aqueous solution. Ceramic MTO is shown to display activated Re-C and Re=O bonds relative to MTO. These electronic and structural characteristics of ceramic MTO are also reflected by a different chemical reactivity compared with its...

  13. Effects of SiC amount on phase compositions and properties of Ti3SiC2-based composites

    Institute of Scientific and Technical Information of China (English)

    蔡艳芝; 殷小玮; 尹洪峰

    2015-01-01

    The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%−30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented TiC synthesis but facilitated SiC synthesis. The Ti3SiC2/TiC−SiC composite had better oxidation resistance when SiC added quantity reached 20% but poorer oxidation resistance with SiC addition under 15%than Ti3SiC2/TiC composite at higher temperatures. There were more than half of the original SiC and a few Ti3SiC2 remaining in Ti3SiC2/TiC−SiC with 20% SiC addition, but all constituents in Ti3Si2/TiC composite were oxidized after 12 h in air at 1500 °C. The oxidation scale thickness of TS30, 1505.78μm, was near a half of that of T, 2715μm, at 1500 °C for 20 h. Ti3SiC2/TiC composite had a flexural strength of 474 MPa, which was surpassed by Ti3SiC2/TiC−SiC composites when SiC added amount reached 15%. The strength reached the peak of 518 MPa at 20%SiC added amount.

  14. Metallic and intermetallic-bonded ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  15. Packaging Technologies for 500 C SiC Electronics and Sensors: Challenges in Material Science and Technology

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.

    2015-01-01

    This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.

  16. Optimisation of mechanical milling process for production of AA 7075/(SiC or TiB₂) composite powders

    OpenAIRE

    Jabbari Taleghani, M. A.; Salehi, M.; Ruiz Navas, Elisa María; Torralba, José Manuel

    2012-01-01

    The present work concerns the processing of composite powders based on 7075 aluminium alloy by mechanical milling. A premixed powder (Alumix 431D, Ecka Granules, Germany) was used as the matrix material, and two different ceramic reinforcements (SiC and TiB₂) were chosen as reinforcements. The main objective was to evaluate the effect of the content and addition method of the process control agent as well as the content and type of reinforcement on the microstructural and morphological evolut...

  17. Monolithic Fuel Fabrication Process Development

    Energy Technology Data Exchange (ETDEWEB)

    C. R. Clark; N. P. Hallinan; J. F. Jue; D. D. Keiser; J. M. Wight

    2006-05-01

    The pursuit of a high uranium density research reactor fuel plate has led to monolithic fuel, which possesses the greatest possible uranium density in the fuel region. Process developments in fabrication development include friction stir welding tool geometry and cooling improvements and a reduction in the length of time required to complete the transient liquid phase bonding process. Annealing effects on the microstructures of the U-10Mo foil and friction stir welded aluminum 6061 cladding are also examined.

  18. Pressure drop in CIM disk monolithic columns.

    Science.gov (United States)

    Mihelic, Igor; Nemec, Damjan; Podgornik, Ales; Koloini, Tine

    2005-02-11

    Pressure drop analysis in commercial CIM disk monolithic columns is presented. Experimental measurements of pressure drop are compared to hydrodynamic models usually employed for prediction of pressure drop in packed beds, e.g. free surface model and capillary model applying hydraulic radius concept. However, the comparison between pressure drop in monolith and adequate packed bed give unexpected results. Pressure drop in a CIM disk monolithic column is approximately 50% lower than in an adequate packed bed of spheres having the same hydraulic radius as CIM disk monolith; meaning they both have the same porosity and the same specific surface area. This phenomenon seems to be a consequence of the monolithic porous structure which is quite different in terms of the pore size distribution and parallel pore nonuniformity compared to the one in conventional packed beds. The number of self-similar levels for the CIM monoliths was estimated to be between 1.03 and 2.75.

  19. Lat.SIC - roum şi

    Directory of Open Access Journals (Sweden)

    Maria Iliescu

    1991-12-01

    Full Text Available In Jatina populară şi tîrzie ET 'şi' începe să fie întărit prin SIC 'astfel'. Locutiunea ET SIC putea avea sensurile 'şi astfel', 'şi apoi', 'şi imediat', 'şi deasemenea' sau nu mai şi'. Cu timpul s-a pierdut uneori determinantul ET şi SIC singur a inceput să exprime sensurile de mai sus. Astfel se explică etimologia şi accepţiunile rom. şi, conjunctie şi adverb. Se remană de asemenea că evoluţie semantica a lui SIC în română asta pînă la un punct identică cu cea din franceza veche.

  20. Graphene-supported metal oxide monolith

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah

    2017-01-10

    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  1. Graphene-supported metal oxide monolith

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah

    2017-01-10

    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  2. Monolithic Solid Oxide Fuel Cell development

    Science.gov (United States)

    Myles, K. M.; McPheeters, C. C.

    1989-12-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  3. Outcome of bonded vs all-ceramic and metal- ceramic fixed prostheses for single tooth replacement.

    Science.gov (United States)

    Karl, Matthias

    2016-01-01

    The conventional treatment of a single missing tooth is most frequently based on the provision of a fixed dental prosthesis (FDPs). A variety of designs and restorative materials are available which have an impact on the treatment outcome. Consequently, it was the aim of this review to compare resin-bonded, all-ceramic and metal-ceramic FDPs based on existing evidence. An electronic literature search using "metal-ceramic" AND "fixed dental prosthesis" AND "clinical, all-ceramic" AND "fixed dental prosthesis" AND "clinical, resin-bonded" AND "fixed dental prosthesis" AND "clinical, fiber reinforced composite" AND "clinical, monolithic" AND "zirconia" AND "clinical" was conducted and supplemented by the manual searching of bibliographies from articles already included. A total of 258 relevant articles were identified. Metal-ceramic FDPs still show the highest survival rates of all tooth-supported restorations. Depending on the ceramic system used, all-ceramic restorations may reach comparable survival rates while the technical complications, i.e. chipping fractures of veneering materials in particular, are more frequent. Resin-bonded FDPs can be seen as long-term provisional restorations with the survival rate being higher in anterior locations and when a cantilever design is applied. Inlay-retained FDPs and the use of fiber-reinforced composites overall results in a compromised long-term prognosis. Recently advocated monolithic zirconia restorations bear the risk of low temperature degradation. Several variables affect treatment planning for a given patient situation, with survival and success rates of different restorative options representing only one factor. The broad variety of designs and materials available for conventional tooth-supported restorations should still be considered as a viable treatment option for single tooth replacement.

  4. SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Paul K.T. Liu

    2003-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the

  5. Tensile strength of bilayered ceramics and corresponding glass veneers

    Science.gov (United States)

    Champirat, Tharee; Jirajariyavej, Bundhit

    2014-01-01

    PURPOSE To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS Blocks of core ceramics (IPS e.max® Press and Lava™ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and 1 mm2 in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max® Ceram and Lava™ Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS The mean microtensile bond strength of IPS e.max® Press/IPS e.max® Ceram (43.40 ± 5.51 MPa) was significantly greater than that of Lava™ Frame/Lava™ Ceram (31.71 ± 7.03 MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava™ Frame/Lava™ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava™ Ceram, while the bond strength of bilayered IPS e.max® Press/IPS e.max® Ceram was significantly greater than tensile strength of monolithic IPS e.max® Ceram. CONCLUSION Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials. PMID:25006377

  6. Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications

    OpenAIRE

    Schöbel, M.; Altendorfer, W.; Degischer, H.P.; S. Vaucher; Buslaps, T.; Di Michiel, M.; Hofmann, M.

    2011-01-01

    Abstract Metal matrix composites (MMC) are being developed for power electronic IGBT modules, where the heat generated by the high power densities has to be dissipated from the chips into a heat sink. As a means of increasing long term stability a base plate material is needed with a good thermal conductivity (TC) combined with a low coefficient of thermal expansion (CTE) matching the ceramic insulator. SiC particle reinforced aluminum (AlSiC) offers the high TC of a metal with the...

  7. Testing SiC fiber-reinforced ZrB2 sharp component in supersonic regime

    OpenAIRE

    Silvestroni, Laura; Monteverde, Frederic; Savino, Raffaele; SCITI, Diletta

    2012-01-01

    Ultra-high temperature ceramics are currently the most promising materials for thermal protection structures like wing leading edges in next generation space vehicles flying at hypersonic speed or/and re-entering the earth's atmosphere, which are characterized by sharp profiles to increase performances and maneuverability. In this contribution, the aero-dynamic behaviour of a very sharp ZrB2-SiC fiber composite is tested in a plasma wind tunnel in supersonic regime. A wedge with curvature rad...

  8. SiC reinforced-MoSi sub 2 based matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Honnell, R.E.

    1990-01-01

    SiC reinforced-MoSi{sub 2} based matrix composites possess very significant potential as high temperature structural materials for temperatures above 1200{degree}C in oxidizing environments, due to their combination of oxidation resistance, thermodynamic stability, machinability, elevated temperature ductility and strength, and ability to alloy the MoSi{sub 2} matrix with other silicides. The fabrication, microstructures, oxidation, and mechanical properties of these materials are described, and their current properties are compared to high temperature metals and structural ceramics. 22 refs., 5 figs., 2 tabs.

  9. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  10. Method for Making a Fuel Cell from a Solid Oxide Monolithic Framework

    Science.gov (United States)

    Cable, Thomas L. (Inventor); Sofie, Stephen W. (Inventor)

    2014-01-01

    The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which a thin electrolyte is supported between electrodes of essentially equal thickness. Individual cell units are made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that subsequent to sintering, is made into either an anode or a cathode by means of appropriate solution and thermal treatment means. Each cell unit is assembled by depositing of a thin coating of ion conducting ceramic material upon the side of each of two pieces of tape surface having the smallest pore openings, and then mating the coated surfaces to create an unsintered electrode scaffold pair sandwiching an electrolyte layer. The opposing major outer exposed surfaces of each cell unit is given a thin coating of electrically conductive ceramic, and multiple cell units are stacked, or built up by stacking of individual cell layers, to create an unsintered fuel cell stack. Ceramic or glass edge seals are installed to create flow channels for fuel and air. The cell stack with edge sealants is then sintered into a ceramic monolithic framework. Said solution and thermal treatments means convert the electrode scaffolds into anodes and cathodes. The thin layers of electrically conductive ceramic become the interconnects in the assembled stack.

  11. Friction reduction by adding copper oxide into alumina and zirconia ceramics

    NARCIS (Netherlands)

    Pasaribu, H.R.; Sloetjes, J.W.; Schipper, D.J.

    2003-01-01

    The friction and wear of alumina and zirconia ceramics doped with various weight percentages (0.5, 1 and 5 wt.%) of CuO was studied. Dry sliding tests by using a pin-on-disc tribotester were conducted on these materials against commercially available Al2O3, ZrO2, SiC, and Si3N4 ceramic balls. The re

  12. Ceramic Matrix Characterization Under a Gas Turbine Combustion and Loading Environment

    Science.gov (United States)

    2014-03-17

    Ceramics and Ceramic Matrix Composites." Current Opinion in Solid State and Materials Science 5.4 (2001): 301-09. Print. 12. Jacobson , Nathan S...and Nathan S. Jacobson . "SiC Recession Caused by SiO2 Scale Volatility Under Combustion Conditions: II, Thermodynamics and Gaseous-Diffusion Model...10. An Introduction to Thermal Spray. N.d. Instruction Manual. Sulzer Metco Inc., Westbury, NY. 11. Jacobson , N. "Oxidation and Corrosion of

  13. Monolithically integrated absolute frequency comb laser system

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  14. Nanosecond monolithic CMOS readout cell

    Science.gov (United States)

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  15. Structural Ceramics Database

    Science.gov (United States)

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  16. Changing the adsorption capacity of coal-based honeycomb monoliths for pollutant removal from liquid streams by controlling their porosity

    Energy Technology Data Exchange (ETDEWEB)

    Gatica, Jose M.; Harti, Sanae [Departamento C.M., I.M. y Quimica Inorganica, Universidad de Cadiz, Puerto Real 11510 (Spain); Vidal, Hilario, E-mail: hilario.vidal@uca.es [Departamento C.M., I.M. y Quimica Inorganica, Universidad de Cadiz, Puerto Real 11510 (Spain)

    2010-09-15

    Coal-based honeycomb monoliths extruded using methods developed for ceramic materials have been used to retain methylene blue and p-nitrophenol from aqueous solutions. The influence of the filters' thermal treatment on their textural properties and performance as adsorbents was examined. Characterization by N{sub 2} physisorption, mercury porosimetry and scanning electron microscopy along with adsorption tests under dynamic conditions suggest that, depending on the pollutant and its initial concentration, it can be more convenient to previously submit the monoliths to a simple carbonization or to an additional activation, with or without preoxidation, as a consequence of their different resulting pore structures. Infrared spectroscopy indicates that their different adsorption behaviour seems not to be related to differences in their surface chemical groups. In addition, axial crushing tests show that the monoliths have an acceptable mechanical resistance for the application investigated.

  17. The physical chemistry of nucleation of sub-micrometer non-oxide ceramic powders via sub-oxide vapor-phase reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jha, A. [Brunel Univ., Uxbridge (United Kingdom). Dept. of Materials Technology

    1996-10-01

    Fine ceramic powders (< 500 nm) exhibit exceptional physical and mechanical properties in engineered structural ceramics. The production of fine powders, in particular the non-oxide ceramics, via a cheaper route than the organic solvent route has been rather elusive. This paper examines the physical chemistry of sub-oxide vapor-phase reduction reaction for the nucleation of non-oxide ceramic phase. Well known vapor species eg SiO and BO in the production of technical ceramic powders (SiC, BN) are particularly discussed for understanding the nucleation process of SiC and BN ceramic phases respectively. The regimes of partial pressures and temperatures are particularly identified. The calculated nucleation rate as a function of the temperature is compared with the experimental results on powder morphology. The production of amorphous and nanocrystalline h-BN powders is discussed in the context of substrate structure and thermodynamic parameters.

  18. Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites

    Science.gov (United States)

    Morscher, Gregory N.

    2006-01-01

    Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.

  19. Ceramic fibers from Si-B-C polymer precursors

    Science.gov (United States)

    Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.

    1993-01-01

    Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.

  20. High-temperature compressive deformation of Si{sub 3}N{sub 4}/BN fibrous monoliths.

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J. L.

    1999-02-04

    Fibrous monolithic Si{sub 3}N{sub 4}/BN ({approx}85 vol.% Si{sub 3}N{sub 4}/15 vol.% BN) and monolithic Si{sub 3}N{sub 4} ceramics were compressed at a nearly constant strain rate ({var_epsilon}) at 1200-1400 C in N{sub 2}. The {var_epsilon} range was {approx}1 x 10{sup {minus}6} to 5 x 10{sup {minus}6} s{sup {minus}1}; the stress ({sigma}) range was 37-202 MPa. The Si{sub 3}N{sub 4} and the unidirectional fibrous monoliths that were oriented with the long axis of the Si{sub 3}N{sub 4} cells parallel to the compression direction exhibited plasticity at 1300 and 1400 C, with {var_epsilon} {proportional_to} {sigma}. A 0/90{degree} cross-ply Si{sub 3}N{sub 4}/BN laminate also exhibited significant plasticity, but it was weaker than the above-mentioned ceramics. The unidirectional fibrous monoliths that were compressed perpendicular to the cell direction fractured at {approx}50 MPa in all tests. A {+-}45{degree} laminate tested at 1300 C fractured at a stress of {approx}40 MPa. Low fracture stress correlated with shear through BN layers.

  1. Combustion Synthesis of h-BN-SiC Ceramic Composites

    Institute of Scientific and Technical Information of China (English)

    LI Hong-bo; ZHENG Yong-ting; ZHOU Li-juan; HAN Jie-cai

    2006-01-01

    The feasibility was demonstrated to fabricate h-BN-SiC ceramics through combustion synthesis of the mixture of boron carbide and silicon powders under 100 MPa nitrogen pressure. The mass fraction of BN and SiC in the combustion products were found to be 72 % and 28 % respectively. The thermodynamics of the synthesis reaction and the adiabatic combustion temperature were calculated on the theoretical ground. The bending strengths of the ceramics were measured to be 65.2 MPa at room temperature and 55 MPa at 1350 ℃. The phase composition and microstructure of the combustion products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  2. Design of Ultra-High Temperature Ceramics for Improved Performance

    Science.gov (United States)

    2009-02-28

    Hilmas, S. Zhu, J. Ridge, D.G. Fletcher, CO. Asma , O. Chazot, and J. Thomel, "Oxidation of ZrB2-SiC Ultra-High Temperature Ceramic Composites in...American Ceramic Society, elected September 2007 3. Univ. of New Mexico School of Engineering Distinguished Young Alumnus, October 2006 4. Faculty...Verona, Italy. 4. J. Marschall, D.A. Pejakovi, W.G. Fahrenholtz, G.E. Hilmas, S. Zhu, J. Ridge, D.G. Fletcher, CO. Asma , O. Chazot, and J. Thomel

  3. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    OpenAIRE

    Clayton Cozzan; Brady, Michael J.; Nicholas O’Dea; Emily E. Levin; Shuji Nakamura; Steven P. DenBaars; Ram Seshadri

    2016-01-01

    With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). The resulting transluc...

  4. Microfluidic devices and methods including porous polymer monoliths

    Science.gov (United States)

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  5. Effects of pyrolysis temperature and fillers on joining of ceramics via silicone resin

    Institute of Scientific and Technical Information of China (English)

    SUO Jun; CHEN Zhao-hui; ZHENG Wen-wei; HAN Wei-min

    2005-01-01

    The joining of graphite, ceramic SiC and Cf/SiC composites via preceramic silicone resin(SR) at high temperature (800-1400℃) was studied. The curing and pyrolysis process of SR, pyrolysis temperature, inert and active fillers were especially discussed. The results show that the curing process of SR was accomplished by consuming Si-OH. The temperature of 1200℃ is the appropriate treating temperature for graphite and SiC ceramic, and the temperature of 1400℃ is suitable for Cf/SiC composites. Inert filler SiC powder(5%, mass fraction) has much positive influence on the shear strength of the joints. Active filler nano Ai, Si powder can greatly improve the properties of the joints treated at high temperature. The improvement is over 700%.

  6. Force Modeling for Ultrasonic-assisted Wire Saw Cutting SiC Monocryatal Wafers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; LI Shujuan; Liu Yong

    2011-01-01

    The advantages, such as a small cutting force, narrow kerf and little material waste make wire saw cut- ting suitable for machining precious materials like SiC, Si monocrystal and a variety of gem. As regards wire saw cutting fo wafer, however, in traditional wire saw cutting process, the cutting efficiency is low, the wear of wire saw is badly, the surface roughness of wafer is poor etc, which have a seriously impact on the cutting process stability and the use of wafers. Ultrasonic-assisted machining method is very suitable for processing a variety of non-conduc- tive hard and brittle materials, glass, ceramics, quartz, silicon, precious stones and diamonds, etc. In this paper, the force model of ultrusonic-assisted wire saw cutting of SiC monocrystal wafer, based on the kinematic and experi- mental analysis were established. The single factor and orthogonal experimental scheme for different processing pa- rameters such as wire saw speed, part rotation speed of and part feed rate, were carried out in traditional wire saw and ultrasonic-assisted wire saw cutting process. The multiple linear regression method is used to establish the static model among the cutting force, processing parameters and ultrasonic vibration parameters, and the model signifi- cance is verified. The results show, as regards ultrasonic-assisted wire saw cutting of SiC monicrystal wafer, both the tangential and normal cutting forces can reduce about 24. 5%-36% and 36. 6%-40%.

  7. Creep behaviour at high temperatures of fine SiC and alumina based fibres

    Energy Technology Data Exchange (ETDEWEB)

    Berger, M.H.; Bunsell, A.R. (Ecole Nationale Superieure des Mines, 91 - Evry (France). Centre des Materiaux)

    1999-01-01

    The creep behaviours of fine ceramic fibres based on silicon carbide and alpha-alumina have been compared. Fibres based on alpha-alumina and composed of isotropic faceted submicronic grains show superplastic behaviour from 1300 C. A mullite/alpha-alumina fibre with curved and elongated grains exhibits lower creep rates but large grains which grow on the surface of the fibre from 1200 C considerably reduce the time to failure in creep. The microstructures and creep strengths of SiC based fibres are strongly dependent on the oxygen content and carbon to silicon ratio. An oxygen content of 5 wt% induces an intergranular oxygen rich phase to be formed which facilitates creep. The creep strength of a fibre containing 0.5 wt% of oxygen can be improved by a heat treatment which increases the crystallinity of the fibre. The structure of a stoichiometric SiC fibre is shown to be composed of larger and faceted grains, to have a higher elastic modulus and an improved resistance to creep. However SiC based fibre are limited in air at high temperatures by the oxidation of the surface. (orig.) 13 refs.

  8. Thermal shock behavior of rare earth modified alumina ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junlong; Liu, Changxia [Ludong Univ., Yantai (China). School of Transportation

    2017-05-15

    Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 C. However, it decreased to 300 C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.

  9. STUDY OF PARTICLE COATINGS FOR THE DESIGN OF INTERGRANULAR PHASES IN ENGINEERING CERAMICS

    NARCIS (Netherlands)

    DJURICIC, B; DAVIES, IJ; PICKERING, S; MCGARRY, D; BULLOCK, E

    1995-01-01

    The deposition of nano-dimension coatings of Y2O3 and/or Y2O3/Al2O3 precursor material onto Si3N4 and SiC particles provides a methodology far the uniform dispersion of sintering aid and the compositional tailoring of intergranular phases in engineering ceramics. Coatings were precipitated from aque

  10. Acoustic emission as a screening tool for ceramic matrix composites

    Science.gov (United States)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  11. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States)] [and others

    1997-04-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on identification of the most effective joining methods for scale-up to large tube assemblies, including joining using SiC produced in situ from chemical precursors. During FY 1996, a new microwave applicator was designed, fabricated and tested that provides the capability for vacuum baking of the specimens and insulation and for processing under inert environment. This applicator was used to join continuous fiber-reinforced (CFCC) SiC/SiC composites using a polymer precursor to form a SiC interlayer in situ.

  12. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Three Oxide/Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-03-26

    aerospace , and military designs. One of the largest drawbacks to monolithic ceramics is low fracture toughness and susceptibility to catastrophic...Laboratory, Wright-Patterson AFB, OH, 2005. [30] G. Fair, " Ceramic Composites for Structural Aerospace Applications: Processing and Properties," Air...OF THREE OXIDE/OXIDE CERAMIC MATRIX COMPOSITES THESIS Christopher J. Hull, Captain, USAF AFIT-ENY-MS-15-M-228 DEPARTMENT OF THE AIR FORCE

  13. Birth, Death and Transfiguration; The Synthesis of Preceramic Polymers, Their Pyrolysis and Their Conversion to Ceramics (Preprint)

    Science.gov (United States)

    1989-05-31

    until the mid-70’s that the preparation of preceramic polymer fibers was reported. Verbeek of Bayer AG developed a precursor for Si 3 N 4/SiC based on the...precursor for Si3N 4 /SiC ceramics, developed at about the same time by Winter, Verbeek and Mansmann at Bayer AG 21, was based on the reaction of RSiCI3...Wiseman and C. Prud’homme, J. Am. Ceram. Soc. 66 (1983) C-13. 31. Monsanto Co., Neth. Appl. 6,507,996 (Dec. 23, 1965); Chem. Abstr. 64 (1966) 19677d

  14. Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt A [ORNL; Kiggans Jr, James O [ORNL; McMurray, Jake W [ORNL; Jolly, Brian C [ORNL; Hunt, Rodney Dale [ORNL; Trammell, Michael P [ORNL; Snead, Lance Lewis [ORNL

    2016-01-01

    Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhance heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.

  15. Thermo-Mechanical Properties of Super Sylramic SiC Fibers

    Science.gov (United States)

    Yun, H. M.; DiCarlo, J. A.; Chen, Y. L.; Wheeler, D. R.

    2004-01-01

    Ceramic matrix composites (CMC) reinforced by Sic fibers, such as SiC/SiC, are targeted for application in hot-section components of advanced engines for aerospace propulsion and for electrical power generation. Two Super Sylramic Sic fiber types recently developed at NASA using the Sylramic fiber from COI Ceramics are candidates fof providing these components with improved thermal capability and improved performance. This paper reports on the state-of-the-art ability of these new fiber types to meet the key fiber requirements of these applications: high strength, high creep-rupture resistance, high environmental resistance, and high thermal conductivity. For example, creep-rupture tests performed at from 1350 to 1500 C under various environments to simulate CMC fabrication and service conditions show creep resistance in air improved -20 and -7 times in comparison to current Sylramic and Sylramic-iBN fiber types, respectively. This in turn resulted in an increase in fiber rupture life by up to two orders of magnitude. TEM and AES microscopic observations are presented to indicate that these improvements can be correlated with the replacement of weak grain boundary phases with stronger phases that hinder grain boundary sliding more effectively. SiC/SiC composite results are also provided to show the advantages of the Super Sylramic fiber types both for CMC fabrication and high temperature application.

  16. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    Science.gov (United States)

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  17. Monolithic cells for solar fuels.

    Science.gov (United States)

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-07

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

  18. A Study on Fretting Wear Property of CVD SiC and Sintered SiC

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyun-Jin; Jang, Ki-Nam; An, Ji-Hyeong; Kim, Kyu-Tae [Dongguk University, Gyeongju (Korea, Republic of)

    2015-10-15

    Silicon Carbide is broadly used as high temperature structure material because of its high temperature tolerance and superior mechanical properties. After the Fukushima nuclear power plant accident, SiC proposed as one of the alternative materials for LWR fuel cladding to provide enhanced safety margin. Grid-to-rod fretting wear-induced fuel failure is known to occur due to flow-induced vibration of the reactor core and grid to- rod gap. In this paper, wear tests for CVD SiC plate and sintered SiC tube were performed with two types of spacer grids. Wear test of corroded and non-corroded CVD SiC plates indicate that wear resistance of corroded specimen is lower than one of non-corroded specimen in contrast with zirconium alloy cladding tube. It may be affected by rough surface of corroded specimen caused by grain boundary attack.

  19. SiC whisker reinforced MoSi2 composite prepared by spark plasma sintering from COSHS-ed powder

    Institute of Scientific and Technical Information of China (English)

    XU Jian-guang; ZHANG Hou-an; JIANG Guo-jian; ZHANG Bao-lin; LI Wen-lan

    2006-01-01

    SiC whisker reinforced MoSi2 composite powder was synthesized by a novel process,referred to the literature as chemical oven self-propagating high temperature synthesis(COSHS). The as-prepared SiCw/MoSi2 composite powder was rapidly sintered by spark plasma sintering(SPS) process. The sintering temperature and pressure were 1 723 K at heating rate of 100 K/min and 40 MPa,respectively. The microstructure and mechanical properties of the composite were investigated. Relative densities of the monolithic material and composite are 95% and 99.3%,respectively. SEM micrographs of SiCw/MoSi2 composite show that SiC whiskers homogeneously distribute in MoSi2 matrix. The composite containing SiC whisker has higher Vicker hardness than monolithic MoSi2. Especially the room-temperature fracture toughness of the composite is higher than that of MoSi2,from 3.6 MPa -m1/2 for MoSi2 to 7.7 MPa-m1/2 for composite with 15% SiC(volume fraction),increased by 113.9%. The morphology of propagation of crack and fractured surface of composite reveal the mechnaism to improve fracture toughness of MoSi2 matrix. The results show that the in-situ SiCw/MoSi2 composite powder prepared by COSHS technique can be successfully sinterded through SPS process and significant improvement of low temperature fracture toughness can be achieved.

  20. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  1. Chemical vapor deposition of ceramic coatings on metals and ceramic fibers

    Science.gov (United States)

    Nable, Jun Co

    2005-07-01

    The research presented in this study consists of two major parts. The first part is about the development of ceramic coatings on metals by chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD). Ceramics such as Al2O3 and Cr2O3, are used as protective coatings for materials used at elevated temperatures (>700°C). These metal oxides either exhibit oxidation resistance or have been used as environmental bond coats. Conventional methods of coating by chemical vapor deposition requires deposition temperatures of >950°C which could damage the substrate material during the coating process. Lower deposition temperatures (400 to 600°C) by MOCVD of these metal oxides were successful on Ni metal substrates. Surface modification such as pre-oxidation and etching were also investigated. In addition, a novel approach for the CVD of TiN on metals was developed. This new approach utilizes ambient pressure conditions which lead to deposition temperatures of 800°C or lower compared to conventional CVD of TiN at 1000°C. Titanium nitride can be used as an abrasive and wear coating on cutting and grinding tools. This nitride can also serve as a diffusion coating in metals. The second major part of this research involves the synthesis of interfacial coatings on ceramic reinforcing fibers for ceramic matrix composites. Aluminum and chromium oxides were deposited onto SiC, and Al2O3-SiO 2 fibers by MOCVD. The effects of the interface coatings on the tensile strength of ceramic fibers are also discussed. New duplex interface coatings consisting of BN or TiN together with Al2O3 or ZrO 2 were also successfully deposited and evaluated on SiC fibers.

  2. 29 CFR 510.21 - SIC codes.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false SIC codes. 510.21 Section 510.21 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS IMPLEMENTATION OF THE MINIMUM WAGE PROVISIONS OF THE 1989 AMENDMENTS TO THE FAIR LABOR STANDARDS ACT IN PUERTO RICO...

  3. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I. [FM Technologies, Inc., Fairfax, VA (United States); Black, W.M. [George Mason Univ., Fairfax, VA (United States)] [and others

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  4. Universal Converter Using SiC

    Energy Technology Data Exchange (ETDEWEB)

    Dallas Marckx; Brian Ratliff; Amit Jain; Matthew Jones

    2007-01-01

    The grantee designed a high power (over 1MW) inverter for use in renewable and distributed energy systems, such as PV cells, fuel cells, variable speed wind turbines, micro turbines, variable speed gensets and various energy storage methods. The inverter uses 10,000V SiC power devices which enable the use of a straight-forward topology for medium voltage (4,160VAC) without the need to cascade devices or topologies as is done in all commercial, 4,160VAC inverters today. The use of medium voltage reduces the current by nearly an order of magnitude in all current carrying components of the energy system, thus reducing size and cost. The use of SiC not only enables medium voltage, but also the use of higher temperatures and switching frequencies, further reducing size and cost. In this project, the grantee addressed several technical issues that stand in the way of success. The two primary issues addressed are the determination of real heat losses in candidate SiC devices at elevated temperature and the development of high temperature packaging for SiC devices.

  5. Passive SiC irradiation temperature monitor

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.

    1996-04-01

    A new, improved passive irradiation temperature monitoring method was examined after an irradiation test at 627{degrees}C. The method is based on the analysis of thermal diffusivity changes during postirradiation annealing of polycrystalline SiC. Based on results from this test, several advantages for using this new method rather than a method based on length or lattice parameter changes are given.

  6. Processing and mechanical properties of SiC particulate reinforced AZ91 composites fabricated by stir casting

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-jun; WU Kun; PENG De-lin; ZHANG Hai-feng; ZHENG Ming-yi; HUANG Wen-xian

    2006-01-01

    The influence of stirring parameters (stirring temperature, stirring speed and stirring time) on the particle distribution of 10%(volume fraction) SiC particulate reinforced AZ91 composites (SiCp/AZ91) was studied. It is found that it is necessary for 10 μm SiC particulate reinforced AZ91 composites to stir the molten composites in semi-solid condition with vortex formation, or else the cluster of the reinforcements would not be eliminated. Compared with the monolithic alloy, the SiCp/AZ91 composite has higher strength, especially for yield strength, but the elongation is reduced. For the as-cast composite, the particles often segregate within the grain boundary regions. Extrusion can effectively reduce the segregation of SiC particles and improve the mechanical properties of the composite. The extrusion-induced reduction in particle size varies with extrusion temperatures and extrusion ratios. The effect of extrusion-induced reduction in particle size on the mechanical properties of the composites is not always beneficial.

  7. Modeling and testing miniature torsion specimens for SiC joining development studies for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henager, C.H., E-mail: chuck.henager@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States); Nguyen, B.N.; Kurtz, R.J.; Roosendaal, T.J.; Borlaug, B.A. [Pacific Northwest National Laboratory, Richland, WA (United States); Ferraris, M.; Ventrella, A. [Politecnico di Torino, Torino (Italy); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-11-15

    The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. Miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti{sub 3}SiC{sub 2} + SiC joints with SiC and tested in torsion-shear prior to and after neutron irradiation. However, many miniature torsion specimens fail out-of-plane within the SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated strengths to determine irradiation effects. Finite element elastic damage and elastic–plastic damage models of miniature torsion joints are developed that indicate shear fracture is more likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated test data for a variety of joint materials. The unirradiated data includes Ti{sub 3}SiC{sub 2} + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. The implications for joint data based on this sample design are discussed. - Highlights: • Finite element damage models developed and applied to understand miniature torsion specimen. • Damage models correctly predict torsion joint failure locations for wide range of materials. • Tests of strong, stiff ceramic joints will not produce accurate shear strength values. • Miniature torsion specimen has diminished test utility but still valuable.

  8. Monolithic Time Delay Integrated APD Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the proposed program by Epitaxial Technologies is to develop monolithic time delay integrated avalanche photodiode (APD) arrays with sensitivity...

  9. Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties

    Science.gov (United States)

    2014-10-31

    AFRL-AFOSR-UK-TR-2015-0017 Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties Oleg...Ultra-high Temperature Ceramics and their Properties  5a. CONTRACT NUMBER STCU P-511 5b. GRANT NUMBER STCU 11-8002 5c. PROGRAM ELEMENT NUMBER...it defines the elevated diffusion activity at sintering. 2. In the ZrB2-SiC-5% Cr3C2 system, hot pressing allows to obtain porous free ceramics at

  10. Microanalytical investigations of fiber-reinforced ceramic materials. Mikroanalytische Untersuchungen faserverstaerkter keramischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B.; Grathwohl, G. (Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Werkstoffkunde 2)

    1990-03-01

    Microanalytical investigations have been made on samples of ceramic fibres (SiC-fibres (Nicalon), C-fibre coated with TiN) and fibre-reinforced ceramics (SiC- and glass-matrices). High resolution Auger electron spectroscopy (HRAES), electron probe microanalysis (EPMA) and scanning electron microscopy were employed for these examinations. Analysis was best performed with HRAES on account of its lateral and depth resolution. AES depth profiles of ceramic fibres are reported and compared with the surface analysis of fibres in the composites after being broken in situ. (orig.).

  11. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  12. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  13. Probabilistic Sizing and Verification of Space Ceramic Structures

    Science.gov (United States)

    Denaux, David; Ballhause, Dirk; Logut, Daniel; Lucarelli, Stefano; Coe, Graham; Laine, Benoit

    2012-07-01

    Sizing of ceramic parts is best optimised using a probabilistic approach which takes into account the preexisting flaw distribution in the ceramic part to compute a probability of failure of the part depending on the applied load, instead of a maximum allowable load as for a metallic part. This requires extensive knowledge of the material itself but also an accurate control of the manufacturing process. In the end, risk reduction approaches such as proof testing may be used to lower the final probability of failure of the part. Sizing and verification of ceramic space structures have been performed by Astrium for more than 15 years, both with Zerodur and SiC: Silex telescope structure, Seviri primary mirror, Herschel telescope, Formosat-2 instrument, and other ceramic structures flying today. Throughout this period of time, Astrium has investigated and developed experimental ceramic analysis tools based on the Weibull probabilistic approach. In the scope of the ESA/ESTEC study: “Mechanical Design and Verification Methodologies for Ceramic Structures”, which is to be concluded in the beginning of 2012, existing theories, technical state-of-the-art from international experts, and Astrium experience with probabilistic analysis tools have been synthesized into a comprehensive sizing and verification method for ceramics. Both classical deterministic and more optimised probabilistic methods are available, depending on the criticality of the item and on optimisation needs. The methodology, based on proven theory, has been successfully applied to demonstration cases and has shown its practical feasibility.

  14. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  15. Corrosion Issues for Ceramics in Gas Turbines

    Science.gov (United States)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Opila, Elizabeth J.; Tortorelli, Peter F.; More, Karren L.; Nickel, Klaus G.; Hirata, Takehiko; Yoshida, Makoto; Yuri, Isao

    2000-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Figure 26.1 illustrates the requirements for components of an aircraft engine and critical issues [1]. Currently, heat engines are constructed of metal alloys, which meet these requirements within strict temperature limits. In order to extend these temperature limits, ceramic materials have been considered as potential engine materials, due to their high melting points and stability at high temperatures. These materials include oxides, carbides, borides, and nitrides. Interest in using these materials in engines appears to have begun in the 1940s with BeO-based porcelains [2]. During the 1950s, the efforts shifted to cermets. These were carbide-based materials intended to exploit the best properties of metals and ceramics. During the 1960s and 1970s, the silicon-based ceramics silicon carbide (SiC) and silicon nitride (Si3N4) were extensively developed. Although the desirable high-temperature properties of SiC and Si3N4 had long been known, consolidation of powders into component-sized bodies required the development of a series of specialized processing routes [3]. For SiC, the major consolidation routes are reaction bonding, hot-pressing, and sintering. The use of boron and carbon as additives which enable sintering was a particularly noteworthy advance [4]. For Si3N4 the major consolidation routes are reaction bonding and hot pressing [5]. Reaction-bonding involves nitridation of silicon powder. Hot pressing involves addition of various refractory oxides, such as magnesia (MgO), alumina (Al2O3), and yttria (y2O3). Variations on these processes include a number of routes including Hot Isostatic Pressing (HIP), gas-pressure sintering

  16. Non-destructive mechanical characterization of (nano-sized) ceramic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Colomban, P.; Gouadec, G. [CNRS, Thiais (France). LADIR

    2002-07-01

    SiC and C fibres are produced from polymeric precursor. This synthesis route leads to a nano-sized materials with very smooth surface, the lack of defects explaining tensile strengths as high as 3 GPa. A high correlation is expected between short-range-ordering, nanostructure and macroscopic properties, like in any nano-sized ceramic issued from liquid routes (sol-gel, polymer precursors). The paper provides a comprehensive study on Raman spectroscopy versatility as a fast and non-destructive tool for the study of ceramic fibres nano/micro-structures and the prediction of their mechanical properties. We show how the results of very simple spectra fitting are correlated with E and {sigma}{sub r} in NLM, Hi, Hi-S, SA, SCS-6 and Sylramic (trademarks) SiC fibres. The reason why such a correlation exists, the common dependency of Raman signal and mechanical behaviour to the nano/microstructure of ceramics, is discussed. (orig.)

  17. Wettability of silicon carbide ceramic by Al2O3/Dy2O3 and Al2O3/Yb2O3 systems

    Institute of Scientific and Technical Information of China (English)

    J.A.da Silva; B.M.Moreschi; G.C.R.Garcia; S.Ribeiro

    2013-01-01

    Wettability is an important phenomenon in the liquid phase sintering of silicon carbide (SiC) ceramics.This work involved a study of the wetting of SiC ceramics by two oxide systems,Al2O3/Dy2O3 and Al2O3/Yb2O3,which have so far not been studied for application in the sintering of SiC ceramics.Five mixtures of each system were prepared,with different compositions close to their respective eutectic ones.Samples of the mixtures were pressed into cylindrical specimens,which were placed on a SiC plate and subjected to temperatures above their melting points using a graphite resistance furnace.The behavior of the melted mixtures on the SiC plate was observed by means of an imaging system using a CCD camera and the sessile drop method was employed to determine the contact angle,the parameter that measures the degree of wettability.The results of variation in the contact angle as a function of temperature were plotted in graphic form which showed that the curves displayed a fast decline and good spreading.All the samples of the two systems presented final contact angles of 40° to 10° indicating their good wetting on SiC in the argon atmosphere.The melted/solidified area and interface between SiC and melted/solidified phase were evaluated by scanning electron microscopy (SEM) and their crystalline phases were identified by X-ray diffraction (DRX).The DRX analysis showed that Al2O3 and RE2O3 reacted and formed the Dy3Al5O12 (DyAg) and Yb3Al5O12 (YbAg) phases.The results indicated that the two systems had a promising potential as additives for the sintering of SiC ceramics.

  18. Monolithically integrated Ge CMOS laser

    Science.gov (United States)

    Camacho-Aguilera, Rodolfo

    2014-02-01

    Ge-on-Si devices are explored for photonic integration. Through the development of better growth techniques, monolithic integration, laser design and prototypes, it was possible to probe Ge light emitters with emphasis on lasers. Preliminary worked shows thermal photonic behavior capable of enhancing lamination at high temperatures. Increase luminescence is observed up to 120°C from L-band contribution. Higher temperatures show contribution from Δ -band. The increase carrier thermal contribution suggests high temperature applications for Ge light emitters. A Ge electrically pumped laser was probed under 0.2% biaxial strain and doping concentration ~4.5×1019cm-3 n-type. Ge pnn lasers exhibit a gain >1000cm-1 with 8mW power output, presenting a spectrum range of over 200nm, making Ge the ideal candidate for Si photonics. Large temperatures fluctuations and process limit the present device. Theoretically a gain of >4000cm- gain is possible with a threshold of as low as 1kA/cm2. Improvements in Ge work

  19. Estudio de la reactividad entre aleaciones de aluminio y partículas de SiC

    Directory of Open Access Journals (Sweden)

    Ureña, A.

    2000-04-01

    Full Text Available The SiC reinforcement particles react with the molten aluminium to form Al4C3 that is brittle and sensitive to the the humidity. This reaction degrades the properties of the SiC reinforced aluminium matrix composites. The extend of the reaction in the Al/SiC interface depends on the fabrication parameters such as the temperature, residence time, atmosphere and chemical composition of the aluminium matrix and the reinforcement. Systematic studies on the reactivity between the SiC particles and molten aluminium alloys have been performed, analysing the effect of the presence of a SiO2 layer, which was formed by oxidation on the ceramic particles before their incorporation into the melt, as a protective barrier for preventing the attack of the SiC. As well, the effect of the metal matrix composition on the interfacial reactivity has been studied employing different aluminium alloys: AA1070 (99,7% Al, A-319.0 (Al-6Si-3Cu and A-332.0 (Al-11Si-1,5Cu. The composites were prepared by mixture of SiC particles (30 % vol. %, cold pressure and fusion at 900 ºC, varying the residence time in the furnace, which simulated a cast fabrication process. The results are compared with those obtained for a metal matrix composite (AA2014/SiC/13p.

    Las partículas de refuerzo de SiC reaccionan con el aluminio fundido y forman Al4C3 que es frágil y sensible al contacto con la humedad, lo que degrada las propiedades de los materiales compuestos constituidos por ambos componentes. La reacción en la intercara Al/SiC depende de varios parámetros de fabricación como temperatura, tiempo de residencia, atmósfera y composición química, tanto de la matriz de aluminio como del refuerzo de SiC. Se han realizado estudios sistemáticos de reactividad entre partículas de SiC y aluminio fundido, analizando el efecto que tiene la formación de una capa de SiO2 por oxidación de las partículas cerámicas, antes de su incorporación en el fundido, como barrera protectora

  20. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC

  1. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC

  2. The corrosion behavior of CVI SiC matrix in SiCf/SiC composites under molten fluoride salt environment

    Science.gov (United States)

    Wang, Hongda; Feng, Qian; Wang, Zhen; Zhou, Haijun; Kan, Yanmei; Hu, Jianbao; Dong, Shaoming

    2017-04-01

    High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.

  3. Point Defects in SiC

    Science.gov (United States)

    Zvanut, Mary Ellen

    2004-03-01

    Production of high frequency, high power electronic devices using wide bandgap semiconductors has spurred renewed interest in point defects in SiC. Recent electron paramagnetic resonance (EPR) spectroscopy studies focus on centers in as-grown high purity semi-insulating substrates because intrinsic defects are thought to compensate unavoidable shallow centers, thus creating the high resistivity required. The EPR studies address the chemical/structural composition of the defects, the defect level (energy with respect to a band edge with which the defect can accept or release an electron) and thermal stability. Thus far, the positively charged carbon vacancy, the Si vacancy, a carbon-vacancy/carbon antisite pair, and several as yet-unidentified centers have been observed in as-grown electronic-grade 4H-SiC [1-3]. The talk will review the types of defects recently identified in SiC and discuss their possible relationship to compensation. The photo-induced EPR experiments used to determine defect levels will be discussed, with a particular focus on the carbon vacancy. The use of high frequency EPR to resolve the many different types of centers in SiC will also be covered. Finally, the presentation will review the thermal stability of the intrinsic defects detected in as-grown 4H SiC. 1. M. E. Zvanut and V. V. Konovalov, Appl. Phys. Lett. 80, 410 (2002). 2. N.T. Son, Z. Zolnai, and E. Janzen, Phys. Rev. B64, 2452xx (2003). 3. W.E. Carlos, E.R. Glaser, and B.V. Shanabrook, in Proceedings of the 22nd conference on Defects in Semiconductors, Aarhus, Denmark, July 2003.

  4. SiC Schottky diode electrothermal macromodel

    OpenAIRE

    Masana Nadal, Francisco

    2010-01-01

    This paper presents a SiC Schottky diode model including static, dynamic and thermal features implemented as separate parameterized blocks constructed from SPICE Analog Behavioral Modeling (ABM) controlled sources. The parameters for each block are easy to extract, even from readily available diode data sheet information. The model complexity is low thus allowing reasonably long simulation times to cope with the rather slow self heating process and yet accurate enough for practical purposes.

  5. Thermal analysis study of polymer-to-ceramic conversion of organosilicon precursors

    Directory of Open Access Journals (Sweden)

    Galusek D.

    2008-01-01

    Full Text Available The organosilicon precursors attract significant attention as substances, which upon heating in inert or reactive atmosphere convert directly to oxide or non-oxide ceramics, like nitrides, carbides, carbonitrides, boroncarbonitrides, oxycarbides, alons, etc. In characterisation, and in study of conversion of these polymers to ceramics thermal analysis plays an important role. The degree of cross-linking of the polymer vital for achievement of high ceramic yield is estimated with the use of thermal mechanical analysis (TMA. Decomposition of polymers and their conversion to ceramics is studied by the combination of differential thermal analysis (DTA, differential scanning calorimetry (DSC thermogravimetry(TG, and mass spectrometry (MS. The use of these methods in study of the polymer-to-ceramic conversion is illustrated by case studies of a commercially available poly(allylcarbosilane as the precursor of SiC, and a poly(hydridomethylsilazane as the precursor of SiCN.

  6. Robust Joining and Assembly of Ceramic Matrix Composites for High Temperature Applications

    Science.gov (United States)

    Singh, Mrityunjay

    2003-01-01

    Advanced ceramic matrix composites (CMCs) are under active consideration for use in a wide variety of high temperature applications within the aerospace, energy, and nuclear industries. The engineering designs of CMC components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. A wide variety of ceramic composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and mechanical properties of joints in melt infiltrated and CVI Sic matrix composites will be reported. Various joint design philosophies and design issues in joining of composites will be discussed.

  7. Reinfiltration processes for polymer derived fiber reinforced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A. [CSIC, Madrid (Spain). Inst. de Ceramica y Vidrio; Aparicio, M. [CSIC, Madrid (Spain). Inst. de Ceramica y Vidrio; Rebstock, K. [Daimler-Benz Aerospace AG, Friedrichshafen (Germany). Dornier Forschung; Vogel, W.D. [Daimler-Benz Aerospace AG, Friedrichshafen (Germany). Dornier Forschung

    1997-06-01

    Ceramic matrix composites (CMCs) are candidate materials for applications like reentry heat-shields for spacecrafts or turbine parts for aircrafts. Taylored mechanical properties, improved oxidation resistance and environmental stability are very important for these materials. To improve the performance of liquid polymer derived ceramic matrix composites (LPI-CMCs), different techniques for reducing porosity by reinfiltration are discussed. Reinfiltration processes have been performed on a carbon fiber reinforced SiC ceramic, using injection of suitable polymers and sol-gel sols. It has been demonstrated that both methods can reduce the porosity and increase the mechanical properties. Different parameters have been controlled including impregnation pressures and times, heat curing and initial porosity of the substrates as well as composition, viscosity and concentration of the infiltrating solution. The infiltrated samples were characterized by Hg porosimetry, interlaminar shear strength and SEM as well as by oxidation tests. (orig.)

  8. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  9. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.; Singh, D.; Goretta, K. C.; de Arellano-Lopez, A. R.; Energy Technology; Russian Academy of Sciences; Univer. de Sevilla

    2001-01-01

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.

  10. Investigation on the Luminescent Properties of SiC

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; LI Yu-guo; SHI Li-wei; SHUN Hai-bo; XUE Cheng-shan

    2003-01-01

    Silicon carbide (SiC) is an excellent microelectronic material used to fabricate high frequency, high temperature,high power and non-volatile memory devices.But due to its indirect band gap,SiC based LED can't emit light so efficiently as GaN based LED, so people are eager to seek effective means to improve its luminescence efficiency. Amorphous SiC, porous crystalline SiC, nanometer SiC produced by CVD methods and porous SiC formed by ion implantation are investigated, and great progresses have been gained during the latest few years,which make SiC a promising material for developing OEIC.

  11. Characterization of polycrystalline SiC layers grown by ECR-PECVD for micro-electro-mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, C.; Bennici, E.; Cocuzza, M.; Mandracci, P.; Bich, D.; Guglielmetti, V.; Barucca, G

    2003-03-03

    Large area (up to 4 inch) polycrystalline 3C-SiC films have been deposited by electron cyclotron resonance chemical vapor deposition technique. Crystalline and non-crystalline substrates such as (1 0 0) Si wafers, thermally oxidized Si wafers and Al{sub 2}O{sub 3} ceramic sheets have been used, maintaining the same deposition conditions. The structural and morphological properties of the films were analyzed by means of transmission electron microscopy and X-ray diffractometry, while surface morphology was characterized by atomic force microscopy. Preliminary results on technological processes for the realization of polycrystalline SiC based micro-electro-mechanical systems are reported.

  12. Microstructure and properties of an HfB{sub 2}-SiC composite for ultra high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Monteverde, F.; Bellosi, A. [National Research Council, Institute of Science and Technology for Ceramics, Via Granarolo 64, 48018 Faenza (Italy)

    2004-05-01

    An ultra-high-temperature ceramic (UHTC) based on HfB{sub 2} was produced. The microstructure consisted of fine and regular diboride grains (2 {mu}m average size), with SiC particulate distributed intergranularly, not rarely in clustered formation, and low levels of secondary phases were identified. The resulting thermo-mechanical properties proved interesting results for microhardness and fracture toughness. The microstructural alteration experienced within the explored temperature range renders the material unsuitable for service in extreme conditions of temperature and pressure. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  13. Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klym, H; Shpotyuk, O; Hadzaman, I [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Ingram, A [Opole University of Technology, 75 Ozimska str., Opole, 45370 (Poland); Filipecki, J, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Institute of Physics of Jan Dlugosz University, 13/15 Armii Krajowei, 42201, Czestochowa (Poland)

    2011-04-01

    The new transition-metal manganite Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} ceramics for temperature sensors with improved functional reliability are first proposed. It is established that the amount of additional NiO phase in these ceramics extracted during sintering play a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

  14. Modified monolithic silica capillary for preconcentration of catecholamines

    Institute of Scientific and Technical Information of China (English)

    Wei Chang; Tusyo-shi Komazu

    2009-01-01

    Preconcentration of catecholamines by the modified monolithic silica in the capillary was investigated in this study. In order to achieve a microchip-based method for determining catecholamines in the saliva, the monolithic silica was fabricated in the capillary and the monolithic silica was chemically modified by on-column reaction with phenylboronate. Different modified methods were compared. The concentration conditions were optimized. This study indicates the applicability of the modified monolithic silica capillary when it was used to concentrate catecholamines.

  15. Modified monolithic silica capillary for preconcentration of catecholamines

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Preconcentration of catecholamines by the modified monolithic silica in the capillary was investigated in this study. In order to achieve a microchip-based method for determining catecholamines in the saliva,the monolithic silica was fabricated in the capillary and the monolithic silica was chemically modified by on-column reaction with phenylboronate. Different modified methods were compared. The concentration conditions were optimized. This study indicates the applicability of the modified monolithic sili...

  16. Fracture resistance of monolithic zirconia molar crowns with reduced thickness

    OpenAIRE

    Nakamura, Keisuke; Harada, A.; Inagaki, R.; Kanno, Taro; Niwano, Y; Milleding, Percy; Ørtengren, Ulf Thore

    2015-01-01

    This is the accepted manuscript version. Published version is available at Acta Odontologica Scandinavica Objectives. The purpose of the present study was to analyze the relationship between fracture load of monolithic zirconia crowns and axial/occlusal thickness, and to evaluate the fracture resistance of monolithic zirconia crowns with reduced thickness in comparison with that of monolithic lithium disilicate crowns with regular thickness. Materials and methods. Monolithic zi...

  17. Effects of Temperature and Steam Environment on Fatigue Behavior of Three SIC/SIC Ceramic Matrix Composites

    Science.gov (United States)

    2008-09-01

    is predicting that 50% of the material used on the 787 Dreamliner , scheduled for delivery in 2010, will be composites [2]. Fighter aircraft...materials. Composite materials made their appearance in commercial airplanes with the introduction of the Boeing 707 in the 1950s. Today...composites make up a large percentage of aircraft structural components. Composites comprise 9% of the aircraft structural weight in the Boeing 777. Boeing

  18. Development of a monolithic ferrite memory array

    Science.gov (United States)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  19. Carbon Fiber Composite Monoliths as Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL; Pickel, Joseph M [ORNL; Blom, Douglas Allen [ORNL; Burchell, Timothy D [ORNL

    2006-01-01

    Carbon fiber composite monoliths are rigid bodies that can be activated to a large surface area, have tunable porosity, and proven performance in gas separation and storage. They are ideal as catalyst supports in applications where a rigid support, with open structure and easy fluid access is desired. We developed a procedure for depositing a dispersed nanoparticulate phase of molybdenum carbide (Mo2C) on carbon composite monoliths in the concentration range of 3 to 15 wt% Mo. The composition and morphology of this phase was characterized using X-ray diffraction and electron microscopy, and a mechanism was suggested for its formation. Molybdenum carbide is known for its catalytic properties that resemble those of platinum group metals, but at a lower cost. The materials obtained are expected to demonstrate catalytic activity in a series of hydrocarbon reactions involving hydrogen transfer. This project demonstrates the potential of carbon fiber composite monoliths as catalyst supports.

  20. Carbon Fiber Composite Monoliths for Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL; Pickel, Joseph M [ORNL; Blom, Douglas Allen [ORNL; Burchell, Timothy D [ORNL

    2006-01-01

    Carbon fiber composite monoliths are rigid bodies that can be activated to a large surface area, have tunable porosity, and proven performance in gas separation and storage. They are ideal as catalyst supports in applications where a rigid support, with open structure and easy fluid access is desired. We developed a procedure for depositing a dispersed nanoparticulate phase of molybdenum carbide (Mo2C) on carbon composite monoliths in the concentration range of 3 to 15 wt% Mo. The composition and morphology of this phase was characterized using X-ray diffraction and electron microscopy, and a mechanism was suggested for its formation. Molybdenum carbide is known for its catalytic properties that resemble those of platinum group metals, but at a lower cost. The materials obtained are expected to demonstrate catalytic activity in a series of hydrocarbon reactions involving hydrogen transfer. This project demonstrates the potential of carbon fiber composite monoliths as catalyst supports.

  1. Eigenpolarization theory of monolithic nonplanar ring oscillators

    Science.gov (United States)

    Nilsson, Alan C.; Gustafson, Eric K.; Byer, Robert L.

    1989-01-01

    Diode-laser-pumped monolithic nonplanar ring oscillators (NPROs) in an applied magnetic field can operate as unidirectional traveling-wave lasers. The diode laser pumping, monolithic construction, and unidirectional oscillation lead to narrow linewidth radiation. Here, a comprehensive theory of the eigenpolarizations of a monolithic NPRO is presented. It is shown how the properties of the integral optical diode that forces unidirectional operation depend on the choice of the gain medium, the applied magnetic field, the output coupler, and the geometry of the nonplanar ring light path. Using optical equivalence theorems to gain insight into the polarization characteristics of the NPRO, a strategy for designing NPROs with low thresholds and large loss nonreciprocities is given. An analysis of the eigenpolarizations for one such NPRO is presented, alternative optimization approaches are considered, and the prospects for further reducing the linewidths of these lasers are briefly discussed.

  2. Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture.

    Science.gov (United States)

    Schriwer, Christian; Skjold, Anneli; Gjerdet, Nils Roar; Øilo, Marit

    2017-09-01

    Dental all-ceramic restorations of zirconia, with and without an aesthetic veneering layer, have become a viable alternative to conventional metal-ceramic restorations. The aim of this study was to evaluate whether factors of the production methods or the material compositions affect load at fracture, fracture modes, internal fit or crown margins of monolithic zirconia crowns. Sixty crowns made from six different commercially available dental zirconias were produced to a model tooth with a shallow circumferential chamfer preparation. Internal fit was assessed by the replica method. The crown margin quality was assessed by light microscopy on an ordinal scale. The cemented crowns were loaded centrally in the occlusal fossa with a horizontal steel cylinder with a diameter of 13mm at 0.5mm/min until fracture. Fractographic analysis was performed on the fractured crowns. There were statistically significant differences among the groups regarding crown margins, internal fit and load at fracture (p<0.05, Kruskall Wallis). Fracture analyses revealed that all fractures started cervically and propagated to the occlusal surface similar to clinically observed fractures. There was statistically significant correlation between margin quality and load at fracture (Spearman's rank correlation, p<0,05). Production method and material composition of monolithic zirconia crowns affect internal fit, crown margin quality and the load at fracture. The hard-machined Y-TZP zirconia crowns had the best margin quality and the highest load at fracture. Reduction of margin flaws will improve fracture strength of monolithic zirconia crowns and thereby increase clinical success. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. SiC Power MOSFET with Improved Gate Dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Sbrockey, Nick M; Tompa, Gary S; Spencer, Michael G; Chandrashekhar, Chandra MVS

    2010-08-23

    In this STTR program, Structured Materials Industries (SMI), and Cornell University are developing novel gate oxide technology, as a critical enabler for silicon carbide (SiC) devices. SiC is a wide bandgap semiconductor material, with many unique properties. SiC devices are ideally suited for high-power, highvoltage, high-frequency, high-temperature and radiation resistant applications. The DOE has expressed interest in developing SiC devices for use in extreme environments, in high energy physics applications and in power generation. The development of transistors based on the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) structure will be critical to these applications.

  4. Physical and chemical sensing using monolithic semiconductor optical transducers

    Science.gov (United States)

    Zappe, Hans P.; Hofstetter, Daniel; Maisenhoelder, Bernd; Moser, Michael; Riel, Peter; Kunz, Rino E.

    1997-09-01

    We present two monolithically integrated optical sensor systems based on semiconductor photonic integrated circuits. These compact, robust and highly functional transducers perform all necessary optical and electro-optical functions on-chip; extension to multi-sensor arrays is easily envisaged. A monolithic Michelson interferometer for high-resolution displacement measurement and a monolithic Mach-Zehnder interferometer for refractometry are discussed.

  5. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  6. Characterization of CIM monoliths as enzyme reactors.

    Science.gov (United States)

    Vodopivec, Martina; Podgornik, Ales; Berovic, Marin; Strancar, Ales

    2003-09-25

    The immobilization of the enzymes citrate lyase, malate dehydrogenase, isocitrate dehydrogenase and lactate dehydrogenase to CIM monolithic supports was performed. The long-term stability, reproducibility, and linear response range of the immobilized enzyme reactors were investigated along with the determination of the kinetic behavior of the enzymes immobilized on the CIM monoliths. The Michaelis-Menten constant K(m) and the turnover number k(3) of the immobilized enzymes were found to be flow-unaffected. Furthermore, the K(m) values of the soluble and immobilized enzyme were found to be comparable. Both facts indicate the absence of a diffusional limitation in immobilized CIM enzyme reactors.

  7. Monolithically integrated optoelectronic down-converter (MIOD)

    Science.gov (United States)

    Portnoi, Efrim L.; Venus, G. B.; Khazan, A. A.; Gorfinkel, Vera B.; Kompa, Guenter; Avrutin, Evgenii A.; Thayne, Iain G.; Barrow, David A.; Marsh, John H.

    1995-06-01

    Optoelectronic down-conversion of very high-frequency amplitude-modulated signals using a semiconductor laser simultaneously as a local oscillator and a mixer is proposed. Three possible constructions of a monolithically integrated down-converter are considered theoretically: a four-terminal semiconductor laser with dual pumping current/modal gain control, and both a passively mode-locked and a passively Q-switched semiconductor laser monolithically integrated with an electroabsorption or pumping current modulator. Experimental verification of the feasibility of the concept of down conversion in a laser diode is presented.

  8. Monolithic oxide-metal composite thermoelectric generators for energy harvesting

    Science.gov (United States)

    Funahashi, Shuichi; Nakamura, Takanori; Kageyama, Keisuke; Ieki, Hideharu

    2011-06-01

    Monolithic oxide-metal composite thermoelectric generators (TEGs) were fabricated using multilayer co-fired ceramic technology. These devices consisted of Ni0.9Mo0.1 and La0.035Sr0.965TiO3 as p- and n-type thermoelectric materials, and Y0.03Zr0.97O2 was used as an insulator, sandwiched between p- and n-type layers. To co-fire dissimilar materials, p-type layers contained 20 wt. % La0.035Sr0.965TiO3; thus, these were oxide-metal composite layers. The fabricated device had 50 pairs of p-i-n junctions of 5.9 mm × 7.0 mm × 2.6 mm. The calculated maximum value of the electric power output from the device was 450 mW/cm2 at ΔT = 360 K. Furthermore, this device generated 100 μW at ΔT = 10 K and operated a radio frequency (RF) transmitter circuit module assumed to be a sensor network system.

  9. 500?C SiC JFET Driver Circuits and Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed development, SiC JFET control circuitry and normally-off SiC JFET power switch will be integrated in a single SiC chip that will provide digital...

  10. Enamel wear caused by monolithic zirconia crowns after 6 months of clinical use.

    Science.gov (United States)

    Stober, T; Bermejo, J L; Rammelsberg, P; Schmitter, M

    2014-04-01

    The purpose of this study was to evaluate enamel wear caused by monolithic zirconia crowns and to compare this with enamel wear caused by contralateral natural antagonists. Twenty monolithic zirconia crowns were placed in 20 patients requiring full molar crowns. For measurement of wear, impressions of both jaws were made at baseline after crown cementation and at 6-month follow-up. Mean and maximum wear of the occlusal contact areas of the crowns, of their natural antagonists and of the two contralateral natural antagonists were measured by the use of plaster replicas and 3D laser scanning methods. Wear differences were investigated by the use of two-sided paired Student's t-tests and by linear regression analysis. Mean vertical loss (maximum vertical loss in parentheses) was 10 (43) μm for the zirconia crowns, 33 (112) μm for the opposing enamel, 10 (58) μm for the contralateral teeth and 10 (46) μm for the contralateral antagonists. Both mean and maximum enamel wear were significantly different between the antagonists of the zirconia crowns and the contralateral antagonists. Gender and activity of the masseter muscle at night (bruxism) were identified as possible confounders which significantly affected wear. Under clinical conditions, monolithic zirconia crowns seem to be associated with more wear of opposed enamel than are natural teeth. With regard to wear behaviour, clinical application of monolithic zirconia crowns is justifiable because the amount of antagonistic enamel wear after 6 months is comparable with, or even lower than, that caused by other ceramic materials in previous studies.

  11. Glass and glass-ceramic photonic systems

    Science.gov (United States)

    Zur, Lidia; Thi Ngoc Tran, Lam; Meneghetti, Marcello; Varas, Stefano; Armellini, Cristina; Ristic, Davor; Chiasera, Alessandro; Scotognella, Francesco; Pelli, Stefano; Nunzi Conti, Gualtiero; Boulard, Brigitte; Zonta, Daniele; Dorosz, Dominik; Lukowiak, Anna; Righini, Giancarlo C.; Ramponi, Roberta; Ferrari, Maurizio

    2017-02-01

    The development of optically confined structure is a major topic in both basic and applied physics not solely ICT oriented but also concerning lighting, laser, sensing, energy, environment, biological and medical sciences, and quantum optics. Glasses and glass-ceramics activated by rare earth ions are the bricks of such structures. Glass-ceramics are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing developing new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. The dependence of the final product on the specific parent glass and on the fabrication protocol still remain an important task of the research in material science. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters. This paper presents some results obtained by our consortium regarding glass-based photonics systems. We will comment the energy transfer mechanism in transparent glass ceramics taking as examples the up and down conversion systems and the role of SnO2 nanocrystals as sensitizers. Coating of spherical resonators by glass ceramics, 1D-Photonic Crystals for luminescence enhancement, laser action and disordered 1-D photonic structures will be also discussed. Finally, RF-Sputtered rare earth doped P2O5- SiO2-Al2O3-Na2O-Er2O3 planar waveguides, will be presented.

  12. Miniature multimode monolithic flextensional transducers.

    Science.gov (United States)

    Hladky-Hennion, Anne-Christine; Uzgur, A Erman; Markley, Douglas C; Safari, Ahmad; Cochran, Joe K; Newnham, Robert E

    2007-10-01

    Traditional flextensional transducers classified in seven groups based on their designs have been used extensively in 1-100 kHz range for mine hunting, fish finding, oil explorations, and biomedical applications. In this study, a new family of small, low cost underwater, and biomedical transducers has been developed. After the fabrication of transducers, finite-elements analysis (FEA) was used extensively in order to optimize these miniature versions of high-power, low-frequency flextensional transducer designs to achieve broad bandwidth for both transmitting and receiving, engineered vibration modes, and optimized acoustic directivity patterns. Transducer topologies with various shapes, cross sections, and symmetries can be fabricated through high-volume, low-cost ceramic and metal extrusion processes. Miniaturized transducers posses resonance frequencies in the range of above 1 MHz to below 10 kHz. Symmetry and design of the transducer, polling patterns, driving and receiving electrode geometries, and driving conditions have a strong effect on the vibration modes, resonance frequencies, and radiation patterns. This paper is devoted to small, multimode flextensional transducers with active shells, which combine the advantages of small size and low-cost manufacturing with control of the shape of the acoustic radiation/receive pattern. The performance of the transducers is emphasized.

  13. SYNTHESIS OF SiC WHISKER AND ITS APPLICATION IN COMPOSITE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    王启宝; 郭梦熊

    1997-01-01

    The SiC whiskers (SiCw) synthesized from rice hulls is studied in this paper. The properties of the application in the composite materials are tested, and also compared with the SiCw produced in US and Japan, the results indicate that the SiCw produced by this method is mainly straight crystals with multi nodes on face, the main type is β-SiC. It has many advantages such as high strength and excellent oxidation resistance to high temperature. The Si3N4 ceramic composite materials reinforced and toughened with the SiCw, δRT∫ of the material is (856±22)MPa, δ1300℃t is approximately (418.5±14.2) MPa and KIC is approximately (11.3±1.0) MPa·m1/2. Besides, the application of the SiCw in the engineering materials of mining is forecasted.

  14. Synthesis and Characterization of SiC Reinforced HE-30 Al Alloy Particulate MMCs

    Directory of Open Access Journals (Sweden)

    Pradyumna Phutane

    2013-06-01

    Full Text Available Metal matrix composites have evoked a keen interest in recent times for potential applications in many areas, especially aerospace & automotive industries owing to their superior strength to weight ratio. A particle reinforced metal matrix composite consists of uniform distribution of strengthening ceramic particles embedded within metal matrix. Manufacturing of aluminum alloy based composites via stir casting is one of the prominent and economical routes for processing of metal matrix composites. An attempt has been made to synthesize HE-30 Al Alloy-SiC particulate metal matrix composite by liquid metallurgy route. Micro-structural characterization revealed fairly uniform distribution of SiC particles in the matrix. The prepared composite was subjected to the mechanical testing as per ASTM standards. The mechanical tests revealed an increase in hardness and tensile strength of the developed composites over the base metal alloy.

  15. Clinical performance - a reflection of damage accumulation in ceramic dental crowns

    Energy Technology Data Exchange (ETDEWEB)

    Rekow, D.E. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Dept. of Orthodontics; Thompson, V.P. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). New Jersey Dental School

    2001-07-01

    All-ceramic dental crowns have tremendous appeal for patients - their esthetics nearly match those of natural teeth. Unfortunately, the most esthetic materials are brittle and, consequently, are vulnerable to damage relating to shaping which is exacerbated during cyclic loading during normal chewing. Clinical performance of all-ceramic dental prostheses are directly dependent on damage introduced during fabrication and during fatigue loading associated with function. The accumulation of damage results in unacceptably high failure rates (where failure is defined as a complete fracture requiring replacement of the prosthesis). The relation between shaping damage and fatigue damage on clinical performance of all-ceramic dental crowns was investigated. Materials used commercially for all-ceramic crowns and investigated in this study included a series of different microstructures of machinable glass ceramics (Corning), aluminas and porcelains (Vita Zahnfabrik), and zirconia (Norton). As monolithic materials, strong, tough, fatigue-resistant materials are not sufficiently esthetic for crowns. Crowns fabricated from monolithic esthetic materials have high failure rates. Layering ceramics could provide acceptable strength through management of damage accumulation. (orig.)

  16. Monolithic Integration of GaN-based LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Jin-Ping, E-mail: jpao@ee.tokushima-u.ac.jp [Institute of Technology and Science, University of Tokushima 2-1 Minami-Josanjima, Tokushima 770-8506 (Japan)

    2011-02-01

    The technology of monolithically integrated GaN-based light-emitting diodes (LEDs) is reported. First, the technology details to realize monolithic integration are described, including the circuit design for high-voltage and alternating current (AC) operation and the technologies for device isolation. The performances of the fabricated monolithic LED arrays are then demonstrated. A monolithic series array with totally 40 LEDs exhibited expected operation function under AC bias. The operation voltage of the array is 72 V when 20 LEDs were connected in series. Some modified circuit designs for high-voltage operation and other monolithic LED arrays are finally reviewed.

  17. Report on status of execution of SiC step document

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    Advanced fuel claddings made entirely or mainly of silicon carbide (SiC) ceramics and/or composites are considered very attractive elements of the accident-tolerant fuels for the light water reactors. In order to translate the promise of SiC composite materials into a reliable fuel cladding, a coordinated program of component level design and materials development must be carried out with many key feasibility issues addressed a-priori to inform the process. With the primary objective of developing a draft blueprint of a technical program that addresses the critical feasibility issues; assesses design and performance issues related with manufacturing, operating, and off-normal events; and advances the technological readiness levels in essential technology elements, a draft plan for the Systematic Technology Evaluation Program for SiC/SiC Composite Accident-Tolerant LWR Fuel Cladding and Core Structures was developed in the FY-14 Advanced Fuels Campaign of the U.S. Department of Energy’s Fuel Cycles Research and Development Program. This document summarizes the status of execution of the technical plan within the activities at the Oak Ridge National Laboratory.

  18. Synthesis and Characterization of Poly(methylsilane) as Ceramic Precursor

    Institute of Scientific and Technical Information of China (English)

    Chen Lai; Zhang Feng-jun; Wu Shi; Sun Jin-liang; Ren Mu-su; Fan Xue-qi

    2005-01-01

    @@ 1Introduction Polysilanes are novel polymers with Si-Si catenation chain. They can be used as precursors for SiC ceramic, have important applications in anti-oxidation of C/C composites[1]. Poly(methylsilane)(PMS), which is anideal precursor to stoichiometric SiC, is synthesized by the sodium polycondensation reaction of monomer CH3SiHCl2. During the reaction, there is an initiation period. In this period there is no obvious exothermic reaction after dropping of monomer, then suddenly eruptive reaction arise and temperature goes up quickly. After the eruption, the polymerization can proceed smoothly. This phenomenon is harmful to scale-up. To solve this problem, we did relevant research, but the additive, crown ether, is expensive[2]. This paper describes the influence of naphthalene(NAPH) and p-dibromobenzene(DBB) on the reaction. Good effect is attained for these additives.

  19. Monolithic resonant optical reflector laser diodes

    Science.gov (United States)

    Hirata, T.; Suehiro, M.; Maeda, M.; Hihara, M.; Hosomatsu, H.

    1991-10-01

    The first monolithic resonant optical reflector laser diode that has a waveguide directional coupler and two DBR reflectors integrated by compositional disordering of quantum-well heterostructures is described. A linewidth of 440 kHz was obtained, and this value is expected to be greatly decreased by reducing the propagation loss in the integrated waveguide.

  20. Constant capacitance in nanopores of carbon monoliths.

    Science.gov (United States)

    García-Gómez, Alejandra; Moreno-Fernández, Gelines; Lobato, Belén; Centeno, Teresa A

    2015-06-28

    The results obtained for binder-free electrodes made of carbon monoliths with narrow micropore size distributions confirm that the specific capacitance in the electrolyte (C2H5)4NBF4/acetonitrile does not depend significantly on the micropore size and support the foregoing constant result of 0.094 ± 0.011 F m(-2).

  1. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    Science.gov (United States)

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  2. Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Pereira dos Santos Tonello, Karolina, E-mail: karolina.pereira@polito.it; Padovano, Elisa; Badini, Claudio; Biamino, Sara; Pavese, Matteo; Fino, Paolo

    2016-04-06

    Nanosized allotropes of carbon have been attracting a lot of attention recently, but despite the steady growth of the number of scientific works on materials based on graphene family, there is still much to be explored. These two-dimensional carbon materials, such as graphene nanoplatelets, multilayer graphene or few layer graphene have emerged as a possible second phase for reinforcing ceramics, resulting in remarkable properties of these composites. Typically, graphene ceramic matrix composites are prepared by a colloidal or a powder route followed by pressure assisted sintering. Recently other traditional ceramic processes, such as tape casting, were also successfully studied. The aim of this research is to fabricate α-SiC multi-layer composites containing 2, 4 and 8 vol% of graphene nanoplatelets (GNP) by tape casting and study the effect of these additions on the mechanical behavior of the composites. In order to achieve this purpose, samples were pressureless sintered and tested for density and mechanical properties. The elastic modulus was measured by the impulse excitation of vibration method, the hardness by Vickers indentation and fracture toughness using micro Vickers indentation and by three-point bending applying the pre-cracked beam approach. Results showed that up to 4 vol%, the density and mechanical properties were directly proportional to the amount of GNP added but showed a dramatic decrease for 8 vol% of GNP. Composites with 4 vol% of GNP had a 23% increment elastic modulus, while the fracture toughness had a 34% increment compared to SiC tapes fabricated under the same conditions. Higher amounts of GNP induces porosity in the samples, thus decreasing the mechanical properties. This study, therefore, indicates that 4% is an optimal amount of GNP and suggests that excessive amounts of GNP are rather detrimental to the mechanical properties of silicon carbide ceramic materials prepared by tape casting.

  3. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  4. Challenges in Switching SiC MOSFET without Ringing

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    Switching SiC MOSFET without ringing in high frequency applications is important for meeting the EMI (ElectroMagnetic Interference) standard. Achieving a clean switching waveform of SiC MOSFET without additional components is becoming a challenge. In this paper, the switching oscillation mechanis...

  5. In situ formation of nanometer-scale TiO2/SiC functional compositional film on carbon fiber

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chunhua; YIN Yansheng; ZHANG Shuxiang; LIU Wei

    2005-01-01

    In the toluene solution of the precursor Polycarbosilane (PCS) containing low- molecular-mass additive Ti(OC4H9)4, TiO2/SiC nanometer-scale functional compositional film with the surface TiO2 layer on CF was formed in situ by means of polymer-derived precursors. The effects of Ti (OC4H9)4 concentrations and the maturating time were studied on the densification and TiO2 particle size of surface layer. The compositions of film were TiO2 and SiC crystal by XRD. According to the results of ESCA analysis, Ti(OC4H9)4 compound oozed gradiently from the pre-ceramic PCS to the surface layer after maturating time of 100 h. In the conditions of 45wt% Ti (OC4H9)4 and 100 h maturation, the nanometer-scale TiO2 particles on continuous surface layer were formed by SEM photographs. The nanometer-scale TiO2/SiC functional compositional film can modify the resistance to oxidation of carbon fiber.

  6. Formation of nanosized hills on Ti 3SiC 2 oxide layer irradiated with swift heavy ions

    Science.gov (United States)

    Nappé, J. C.; Monnet, I.; Audubert, F.; Grosseau, Ph.; Beauvy, M.; Benabdesselam, M.

    2012-01-01

    The Ti 3SiC 2 refractory compound that combines properties of both metals and ceramics is a fuel cladding candidate under investigation for Gas-cooled Fast Reactor. Its behavior under swift heavy ion irradiation (Xe ions, 92 MeV, 10 19 m -2) was investigated. Significant and unexpected surface changes have been highlighted: hills have been observed by AFM on the surface of Ti 3SiC 2. Such a topographic modification has never been observed in other materials irradiated in similar conditions. The characterization of these hills by both XPS and X-TEM has highlighted that the surface modifications do not appear in Ti 3SiC 2 but in the amorphous oxide layer located on the sample surface before irradiation. Moreover, the thickness of this oxide layer grew under irradiation dose. The comparison with previous irradiations has led to the conclusion that this surface modification stems from electronic interactions in this amorphous layer, and that there is a threshold in the electronic stopping power to overcome to form hills.

  7. Prospects for SiC electronics and sensors

    Directory of Open Access Journals (Sweden)

    Nick G. Wright

    2008-01-01

    Full Text Available There has been substantial international research effort in the development of SiC electronics over the last ten years. With promising applications in power electronics, hostile-environment electronics, and sensors, there is considerable industrial interest in SiC as a material for electronics. However, issues relating to crystal growth and the difficulties of material processing have restricted SiC devices to relatively limited use to date. The eventual success of SiC as an electronic technology will depend on the close interplay of research in fundamental material science with progress in design of electronic devices and packaging. We review the current status of SiC electronics from a materials perspective – highlighting current difficulties and future opportunities for progress.

  8. Epitaxial sic devices for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzi, M; Menichelli, D.; Pini, S.; Sciortino, S. [INFN, Firenze (Italy); Firenze Univ., Firenze (Italy). Dipartimento di Energetica; Bucciolini, M. [INFN, Firenze (Italy); Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; Nava, F. [Modena Univ., Modena (Italy). Dipartimento di Fisica; INFN, Bologna (Italy)

    2002-07-01

    The current response of SiC on-line dosimeters to {gamma}-radiation from{sup 60}Co and {sup 167}Cs {gamma}-sources, X-photons and 22MeV electrons from linear accelerator has been investigated. The devices used are 4H-SiC epitaxial n-type layer deposited onto a 4H-SiC n{sup +} type substrate wafer doped with nitrogen. Single-pad Schottky contacts have been produced by deposition of a 1000A gold film on the epitaxial layer and ohmic contacts have been deposited on the rear substrate side. The detector has been then embedded in epoxy resin and studied in the dose and dose-rate ranges 0.1-1 Gy 0.1-10Gy/min. A signal response comparable to that of silicon standard dosimeters has been measured with the unbiased SiC device. The released charge and induced current have been observed to increase linearly respectively with the dose and dose-rate. A preliminary study on the changes in the sensibility of the device after a {gamma}-rays accumulated dose up to 10kGy is also presented.

  9. A Thermodamage Strength Theoretical Model of Ceramic Materials Taking into Account the Effect of Residual Stress

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2012-01-01

    Full Text Available A thermodamage strength theoretical model taking into account the effect of residual stress was established and applied to each temperature phase based on the study of effects of various physical mechanisms on the fracture strength of ultrahigh-temperature ceramics. The effects of SiC particle size, crack size, and SiC particle volume fraction on strength corresponding to different temperatures were studied in detail. This study showed that when flaw size is not large, the bigger SiC particle size results in the greater effect of tensile residual stress in the matrix grains on strength reduction, and this prediction coincides with experimental results; and the residual stress and the combined effort of particle size and crack size play important roles in controlling material strength.

  10. COMPARISON OF SHEAR STRENGTH OF CERAMIC JOINTS DETERMINED BY VARIOUS TEST METHODS WITH SMALL SPECIMENS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Kiggans Jr, James O [ORNL; Khalifa, Hesham [General Atomics, San Diego; Back, Christina A. [General Atomics, San Diego; Hinoki, Tatsuya [Kyoto University, Japan; Ferraris, Monica [Politecnico di Torino

    2015-01-01

    Four different shear test methods i.e. doubled notched shear test, asymmetrical four point bend test, Iosipescu test, and torsion test, were investigated for their ability to evaluate one standard SiC to SiC ceramic brittle joint while using small size specimens. Double notched shear test showed higher stress concentration at the notch base and a lower nominal shear strength. Both asymmetrical four point bend test and Iosipescu test utilized epoxy jointed metal extensors, which failed during test and caused misalignment and tensile type of failure. Torsion test can deliver true shear loading. However, base material failure was observed for the torsion joint samples in this study. None of the tests can successfully induce true shear failure of the joint because the joint is stronger and tougher than the SiC substrate. Torsion test appears to be promising because of the pure shear loading, less stress concentration, and easy alignment.

  11. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model—I: Theory and Method

    OpenAIRE

    Yoonhee Lee; Bumhee Cho; Nam Zin Cho

    2016-01-01

    As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatu...

  12. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  13. The influence of precursor structure on the development of porosity in polymer-derived SiC

    Energy Technology Data Exchange (ETDEWEB)

    Nebo, J.F. [Univ. of New Mexico, Albuquerque, NM (United States). Center for Micro-Engineered Ceramics; Scotto, C.S. [Sandia National Labs., Albuquerque, NM (United States). Advanced Materials Lab.; Bennett, C.A. [Univ. of Toledo, OH (United States). Dept. of Chemical Engineering; Brinker, C.J. [Univ. of New Mexico, Albuquerque, NM (United States). Center for Micro-Engineered Ceramics]|[Sandia National Labs., Albuquerque, NM (United States). Advanced Materials Lab.

    1996-07-01

    Polymer-based routes to ceramic oxides take advantage of precursor chemistry and structure to produce materials with a range of pore sizes. Polymer precursor routes to non-oxide ceramics offer products with superior thermal and chemical stability in many cases. Polymethylsilane (PMS), a versatile cross linked SiC precursor, [(MeHSi){sub x}(MeSi){sub y}], was synthesized using published procedures to yield fluid precursors with a low (20--40%) degree of cross linking. Unique, highly cross linked (60--70%), solid polymers were produced under reaction conditions which carefully conserve the volatile monomer. These two polymers were converted to SiC to determine the relative importance of the various contributions to porosity, and to assess the role of precursor structure on porosity development in non-oxides. Initial results indicate that precursor structure has little effect on porosity. The development of the porosity appears to be dominated by high temperature thermochemistry and/or microstructural changes.

  14. Hot Hydrogen Testing of Refractory Metals and Ceramics

    Science.gov (United States)

    Zee, Ralph; Chin, Bryan; Cohron, Jon

    1993-01-01

    The objective of this investigation is to develop a technique with which refractory metal carbide samples can be exposed to hydrogen containing gases at high temperatures, and to use various microstructural and analytical techniques to determine the chemical and rate processes involved in hydrogen degradation in these materials. Five types of carbides were examined including WC, NbC, HfC, ZrC, and TaC. The ceramics were purchased and were all monolithic in nature. The temperature range investigated was from 850 to 1600 C with a hydrogen pressure of one atmosphere. Control experiments, in vacuum, were also conducted for comparison so that the net effects due to hydrogen could be isolated. The samples were analyzed prior to and after exposure. Gas samples were collected in selected experiments and analyzed using gas chromography. Characterization of the resulting microstructure after exposure to hydrogen was conducted using optical microscopy, x-ray diffraction, scanning electron microscopy, and weight change. The ceramics were purchased and were all monolithic in nature. It was found that all samples lost weight after exposure, both in hydrogen and vacuum. Results from the microstructure analyses show that the degradation processes are different among the five types of ceramics involved. In addition, the apparent activation energy for the degradation process is a function of temperature even within the same material. This indicates that there are more than one mechanism involved in each material, and that the mechanisms are temperature dependent.

  15. Reliability estimation for single-unit ceramic crown restorations.

    Science.gov (United States)

    Lekesiz, H

    2014-09-01

    The objective of this study was to evaluate the potential of a survival prediction method for the assessment of ceramic dental restorations. For this purpose, fast-fracture and fatigue reliabilities for 2 bilayer (metal ceramic alloy core veneered with fluorapatite leucite glass-ceramic, d.Sign/d.Sign-67, by Ivoclar; glass-infiltrated alumina core veneered with feldspathic porcelain, VM7/In-Ceram Alumina, by Vita) and 3 monolithic (leucite-reinforced glass-ceramic, Empress, and ProCAD, by Ivoclar; lithium-disilicate glass-ceramic, Empress 2, by Ivoclar) single posterior crown restorations were predicted, and fatigue predictions were compared with the long-term clinical data presented in the literature. Both perfectly bonded and completely debonded cases were analyzed for evaluation of the influence of the adhesive/restoration bonding quality on estimations. Material constants and stress distributions required for predictions were calculated from biaxial tests and finite element analysis, respectively. Based on the predictions, In-Ceram Alumina presents the best fast-fracture resistance, and ProCAD presents a comparable resistance for perfect bonding; however, ProCAD shows a significant reduction of resistance in case of complete debonding. Nevertheless, it is still better than Empress and comparable with Empress 2. In-Ceram Alumina and d.Sign have the highest long-term reliability, with almost 100% survivability even after 10 years. When compared with clinical failure rates reported in the literature, predictions show a promising match with clinical data, and this indicates the soundness of the settings used in the proposed predictions. © International & American Associations for Dental Research.

  16. Transformation toughening of Al2O3/ZrO2 laminated ceramics with residual compressive stress

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the help of scanning electronic microscopy and X-ray diffraction, the relationships of microstmcture characteristics,phase assemblage, and fracture micrograph of Al2O3/ZrO2 laminated ceramics were studied. Compared with monolithic Al2O3/ZrO2 ceramics, the existence of surface compressive stresses greatly restrained the growth of ZrO2 and Al2O3 grains at high sinter temperature, fined the grain size, and increased the content of metastable t-ZrO2, which made the fracture transformation energy quantity 70% higher than that of the monolithic ceramics. The trans-granular and inter-granular fracture features were observed in the surface and center layers, which further verified that transformation toughening is the main mechanism, whereas, micro-crack toughening is helpful for enhancing fracture toughness.

  17. Spark plasma sintering of silicon carbide and multi-walled carbon nanotube reinforced zirconium diboride ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Yadhukulakrishnan, Govindaraajan B.; Rahman, Arif; Karumuri, Sriharsha [School of Mechanical and Aerospace Engineering Oklahoma State University, Stillwater, OK 74078 (United States); Stackpoole, Margaret M. [ELORET Corporation, Moffett Field, CA 94035 (United States); Kalkan, A. Kaan; Singh, Raman P. [School of Mechanical and Aerospace Engineering Oklahoma State University, Stillwater, OK 74078 (United States); Harimkar, Sandip P., E-mail: sandip.harimkar@okstate.edu [School of Mechanical and Aerospace Engineering Oklahoma State University, Stillwater, OK 74078 (United States)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Dense SiC and carbon nanotube reinforced ZrB{sub 2} composites were spark plasma sintered. Black-Right-Pointing-Pointer SiC and carbon nanotube reinforcement favored the densification of ZrB{sub 2} composites. Black-Right-Pointing-Pointer SiC and carbon nanotube reinforcement resulted in toughening of ZrB{sub 2} composites. Black-Right-Pointing-Pointer Carbon nanotubes were retained in the spark plasma sintered ZrB{sub 2} composites. - Abstract: In this paper spark plasma sintering (SPS) of silicon carbide and multi-walled carbon nanotube reinforced zirconium diboride ultra-high temperature ceramic matrix composites is reported. Systematic investigations on the effect of reinforcement type (SiC and CNTs) and content (10-40 vol.% SiC and 2-6 vol.% CNTs) on densification behavior, microstructure development, and mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness) are presented. With the similar SPS processing parameters (1900 Degree-Sign C, 70 MPa pressure, and 15 min soaking time), near-full densification (>99% relative density) was achieved with 10-40% SiC (in ZrB{sub 2}-SiC) and 4-6% CNT (in ZrB{sub 2}-CNT) reinforced composites. The SiC and CNT reinforcement further improved the indentation fracture toughness of the composites through a range of toughening mechanisms, including particle shearing, crack deflection at the particle-matrix interface, and grain pull-outs for ZrB{sub 2}-SiC composites, and CNT pull-outs and crack deflection in ZrB{sub 2}-CNT composites.

  18. Growth optimization and applicability of thick on-axis SiC layers using sublimation epitaxy in vacuum

    Science.gov (United States)

    Jokubavicius, Valdas; Sun, Jianwu; Liu, Xinyu; Yazdi, Gholamreza; Ivanov, Ivan. G.; Yakimova, Rositsa; Syväjärvi, Mikael

    2016-08-01

    We demonstrate growth of thick SiC layers (100-200 μm) on nominally on-axis hexagonal substrates using sublimation epitaxy in vacuum (10-5 mbar) at temperatures varying from 1700 to 1975 °C with growth rates up to 270 μm/h and 70 μm/h for 6H- and 4H-SiC, respectively. The stability of hexagonal polytypes are related to process growth parameters and temperature profile which can be engineered using different thermal insulation materials and adjustment of the induction coil position with respect to the graphite crucible. We show that there exists a range of growth rates for which single-hexagonal polytype free of foreign polytype inclusions can be maintained. Further on, foreign polytypes like 3C-SiC can be stabilized by moving out of the process window. The applicability of on-axis growth is demonstrated by growing a 200 μm thick homoepitaxial 6H-SiC layer co-doped with nitrogen and boron in a range of 1018 cm-3 at a growth rate of about 270 μm/h. Such layers are of interest as a near UV to visible light converters in a monolithic white light emitting diode concept, where subsequent nitride-stack growth benefits from the on-axis orientation of the SiC layer.

  19. Rectified photocurrent in a planar ITO/graphene/ITO photodetector on SiC by local irradiation of ultraviolet light

    Science.gov (United States)

    Yang, Junwei; Guo, Liwei; Huang, Jiao; Mao, Qi; Guo, Yunlong; Jia, Yuping; Peng, Tonghua; Chen, Xiaolong

    2017-10-01

    A rectified photocurrent behaviour is demonstrated in a simple planar structure of ITO-graphene-ITO formed on a SiC substrate when an ultraviolet (UV) light is locally incident on one of the edges between the graphene and ITO electrode. The photocurrent has similar characteristics as those of a vertical structure graphene/semiconductor junction photodiode, but is clearly different from those found in a planar structure metal–graphene–metal device. Furthermore, the device behaves multi-functionally as a photodiode with sensitive UV photodetection capability (responsivity of 11.7 mA W‑1 at 0.3 V) and a self-powered UV photodetector (responsivity of 4.4 mA W‑1 at zero bias). Both features are operative in a wide dynamic range and with a fast speed of response in about gigahertz. The linear I–V behaviour with laser power at forward bias and cutoff at reverse bias leads to a conceptual photodiode, which is compatible with modern semiconductor planar device architecture. This paves a potential way to realize ultrafast graphene planar photodiodes for monolithic integration of graphene-based devices on the same SiC substrate.

  20. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    Science.gov (United States)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  1. Ceramic Ultrafiltration Membrane from Nanosilica Particles

    Science.gov (United States)

    Wahid, Zarina Abdul; Ramli, Rafindde; Muchtar, Andanastuti; Mohammad, Abd Wahab

    This study attempts to develop asymmetric ceramic membrane filter from nanosilica particles for ultrafiltration (UF) membrane. The alumina tube was used as a support and was coated with SiC which acted as an intermediate layer or microfiltration (MF) layer. The UF membrane was developed using the filtration technique through chemical suspension of the particles. Nanosilica was suspended in HCl acid, iso-propanol and acetone before it was deposited on the alumina tube using a special coating assembly. The membranes were characterised for pore size, thickness and microstructure. This study found that the use of nanoparticles for membrane development could easily control the pore size as well as the thickness of the membrane. The uniformity of the membrane thickness could also be achieved through this filtration technique.

  2. Ceramic Matrix Composites .

    Directory of Open Access Journals (Sweden)

    J. Mukerji

    1993-10-01

    Full Text Available The present state of the knowledge of ceramic-matrix composites have been reviewed. The fracture toughness of present structural ceramics are not enough to permit design of high performance machines with ceramic parts. They also fail by catastrophic brittle fracture. It is generally believed that further improvement of fracture toughness is only possible by making composites of ceramics with ceramic fibre, particulate or platelets. Only ceramic-matrix composites capable of working above 1000 degree centigrade has been dealt with keeping reinforced plastics and metal-reinforced ceramics outside the purview. The author has discussed the basic mechanisms of toughening and fabrication of composites and the difficulties involved. Properties of available fibres and whiskers have been given. The best results obtained so far have been indicated. The limitations of improvement in properties of ceramic-matrix composites have been discussed.

  3. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  4. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  5. Grain boundary dynamics in ceramics superplasticity

    Directory of Open Access Journals (Sweden)

    Wakai, E.

    2001-04-01

    Full Text Available Superplasticity refers to an ability of polycrystalline solids to exhibit exceptionally large elongation in tension. The application of superplasticity makes it possible to fabricate ceramic components by superplastic forming (SPF, concurrent with diffusion bonding, and superplastic sinter-forging just like superplastic metals. Furthermore the superplastic deformation plays an important role in stress-assisted densification processes such as hot isostatic pressing (HIP and hot pressing (HP. The ceramics superplasticity has been one of intensive research fields in the last decade. Although most of reports are still limited to those of zirconia[1], new developments have been achieved in superplasticity of Si3N4 and SiC in recent years. It is clearly demonstrated that the superplasticity is one of the common natures of fine-grained ceramics and nanocrystalline ceramics at elevated temperatures.

    La superplaticidad se refiere a la capacidad que posee un sólido policristalino de presentar alargamientos excepcionalmente elevados en tracción. La aplicación de la superplasticidad hace posible la fabricación de componentes cerámicos por conformado superplástico, soldadura por difusión y forja-sinterizado superplástica, igual que en metales superplásticos. Además, la deformación superplástica tiene un rol importante en los procesos de densificación asistidos por tensiones, tales como la compactación isostática en caliente y el prensado en caliente. Las cerámicas superplásticas han sido uno de los campos donde se ha realizado una investigación más intensa en la última década. Aunque, la mayoría de los informes se limitan a la circonia[1] se han alcanzado nuevos desarrollos en superplasticidad de Si3N4 y SiC. Está claramente demostrado que la superplasticidad es una propiedad intrínseca de las cerámicas de pequeño tamaño de grano y de las cer

  6. Early Pottery Making in Northern Coastal Peru. Part IV: Mössbauer Study of Ceramics from Huaca Sialupe

    Science.gov (United States)

    Shimada, I.; Häusler, W.; Jakob, M.; Montenegro, J.; Riederer, J.; Wagner, U.

    2003-09-01

    We report on an interdisciplinary study of ceramic material excavated in 1999 and 2001 at a 1000-year old ceramic and metal production site, located at Huaca Sialupe in the La Leche valley on the north coast of Peru and dating to the Middle Sicán period (AD 900-1100). Sherds of Sicán red- and blackware, numerous moulds, several kilns and other evidence of pottery making were found. The pottery, in particular, is famous for its fine texture and perfect black surface finish. In addition, some clay lumps and sherds of unfired Sicán pottery were excavated. Within the same workshop several large inverted ceramic urns used as furnaces were found together with Middle Sicán metal working tools and debris. Various physical methods were applied to investigate this material. The ancient firing procedures could be elucidated by comparing the spectra observed for the ancient sherds with model spectra of laboratory and field fired clay samples. This shows that the fine ware made at Huaca Sialupe was intentionally fired under strongly reducing conditions at temperatures up to 900°C. Reoxidation at the end of the reducing firing took place only occasionally. Less care was taken in firing moulds used for pottery making.

  7. Ceramics in gas turbine: Powder and process characterization

    Science.gov (United States)

    Dutta, S.

    1977-01-01

    Some of the intrinsic properties of various forms of Si3N4 and SiC are listed and limitations of such materials' availability are pointed out. The essential features/parameters to characterize a batch of powder are discussed including the standard techniques for such characterization. In process characterization, parameters in sintering, reaction sintering, and hot pressing processes are discussed including the factors responsible for strength limitations in ceramic bodies. Significant improvements in material properties can be achieved by reducing or eliminating the strength limiting factors with consistent powder and process characterization along with process control.

  8. Understanding the deformation of ceramic materials at high strain rates.

    OpenAIRE

    Hallam, David A.

    2015-01-01

    Ceramic hardness and plasticity have been highlighted as important characteristics in ballistic performance; both of which can be measured and semi-quantified from indentation experiments, respectively. However, relatively little work has investigated the accompanying type, on-set and evolution of indentation-induced damage that may also be contributing an influential role. Pressureless sintered SiC and spark plasma sintered B4C, SiC-AlN-C and range of SiC-B4C composite samples were invest...

  9. Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance

    Science.gov (United States)

    2013-09-09

    SUPPLEMENTARY NOTES 14. ABSTRACT -Quarter-symmetric model is used in AutoDyn to simulate DoP experiments on aluminum targets and ceramic-faced aluminum...targets with .30cal AP M2 projectile using SPH elements. -Model validation runs were conducted based on the DoP experiments described in reference...effect of material properties on DoP 15. SUBJECT TERMS .30cal AP M2 Projectile, 762x39 PS Projectile, SPH, Aluminum 5083, SiC, DoP Expeminets

  10. Facility for continuous CVD coating of ceramic fibers

    Science.gov (United States)

    Moore, Arthur W.

    1992-01-01

    An inductively heated CVD furnace of pilot-plant scale, whose hot zone is 150 mm in diameter x 300 mm in length, has been adapted for continuous coating of ceramic yarns. Coatings at very low pressures are possible in this facility due to the fact that the entire apparatus, including yarn feeding and collecting equipment, is under vacuum. SiC yarn has been coated with 0.1-0.2 microns of BN at yarn speeds of 60 cm/min; a 500-m spool; was coated in about 14 hrs. Coating capacity was tripled by adding pulleys to allow three yarn passes through the furnace.

  11. Characterization of Ceramic Vane Materials for 10KW Turboalternator.

    Science.gov (United States)

    1983-04-01

    Table 4. STATISTICAL PARAMETERS OF FRACTURE ANALYSIS ON CERAMIC VANE MATERIALS Distribution Parameter ACC CD CASO NC-430 Normal Number of Samples, n 22...5.5 6.0 6.5 7.0 In a-f In o-f Fracture Stress (MPa) Fracture Stress (MPa) 100 200 300 400 600 800 100 200300400600800 99.0 CASO SIC 99.0 [ NC-430 SiC...variety of shapes and the assumption of a semicircular shape is a crude approximation. Therefore the values of KIc are only approximations. Flaw Size

  12. Oxidation-resistant interfacial coatings for continuous fiber ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Bleier, A. [Oak Ridge National Lab., TN (United States); Shanmugham, S.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-08-01

    Continuous fiber ceramic composites mechanical behavior are influenced by the bonding characteristics between the fiber and the matrix. Finite modeling studies suggest that a low-modulus interfacial coating material will be effective in reducing the residual thermal stresses that are generated upon cooling from processing temperatures. Nicalon{trademark}/SiC composites with carbon, alumina and mullite interfacial coatings were fabricated with the SiC matrix deposited using a forced-flow, thermal gradient chemical vapor infiltration process. Composites with mullite interfacial coatings exhibited considerable fiber pull-out even after oxidation and have potential as a composite system.

  13. Ceramic Technology Project database: September 1990 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1992-06-01

    Data generated within the Ceramic Technology Project (CTP) represent a valuable resource for both research and industry. The CTP database was created to provide easy access to this information in electronic and hardcopy forms by using a computerized database and by issuing periodic hardcopy reports on the database contents. This report is the sixth in a series of semiannual database summaries and covers recent additions to the database, including joined brazed specimen test data. It covers 1 SiC, 34 SiN, 10 whisker-reinforced SiN, 2 zirconia-toughened aluminas, 8 zirconias, and 34 joints.

  14. Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates

    Science.gov (United States)

    Monteverde, Frédéric; Bellosi, Alida

    2005-05-01

    Two metal-diboride-based ceramics containing up to 15 vol%. ultra-fine α-SiC particulates were developed from commercially available powders. The primary matrix of the composites was ZrB 2 or a mixture of ZrB 2 and HfB 2. With the assistance of 4.5 vol%. ZrN as a sintering aid, both the compositions achieved nearly full density after hot-pressing at 1,900 °C. The microstructure was characterized by fine diboride grains ( ≈3 μm average size) and SiC particles dispersed uniformly. Limited amounts of secondary phases like MO 2 and M(C,N), M=Zr or Zr/Hf, were found. The thermo-mechanical data of both the materials offered a promising combination of properties: about 16 GPa of micro-hardness, 5 MPa√ m of fracture toughness and Young's moduli exceeding 470 GPa. The ZrB 2sbnd SiC composite showed values of strength in air of 635 ± 60 and 175 ± 15 MPa at 25 and 1,500 °C, respectively. Likewise, the (ZrB 2 + HfB 2) sbnd SiC composite exhibited values of strength in air of 590 ± 25 and 190 ± 20 MPa at 25 and 1,500 °C, respectively. The composites also displayed good tolerance of conditions of repeated short exposures, 10 minutes each, at 1,700 °C in stagnant air. In such oxidizing conditions, the resistance to oxidation was provided by the formation of a protective silica-based glass coating, the primary oxidation product of SiC. Such a coating encapsulated the specimen coherently, and provided protection to the faces exposed to the hot atmosphere.

  15. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-11-15

    The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 °C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of Al–SiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 50–80 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: • The composite was successfully heat treated at 575°C for 1

  16. Ceramic art in sculpture

    OpenAIRE

    Rokavec, Eva

    2014-01-01

    Diploma seminar speaks of ceramics as a field of artistic expression and not just as pottery craft. I presented short overview of developing ceramic sculpture and its changing role. Clay inspires design and touch more than other sculpture media. It starts as early as in prehistory. Although it sometimes seems that was sculptural ceramics neglected in art history overview, it was not so in actual praxis. There is a rich tradition of ceramics in the East and also in Europe during the renaissanc...

  17. Fundamental alloy design of oxide ceramics and their composites. [Annual] report, May 1, 1990--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I.W.

    1992-12-31

    The main research was on microstructural development of oxide ceramics. Projects were completed and the publications given. Abstracts are given on: Reactive CeO{sub 2}powders by homogeneous precipitation, SiC whisker-reinforced lithium aluminosilicate composite, solute drag on grain boundary in ionic solids (space charge effect), in-situ alumina/aluminate platelet composites, exaggerated texture and grain growth of superplastic silicon nitride (SiAlON), hot extrusion of ceramics, control of grain boundary pinning in Al{sub 2}O{sub 3}/ZrO{sub 2} composites with Ce{sup 3+}/Ce{sup 4+} doping, superplastic forming of ceramic composites, computer simulation of final stage sintering (model, kinetics, microstructure, effect of initial pore size), development of superplastic structural ceramics, and superplastic flow of two-phase ceramics containing rigid inclusions (zirconia/mullite composites). A proposed research program is outlined: materials, solute drag, densification and coarsening, and grain boundary electrical behavior.

  18. Aplicación del método de Rietveld al análisis cuantitativo SiC sinterizado en fase líquida

    Directory of Open Access Journals (Sweden)

    Ortiz, A. L.

    2000-06-01

    Full Text Available Accurate X-ray quantitative analysis in SiC-based ceramics is a difficult task owing to the strong overlap among the Bragg reflections of the different polytypes. In relation to this point, the Rietveld method can be used as a powerful tool in order to solve this problem. In this study we have applied this procedure to determine the weight fractions of the phases in a liquid– phase-sintered SiC sample. It is shown that the consideration of preferred orientation effects is also indispensable to obtain the accurate proportion of the phases.

    La determinación de las fracciones en peso de las fases mediante difracción de rayos X es enormemente complicada en cerámicos a base de SiC debido al intenso solapamiento entre las reflexiones Bragg de los diferentes politipos. No obstante, el método de Rietveld constituye una herramienta poderosa para resolver este problema. En este trabajo se utiliza el método de Rietveld al objeto de determinar las fracciones en peso de las diferentes fases para una muestra de SiC sinterizado en fase líquida (LPS SiC. Nuestros resultados ponen también de manifiesto la necesidad de incorporar correcciones debidas a orientación preferencial para efectuar un análisis cuantitativo preciso.

  19. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  20. Active Oxidation of SiC

    Science.gov (United States)

    Jacobson, Nathan S.; Myers,Dwight L.; Harder, Bryan J.

    2011-01-01

    The high temperature oxidation of silicon carbide occurs in either a passive or active mode, depending on temperature and oxygen potential. Passive oxidation forms a protective oxide film which limits attack of the SiC:SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g.) Active oxidation forms a volatile oxide and leads to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g). The transition points and rates of active oxidation are a major issue. Previous studies are reviewed and the leading theories of passive/active transitions summarized. Comparisons are made to the active/passive transitions in pure Si, which are relatively well-understood. Critical questions remain about the difference between the active-to-passive transition and passive-to-active transition. For Si, Wagner [2] points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. This suggests a significant oxygen potential difference between these two transitions and our experiments confirm this. For Si, the initial stages of active oxidation are characterized by the formation of SiO(g) and further oxidation to SiO2(s) as micron-sized rods, with a distinctive morphology. SiC shows significant differences. The active-to-passive and the passive-to-active transitions are close. The SiO2 rods only appear as the passive film breaks down. These differences are explained in terms of the reactions at the SiC/SiO2 interface. In order to understand the breakdown of the passive film, pre-oxidation experiments are conducted. These involve forming dense protective scales of 0.5, 1, and 2 microns and then subjecting the samples with these scales to a known active oxidation environment. Microstructural studies show that SiC/SiO2 interfacial reactions lead to a breakdown of the scale with a distinct morphology.

  1. Spark plasma sintering of silicon carbide, multi-walled carbon nanotube and graphene reinforced zirconium diboride ceramic composite

    Science.gov (United States)

    Balaraman Yadhukulakrishnan, Govindaraajan

    Scope and Method of Study: Space vehicles re-entering the earth's atmosphere experience very high temperatures due to aerodynamic heating. Ultra-high temperature ceramics (UHTC) with melting point higher than 3200°C are promising materials for thermal protection systems of such space vehicles re-entering the earth's atmosphere. Among several UHTC systems ZrB2 based ceramic composites are particularly important for thermal protection systems due to their better mechanical and thermoelectric properties and high oxidation resistance. In this study spark plasma sintering of SiC, carbon nanotubes (CNT) and graphene nano platelets (GNP) reinforced ZrB2 ultra-high temperature ceramic matrix composites is reported. Findings and Conclusions: Systematic investigations on the effect of reinforcement type (SiC, CNTs and GNP) and content (10-40 vol.% SiC, 2-6 vol.% CNTs and 2-6 vol.% GNP) on densification behavior, microstructure development, and mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness) are reported. With the similar SPS parameters near-full densification (>99% relative density) was achieved with 10-40 vol.% SiC, 4-6 vol.% CNT reinforced composites. Highly dense composites were obtained in 4-6 vol.% GNP reinforced composites. The SiC, CNT and GNP reinforcement improved the indentation fracture toughness of the composites through a range of toughening mechanisms, including particle shearing, crack deflection at the particle-matrix interface, and grain pull-outs for ZrB2-SiC composites, CNT pull-outs and crack deflection in ZrB2-CNT composites and crack deflection, crack bridging and GNP sheet pull-out for ZrB2 -GNP composites.

  2. Ceramic Integration Technologies for Aerospace and Energy Systems: Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2007-01-01

    Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.

  3. Ceramic to metal seal

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gary S. (Albuquerque, NM); Wilcox, Paul D. (Albuquerque, NM)

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  4. Light element ceramics

    OpenAIRE

    Rao, KJ; Varma, KBR; Raju, AR

    1988-01-01

    An overview of a few structually important light element ceramics is presented. Included in the overview are silicon nitide, sialon, aluminium nitride, boron carbide and silicon carbide. Methods of preparation, characterization and industrial applications of these ceramics are summarized. Mechanical properties, industrial production techniques and principal uses of these ceramics are emphasized.

  5. Corrosion protection of SiC-based ceramics with CVD mullite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.L.; Sarin, V.K. [Boston Univ., MA (United States). Dept. of Mfg. Engineering

    1997-12-01

    For the first time, crystalline mullite coatings have been chemically vapor deposited on SiC substrates to enhance its corrosion and oxidation resistance. Thermodynamic and kinetic considerations have been utilized to produce mullite coatings with a variety of growth rates, compositions, and morphologies. The flexibility of processing can be exploited to produce coated ceramics with properties tailored to specific applications and varied corrosive environments.

  6. Defects in Ceramic Matrix Composites and Their Impact on Elastic Properties (Postprint)

    Science.gov (United States)

    2013-07-01

    Hammond, Elzey D. Elevated temperature mechanical properties of partially sintered alumina . Compos Sci Technol 2004;64:1551–63. [12] Hashin Z... temperatures be- low 1300 C [3], accordingly, the matrix properties were kept constant at different temperatures.Table 4 Properties of coated SiC fiber in...McMeeking RM, Zok FW. Mullite– Alumina mixtures for Use as porous matrices in oxide fiber composites. J Am Ceram Soc 2004;87(2):261–7. [8] Gowayed Y

  7. Sol-gel coatings as active barriers to protect ceramic reinforcement in aluminum matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Rams, J.; Urena, A.; Campo, M. [Departamento de Tecnologia Quimica, Ambiental y de los Materiales, ESCET, Universidad Rey Juan Carlos C/ Tulipan s/nMostoles 28933 Madrid (Spain)

    2004-02-01

    Silica obtained through a sol-gel process is used as a coating for ceramic reinforcements (SiC) in aluminium matrix composite materials. The interaction between molten aluminium and the coated particles during material casting can be controlled by means of the thermal treatment given to the coating. Wettability is increased because the coating reacts with molten aluminium, and the formation of the degrading aluminium carbide is inhibited. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  8. Sodium sulfate corrosion of silicon carbide fiber-reinforced lithium aluminosilicate glass-ceramic matrix composites

    OpenAIRE

    1993-01-01

    Approved for public release; distribution is unlimited. Sodium sulfate hot corrosion of a SiC fiber-reinforced lithium aluminosilicate (LAS) glass-ceramic matrix composite was studied using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). Changes in the microstructural chemical composition of the specimens were investigated. The samples provided by Naval Air Warfare Center (NAWC), Warminster, PA were grouped as follows: (1) as-received, (2) Na2SO4 salt-coated and heat-treate...

  9. Irradiation damage of SiC semiconductor device (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10{sup 16} N{sup +} ions/cm{sup 2} and 3.6 x 10{sup 17} e/cm{sup 2} and 1.08 x 10{sup 18} e/cm{sup 2} , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix.

  10. FILTER COMPONENT ASSESSMENT--CERAMIC CANDLES--

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Alvin

    2004-04-23

    Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on development of hot gas filter systems as an enabling technology for advanced coal and biomass-based gas turbine power generation applications. SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report summarizes the results of SWPC's filter component assessment efforts, identifying the performance and stability of porous monolithic, fiber reinforced, and filament wound ceramic hot gas candle filters, potentially for {ge}3 years of viable pressurized fluidized-bed combustion (PFBC) service operating life.

  11. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  12. Support for the Armor Ceramics symposium at the 40th International Conference on Advanced Ceramics and Composites

    Science.gov (United States)

    2016-05-09

    ICACC-S1-P008-2016. Influence of Curvature on High Velocity Impact of SiC/SiC Composites R. Mansour; M. Kannan; M. Presby; G. Morscher; F. Abdi...end type RBSC radiant tube H. Shin; B. Yun; Y. Kim 5:30 PM-8:00 PM ICACC-S1-P025-2016. The Study on Variables of SiC Granule Prepared from Solar...Cholewa-Kowalska 5:30 PM-8:00 PM ICACC-S9-WW-P067-2016. Ceramic foam filter for the filtration of aluminum with different surface chemistrie C

  13. A monolithic integrated photonic microwave filter

    Science.gov (United States)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2016-12-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  14. Macroporous Monolithic Polymers: Preparation and Applications

    Directory of Open Access Journals (Sweden)

    Cecilia Inés Alvarez Igarzabal

    2009-12-01

    Full Text Available In the last years, macroporous monolithic materials have been introduced as a new and useful generation of polymers used in different fields. These polymers may be prepared in a simple way from a homogenous mixture into a mold and contain large interconnected pores or channels allowing for high flow rates at moderate pressures. Due to their porous characteristics, they could be used in different processes, such as stationary phases for different types of chromatography, high-throughput bioreactors and in microfluidic chip applications. This review reports the contributions of several groups working in the preparation of different macroporous monoliths and their modification by immobilization of specific ligands on the products for specific purposes.

  15. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  16. Metal and ceramic matrix composites: Processing, modeling and mechanical behavior; Proceedings of the International Conference, Anaheim, CA, Feb. 19-22, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, R.B.; Clauer, A.H.; Kumar, P.; Ritter, A.M. (Pennsylvania State Univ., University Park (United States) Battelle Research Labs., Columbus, OH (United States) Cabot Corp., Boyertown, PA (United States) General Electric Co., Schenectady, NY (United States))

    1990-01-01

    The present conference on metal matrix composite (MMC) and ceramic matrix composite (CMC) processing, fracture and fatigue characteristics, and interfacial and high temperature performance, gives attention to such topics as tape-cast MMC laminates, the fabrication of high temperature fiber-reinforced intermetallic MMCs, diffusion-bonded preform Al-Si MMCs with SiC fiber reinforcement, HIPed SiC particulate-reinforced 6061 Al alloy MMCs, the performance and economics of CMCs, and the shock compression-processing of high performance ceramics. Also discussed are the high temperature properties of Mg9Li laminates, the deformation processing of Al-alumina MMCs, modeling the thermomechanical behavior of glass-matrix composites, interfacial reactions in SiC fiber-reinforced Ti alloy and Ti aluminide composites, carbon fiber-reinforced tin-superconductor composites, and the stereology of some liquid phase-sintered MMCs.

  17. Update On Monolithic Fuel Fabrication Development

    Energy Technology Data Exchange (ETDEWEB)

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  18. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  19. Monolithically integrated interferometer for optical displacement measurement

    Science.gov (United States)

    Hofstetter, Daniel; Zappe, Hans P.

    1996-01-01

    We discuss the fabrication of a monolithically integrated optical displacement sensors using III-V semiconductor technology. The device is configured as a Michelson interferometer and consists of a distributed Bragg reflector laser, a photodetector and waveguides forming a directional coupler. Using this interferometer, displacements in the 100 nm range could be measured at distances of up to 45 cm. We present fabrication, device results and characterization of the completed interferometer, problems, limitations and future applications will also be discussed.

  20. History and trends of bioactive glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development.

  1. Detail study of SiC MOSFET switching characteristics

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    This paper makes detail study of the latest SiC MOSFETs switching characteristics in relation to gate driver maximum current, gate resistance, common source inductance and parasitic switching loop inductance. The switching performance of SiC MOSFETs in terms of turn on and turn off voltage...... and current are presented. Switching losses analysis is made according to the experiment results. The switching characteristics study and switching losses analysis could give some guidelines of gate driver IC and gate resistance selection, switching losses estimation and circuit design of SiC MOSFETs....

  2. Challenges in Switching SiC MOSFET without Ringing

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    Switching SiC MOSFET without ringing in high frequency applications is important for meeting the EMI (ElectroMagnetic Interference) standard. Achieving a clean switching waveform of SiC MOSFET without additional components is becoming a challenge. In this paper, the switching oscillation mechanism...... is analysed in detail. According to the analysis, the optimal circuit design to minimize the parasitic parametric is introduced for a clean switching waveform. Experiment results show the clean switching waveform of SiC MOSFET. Guidelines are established for circuit design....

  3. Bubble formation in oxide scales on SiC

    Science.gov (United States)

    Mieskowski, D. M.; Mitchell, T. E.; Heuer, A. H.

    1984-01-01

    The oxidation of alpha-SiC single crystals and sintered alphaand beta-SiC polycrystals has been investigated at elevated temperatures. Bubble formation is commonly observed in oxide scales on polycrystalline SiC, but is rarely found on single-crystal scales; bubbles result from the preferential oxidation of C inclusions, which are abundant in SiC polycrystals. The absence of bubbles on single crystals, in fact, implies that diffusion of the gaseous species formed on oxidation, CO (or possibly SiO), controls the rate of oxidation of SiC.

  4. SiC MOSFETs based split output half bridge inverter

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2014-01-01

    Body diode of SiC MOSFETs has a relatively high forward voltage drop and still experiences reverse recovery phenomenon. Half bridge with split output aims to decouple both the body diode and junction capacitance of SiC MOSFETs, therefore achieving a reduced switching loss in a bridge configuration....... This paper makes the current commutation mechanism and efficiency analysis of half bridge with split output based on SiC MOSFETs. Current commutation process analysis is illustrated together with LTspice simulation and afterwards, verified by the experimental results of a double pulse test circuit with split...

  5. Bubble formation in oxide scales on SiC

    Science.gov (United States)

    Mieskowski, D. M.; Mitchell, T. E.; Heuer, A. H.

    1984-01-01

    The oxidation of alpha-SiC single crystals and sintered alphaand beta-SiC polycrystals has been investigated at elevated temperatures. Bubble formation is commonly observed in oxide scales on polycrystalline SiC, but is rarely found on single-crystal scales; bubbles result from the preferential oxidation of C inclusions, which are abundant in SiC polycrystals. The absence of bubbles on single crystals, in fact, implies that diffusion of the gaseous species formed on oxidation, CO (or possibly SiO), controls the rate of oxidation of SiC.

  6. Dynamic Characteristics of Drop-substrate Interactions in Direct Ceramic Ink-jet Printing using High Speed Imaging System

    Directory of Open Access Journals (Sweden)

    Ramshankar Somasundaram

    2009-11-01

    Full Text Available Solid freeform fabrication has the potential to construct ceramic parts, directly from computer aided design (CAD data, without a mould or a die by the addition of material. Direct ceramic ink-jet printing is one of the techniques used in freeform fabrication. Ceramic tiles used in space vehicles can be produced by this method wherein a porous ceramic substrate (Al2O3/SiC can be filled with a ceramic ink and processed subsequently. The success of this process depends on the systematic preparation of ceramic inks and the deposition of the ceramic ink on the substrate. In this paper, photographic studies were made on the characteristics of ceramic ink droplets when these are deposited on a porous ceramic substrate from a burette under gravity. For this investigation, ceramic inks were prepared using different amounts (0.25–3.0 vol. % of an organic dispersant (oleic acid added to a ceramic composition containing different amounts: (a (7.5– 17.5 vol. % of alumina and (b (7.5–15.0 vol. % of zirconia with ethyl alcohol as a carrier. From this study, the drop formation, sedimentation in the drop, spread of drop on the substrate, splashing of drop impinging a previous ceramic ink layer on the substrate, and merging of droplets after deposition, are observed. This method is useful for manufacturing of parts with ceramic fibres filled with ceramic particles and this study can provide inner details on the behaviour of ink drops.Defence Science Journal, 2009, 59(6, pp.675-682, DOI:http://dx.doi.org/10.14429/dsj.59.1575

  7. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Snead, L.L. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01

    Amorphization cannot be tolerated in ceramics proposed for fusion energy applications due to the accompanying large volume change ({approx} 15% in SiC) and loss of strength. Ion beam irradiations at temperatures between 200 K and 450 K were used to examine the likelihood of amorphization in ceramics being considered for the structure (SiC) and numerous diagnostic and plasma heating systems (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO, Si{sub 3}N{sub 4}) in fusion energy systems. The microstructures were examined following irradiation using cross-section transmission electron microscopy. The materials in this study included ceramics with predominantly covalent bonding (SiC, Si{sub 3}N{sub 4}) and predominantely ionic bonding (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO). The samples were irradiated with a variety of ion beams (including some simultaneous dual ion beam irradiations) in order to investigate possible irradiation spectrum effects. The ion energies were >0.5 MeV in all cases, so that the displacement damage effects could be examined in regions well separated from the implanted ion region.

  8. Volatile Reaction Products From Silicon-Based Ceramics in Combustion Environments Identified

    Science.gov (United States)

    Opila, Elizabeth J.

    1997-01-01

    Silicon-based ceramics and composites are prime candidates for use as components in the hot sections of advanced aircraft engines. These materials must have long-term durability in the combustion environment. Because water vapor is always present as a major product of combustion in the engine environment, its effect on the durability of silicon-based ceramics must be understood. In combustion environments, silicon-based ceramics react with water vapor to form a surface silica (SiO2) scale. This SiO2 scale, in turn, has been found to react with water vapor to form volatile hydroxides. Studies to date have focused on how water vapor reacts with high-purity silicon carbide (SiC) and SiO2 in model combustion environments. Because the combustion environment in advanced aircraft engines is expected to contain about 10-percent water vapor at 10-atm total pressure, the durability of SiC and SiO2 in gas mixtures containing 0.1- to 1-atm water vapor is of interest. The reactions of SiC and SiO2 with water vapor were monitored by measuring weight changes of sample coupons in a 0.5-atm water vapor/0.5-atm oxygen gas mixture with thermogravimetric analysis.

  9. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  10. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  11. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  12. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  13. Preparation of imprinted monolithic column under molecular crowding conditions

    Institute of Scientific and Technical Information of China (English)

    Xiao Xia Li; Xin Liu; Li Hong Bai; Hong Quan Duan; Yan Ping Huang; Zhao Sheng Liu

    2011-01-01

    Molecular crowding is a new concept to obtain molecularly imprinted polymers (MIPs) with greater capacity and selectivity. In this work, molecular crowding agent was firstly applied to the preparation of MIPs monolithic column. A new polymerization system based on molecular crowding surrounding was developed to prepare enrofloxacin-imprinted monolith, which was composed of polystyrene and tetrahydrofuran. The result showed that the monolithic MIPs under molecular crowding conditions presented good molecular recognition for enrofloxacin with an imprinting factor of 3.03.

  14. Fibre-reinforced glasses and SiC matrices. Analysis and properties; Faserverstaerkte Glaeser und SiC-Matrices. Analyse und Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B.

    1992-08-01

    The dissertation investigates ceramic fibres, from single-fibre model composites to multi-fibre materials on a glass or SiC matrix. The glass matrices used were `Duran` and `Supremax`, the reinforcing materials SiC fibres (Niacalon, SCS-6) and carbon fibres (T300). The mechanical properties and the structure of the composite materials were investigated by different methods. (MM) [Deutsch] Der Bogen dieser Doktorarbeit spannt sich von der Untersuchung keramischer Fasern ueber Einzelfaserverbundmodellproben bis hin zu den Vielfaserverbundwerkstoffen mit Glas- und SiC-Matrix. Als Glasmatrizes wurden `Duran` und `Supremax` und als Verstaerkungsmaterialien SiC-Fasern (Niacalon, SCS-6) und Kohlenstoffasern (T300) eingesetzt. Mit Hilfe verschiedener Methoden wurden die mechanischen Eigenschaften und das Gefuege dieser Verbundwerkstoffe untersucht. (MM)

  15. Monolithic Lumped Element Integrated Circuit (M2LEIC) Transistors.

    Science.gov (United States)

    INTEGRATED CIRCUITS, *MONOLITHIC STRUCTURES(ELECTRONICS), *TRANSISTORS, CHIPS(ELECTRONICS), FABRICATION, EPITAXIAL GROWTH, ULTRAHIGH FREQUENCY, POLYSILICONS, PHOTOLITHOGRAPHY, RADIOFREQUENCY POWER, IMPEDANCE MATCHING .

  16. Inlay-Retained Fixed Dental Prosthesis: A Clinical Option Using Monolithic Zirconia

    Directory of Open Access Journals (Sweden)

    Davide Augusti

    2014-01-01

    Full Text Available Different indirect restorations to replace a single missing tooth in the posterior region are available in dentistry: traditional full-coverage fixed dental prostheses (FDPs, implant-supported crowns (ISC, and inlay-retained FDPs (IRFDP. Resin bonded FDPs represent a minimally invasive procedure; preexisting fillings can minimize tooth structure removal and give retention to the IRFDP, transforming it into an ultraconservative option. New high strength zirconia ceramics, with their stiffness and high mechanical properties, could be considered a right choice for an IRFDP rehabilitation. The case report presented describes an IRFDP treatment using a CAD/CAM monolithic zirconia IRFDP; clinical and laboratory steps are illustrated, according to the most recent scientific protocols. Adhesive procedures are focused on the Y-TZP and tooth substrate conditioning methods. Nice esthetic and functional integration of indirect restoration at two-year follow-up confirmed the success of this conservative approach.

  17. Comparative Study of Dielectric and Magnetic Properties of Selected 3D Reticulated Ceramics and Their Same Composition Ceramic Disks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    3-dimensional reticulated ceramics (3DRCs) and their same composition ceramic disks(SCCDs) were fabricated by sol-gel method, with the composition of SrO.6Fe2O3(30%), SiC(35%) and TiO2(35%), sintered at 1200℃ in N2.The dielectric and magnetic parameters of such 3DRCs and their SCCDs were measured respectively in a temperature range from room temperature to 800℃ and in a frequency range from 2.6 GHz to 18 GHz. The results showed that the dielectric and magnetic loss of 3DRCs were obviously larger than those of their SCCDs in a wide range of temperature and the whole range of measuring frequency. The increase of dielectric loss of 3DRCs was much higher than that of magnetic loss compared to their SCCDs, which was found due to the 3D net structure extrinsic characteristics.

  18. SiC Avalanche Photodiodes and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aymont Technology, Inc. (Aymont) will demonstrate the feasibility of SiC p-i-n avalanche photodiodes (APD) arrays. Aymont will demonstrate 4 x 4 arrays of 2 mm2 APDs...

  19. An Extension of SIC Predictions to the Wiener Coactive Model.

    Science.gov (United States)

    Houpt, Joseph W; Townsend, James T

    2011-06-01

    The survivor interaction contrasts (SIC) is a powerful measure for distinguishing among candidate models of human information processing. One class of models to which SIC analysis can apply are the coactive, or channel summation, models of human information processing. In general, parametric forms of coactive models assume that responses are made based on the first passage time across a fixed threshold of a sum of stochastic processes. Previous work has shown that that the SIC for a coactive model based on the sum of Poisson processes has a distinctive down-up-down form, with an early negative region that is smaller than the later positive region. In this note, we demonstrate that a coactive process based on the sum of two Wiener processes has the same SIC form.

  20. DC characteristics of the SiC Schottky diodes

    National Research Council Canada - National Science Library

    W Janke; A Hapka; M Oleksy

    2011-01-01

      DC characteristics of the SiC Schottky diodes The isothermal and non-isothermal characteristics of silicon carbide Schottky diodes in the wide range of currents and ambient temperatures are investigated in this paper...

  1. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  2. Investigation of Microwave Monolithic Integrated Circuit (MMIC) non-reciprocal millimeterwave components

    Science.gov (United States)

    Talisa, S. H.; Krishnaswamy, S. V.; Adam, J. D.; Yoo, K. C.; Doyle, N. J.

    1991-09-01

    Two ferrite film deposition techniques were investigated in this program for possible use in the monolithic integration of Gallium Arsenide electronic and magnetic millimeter-wave devices; (1) spin-spray plating (SSP) of nickel zinc ferrite films, and (2) sputtering of barium hexaferrites with C-axis oriented normally to the film plane. The SSP technique potential for this application was demonstrated. Film structural characteristics were studied, as well as their adhesions to other substrates and the conditions for growth of thicker films. Multilayers totalling 25 microns in thickness were grown on semiconducting substrates. The SSP process occurs at about 100 C and was experimentally demonstrated not to damage Gallium arsenide MMIC devices. The magnetic characteristics of these films were comparable to ceramic materials. A scheme for the monolithic integration of magnetic and Gallium arsenide electronic devices was proposed and its feasibility experimentally demonstrated. The films showed higher dielectric loss than was desirable, possibly owing to high water content. A better drying technique is required. Barium ferrite films with C-axis texture were reproducibly grown on sapphire. Magnetic measurements yielded acceptable saturation magnetization and anisotrophy field. Ferromagnetic resonance was not observed, possibly due to broad linewidths.

  3. Synthesis of micro-sized interconnected Si-C composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  4. Avalanche robustness of SiC Schottky diode

    OpenAIRE

    Dchar, Ilyas; Buttay, Cyril; Morel, Hervé

    2016-01-01

    International audience; Reliability is one of the key issues for the application of Silicon carbide (SiC) diode in high power conversion systems. For instance, in high voltage direct current (HVDC) converters, the devices can be submitted to high voltage transients which yield to avalanche. This paper presents the experimental evaluation of SiC diodes submitted to avalanche, and shows that the energy dissipation in the device can increase quickly and will not be uniformly distributed across t...

  5. Electrical Characterization of Defects in SiC Schottky Barriers

    Science.gov (United States)

    Schnabel, C. M.; Tabib-Azar, M.; Raffaelle, R. P.; Su, H. B.; Dudley, M.; Neudeck, P. G.; Bailey, S.

    2005-01-01

    We have been investigating the effect of screw dislocation and other structural defects on the electrical properties of SiC. SiC is a wide-bandgap semiconductor that is currently received much attention due to its favorable high temperature behavior and high electric field breakdown strength. Unfortunately, the current state-of-the-art crystal growth and device processing methods produce material with high defect densities, resulting in a limited commercial viability

  6. Preparation of SiC Fiber Reinforced Nickel Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang; Nanlin Shi; Jun Gong; Chao Sunt

    2012-01-01

    A method of preparing continuous(Al+Al2O3)-coated SiC fiber reinforced nickel matrix composite was presented,in which the diffusion between SiC fiber and nickel matrix could be prevented.Magnetron sputtering is used to deposit Ni coating on the surface of the(Al+Al2O3)-coated SiC fiber in preparation of the precursor wires.It is shown that the deposited Ni coating combines well with the(Al+Al2O3) coating and has little negative effect on the tensile strength of(Al+Al2O3)-coated SiC fiber.Solid-state diffusion bonding process is employed to prepare the(Al+Al2O3)-coated SiC fiber reinforced nickel matrix with 37% fibers in volume.The solid-state diffusion bonding process is optimized and the optimum parameters are temperature of 870,pressure of 50 MPa and holding time of 2 h.Under this condition,the precursor wires can diffuse well,composite of full density can be formed and the(Al+Al2O3) coating is effective to restrict the reaction between SiC fiber and nickel matrix.

  7. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    Science.gov (United States)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  8. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai, E-mail: katohy@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Ozawa, Kazumi; Shih, Chunghao; Nozawa, Takashi [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Shinavski, Robert J. [Hyper-Therm High Temperature Composites, Inc., Huntington Beach, CA (United States); Hasegawa, Akira [Tohoku University, Sendai, Miyagi-ken (Japan); Snead, Lance L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2014-05-01

    Silicon carbide (SiC) continuous fiber-reinforced, SiC-matrix composites (SiC/SiC composites) are industrially available materials that are promising for applications in nuclear environments. The SiC/SiC composites consisting of near-stoichiometric SiC fibers, stoichiometric and fully crystalline SiC matrices, and the pyrocarbon (PyC) or multilayered PyC/SiC interphase between the fiber and the matrix are considered particularly resistant to very high radiation environments. This paper provides a summary compilation of the properties of these composites, specifically those with the chemically vapor-infiltrated (CVI) SiC matrices, including newly obtained results. The properties discussed are both in unirradiated condition and after neutron irradiation to intermediate fluence levels (most data are for <∼10 displacement per atom) at 300–1300 °C.

  9. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1994-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  10. The impact resistance of SiC and other mechanical properties of SiC and Si3N4

    Science.gov (United States)

    Bradt, R. C.

    1984-01-01

    Studies focused on the impact and mechanical behavior of SiC and Si3N4 at high temperatures are summarized. Instrumented Charpy impact testing is analyzed by a compliance method and related to strength; slow crack growth is related to processing, and creep is discussed. The transient nature of flaw populations during oxidation under load is emphasized for both SiC and Si3N4.

  11. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  12. Ultra high temperature ceramics for hypersonic vehicle applications.

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.; Loehman, Ronald E.; Kotula, Paul Gabriel

    2006-01-01

    HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.

  13. Additive Manufacturing of Ceramic Structures by Laser Engineered Net Shaping

    Institute of Scientific and Technical Information of China (English)

    NIU Fangyong; WU Dongjiang; MA Guangyi; ZHANG Bi

    2015-01-01

    Ceramic is an important material with outstanding physical properties whereas impurities and porosities generated by traditional manufacturing methods limits its further industrial applications. In order to solve this problem, direct fabrication of Al2O3 ceramic structures is conducted by laser engineered net shaping system and pure ceramic powders. Grain refinement strengthening method by doping ZrO2 and dispersion strengthening method by doping SiC are proposed to suppress cracks in fabricating Al2O3 structure. Phase compositions, microstructures as well as mechanical properties of fabricated specimens are then analyzed. The results show that the proposed two methods are effective in suppressing cracks and structures of single-bead wall, arc and cylinder ring are successfully deposited. Stable phase ofα-Al2O3 and t-ZrO2 are obtained in the fabricated specimens. Micro-hardness higher than 1700 HV are also achieved for both Al2O3 and Al2O3/ZrO2, which are resulted from fine directional crystals generated by the melting-solidification process. Results presented indicate that additive manufacturing is a very attractive technique for the production of high-performance ceramic structures in a single step.

  14. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  15. Tribological Properties of Ni3Al Matrix Composite Sliding Against Si3N4, SiC and Al2O3 at Elevated Temperatures

    Science.gov (United States)

    Yan, Chengqi; Kang, Yonghai; Kong, Lingqian; Zhu, Shengyu

    2016-12-01

    The Ni3Al matrix self-lubricating composite was fabricated by powder metallurgy technique. The tribological behavior of the composite sliding against commercial Si3N4, SiC and Al2O3 ceramic balls was investigated from 20 to 1000 °C. It was found that the composite demonstrated excellent lubricating properties with different friction pairs at a wide temperature range, which can be attributed to the synergetic effect of Ag, fluorides, and molybdates formed by oxidations. The Ni3Al matrix self-lubricating composite/Si3N4 couple possessed the stable friction coefficient and wear rate.

  16. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  17. Time-based position estimation in monolithic scintillator detectors

    NARCIS (Netherlands)

    Tabacchini, V.; Borghi, G.; Schaart, D.R.

    2015-01-01

    Gamma-ray detectors based on bright monolithic scintillation crystals coupled to pixelated photodetectors are currently being considered for several applications in the medical imaging field. In a typical monolithic detector, both the light intensity and the time of arrival of the earliest

  18. Time-based position estimation in monolithic scintillator detectors

    NARCIS (Netherlands)

    Tabacchini, V.; Borghi, G.; Schaart, D.R.

    2015-01-01

    Gamma-ray detectors based on bright monolithic scintillation crystals coupled to pixelated photodetectors are currently being considered for several applications in the medical imaging field. In a typical monolithic detector, both the light intensity and the time of arrival of the earliest scintilla

  19. Time-based position estimation in monolithic scintillator detectors

    NARCIS (Netherlands)

    Tabacchini, V.; Borghi, G.; Schaart, D.R.

    2015-01-01

    Gamma-ray detectors based on bright monolithic scintillation crystals coupled to pixelated photodetectors are currently being considered for several applications in the medical imaging field. In a typical monolithic detector, both the light intensity and the time of arrival of the earliest scintilla

  20. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based