WorldWideScience

Sample records for monolithic ceramic materials

  1. Constitutive Theory Developed for Monolithic Ceramic Materials

    Science.gov (United States)

    Janosik, Lesley A.

    1998-01-01

    with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  2. Dynamic characterization of monolithic and composite ceramic materials using Hopkinson bar

    OpenAIRE

    2002-01-01

    5 pages, 11 figures. [EN] The mechanical behaviour of monolithic and composite ceramic materials was analysed under impact conditions, using the Hopkinson bar to study the response and failure modes. The materials considered were alumina (Al2O3) and silicon carbide platelet / alumina matrix (Al2O3/ SiCpl) composites. Because of the high hardness of ceramics, modifications of the conventional Hopkinson bar device were done to prevent the damage of the bars surface. Stress-strain curves obta...

  3. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC Materials

    Directory of Open Access Journals (Sweden)

    Roberto Orrù

    2013-04-01

    Full Text Available A wider utilization of ultra high temperature ceramics (UHTC materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS, consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step.

  4. Full-mouth rehabilitation with monolithic CAD/CAM-fabricated hybrid and all-ceramic materials: A case report and 3-year follow up.

    Science.gov (United States)

    Selz, Christian F; Vuck, Alexander; Guess, Petra C

    2016-02-01

    Esthetic full-mouth rehabilitation represents a great challenge for clinicians and dental technicians. Computer-aided design/ computer-assisted manufacture (CAD/CAM) technology and novel ceramic materials in combination with adhesive cementation provide a reliable, predictable, and economic workflow. Polychromatic feldspathic CAD/CAM ceramics that are specifically designed for anterior indications result in superior esthetics, whereas novel CAD/CAM hybrid ceramics provide sufficient fracture resistance and adsorption of the occlusal load in posterior areas. Screw-retained monolithic CAD/CAM lithium disilicate crowns (ie, hybrid abutment crowns) represent a reliable and time- and cost-efficient prosthetic implant solution. This case report details a CAD/CAM approach to the full-arch rehabilitation of a 65-year-old patient with toothand implant-supported restorations and provides an overview of the applied CAD/CAM materials and the utilized chairside intraoral scanner. The esthetics, functional occlusion, and gingival and peri-implant tissues remained stable over a follow-up period of 3 years. No signs of fractures within the restorations were observed.

  5. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  6. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  7. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III

    1998-02-10

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.

  8. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, David A. (Clifton Park, NY); Bacchi, David P. (Schenectady, NY); Connors, Timothy F. (Watervliet, NY); Collins, III, Edwin L. (Albany, NY)

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  9. Ceramic laser materials

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin

    2008-12-01

    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  10. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  11. Ceramic Laser Materials

    Energy Technology Data Exchange (ETDEWEB)

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I

    2005-02-15

    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  12. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pcomposite resin resulted in less wear depth to human enamel compared with glass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Application of Monolithic Zirconia Ceramics in Dental Practice: A Case History Report.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk; Yeo, In-Sung

    2016-01-01

    Monolithic zirconia restorations increasingly have been used in dental practice in recent years and demonstrate superior mechanical performance compared with porcelain-veneered zirconia restorations. Recent advances in manufacturing technology have made possible the fabrication of translucent monolithic zirconia ceramics. This case report describes three clinical examples of monolithic zirconia fixed dental prostheses being used in the anterior and posterior regions and exhibiting acceptable esthetic results.

  14. Monolithic and assembled polymer-ceramic composites for bone regeneration

    NARCIS (Netherlands)

    Nandakumar, A.; Cruz, C.; Mentink-Leusink, Anouk; Tahmasebi Birgani, Zeinab; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    The rationale for the use of polymer - ceramic composites for bone regeneration stems from the natural composition of bone, with collagen type I and biological apatite as main organic and inorganic constituents, respectively. In the present study, composite materials of PolyActive™ (PA), a poly

  15. Dental ceramics: a review of new materials and processing methods.

    Science.gov (United States)

    Silva, Lucas Hian da; Lima, Erick de; Miranda, Ranulfo Benedito de Paula; Favero, Stéphanie Soares; Lohbauer, Ulrich; Cesar, Paulo Francisco

    2017-08-28

    The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I) monolithic zirconia restorations; II) multilayered dental prostheses; III) new glass-ceramics; IV) polymer infiltrated ceramics; and V) novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.

  16. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  17. Dissolution of Ceramic Monolith of Spent Catalytic Converters by Using Hydrometallurgical Methods / Rozpuszczanie Monolitu Ceramicznego Zużytych Katalizatorów Na Drodze Hydrometalurgicznej

    Directory of Open Access Journals (Sweden)

    Willner J.

    2015-12-01

    Full Text Available Catalytic converters contain the catalytic substance in their structure, which is a mixture of Platinum Group Metals (PGMs: platinum, palladium and rhodium. The prices of these metals and a growing demand for them in the market, make it necessary to recycle spent catalytic converters and recovery of PGMs. The ceramic monolith of catalytic converters is still a predominant material in its construction among of multitude of catalytic converters which are in circulation. In this work attempts were made to leach additional metals (excluding Pt from comminuted ceramic monolith. Classic leachant oxidizing media 10M H2SO4, HCl and H3PO4 were used considering the possibility of dissolution of the ceramic monolith.

  18. Flash sintering of ceramic materials

    OpenAIRE

    Dancer, C. E. J.

    2016-01-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sint...

  19. Sol-Gel Synthesis of Non-Silica Monolithic Materials

    Directory of Open Access Journals (Sweden)

    Bartłomiej Gaweł

    2010-04-01

    Full Text Available Monolithic materials have become very popular because of various applications, especially within chromatography and catalysis. Large surface areas and multimodal porosities are great advantages for these applications. New sol-gel preparation methods utilizing phase separation or nanocasting have opened the possibility for preparing materials of other oxides than silica. In this review, we present different synthesis methods for inorganic, non-silica monolithic materials. Some examples of application of the materials are also included.

  20. Ceramic catalyst materials

    Energy Technology Data Exchange (ETDEWEB)

    Sault, A.G.; Gardner, T.J. [Sandia National Laboratories, Albuquerque, NM (United States); Hanprasopwattanna, A.; Reardon, J.; Datye, A.K. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-08-01

    Hydrous titanium oxide (HTO) ion-exchange materials show great potential as ceramic catalyst supports due to an inherently high ion-exchange capacity which allows facile loading of catalytically active transition metal ions, and an ability to be cast as thin films on virtually any substrate. By coating titania and HTO materials onto inexpensive, high surface area substrates such as silica and alumina, the economics of using these materials is greatly improved, particularly for the HTO materials, which are substantially more expensive in the bulk form than other oxide supports. In addition, the development of thin film forms of these materials allows the catalytic and mechanical properties of the final catalyst formulation to be separately engineered. In order to fully realize the potential of thin film forms of titania and HTO, improved methods for the deposition and characterization of titania and HTO films on high surface area substrates are being developed. By varying deposition procedures, titania film thickness and substrate coverage can be varied from the submonolayer range to multilayer thicknesses on both silica and alumina. HTO films can also be formed, but the quality and reproducibility of these films is not nearly as good as for pure titania films. The films are characterized using a combination of isopropanol dehydration rate measurements, point of zero charge (PZC) measurements, BET surface area, transmission electron microscopy (TEM), and elemental analysis. In order to assess the effects of changes in film morphology on catalytic activity, the films are being loaded with MoO{sub 3} using either incipient wetness impregnation or ion-exchange of heptamolybdate anions followed by calcining. The MoO{sub 3} is then sulfided to form MOS{sub 2}, and tested for catalytic activity using pyrene hydrogenation and dibenzothiophene (DBT) desulfurization, model reactions that simulate reactions occurring during coal liquefaction.

  1. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  2. Effect of endodontic access cavity preparation on monolithic and ceramic veneered zirconia restorations.

    Science.gov (United States)

    Grobecker-Karl, Tanja; Christian, Mirko; Karl, Matthias

    2016-01-01

    Due to the high chipping rates observed in veneered zirconia ceramic restorations, the use of monolithic zirconia restorations has been recommended. This study tried to compare veneered and monolithic zirconia fixed dental prostheses (FDPs) with respect to the amount of damage induced by endodontic access preparation. Monolithic and ceramic veneered (n = 10) three-unit restorations (retainers: first premolar and first molar; pontic: second premolar) were subject to endodontic access cavity preparation in both retainers using a diamond rotary instrument under continuous water cooling. The number of chipping fractures and microfractures detected using the fluorescent penetrant method were recorded. Statistical analysis was based on Wilcoxon rank sum tests with Bonferroni correction (level of significance α = .05). Only one microfracture could be identified in the group of monolithic FDPs while a maximum of seven microfractures and three chipping fractures per retainer crown were recorded in the group of veneered restorations. At the premolar site, the veneered restorations showed significantly more microfractures (P = .0055) and chipping fractures (P = .0008). At the molar site, no significant difference with respect to microfractures could be detected (P = .0767), while significantly more chipping fractures occurred in the veneered samples (P = .0293). Monolithic zirconia restorations seem to be less susceptible to damage when endodontic access cavities have to be prepared as compared to veneered zirconia reconstructions. However, no conclusions can be drawn on the long-term performance of a specific restoration based on this study.

  3. Letter report on PCT/Monolith glass ceramic corrosion tests

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline network while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).

  4. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  5. Ceramic materials and growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Ohgushi, H.; Yoshikawa, T.; Okumura, M.; Nakajima, H.; Takakura, Y. [Nara Medical Univ. (Japan). Dept. of Orhtopaedic Surgery; Dohi, Y. [Nara Medical Univ. (Japan). Dept. of Public Health; Noshi, T.; Ikeuchi, M. [Nara Medical Univ. (Japan). Dept. of Oral and Maxillofacial Surgery

    2001-07-01

    Recently, many types of growth factors have been purified and used for promoting cell differentiation cascade. The activity of growth factors can be detected in vitro such as culture condition. However, the activity is difficult to detect when these factors are locally administered in vivo, because these dissipate soon after the administration. In order to retain growth factors in local milieu, these can be incorporated with biocompatible porous ceramic materials. Such ceramic/factors composites when implanted in vivo, can trigger certain types of cell differentiation cascade resulted in new tissue formation and tissue regeneration. The paper describes the ceramic / growth factors composites especially hydroxyapatite ceramic (HA) / bone morphogenetic protein (BMP) composite to induce osteoblastic differentiation of mesenchymal stem cells. The HA/BMP composite supported the osteoblastic differentiation on the HA surface and finally resulted in bone bonding to the HA. When the marrow mesenchymal stem cells (MSCs) were impregnated in pore areas of HA ceramics, the composites showed more and rapid bone formation than the HA/BMP and HA/MSCs composite, indicating the synergistic effect of BMP and MSCs. These findings indicate the importance of ceramic surface to evoke osteoblastic differentiation as well as to capture the molecules of growth factors for the cell differentiation. (orig.)

  6. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  7. Molecularly imprinted macroporous monolithic materials for protein recognition

    Institute of Scientific and Technical Information of China (English)

    Qi Liang Deng; Yan Li Li; Li Hua Zhang; Yu Kui Zhang

    2011-01-01

    Synthetic materials that can specifically recognize proteins will find wide application in many fields. In this report, bovine serum albumin was chosen as the template protein. Acrylamide and N, N'-methylenebisacrylamide were employed as the functional and cross-linker monomers, respectively. Molecularly imprinted macroporous monolithic materials that can preferentially bind the template protein in an aqueous environment were prepared by combination of molecular imprinting technique and freezing/thawing preparation method. The resulted imprinted macroporous monolithic columns were evaluated by utilizing as stationary phase in high performance liquid chromatography and solid-phase extraction materials. The experimental results indicated that the imprinted macroporous monolithic column exhibited good recognition for template protein, as compared with the control protein (hemoglobin), whereas the non-imprinted polymer (prepared under the same conditions except without addition template protein) had no selective properties.

  8. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  9. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  10. Ceramic materials testing and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wilfinger, K. R., LLNL

    1998-04-30

    corrosion by limiting the transport of water and oxygen to the ceramic-metal interface. Thermal spray techniques for ceramic coating metallic structures are currently being explored. The mechanics of thermal spray resembles spray painting in many respects, allowing large surfaces and contours to be covered smoothly. All of the relevant thermal spray processes use a high energy input to melt or partially melt a powdered oxide material, along with a high velocity gas to impinge the molten droplets onto a substrate where they conform, quench, solidify and adhere mechanically. The energy input can be an arc generated plasma, an oxy-fuel flame or an explosion. The appropriate feed material and the resulting coating morphologies vary with technique as well as with application parameters. To date on this project, several versions of arc plasma systems, a detonation coating system and two variations of high velocity oxy-fuel (HVOF) fired processes have been investigated, operating on several different ceramic materials.

  11. Ceramic cutting tools materials, development and performance

    CERN Document Server

    Whitney, E Dow

    1994-01-01

    Interest in ceramics as a high speed cutting tool material is based primarily on favorable material properties. As a class of materials, ceramics possess high melting points, excellent hardness and good wear resistance. Unlike most metals, hardness levels in ceramics generally remain high at elevated temperatures which means that cutting tip integrity is relatively unaffected at high cutting speeds. Ceramics are also chemically inert against most workmetals.

  12. Shear bond strength of indirect composite material to monolithic zirconia

    Science.gov (United States)

    2016-01-01

    PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895

  13. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  14. Ceramics As Materials Of Construction

    OpenAIRE

    Zaki, A.; Eteiba, M. B.; Abdelmonem, N.M.

    1988-01-01

    This paper attempts to review the limitations for using the important ceramics in contact with corrosive media. Different types of ceramics are included. Corrosion properties of ceramics and their electrical properties are mentioned. Recommendations are suggested for using ceramics in different media.

  15. Cerium, manganese and cerium/manganese ceramic monolithic catalysts. Study of VOCs and PM removal

    Institute of Scientific and Technical Information of China (English)

    COLMAN-LERNER Esteban; PELUSO Miguel Andrs; SAMBETH Jorge; THOMAS Horacio

    2016-01-01

    Ceramic supported cerium, manganese and cerium-manganese catalysts were prepared by direct impregnation of aqueous precursor, and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) acidity measurements and electrical conductivity. The catalytic activity was evaluated for volatile organic compounds (VOC) (ethanol, methyl ethyl ketone and toluene) oxidation. Additionally, catalysts were tested in particulate matter (PM) combustion. The characterization results indicated that Ce was in the form of Ce4+ and Ce3+, and Mn existed in the form of Mn4+and Mn3+on the surface of the Mn/AC sample and in the form of Mn4+ in the Ce/Mn/AC monolith. VOC oxidation results revealed that the Ce/Mn/AC sample showed an excellent performance compared with ceramic supported CeO2 (Ce/AC) and MnOx (Mn/AC) samples. The PM combustion was also higher on Ce/Mn/AC monoliths. The enhanced catalytic activity was mainly attributed to the Ce and Mn interaction which enhanced the acidity, conductiv-ity and the reducibility of the oxides.

  16. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  17. Improved ceramic heat exchanger materials

    Science.gov (United States)

    Rauch, H. W.

    1980-01-01

    The development and evaluation of materials for potential application as heat exchanger structures in automotive gas turbine engines is discussed. Test specimens in the form of small monolithic bars were evaluated for thermal expansion and dimensional stability before and after exposure to sea salt and sulfuric acid, followed by short and long term cycling at temperatures up to 1200 C. The material finally selected, GE-7808, consists of the oxides, ZrO2-MgO-Al2O3-S1O2, and is described generically as ZrMAS. The original version was based on a commercially available cordierite (MAS) frit. However, a clay/talc mixture was demonstrated to be a satisfactory very low cost source of the cordierite (MAS) phase. Several full size honeycomb regenerator cores, about 10.2 cm thick and 55 cm diameter were fabricated from both the frit and mineral versions of GE-7808. The honeycomb cells in these cores had rectangular dimensions of about 0.5 mm x 2.5 mm and a wall thickness of approximately 0.2 mm. The test data show that GE-7808 is significantly more stable at 1100 C in the presence of sodium than the aluminosilicate reference materials. In addition, thermal exposure up to 1100 C, with and without sodium present, results in essentially no change in thermal expansion of GE-7808.

  18. Controlled porosity monolithic material as permselective ion exchange membranes.

    Science.gov (United States)

    Huang, Xiaojia; Dasgupta, Purnendu K

    2011-03-18

    Ion exchange membranes (IEMs) are used in a variety of analytical devices, including suppressors, eluent generators and other components used in ion chromatography. Such membranes are flexible and undergo substantial dimensional changes on hydration. Presently the push to miniaturization continues; a resurgent interest in open tubular ion chromatography requires microscale adaptation of these components. Incorporating IEMs in microscale devices is difficult. Although both macroporous and microporous ion exchange materials have been made for use as chromatographic packing, ion exchange material used as membranes are porous only on a molecular scale. Because such pores have vicinal ion exchange sites, ions of the same charge sign as those of the fixed sites are excluded from the IEMs. Monolithic polymers, including ion exchangers derived therefrom, are presently extensively used. When used in a separation column, such a monolithic structure contains an extensively connected porous network. We show here that by controlling the amount of porogen added during the synthesis of monolithic polymers derived from ethylene dimethacrylate - glycidyl methacrylate, which are converted to an anion exchanger by treatment with trimethylamine, it is possible to obtain rigid ion exchange polymers that behave like IEMs and allow only one charge type of ions to pass through, i.e., are permselective. We demonstrate successful open tubular cation chromatography suppressor performance.

  19. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging

    NARCIS (Netherlands)

    Pereira, G.K.R.; Silvestri, T.; Camargo, R.; Rippe, M.P.; Amaral, M.; Kleverlaan, C.J.; Valandro, L.F.

    2016-01-01

    This study aimed to investigate the effects of grinding with diamond burs and low-temperature aging on the mechanical behavior (biaxial flexural strength and structural reliability), surface topography, and phase transformation of a Y-TZP ceramic for monolithic dental restorations. Disc-shaped speci

  20. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging

    NARCIS (Netherlands)

    Pereira, G.K.R.; Silvestri, T.; Camargo, R.; Rippe, M.P.; Amaral, M.; Kleverlaan, C.J.; Valandro, L.F.

    2016-01-01

    This study aimed to investigate the effects of grinding with diamond burs and low-temperature aging on the mechanical behavior (biaxial flexural strength and structural reliability), surface topography, and phase transformation of a Y-TZP ceramic for monolithic dental restorations. Disc-shaped

  1. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  2. Ceramic materials purified by experimental method

    Science.gov (United States)

    1965-01-01

    Crystalline ceramic materials are purified for use as high-temperature electrical insulators. Any impurities migrate to the cathode when a dc voltage is applied across the material while it is heated in an inert gas atmosphere.

  3. New ceramic materials; Nuevos materiales ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-07-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  4. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  5. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    Science.gov (United States)

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed.

  6. Monolithic silica aerogel - material design on the nano-scale

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    By means of a production process in two major steps - a sol/gel process and a supercritical drying – open-cell, monolithic silica aerogel can be made. This material can have a density in the range of 30- to 300 kg/m3, corresponding to porosities between 86 and 98 %. The solid structure has...... of piezoelectric transducers. - Other applications could be; waste encapsulation, spacers for vacuum insulation panels, membranes, etc. Department of Civil Engineering is co-ordinator of a current EU FP5 research project1, which deals with the application of aerogel as transparent insulation materials in windows....... Due to the excellent optical and thermal properties of aerogel, it is possible to develop windows with both high insulation and high transmittance, which is impossible applying the conventional window techniques, i.e. extra layers of glass, low-e coatings and gas fillings. It can be shown...

  7. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge....... This work has considered the role of the combined ultrafast gain and absorption dynamics in MLLs as a main factor limiting laser performance. An independent optimization of MLL amplifier and saturable absorber active materials was performed. Two promising approaches were considered: quantum dot (QD...... application in MLLs. Improved QW laser performance was demonstrated using the asymmetric barrier layer approach. The analysis of the gain characteristics showed that the high population inversion beneficial for noise reduction cannot be achieved for 10 GHz QW MLLs and would have required lowering the modal...

  8. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  9. Dynamic properties of ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E. [Sandia National Labs., Albuquerque, NM (United States). Experimental Impact Physics Dept.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  10. Advanced Ceramic Materials for Future Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  11. A hydrometallurgical process for recovering total metal values from waste monolithic ceramic capacitors.

    Science.gov (United States)

    Prabaharan, G; Barik, S P; Kumar, B

    2016-06-01

    A hydrometallurgical process for recovering the total metal values from waste monolithic ceramic capacitors was investigated. The process parameters such as time, temperature, acid concentration, hydrogen peroxide concentration and other reagents (amount of zinc dust and sodium formate) were optimized. Base metals such as Ba, Ti, Sn, Cu and Ni are leached out in two stages using HCl in stage 1 and HCl with H2O2 in stage 2. More than 99% of leaching efficiency for base metals (Cu, Ni, Ba, Ti and Sn) was achieved. Precious metals such as Au and Pd are leached out using aquaregia and nitric acid was used for the leaching of Ag. Base metals (Ba, Ti, Sn, Cu and Ni) are recovered by selective precipitation using H2SO4 and NaOH solution. In case of precious metals, Au and Pd from the leach solution were precipitated out using sodium metabisulphite and sodium formate, respectively. Sodium chloride was used for the precipitation of Ag from leach solution. Overall recovery for base metals and precious metals are 95% and 92%, respectively. Based on the results of the present study, a process flow diagram was proposed for commercial application.

  12. Characterization of production of free gluconic acid by Gluconobacter suboxydans adsorbed on ceramic honeycomb monolith.

    Science.gov (United States)

    Shiraishi, F; Kawakami, K; Kono, S; Tamura, A; Tsuruta, S; Kusunoki, K

    1989-05-01

    Gluconobacter suboxydans IFO 3290 was immobilized by adsorption on ceramic honeycomb monolith and continuous production of free gluconic acid from glucose was performed in an aerated reactor. The effects of reactor residence time, aeration rate, and glucose concentration were investigated on the gluconic acid yield. Observation of SEM photographs revealed that the cells were adsorbed with a high density not only on the outer surface of the support but also on the inner surface of large pores. From measurement of the number of the adsorbed cells, it was elucidated that the biofilm comprised a monolayer or bilayer of the cells. Maximum specific rate of growth was estimated for the free and adsorbed cells, and the adsorbed cells were found to grow at a fast rate compared with the free cells. In the continuous fermentation performed for one month at the glucose concentration of 100 kg/m(3), reactor residence time of 3.5 h and aeration rate of 900 cm(3)/min, the activity of the adsorbed cells was appreciably stable. The high productivity of 26.3 kg/(m(3)-reactor . h) was attained with the gluconic acid yield of 84.6% and glucose conversion of 94%.

  13. The formulation of a ceramic monolith; La formulazione di un monolita ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldo, A.; Roncari, R. [Consiglio Nazionale delle Ricerche, Faenza (Italy). Lab. di Ricerche Tecnologiche per la Ceramica

    1999-08-01

    Extrusion is a low cost forming process to realise in continuous a lot of objects with very complex shape; monolithic honeycomb catalytic are obtained using this technique. The different steps of the process are separately analysed with a particular attention to the paste formulation which is the critical step both for forming process itself and the characteristics of the final product. The role of played by the different components of the ceramic paste is presented; the knowledge of the behaviour with specific total and inorganic additives essential to obtain products with specific total porosity and mechanical strength. [Italian] Il processo di estrusione e' un processo a basso costo che consente la realizzazione in continuo di forme anche complesse tra cui i catalizzatori monolitici a nido d'ape. Il processo di formatura viene analizzato nelle sue diverse fasi ponendo in particolare evidenza l'importanza che la formulazione dell'impasto riveste nel determinare sia la buona riuscita del processo sia le caratteristiche del prodotto finale.

  14. Assessment of ceramic membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H. [and others

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  15. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. Smart Energy Materials of PZT Ceramics

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2017-03-01

    Full Text Available To better understand the material properties of lead zirconate titanate (PZT ceramics, the domain-switching characteristics and electric power generation characteristics have been investigated during loading and unloading by using various experimental techniques. Furthermore, the influence of oscillation condition on the electrical power generation properties of lead zirconate titanate (PZT piezoelectric ceramics has been investigated. It is found that the power generation is directly attributed to the applied load and wave mode. The voltage rises instantly to the maximum level under square-wave mode, although the voltage increases gradually under triangular-wave mode. After this initial increase, there is a rapid fall to zero, followed by generation of increasingly negative voltage as the applied load is removed for all wave modes. Variation of the electric voltage is reflected by the cyclic loading at higher loading frequencies. On the basis of the obtained experimental results for the wave modes, the electrical power generation characteristics of PZT ceramics are proposed, and the voltages generated during loading and unloading are accurately estimated. The electric generation value is decrease with increasing the cyclic number due to the material failure, e.g., domain switching and crack. The influence of domain switching on the mechanical properties PZT piezoelectric ceramics is clarified, and 90 degree domain switching occurs after the load is applied to the PZT ceramic directly. Note that, in this paper, our experimental results obtained in our previous works were introduced

  17. Development of Monolithic Column Materials for the Separation and Analysis of Glycans

    Directory of Open Access Journals (Sweden)

    Allan J. Alla

    2015-02-01

    Full Text Available Monolithic column materials offer great advantages as chromatographic media in bioseparations and as solid-supports in biocatalysis. These single-piece porous materials have an interconnected ligament structure that limits the void volume inside the column, thus increasing the efficiency without sacrificing the permeability. The preparation of monolithic materials is easy, reproducible and has available a wide range of chemistries to utilize. Complex, heterogeneous and isobaric glycan structures require preparation methods that may include glycan release, separation and enrichment prior to a comprehensive and site-specific glycosylation analysis. Monolithic column materials aid that demand, as shown by the results reported by the research works presented in this review. These works include selective capture of glycans and glycoproteins via their interactions with lectins, boronic acids, hydrophobic, and hydrophilic/polar functional groups on monolith surfaces. It also includes immobilization of enzymes trypsin and PNGase F on monoliths to digest and deglycosylate glycoproteins and glycopeptides, respectively. The use of monolithic capillary columns for glycan separations through nano-liquid chromatography (nano-LC and capillary electrochromatography (CEC and coupling these columns to MS instruments to create multidimensional systems show the potential in the development of miniaturized, high-throughput and automated systems of glycan separation and analysis.

  18. Influence of Specimen Preparation and Test Methods on the Flexural Strength Results of Monolithic Zirconia Materials

    OpenAIRE

    Christine Schatz; Monika Strickstrock; Malgorzata Roos; Daniel Edelhoff; Marlis Eichberger; Isabella-Maria Zylla; Bogna Stawarczyk

    2016-01-01

    The aim of this work was to evaluate the influence of specimen preparation and test method on the flexural strength results of monolithic zirconia. Different monolithic zirconia materials (Ceramill Zolid (Amann Girrbach, Koblach, Austria), Zenostar ZrTranslucent (Wieland Dental, Pforzheim, Germany), and DD Bio zx2 (Dental Direkt, Spenge, Germany)) were tested with three different methods: 3-point, 4-point, and biaxial flexural strength. Additionally, different specimen preparation methods wer...

  19. Influence of specimen preparation and test methods on the flexural strength results of monolithic zirconia materials

    OpenAIRE

    Schatz, Christine; Strickstrock, Monika; Roos, Malgorzata; Edelhoff, Daniel; Eichberger, Marlis; Zylla, Isabella-Maria; Stawarczyk, Bogna

    2016-01-01

    The aim of this work was to evaluate the influence of specimen preparation and test method on the flexural strength results of monolithic zirconia. Different monolithic zirconia materials (Ceramill Zolid (Amann Girrbach, Koblach, Austria), Zenostar ZrTranslucent (Wieland Dental, Pforzheim, Germany), and DD Bio zx2 (Dental Direkt, Spenge, Germany)) were tested with three different methods: 3-point, 4-point, and biaxial flexural strength. Additionally, different specimen preparation methods wer...

  20. Interdisciplinary research concerning the nature and properties of ceramic materials

    Science.gov (United States)

    1975-01-01

    The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.

  1. Preparation and Microstructure of Glass-ceramics and Ceramic Composite Materials

    Institute of Scientific and Technical Information of China (English)

    HE Feng; XIE Junlin; HAN Da

    2008-01-01

    The technology and microstructure of glass-ceramics and ceramic composite materials were studied.A suitable ceramic body was chosen on the basis of the sintering temperature of CaO-Al2O3-SiO2 system glass-ceramics.According to the expansion coefficient of the ceramic body,that of CaO-Al2O3-SiO2 system glass-ceramics was adjusted.a-wollastonite was found present as the major crystalline phase in glass-ceramic.The CaO-Al2O3-SiO2 system glass-ceramic layer and ceramic body could be sintered together by adjusting the sintering period.The compositions of glass-ceramic layer and ceramic body diffuse mutually at 1100℃.resulting in an interface between them.To achieve good sintered properties of glass-ceramics and the chosen ceramic body,at least a four-hour sintering time is used.

  2. Analysis of Material Removal in Alumina Ceramic Honing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The removal mechanism is of importance to the grinding of hard and brittle ceramic materials. It is more suitable to analyze the material removal during ceramics honing processes by means of indention fracture approach. There are two honing characteristics different from grinding, the honing incidental tensile stresses and the crosshatch pattern. The stresses may influence material removal of brittle ceramics with lower tensile strength. In addition, the criss-cross cutting pattern on a bore known as cros...

  3. Fabrication of a new porous glass-ceramic monolith using vanadium(III) calcium phosphate glass as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Mazali, Italo Odone; Alves, Oswaldo Luiz [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: mazali@iqm.unicamp.br

    2004-08-01

    Preliminary XRD, IR, Raman and SEM data indicate that porous glass-ceramic monoliths (pgc-LVCP) with skeleton of V(PO{sub 3}){sub 3} and Ca{sub 3}(VO{sub 4}){sub 2} with three-dimensional network structure using an original Li{sub 2}O-V{sub 2}O{sub 3}-CaO-P{sub 2}O{sub 5} glass as precursor was obtained. The pgc-LVCP is a promising porous host for integrated chemical systems because the Ca{sub 3}(VO{sub 4}){sub 2} has ferroelectric and luminophore properties while V(PO{sub 3}){sub 3} exhibits magnetic properties associated with high degree of mechanical, chemical and thermal stability. (author)

  4. Effect of Two Polishing Systems on Surface Roughness, Topography, and Flexural Strength of a Monolithic Lithium Disilicate Ceramic.

    Science.gov (United States)

    Mohammadibassir, Mahshid; Rezvani, Mohammad Bagher; Golzari, Hossein; Moravej Salehi, Elham; Fahimi, Mohammad Amin; Kharazi Fard, Mohammad Javad

    2017-03-08

    To evaluate the effect of overglazing and two polishing procedures on flexural strength and quality and quantity of surface roughness of a monolithic lithium disilicate ceramic computer-aided design (CAD) after grinding. This in vitro study was conducted on 52 partially crystalized bar-shaped specimens (16 × 4 × 1.6 mm) of monolithic lithium disilicate ceramic. The specimens were wet polished with 600-, 800-, and 1200-grit silicon carbide papers for 15 seconds using a grinding/polishing machine at a speed of 300 rpm. Then, the specimens were crystalized and glaze-fired in one step simultaneously and randomly divided into four groups of 13: (I) Glazing group (control); (II) Grinding-glazing group, subjected to grinding with red band finishing diamond bur (46 μm) followed by glazing; (III) Grinding-D+Z group, subjected to grinding and then polishing by coarse, medium, and fine diamond rubber points (D+Z); and (IV) Grinding-OptraFine group, subjected to grinding and then polishing with a two-step diamond rubber polishing system followed by a final polishing step with an OptraFine HP brush and diamond polishing paste. The surface roughness (Ra and Rz) values (μm) were measured by a profilometer, and the mean values were compared using one-way ANOVA and Tamhane's test (post hoc comparison). One specimen of each group was evaluated under a scanning electron microscope (SEM) for surface topography. The three-point flexural strength values of the bars were measured using a universal testing machine at a 0.5 mm/min crosshead speed and recorded. The data were analyzed using one-way ANOVA and Tamhane's test (α = 0.05). Statistically significant differences were noted among the experimental groups for Ra, Rz (p quality of roughness compared to glazing. The flexural strength of lithium disilicate ceramic after polishing with the OptraFine system was similar to that after glazing (p = 0.86). Despite similar surface roughness after polishing with the two systems, the D

  5. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  6. Materials characteristics of uncoated/ceramic-coated implant materials.

    Science.gov (United States)

    Lacefield, W R

    1999-06-01

    In this paper, the biocompatibility of dental implant materials is discussed in the context of both the mechanical characteristics of the materials and the type of surface presented to the surrounding tissues. The proper functioning of the implant depends on whether it possesses the strength necessary to withstand loading within the expected range, with other properties such as elongation being of importance in some instances. A suitable modulus of elasticity may be of major importance in situations when optimum load transmission from the implant into the surrounding bone is key to the successful functioning of the device. Dental implants present a wide range of surfaces to the surrounding tissues based on surface composition, texture, charge energy, and cleanliness (sterility). Metallic implants are characterized by protective oxide layers, but ion release is still common with these materials, and is a function of passivation state, composition, and corrosion potential. An effective surface treatment for titanium appears to be passivation or anodization in a suitable solution prior to implantation. Inert ceramic surfaces exhibit minimal ion release, but are similar to metals in that they do not form a high energy bond to the surrounding bone. Some of the newly developed dental implant alloys such as titanium alloys, which contain zirconium and niobium, and high-strength ceramics such as zirconia may offer some advantages (such as lower modulus of elasticity) over the conventional materials. Calcium phosphate ceramic coatings are commonly used to convert metallic surfaces into a more bioactive state and typically cause faster bone apposition. There is a wide range of ceramic coatings containing calcium and phosphorus, with the primary difference in many of these materials being in the rate of ion release. Although their long-term success rate is unknown, the calcium phosphate surfaces seem to have a higher potential for attachment of osteoinductive agents than do

  7. Interdisciplinary research on the nature and properties of ceramic materials

    Science.gov (United States)

    1980-01-01

    The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.

  8. Advanced ceramic matrix composite materials for current and future propulsion technology applications

    Science.gov (United States)

    Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.

    2004-08-01

    Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of

  9. Recent developments in superconducting materials including ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji

    1987-06-01

    This report describes the history of superconduction starting in 1911, when the superconducting phenomenon was first observed in murcury, until the recent discovery of superconducting materials with high critical temperatures. After outlining the BCS theory, basic characteristics are discussed including the critical temperature, magnetic field and current density to be reached for realizing the superconducting state. Various techniques for practical superconducting materials are discussed, including methods for producing extra fine multiconductor wires from such superconducting alloys as Nb-Ti, intermetallic Nb/sub 3/Sn compound and V/sub 3/Ga, as well as methods for producing wires of Nb/sub 3/Al, Nb/sub 3/(Al, Ge) and Nb/sub 3/Ge such as continuous melt quenching, electron beam irradiation, laser beam irradiation and chemical evaporation. Characteristics of superconducting ceramics are described, along with their applications including superconducting magnets and superconducting elements. (15 figs, 1 tab, 19 refs)

  10. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  11. A review of ceramic bearing materials in total joint arthroplasty.

    Science.gov (United States)

    Bal, B S; Garino, J; Ries, M; Rahaman, M N

    2007-01-01

    Bearings made of ceramics have ultra-low wear properties that make them suitable for total hip arthroplasty (THA) and total knee arthroplasty (TKA). When compared to cobalt chrome (CoCr)-on-polyethylene (PE) articulations, ceramics offer drastic reductions in bearing wear rates. Lower wear rates result in fewer wear particles produced by the articulating surfaces. In theory, this should reduce the risk of periprosthetic osteolysis and premature implant loosening, thereby contributing to the longevity of total joints. In addition to ceramics, other alternative bearing couples, such as highly cross-linked PE (XLPE) and metal-on-metal also offer less wear than CoCr-on-PE articulations in total joint arthroplasty. Alumina and zirconia ceramics are familiar to orthopaedic surgeons since both materials have been used in total joints for several decades. While not new in Europe, alumina-on-alumina ceramic total hips have only recently become available for widespread use in the United States from various orthopaedic implant manufacturers. As the search for the ideal total joint bearing material continues, composite materials of existing ceramics, metal-on-ceramic articulations, and new ceramic technologies will offer more choices to the arthroplasty surgeon. The objective of this paper is to present an overview of material properties, clinical applications, evolution, and limitations of ceramic materials that are of interest to the arthroplasty surgeon.

  12. Monolithic spectrometer

    Science.gov (United States)

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  13. Glass-ceramics as building materials

    Directory of Open Access Journals (Sweden)

    Rincón, J. María

    1996-06-01

    Full Text Available Glass-ceramics are materials composed as any ceramic material by several crystalline phases embedded in an amorphous or vitreous matrix, but their manufacture process implies the controlled devitrification or nucleation and growth of phases from an original glass. The original shape of the original glass molded by conventional methods is carried out by using pressing and sintering followed by crystallization steps. By both processing routes are obtained transparent and/or opaque materials, with or without colours, which after adequate control and design of composition and microstructure have numerous domestic and architectonic applications. They can be used as pavements or wall coatings and in various decorative elements. In fact, their use is very extensive in east-European, American and Asian (Japan countries in constructions for covering large surfaces. The greater advantage of the glass-ceramic process is that due to the own process of vitrification allows the incorporation in their structure of a wide range of compositions from mining and industrial residues, such as red muds, ashes, fangos, scraps... which they can in this way not only be inertizated, but furthermore it be converted without risk for the environment into products useful in construction applications, offering to the architect and to the decorator a new range of "eco-materials" with multiple complementary possibilities of the already existing architectural materials in the market.

    Los productos o materiales vitrocerámicos se componen, como cualquier material de tipo cerámico, de una o varias fases cristalinas embebidas en una matriz amorfa o vítrea, pero cuyo proceso de fabricación implica la desvitrificación o nucleación y cristalización controlada de un vidrio original o de partida. En el proceso de obtención de estos materiales se puede conservar la forma original conferida al vidrio de partida por los métodos convencionales de moldeado de vidrios

  14. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  15. Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials

    Science.gov (United States)

    Singh, M.

    2001-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.

  16. Design and evaluation of synthetic silica-based monolithic materials in shrinkable tube for efficient protein extraction.

    Science.gov (United States)

    Alzahrani, Eman; Welham, Kevin

    2011-10-21

    Sample pretreatment is a required step in proteomics in order to remove interferences and preconcentrate the samples. Much research in recent years has focused on porous monolithic materials since they are highly permeable to liquid flow and show high mass transport compared with more common packed beds. These features are due to the micro-structure within the monolithic silica column which contains both macropores that reduce the back pressure, and mesopores that give good interaction with analytes. The aim of this work was to fabricate a continuous porous silica monolithic rod inside a heat shrinkable tube and to compare this with the same material whose surface has been modified with a C(18) phase, in order to use them for preconcentration/extraction of proteins. The performance of the silica-based monolithic rod was evaluated using eight proteins; insulin, cytochrome C, lysozyme, myoglobin, β-lactoglobulin, ovalbumin, hemoglobin, and bovine serum albumin at a concentration of 60 μM. The results show that recovery of the proteins was achieved by both columns with variable yields; however, the C(18) modified silica monolith gave higher recoveries (92.7 to 109.7%) than the non-modified silica monolith (25.5 to 97.9%). Both silica monoliths can be used with very low back pressure indicating a promising approach for future fabrication of the silica monolith inside a microfluidic device for the extraction of proteins from biological media.

  17. Tribology of ceramics and composites materials science perspective

    CERN Document Server

    Basu, Bikramjit

    2011-01-01

    This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.

  18. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    ART 1280477229 ~!~::~.:.:.,.._.._,/’Ut 4th ENDORSEMENT (59 MDW/SGVU Use Only) 43. DATE RECEIVED 144. SENIOR AUTHOR NOTIFIED BY PHONE OF APPROVAL OR...the most esthetic full veneer restorative material in dentistry for many years. In the mid- 1900 ’s, dental materials researchers began marketing and

  19. An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites

    OpenAIRE

    Silvestre, J.; Silvestre, N; de Brito, J.

    2015-01-01

    Due to their prominent properties (mechanical, stiffness, strength, thermal stability), ceramic composite materials (CMC) have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMCs have been greatly improved in the last decade. CMCs are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxid...

  20. Attachment of epithelial cells and fibroblasts to ceramic materials.

    Science.gov (United States)

    Niederauer, G G; McGee, T D; Keller, J C; Zaharias, R S

    1994-04-01

    This study examined in vitro gingival epithelial and fibroblast cell attachment to ceramic materials made of tricalcium phosphate and/or magnesium aluminate spinel. The composite made of tricalcium phosphate and spinel is called 'osteoceramic'. These ceramics had various compositions and surface structures, which were initially characterized. Cell attachment assays were performed using both cell types to compare cellular response to the ceramic materials. Specimens were also prepared for scanning electron microscopy to investigate cellular morphology. The highest levels of cell attachment for gingival epithelial cells were observed on the rough osteoceramic surface, whereas gingival fibroblasts attached least to the rough osteoceramic surface.

  1. Actively Cooled Ceramic Composite Nozzle Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I Project demonstrated the capability of the Pyrowave? manufacturing process to produce fiber-reinforced ceramics (FRCs) with integral metal features, such...

  2. Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection.

    Science.gov (United States)

    McLaren, Edward A; Figueira, Johan

    2015-06-01

    The indications for and composition of today's dental ceramic materials serve as the basis for determining the appropriate class of ceramics to use for a given case. By understanding the classifications, composition, and characteristics of the latest all-ceramic materials, which are presented in this article in order of most to least conservative, dentists and laboratory technicians can best determine the ideal material for a particular treatment.

  3. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  4. Performance of Ceramics in Severe Environments

    Science.gov (United States)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.

    2005-01-01

    Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.

  5. Effect of Ti and Si interlayer materials on the joining of SiC ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Park, Jung Hwan; Kim, Hyun Gil; Park, Dong Jun; Park, Jeong Yong; Kim, Weon Ju [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ∼0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ∼100 MPa. The joint interface consisted of TiSi{sub 2}, Ti{sub 3}SiC{sub 2}, and SiC phases formed by a diffusion reaction of Ti and Si.

  6. Characterization of mechanical damage mechanisms in ceramic composite materials. Technical report, 23 May 1987-24 May 1988

    Energy Technology Data Exchange (ETDEWEB)

    Lankford, J.

    1988-09-01

    High-strain-rate compressive failure mechanisms in fiber-reinforced ceramic-matrix composite materials were characterized. These are contrasted with composite damage development at low-strain rates, and with the dynamic failure of monolithic ceramics. It is shown that it is possible to derive major strain-rate strengthening benefits if a major fraction of the fiber reinforcement is aligned with the load axis. This effect considerably exceeds the inertial microfracture strengthening observed in monolithic ceramics, and non-aligned composites. Its basis is shown to be the trans-specimen propagation time period for heterogeneously-nucleated, high-strain kink bands. A brief study on zirconia focused on the remarkable inverse strength-strain rate result previously observed for both fully and partially-stabilized zirconia single crystals, whereby the strength decreased with increasing strain rate. Based on the hypothesis that the suppression of microplastic flow, hence, local stress relaxation, might be responsible for this behavior, fully stabilized (i.e., non-transformable) specimens were strain-gaged and subjected to compressive microstrain. The rather stunning observation was that the crystals are highly microplastic, exhibiting plastic yield on loading and anelasticity and reverse plasticity upon unloading. These results clearly support the hypothesis that with increasing strain rate, microcracking is favored at the expense of microplasticity.

  7. Fly ash of mineral coal as ceramic tiles raw material.

    Science.gov (United States)

    Zimmer, A; Bergmann, C P

    2007-01-01

    The aim of this work was to evaluate the use of mineral coal fly ash as a raw material in the production of ceramic tiles. The samples of fly ash came from Capivari de Baixo, a city situated in the Brazilian Federal State of Santa Catarina. The fly ash and the raw materials were characterized regarding their physical chemical properties, and, based on these results; batches containing fly ash and typical raw materials for ceramic tiles were prepared. The fly ash content in the batches varied between 20 and 80 wt%. Specimens were molded using a uniaxial hydraulic press and were fired. All batches containing ash up to 60 wt% present adequate properties to be classified as several kinds of products in the ISO 13006 standard () regarding its different absorption groups (pressed). The results obtained indicate that fly ash, when mixed with traditional raw materials, has the necessary requirements to be used as a raw material for production of ceramic tiles.

  8. Monolithic Continuous-Flow Bioreactors

    Science.gov (United States)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  9. 1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation.

    Science.gov (United States)

    Divoky, Martin; Tokita, Shigeki; Hwang, Sungin; Kawashima, Toshiyuki; Kan, Hirofumi; Lucianetti, Antonio; Mocek, Tomas; Kawanaka, Junji

    2015-03-15

    Experimental amplification of 10-ns pulses to energy of 1 J at repetition rate of 10-100 Hz in cryogenic multipass total-reflection active-mirror (TRAM) amplifier is reported for the first time. By using a monolithic multi-TRAM, which is a YAG ceramic composite with three thin Yb:YAG active layers, efficient energy extraction was achieved without parasitic lasing. A detailed measurement of output characteristics of the laser amplifier is presented; results are discussed and compared with numerical calculations.

  10. Overview: Damage resistance of graded ceramic restorative materials.

    Science.gov (United States)

    Zhang, Yu

    2012-08-01

    Improving mechanical response of materials is of great interest in a wide range of disciplines, including biomechanics, tribology, geology, optoelectronics, and nanotechnology. It has been long recognized that spatial gradients in surface composition and structure can improve the mechanical integrity of a material. This review surveys recent results of sliding-contact, flexural, and fatigue tests on graded ceramic materials from our laboratories and elsewhere. Although our findings are examined in the context of possible applications for next-generation, graded all-ceramic dental restorations, implications of our studies have broad impact on biomedical, civil, structural, and an array of other engineering applications.

  11. Recent advances in materials for all-ceramic restorations.

    Science.gov (United States)

    Griggs, Jason A

    2007-07-01

    The past 3 years of research on materials for all-ceramic veneers, inlays, onlays, single-unit crowns, and multi-unit restorations are reviewed in this article. The primary changes in the field were the proliferation of zirconia-based frameworks and computer-aided fabrication of prostheses, and a trend toward more clinically relevant in vitro test methods. This article includes an overview of ceramic fabrication methods, suggestions for critical assessment of material property data, and a summary of clinical longevity for prostheses constructed of various materials.

  12. Possible production of ceramic tiles from marine dredging spoils alone and mixed with other waste materials.

    Science.gov (United States)

    Baruzzo, Daniela; Minichelli, Dino; Bruckner, Sergio; Fedrizzi, Lorenzo; Bachiorrini, Alessandro; Maschio, Stefano

    2006-06-30

    Dredging spoils, due to their composition could be considered a new potential source for the production of monolithic ceramics. Nevertheless, abundance of coloured oxides in these materials preclude the possibility of obtaining white products, but not that of producing ceramics with a good mechanical behaviour. As goal of the present research we have produced and studied samples using not only dredging spoils alone, but also mixtures with other waste materials such as bottom ashes from an incinerator of municipal solid waste, incinerated seawage sludge from a municipal seawage treatment plant and steelworks slag. Blending of different components was done by attrition milling. Powders were pressed into specimens which were air sintered in a muffle furnace and their shrinkage on firing was determined. Water absorption, density, strength, hardness, fracture toughness, thermal expansion coefficient of the fired bodies were measured; XRD and SEM images were also examined. The fired samples were finally tested in acidic environment in order to evaluate their elution behaviour and consequently their environmental compatibility. It is observed that, although the shrinkage on firing is too high for the production of tiles, in all the compositions studied the sintering procedure leads to fine microstructures, good mechanical properties and to a limitation of the release of many of the most hazardous metals contained in the starting powders.

  13. Nature of ceramic materials: needs and opportunities for ceramic science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Kingery, W D

    1976-01-01

    Ceramic materials are inherently strong but brittle; many are stable and corrosion-resistant in oxidizing and reducing atmospheres to high temperatures, and they have a variety of useful optical, thermal, electrical, and magnetic properties. Because of their strength, brittleness, and high-temperature stability, they are inherently difficult to fabricate in a way that allows full use of their intrinsic properties. The needs and opportunities for new and improved ceramic science and technology are mostly related to the critical importance of ceramics in determining the feasibility or effectiveness of large complex systems. One example of a past success is the development of square-loop ferrites for computer memory systems. Many other systems now under development--magnetohydrodynamic power generation, solar energy systems, high-temperature gas turbines, nuclear waste management, optical communications systems, and many others--will become practical only if the fabrication of essential ceramic components with reliably controlled properties is achieved. Development of the science of ceramic characteristics and properties, development of technology for reliably producing desired characteristics and properties, and the training of ceramic scientists are currently progressing at a rate wholly inadequate for meeting the evident requirements.

  14. Failure analysis of various monolithic posterior aesthetic dental crowns using finite element method

    Science.gov (United States)

    Porojan, Liliana; Topală, Florin

    2017-08-01

    The aim of the study was to assess the effect of material stiffness and load on the biomechanical performance of the monolithic full-coverage posterior aesthetic dental crowns using finite element analysis. Three restorative materials for monolithic dental crowns were selected for the study: zirconia; lithium disilicate glass-ceramic, and resin-based composite. Stresses were calculated in the crowns for all materials and in the teeth structures, under different load values. The experiments show that dental crowns made from all this new aesthetic materials processed by CAD/CAM technologies would be indicated as monolithic dental crowns for posterior areas.

  15. Valorization of rice straw waste: an alternative ceramic raw material

    Directory of Open Access Journals (Sweden)

    Á. Guzmán A

    2015-03-01

    Full Text Available In the production of rice a large amount of solid residue is produced, for which alternative utilizations are scarce or are not commonly applied in industry. Rice straw (RS is a waste product of rice harvest that is generated in equal or greater quantities than the rice itself. RS is frequently burned in open air, which makes it a significant source of pollution. In the search for possible uses of RS, it should be noted that its ash (RSA is particularly rich in silica, alkaline and alkaline earth metals and may be used as a source of alkalis and silica for the production of triaxial ceramics. The present research work proposes the production of a ceramic raw material from RS for its use in the fabrication of ceramic materials for the construction industry. Based on the chemical and mineralogical composition of RSA created under different thermal conditions, the most suitable RSA for this purpose was that obtained from treating RS at a temperature of 800 ºC for a time of 2 h. The resulting RSA presented high contents of SiO2 (79.62%, alkaline oxides (K2O (10.53% and alkaline earth oxides (CaO (2.80%. It is concluded that RSA is a new alternative ceramic raw material that can be used as a replacement for the fluxing (mainly feldspar and inert (quartz materials that are used in the production of triaxial ceramics.

  16. Sintering of Ceramic Materials Under Electric Field

    OpenAIRE

    Naik , Kiran Suresh

    2014-01-01

    The remarkable discovery of flash sintering came across during the early work of Cologna et al. and emerged as an attractive technique in the field of ceramic processing. In this technique the applied electric field initiates the “flash” event, while the densification is controlled by the current density set. Sintering occurs in less than 5 s at a threshold temperature for a given applied field. The objective of this thesis is to analyse the phenomena of flash sintering with different cer...

  17. Glass-ceramic materials from electric arc furnace dust.

    Science.gov (United States)

    Kavouras, P; Kehagias, T; Tsilika, I; Kaimakamis, G; Chrissafis, K; Kokkou, S; Papadopoulos, D; Karakostas, Th

    2007-01-31

    Electric arc furnace dust (EAFD) was vitrified with SiO2, Na2CO3 and CaCO3 powders in an electric furnace at ambient atmosphere. Vitreous products were transformed into glass-ceramic materials by two-stage heat treatment, at temperatures determined by differential thermal analysis. Both vitreous and glass-ceramic materials were chemically stable. Wollastonite (CaSiO3) was separated from the parent matrix as the dominant crystalline phase, verified by X-ray diffraction analysis and energy dispersive spectrometry. Transmission electron microscopy revealed that wollastonite crystallizes mainly in its monoclinic form. Knoop microhardness was measured with the static indentation test method in all initial vitreous products and the microhardness values were in the region of 5.0-5.5 GPa. Devitrification resulted in glass-ceramic materials with microhardness values strongly dependent on the morphology and orientation of the separated crystal phase.

  18. Water reservoir as resource of raw material for ceramic industry

    Science.gov (United States)

    Irie, M.; Tarhouni, J.

    2015-04-01

    The industries related to the ceramics such as construction bricks, pottery and tile are the important sectors that cover the large part of the working population in Tunisia. The raw materials, clay or silt are excavated from opencast site of limestone clay stratum. The opencast site give the negative impact on landscape and environment, risks of landslide, soil erosion etc. On the other hand, a most serious problem in water resource management, especially in arid land such as Tunisia, is sedimentation in reservoirs. Sediment accumulation in the reservoirs reduces the water storage capacity. The authors proposed the exploitation of the sediment as raw material for the ceramics industries in the previous studies because the sediment in Tunisia is fine silt. In this study, the potential of the water reservoirs in Tunisia as the resource of the raw material for the ceramics industries is estimated from the sedimentation ratio in the water reservoirs.

  19. Solid Bonded Films or Monolithic Ceramics in Tracked Chains of Construction Equipments for Wear Management

    Science.gov (United States)

    2004-06-01

    and the sprocket, in which abrasive wear is predominant. According to Rabinowicz [17], the abrasive wear is shared into three regions of low wear/high...12 RTO-MP-AVT-109 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED The methodology of Rabinowicz is more valid for metals and represents a...494-499 [17] E. Rabinowicz Abrasive wear resistance as a material test, Lubrication Engineering 33 (1977), p. 378 [18] Uetz, H. (ed

  20. Ceramic/polymer functionally graded material (FGM) lightweight armor system

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; McClellan, K.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.

  1. Ceramic/polymer functionally graded material (FGM) lightweight armor system

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; McClellan, K.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.

  2. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  3. ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering

    Directory of Open Access Journals (Sweden)

    Franziska Weichelt

    2010-12-01

    Full Text Available Porous monolithic inorganic/polymeric hybrid materials have been prepared via ring-opening metathesis copolymerization starting from a highly polar monomer, i.e., cis-5-cyclooctene-trans-1,2-diol and a 7-oxanorborn-2-ene-derived cross-linker in the presence of porogenic solvents and two types of inorganic nanoparticles (i.e., CaCO3 and calcium hydroxyapatite, respectively using the third-generation Grubbs initiator RuCl2(Py2(IMesH2(CHPh. The physico-chemical properties of the monolithic materials, such as pore size distribution and microhardness were studied with regard to the nanoparticle type and content. Moreover, the reinforced monoliths were tested for the possible use as scaffold materials in tissue engineering, by carrying out cell cultivation experiments with human adipose tissue-derived stromal cells.

  4. Monolitni katalizatori i reaktori: osnovne značajke, priprava i primjena (Monolith catalysts and reactors: preparation and applications

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2004-12-01

    Full Text Available Monolithic (honeycomb catalysts are continuous unitary structures containing many narrow, parallel and usually straight channels (or passages. Catalytically active components are dispersed uniformly over the whole porous ceramic monolith structure (so-called incorporated monolithic catalysts or are in a layer of porous material that is deposited on the walls of channels in the monolith's structure (washcoated monolithic catalysts. The material of the main monolithic construction is not limited to ceramics but includes metals, as well. Monolithic catalysts are commonly used in gas phase catalytic processes, such as treatment of automotive exhaust gases, selective catalytic reduction of nitrogen oxides, catalytic removal of volatile organic compounds from industrial processes, etc. Monoliths continue to be the preferred support for environmental applications due to their high geometric surface area, different design options, low pressure drop, high temperature durability, mechanical strength, ease of orientation in a reactor and effectiveness as a support for a catalytic washcoat. As known, monolithic catalysts belong to the class of the structured catalysts and/or reactors (in some cases the distinction between "catalyst" and "reactor" has vanished. Structured catalysts can greatly intensify chemical processes, resulting in smaller, safer, cleaner and more energy efficient technologies. Monolith reactors can be considered as multifunctional reactors, in which chemical conversion is advantageously integrated with another unit operation, such as separation, heat exchange, a secondary reaction, etc. Finally, structured catalysts and/or reactors appear to be one of the most significant and promising developments in the field of heterogeneous catalysis and chemical engineering of the recent years. This paper gives a description of the background and perspectives for application and development of monolithic materials. Different methods and techniques

  5. Mechanical behaviour of engineering materials. Metals, ceramics, polymers, and composites

    Energy Technology Data Exchange (ETDEWEB)

    Roesler, Joachim; Baeker, Martin [TU Braunschweig (Germany). Inst. fuer Werkstoffe; Harders, Harald

    2007-07-01

    How do engineering materials deform when bearing mechanical loads? To answer this crucial question, the book bridges the gap between continuum mechanics and materials science. The different kinds of material deformation (elasticity, plasticity, fracture, creep, fatigue) are explained in detail. The book also discusses the physical processes occurring during the deformation of all classes of engineering materials (metals, ceramics, polymers, and composites) and shows how these materials can be strengthened to meet the design requirements. It provides the knowledge needed in selecting the appropriate engineering material for a certain design problem.

  6. Chemistry of electronic ceramic materials. Proceedings of the International Conference on the Chemistry of Electronic Ceramic Materials

    Science.gov (United States)

    Davies, P. K.; Roth, R. S.

    1991-01-01

    The conference was held at Jackson Hole, Wyoming from August 17 to 22, 1990, and in an attempt to maximize the development of this rapidly moving, multidisciplinary field, this conference brought together major national and international researchers to bridge the gap between those primarily interested in the pure chemistry of inorganic solids and those interested in the physical and electronic properties of ceramics. With the many major discoveries that have occurred over the last decade, one of the goals of this meeting was to evaluate the current understanding of the chemistry of electronic ceramic materials, and to assess the state of a field that has become one of the most important areas of advanced materials research. The topics covered include: crystal chemistry; dielectric ceramics; low temperature synthesis and characterization; solid state synthesis and characterization; surface chemistry; superconductors; theory and modeling.

  7. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  8. Aluminium nitrate ceramics: A potential UV dosemeter material

    DEFF Research Database (Denmark)

    Trinkler, L.; Bøtter-Jensen, L.; Berzina, B.

    2002-01-01

    The ceramic material AIN-Y2O3 is proposed as a potential ultraviolet radiation (UVR) dosemeter using optically stimulated luminescence (OSL) and thermally stimulated luminescence (TL). Experimental studies have shown that AIN ceramics exhibit attractive characteristics suitable for practical UV...... dosimetry applications. The features are: (1) the spectral sensitivity covers the 200-350 nm range, in the UV-B region it is similar to that of human skin: (2) the angular dependence of the incident radiation follows the cosine law; (3) high yields of both UVR-induced OSL and TL signals compared to those...

  9. ADVANCED CERAMIC MATERIALS FOR DENTAL APPLICATIONS SINTERED BY MICROWAVE HEATING

    OpenAIRE

    Presenda Barrera, Álvaro

    2016-01-01

    [EN] Zirconia has become a widely utilized structural ceramic material with important applications in dentistry due to its superb mechanical properties, biocompatibility, aesthetic characteristics and durability. Zirconia needs to be stabilized in the t-phase to obtain improved mechanical properties such as hardness and fracture toughness. Fully dense yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) materials are normally consolidated through the energy-intensive processing of po...

  10. Classifying dental ceramics: numerous materials and formulations available for indirect restorations.

    Science.gov (United States)

    Helvey, Gregg A

    2014-01-01

    Because there are numerous ceramic systems available to clinicians for all types of indirect restorations, deciding which system works best for a given clinical situation can be a challenge. Understanding the different classifications of ceramic restoratives can be helpful not only to the clinician but also the dental technician. Manufacturers are constantly introducing newer ceramic materials and improving their existing systems, which has resulted in an increase in all-ceramic restorations and fewer porcelain-to-metal restorations. The classification of ceramic materials remains mostly constant; however, it is subject to change based on newer materials and formulations. The classifications of ceramics are described using several different methods.

  11. Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials.

    Science.gov (United States)

    Souza, A E; Teixeira, S R; Santos, G T A; Costa, F B; Longo, E

    2011-10-01

    Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 °C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 °C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible.

  12. Corning 7972 ULE material for segmented and large monolithic mirror blanks

    Science.gov (United States)

    Sabia, Robert; Edwards, Mary J.; VanBrocklin, Randy; Wells, Bruce

    2006-06-01

    Ultra-Low Expansion (ULE ®) glass has been and continues to be a significant material for astronomical applications. With a nominal composition of 7 wt. %TiO II in SiO II, Corning Code 7972 ULE ® has a mean room temperature coefficient of thermal expansion (CTE) of 0 +/- 30 ppb/°C with a typical CTE range of less than 15 ppb/°C, properties vital to the manufacture of high resolution optics requiring extreme thermal stability. Combined with lightweighting techniques developed at Corning during the past 30 years, ULE ® has been successfully employed for numerous monolithic and lightweight mirror applications including the 2.4 meter Hubble Space Telescope lightweight primary mirror, the Airborne Laser (ABL) primary mirrors, and most recently the Discovery Channel Telescope 4 meter mirror blank. ULE ® maintains its strong candidacy for future ELT applications. Recent challenges in mirror surface specifications and the development of alternative material choices calls for a comparison with ULE ®. The objective of this article is to review ULE ® properties and manufacturing capabilities, and to compare relevant material properties to those of alternative material options, thus allowing designers to properly execute material selection. Finally, recent development efforts directed toward improving ULE ® will be discussed.

  13. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  14. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  15. Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material

    Energy Technology Data Exchange (ETDEWEB)

    Verst, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-12

    The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a function of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.

  16. Surface Hardness of Resin Cement Polymerized under Different Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Pimmada Kesrak

    2012-01-01

    Full Text Available Objectives. To evaluate the surface hardness of two light-cured resin cements polymerized under different ceramic discs. Methods. 40 experimental groups of 2 light-cured resin cement specimens (Variolink Veneer and NX3 were prepared and polymerized under 5 different ceramic discs (IPS e.max Press HT, LT, MO, HO, and Cercon of 4 thicknesses (0.5, 1.0, 1.5, and 2.0 mm, Those directly activated of both resin cements were used as control. After light activation and 37∘C storage in an incubator, Knoop hardness measurements were obtained at the bottom. The data were analyzed with three-way ANOVA, t-test, and one-way ANOVA. Results. The KHN of NX3 was of significantly higher than that of Variolink Veneer (<0.05. The KHN of resin cement polymerized under different ceramic types and thicknesses was significant difference (<0.05. Conclusion. Resin cements polymerized under different ceramic materials and thicknesses showed statistically significant differences in KHN.

  17. A Study of Time Dependent Response of Ceramic Materials

    Science.gov (United States)

    Hemann, John

    1997-01-01

    The research accomplishments under this grant were very extensive in the areas of the development of computer software for the design of ceramic materials. Rather than try to summarize all this research I have enclosed research papers and reports which were completed with the funding provided by the grant. These papers and reports are listed below. Additionally a large amount of technology transfer occurred in this project and a significant number of national awards were received.

  18. Annual Conference on Composites and Advanced Ceramic Materials, 14th, Cocoa Beach, FL, Jan. 14-17, 1990, Collection of Papers. Parts 1 2

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Attention is given to such topics as national goals in engineering ceramics, microstructural effects on the mechanical properties of monolithic ceramics, whisker-reinforced composites, and reaction-based processing. Processing-microstructure-property relations in fiber-reinforced ceramic matrix composites are also considered.

  19. Alumina-based Ceramic Material for High-voltage Ceramic Substrate

    Directory of Open Access Journals (Sweden)

    S. R. Sangawar

    2006-04-01

    Full Text Available The paper presents the study of the particle size distribution, surface area and their effecton sintering of alumina (Al2O3 using additives such as magnesium oxide (MgO and silica (SiO2,so that the samples could be sintered to high relative density (~ 97.43 % with controlled graingrowth. However, the use of MgO along with SiO2 on Al2O3 produced the powder compactshaving high Green density, sintered density with minimum porosity to achieve high dielectricstrength ceramic material, so that material can be used for high-voltage insulator applications.

  20. Annual Conference on Composites and Advanced Ceramic Materials, 13th, Cocoa Beach, FL, Jan. 15-18, 1989, Collection of Papers. Parts 1 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    The present conference on advanced ceramics discusses topics in matrix-infiltration and processing techniques, the failure analysis of monolithic ceramics, the processing of polycrystalline oxide-matrix ceramic composites, the processing and properties of monolithic ceramics, ceramic composite interface phenomena, and ceramic NDE and characterization. Attention is given to chemical vapor infiltration for composites, dense ceramics via controlled melt oxidation, supertough silicon nitride, the properties of pressureless-sintered alumina-matrix/30 vol pct SiC composites, and toughening in metal particulate/glass-ceramic composites. Also discussed are the joining of silicon nitride for heat-engine applications, nitridation mechanisms in silicon powder compacts, the synthesis and properties of ceramic fibers, a technique for interfacial bond strength measurement, the degradation of SiC whiskers at elevated temperatures, and the correlation of NDE and fractography in Si3N4.

  1. Design of ceramic microstructures based on waste materials

    Directory of Open Access Journals (Sweden)

    Robert Rekecki

    2008-12-01

    Full Text Available The progressive changes in ceramic raw materials during firing processes are a complex area. This is partly due to the large number of raw material characteristics, primarily mineral composition, and partly to the relatively inadequate particle distribution in the unfired clay body. The most important starting point is always the optimal raw material composition which should give appropriate physical and mechanical characteristics to the final products after firing processes and should provide an efficient and economical production. The paper analyzes the influence of some additives (fly ashes and waste glass materials on the development of the ceramic roofing tile microstructure during the thermal treatment. The analyzed raw material mixtures were: the standard raw material mixture (from Kanjiza, Northern part of Serbia and the modified one, i.e. the mixture of the standard raw material and corresponding additive. The silica phase obtained during the thermal collapse of the clay minerals in the presence of the glass additive bounded better CaO and MgO components released from the carbonates. The crystalline phases like plagioclases were performed in a considerable quantity and the products with new physical characteristics were formed.

  2. Effect of Rare Earth Phosphate Composite Materials on Cleanout Oil-Dirty Property of Ceramics

    Institute of Scientific and Technical Information of China (English)

    Liang Jinsheng; Zhang Jin; Liang Guangchuan; Wang Lijuan; Li Guosheng; Meng Junping; Pan Yanfen

    2004-01-01

    The ceramics with cleaning easily up oil-dirty property were prepared by doping enamel slurry with rare earth elements phosphate composite materials, and then the influence mechanisms of rare earth elements phosphate composite materials on the cleaning easily up oil-dirty property of ceramic were studied by testing the surface tension and contact angle of water, latex stability inside of ceramic product. Results that the ceramic doped enamel slurry with rare earth phosphate composite materials can reduce obviously the surface tension and contact angle of water, and make latex more stable, and so the ceramics possess excellent cleanout oil-dirty property.

  3. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  4. Mechanical behaviour of new zirconia-hydroxyapatite ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J.A.; Morejon, L. [La Habana Univ. (Cuba). Centro de Biomateriales; Martinez, S. [Barcelona Univ. (Spain). Dept. Cristallografia, Mineralogia; Ginebra, M.P.; Carlsson, N.; Fernandez, E.; Planell, J.A. [Universidad Politecnica de Cataluna, Barcelona (Spain). CREB; Clavaguera-Mora, M.T.; Rodriguez-Viejo, J. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica

    2001-07-01

    In this work a new zirconia-hydroxyapatite ceramic material was obtained by uniaxial pressing and sintering in humid environment. The powder X-ray diffraction (XRD) patterns and infrared spectra (FT-IR) showed that the hydroxyapatite (HA) is the only calcium phosphate phase present. The fracture toughness for HA with 20 wt.% of magnesia partially stabilised zirconia (Mg-PSZ) was around 2.5 times higher than those obtained for HA pure, also the highest value of bending strength (160 MPa) was obtained for material reinforced with Mg-PSZ. For the MgPSZ-HA (20%) the fracture mechanism seems to be less transgranular. (orig.)

  5. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    Science.gov (United States)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  6. In Vitro Comparison of the Bond Strength between Ceramic Repair Systems and Ceramic Materials and Evaluation of the Wettability.

    Science.gov (United States)

    Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar

    2017-04-01

    When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.

  7. Fabrication of functionally gradient materials with internal channels in ceramics and ceramic composites

    Science.gov (United States)

    Shin, Hyea-Weon

    Functionally Gradient Materials (FGMs) are inhomogeneous materials whose compositions vary from one phase to another. By tailoring the inhomogeneous properties, FGMs can be used to reduce the stresses that are caused by severe thermal gradients. Thermal gradient loading can further be compensated by heat transfer into a cooling fluid circulating in a network of channels and manifolds. In an envisioned application, heat from a localized source is transferred to the cooling fluid, easing sharp thermal loads while minimizing the unwanted spread of heat energy to the ambient surroundings. This study reports on the fabrication of functionally gradient ceramics and the embedding of simple internal channels within these ceramics. Functional gradiency (variation of composition) is built in via the layering of different components across the thickness of a plate sample. Traditional powder processing techniques are applied to fabricate the test pieces, and recently developed methods of joining are used to build assemblies from individually sintered plate layers. For a well-formed FGM to be made, materials parameters need to be selected based on mechanical, thermal and chemical properties. As a class, ceramics are hard, wear-resistant, refractory, electrically and thermally insulative, nonmagnetic, chemically stable, and oxidation-resistant. However, because of their brittleness, ceramics with minute channels are difficult to machine. Instead, for this study, a graphite fugitive phase is used as a spacer to support channel volumes within a ceramic powder compact; during pre-sintering, the graphite burns out to expose a network of channels. Full sintering fixes the final shape. At the operating temperatures of the ovens used in our fabrication study, sintering of alumina, partially stabilized zirconia, fully stabilized zirconia and hydroxyapatite have been successful, and these ceramic powders form the basis of the present fabrication studies. Inhomogeneities inherent in the

  8. Annual Conference on Composites and Advanced Ceramic Materials, 9th, Cocoa Beach, FL, January 20-23, 1985, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-08-01

    The present conference discusses testing methods for ceramic matrix composites, developments in ceramic fibers, space transportation systems thermal protection materials, ceramics for heat engines and other severe environments, thermal sprayed coatings, the development status of ceramic tribology, and the fabrication of ceramics and hard metals. Specific attention is given to the mechanical characterization of ceramic and glass matrix composites, the application of fracture mechanics to fiber composites, the degradation properties of Nicalon SiC fibers, ceramic matrix toughening, SiC/glass composite phases, ceramic composite manufacture by infiltration, and ceramic coatings for the Space Shuttle's surface insulation. Also treated are design principles for anisotropic brittle materials, ceramics for intense radiant heat applications, ceramic-coated tip seals for turbojet engines, composite production by low pressure plasma deposition, tribology in military systems, lubrication for ceramics, a systems approach to the grinding of structural ceramics, and the fabrication of inorganic foams by microwave irradiation.

  9. The teaching of all-ceramic restorations in North American dental schools: materials and techniques employed.

    Science.gov (United States)

    Frazier, K B; Mjör, I A

    1997-01-01

    North American dental schools were surveyed to determine the types of clinical experiences and the extent of material use that predoctoral students encounter with restorative procedures that employ all-ceramic materials. The results were based on an overall response rate of 80% from the 64 surveyed schools. The majority (96%) of the 51 schools responding to the survey did offer an opportunity to become experienced with all-ceramic restorations. The selection of bases and liners for all-ceramic restorations included dentin adhesive agents, glass ionomer materials, and calcium hydroxide products, by a ratio of 5:4:1, respectively. The most commonly used impression material types were addition silicone and polyether. One or both of these materials were used by every school. Dicor glass ceramic and alumina core ceramic were the most commonly used materials by the responding schools for veneers, onlays, and crowns. Dicor glass ceramic and CAD/CAM ceramic were most commonly used for inlays. Crowns were made of more different all-ceramic material types than the other restoration classes. Fabrication of all-ceramic restorations was primarily by commercial laboratories and school technicians. Students have hands-on experience in the fabrication of all-ceramic restorations in 6% of the responding schools. Luting agents for all-ceramic restorations include dual-cured resin, in 96% of the responding schools, light-cured resin, 43%, and glass ionomer cement, 33%. Zinc phosphate, chemical-cured composite, and polycarboxylate were used by less than one fourth of the respondents. Only resin-based composite materials were used to lute ceramic veneers. Rubber dam was applied primarily during luting procedures involving all-ceramic inlays and onlays. Crowns and veneers were isolated by this method in less than 30% of the responding schools. Finishing procedures with all-ceramic restorations were accomplished with three or more instruments by 89% of the schools.

  10. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    Science.gov (United States)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  11. Biocompatible glass-ceramic materials for bone substitution.

    Science.gov (United States)

    Vitale-Brovarone, Chiara; Verné, Enrica; Robiglio, Lorenza; Martinasso, Germana; Canuto, Rosa A; Muzio, Giuliana

    2008-01-01

    A new bioactive glass composition (CEL2) in the SiO(2)-P(2)O(5)-CaO-MgO-K(2)O-Na(2)O system was tailored to control pH variations due to ion leaching phenomena when the glass is in contact with physiological fluids. CEL2 was prepared by a traditional melting-quenching process obtaining slices that were heat-treated to obtain a glass-ceramic material (CEL2GC) that was characterized thorough SEM analysis. Pre-treatment of CEL2GC with SBF was found to enhance its biocompatibility, as assessed by in vitro tests. CEL2 powder was then used to synthesize macroporous glass-ceramic scaffolds. To this end, CEL2 powders were mixed with polyethylene particles within the 300-600 microm size-range and then pressed to obtain crack-free compacted powders (green). This was heat-treated to remove the organic phase and to sinter the inorganic phase, leaving a porous structure. The biomaterial thus obtained was characterized by X-ray diffraction, SEM equipped with EDS, density measurement, image analysis, mechanical testing and in vitro evaluation, and found to be a glass-ceramic macroporous scaffold with uniformly distributed and highly interconnected porosity. The extent and size-range of the porosity can be tailored by varying the amount and size of the polyethylene particles.

  12. Use of basaltic waste as red ceramic raw material

    Directory of Open Access Journals (Sweden)

    T. M. Mendes

    Full Text Available Abstract Nowadays, environmental codes restrict the emission of particulate matters, which result in these residues being collected by plant filters. This basaltic waste came from construction aggregate plants located in the Metropolitan Region of Londrina (State of Paraná, Brazil. Initially, the basaltic waste was submitted to sieving (< 75 μm and the powder obtained was characterized in terms of density and particle size distribution. The plasticity of ceramic mass containing 0%, 10%, 20%, 30%, 40% and 50% of basaltic waste was measured by Atterberg method. The chemical composition of ceramic formulations containing 0% and 20% of basaltic waste was determined by X-ray fluorescence. The prismatic samples were molded by extrusion and fired at 850 °C. The specimens were also tested to determine density, water absorption, drying and firing shrinkages, flexural strength, and Young's modulus. Microstructure evaluation was conducted by scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry. Basaltic powder has similar physical and chemical characteristics when compared to other raw materials, and contributes to ceramic processing by reducing drying and firing shrinkage. Mechanical performance of mixtures containing basaltic powder is equivalent to mixtures without waste. Microstructural aspects such as pore size distribution were modified by basaltic powder; albite phase related to basaltic powder was identified by X-ray diffraction.

  13. Colour variations in graffiti-proofed ceramic materials

    Directory of Open Access Journals (Sweden)

    García Santos, A.

    2005-06-01

    Full Text Available The investigation analyses the variation of superficial properties, COLOUR and LUMINOSITY, hat the ceramic support protected by the incorporation of a protection with transparent painting undergoes, antigraffiti. The test pieces were analysed by digital procedures, obtaining quantifiable values of each ceramic sample by means of computer programs (modifications of colour taking itself as it bases the same type of ceramics without protection. In the surface of the pieces ceramics dealt with painting antigraffiti, tones different from the original ones were observed from the piece without painting. The type of painting and the material of base, obtaining itself the following results, determine this variation: - The rustic ceramics is much more susceptible to modify its characteristics of colour that the industrialists. - In both types of analysed industrial ceramics in the investigation, the variation of the tone independently took place with the same characteristics or parameters of quantification of the type of painting. - In all the analysed types of ceramics dealt with painting antigraffiti, the colour modifies its tonality tending towards the called tones «cold», violates, by the presence of blue and the loss of the red one. Before a same painting, it was observed a greater alteration of tones and luminosity in the rustic ceramics in comparison with the industrialists.

    Se analiza la variación de propiedades superficiales, COLOR Y LUMINOSIDAD, que sufre el soporte cerámico protegido por la incorporación de una protección con pintura transparente, antigraffiti. Las probetas fueron analizadas por procedimientos digitales, obteniéndose valores cuantificables de cada muestra cerámica mediante programas de ordenador (modificaciones de color, tomándose como base el mismo tipo de cerámica sin protección. En la superficie de las piezas cerámicas tratadas con pintura antigraffiti, se observaron tonos distintos a los originales de la

  14. Composition, Processing Technology and Property of Ceramic Die Materials Containing Rare Earth Additives

    Institute of Scientific and Technical Information of China (English)

    Xiao Guangchun; Xu Chonghai; Fang Bin

    2007-01-01

    Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.

  15. Characterization of a polymer-infiltrated ceramic-network material.

    Science.gov (United States)

    Della Bona, Alvaro; Corazza, Pedro H; Zhang, Yu

    2014-05-01

    To characterize the microstructure and determine some mechanical properties of a polymer-infiltrated ceramic-network (PICN) material (Vita Enamic, Vita Zahnfabrik) available for CAD-CAM systems. Specimens were fabricated to perform quantitative and qualitative analyses of the material's microstructure and to determine the fracture toughness (KIc), density (ρ), Poisson's ratio (ν) and Young's modulus (E). KIc was determined using V-notched specimens and the short beam toughness method, where bar-shaped specimens were notched and 3-point loaded to fracture. ρ was calculated using Archimedes principle, and ν and E were measured using an ultrasonic thickness gauge with a combination of a pulse generator and an oscilloscope. Microstructural analyses showed a ceramic- and a polymer-based interpenetrating network. Mean and standard deviation values for the properties evaluated were: KIc=1.09±0.05MPam(1/2), ρ=2.09±0.01g/cm(3), ν=0.23±0.002 and E=37.95±0.34GPa. The PICN material showed mechanical properties between porcelains and resin-based composites, reflecting its microstructural components. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  17. Characterization of Ceramic Vane Materials for 10KW Turboalternator.

    Science.gov (United States)

    1983-04-01

    Table 4. STATISTICAL PARAMETERS OF FRACTURE ANALYSIS ON CERAMIC VANE MATERIALS Distribution Parameter ACC CD CASO NC-430 Normal Number of Samples, n 22...5.5 6.0 6.5 7.0 In a-f In o-f Fracture Stress (MPa) Fracture Stress (MPa) 100 200 300 400 600 800 100 200300400600800 99.0 CASO SIC 99.0 [ NC-430 SiC...variety of shapes and the assumption of a semicircular shape is a crude approximation. Therefore the values of KIc are only approximations. Flaw Size

  18. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.

    Science.gov (United States)

    Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean

    2012-07-01

    The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p strength (p= 0.004) than subgroup 0.8C-0.7VP. Nonetheless, both veneered ZirCAD groups showed greater flexural strength than the monolithic Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0

  19. Selection of Raw Materials for the Reactive Sinterling of Zircon Porous Ceramics

    Institute of Scientific and Technical Information of China (English)

    SHENYi; ZHANGWenli; 等

    1999-01-01

    The effect of three kinds of zircon raw materials on the sinterability and properties of porous zircon ceramics have been investigated.The results have shown that all the tested fired compacts are of high porosity,However,the sintering process are different for different raw materials.The preferable selected raw materials for porous zircon ceramics were commercials zircon and quartz.

  20. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  1. High-density 3D graphene-based monolith and related materials, methods, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah

    2017-03-21

    A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.

  2. High-density 3D graphene-based monolith and related materials, methods, and devices

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah

    2017-03-21

    A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.

  3. Characterization of ceramics materials mixed with Co3O4

    Science.gov (United States)

    Guzmán, A. F.; Landínez Téllez, D. A.; Roa-Rojas, J.; Fajardo, F.

    2014-04-01

    We have performed the preparation, structural, electrical and mechanical characterizations of ceramic materials composed of kaolinite Al2(Si2O5)(OH)4 and alumina (Al2O3) mixed with different concentrations of cobalt oxide (Co3O4). Ceramic samples were prepared from a base concentration of alumina 30% and kaolinite 70%, mixed with various concentrations of cobalt oxide in steps of 4% up to a value of 20%. The samples were sintered by the standard solid-state reaction method at a temperature of 1350 °C. In all samples with cobalt was found the presence of mullite. It was determined that alumina and cristobalite decreased when the cobalt concentration was increased due to the formation of the cobalt spinel. In order to determine the crystal structure of the samples, crystallographic analysis from X-ray diffraction experiments and also the semi-quantitative phase analysis were performed. Results were compared with theoretical parameters through the PowderCell 2.4 software. By increasing the concentration of cobalt oxide was found a significant increase in the resistance of materials to friction wear and a small decrease on the mean value of the dielectric constant. Through flexion measurements is observed the increases of the elasticity modulus by about 45% for the sample with 4% of cobalt oxide when compared with the samples without cobalt.

  4. Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic

    Science.gov (United States)

    Pabel, Anne-Kathrin; Rödiger, Matthias

    2016-01-01

    The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS) ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM) of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa), optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow. PMID:27042362

  5. Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic

    Directory of Open Access Journals (Sweden)

    Sven Rinke

    2016-01-01

    Full Text Available The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa, optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow.

  6. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    Science.gov (United States)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  7. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    Science.gov (United States)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  8. Anisotropically structured magnetic aerogel monoliths

    Science.gov (United States)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  9. Kinetics mechanism of microwave sintering in ceramic materials

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the traditional sintering model incorporating the characteristic of microwave sintering, the ionic conductance diffusion mechanism in microwave sintering was studied. A flat-ball model was presented to describe the kinetics process in microwave sintering, and was applied to the sintering process of TZP and ZrO2-Al2O3 ceramics. The results indicate that the shrinkage rate of materials in microwave sintering is proportional to t2/3 and r-4/3, respectively, where t is the sintering time and r is the particle radius. Whereas, the shrinkage rate of materials in conventional sintering is proportional to sintering time t2/5. Our model suggests that microwave sintering is faster than conventional sintering, which shows a good agreement with the experimental observation in sintering process of TZP and ZrO2-Al2O3.

  10. Surface Modification of Ceramic Materials Using Excimer Laser

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Changes of surface morphology following XeCl excimer laser irradiation were investigated for three engineering ceramic materials (Al2O3, Al2O3-SiC nanocomposite and Si3N4). Al2O3 and Al2O3-SiC nanocomposite samples exhibit a smooth rapid melt layer on the surface, and the formation of the metastable γ-Al2O3 was observed. A silicon-rich layer on the surface was formed after laser irradiation of Si3N4. The toughness K1c of the materials was measured by the indentation fracture method. After laser irradiation, the toughness of Al2O3, Al2O3-SiC nanocomposite and Si3N4 was improved to various degrees: Al2O3-SiC nanocomposite, 60% (max.); Al2O3, 40% (max.); Si3N4, 12% (max.).

  11. Ceramic Technology Project semiannual progress report for October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work is organized into the following elements: materials and processing (monolithics [SiC, SiN], ceramic composites, thermal and wear coatings, joining), materials design methodology, data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, NDE), and technology transfer. Individual abstracts were prepared for the individual contributions.

  12. An optical coherence tomography investigation of materials defects in ceramic fixed partial dental prostheses

    Science.gov (United States)

    Sinescu, Cosmin; Negrutiu, Meda; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Mihai; Laissue, Philippe L.; Podoleanu, Adrian Gh.

    2008-04-01

    Metal ceramic and integral ceramic fixed partial prostheses are mainly used in the frontal part of the dental arch because for esthetics reasons. The masticatory stress may induce fractures of the bridges. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures.

  13. Materials and vapour-phase techniques for the synthesis of ceramic coatings

    Directory of Open Access Journals (Sweden)

    Albella, J. M.

    2007-08-01

    Full Text Available A survey on recent advances in the synthesis of hard ceramic coatings is given, including materials processes and techniques. Emphasis is made on the parameters which control the coating properties (crystalline structure, morphology, etc, namely arrival energy of the atoms to the growing surface and substrate temperature. Some relevant coating materials are discussed in relation to their applications either as hard protective coatings or with decorative purposes, namely: the family of metal nitrides, carbides, and oxides, in different layer structures (monolithic, multilayers and nanocomposites and ternary compounds of the BCN system.

    Se hace un descripción de los avances recientes en la síntesis de recubrimientos duros de tipo cerámico, depositados mediante técnicas de deposición en fase vapor. Se dedica especial atención a los parámetros del proceso de deposición que controlan las propiedades finales de las capas (estructura cristalina, morfología, etc, tales como la energía de llegada de los átomos a las superficie en crecimiento, y la temperatura. Finalmente, se hace una revisión de los materiales más relevantes en lo que se refiere a sus aplicaciones como recubrimientos duros y protectores, o como recubrimientos decorativos, entre ellos, la familia de los nitruros, carburos y óxidos metálicos, depositados en diversos tipos de estructuras (monolíticas, multicapas y nanocomposites, y los compuestos ternarios del sistema BCN.

  14. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1983-05-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects.

  15. Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour

    Directory of Open Access Journals (Sweden)

    Christian Kaufmann

    2003-01-01

    Full Text Available In support of improved personal armour development, depth of penetration tests have been conducted on four different ceramic materials including alumina, modified alumina, silicon carbide and boron carbide. These experiments consisted of impacting ceramic tiles bonded to aluminum cylinders with 0.50 caliber armour piercing projectiles. The results are presented in terms of ballistic efficiency, and the validity of using ballistic efficiency as a measure of ceramic performance was examined. In addition, the correlation between ballistic performance and ceramic material properties, such as elastic modulus, hardness, spall strength and Hugoniot Elastic Limit, has been considered.

  16. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow

    Directory of Open Access Journals (Sweden)

    Sven Rinke

    2015-01-01

    Full Text Available This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa, excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow.

  17. High temperature auto-propagating synthesis of advanced ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G.; Morbidelli, M. (Cagliari Univ. (Italy). Dip. di Ingegneria Chimica e Materiali)

    1993-01-01

    This paper analyzes the modelling and experimental aspects relative to the production of advanced ceramic materials (i.e., carbides, borides and silicides of suitable transition metals) by means of high temperature auto-propagating synthesis. This process is characterized by a reaction front which, once triggered, auto-propagates itself through the reagent mix in the form of a combustion wave, taking advantage of the strong exothermic nature of the reaction itself. The analysis in this paper includes an investigation of the capability of models to accurately simulate the synthesis process. The validity of one particular model is checked by comparison with experimental results reported in literature. In addition, non-linear parametric sensitivity analysis is used to define 'a priori' suitable operating conditions which would guarantee ignition of the reagent mix and contemporaneously allow the optimization of process energy consumption.

  18. Development and characterization of Textron continuous fiber ceramic composite hot gas filter materials. Final report, September 30, 1994--October 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    DiPietro, S.G.; Alvin, M.A.

    1997-12-31

    Uncertainties about the long-term ability of monolithic ceramics to survive in the IGCC or PFBC hot gas filter environment led DOE/METC to consider the merits of using continuous fiber reinforced ceramic composites (CFCCs) as potential next-generation high temperature filter elements. This seems to be a logical strategy to pursue in light of the fact that properly-engineered CFCC materials have shown much-improved damage tolerance and thermal shock behavior as compared to existing monolithic ceramic materials. Textron`s Advanced Hot Gas Filter Development Program was intended to be a two year, two phase program which transitioned developmental materials R and D into prototype filter element fabrication. The first phase was to demonstrate the technical feasibility of fabricating CFCC hot gas filter elements which could meet the pressure drop specifications of less than ten inches of water (iwg) at a face velocity of ten feet per minute (fpm), while showing sufficient integrity to survive normal mechanical loads and adequate environmental resistance to steam/alkali corrosion conditions at a temperature of approximately 870 C (1600 F). The primary objective of the second phase of the program was to scale up fabrication methods developed in Phase 1 to produce full-scale CFCC candle filters for validation testing. Textron encountered significant process-related and technical difficulties in merely meeting the program permeability specifications, and much effort was expended in showing that this could indeed be achieved. Thus, by the time the Phase 1 program was completed, expenditure of program funds precluded continuing on with Phase 2, and Textron elected to terminate their program after Phase 1. This allowed Textron to be able to focus technical and commercialization efforts on their largely successful DOE CFCC Program.

  19. Development and characterization of Textron continuous fiber ceramic composite hot gas filter materials. Final report, September 30, 1994--October 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    DiPietro, S.G.; Alvin, M.A.

    1997-12-31

    Uncertainties about the long-term ability of monolithic ceramics to survive in the IGCC or PFBC hot gas filter environment led DOE/METC to consider the merits of using continuous fiber reinforced ceramic composites (CFCCs) as potential next-generation high temperature filter elements. This seems to be a logical strategy to pursue in light of the fact that properly-engineered CFCC materials have shown much-improved damage tolerance and thermal shock behavior as compared to existing monolithic ceramic materials. Textron`s Advanced Hot Gas Filter Development Program was intended to be a two year, two phase program which transitioned developmental materials R and D into prototype filter element fabrication. The first phase was to demonstrate the technical feasibility of fabricating CFCC hot gas filter elements which could meet the pressure drop specifications of less than ten inches of water (iwg) at a face velocity of ten feet per minute (fpm), while showing sufficient integrity to survive normal mechanical loads and adequate environmental resistance to steam/alkali corrosion conditions at a temperature of approximately 870 C (1600 F). The primary objective of the second phase of the program was to scale up fabrication methods developed in Phase 1 to produce full-scale CFCC candle filters for validation testing. Textron encountered significant process-related and technical difficulties in merely meeting the program permeability specifications, and much effort was expended in showing that this could indeed be achieved. Thus, by the time the Phase 1 program was completed, expenditure of program funds precluded continuing on with Phase 2, and Textron elected to terminate their program after Phase 1. This allowed Textron to be able to focus technical and commercialization efforts on their largely successful DOE CFCC Program.

  20. Advanced manufacturing of ceramics for biomedical applications: Subjection methods for biocompatible materials

    OpenAIRE

    Minguella Canela, Joaquim; Cuiñas, D; Uceda, Roger; Rodríguez, J. V.; Vivancos Calvet, Joan

    2013-01-01

    The continuously growing utilization of ceramic compounds in the field of medicine, industry and aerospace, among others, imply a high degree of specialization in terms of the material properties and functionalization due to the diversity of the requirements of the ceramic parts. The necessity of lightweight final parts with suitable surface properties oriented to biomedic applications demands innovative ceramic compounds whose machining is, in many cases, considerably difficult due to the fr...

  1. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration

    OpenAIRE

    Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki

    2009-01-01

    Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of t...

  2. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Molpeceres, C. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain)], E-mail: carlos.molpeceres@upm.es; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain); Fernandez, S.; Gandia, J.J. [Dept. de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Villar, F.; Nos, O.; Bertomeu, J. [CeRMAE Dept. Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)

    2009-03-15

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  3. Science and technology on ceramics and cerments materials; Ceramics oyobi cermet zairyo no kagaku to gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Iwamato, N. [Osaka Univ. (Japan)

    1998-03-31

    Applications of ceramics coat and cerment coat are being rapidly improved with the development of VSOP. But, while forming a spraying coat, there are many working factors such as powder ingredients, coat forming conditions, compatibility of the spraying coat with the substrate, and individually particular problems concerning properties, hollowness microstructure and sticking strength to the substrate of the spraying coat have to be solved. In this paper, the history of development of cerment and bulk materials and the problems thereof are described. Influences on shapes and mechanical properties of compound particles, wettability of compound with the spraying metal, and generation of {eta}(Co6W6C) in the WC-Co alloy are pointed out as the problems. Then, the application field of the cerment and bulk materials is introduced. At last, as the recent development of cerment coat engineering, WC coat, WC-Co coat, diamond coat and TiC coat by using the CVD or PVD process are described. 34 refs.,4 figs., 2 tabs.

  4. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  5. Sonogels in the Preparation of Advanced Glass and Ceramic Materials

    Science.gov (United States)

    1992-10-20

    1 In0 f 7;ra Products) ceramic fibres . -using other yreinforcing phases in the. form of 7’T02 (7YF- 100 ,Zircar Products) and A1203 (MAFTEC) ceramic...usd we -r, made friom ceramic fibres . In both cases t ,- fi bris were I anrgel y continuous and random], oriented in p1lanes parallel Io tahe layers...gives the relative densities for the CT15 ’ A1203 composites . They are designated as CT15Av , where y is the volume fract ion of alt]mina ceramic

  6. Materials and process development for the monolithic interconnected module (MIM) InGaAs/InP TPV cells

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, N.S.; Jenkins, P.P.; Hoffman, R.W. Jr.; Weizer, V.G. [Essential Research, Inc., Cleveland, OH (United States); Wilt, D.M. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Murray, C.S.; Riley, D. [Westinghouse Electric Corp., West Mifflin, PA (United States)

    1997-06-01

    Four major components of a thermophotovoltaic (TPV) energy conversion system are a heat source, a graybody or a selective emitter, spectrum shaping elements such as filters, and photovoltaic (PV) cells. One approach to achieving a high voltage/low current configuration is to fabricate a device, where small area PV cells are monolithically series connected. The authors have termed this device a monolithic interconnected module (MIM). A MIM device has other advantages over conventional one-junction cells, such as simplified array interconnections and heat-sinking, and radiation recycling capability via a back surface reflector (BSR). The authors confine the contents of this article to the MIM materials, process development, and some optical results. The successful fabrication of InGaAs/InP MIM devices entails the development and optimization of several key components and processes. These include: isolation trench via geometry, selective chemical etching, contact and interconnect metallization, dielectric isolation barrier, back surface reflector (BSR), and anti-reflection (AR) coating. The selection, development, and testing of the materials and processes described above for MIM fabrication will be described.

  7. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending June 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1984-11-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division for the period January 1, 1983, to June 30, 1984. These activities constitute about one-fourth of the research and development conducted by the division. The emphasis of the program can be described as the scientific design of materials. The efforts are directed toward three classes of materials: high-temperature metallic alloys based on intermetallic compounds, structural ceramics, and radiation-resistant alloys.

  8. The Clinical Performance of Monolithic Lithium Disilicate Posterior Restorations After 5, 10, and 15 Years : A Retrospective Case Series

    NARCIS (Netherlands)

    van den Breemer, Carline R. G.; Vinkenborg, Carolien; van Pelt, Hans; Edelhoff, Daniel; Cune, Marco S.

    2017-01-01

    Purpose: Lithium disilicate (LDS) glass-ceramic restorations are routinely used, but results over a period longer than 10 years are rare. The objective of this study was to obtain long-term clinical data on monolithic LDS posterior crowns provided by a single restorative dentist. Materials and Metho

  9. The Clinical Performance of Monolithic Lithium Disilicate Posterior Restorations After 5, 10, and 15 Years : A Retrospective Case Series

    NARCIS (Netherlands)

    van den Breemer, Carline R. G.; Vinkenborg, Carolien; van Pelt, Hans; Edelhoff, Daniel; Cune, Marco S.

    2017-01-01

    PURPOSE: Lithium disilicate (LDS) glass-ceramic restorations are routinely used, but results over a period longer than 10 years are rare. The objective of this study was to obtain long-term clinical data on monolithic LDS posterior crowns provided by a single restorative dentist. MATERIALS AND METHO

  10. High Speed Lapping of SiC Ceramic Material with Solid (Fixed) Abrasives

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; YANG Xin-hong; SHANG Chun-min; HU Xiao-yong; HU Zhong-hui

    2005-01-01

    An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of Ra 2.4nm can be achieved.

  11. Metal-ceramic materials. Study and prediction of effective mechanical properties

    Science.gov (United States)

    Karakulov, Valerii V.; Smolin, Igor Yu.

    2016-08-01

    Mechanical behavior of stochastic metal-ceramic composite materials was numerically simulated on mesoscopic scale level. Deformation of mesoscopic volumes of composites, whose structure consists of a metal matrix and randomly distributed ceramic inclusions, was numerically simulated. The results of the numerical simulation were used for evaluation of the effective elastic and strength properties of metal-ceramic materials with different parameters of the structure. The values of the effective mechanical properties of investigated materials were obtained, and the character of the dependence of the effective elastic and strength properties on the structure parameters of composites was determined.

  12. Effect of Rare Earth Composite Ceramic Materials on Oil Combustion of Oil-Burning Boiler

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1.5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively.

  13. [Exposure to ceramic fibers in the work environment. III. occupational exposure to ceramic fibers in plants which produce and apply insulation materials made of ceramic fibers].

    Science.gov (United States)

    Wojtczak, J; Kieć-Swierczyńska, M; Maciejewska, A

    1997-01-01

    The study was aimed at assessing the exposure to dust in the work environment of plants which produced and apply packing and insulation materials made of ceramic fibres. The study revealed that workers were exposed to dust containing respirable ceramic fibres and in some cases (production of packing cord, insulating tape and paperboard) respirable asbestos fibres. The mean concentration of respirable fibres ranged from 0.05 to 0.62 f/l cm3, and concentrations of total dust fell between 0.6 and 23.2 mg/m3. The mean concentrations of respirable fibres were usually below (0.5 f/l cm3 for respirable ceramic fibres with asbestos mixture; 1 f/cm3 for respirable ceramic fibres), and of total dust much higher (1 mg/m3 and 2 mg/m3, respectively) than MAC values proposed. The initial dermatological examinations (25 workers) allow the conclusion that contact with ceramic fibres induces in some workers acute dermatitis and dermal papilla.

  14. Progress on femtosecond laser-based system-materials: three-dimensional monolithic electrostatic micro-actuator for optomechanics

    Science.gov (United States)

    Yang, Tao; Bellouard, Yves

    2016-03-01

    Femtosecond laser-dielectric interaction in a three-dimensional (3D) manner defines a capable platform for integrated 3D micro-devices fabricated out of a single piece of system-material. Here, we add a new function to femtosecond laserbased single monolith in amorphous fused silica by demonstrating a transparent 3D micro-actuator using non-ablative femtosecond laser micromachining with subsequent chemical etching. The actuation principle is based on dielectrophoresis (DEP), defined as the unbalanced electrostatic action on dielectrics, due to an induced dipole moment under a non-uniform electric field. An analytical model of this actuation scheme is proposed, which is capable of performance prediction, design parameter optimization and motion instability analysis. Furthermore, the static and dynamic performances are experimentally characterized using optical measurement methods. An actuation range of 30 μm is well attainable; resonances and the settling time in transient responses are measured; the quality factor and the bandwidth for the primary vertical resonance are also evaluated. Experimental results are in good consistence with theoretical analyses. The proposed actuation principle suppresses the need for electrodes on the mobile, non-conductive component and is particularly interesting for moving transparent elements. Thanks to the flexibility of femtosecond laser manufacturing process, this actuation scheme can be integrated in other functionalities within monolithic transparent Micro-Electro-Mechanical Systems (MEMS) for applications like resonators, adaptive lenses and integrated photonics circuits.

  15. Annual Conference on Composites and Advanced Ceramic Materials, 11th, Cocoa Beach, FL, Jan. 18-23, 1987, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    The present conference on advanced ceramic materials discusses topics in the fields of NDE, coating/joining/tribology techniques, fracture and interface phenomena, whisker- and particulate-reinforced composites, fiber and whisker properties, SiC and Si/sub 3/N/sub 4/, glass/glass-ceramic matrix composites, alumina-matrix composites, ceramic materials for space structures, and SiC- and Si/sub 3/N/sub 4/-matrix composites. Attention is given to ceramic characterization by thermal wave imaging, an advanced ceramic-to-metal joining process, the fracture modes of brittle-matrix unidirectional composites, the oxidation of SiC-containing composites, particulate matter in SiC whiskers, corrosion reactions in SiC ceramics, melt-infiltrated ceramic-matrix composites, environmental effects in toughened ceramics, and a ceramic composite heat exchanger.

  16. Aspects of bonding between resin luting cements and glass ceramic materials.

    Science.gov (United States)

    Tian, Tian; Tsoi, James Kit-Hon; Matinlinna, Jukka P; Burrow, Michael F

    2014-07-01

    The bonding interface of glass ceramics and resin luting cements plays an important role in the long-term durability of ceramic restorations. The purpose of this systematic review is to discuss the various factors involved with the bond between glass ceramics and resin luting cements. An electronic Pubmed, Medline and Embase search was conducted to obtain laboratory studies on resin-ceramic bonding published in English and Chinese between 1972 and 2012. Eighty-three articles were included in this review. Various factors that have a possible impact on the bond between glass ceramics and resin cements were discussed, including ceramic type, ceramic crystal structure, resin luting cements, light curing, surface treatments, and laboratory test methodology. Resin-ceramic bonding has been improved substantially in the past few years. Hydrofluoric acid (HF) etching followed by silanizaiton has become the most widely accepted surface treatment for glass ceramics. However, further studies need to be undertaken to improve surface preparations without HF because of its toxicity. Laboratory test methods are also required to better simulate the actual oral environment for more clinically compatible testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Ceramic on ceramic arthroplasty of the hip: new materials confirm appropriate use in young patients.

    Science.gov (United States)

    Sentuerk, U; von Roth, P; Perka, C

    2016-01-01

    The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. ©2016 The British Editorial Society of Bone & Joint Surgery.

  18. Ceramic materials for energy and environmental applications: Functionalizing of properties by tailored compositions

    DEFF Research Database (Denmark)

    Ivanova, Mariya; Ricote, Sandrine; Baumann, Stefan

    2013-01-01

    Stable social development requires novel approaches for energy production, distribution and storage combined with reasonable restrictions of the environmental impact. The fuel cell-based technologies, as well as the separation of gases from mixtures, particularly implemented into innovative power....... This chapter is dedicated to the fascinating world of tailoring ceramic materials for energy and environmental applications. Selected approaches to tune ceramics will be discussed to illustrate the versatile effects that compositional variation can have on the macroscopic properties, e.g. the conductivity...... additives and substituents on sinterability, electrical/electrochemical properties and stability of selected ceramic materials for energy and environmental applications. The material variety will cover ceramic materials with different crystal structures like fluorites, perovskites, pyrochlores, fergusonites...

  19. CERAMIC MATERIAL OF «TITANIUM OXIDE – ALUMINIUM OXIDE – SOLID LUBRICANT» SYSTEM

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2011-01-01

    Full Text Available The paper presents an oxide ceramic material with addition of solid lubricant which has good technological characteristics and which is able to form high wear-resistant plasma coatings with low friction coefficient.

  20. High Efficiency Axial Deep Creep-Feed Grinding Machining Technology of Engineering Ceramics Materials

    Institute of Scientific and Technical Information of China (English)

    GUO Fang; ZHANG Baoguo; LU Hong; TIAN Xinli; WANG Jianquan; LI Fuqiang

    2012-01-01

    Axial deep creep-feed grinding machining technology is a high efficiency process method of engineering ceramics materials,which is an original method to process the cylindrical ceramics materials or hole along its axis.The analysis of axial force and edge fracture proved the cutting thickness and feed rate could be more than 5-10 mm and 200 mm/min respectively in once process,and realized high efficiency,low-cost process of engineering ceramics materials.Compared with high speed-deep grinding machining,this method is also a high efficiency machining technology of engineering ceramics materials as well as with low cost.In addition,removal mechanism analyses showed that both median/radial cracks and lateral cracks appeared in the part to be removed,and the processed part is seldom destroyed,only by adjusting the axial force to control the length of transverse cracks.

  1. Solid-State Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II we will develop transparent Nd:Yttria ceramic laser materials that can operate at 914 nm and 946 nm suitable for applications in ozone LIDAR systems. We...

  2. Microanalytical investigation of fibre-reinforced ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B.; Grathwohl, G.

    1989-03-01

    Microanalytical investigations have been made on samples of ceramic fibres (SiC fibres, (Nicalon) C fibre coated with TiN) and fibre-reinforced ceramics (SiC-and glass-matrices). High resolution Auger electron spectroscopy (HRAES), electron probe microanalysis (EPMA) and scanning electron microscopy were employed for these examinations. Analysis was best performed with HRAES on account of its lateral and depth resolution. Some of the problems involved in this technique are discussed e.g. electron beam effects. AES depth profiles of ceramic fibres are reported and compared with the surface analysis of fibres in the composites after being broken in situ.

  3. Laser ceramics with rare-earth-doped anisotropic materials.

    Science.gov (United States)

    Akiyama, Jun; Sato, Yoichi; Taira, Takunori

    2010-11-01

    The fabrication of laser-grade anisotropic ceramics by a conventional sintering process is not possible owing to optical scattering at randomly oriented grain boundaries. In this Letter, we report the first (to our knowledge) realization of transparent anisotropic ceramics by using a new crystal orientation process based on large magnetic anisotropy induced by 4f electrons. By slip casting in a 1.4 T magnetic field and subsequent heat treatments, we could successfully fabricate laser-grade calcium fluorapatite ceramics with a loss coefficient of 1.5 cm(-1).

  4. Analysis of neutron irradiation effects on thermal conductivity of SiC-based composites and monolithic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Senor, D.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    After irradiation of a variety of SiC-based materials to 33 or 43 dpa-SiC at 1000{degrees}C, their thermal conductivity values were degraded and became relatively temperature independent, which indicates that the thermal resistivity was dominated by point defect scattering. The magnitude of irradiation-induced conductivity degradation was greater at lower temperatures and typically was larger for materials with higher unirradiated conductivity. From these data, a K{sub irr}/K{sub unirr} ratio map which predicts the expected equilibrium thermal conductivity for most SiC-based materials as a function of irradiation temperature was derived. Due to a short-term EOC irradiation at 575{degrees} {+-} 60{degrees}C, a duplex irradiation defect structure was established. Based on an analysis of the conductivity and swelling recovery after post-irradiation anneals for these materials with the duplex defect structure, several consequences for irradiating SiC at temperatures of 1000{degrees}C or above are given. In particular, the thermal conductivity degradation in the fusion relevant 800{degrees}-1000{degrees}C temperature range may be more severe than inferred from SiC swelling behavior.

  5. Multiwalled carbon nanotube-reinforced ceramic matrix composites as a promising structural material

    Energy Technology Data Exchange (ETDEWEB)

    Estili, Mehdi, E-mail: mehdiestili@gmail.co [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Kwon, Hansang; Kawasaki, Akira; Cho, Seungchan; Takagi, Kenta; Kikuchi, Keiko [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Kawai, Masayoshi [Institute of Materials Structure Science, High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-03-15

    In this paper, we introduce fully dense, multiwalled carbon nanotube (MWCNT)-reinforced ceramic matrix composites recently processed by a novel powder technology in our laboratory to be considered as a promising potential structural materials for employment in severe working conditions. A strategy is also offered to investigate the effect of working condition on the mechanical properties of MWCNTs embedded in the ceramic matrix for a reliable material selection for the working conditions needed.

  6. Raw-materials mixtures from waste of the coal industry for production of ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Galpern, E.I. [Scientific-Manufacturing Enterprise ``Ceramics``, Donetsk (Ukraine); Pashchenko, L.V. [Inst. of Physical, Organic and Coal Chemistry of NASU, Donetsk (Ukraine)

    1998-09-01

    The liquidation of waste dumps on the surface of mining enterprises and realization of measures by environment protection of air and aquatic basins are connected to the complex processing of mining mass. The main directions of utilization of mining rocks and coal wastes realized in Ukraine industry are: - filling of mines worked-out area by grouting solutions; - ceramic brick, porous filling materials and binding materials production; - road-making, construction of hydrostructures and industrial objects; - output of concrete items predominantly for using in mining conditions. The peculiarity of wastes using in above-mentioned fields is the possibility of their mass application in quantities commensurable with valumes of their yields. The experience of enterprises work which process mining rocks into building materials by burning method (ceramic brick, porous aggregates of concretes as aggloporite, expanded clay aggregate) has shown that unconstant and, as the rule, exceeding norms content of carbon and sulphur in the rock results to deterioration of products quality and technological factors of production. Unstability of carbon content in raw material makes the burning process hardly operated. Obtained products having residual carbon in the view of coke residue are often characterized by lower physical-mechanical characteristics. (orig./SR)

  7. Impact-resistant silicon-carbide-based ceramic materials

    Science.gov (United States)

    Perevislov, S. N.; Bespalov, I. A.

    2017-08-01

    The bullet resistance is determined by an indirect method, by evaluation of time of delay of penetration by bullet of the silicon-carbide-based ceramics obtained by reactive sintering, liquid-phase sintering, and hot pressing.

  8. Compact monolithic capacitive discharge unit

    Science.gov (United States)

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  9. An overview of monolithic zirconia in dentistry

    Directory of Open Access Journals (Sweden)

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  10. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  11. A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode

    KAUST Repository

    Estevez, Luis

    2013-05-03

    An ice templating coupled with hard templating and physical activation approach is reported for the synthesis of hierarchically porous carbon monoliths with tunable porosities across all three length scales (macro- meso- and micro), with ultrahigh specific pore volumes [similar]11.4 cm3 g−1. The materials function well as amine impregnated supports for CO2 capture and as supercapacitor electrodes.

  12. Compaction of Ceramic Microspheres, Spherical Molybdenum Powder and Other Materials to 3 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, S R; Bonner, B P; Ryerson, F J; Hart, M M

    2006-01-27

    Pressure-volume relationships were measured at room temperature for eight granular materials and one specimen of epoxy foam. The granular materials included hollow ceramic microspheres, spherical molybdenum powder, Ottawa sand, aluminum, copper, titanium and silicon carbide powders and glassy carbon spheres. Measurements were made to 0.9 GPa in a liquid medium press for all of the granular materials and to 3 GPa in a solid medium press for the ceramic microspheres and molybdenum powder. A single specimen of epoxy foam was compressed to 30 MPa in the liquid medium press. Bulk moduli were calculated as a function of pressure for the ceramic microspheres, the molybdenum powder and three other granular materials. The energy expended in compacting the granular materials was determined by numerically integrating pressure-volume curves. More energy was expended per unit volume in compacting the molybdenum powder to 1 GPa than for the other materials, but compaction of the ceramic microspheres required more energy per gram due to their very low initial density. The merge pressure, the pressure at which all porosity is removed, was estimated for each material by plotting porosity against pressure on a semi-log plot. The pressure-volume curves were then extrapolated to the predicted merge pressures and numerically integrated to estimate the energy required to reach full density for each material. The results suggest that the glassy carbon spheres and the ceramic microspheres would require more energy than the other materials to attain full density.

  13. High temperature metal and ceramic composites

    Science.gov (United States)

    Signorelli, R. A.; Dicarlo, J. A.

    1985-01-01

    The Materials Division at NASA Lewis is engaged in research and development efforts on behalf of fiber-reinforced composite materials that are lighter, stiffer, and more structurally reliable than conventional monolithic alloys and ceramics in applications that range from the cryogenic to the refractory. Attention is presently given to metal matrix composites, in which high performance depends on stiff, strong and thermally stable large diameter fibers, with chemically stable interfacial bonding and good coefficient of thermal expansion matching between fibers and matrices, and to ceramic matrix composites, in which intermediate strength interfacial bonds must allow cracks to propagate through the matrix only, while retaining good load transfer characteristics between fiber and matrix.

  14. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Science.gov (United States)

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  15. Analysis in vitro of the cytotoxicity of potential implant materials. I: Zirconia-titania sintered ceramics.

    Science.gov (United States)

    Marchi, Juliana; Ussui, Valter; Delfino, Carina S; Bressiani, Ana H A; Marques, Márcia M

    2010-08-01

    Zirconia (ZrO2) is a bioinert, strong, and tough ceramic, while titania (TiO2) is bioactive but has poor mechanical properties. It is expected that ZrO2-TiO2 mixed ceramics incorporate the individual properties of both ceramics, so that this material would exhibit better biological properties. Thus, the objective of this study was to compare the biocompatibility properties of ZrO2-TiO2 mixed ceramics. Sintered ceramics pellets, obtained from powders of TiO2, ZrO2, and three different ZrO2-TiO2 mixed oxides were used. Roughnesses, X-ray diffraction, microstructure through SEM, hardness, and DRIFT characterizations were performed. For biocompatibility analysis cultured FMM1 fibroblasts were plated on the top of disks and counted in SEM micrographs 1 and 2 days later. Data were compared by ANOVA complemented by Tukey's test. All samples presented high densities and similar microstructure. The H2O content in the mixed ceramics was more evident than in pure ceramics. The number of fibroblasts attached to the disks increased significantly independently of the experimental group. The cell growth on the top of the ZrO2-TiO2 samples was similar and significantly higher than those of TiO2 and ZrO2 samples. Our in vitro experiments showed that the ZrO2-TiO2 sintered ceramics are biocompatible allowing faster cell growth than pure oxides ceramics. The improvement of hardness is proportional to the ZrO2 content. Thus, the ZrO2-TiO2 sintered ceramics could be considered as potential implant material.

  16. Effect of carbon on wettability and interface reaction between melt superalloy and ceramic material

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyan

    2014-01-01

    Full Text Available Effect of C on wettability and interface reaction between a nickel based superalloy and ceramic material was investigated by using a sessile drop method. It was found that the content of C in the alloy is able to influence the wettability and interface reaction. Alloys with C content lower than 0.1wt.% are stable on ceramic material and no interface reaction generates at the alloy-ceramic interface. However, when C content is higher than 0.1wt.%, the interface reaction occurs and the wetting angle decreases quickly. The product of interface reaction is discontinuous and composed of 9Al2O3 ⋅Cr2O3. Such result indicates that Cr in the alloy is impossible to react with the ceramic material and form Cr2O3 without the assistance of C. It is suggested that C in the alloy deoxidizes SiO2 in the ceramic material and produces SiO and CO. SiO is unstable and it can release active O atom at the interface. Cr at the interface combines with free O atom and forms Cr2O3. Al2O3 in the ceramic material and Cr2O3 finally forms 9Al2O3 ⋅Cr2O3.

  17. Radioactivity and associated radiation hazards in ceramic raw materials and end products.

    Science.gov (United States)

    Viruthagiri, G; Rajamannan, B; Suresh Jawahar, K

    2013-12-01

    Studies have been planned to obtain activity and associated radiation hazards in ceramic raw materials (quartz, feldspar, clay, zircon, kaolin, grog, alumina bauxite, baddeleyite, masse, dolomite and red mud) and end products (ceramic brick, glazed ceramic wall and floor tiles) as the activity concentrations of uranium, thorium and potassium vary from material to material. The primordial radionuclides in ceramic raw materials and end products are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the activity level in these materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the activity concentration of (226)Ra, (232)Th and (40)K in ceramic raw materials and end products. The activity of these materials has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyser (MCA). Radium equivalent activity, alpha-gamma indices and radiation hazard indices associated with the natural radionuclides are calculated to assess the radiological aspects of the use of the ceramic end products as decorative or covering materials in construction sector. Results obtained were examined in the light of the relevant international legislation and guidance and compared with the results of similar studies reported in different countries. The results suggest that the use of ceramic end product samples examined in the construction of dwellings, workplace and industrial buildings is unlikely to give rise to any significant radiation exposure to the occupants.

  18. Archaeometry of ceramic materials: an evaluation of the andalusian experience

    Directory of Open Access Journals (Sweden)

    Cordero Ruiz, Tomás

    2006-06-01

    Full Text Available This paper assesses the impact that the introduction of scientific methods for materials characterisation (conventionally grouped under the label of Archaeometry has had in the methodological configuration of Spanish archaeology over the last two decades. This is achieved through a bibliometric study of publications dealing with characterisation of archaeological ceramics from Andalucía (southern Spain. The variables handled in this study include aspects such as the number of sampled sites and items, their geographical provenance, the chronological and functional dimensions of the archaeological contexts they were taken from as well as the analytical techniques employed in their study.

    Este artículo intenta valorar el impacto que la introducción de métodos de caracterización de materiales procedentes de la física y la química (y agrupados habitualmente bajo la denominación genérica de Arqueometría ha tenido en la configuración metodológica de la investigación arqueológica de nuestro país durante las últimas dos décadas. Para ello se realiza un análisis bibliométrico de un ámbito específico de la aplicación de las técnicas arqueométricas, cual es el de la caracterización de materiales cerámicos dentro de la Arqueología andaluza. Las variables tenidas en cuenta incluyen aspectos tales como la cantidad de sitios arqueológicos muestreados y de muestras analizadas, su procedencia geográfica, los contextos cronológicos y funcionales de los que las muestras fueron tomadas y las técnicas analíticas empleadas.

  19. Bioaffinity chromatography on monolithic supports

    NARCIS (Netherlands)

    Tetala, K.K.R.; Beek, van T.A.

    2010-01-01

    Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bi

  20. Bioaffinity chromatography on monolithic supports

    NARCIS (Netherlands)

    Tetala, K.K.R.; Beek, van T.A.

    2010-01-01

    Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bi

  1. Evaluation of reaction kinetics and material properties of cementitious ceramic materials using ultrasonic velocity and attenuation measurements

    OpenAIRE

    1996-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Ultrasonic velocity and attenuation measurements have been used to characterise a range of phosphate bonded, alumina filled, magnesia ceramics and other ceramic materials... Measurements were made over a range of frequency from 50kHz - 1 OM Hz, using a variety of commercial probes and equipment, and a variety of techniques. An ultrasonic double-probe method was used to monitor the setting ...

  2. A 3-year prospective study of implant-supported, single-tooth restorations of all-ceramic and metal-ceramic materials in patients with tooth agenesis

    DEFF Research Database (Denmark)

    Hosseini, Mandana; Worsaae, Nils; Schiødt, Morten

    2013-01-01

    OBJECTIVES: The purpose of this clinical study was to describe outcome variables of all-ceramic and metal-ceramic implant-supported, single-tooth restorations. MATERIALS AND METHODS: A total of 59 patients (mean age: 27.9 years) with tooth agenesis and treated with 98 implant-supported single...

  3. Effect of Contact Damage on the Strength of Ceramic Materials.

    Science.gov (United States)

    1982-10-01

    et plastique qui pr6cdent la fracture. La force et les propri~tes d𔄀rosion sont intement lies aux micanismes de douage par contact. INTRODUCTION The...both point and line flaws. Sac . (Londo) Ser. A 221 141 163-98 11920).These values can clearly differ substantially from the limits of ’B. R. Lawn and T...in Fracture Mechanics of Ceramics. Edited by R. C. Brack. D. P. H. im Sti eaim: lanee of Red"ja Cooled Sresas. J. Am. Ceram. Sac ., Hasselman. F. F

  4. External polyacrylate-coating as alternative material for preparation of photopolymerized sol-gel monolithic column.

    Science.gov (United States)

    Vaz, Fernando Antonio Simas; de Castro, Patrícia Mendonça; Molina, Celso; Ribeiro, Sidney José Lima; Polachini, Ferminio César; Messaddeq, Younes; Nunes, Adriana Palombo; de Oliveira, Marcone Augusto Leal

    2008-06-30

    Photopolymerized sol-gel monolithic columns for use in capillary electrochromatography were prepared in 125 microm i.d. polyacrylate-coated fused-silica capillaries. The polyacrylate-coating, unlike the polyimide one, is transparent to the radiation used (approximately 370 nm), and thus, no coating removal is necessary. This is a very important particularity since intrinsic capillary column characteristics, such as flexibility and mechanical resistance, are unchanged. A mixture containing metacryloxypropyltrimethoxysilane (MPTMS) as the polymeric precursor, hydrochloric acid as the catalyst, toluene as the porogen and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Irgacure 819) as the photoinitiator was irradiated at 370 nm for 20 min inside the capillaries to prepare the columns through sol-gel approach. The versatility and viability of the use of polyacrilate as a new capillary external coating were shown through preparation of two columns under different conditions, which were tested in electrochromatography for separation of standard mixture containing thiourea (marker compound), propylbenzene, phenanthrene and pyrene.

  5. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ari-Wahjoedi, Bambang, E-mail: bambang-ariwahjoedi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar (Malaysia); Ginta, Turnad Lenggo [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tro (Malaysia); Parman, Setyamartana [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Abustaman, Mohd Zikri Ahmad [Kebabangan Petroleum Operating Company Sdn Bhd, Lvl. 52, Tower 2, PETRONAS Twin Towers, KLCC, 50088 Kuala Lumpur (Malaysia)

    2014-10-24

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  6. Refractory Materials for Flame Deflector Protection System Corrosion Control: Refractory Ceramics Literature Survey

    Science.gov (United States)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.; Coffman, Brekke E.

    2009-01-01

    Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications

  7. Microtensile Bond Strength of New Ceramic/Polymer Materials Repaired with Composite Resin

    Science.gov (United States)

    2015-06-30

    Universal Adhesive (3M/ESPE) and veneered with either Filtek Supreme Ultra or Sinfony composite resin. Also, monolithic blocks without composite...also have been shown to have higher enamel wear rates than composite-resin CAD/CAM restorations (Mӧrmann et al, 2013). As material choices, cost, and...although the longevity of these repairs has not been validated by clinical studies. Paradigm MZ100 showed the least amount of opposing enamel wear

  8. Residual stresses in bilayer dental ceramics.

    Science.gov (United States)

    Taskonak, Burak; Mecholsky, John J; Anusavice, Kenneth J

    2005-06-01

    It is clinically observed that lithia-disilicate-based all-ceramic fixed partial dentures (FPD) can fail because of the fragmentation of the veneering material. The hypothesis of this study is that the global residual stresses within the surface of those veneered FPDs may be responsible for partial fragmentation of the veneering ceramic. Bilayer and monolithic ceramic composites were prepared using a lithia disilicate based (Li2OSiO2) glass-ceramic core and a glass veneer. A four-step fracture mechanics approach was used to analyze residual stress in bilayered all-ceramic FPDs. We found a statistically significant increase in the mean flexural strengths of bilayer specimens compared with monolithic glass specimens (p < or = 0.05). There was a statistically significant difference between the mean longitudinal and transverse indentation-induced crack sizes in bilayer specimens (p < or = 0.05), which indicates the existence of residual stress. Global residual stresses in the veneer layer, calculated using a fracture mechanics equation, were determined to be responsible for the increased strength and observed chipping, i.e., spallation in bilayer ceramic composites.

  9. Ultrahigh-Temperature Ceramics

    Science.gov (United States)

    Johnson, Sylvia M.; Ellerby, Donald T.; Beckman, Sarah E.; Irby, Edward; Gasch, Matthew J.; Gusman, Michael I.

    2007-01-01

    Ultrahigh temperature ceramics (UHTCs) are a class of materials that include the diborides of metals such as hafnium and zirconium. The materials are of interest to NASA for their potential utility as sharp leading edges for hypersonic vehicles. Such an application requires that the materials be capable of operating at temperatures, often in excess of 2,000 C. UHTCs are highly refractory and have high thermal conductivity, an advantage for this application. UHTCs are potentially applicable for other high-temperature processing applications, such as crucibles for molten-metal processing and high-temperature electrodes. UHTCs were first studied in the 1960 s by the U.S. Air Force. NASA s Ames Research Center concentrated on developing materials in the HfB2/SiC family for a leading-edge application. The work focused on developing a process to make uniform monolithic (2-phase) materials, and on the testing and design of these materials. Figure 1 shows arc-jet models made from UHTC materials fabricated at Ames. Figure 2 shows a cone being tested in the arc-jet. Other variations of these materials being investigated elsewhere include zirconium based materials and fiber-reinforced composites. Current UHTC work at Ames covers four broad topics: monoliths, coatings, composites, and processing. The goals include improving the fracture toughness, thermal conductivity and oxidation resistance of monolithic UHTCs and developing oxidation-resistant UHTC coatings for thermal-protection-system substrates through novel coating methods. As part of this effort, researchers are exploring compositions and processing changes that have yielded improvements in properties. Computational materials science and nanotechnology are being explored as approaches to reduce materials development time and improve and tailor properties.

  10. The influence of ceramic fibre on thermal expansion of moulding materials for investment casting technology

    Directory of Open Access Journals (Sweden)

    Nadolski M.

    2009-04-01

    Full Text Available The results of dilatometric measurements presented in the paper are a supplement to the investigations concerning broadening thecomposition of ceramic slurry intended for investment casting technology with ceramic fibre matrix. An applying of fibre material and a change of rheologic characteristics of ceramic slurry have impelled to develop the method of applying the material to the pattern sets. The technology of multi-layer spraying has been found to be the most favourable method. Partial replacing of the grain silica materials with aluminosilicate materials in the fibrous form has affected the magnitude of dimensional changes taking place during the heating process. In order to determine the magnitude of these changes, there have been prepared slurries of various fibre fraction in the matrix and their thermal expansion has been examined within the temperature range of 273-1273 K

  11. Multi-scale modeling of deformation and fracture of ceramic materials under dynamic loading

    Science.gov (United States)

    Skripnyak, Evgeniya; Skripnyak, Vladimir; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya

    2013-06-01

    The multi-scale approach to dynamic analysis of deformation and fracture, taking place in structured condensed matter show a great promise in prediction of the mechanical response for new materials. In present work the results of two-level simulations on deformation and fracture mechanisms for brittle materials subjected to impulse and shock-wave loadings are demonstrated. The dynamic effects occurring in structured representative volumes of the ceramics and the processes relating to damage and fracture of the ceramic materials with porous structures, ceramic composites and nanocomposites were modeled using the SPH methods. The grain, phase and porous structures were simulated in an explicit form. The presence of dispersed inclusions, dislocation substructures, nano - and micro-voids at the lower structural level were taking into account in an implicit form. The two-level model allows taking into account different relaxation and fracturing characteristic times at the different structural levels. This approach suggest to describe the relaxation process at the higher structural level in terms of integrated effect of the lower level processes. It is found that clusters of nano-voids in ceramic materials are the centers of damage nucleation. The presence of the clusters of nano-voids in ceramic materials subjected to dynamic loadings results in decrease of the Hugoniot elastic limit value.

  12. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application.

  13. A 3-year prospective study of implant-supported, single-tooth restorations of all-ceramic and metal-ceramic materials in patients with tooth agenesis.

    Science.gov (United States)

    Hosseini, Mandana; Worsaae, Nils; Schiødt, Morten; Gotfredsen, Klaus

    2013-10-01

    The purpose of this clinical study was to describe outcome variables of all-ceramic and metal-ceramic implant-supported, single-tooth restorations. A total of 59 patients (mean age: 27.9 years) with tooth agenesis and treated with 98 implant-supported single-tooth restorations were included in this study. Two patients did not attend baseline examination, but all patients were followed for 3 years. The implants supported 52 zirconia, 21 titanium and 25 gold alloy abutments, which retained 64 all-ceramic and 34 metal-ceramic crowns. At baseline and 3-year follow-up examinations, the biological outcome variables such as survival rate of implants, marginal bone level, modified Plaque Index (mPlI), modified Sulcus Bleeding Index (mBI) and biological complications were registered. The technical outcome variables included abutment and crown survival rate, marginal adaptation of crowns, cement excess and technical complications. The aesthetic outcome was assessed by using the Copenhagen Index Score, and the patient-reported outcomes were recorded using the OHIP-49 questionnaire. The statistical analyses were mainly performed by using mixed model of ANOVA for quantitative data and PROC NLMIXED for ordinal categorical data. The 3-year survival rate was 100% for implants and 97% for abutments and crowns. Significantly more marginal bone loss was registered at gold-alloy compared to zirconia abutments (P = 0.040). The mPlI and mBI were not significantly different at three abutment materials. The frequency of biological complications was higher at restorations with all-ceramic restorations than metal-ceramic crowns. Loss of retention, which was only observed at metal-ceramic crowns, was the most frequent technical complication, and the marginal adaptations of all-ceramic crowns were significantly less optimal than metal-ceramic crowns (P = 0.020). The professional-reported aesthetic outcome demonstrated significantly superior colour match of all-ceramic over metal-ceramic

  14. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  15. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  16. Cleanability evaluation of ceramic glazes with nanometer far-infrared materials using contact angle measurement.

    Science.gov (United States)

    Wang, Lijuan; Liang, Jinsheng; Di, Xingfu; Tang, Qingguo

    2014-05-01

    The cleanability of easy-to-clean ceramic glazes doped with nanometer far-infrared materials was compared with that of some high-quality household ceramic glazes from the market. The cleanability was evaluated by the contact angle measurement using a sessile drop method with a Dataphysics OCA-30 contact angle analyzer. The results showed that the difference of contact angles of water on the glazes before soiling and after cleaning could be used as a parameter for evaluating the cleanability of the glazes. The relationship between cleanability and surface properties, such as surface free energy and surface topography, was investigated. The surface free energy of the samples and their components were calculated using van Oss acid-base approach. By measuring advancing and receding contact angles, the contact angle hysteresis of the ceramic glazes due to the surface topography was investigated. It was shown that the cleanability of ceramic glazes containing nanometer far-infrared materials (NFIM) is better than that of household ceramic glazes from market, due to a higher ratio of electron-acceptor parameter to electron-donor parameter, which led to the effect of water hydration as well as better hydrophilic property and increased smoothness. The contact angle measurement not only accurately evaluates the cleanability of the ceramic glazes, but also has a contribution to the study of cleanability theory. Moreover, this method is simple, convenient and less sample-consumption.

  17. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

    Science.gov (United States)

    Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li

    2016-03-01

    Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.

  18. Novel ceramic bone replacement material CeraBall seeded with human mesenchymal stem cells.

    NARCIS (Netherlands)

    Douglas, T.E.L.; Liu, Q.; Humpe, A.; Wiltfang, J.; Sivananthan, S.; Warnke, P.H.

    2010-01-01

    OBJECTIVES: Hydroxyapatite (HA) and tricalcium phosphate (TCP) are two very common ceramic materials for bone replacement. A recently developed material for bone replacement is CeraBall, which is a mixed HA-TCP scaffold available as porous spherical scaffolds of diameter 4 and 6 mm. Before their use

  19. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  20. Effects of surface treatment on the microtensile bond strength of ceramic materials to dentin.

    Science.gov (United States)

    Vasconcellos, Walison A; Alvim, Hugo H; Saad, Jose R C; Susin, Alexandre H

    2007-01-01

    This study evaluated the effects of distinct surface treatments on the micro-tensile bonding strength (microTBS) of different ceramic materials. The occlusal surfaces of eighteen human maxillary molars were flattened perpendicularly to the long axis and divided in groups based on surface treatment (sandblasting: s; hydrofluoric acid: a; tribochemical silica coating: t): DP-s, DP-a, DP-t, IE-s, IE-a, IE-t, IC-s, IC-a, IC-t) and ceramic materials (Duceran Plus: DP, IPS Empress 2: IE, In-Ceram Alumina, IC). Panavia F luting resins were used according to the manufacturers' instructions to bond ceramic materials to the exposed dentin specimens under a load of 7.5 N. After 3-day storage, microTBS was tested at a cross-head speed of 1 mm/min. Data were analyzed with ANOVA and Tukey's test. ANOVA results showed that the microTBS of DP and IC were significantly different. The microTBS of DP-a was significantly higher than those of DP-s and DP-t. The microTBS of IC-t was significantly higher than those of IC-s and IC-a. Ceramic materials with different chemical formulations and applications yielded significantly different bond strengths to human dentin and must receive distinct surface treatments accordingly.

  1. Incorporation of sugarcane bagasse ash waste as an alternative raw material for red ceramic

    Directory of Open Access Journals (Sweden)

    K. C. P. Faria

    2013-09-01

    Full Text Available The sugarcane industry generates huge amounts of sugarcane bagasse ashes (SCBA. This work investigates the incorporation of a SCBA waste as an alternative raw material into a clay body, replacing natural clay material by up to 20 wt.%. Clay ceramic pieces were produced by uniaxial pressing and fired at temperatures varying from 700 to 1100 ºC. The technological properties of the clay ceramic pieces (linear shrinkage, apparent density, water absorption, and tensile strength as function of the firing temperature and waste addition are investigated. The phase evolution during firing was followed by X-ray diffraction. The results showed that the SCBA waste could be incorporated into red ceramics (bricks and roofing tiles in partial replacement for natural clay material. These results confirm the feasibility of valorisation of SCBA waste to produce red ceramic. This use of SCBA can also contribute greatly to reducing the environmental problems of the sugarcane industry, and also save the sources of natural raw materials used in the ceramic industry.

  2. Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials

    Science.gov (United States)

    Singh, Mrityunjay

    2003-01-01

    Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.

  3. Effect of Contact Damage on the Strength of Ceramic Materials.

    Science.gov (United States)

    1981-10-01

    formers at elevated temperatures (in oxidizing environments). As has been shown by Rabinowicz [2], Miller et al. [3], and Richerson et al [4...very much higher temperatures are reached. Rabinowicz and Imai [2] in a study of the friction of glass forming ceramics have made similar...15), Nov. 1979, Airesearch Manufacturing Co. of Arizona, P. 0. Box 5217, Phoenix, Arizona 95010. [2] E. Rabinowicz and M. M. Imai, "Boric Oxide as a

  4. Characterization of Mechanical Damage Mechanisms in Ceramic Composite Materials.

    Science.gov (United States)

    1986-07-01

    Studies of Y203 - Containing Tetragonal ZrO2 Polycrystals (Y- TZP )", pp. 352-70 in Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II...temperature dependent, and is interpreted in term-s of TE1l evidence of dislocation activity, and an hypothesized tetragonal -to- cubic transformation...tation and temperature dependent, and is interpreted in terms of TEM evi- dence of dislocation activity, and an hypothesized tetragonal -to- cubic

  5. Development and application of ferrite materials for low temperature co-fired ceramic technology

    Science.gov (United States)

    Zhang, Huai-Wu; Li, Jie; Su, Hua; Zhou, Ting-Chuan; Long, Yang; Zheng, Zong-Liang

    2013-11-01

    Development and application of ferrite materials for low temperature co-fired ceramic (LTCC) technology are discussed, specifically addressing several typical ferrite materials such as M-type barium ferrite, NiCuZn ferrite, YIG ferrite, and lithium ferrite. In order to permit co-firing with a silver internal electrode in LTCC process, the sintering temperature of ferrite materials should be less than 950 °C. These ferrite materials are research focuses and are applied in many ways in electronics.

  6. Efficiency characterization of ceramic filtering materials used for drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    For ceramic filtering materials, their adsorption capacities, purification efficiencies to remove organic compounds from drinking water, and correlation between adsorption capacities and pore structures were tested and analyzed. The results show that correlation coefficient between the specific surface area and the adsorptive amount of iodine molecule is 0.99;correlation coefficient between the pore volume and the adsorptive value of tannin molecule is 0.92. And correlation coefficient between the most probable diameter and the adsorption parameter is 1.0. A new method of morphology characterization for ceramic filtering materials was developed. Which offered a sort of standard for the evaluation on water purification efficiencies and selection of ceramic filtering materials.

  7. Precise Determination of Silicon in Ceramic Reference Materials by Prompt Gamma Activation Analysis at JRR-3

    Directory of Open Access Journals (Sweden)

    Tsutomu Miura

    2016-04-01

    Full Text Available Prompt gamma activation analysis using a thermal neutron-guided beam at Japan Atomic Energy Agency JRR-3M was applied for the precise determination of Si in silicon nitride ceramic reference materials [Japan Ceramic Reference Material (JCRM R 003]. In this study, the standard addition method coupled with internal standard was used for the nondestructive determination of Si in the sample. Cadmium was used as internal standard to obtain the linear calibration curves and to compensate for the neutron beam variability. The analytical result of determining Si in JCRM R 003 silicon nitride fine powder ceramic reference materials using prompt gamma activation analysis was in good agreement with that obtained by classical gravimetric analysis. The relative expanded measurement uncertainty (k = 2 associated with the determined value was 2.4%.

  8. Precise determination of silicon in ceramic reference materials by prompt gamma activation analysis at JRR-3

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Tsutomu [National Metrology Institute of Japan-AIST, Ibaraki (Japan); Matsue, Hideaki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Ibaraki (Japan)

    2016-04-15

    Prompt gamma activation analysis using a thermal neutron-guided beam at Japan Atomic Energy Agency JRR-3M was applied for the precise determination of Si in silicon nitride ceramic reference materials [Japan Ceramic Reference Material (JCRM) R 003]. In this study, the standard addition method coupled with internal standard was used for the nondestructive determination of Si in the sample. Cadmium was used as internal standard to obtain the linear calibration curves and to compensate for the neutron beam variability. The analytical result of determining Si in JCRM R 003 silicon nitride fine powder ceramic reference materials using prompt gamma activation analysis was in good agreement with that obtained by classical gravimetric analysis. The relative expanded measurement uncertainty (k = 2) associated with the determined value was 2.4%.

  9. Fabrication and characterization of monolithic solid oxide fuel cells

    Science.gov (United States)

    Minh, N. Q.; Horne, C. R.; Liu, F. S.; Moffatt, D. M.; Staszak, P. R.

    The monolithic solid oxide fuel cell (MSOFC) is an all-ceramic structure in which cell components are configured in a compact corrugated array. The MSOFC shows promise for use in a wide range of sizes (kilowatt to megawatt) and a broad spectrum of applications (electric utility, cogeneration, on-site, and aerospace power). A process based on the tape calendering technique is being developed for the fabrication of the MSOFC. MSOFC single cells have been fabricated by this process without cracking or delamination. Stacks of various sizes have been formed and processed to demonstrate fabricability of the monolithic structure. Extensive physical, chemical, electrical, and electrochemical characterization of fabricated samples has been carried out to confirm the required properties of each cell component. The characterization results reported have been used to support material and fabrication improvements.

  10. Development of Al2O3/TiN Ceramic Cutting Tool Materials by Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    Ning FAN; Xiangbo ZE; Zihui GAO

    2004-01-01

    The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramic cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the models to predict volume content of composition in particle reinforced ceramics are established. The Al2O3/TiNl ceramic cutting tool material was developed by ANN, whose mechanical properties fully satisfy the cutting requirements.

  11. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  12. Development of Ceramic Fibers for Reinforcement in Composite Materials

    Science.gov (United States)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    the. testing apparatus for single fiber tensile strength increased the precision. of tests conducted on nine fibers. The highest mean tensile strength, a value of 295,000 pounds per square inch, was obtained with R-141 fibers. Treatment of R-74 fibers with anhydrous Linde A-1100 silane finish improved its mean fiber tensile strength by 25 percent. The lapse of time after fiber formation had no measurable effect on tensile strength. A static heating test conducted with various high melting fibers indicated that Fiberfrax and R-108 underwent no significant changes in bulk volume or resiliency on exposure to 2750 degrees Fahrenheit (1510 degrees Centigrade) in an oxidizing atmosphere. For fiber-resin composition fabrication, ten fiber materials were selected on the bases of high fiber yield, fusion temperature, and type of composition. Fiberfrax, a commercial ceramic fiber, was included for comparison. A new, more effective method of removing pellets from blown fibers was developed. The de-pelletized fibers were treated with a silane finish and felted into ten-inch diameter felts prior to resin impregnation. Composites containing 30 percent by weight of CTL 91-LD phenolic resin were molded under high pressure from the impregnated felts and post-cured to achieve optimum properties. Flexural strength, flexural modules of elasticity, and punch shear strength tests were conducted on the composite specimens. The highest average flexural strength obtained was 19,958 pounds per square inch with the R-74-fiber-resin composite. This compares very favorably with the military specification of 13,000 pounds per square inch flexural strength for randomly oriented fiber reinforced composites. The highest punch shear strength (11,509 pounds per square inch) was obtained with the R-89 fiber-resin composite. The effects of anhydrous fiber finishes on composite strength were not clearly indicated. Plasma arc tests at a heat flux of 550 British Thermal Units per square foot per second on

  13. Shade evaluation of ceramic laminates according to different try-in materials.

    Science.gov (United States)

    Lopes, Lawrence Gonzaga; Vaz, Maysa Magalhaes; de Magalhaes, Ana Paula Rodrigues; Cardoso, Paula Carvalho; de Souza, Joao Batista; de Torres, Erica Miranda

    2014-01-01

    The porcelain laminate replaces the visible portion of enamel with a ceramic, which is attached to the dental surface. To enhance cosmetic results, a preliminary color matching procedure is performed prior to cementing the veneers. This procedure can be performed using water, water-soluble gel, or try-in paste. The different shades of cement and try-in pastes are intended to obtain better color and esthetics of the final restoration. This study sought to evaluate the shade of ceramic veneers produced by different try-in materials. Forty bovine teeth and 40 ceramic discs (0.6 mm thick) were prepared. The samples were divided into 4 groups (n = 10). For Group 1 samples, no material was used between the tooth and the ceramic, Group 2 interposed samples with water, Group 3 used a water-soluble gel, and Group 4 used try-in paste (value 0). The color was measured with a spectrophotometer, obtaining L*, a*, and b* values to calculate the color difference (ΔE*). The data were subjected to normality tests and 1-way ANOVA. No significant statistical differences were found among the groups, indicating that the different try-in materials had similar effects on the color of the ceramic laminates.

  14. Use of ceramic materials in waste-package systems for geologic disposal of nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Fullam, H.T.

    1980-12-01

    A study to investigate the potential use of ceramic materials as components in the waste package systems was conducted. The initial objective of the study was to screen and compare a large number of ceramic materials and identify the best materials for the proposed application. The principal method used to screen the candidates was to subject samples of each material to a series of leaching tests and to determine their relative resistance to attack by the leach solutions. A total of 14 ceramic materials, plus graphite and basalt were evaluated using three different leach solutions: demineralized water, a synthetic Hanford ground water, and a synthetic WIPP brine solution. The ceramic materials screened were Al/sub 2/O/sub 3/ (99%), Al/sub 2/O/sub 3/ (99.8%), mullite (2Al/sub 2/O/sub 3/.SiO/sub 2/), vitreous silica (SiO/sub 2/), BaTiO/sub 3/, CaTiO/sub 3/, CaTiSiO/sub 5/, TiO/sub 2/, ZrO/sub 2/, ZrSiO/sub 4/, Pyroceram 9617, and Marcor Code 9658 machinable glass-ceramic. Average leach rates for the materials tested were determined from analyses of the leach solutions and/or sample weight loss measurements. Because of the limited scope of the present study, evaluation of the specimens was limited to ceramographic examination. Based on an overall evaluation of the leach rate data, five of the materials tested, namely graphite, TiO/sub 2/, ZrO/sub 2/, and the two grades of alumina, exhibited much greater resistance to leaching than did the other materials tested. Based on all the experimental data obtained, and considering other factors such as cost, availability, fabrication technology, and mechanical and physical properties, graphite and alumina are the preferred candidates for the barrier application. The secondary choices are TiO/sub 2/ and ZrO/sub 2/.

  15. BACE0.85Y0.15O3-DELTA Based Materials for Inovative Monolithic Solid Oxide Fuel Cells

    Science.gov (United States)

    Krezhov, Kiril; Vladikova, Daria

    2016-07-01

    Solid oxide fuel cells (SOFCs) offer a promising green technology of direct conversion of chemical energy of fuel into electricity. Among the families of metal oxides, which can be successfully used as electrodes (cathodes or anodes) in SOFC, certain members of the large family of transition-metal oxides with perovskite structure ABO _{3} were found very prospective to fulfil most of the features required for preparation of mixed ionic-electronic conductor (MIEC) oxide materials for SOFCs operated in the intermediate temperature range. In this regard Barium cerate with Y-substitution at the B-site (Ce site) is well known for excellent conduction capabilities in the temperature range 400-800 °C as a result from the proton motion in the crystal lattice. Doping with Y ^{3+} is very effective and the proton conductivity in BaCe _{1-x}Y _{x}O _{3-δ} increases with the increasing of the dopant concentration up to x =0.2. However, the phase behaviour of the composition BCY20 (x=0.20) is very complicated. Even at room temperature the crystalline structure remains contradictory because various structures of monoclinic, rhombohedral and orthorhombic symmetry are reported. The characterization of the chemical composition and stability, oxygen stoichiometry and cationic ratios of each synthesized phase is of great importance to understand the defect-chemistry that would govern the transport properties. We report on oxygen-deficient BaCe _{0.85}Y _{0.15}O _{3-δ} (BCY15) perovskites prepared by auto-combustion with following calcination at high temperature. The structural details of powder, dense and porous samples of materials based on BCY15 were investigated from full profile analysis of neutron and x-ray diffraction patterns. The materials were used recently as cathode, anode and central membrane in an innovative monolithic design of SOFC.

  16. Understanding the deformation of ceramic materials at high strain rates.

    OpenAIRE

    Hallam, David A.

    2015-01-01

    Ceramic hardness and plasticity have been highlighted as important characteristics in ballistic performance; both of which can be measured and semi-quantified from indentation experiments, respectively. However, relatively little work has investigated the accompanying type, on-set and evolution of indentation-induced damage that may also be contributing an influential role. Pressureless sintered SiC and spark plasma sintered B4C, SiC-AlN-C and range of SiC-B4C composite samples were invest...

  17. Effect of Contact Damage on the Strength of Ceramic Materials.

    Science.gov (United States)

    1983-10-01

    Journal of the American Ceramic Society, in press. [3) Jakus, K., Ritter, J.E., and Babinski , R.C., this volume. [4] Dabbs, T.P., Lawn, B.R., and Kelly...effectively reducing the contact angle, thereby leaving a residual stress of diminished magnitude but of same sign acting on the fault. The normal stress NN...simply reduces in magnitude to residual level, NN actually reverses sign , at P ;z 0.3 P, enroute to its ultimate tensile state. 160 Applied Tension

  18. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    Science.gov (United States)

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  19. Three-dimensional machining of insulating ceramics materials with electrical discharge machining

    Institute of Scientific and Technical Information of China (English)

    Yasushi FUKUZAWA; Naotake MOHRI; Hiromitsu GOTOH; Takayuki TANI

    2009-01-01

    The insulating ceramics were processed with sinking and wire cut electrical discharge machining(EDM). The new technology was named as the assisting electrode method. In the machining, the electrical conductive material was adhered on the surface of insulating workpiece as the starting point of electrical discharge. As the processing operated in oil, the electrical conductive product composed of decomposition carbon element from working oil adhered on the workpiece during discharge. The discharges generated continuously with the formation of the electrical conductive layer. So, the insulating ceramics turn to the machinable material by EDM. We introduced the mechanism and the application of the machining of insulating ceramics such as Si3N4 and ZrO2.

  20. Application of Technogenic-Raw Material and Burning Out Additive in Composite Ceramic System

    Directory of Open Access Journals (Sweden)

    Olga KIZINIEVIČ

    2012-09-01

    Full Text Available The investigation of the composite ceramic system containing easily fusible hydro-micous clay, technogenic finely dispersed raw material, and burning out waste additive is presented in the article. The properties of the raw materials used are described in the paper. The obtained ceramic bodies were burned at 1000 °C and 1050 °C temperatures, keeping at the highest burning temperature for 4 h. The analysis of physical-mechanical properties of composite ceramics (density, compressive strength, water absorption, its structural parameters (effective and total open porosity, reserve of pore volume, relative wall thickness of the pores and capillaries, and X-ray diffraction analysis was performed. The interdependencies between some structural parameters are described by empirical equations. DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2443

  1. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    Science.gov (United States)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  2. Preparation of Long-Lasting Phosphorescence (LLP) Glass-Ceramic Materials

    Institute of Scientific and Technical Information of China (English)

    李成宇; 苏锵; 王淑彬

    2004-01-01

    Three kinds of glass-ceramics, i.e., Mn2+ doped zinc borosilicate, Eu2+, Dy3+ co-doped strontium aluminoborate and Eu2+, Nd3+ co-doped calcium aluminoborate were prepared, whose phosphorescence emission band peaks at 525, 516 and 464 nm, respectively. In preparation of these glass-ceramics the base glasses were gained by heating the mixed starting materials at high temperature to get the transparent glasses; then those glasses were heat-treated and turned to opaque glass-ceramics. X-ray diffraction(XRD) shows that the crystallites are ZnSiO4, SrAl2O4 and α-CaAl2B2O7, respectively. It is a useful way to get new LLP materials by the method reported in this work that may be considered as "from glass to crystal".

  3. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  4. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials

    OpenAIRE

    Choi, Yu-Sung; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk; Yeo, In-Sung

    2012-01-01

    PURPOSE Fracture of the veneering material of zirconia restorations frequently occurs in clinical situations. The purpose of this in vitro study was to compare the fracture strengths of zirconia crowns veneered with various ceramic materials by various techniques. MATERIALS AND METHODS A 1.2 mm, 360° chamfer preparation and occlusal reduction of 2 mm were performed on a first mandibular molar, and 45 model dies were fabricated in a titanium alloy by CAD/CAM system. Forty-five zirconia copings...

  5. Metals and Ceramics Division materials science annual progress report for period ending June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J.; Peterson, S. (comps.)

    1978-09-01

    Topics covered include: structure of materials, theoretical research; x-ray diffraction research; fundamental ceramics studies; preparation and synthesis of high-temperature and special service materials; physical metallurgy; grain boundary segregation and fracture; mechanisms of surface and solid-state reactions; physical properties research; superconducting materials; radiation effects; facility and technique development; nuclear microanalysis; cooperative studies with universities and other research organizations; and fundamentals of welding and joining. (GHT)

  6. Characterization of Mechanical Damage Mechanisms in Ceramic and Polymeric Matrix Composite Materials

    Science.gov (United States)

    1991-11-01

    Ceram. Soc., 71, pp. C371- C373 (1988). 10. A. Kvell and 0. V. Bakun, Acta Metall., 34, pp. 1315-1319 (1986). 11. W. Kollenberg, J. Mat. Sci., 23, pp...neous Materials and Composites," ASTM STP 808, ed. R. Chait and R. Papirno, American Society for Testing and Materials, Philadelphia, 175-186, 1983. 7...Design (Seventh Conference), ASTM STP 893, ed. J. M. Whitney, American Society for Testing and Materials, Philadelphia, 115-139, 1986. 12. J. Lankford

  7. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Energy Technology Data Exchange (ETDEWEB)

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  8. Adhesion of oral streptococci to all-ceramics dental restorative materials in vitro.

    Science.gov (United States)

    Meier, R; Hauser-Gerspach, I; Lüthy, H; Meyer, J

    2008-10-01

    In recent years, patients have benefited from the development of better and more esthetic materials, including all-ceramics dental restorative materials. Dental plaque formation on teeth and restorative materials plays an important role in the pathogenesis of oral diseases. This study investigates initial adhesion of stationary phase streptococcal species to different all-ceramics dental restorative materials. The saliva-coated materials were incubated with the bacteria for 1 h in an in vitro flow chamber which mimics environmental conditions in the oral cavity. Number and vitality of adhering bacteria were determined microscopically after staining. Surface roughness and the composition of the materials had no distinctive influence on bacterial adhesion. However, S. mutans and S. sobrinus adhered about tenfold less numerous to all materials than the other streptococcal species. Further, there was a correlation between bacterial vitality and materials' glass content. The results showed that early plaque formation was influenced predominantly by the presence of the salivary pellicle rather than by material dependent parameters whereas the composition of the all-ceramics appeared to have influenced the percentage of viable cells during the adhesion process. This presented in vitro technique may provide a useful model to study the influence of different parameters on adherence of oral streptococcal species.

  9. Diamond as a material for monolithically integrated optical and optomechanical devices

    CERN Document Server

    Rath, Patrik; Nebel, Christoph; Pernice, Wolfram H P

    2016-01-01

    Diamond provides superior optical and mechanical material properties, making it a prime candidate for the realization of integrated optomechanical circuits. Because diamond sub- strates have matured in size, efficient nanostructuring methods can be used to realize full-scale integrated devices. Here we review optical and mechanical resonators fab- ricated from polycrystalline as well as single crystalline diamond. We present relevant material properties with respect to implementing optomechanical devices and compare them with other material systems. We give an overview of diamond integrated optomechanical circuits and present the optical readout mechanism and the actuation via optical or electrostatic forces that have been implemented to date. By combining diamond nanophotonic circuits with superconducting nanowires single photons can be efficiently detected on such chips and we outline how future single photon optomechanical circuits can be realized on this platform.

  10. Structural Ceramics Database

    Science.gov (United States)

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  11. Investigation of Bio-Inspired Hybrid Materials through Polymer Infiltration of Thermal Spray Formed Ceramic Templates

    Science.gov (United States)

    Flynn, Katherine Claire

    High strength and toughness are often mutually exclusive in engineered materials. This is especially true of ceramics and polymers. Ceramics exhibit high strength and stiffness, but are brittle while polymers are flaw tolerant but prone to deformation at low stresses. Nature overcomes this restriction in materials by strategically combining brittle components with tough organics, leading to materials with both a high strength and toughness. One of the most impressive natural composites is nacre consisting of mainly a brittle mineral phase, 95vol% calcium carbonate (aragonite), and 5vol% biopolymer (a combination of proteins and polysaccahrides). Nature combines constituents with poor macroscale properties and achieves levels that surpass those expected despite being formed of mostly mineral CaCO3 tablets. Interestingly, nacreous assemblies can display a toughness 3,000 times higher than their major constituent, aragonite. Similarities have been observed between nacre and sprayed ceramics in terms of their microstructures and mechanical behavior. Both assemblies follow a design hierarchy and layered organization over several length scales. The mineral phase in nacre has evolved on the microscale and nanometer interlayers of biopolymer bond neighboring tablets. In addition, these tablets have a certain degree of waviness, nanoscale roughness, and mineral bridges thereby further enhancing linkages to one another. These inherent microstructural features significantly improve the mechanical properties of nacreous assemblies. On the other hand, sprayed ceramics are formed from micron sized splats, larger than aragonite nacreous tablets, with comparable (nanoscale) roughness, resulting from grain termination sites. Together these features of sprayed ceramics respond similarly to nacre, showing a great extent of mechanical nonlinearity and hysteresis, which is mostly absent in structural ceramics. Due to the splat-by-splat deposition process, sprayed ceramics contain a

  12. Spark plasma sintering of Ti{sub y}Nb{sub 1-y}C{sub x}N{sub 1-x} monolithic ceramics obtained by mechanically induced self-sustaining reaction

    Energy Technology Data Exchange (ETDEWEB)

    Borrell, Amparo, E-mail: aborrell@upvnet.upv.es [Instituto de Tecnologia de Materiales (ITM), Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN) (Consejo Superior de Investigaciones Cientificas - Universidad de Oviedo - Principado de Asturias), Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Salvador, Maria Dolores [Instituto de Tecnologia de Materiales (ITM), Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Garcia-Rocha, Victoria [ITMA Materials Technology, Parque Tecnologico de Asturias, 33428 Llanera (Asturias) (Spain); Fernandez, Adolfo [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN) (Consejo Superior de Investigaciones Cientificas - Universidad de Oviedo - Principado de Asturias), Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); ITMA Materials Technology, Parque Tecnologico de Asturias, 33428 Llanera (Asturias) (Spain); Chicardi, Ernesto; Gotor, Francisco J. [Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Calle Americo Vespucio 49, 41092 Sevilla (Spain)

    2012-05-01

    Nanometer-sized titanium-niobium carbonitride powders (Ti{sub y}Nb{sub 1-y}C{sub x}N{sub 1-x}) with different Ti/Nb atomic ratios were obtained by a mechanically induced self-sustaining reaction, and sintered by spark plasma sintering technique at 1500 Degree-Sign C for 1 min in a vacuum atmosphere. Mechanical properties such as hardness and Young's modulus were determined by nanoindentation technique and friction and wear coefficients assessed by ball-on-disk testing using alumina ball in dry sliding conditions. The fracture surface and wear tracks of samples were examined by scanning electron microscopy. Results showed that it is possible to obtain dense monolithic ceramics from the solid solution (Ti{sub y}Nb{sub 1-y}C{sub x}N{sub 1-x}) with good mechanical properties and excellent wear resistance. The optimum values of nanomechanical properties were found for the Ti{sub 0.3}Nb{sub 0.7}C{sub 0.5}N{sub 0.5} ceramic composition, which exhibited a high hardness over 26.0 GPa and Young's modulus around 400 GPa.

  13. Metals and Ceramics Division materials science annual progress report for period ending June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1977-09-01

    Progress is reported for research programs in the metals and ceramics division of ORNL. In structure of materials, theoretical research, x-ray diffraction studies, studies of erosion of ceramics, preparation and synthesis of high temperature and special service materials, and studies of stabilities of microphases in high-temperature structural materials. Research into deformation and mechanical properties included physical metallurgy, and grain boundary segregation and embrittlement. Physical properties and transport phenomena were studied and included mechanisms of surface and solid state reactions, and properties of superconducting materials. The radiation effects program, directed at understanding the effects of composition and microstructure on the structure and properties of materials irradiated at elevated temperatures, is also described. (GHT)

  14. A Monolithic Perovskite Structure for Use as a Magnetic Regenerator

    DEFF Research Database (Denmark)

    Pryds, Nini; Clemens, Frank; Menon, Mohan

    2011-01-01

    A La0.67Ca0.26Sr0.07Mn1.05O3 (LCSM) perovskite was prepared for the first time as a ceramic monolithic regenerator used in a regenerative magnetic refrigeration device. The parameters influencing the extrusion process and the performance of the regenerator, such as the nature of the monolith paste...

  15. Standard practice for labeling ceramic art materials for chronic adverse health hazards

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a procedure for developing precautionary labels for ceramic art materials and provides hazard and precautionary statements based upon knowledge that exists in the scientific and medical communities. This practice concerns those chronic adverse health hazards known to be associated with a product or product component(s), when the component(s) is present in a physical form, volume, or concentration that in the opinion of a toxicologist has the potential to produce a chronic adverse health effect(s). 1.2 This practice is intended to apply exclusively to ceramic art materials which are packaged in sizes intended for use by artists or crafts people, either individually, or in a small group or class. 1.3 This practice applies to developing precautionary labeling for ceramic art materials intended for adult usage. Conformance to this practice does not imply that ceramic art materials will necessarily be labeled adequately or safe for use by children. Labeling determinations should conside...

  16. Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Khan, Sajid; Göbel, Ole

    2010-01-01

    This review gives an overview of the progress made in recent years in the development of low-cost parallel patterning techniques for ceramic materials, silica, and organic–inorganic silsesquioxane-based hybrids from wet-chemical solutions and suspensions on the micrometer and nanometer-scale. The

  17. Removal of coatings and surfaces on metallic, mineral and ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Bach, F.W.; Redeker, C. [Dortmund Univ. (Germany). Inst. for Materials Engineering

    2001-07-01

    Various techniques for use in decontamination in decommissioning of nuclear facilities are presented. The methods may be classified by their physical effects, namely chemical electrochemical, mechanical and thermal. A main issue is the dryice-laserbeam-blasting process. By dryice-laserbeam-blasting surfaces of concrete and ceramic materials can be removed. (orig.)

  18. Acoustic emission as a screening tool for ceramic matrix composites

    Science.gov (United States)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  19. The features of ceramic materials structure formation when using hard-melting wastes of thermal power stations in charge stock

    Science.gov (United States)

    Skripnikova, Nelli; Yuriev, Ivan; Lutsenko, Alexander; Litvinova, Viktoriya

    2016-01-01

    The paper presents the analysis of aluminum silicate waste generated by thermal power station of the city of Seversk, Tomsk region, Russia. The chemical compositions of aluminum silicate waste are detected and the efficient mixture compositions with the addition of aluminum silicate waste are suggested herein. Ceramic brick structure formation is studied in this paper using X-ray phase and SEM analyses. It is identified that the formed vitreous phase facilitates such strengthening structural modifications as sintering out of pores and shrinkage of unmelted aluminum silicate particles with the following formation of a monolithic product.

  20. Bond strength of adhesively luted ceramic discs to different core materials.

    Science.gov (United States)

    Bozogullari, Nalan; Inan, Ozgur; Usumez, Aslihan

    2009-05-01

    The purpose of this in vitro study was to compare the shear bond strengths of resin, glass-ionomer, and ceramic-based core materials to all ceramic discs. Five core materials (Core max, Sankin; Clearfil AP-X, Kuraray; Empress Cosmo, Ivoclar-Vivadent; Photocore, Kuraray; Dyract Extra, Dentsply) were prepared as discs 10 mm in diameter and 2 mm in height according to the manufacturer's instructions. Ten disc specimens per group were prepared, and dentin served as the control. All resin specimens were embedded in autopolymerizing acrylic resin, with one surface facing up. All ceramic discs (IPS Empress I, Ivoclar-Vivadent) 3 mm in diameter and 2 mm in height were prepared and bonded to core specimens with a dual-curing luting resin cement (Variolink II, Vivadent). Specimens were stored in distilled water at 37 degrees C. Shear bond strength of each sample was measured after 24 h using a universal testing machine at a crosshead speed of 0.5 mm/min. The data were analyzed with one-way analysis of variance and Tukey HSD tests (alpha = 0.05). Shear bond strength varied significantly depending on the core material used (p strength value while Empress Cosmo provided the lowest (p Core-Max (p > 0.05). And also there were no statistically significant differences between Dyract Extra and the control group (p > 0.05). In vitro shear bond strengths of ceramic discs bonded to resin-based core materials showed higher bond strength values than ceramic-based core material.

  1. Strength and thickness of the layer of materials used for ceramic veneers bonding.

    Science.gov (United States)

    Mazurek, Karolina; Mierzwińska-Nastalska, Elżbieta; Molak, Rafał; Kożuchowski, Mariusz; Pakieła, Zbigniew

    2012-01-01

    The use of adhesive bonding systems and composites in prosthetic dentistry brought improved and more aesthetic prosthetic restorations. The adhesive bonding of porcelain veneers is based on the micromechanical and chemical bond between tooth surface, cement layer and ceramic material. The aim of the study was to measure the thickness of the material layer formed during cementing of a ceramic restoration, and - in the second part of the study - to test tension of these cements. The materials investigated comprised dual-curing materials: Variolink II, KoNroot Cem, KoNroot Cem Viscous and Panavia F 2.0, as well as a light-curing composite: Variolink Veneer. The thickness was measured with the use of ZIP Lite 250 optical gauging apparatus. SEM microscope - Hitachi Tabletop Microscope TM-100 - was used to analyse the characteristics of an adhesive bond and filler particle size of particular materials. Tension tests of the cements under study were carried out on the MTS Q Test 10 static electrodynamic apparatus. The tests showed that KoNroot Cem exhibited the best mechanical properties of bonding to enamel and dentin among the materials tested. Variolink II base light-curing cement formed the thinnest layer. All the materials tested formed the layer not exceeding 1/3 of ceramic restoration thickness.

  2. Mechanical Properties of a new Dental all-ceramic Material-zirconia Toughened Nanometer-ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    CHAI Feng; XU Ling; CHAO Yong-lie; LIAO Yun-mao; ZHAO Yi-min

    2003-01-01

    Objectives:All-ceramic dental restorations are attractive to the dental community because of their advantages.But they're also challenged by relatively low flexural strength and intrinsic poor resistance to fracture.This paper aims to investigate mechanical properties of a new dental all-ceramic material, i.e. zirconia toughened nanometer-ceramic composite (α-Al2O3/nZrO2).Methods:α-Al2O3/nZrO2 ceramics powder (W) was processed with combined methods of chemical co-precipitation method and ball milling. Scanning electron microscopy (SEM)was used to determine the particle size distribution and to characterize the particle morphology of the powders. Four kinds of powders with different ZrO2 content (5wt%, 10wt%, 15wt% and 20wt%) were prepared by using α-Al2O3 powder to dilute the higher ZrO2 content powder (W). The ceramic matrix compacts were made by slip-casting technique and sintering to 1 200~1 600 ℃. The flexural strength and the fracture toughness of the matrix materials were measured via three-point bending test and single-edge notch beam methods, respectively.Results:1) The particle distribution of the Al2O3/nZrO2 powder ranged from 0.02~3.0 μm, with the superfine particles almost accounting for 20%;2) There is a significant difference of flexural strength (P<0.05) between the groups with 1 450 ℃ and 1 600 ℃ sintering temperature and 1 200 ℃;3) There is a significant difference of flexural strength (P<0.05) between different zirconia volume fraction groups with the same sintering temperature, the ceramic matrix samples with higher nZrO2 (W) content had much better mechanical properties than those of pure α-Al2O3 ceramics.Conclusions:The studied nanometer α-Al2O3/nZrO2 powder was homogeously distributed within the matrix and had reasonable powder-size gradation to improve mechanical properties of ceramics.%目的:口腔全瓷修复体以其独特优越性受到医患青睐,但脆性问题一直限制其应用范围及使用可靠性.本研

  3. Glass and glass–ceramic coatings, versatile materials for industrial and engineering applications

    Indian Academy of Sciences (India)

    Amitava Majumdar; Sunirmal Jana

    2001-02-01

    Among various coating systems for industrial and engineering applications, glass and glass–ceramic coatings have advantages of chemical inertness, high temperature stability and superior mechanical properties such as abrasion, impact etc as compared to other coating materials applied by thermal spraying in its different forms viz. PVD, CVD, plasma, etc. Besides imparting required functional properties such as heat, abrasion and corrosion resistance to suit particular end use requirements, the glass and glass–ceramic coatings in general also provide good adherence, defect free surface and refractoriness. Systematic studies covering the basic science of glass and glass–ceramic coatings, the functional properties required for a particular end-use along with the various fields of application have been reviewed in this paper.

  4. Research on toughening mechanisms of alumina matrix ceramic composite materials improved by rare earth additive

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xihua; LIU Changxia; LI Musen; ZHANG Jianhua

    2008-01-01

    Mixed rare earth elements were incorporated into alumina ceramic materials. Hot-pressing was used to fabricate alumina matrix composites in nitrogen atmosphere protection. Microstructures and mechanical properties of the composites were tested. It was indicated that the bending strength and fracture toughness of alumina matrix ceramic composites sintered at 1550℃ and 28 Mpa for 30 min were improved evidently. Besides mixed rare earth elements acting as a toughening phase, AlTiC master alloys were also added in as sintering assistants, which could prompt the formation of transient liquid phase, and thus nitrides of rare earth elements were produced. All of the above were beneficial for improving the mechanical properties of alumina matrix ceramic composites.

  5. Influence of Composite Phosphate Inorganic Antibacterial Materials Containing Rare Earth on Activated Water Property of Ceramics

    Institute of Scientific and Technical Information of China (English)

    梁金生; 梁广川; 祁洪飞; 吴子钊; 冀志江; 金宗哲

    2004-01-01

    Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of 17O-NMR for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.

  6. Graphitic carbon nanofiber (GCNF)/polymer materials. I. GCNF/epoxy monoliths using hexanediamine linker molecules.

    Science.gov (United States)

    Zhong, Wei-Hong; Li, Jiang; Xu, Luoyu R; Michel, Jason A; Sullivan, Lisa M; Lukehart, Charles M

    2004-09-01

    Processing methods have been optimized for the formation of graphitic carbon nanofiber (GCNF)/epoxy nanocomposites containing GCNFs highly dispersed throughout a thermoset epoxy matrix. GCNFs having a herringbone atomic structure are surface-derivatized with bifunctional hexanediamine linker molecules (GCNF-HDA) capable of covalent binding to an epoxy matrix during thermal curing and are cut to smaller dimension using high-power ultrasonication. GCNF-HDA nanofibers are dispersed in epoxy resin at 0.3 wt.% loading using variable levels of ultrasonication processing prior to thermal curing. Effects of sonication power on the quality of the GCNF-HDA/epoxy material obtained after curing have been determined from flexural property measurements, thermomechanical analysis and SEM/TEM imaging. GCNF-HDA/epoxy material of the highest quality is obtained using low-power sonication, although high-power sonication for short periods gives improved flexural properties without lowering the glass transition temperature. Good dispersion and polymer wetting of the GCNF component is evident on the nanoscale.

  7. Architectural integration of energy solar collectors made with ceramic materials and suitable for the Mediterranean climate

    Directory of Open Access Journals (Sweden)

    J. Roviras

    2016-12-01

    Full Text Available The work presented here aims to demonstrate the technical, architectural and energy viability of solar thermal collectors made with ceramic materials and the Mediterranean climate suitable for the production of domestic hot water (DHW and for heating systems in buildings. The design of a ceramic shell formed by panels collectors and panels no sensors, which are part of the same building system that is capable of responding to the basic requirements of a building envelope and capture solar energy is proposed. Ceramics considerably reduced the final cost of the sensor system and offers the new system a variety of compositional and chromatic since, with reduced performance compared to a conventional metallic collector, can occupy the entire surface of front and get a high degree of architectural integration. A tool for assessing the new ceramic solar collector has been defined from a multi-criteria perspective: economic, environmental and social. The tool enables the comparison of the ceramic solar collector with solar collectors on the market under different climatic and demand conditions.

  8. Effect of ceramic dental waste in thermo-physical properties of materials composed with polyester resins

    Directory of Open Access Journals (Sweden)

    Lorena Martínez-Maldonado

    2014-12-01

    Full Text Available Thermophysical properties at room temperature of a composite material based on polyester resins and powders obtained from dental ceramic residues for mixtures with percentage by weight of 50-50, 60-40, 70- 30, 80-20 and 90-10 are recorded, where the minority phase are dental ceramic powders with particle size through sieve No. 200 (75 um, and the majority of pre-accelerated polyester resin brand P-2000, and as catalyst (Meck-Peroxide. The manufacturing process of the specimens was by casting them into cylindrical molds of diameter 3 cm and 6 cm long. The properties of conductivity (k and thermal diffusivity (α and the specific heat per unit volume (ρc, were found using the KD2 Pro® system which operates on the physical principle of linear transient heat flow. Thermal effusivity (ε was determined using data from k and α, and the expression ε = k/√ α. The results show that as the percentage of the ceramic powder is increased, the density of the samples increases, and thus the thermal conductivity (k, which is directly proportional to both heat diffusion rate (α and the amount of heat that the material can store or release (ρc. These results suggest a new material for technological applications, as well as they help to mitigate the environmental impact due to the recycling process of dental ceramic waste.

  9. Chemical, mineralogical and ceramic properties of kaolinitic materials from the Tresnuraghes mining district (Western Sardinia, Italy)

    OpenAIRE

    Dondi, Michele; Guarini, Guia; Ligas, Paola; Raimondo, Mariarosa; Palomba, Marcella; Uras, Ivo

    2001-01-01

    Kaolinitic materials crop out in the Tresnuraghes mining district (Western Sardinia, Italy). Three main kaolinitic deposits, located in the Patalza, Salamura and Su Fongarazzu areas, respectively, were investigated in order to assess their potential in the ceramic industry. The parent rock-types of this raw material are the Oligocene-Miocene rhyolitic-rhyodacitic ignimbrites. Chemical and mineralogical analyses were performed on representative samples of each deposit, by XRD and XRF methodolo...

  10. RESEARCH AND PRODUCTION OF GLASS-CERAMIC DECORATED MATERIAL CONTAINING CHROMIUM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the influences of catch-color agent content on glass-ceramic decorated material in the system of CaO-Al2O3-SiO2 were studied. By ladder temperature furnace and sintering shrinkage curve measurement, the influence of catch-color agent content on sintering and crystallization temperature was discussed. By means of XRD, three point bending strength and density measurement, the properties of the decorated material were investigated.

  11. A hybrid phenomenological model for ferroelectroelastic ceramics. Part I: Single phased materials

    Science.gov (United States)

    Stark, S.; Neumeister, P.; Balke, H.

    2016-10-01

    In this part I of a two part series, a rate-independent hybrid phenomenological constitutive model applicable for single phased polycrystalline ferroelectroelastic ceramics is presented. The term "hybrid" refers to the fact that features from macroscopic phenomenological models and micro-electromechanical phenomenological models are combined. In particular, functional forms for a switching function and the Helmholtz free energy are assumed as in many macroscopic phenomenological models; and the volume fractions of domain variants are used to describe the internal material state, which is a key feature of micro-electromechanical phenomenological models. The approach described in this paper is an attempt to combine the advantages of macroscopic and micro-electromechanical material models. Its potential is demonstrated by comparison with experimental data for barium titanate. Finally, it is shown that the model for single phased materials cannot reproduce the material behavior of morphotropic PZT ceramics based on a realistic choice for the material parameters. This serves as a motivation for part II of the series, which deals with the modeling of morphotropic PZT ceramics taking into account the micro-structural specifics of these materials.

  12. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    Science.gov (United States)

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Material of Burned Coal Wastes Spoil Heaps As Source of Mullite for Ceramic Industry

    Directory of Open Access Journals (Sweden)

    Daněk Tomáš

    2015-01-01

    Full Text Available Burning or burnt out mine spoil heaps may be potential sources of materials not only for building purposes, but they may also be used in the ceramic industry. Decay of the coal mass contained in the mine spoil heaps often leads to self-ignition. As a consequence of spontaneous mine fire, which may approach 1600 °C, the surrounding waste rock undergoes thermal conversion. The temperature conditions inside the burning spoil heaps are analogous to the production conditions of refractory opening materials and fillers in rotary furnaces. The article deals with an analysis of anthropogenic porcelanites in terms of their phase composition and their possible application in the ceramic industry. The material under analysis underwent X-ray diffraction, electron microscopy and X-ray fluorescence to identify its chemistry and mineralogy. The article also proposes an enrichment method for the given material, through which a higher proportion of its useful component, mullite, may be obtained. Applying this method, approximately 60 % relatively pure separated raw material suitable for the ceramic industry may be obtained from the original material.

  14. Shear bond strength of veneering ceramic to coping materials with different pre-surface treatments

    Science.gov (United States)

    Anuar, Norsamihah; Ahmad, Marlynda

    2016-01-01

    PURPOSE Pre-surface treatments of coping materials have been recommended to enhance the bonding to the veneering ceramic. Little is known on the effect on shear bond strength, particularly with new coping material. The aim of this study was to investigate the shear bond strength of veneering ceramic to three coping materials: i) metal alloy (MA), ii) zirconia oxide (ZO), and iii) lithium disilicate (LD) after various pre-surface treatments. MATERIALS AND METHODS Thirty-two (n = 32) discs were prepared for each coping material. Four pre-surface treatments were prepared for each sub-group (n = 8); a) no treatment or control (C), b) sandblast (SB), c) acid etch (AE), and d) sandblast and acid etch (SBAE). Veneering ceramics were applied to all discs. Shear bond strength was measured with a universal testing machine. Data were analyzed with two-way ANOVA and Tukey's multiple comparisons tests. RESULTS Mean shear bond strengths were obtained for MA (19.00 ± 6.39 MPa), ZO (24.45 ± 5.14 MPa) and LD (13.62 ± 5.12 MPa). There were statistically significant differences in types of coping material and various pre-surface treatments (P<.05). There was a significant correlation between coping materials and pre-surface treatment to the shear bond strength (P<.05). CONCLUSION Shear bond strength of veneering ceramic to zirconia oxide was higher than metal alloy and lithium disilicate. The highest shear bond strengths were obtained in sandblast and acid etch treatment for zirconia oxide and lithium disilicate groups, and in acid etch treatment for metal alloy group. PMID:27826383

  15. Annual Conference on Composites and Advanced Ceramic Materials, 12th, Cocoa Beach, FL, Jan. 17-22, 1988, Proceedings. Parts 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    The present conference discusses topics in the development status of advanced ceramics, the engineering applications of ceramic-matrix composites, modeling and theoretical considerations of engineering ceramics, the role of interfaces in ceramic-matrix composites, and polycrystalline oxide-matrix composites. Also discussed are glass- and glass-ceramic-matrix composites, carbide- and nitride-matrix composites, the synthesis methods as well as the properties and applications of ceramic matrix-reinforcing whiskers, fibers, and powders, and various SDI-related advanced ceramic materials for use in orbital systems.

  16. Experimental Investigation on the Material Removal of the Ultrasonic Vibration Assisted Abrasive Water Jet Machining Ceramics

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-01-01

    Full Text Available The ultrasonic vibration activated in the abrasive water jet nozzle is used to enhance the capability of the abrasive water jet machinery. The experiment devices of the ultrasonic vibration assisted abrasive water jet are established; they are composed of the ultrasonic vibration producing device, the abrasive supplying device, the abrasive water jet nozzle, the water jet intensifier pump, and so on. And the effect of process parameters such as the vibration amplitude, the system working pressure, the stand-off, and the abrasive diameter on the ceramics material removal is studied. The experimental result indicates that the depth and the volume removal are increased when the ultrasonic vibration is added on abrasive water jet. With the increase of vibration amplitude, the depth and the volume of material removal are also increased. The other parameters of the ultrasonic vibration assisted abrasive water jet also have an important role in the improvement of ceramic material erosion efficiency.

  17. The Capabilities of Electrodischarge Microdrilling of High Aspect Ratio Holes in Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Skoczypiec Sebastian

    2015-09-01

    Full Text Available In the first part of the article the review of ceramic materials drilling possibilities was presented. Among the described methods special attention is paid to electrodischarge drilling. This process have especially been predicted for machining difficult-to-cut electrically conductive materials. The second part consist of the results analysis of electrodischarge microdrilling of siliconized silicon carbide. The experiment involves the impact of current amplitude, discharge voltage and pulse time on the hole depth, side gap, linear tool wear and mean drilling speed. The results shows that electrodischarge drilling is a good alternative when machining inhomogeneous ceramic materials and gives possibility to drill high aspect ratio holes with relatively high efficiency (the drilling speed >2 mm/min.

  18. Thermodynamic analysis of chemical stability of ceramic materials in hydrogen-containing atmospheres at high temperatures

    Science.gov (United States)

    Misra, Ajay K.

    1990-01-01

    The chemical stability of several ceramic materials in hydrogen-containing environments was analyzed with thermodynamic considerations in mind. Equilibrium calculations were made as a function of temperature, moisture content, and total system pressure. The following ceramic materials were considered in this study: SiC, Si3N4, SiO2, Al2O3, mullite, ZrO2, Y2O3, CaO, MgO, BeO, TiB2, TiC, HfC, and ZrC. On the basis of purely thermodynamic arguments, upper temperature limits are suggested for each material for long-term use in H2-containing atmospheres.

  19. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  20. Corrosion Issues for Ceramics in Gas Turbines

    Science.gov (United States)

    Jacobson, Nathan; Opila, Elizabeth; Nickel, Klaus G.

    2004-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Over the past forty years, a wealth of information on the behavior of ceramic materials in heat engine environments has been obtained. In the first part of the talk we summarize the behavior of monolithic SiC and Si3N4. These materials show excellent baseline behavior in clean, oxygen environments. However the aggressive components in a heat engine environment such as water vapor and salt deposits can be quite degrading. In the second part of the talk we discuss SiC-based composites. The critical issue with these materials is oxidation of the fiber coating. We conclude with a brief discussion of future directions in ceramic corrosion research.

  1. Corrosion Issues for Ceramics in Gas Turbines

    Science.gov (United States)

    Jacobson, Nathan; Opila, Elizabeth; Nickel, Klaus G.

    2004-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Over the past forty years, a wealth of information on the behavior of ceramic materials in heat engine environments has been obtained. In the first part of the talk we summarize the behavior of monolithic SiC and Si3N4. These materials show excellent baseline behavior in clean, oxygen environments. However the aggressive components in a heat engine environment such as water vapor and salt deposits can be quite degrading. In the second part of the talk we discuss SiC-based composites. The critical issue with these materials is oxidation of the fiber coating. We conclude with a brief discussion of future directions in ceramic corrosion research.

  2. The archaeometric study of ceramic materials in JCR journals and conference proceedings during the last decade (2000-2010)

    OpenAIRE

    Peña Poza, Javier; García Heras, Manuel; Villegas Broncano, María Ángeles

    2011-01-01

    [EN] Ceramic is the oldest synthetic material created by the mankind and has been present in human societies from around ten thousand years ago. During the last few decades, within the research field of Archaeometry, the study of archaeological and historical ceramic materials has experienced a significant increase in the application of chemical-physical techniques to obtain information on technology and production of these materials in the past. This paper presents the results obtained in a ...

  3. Prediction of Thermophysical and Thermomechanical Characteristics of Porous Carbon-Ceramic Composite Materials of the Heat Shield of Aerospace Craft

    Science.gov (United States)

    Reznik, S. V.; Prosuntsov, P. V.; Mikhailovskii, K. V.

    2015-05-01

    A procedure for predicting thermophysical and thermomechanical characteristics of porous carbon-ceramic composite materials of the heat shield of aerospace craft as functions of the type of reinforcement, porosity of the structure, and the characteristics of the material's components has been developed. Results of mathematical modeling of the temperature and stressed-strained states of representative volume elements for determining the characteristics of a carbon-ceramic composite material with account taken of its anisotropy have been given.

  4. Influence of Abutment Material on the Stress of Implant-supported All-ceramic Single Crown

    Institute of Scientific and Technical Information of China (English)

    GAO Shaohuai; DUAN Haiying; LI Zhiyong

    2012-01-01

    In order to investigate the influence of abutment material on the stress of implant-supported all-ceramic single crown,a 3D finite element model of implant-supported mandibular first premolar was computed by COSMOS/M 2.85 software.Alumina,zirconia,and titanium were used as abutment materials respectively.Vertical 600 N and horizontal 225 N load was applied on the occlusal surface.The results show that the stress distribution of implant-supported single crown was similar for different abutment materials.Maximum stresses within the crown were higher when titanium abutment was used.Maximum stress of titanium abutment was lower than that of ceramic abutment.Within the screw and fixture,maximum stresses had no difference under vertical loading but higher as titanium abutment was used under horizontal loading.There was no difference of maximum stress within the bone when different abutment materials were used.The present findings indicate that the abutment material had no influence on the stress distribution of implant-supported allceramic single crown but maximum stress when the titanium abutment was lower than that of ceramic abument.

  5. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    Science.gov (United States)

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  6. A bulk metal/ceramic composite material with a cellular structure

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhankui; YAO Kefu; LI Jingfeng

    2006-01-01

    A bulk metal/ceramic composite material with a honeycomb-like micro-cell structure has been prepared by sintering the spherical Al90Mn9Ce1 alloy powders clad by Al2O3 nano-powder with the spark plasma sintering (SPS) technique. The as-prepared material consists of Al90Mn9Ce1 alloy cell and closed Al2O3 ceramic cell wall. The diameter of the cells is about 20―40 μm, while a thickness of the cell wall is about 1―2 μm. The ultimate compressive strength of the as-sintered materials is about 514 MPa, while its fracture strain is up to about 0.65 %. This composite material might possess good anti-corrosion, thermal endurance and other potential properties due to its unique microstructure. The result shows that the Al90Mn9Ce1/Al2O3 composite powders can be sintered by spark plasma sintering technique despite the large difference in their sintering temperature. This work offers a way of designing and preparing metal/ceramic composite material with functional property.

  7. On the surface elemental composition of non-corroded and corroded dental ceramic materials in vitro.

    Science.gov (United States)

    Milleding, P; Karlsson, S; Nyborg, L

    2003-06-01

    Dental ceramics are traditionally looked upon as inert materials. As many are glass phased, it may be hypothesized that they will be subjected to glass corrosion in aqueous environments. The aim of the study was therefore to analyze the surface elemental composition of glass-phased and all-crystalline ceramics, before and after low- and high-intensity, in vitro corrosion (milli-Q-water at 37+/-2 degrees C for 18 h and 4% acetic acid at 80+/-2 degrees C for 18 h, respectively). The analysis of the surface elemental composition was performed using ESCA. The hypothesis was confirmed. After high-intensity corrosion, the complete wash out of alkali ions, alkaline-earth ions and elemental alumina was found, leaving behind a surface totally dominated by silica. The all-crystalline ceramics, densely sintered alumina and yttria-partially stabilized tetragonal zirconia, displayed only minor surface changes, even after high-intensity corrosion. In comparison to the corrosion testing in acid, the corrosion process in milli-Q-water did not produce different results in principle, except for the lower magnitude of the depletion of alkali ions and the virtually unchanged level of elemental alumina. Unexpectedly, no substantial difference in surface degradation was found between the glass ceramic and the ordinary porcelain-fused-to-metal ceramic or between ceramics of higher sintering temperature and those of low or ultra-low sintering temperature. The composition and microstructure alone did not appear to provide a full explanation for the inter-individual differences in surface corrosion when exposed to comparable environmental conditions.

  8. Outcome of bonded vs all-ceramic and metal- ceramic fixed prostheses for single tooth replacement.

    Science.gov (United States)

    Karl, Matthias

    2016-01-01

    The conventional treatment of a single missing tooth is most frequently based on the provision of a fixed dental prosthesis (FDPs). A variety of designs and restorative materials are available which have an impact on the treatment outcome. Consequently, it was the aim of this review to compare resin-bonded, all-ceramic and metal-ceramic FDPs based on existing evidence. An electronic literature search using "metal-ceramic" AND "fixed dental prosthesis" AND "clinical, all-ceramic" AND "fixed dental prosthesis" AND "clinical, resin-bonded" AND "fixed dental prosthesis" AND "clinical, fiber reinforced composite" AND "clinical, monolithic" AND "zirconia" AND "clinical" was conducted and supplemented by the manual searching of bibliographies from articles already included. A total of 258 relevant articles were identified. Metal-ceramic FDPs still show the highest survival rates of all tooth-supported restorations. Depending on the ceramic system used, all-ceramic restorations may reach comparable survival rates while the technical complications, i.e. chipping fractures of veneering materials in particular, are more frequent. Resin-bonded FDPs can be seen as long-term provisional restorations with the survival rate being higher in anterior locations and when a cantilever design is applied. Inlay-retained FDPs and the use of fiber-reinforced composites overall results in a compromised long-term prognosis. Recently advocated monolithic zirconia restorations bear the risk of low temperature degradation. Several variables affect treatment planning for a given patient situation, with survival and success rates of different restorative options representing only one factor. The broad variety of designs and materials available for conventional tooth-supported restorations should still be considered as a viable treatment option for single tooth replacement.

  9. Characterization of ceramic materials for electrochemical hydrogen sensors

    Energy Technology Data Exchange (ETDEWEB)

    Serret, P.; Colominas, S. [Electrochemical Methods Laboratory - Analytical Chemistry Department ETS Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona (Spain); Reyes, G. [Industrial Engineering Department ETS Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona (Spain); Abella, J., E-mail: jordi.abella@iqs.es [Electrochemical Methods Laboratory - Analytical Chemistry Department ETS Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona (Spain)

    2011-10-15

    Accurate and reliable tritium management is of basic importance for the correct operation conditions of the blanket tritium cycle. The Electrochemical Methods Lab at Institut Quimic de Sarria (IQS) is working in the design and development of tritium sensors, based on proton solid state electrolytes to be used in molten lithium-lead eutectic. Different solid electrolyte proton conductors have been synthesized (Sr{sub 3}CaZr{sub 0.9}Ta{sub 1.1}O{sub 8.55}, SrCe{sub 0.95}Yb{sub 0.05}O{sub 3-{alpha}}, CaZr{sub 0.9}In{sub 0.1}O{sub 3-{alpha}}, Ba{sub 3}(Ca{sub 1.18}Nb{sub 1.82})O{sub 9-{alpha}}) in order to be evaluated in a testing apparatus for hydrogen gas. Potentiometric measurements of the synthesized ceramic elements have been performed. In all experiments the working temperature was 500 {sup o}C. The sensors constructed using the proton conductor element Sr{sub 3}CaZr{sub 0.9}Ta{sub 1.1}O{sub 8.55} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation. When the proton conductor elements SrCe{sub 0.95}Yb{sub 0.05}O{sub 3-{alpha}} and CaZr{sub 0.9}In{sub 0.1}O{sub 3-{alpha}} and Ba{sub 3}(Ca{sub 1.18}Nb{sub 1.82})O{sub 9-{alpha}} were used a deviation higher than 100 mV between theoretical and experimental data was obtained.

  10. Structural ceramic coatings in composite microtruss cellular materials

    Energy Technology Data Exchange (ETDEWEB)

    Bele, E.; Bouwhuis, B.A.; Codd, C. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada); Hibbard, G.D., E-mail: glenn.hibbard@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada)

    2011-09-15

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al{sub 2}O{sub 3} sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al{sub 2}O{sub 3} coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: {yields} A new type of metal/ceramic microtruss cellular composite has been created. {yields} Reinforcing sleeves of Al{sub 2}O{sub 3} were deposited on low density Al microtruss cores. {yields} Significant compressive strength increases were seen at virtually no weight penalty. {yields} Failure mechanisms were studied by electron microscopy and finite element analysis. {yields} Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al{sub 2}O{sub 3} coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 {mu}m thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  11. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    Science.gov (United States)

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  12. Cervical and Incisal Marginal Discrepancy in Ceramic Laminate Veneering Materials: A SEM Analysis.

    Science.gov (United States)

    Ranganathan, Hemalatha; Ganapathy, Dhanraj M; Jain, Ashish R

    2017-01-01

    Marginal discrepancy influenced by the choice of processing material used for the ceramic laminate veneers needs to be explored further for better clinical application. This study aimed to evaluate the amount of cervical and incisal marginal discrepancy associated with different ceramic laminate veneering materials. This was an experimental, single-blinded, in vitro trial. Ten central incisors were prepared for laminate veneers with 2 mm uniform reduction and heavy chamfer finish line. Ceramic laminate veneers fabricated over the prepared teeth using four different processing materials were categorized into four groups as Group I - aluminous porcelain veneers, Group II - lithium disilicate ceramic veneers, Group III - lithium disilicate-leucite-based veneers, Group IV - zirconia-based ceramic veneers. The cervical and incisal marginal discrepancy was measured using a scanning electron microscope. ANOVA and post hoc Tukey honest significant difference (HSD) tests were used for statistical analysis. The cervical and incisal marginal discrepancy for four groups was Group I - 114.6 ± 4.3 μm, 132.5 ± 6.5 μm, Group II - 86.1 ± 6.3 μm, 105.4 ± 5.3 μm, Group III - 71.4 ± 4.4 μm, 91.3 ± 4.7 μm, and Group IV - 123.1 ± 4.1 μm, 142.0 ± 5.4 μm. ANOVA and post hoc Tukey HSD tests observed a statistically significant difference between the four test specimens with regard to cervical marginal discrepancy. The cervical and incisal marginal discrepancy scored F = 243.408, P < 0.001 and F = 180.844, P < 0.001, respectively. This study concluded veneers fabricated using leucite reinforced lithium disilicate exhibited the least marginal discrepancy followed by lithium disilicate ceramic, aluminous porcelain, and zirconia-based ceramics. The marginal discrepancy was more in the incisal region than in the cervical region in all the groups.

  13. Cervical and incisal marginal discrepancy in ceramic laminate veneering materials: A SEM analysis

    Directory of Open Access Journals (Sweden)

    Hemalatha Ranganathan

    2017-01-01

    Full Text Available Context: Marginal discrepancy influenced by the choice of processing material used for the ceramic laminate veneers needs to be explored further for better clinical application. Aims: This study aimed to evaluate the amount of cervical and incisal marginal discrepancy associated with different ceramic laminate veneering materials. Settings and Design: This was an experimental, single-blinded, in vitro trial. Subjects and Methods: Ten central incisors were prepared for laminate veneers with 2 mm uniform reduction and heavy chamfer finish line. Ceramic laminate veneers fabricated over the prepared teeth using four different processing materials were categorized into four groups as Group I - aluminous porcelain veneers, Group II - lithium disilicate ceramic veneers, Group III - lithium disilicate-leucite-based veneers, Group IV - zirconia-based ceramic veneers. The cervical and incisal marginal discrepancy was measured using a scanning electron microscope. Statistical Analysis Used: ANOVA and post hoc Tukey honest significant difference (HSD tests were used for statistical analysis. Results: The cervical and incisal marginal discrepancy for four groups was Group I - 114.6 ± 4.3 μm, 132.5 ± 6.5 μm, Group II - 86.1 ± 6.3 μm, 105.4 ± 5.3 μm, Group III - 71.4 ± 4.4 μm, 91.3 ± 4.7 μm, and Group IV - 123.1 ± 4.1 μm, 142.0 ± 5.4 μm. ANOVA and post hoc Tukey HSD tests observed a statistically significant difference between the four test specimens with regard to cervical marginal discrepancy. The cervical and incisal marginal discrepancy scored F = 243.408, P < 0.001 and F = 180.844, P < 0.001, respectively. Conclusion: This study concluded veneers fabricated using leucite reinforced lithium disilicate exhibited the least marginal discrepancy followed by lithium disilicate ceramic, aluminous porcelain, and zirconia-based ceramics. The marginal discrepancy was more in the incisal region than in the cervical region in all the groups.

  14. Tempered glass and thermal shock of ceramic materials

    Science.gov (United States)

    Bunnell, L. Roy

    1992-01-01

    A laboratory experiment is described that shows students the different strengths and fracture toughnesses between tempered and untempered glass. This paper also describes how glass is tempered and the materials science aspects of the process.

  15. Bonding of a mica-based castable ceramic material with a tri-n-butylborane-initiated adhesive resin.

    Science.gov (United States)

    Morikawa, T; Matsumura, H; Atsuta, M

    1996-07-01

    Adhesive bonding of a mica-based castable ceramic material (Olympus Castable Ceramics, OCC) was evaluated in vitro with the use of a silane primer in conjunction with an adhesive luting material. The primer contained a silane coupler and 4-methacryloxyethyl trimellitate anhydride (4-META), while the methyl methacrylate (MMA)-based luting agent was initiated with a tri-n-butylborane derivative (TBB) and contained 4-META (4-META/MMA-TBB resin). Ceramic specimens were sanded with No. 600 silicon carbide paper followed by blasting with alumina and/or etching with ammonium bifluoride. The specimens were bonded with various combinations and shear bond strengths were determined. Both priming and alumina blasting enhanced the bond between 4-META resin and OCC. Although etching with ammonium bifluoride roughened the ceramic surface, this procedure did not improve the bond strength. Electron probe microanalysis of the ceramic surface revealed a decrease in silicon and aluminium elements after etching with ammonium bifluoride.

  16. Radiation damage in ceramic plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Noriaki; Morita, Kenji

    1988-07-01

    The present status of the studies of radiation damage of plasma-facing materials is reviewed. Emphasis is placed on the extent of the understanding in terms of the critical issues for materials in use as plasma interactive components. Understanding of the basic problems of radiation effects, which are important for long term development of fusion reactors, is also emphasized. It is pointed out that for low-Z materials radiation damage by fission neutrons is a good measure of the effects of radiation damage by fusion neutrons. The understanding of the fission neutron damage of major candidate materials is surveyed. Existing data on the effects of transmuted helium gas in beryllium are inferred and the data needs for the He effects on graphite are stressed. For radiation damage by plasma particles, the importance of understanding of the dynamic behaviors of the materials which are composite because of redeposition and hydrogen implantation. Some of the features of such composite materials under radiation are presented.

  17. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Taiju; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Motohashi, Yoshinobu [Ibaraki Univ., Mito (Japan)

    2000-05-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x10{sup 20} n/cm{sup 2} and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 10{sup 10} Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x10{sup 20} n/cm{sup 2} and that it decays to about 1/100 in a year. (author)

  18. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    Science.gov (United States)

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-04-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

  19. Tensile strength of bilayered ceramics and corresponding glass veneers

    Science.gov (United States)

    Champirat, Tharee; Jirajariyavej, Bundhit

    2014-01-01

    PURPOSE To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS Blocks of core ceramics (IPS e.max® Press and Lava™ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and 1 mm2 in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max® Ceram and Lava™ Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS The mean microtensile bond strength of IPS e.max® Press/IPS e.max® Ceram (43.40 ± 5.51 MPa) was significantly greater than that of Lava™ Frame/Lava™ Ceram (31.71 ± 7.03 MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava™ Frame/Lava™ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava™ Ceram, while the bond strength of bilayered IPS e.max® Press/IPS e.max® Ceram was significantly greater than tensile strength of monolithic IPS e.max® Ceram. CONCLUSION Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials. PMID:25006377

  20. Environmental and economic aspects of using marble fine waste in the manufacture of facing ceramic materials

    Directory of Open Access Journals (Sweden)

    Zemlyanushnov Dmitriy Yur'evich

    2014-09-01

    Full Text Available This work considers economic expediency of using marble fine waste in facing ceramic materials manufacture by three-dimensional coloring method. Adding marble fine waste to the charge mixture reduces the production cost of the final product. This waste has a positive impact on the intensification of drying clay rocks and raw as a whole, which increases production efficiency. Using marble fine waste as a coloring admixture makes it possible to manufacture more environmentally friendly construction material with the use of wastes of hazard class 3 instead of class 4. At the same time, disposal areas and environmental load in the territories of mining and marble processing reduce significantly. Replacing ferrous pigments with manganese oxide for marble fine waste reduces the cost of the final product and the manufacture of facing ceramic brick of a wide range of colors - from dark brown to yellow.

  1. Influence of different post core materials on the color of Empress 2 full ceramic crowns

    Institute of Scientific and Technical Information of China (English)

    GE Jing; WANG Xin-zhi; FENG Hai-lan

    2006-01-01

    Background For esthetic consideration, dentin color post core materials were normally used for all-ceramic crown restorations. However, in some cases, clinicians have to consider combining a full ceramic crown with a metal post core. Therefore, this experiment was conducted to test the esthetical possibility of applying cast metal post core in a full ceramic crown restoration.Methods The color of full ceramic crowns on gold and Nickel-Chrome post cores was compared with the color of the same crowns on tooth colored post cores. Different try-in pastes were used to imitate the influence of a composite cementation on the color of different restorative combinations. The majority of patients could not detect any color difference less than △E 1.8 between the two ceramic samples. So, △E 1.8 was taken as the objective evaluative criterion for the evaluation of color matching and patients' satisfaction.Results When the Empress 2 crown was combined with the gold alloy post core, the color of the resulting material was similar to that of a glass fiber reinforced resin post core (△E = 0.3). The gold alloy post core and the try-in paste did not show a perceptible color change in the full ceramic crowns, which indicated that the color of the crowns might not be susceptible to change between lab and clinic as well as during the process of composite cementation. Without an opaque covering the Ni-Cr post core would cause an unacceptable color effect on the crown (△E = 2.0), but with opaque covering, the color effect became more clinically satisfactory (△E=1.8).Conclusions It may be possible to apply a gold alloy post core in the Empress 2 full ceramic crown restoration when necessary. If a non-extractible Ni-Cr post core exists in the root canal, it might be possible to restore the tooth with an Empress 2 crown after coveting the labial surface of the core with one layer of opaque resin cement.

  2. Synthesis of steel slag ceramics:chemical composition and crystalline phases of raw materials

    Institute of Scientific and Technical Information of China (English)

    Li-hua Zhao; Wei Wei; Hao Bai; Xu Zhang; Da-qiang Cang

    2015-01-01

    Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO–Al2O3–SiO2 and CaO–MgO–SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite,α-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.

  3. In vitro evaluation of the fracture strength of all-ceramic core materials on zirconium posts.

    Science.gov (United States)

    Ozcan, Nihal; Sahin, Erdal

    2013-10-01

    For most endodontically treated teeth, tooth-colored post-core systems are preferable for esthetic reasons. Therefore, improvements in material strength must also consider tooth colored post-core complexes. The objective of this study was to evaluate the difference in tooth colored post-core complex strengths. A total of 33 human maxillary central incisor teeth were used for this study, with three groups of 11 teeth. Three different methods were used to fabricate all-ceramic post-core restorations: zirconia blanks, Cerec 3D-milled to one-piece post-core restorations (Test Group 1); feldspathic cores (from feldspathic prefabricated CAD/CAM blocks) adhesively luted to CosmoPost zirconia posts (Test Group 2); and IPS Empress cores directly pressed to CosmoPost zirconia posts (Test Group 3). All-ceramic crowns from feldspathic ceramic were constructed using a CAD/CAM system (Cerec 3D) for all specimens. The post-core complexes were tested to failure with the load applied at 45° angled relative to the tooth long axis. The load at fracture was recorded. The maximum fracture strength of the milled zirconia cores (Test Group 1) was 577 N; corresponding values for the milled feldspathic cores (Test Group 2) and the pressed cores (Test Group 3) were 586 and 585 N, respectively. Differences were not statistically significant at P cores adhesively luted on zirconia posts and one-piece all-ceramic zirconium post-core structures offer a viable alternative to conventional pressing.

  4. Metallic and intermetallic-bonded ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  5. Monolithic MACS micro resonators

    Science.gov (United States)

    Lehmann-Horn, J. A.; Jacquinot, J.-F.; Ginefri, J. C.; Bonhomme, C.; Sakellariou, D.

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1 /√{ P } is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4 mm rotor at 500 MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials.

  6. [Influence of background color on chromatic value of four all-ceramic system core materials].

    Science.gov (United States)

    Ma, Yong-gang; Zhang, Nian; Deng, Xu-liang

    2010-06-01

    To investigate the influence of post-core background color on chromatic value of four all-ceramic system core materials at clinically appropriate thicknesses. Disc specimens of 15 mm in diameter and 0.80 mm in thickness (Empress II: Group A), and 0.50 mm in thickness (In-Ceram Zirconia core: Group B; Cercon base color zirconia core: Group C; Cercon base zirconia core: Group D) were fabricated, five in each group. Au-Pt alloy, Ni-Cr alloy and visible light cured dental composite resin (A2 color) background were prepared. Samples were put on different background and their chromatic values were measured with colorimeter (CIE-1976-L(*)a(*)b(*)). Color differences of each specimen on different background material were calculated. The color differences among specimens of Group A on different background material were more than 1.5 (2.83 ± 0.70) which meant it could be noticeable to eyes. Those of zirconia were less than 1.5 [Group B: (0.14 ± 0.08); Group C: (0.90 ± 0.20); Group D: (0.99 ± 0.09)]. The influence of background color on Group A was noticeable to human eyes, and as a result, tooth-colored post should be used for this all-ceramic system. For the other three kinds of zirconia core materia1 system, the color differences among specimens on different background material were unnoticeable. Therefore the three all-ceramic systems have excellent color masking ability and can be used on all color background.

  7. Metals and Ceramics Division materials science program. Annual progress report for period ending June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1981-09-01

    Information is presented concerning the theoretical studies of metals and alloys; x-ray diffraction research; structural ceramics; structure of coal; analytical and high-voltage electron microscopy; deformation and mechanical properties; mechanisms of surface and solid-state reactions; physical properties research; metastable materials; neutron radiation effects; charged particle radiation effects; theory and modeling of radiation effects; facility and advanced technique development; fundamentals of welding and joining; and studies in nondestructive evaluation.

  8. Changing the adsorption capacity of coal-based honeycomb monoliths for pollutant removal from liquid streams by controlling their porosity

    Energy Technology Data Exchange (ETDEWEB)

    Gatica, Jose M.; Harti, Sanae [Departamento C.M., I.M. y Quimica Inorganica, Universidad de Cadiz, Puerto Real 11510 (Spain); Vidal, Hilario, E-mail: hilario.vidal@uca.es [Departamento C.M., I.M. y Quimica Inorganica, Universidad de Cadiz, Puerto Real 11510 (Spain)

    2010-09-15

    Coal-based honeycomb monoliths extruded using methods developed for ceramic materials have been used to retain methylene blue and p-nitrophenol from aqueous solutions. The influence of the filters' thermal treatment on their textural properties and performance as adsorbents was examined. Characterization by N{sub 2} physisorption, mercury porosimetry and scanning electron microscopy along with adsorption tests under dynamic conditions suggest that, depending on the pollutant and its initial concentration, it can be more convenient to previously submit the monoliths to a simple carbonization or to an additional activation, with or without preoxidation, as a consequence of their different resulting pore structures. Infrared spectroscopy indicates that their different adsorption behaviour seems not to be related to differences in their surface chemical groups. In addition, axial crushing tests show that the monoliths have an acceptable mechanical resistance for the application investigated.

  9. Electric and Magnetic Properties of a New Ferrite-Ceramic Composite Material

    Institute of Scientific and Technical Information of China (English)

    张怀武; 石玉; 钟智勇

    2002-01-01

    We have investigated a new ferrite-ceramic composite material with inductive and capacitive properties fabricated by a solid-state reaction method. We analyse the effects of the composite mechanism and microstructure on the magnetic and electric properties. The results show that the new materials can be used not only as inductor materials, but also as capacitor materials in the wide frequency range of 1 kHz-1.8GHz. The real part of permeability of the composite material is between 10 and 5.6, the imaginary part of permeability is between 1.2 and 0.5, and the dielectric constant is about ten times larger than that of ordinary ferrite materials. It is suggested that the new composite materials will be widely used in anti-electromagnetic interference fields and radio frequency communication fields

  10. Clinical performance - a reflection of damage accumulation in ceramic dental crowns

    Energy Technology Data Exchange (ETDEWEB)

    Rekow, D.E. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Dept. of Orthodontics; Thompson, V.P. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). New Jersey Dental School

    2001-07-01

    All-ceramic dental crowns have tremendous appeal for patients - their esthetics nearly match those of natural teeth. Unfortunately, the most esthetic materials are brittle and, consequently, are vulnerable to damage relating to shaping which is exacerbated during cyclic loading during normal chewing. Clinical performance of all-ceramic dental prostheses are directly dependent on damage introduced during fabrication and during fatigue loading associated with function. The accumulation of damage results in unacceptably high failure rates (where failure is defined as a complete fracture requiring replacement of the prosthesis). The relation between shaping damage and fatigue damage on clinical performance of all-ceramic dental crowns was investigated. Materials used commercially for all-ceramic crowns and investigated in this study included a series of different microstructures of machinable glass ceramics (Corning), aluminas and porcelains (Vita Zahnfabrik), and zirconia (Norton). As monolithic materials, strong, tough, fatigue-resistant materials are not sufficiently esthetic for crowns. Crowns fabricated from monolithic esthetic materials have high failure rates. Layering ceramics could provide acceptable strength through management of damage accumulation. (orig.)

  11. Reliability and properties of core materials for all-ceramic dental restorations

    Directory of Open Access Journals (Sweden)

    Seiji Ban

    2008-07-01

    Full Text Available Various core materials have been used as all-ceramic dental restorations. Since many foreign zirconia product systems were introduced to the Japanese dental market in the past few years, the researches and the papers on zirconia for ceramic biomaterials have immediately drawn considerable attention. Recently, most of the manufactures supply zirconia blocks available to multi-unit posterior bridges using CAD/CAM, because zirconia has excellent mechanical properties comparable to metal, due to its microstructures. The properties of conventional zirconia were further improved by the composite in nano-scale such as zirconia/alumina nanocomposite (NANOZR. There are many interesting behaviors such as long-term stability related to low temperature degradation, effect of sandblasting and heat treatment on the microstructure and the strength, bonding to veneering porcelains, bonding to cement, visible light translucency related to esthetic restoration, X-ray opacity, biocompatibility, fracture load of clinical bridge as well as lifetime and clinical survival rates of the restoratives made with zirconia. From the recent material researches on zirconia not only in Japan but also in the world, this review takes into account these interesting properties of zirconia and reliability as core material for all-ceramic dental restorations.

  12. Strengthening and Toughening Effect of Yttrium on Al2O3/TiCN Ceramic Tool Material

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The strengthening and toughening effect of yttrium on an advanced Al2O3/TiCN ceramic tool material was studied by means of SEM, TEM and energy spectrum analysis. Results showed that yttrium can react with the impurity elements such as W, Fe, Cr, etc. Thus, the interfaces between ceramic phases are purified and the interfacial binding strength is increased. As a result, the mechanical properties of the Al2O3/TiCN ceramic tool material reinforced with yttrium are improved significantly. In addition, the effect of yttrium on particle strengthening of the solid solution TiCN may partly contribute to the improvement of the mechanical properties.

  13. An irradiation test of heat-resistant ceramic composite materials. Interim report on post-irradiation examinations of the first preliminary irradiation test: 97M-13A

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shin-ichi; Takahashi, Tsuneo; Ishihara, Masahiro; Hayashi, Kimio; Sozawa, Shizuo; Saito, Takashi [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Suzuki, Yoshio [Nuclear Engineering, Co. Ltd., Osaka (Japan); Saito, Tamotsu; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The Japan Atomic Energy Research Institute (JAERI) has been carrying out the research on radiation damage mechanism of heat-resistant ceramic composite materials, as one of the subjects of the innovative basic research on high temperature engineering using the High Temperature Engineering Test Reactor (HTTR). A series of preliminary irradiation tests is being made using the Japan Materials Testing Reactor (JMTR). The present report describes results of post-irradiation examinations (PIE) so far on specimens irradiated in the first capsule, designated 97M-13A, to fast neutron fluences of 1.2-1.8x10{sup 24} m{sup -2} (E>1 MeV) at temperatures of 573, 673 and 843 K. In the PIE, measurements were made on (1) dimensional changes, (2) thermal expansions, (3) X-ray parameters and (4) {gamma}-ray spectra. The results for the carbon/carbon and SiC/SiC composites were similar to those in existing literatures. The temperature monitor effect was observed both for SiC fiber- and particle-reinforced SiC composites as in the case of monolithic SiC. Namely, the curve of the coefficient of thermal expansion (CTE) of these specimens showed a rapid drop above a temperature around the irradiation temperature +100 K in the first ramp (ramp rate: 10 K/min), while in the second ramp the CTE curves were almost the same as those of un-irradiated SiC specimens. (author)

  14. Low-temperature setting phosphate ceramics for stabilization of DOE problem low level mixed-waste: I. Material and waste form development

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Wagh, A.; Knox, L. [Argonne National Lab., Argonne, IL (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States)

    1994-03-01

    Chemically bonded phosphate ceramics are proposed as candidates for solidification and stabilization of some of the {open_quotes}problem{close_quotes} DOE low-level mixed wastes at low-temperatures. Development of these materials is crucial for stabilization of waste streams which have volatile species and any use of high-temperature technology leads to generation of off-gas secondary waste streams. Several phosphates of Mg, Al, and Zr have been investigated as candidate materials. Monoliths of these phosphates were synthesized using chemical routes at room or slightly elevated temperatures. Detailed physical and chemical characterizations have been conducted on some of these phosphates to establish their durability. Magnesium ammonium phosphate has shown to possess excellent mechanical and as well chemical properties. These phosphates were also used to stabilize a surrogate ash waste with a loading ranging from 25-35 wt.%. Characterization of the final waste forms show that waste immobilization is due to both chemical stabilization and physical encapsulation of the surrogate waste which is desirable for waste immobilization.

  15. Edge chipping and flexural resistance of monolithic ceramics☆

    Science.gov (United States)

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  16. Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation

    Directory of Open Access Journals (Sweden)

    Sandeeran Govender

    2017-02-01

    Full Text Available Considerable research has been conducted on monolithic catalysts for various applications. Strategies toward coating monoliths are of equal interest and importance. In this paper, the preparation of monoliths and monolithic catalysts have been summarized. More specifically, a brief explanation for the manufacturing of ceramic and metallic monoliths has been provided. Also, different methods for coating γ-alumina, as a secondary support, are included. Techniques used to deposit metal-based species, zeolites and carbon onto monoliths are discussed. Furthermore, monoliths extruded with metal oxides, zeolites and carbon are described. The main foci are on the reasoning and understanding behind the preparation of monolithic catalysts. Ideas and concerns are also contributed to encourage better approaches when designing these catalysts. More importantly, the relevance of monolithic structures to reactions, such as the selective oxidation of alkanes, catalytic combustion for power generation and the preferential oxidation of carbon monoxide, has been described.

  17. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  18. Advanced Porous Coating for Low-Density Ceramic Insulation Materials

    Science.gov (United States)

    Leiser, Daniel B.; Churchward, Rex; Katvala, Victor; Stewart, David; Balter, Aliza

    1988-01-01

    The need for improved coatings on low-density reusable surface insulation (RSI) materials used on the space shuttle has stimulated research into developing tougher coatings. The processing of a new porous composite "coating" for RST called toughened unipiece fibrous insulation Is discussed. Characteristics including performance in a simulated high-speed atmospheric entry, morphological structure before and after this exposure, resistance to Impact, and thermal response to a typical heat pulse are described. It is shown that this coating has improved impact resistance while maintaining optical and thermal properties comparable to the previously available reaction-cured glass coating.

  19. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    Science.gov (United States)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via

  20. Utilization of sludge waste from natural rubber manufacturing process as a raw material for clay-ceramic production.

    Science.gov (United States)

    Vichaphund, S; Intiya, W; Kongkaew, A; Loykulnant, S; Thavorniti, P

    2012-12-01

    The possibility of utilization of the sludge waste obtained from the natural rubber manufacturing process as a raw material for producing clay ceramics was investigated. To prepared clay-based ceramic, the mixtures of traditional clay and sludge waste (10-30 wt%) were milled, uniaxilly pressed and sintered at a temperature between 1000 and 1200 degrees C. The effect of sludge waste on the properties of clay-based ceramic products was examined. The results showed that the amount of sludge waste addition had an effect on both sinterability and properties of the clay ceramics. Up to 30 wt% of sludge waste can be added into the clay ceramics, and the sintered samples showed good properties.

  1. Effects of surface-conditioning methods on shear bond strength of brackets bonded to different all-ceramic materials.

    Science.gov (United States)

    Saraç, Y Şinasi; Külünk, Tolga; Elekdağ-Türk, Selma; Saraç, Duygu; Türk, Tamer

    2011-12-01

    The aims of this study were to investigate the effects of two surface-conditioning methods on the shear bond strength (SBS) of metal brackets bonded to three different all-ceramic materials, and to evaluate the mode of failure after debonding. Twenty feldspathic, 20 fluoro-apatite, and 20 leucite-reinforced ceramic specimens were examined following two surface-conditioning methods: air-particle abrasion (APA) with 25 μm Al(2)O(3) and silica coating with 30 μm Al(2)O(3) particles modified by silica. After silane application, metal brackets were bonded with light cure composite and then stored in distilled water for 1 week and thermocycled (×1000 at 5-55°C for 30 seconds). The SBS of the brackets was measured on a universal testing machine. The ceramic surfaces were examined with a stereomicroscope to determine the amount of composite resin remaining using the adhesive remnant index. Two-way analysis of variance, Tukey's multiple comparison test, and Weibull analysis were used for evaluation of SBS. The lowest SBS was with APA for the fluoro-apatite ceramic (11.82 MPa), which was not significantly different from APA for the feldspathic ceramic (13.58 MPa). The SBS for the fluoro-apatite ceramic was significantly lower than that of leucite-reinforced ceramic with APA (14.82 MPa). The highest SBS value was obtained with silica coating of the leucite-reinforced ceramic (24.17 MPa), but this was not significantly different from the SBS for feldspathic and fluoro-apatite ceramic (23.51 and 22.18 MPa, respectively). The SBS values with silica coating showed significant differences from those of APA. For all samples, the adhesive failures were between the ceramic and composite resin. No ceramic fractures or cracks were observed. Chairside tribochemical silica coating significantly increased the mean bond strength values.

  2. Ceramic Fiber as a New Material%新型纤维材料——陶瓷纤维

    Institute of Scientific and Technical Information of China (English)

    王小雅; 曹云峰

    2012-01-01

    陶瓷纤维以其质轻,耐火,耐腐蚀等性能,目前已经在机械、冶金、石油和化工等行业得到了广泛的应用,随着各种其他技术的应用,各种陶瓷纤维基复合材料得到了快速的发展。根据使用功能,陶瓷纤维可以分为高温陶瓷纤维和功能陶瓷纤维,用作绝热材料,过滤材料,高温超导材料等,此外陶瓷纤维还被用于生产耐高温陶瓷纤维纸和箱板纸。文章简述了陶瓷纤维的发展,列举了陶瓷纤维的种类、制备方法、应用及发展趋势。%Ceramic fiber as a new material was widely used in all fields,because of its light weight and fire-resistant,now ceramic fiber was widely used in machinery,metallurgy,petroleum,chemical industry.With a variety of other technology,all kinds of ceramic fiber composite has been developed rapidly.According to the function,ceramic fibers can be divided into high-temperature ceramic fibers and functional ceramic fibers.It can be used as insulation materials,filter materials,high-temperature superconducting materials,etc.In addition,ceramic fiber was also used in the production of high-temperature paper and cardboard paper.This paper is a brief overview of the development of ceramic fiber,the types of ceramic fiber,the preparation methods,applications and its developing trends.

  3. Characterization of Waste Material Derived Willemite-Based Glass-Ceramics Doped with Erbium

    Directory of Open Access Journals (Sweden)

    G. V. Sarrigani

    2015-01-01

    Full Text Available We reported, for the first time, to the best of our knowledge, the production of erbium doped willemite-based glass-ceramic using waste material. In this work, a willemite-based glass-ceramic was prepared from waste material to obtain excellent crystallinity and then doped with trivalent erbium (Er3+ to yield ([(ZnO0.5(SLS0.5]1−x[Er2O3]x final composition where x=3 wt%. The samples were sintered at various temperatures (500–1100°C to study the effects of sintering temperatures on microstructure and physical properties of the samples. X-ray diffraction (XRD and Fourier transform infrared (FTIR were used to determine structural changes and functional groups in the samples, respectively. Field-emission scanning electron microscopy (FE-SEM equipped with energy dispersive X-ray was used to observe surface morphology and to detect presence of elements in the samples. Findings showed that average grain size of the Er3+ doped glass-ceramic sample increased as a function of the sintering temperature and the optimum temperature was 900°C.

  4. Characterization of Ceramic Material Produced From a Cold Crucible Induction Melter Test

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-30

    This report summarizes the results from characterization of samples from a melt processed surrogate ceramic waste form. Completed in October of 2014, the first scaled proof of principle cold crucible induction melter (CCIM) test was conducted to process a Fe-hollandite-rich titanate ceramic for treatment of high level nuclear waste. X-ray diffraction, electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the CCIM material produced. Core samples at various radial locations from the center of the CCIM were taken. These samples were also sectioned and analyzed vertically. Together, the various samples were intended to provide an indication of the homogeneity throughout the CCIM with respect to phase assemblage, chemical composition, and chemical durability. Characterization analyses confirmed that a crystalline ceramic with desirable phase assemblage was produced from a melt using a CCIM. Hollandite and zirconolite were identified in addition to possible highly-substituted pyrochlore and perovskite. Minor phases rich in Fe, Al, or Cs were also identified. Remarkably only minor differences were observed vertically or radially in the CCIM material with respect to chemical composition, phase assemblage, and durability. This recent CCIM test and the resulting characterization in conjunction with demonstrated compositional improvements support continuation of CCIM testing with an improved feed composition and improved melter system.

  5. Method for obtaining ceramic compounds and resulting material

    OpenAIRE

    Torrecillas, Ramón; García Moreno, Olga; Fernández, Adolfo

    2009-01-01

    [ES] Partiendo como compuesto inicial de un componente LAS de acuerdo a la composición LixAlySizOw, donde x varía entre 0,8 y 1,2, Y varía entre 0,8 y 1,2, z varía entre 0,8 y 2 Y w varía entre 4 y 6, a continuación se efectúa una mezcla del componente LAS con nano partículas de SiC, obteniéndose una suspensión estable y homogénea. A continuación se procede a un secado de la suspensión resultante. Seguidamente se efectúa un conformado del material obtenido y, por últimos, se lleva a ...

  6. Examining the performance of refractory conductive ceramics as plasmonic materials: a theoretical approach

    OpenAIRE

    Kumar, Mukesh; Umezawa, Naoto; Ishii, Satoshi; Nagao, Tadaaki

    2015-01-01

    The main aim of this study is to scrutinize promising plasmonic materials by understanding their electronic structure and correlating them to the optical properties of selected refractory materials. For this purpose, the electronic and optical properties of the conductive ceramics TiC, ZrC, HfC, TaC, WC, TiN, ZrN, HfN, TaN, and WN are studied systematically by means of first-principles density functional theory. A full ab initio procedure to calculate plasma frequency from the electronic band...

  7. Dielectric Properties of Tungsten Copper Barium Ceramic as Promising Colossal-Permittivity Material

    Science.gov (United States)

    Wang, Juanjuan; Chao, Xiaolian; Li, Guangzhao; Feng, Lajun; Zhao, Kang; Ning, Tiantian

    2017-08-01

    Ba(Cu0.5W0.5)O3 (BCW) ceramic has been fabricated and its dielectric properties investigated for use in energy-storage applications, revealing a very large dielectric constant (˜104) at 1 kHz. Moreover, the colossal-permittivity BCW ceramic exhibited fine microstructure and optimal temperature stability over a wide temperature range from room temperature to 500°C. The internal barrier layer capacitor mechanism was considered to be responsible for its high dielectric properties. Based on activation values, it is concluded that doubly ionized oxygen vacancies make a substantial contribution to the conduction and relaxation behaviors at grain boundaries. This study suggests that this kind of material has potential for use in high-density energy storage applications.

  8. Influence of Inclusion Shape on Thermoelasto-Plastic Optimun Design of Ceramic Metal Functionally Graded Materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A nonlinear finite element method is applied to observe how inclusion shape influence the thermal response of a ceramic-metal functionally graded material (FGM).The elastic and plastic behaviors of the layers which are two-phase isotropic composites consisting of randomly oriented elastic spheroidal inclusions and a ductile matrix are predicted by a mean field method.The prediction results show that inclusion shape has remarkable influence on the overall behavior of the composite.The consequences of the thermal response analysis of the FGM are that the response is dependent on inclusion shape and its composition profile cooperatively and that the plastic behavior of each layer should be taken into account in optimum design of a ceramic-metal FGM.

  9. Ceramic materials for energy and environmental applications: Functionalizing of properties by tailored compositions

    DEFF Research Database (Denmark)

    Ivanova, Mariya; Ricote, Sandrine; Baumann, Stefan

    2013-01-01

    Stable social development requires novel approaches for energy production, distribution and storage combined with reasonable restrictions of the environmental impact. The fuel cell-based technologies, as well as the separation of gases from mixtures, particularly implemented into innovative power...... separation and ion/electron transport at the relevant operating conditions and stability ranges, improved electrical or ionic conductivities and permeation rates are required. That can be achieved by doping and substitution which are actors on a nano-scale that usually lead to macroscopic impacts....... This chapter is dedicated to the fascinating world of tailoring ceramic materials for energy and environmental applications. Selected approaches to tune ceramics will be discussed to illustrate the versatile effects that compositional variation can have on the macroscopic properties, e.g. the conductivity...

  10. Detection of ionizing radiations by studying ceramic tiles materials using thermoluminescence technique

    Science.gov (United States)

    Mandavia, H. C.; Murthy, K. V. R.; Purohit, R. U.

    2017-05-01

    Natural background radiation comes from two primary sources: cosmic radiation and terrestrial sources. Our natural environment has both livings and non-livings like - Sun, Moon, Sky, Air, Water, Soil, Rivers, Mountains, Forests, besides plants and animals. The worldwide average background dose for a human being is about 2.4 millisievert (mSv) per year. This exposure is mostly from cosmic radiation and natural radionuclides in the environment. The Earth, and all living things on it, are constantly bombarded by radiation from outer space. This radiation primarily consists of positively charged ions from protons to iron and larger nuclei derived sources outside our solar system. This radiation interacts with atoms in the atmosphere to create secondary radiation, including X-rays, muons, protons, alpha particles, pions, electrons, and neutrons. The present study discusses the utility of ceramic tiles as radiation dosimeters in case of nuclear fallout. Many flooring materials most of them are in natural form are used to manufacture floor tiles for household flooring purpose. Many natural minerals are used as the raw materials required for the manufacturing ceramic ware. The following minerals are used to manufacturing the ceramic tiles i.e. Quartz, Feldspar, Zircon, Talc, Grog, Alumina oxide, etc. Most of the minerals are from Indian mines of Gujarat and Rajasthan states, some of are imported from Russian subcontinent. The present paper reports the thermoluminescence dosimetry Study of Feldspar and Quartz minerals collected from the ceramic tiles manufacturing unit, Morbi. The main basis in the Thermoluminescence Dosimetry (TLD) is that TL output is directly proportional to the radiation dose received by the phosphor and hence provides the means of estimating unknown radiations from environment.

  11. Fracture resistance of monolithic zirconia molar crowns with reduced thickness

    OpenAIRE

    Nakamura, Keisuke; Harada, A.; Inagaki, R.; Kanno, Taro; Niwano, Y; Milleding, Percy; Ørtengren, Ulf Thore

    2015-01-01

    This is the accepted manuscript version. Published version is available at Acta Odontologica Scandinavica Objectives. The purpose of the present study was to analyze the relationship between fracture load of monolithic zirconia crowns and axial/occlusal thickness, and to evaluate the fracture resistance of monolithic zirconia crowns with reduced thickness in comparison with that of monolithic lithium disilicate crowns with regular thickness. Materials and methods. Monolithic zi...

  12. Computational materials science aided design of glass ceramics and crystal properties (abstract only).

    Science.gov (United States)

    Mannstadt, Wolfgang

    2008-02-13

    Today's high tech materials have in many cases highly specialized properties and designed functionalities. Materials parameters like high temperature stability, high stiffness and certain optical properties have to be optimized and in many cases an adaptation to given processes is necessary. Many materials are compounds or layered structures. Thus, surface and interface properties need to be considered as well. At the same time to some extent just a few atomic layers sometimes determine the properties of the material, as is well known in semiconductor and other thin film technologies. Therefore, a detailed understanding of the materials properties at the atomic scale becomes more and more important. In addition many high tech materials have to be of high purity or selective dopant concentrations have to be adjusted to fulfill the desired functionality. Modern materials developments successfully use computational materials science to achieve that goal. Improved software tools and continuously growing computational power allow us to predict macroscopic properties of materials on the basis of microscopic/atomic ab initio simulation approaches. At Schott, special materials, in particular glasses and glass ceramics, are produced for a variety of applications. For a glass ceramic all the above mentioned difficulties for materials development arise. The properties of a glass ceramic are determined by the interplay of crystalline phases embedded in an amorphous glass matrix. For materials development the understanding of crystal structures and their properties, surfaces and interface phenomena, and amorphous systems are necessary, likewise. Each by itself is already a challenging problem. Many crystal phases that are grown within the glass matrix do not exist as single crystals or are difficult to grow in reasonable amounts for experimental investigations. The only way to obtain the properties of these crystalline phases is through 'ab initio' simulations in the computer

  13. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.

    2010-09-29

    , and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

  14. Development of bioactive materials using reticulated ceramics for bone substitute

    Science.gov (United States)

    Jiang, Gengwei

    For hard tissue prosthetics, it is necessary to seek novel synthesis routes by which a real structural bone can be simulated in terms of bioactivity, porosity, and mechanical behavior. The work presented here deals with the development of such a component by a novel synthesis route for bone implantation. To enhance the mechanical properties, an industrial alumina has been selected as the substrate. Alumina is not only bio inert but also mechanically strong which makes it an ideal substrate for bone substitute. The high porosity is achieved via a sponge technique by which both pore size and density can be changed easily. The bioactivity is induced by coating a highly bioactive HA film onto the inner pore surfaces of the reticulated alumina. Based on this concept, the research has focused on the coating of HA onto inner pore surfaces of the reticulated alumina via several effective methods that are developed in our laboratory. No previous studies have so far been reported on coating inner surfaces of small-diameter pores ranging from 0.1--1.0 mm. The key materials processing issues dealt with in this work include precursor chemistry, coating procedures, synthesis of coated component, interface structure study, film adhesion strength testing, and mechanical properties of the component. This novel approach has shown great promise in synthesizing bone substitutes. To determine the applicability of the coated component in hard tissue prosthetics, a bioactivity study has been carried out. By immersing the synthetic HA into simulated body fluid (SBF), the bioresponse has been measured for a variety of samples with different processing conditions. Fundamental aspects of this study are centered on the effects of structural characteristics of HA on the bioactivity. Based on extensive IR and XRD experimental data, it has been found that the bioactivity of HA is sensitively controlled by the structural crystallinity of the HA and its specific surface area. Furthermore, based on

  15. Comparing Titanium Release from Ceramic Tiles using a waste material characterization test - Influence of Calcium and Organic Matter concentrations

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Hansen, Steffen Foss; Astrup, Thomas Fruergaard

    2015-01-01

    Nanomaterials are beneficial in the building industry to enhance or add certain features to commonly used materials. One example is the use of nano-titanium dioxide in the surface coating of ceramic tiles, to make the tiles surface self-cleaning. At the end of life stage, ceramic tiles might...... to assess if nano-titanium dioxide coated ceramic tiles are suitable for depositing in a landfill or not. Specifically, we used compliance batch test method, which is a simple test evaluating the release from a solid material to an aqueous media during 24 hrs. If nano-Ti particles are released from solid...... of the organic matter to fully cover the surface of the particles. We evaluated the titanium release from identical ceramic tiles - with and without a nano-titanium dioxide coating - and varied the concentrations of calcium chloride (100-500 mg/l) and humic acid (25-100 mg/l). The titanium release was quantified...

  16. The influence of Cerafiber 10 ceramic fibre on strength properties of moulding material for investment casting technology

    Directory of Open Access Journals (Sweden)

    M. Nadolski

    2009-07-01

    Full Text Available The presented investigations have been aimed to determine strength properties of shell ceramic moulds produced on the basis of silica sol with the matrix composed of MK75 silica flour and Cerafiber 10 aluminosilicate ceramic fibre, the chemical composition of the latter being 56% SiO2 and 44% Al2O3. The sample material has been obtained by multi-layer spraying of ceramic slurry onto the pattern sets. The achieved results, concerning strength properties revealed during the controlled bending test performed by means of the four-point deflectometer, have been compared with the presented elsewhere results [16-19] for moulding material with grain or grain-fibre matrix, where TC E08 fibre produced by Thermal Ceramics (i.e. Kaowool HP-50-E-08 fibre has been applied as a matrix component.

  17. Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors.

    Science.gov (United States)

    Gutmann, Bernhard; Obermayer, David; Reichart, Benedikt; Prekodravac, Bojana; Irfan, Muhammad; Kremsner, Jennifer M; Kappe, C Oliver

    2010-10-25

    Silicon carbide (SiC) is a strongly microwave absorbing chemically inert ceramic material that can be utilized at extremely high temperatures due to its high melting point and very low thermal expansion coefficient. Microwave irradiation induces a flow of electrons in the semiconducting ceramic that heats the material very efficiently through resistance heating mechanisms. The use of SiC carbide reaction vessels in combination with a single-mode microwave reactor provides an almost complete shielding of the contents inside from the electromagnetic field. Therefore, such experiments do not involve electromagnetic field effects on the chemistry, since the semiconducting ceramic vial effectively prevents microwave irradiation from penetrating the reaction mixture. The involvement of electromagnetic field effects (specific/nonthermal microwave effects) on 21 selected chemical transformations was evaluated by comparing the results obtained in microwave-transparent Pyrex vials with experiments performed in SiC vials at the same reaction temperature. For most of the 21 reactions, the outcome in terms of conversion/purity/product yields using the two different vial types was virtually identical, indicating that the electromagnetic field had no direct influence on the reaction pathway. Due to the high chemical resistance of SiC, reactions involving corrosive reagents can be performed without degradation of the vessel material. Examples include high-temperature fluorine-chlorine exchange reactions using triethylamine trihydrofluoride, and the hydrolysis of nitriles with aqueous potassium hydroxide. The unique combination of high microwave absorptivity, thermal conductivity, and effusivity on the one hand, and excellent temperature, pressure and corrosion resistance on the other hand, makes this material ideal for the fabrication of reaction vessels for use in microwave reactors.

  18. X-Ray Diffraction Phase Analyses for Granulated and Sintered Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Suminar Pratapa

    2007-11-01

    Full Text Available One basic problematic aspect in x-ray diffraction phase analysis is microabsorption effect which may arise from the size of the crystallite phases. Complication of the problem may intensify in sintered ceramic materials where milling of the samples is not simple. We report the Rietveld x-ray diffraction phase analysis of MgO-α-Al2O3 powder mixtures with phase content ratio of 1:1 by weight and MgO-Y2O3 sintered ceramic composites with Y2O3 contents of 10%, 20% and 30% by weight. The mixtures were pre-sintered at 1000°C for 2 hours and then milled while the composites were sintered at 1550°C for 3 hours. The phase composition analysis was done using Rietica, a non-commercial Rietveld method-based software. Relative and absolute phase compositions were examined and results showed that there was a significant amount of phase composition bias resulted from the examination. For the powder mixture, milling can reduce microabsorption effect and hence the calculation bias. For the ceramic composite where milling is almost impossible, additional of Y2O3 caused smaller crystallite size of MgO, so that composition bias is smaller in composites with higher Y2O3 content. A mathematical model is proposed to provide more acceptable phase composition results.

  19. 陶瓷材料的发展%Development of Ceramic Materials

    Institute of Scientific and Technical Information of China (English)

    李成

    2015-01-01

    陶瓷在食器、装饰的使用和科学技术的发展中扮演重要的角色。黏土经淬取而成为陶瓷的原料。黏土具有韧性,常温下遇水可塑,微干可雕,全干可磨,烧至700℃可成能盛水的陶器;烧至1230℃会瓷化,可完全不吸水且耐高温、耐腐蚀。陶瓷的用途多种多样,被广泛应用于当今文化、科技的发展中。%Ceramics play an important role in the development of tableware, decorative use of science and technology. Clay by Cuiqu become ceramic raw materials. Clay has the toughness, plastic water at room temperature, slightly dry can be carved, all dry grind, till 700℃ can be filled with water into pottery; till 1 230℃ will be porcelain, can be completely non-absorbent and temperature resistance corrosion. Uses a variety of ceramics, are widely used in today's culture, the development of technology in.

  20. Alternative technological approach for synthesis of ceramic pigments by waste materials recycling

    Energy Technology Data Exchange (ETDEWEB)

    Doynov, M.; Dimitrov, T.; Kozhukharov, S.

    2016-05-01

    Alternative technological approach is proposed enabling utilization of raw materials from an oil refinery, such as waste guard layers from reactors. Reagent grade and purified MgO, Cr{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, and nitric acid (HNO{sub 3}), were used as additional precursors. The homogeneous mixtures obtained were formed into pellets and sintered at different temperatures. The main phase was proved by X-ray phase analysis (XRD) and compared to ICPDS database. The main phase in the ceramics synthesized was solid solution of spinel MgAl{sub 2}O{sub 4} and magnesiochromite. These minerals are classified as chromspinelide MgCr{sub 1}.2Al{sub 0}.4Fe{sub 0}.4O{sub 4} and alumochromite MgCr{sub 1}.6Al{sub 0}.4O{sub 4}. Additional SEM observations, combined with EDX analysis were performed, evincing agglomeration at lower temperatures, followed by agglomerate crumbling, at elevated calcination temperature. The complete transformation of initial precursors into the final ceramic compounds was found to occur at 800 degree centigrade 1 h. The ceramic samples synthesized had high density of 1.72-1.93 g/cm{sup 3} and large absorption area - 32.93% which is probably due to the high porosity of the sample. (Author)

  1. Viability of utilization of waste materials from ceramic products in precast concretes

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. I.

    2001-12-01

    Full Text Available The recycled and re-valuation process of waste materials involves studies lead to a deep acknowledges of them, finding applications for their intended use. The waste materials from ceramic products can be recycled into the construction sector, as arid or pozzolanic materials. The current work deals with the incorporation of ceramic materials in these two different ways, checking the behaviour of the elaborated mortar by mean of laboratory tests. Also, tests are developed in factory, using these as components for precast concrete tiles.

    Todo proceso de reciclado y revalorización de residuos implica estudios encaminados a un conocimiento profundo de los mismos, de forma que se busquen aplicaciones concretas de uso. Los materiales de desecho procedentes de productos cerámicos pueden ser reciclados dentro del sector de la construcción, ya sea como áridos o como materiales puzolánicos. El presente trabajo aborda la incorporación de materiales cerámicos desde estas dos vertientes, comprobando, en cada caso, el comportamiento de los morteros elaborados mediante ensayos de laboratorio. También se llevan a cabo pruebas en fábrica, siendo utilizados como componentes en prefabricados de hormigón.

  2. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives.

  3. Bibliography of the technical literature of the Materials Joining Group, Metals and Ceramics Division, 1951--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Goodwin, G.M.; Gardner, K. (comps.)

    1989-10-01

    This document contains a listing of the written scientific information originating in the Materials Joining (formerly the Welding and Brazing Group), Metals and Ceramics Division, Oak Ridge National Laboratory during 1951 through June 1989. This registry of documents is as much as possible, in the order of issue date. A complete cross-referenced listing of the technical literature of the Metals and Ceramics Division is also available.

  4. 整体材料的研制及其在蛋白质组色谱分离中的应用%Preparation of monolithic materials and applications in proteomic chromatographic separation

    Institute of Scientific and Technical Information of China (English)

    吴慈; 梁玉; 梁振; 张丽华; 张玉奎

    2016-01-01

    With the advantages of facile preparation,fast mass transfer,low backpressure and easy modifica-tion,monolithic materials have been widely used in chromatographic separation.In order to familiarize profes-sionals of home and abroad with the present situation of monolithic materials,this review mainly summarizes the preparation methods of different kinds of monolithic materials (including organic polymer monoliths,silica-based monoliths,organic-inorganic hybrid silica monoliths)and their applications in the separation of proteins or peptides in proteomics.It was pointed out that compared with packed column,monolithic packed column efficiency was to be further improved from the performance of monolithic materials,such as specific surface area,pore size distribution,stablity and hydrophilicity.Taking advantage of the low backpressure of monolithic materials,the capillary monolithic column with superlong and superfine inner diameter was prepared in order to make high efficient separation analysis of macro proteomics samples.With the further study of monolithic materials preparation technology,monolithic materials will play more important role in the fields of food safety, life science and environment.%整体材料由于具有制备简单、传质速度快、低背压、表面易于修饰等优势,在色谱分离领域中应用非常广泛。为使业界了解国内外对整体材料研制的现状,对有机聚合物整体材料、硅胶整体材料、有机-无机杂化整体材料三种整体材料的制备方法及其在蛋白质组学中蛋白质和肽段色谱分离中的应用进行了综述,指出:与填充柱相比,整体柱的分离柱效仍有待进一步提高,可以从整体材料的性能,如比表面积、孔径分布、稳定性、亲水性等方面进行改进。利用整体材料低背压的优势,可制备超长、超细内径毛细管整体柱,有利于微量蛋白质组学样品的高效分离分析。随着对整体材料制备

  5. Method for Making a Fuel Cell from a Solid Oxide Monolithic Framework

    Science.gov (United States)

    Cable, Thomas L. (Inventor); Sofie, Stephen W. (Inventor)

    2014-01-01

    The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which a thin electrolyte is supported between electrodes of essentially equal thickness. Individual cell units are made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that subsequent to sintering, is made into either an anode or a cathode by means of appropriate solution and thermal treatment means. Each cell unit is assembled by depositing of a thin coating of ion conducting ceramic material upon the side of each of two pieces of tape surface having the smallest pore openings, and then mating the coated surfaces to create an unsintered electrode scaffold pair sandwiching an electrolyte layer. The opposing major outer exposed surfaces of each cell unit is given a thin coating of electrically conductive ceramic, and multiple cell units are stacked, or built up by stacking of individual cell layers, to create an unsintered fuel cell stack. Ceramic or glass edge seals are installed to create flow channels for fuel and air. The cell stack with edge sealants is then sintered into a ceramic monolithic framework. Said solution and thermal treatments means convert the electrode scaffolds into anodes and cathodes. The thin layers of electrically conductive ceramic become the interconnects in the assembled stack.

  6. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO2 laser beam. A powdered dental glass-ceramic material from the system SiO2-Na2O-K2O-CaO-Al2O3-MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310(-6)/K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on bovine enamel

  7. Modelling of Grain Growth Kinetics in Porous Ceramic Materials under Normal and Irradiation Conditions

    Directory of Open Access Journals (Sweden)

    Mikhail S. Veshchunov

    2009-09-01

    Full Text Available Effect of porosity on grain growth is both the most frequent and technologically important situation encountered in ceramic materials. Generally this effect occurs during sintering, however, for nuclear fuels it also becomes very important under reactor irradiation conditions. In these cases pores and gas bubbles attached to the grain boundaries migrate along with the boundaries, in some circumstances giving a boundary migration controlled by the movement, coalescence and/or sintering of these particles. New mechanisms of intergranular bubble and pore migration which control the mobility of the grain boundary under normal and irradiation conditions are reviewed in this paper.

  8. Ceramic Processing

    Energy Technology Data Exchange (ETDEWEB)

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  9. Cell response of calcium phosphate based ceramics, a bone substitute material

    Directory of Open Access Journals (Sweden)

    Juliana Marchi

    2013-01-01

    Full Text Available The aim of this study was to characterize calcium phosphate ceramics with different Ca/P ratios and evaluate cell response of these materials for use as a bone substitute. Bioceramics consisting of mixtures of hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP powders in different proportions were pressed and sintered. The physical and chemical properties of these bioceramics were then characterized. Characterization of the biological properties of these materials was based on analysis of cell response using cultured fibroblasts. The number of cells attached to the samples was counted from SEM images of samples exposed to cell culture solution for different periods. These data were compared by analysis of variance (ANOVA complemented by the Tukey's test. The TCP sample had higher surface roughness and lower density. The adherence and growth of FMM1 cells on samples from all groups was studied. Even though the different calcium based ceramics exhibited properties which made them suitable as bone substitutes, those with higher levels of β-TCP revealed improved cell growth on their surfaces. These observations indicated two-phase calcium phosphate based materials with a β-TCP surface layer to be a promising bone substitute.

  10. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties

    Science.gov (United States)

    Bakan, Emine; Vaßen, Robert

    2017-08-01

    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.

  11. Data on post irradiation experiments of heat resistant ceramic composite materials. PIE for 97M-13A

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shin-ichi; Ishihara, Masahiro; Souzawa, Shizuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The research on the radiation damage mechanism of heat resistant ceramic composite materials is one of the research subjects of the innovative basic research in the field of high temperature engineering, using the High Temperature engineering Test Reactor (HTTR). Three series of irradiation tests on the heat resistant ceramic composite materials, first to third irradiation test program, were carried out using the Japan Material Testing Reactor (JMTR). This is a summary report on the first irradiation test program; irradiation induced dimensional change, thermal expansion coefficient, X-ray diffraction and {gamma}-ray spectrum are reported. (author)

  12. Finite element modeling of deposition of ceramic material during SLM additive manufacturing

    Directory of Open Access Journals (Sweden)

    Chen Qiang

    2016-01-01

    Full Text Available A three dimensional model for material deposition in Selective Laser Melting (SLM with application to Al2O3-ZrO2 eutectic ceramic is presented. As the material is transparent to laser, dopants are added to increase the heat absorption efficiency. Based on Beer-Lambert law, a volumetric heat source model taking into account the material absorption is derived. The Level Set method with multiphase homogenization is used to track the shape of deposed bead and the thermodynamic is coupled to calculate the melting-solidification path. The shrinkage during consolidation from powder to compact medium is modeled by a compressible Newtonian constitutive law. A semi-implicit formulation of surface tension is used, which permits a stable resolution to capture the gas-liquid interface. The formation of droplets is obtained and slight waves of melt pool are observed. The influence of different process parameters on temperature distribution, melt pool profiles and bead shapes is discussed.

  13. Decomposition of paper wastes in presence of ceramics and cement raw material.

    Science.gov (United States)

    Conesa, Juan A; Gálvez, Araceli; Fullana, Andrés

    2008-05-01

    Paper recycling is an environmental important activity that is carried out in all the countries, but during the recycling process a paper waste is produced. Generally these wastes are placed in landfill sites but it is possible to profit it as secondary fuel and raw material in manufacture furnaces. In this work the combustion of the waste papers with cement and ceramic raw material has been studied with the objective to analyse the interaction of these substances with the emitted pollutants like PAHs and PCDD/Fs. The results of the study show that the presence of inorganic material produces an increment in the lighter PAH emission but chlorinated compounds are not affected. The PCDD/F emission level found in the combustion of this waste is quite low compared with other wastes subjected to similar conditions.

  14. Non-stationary drying of ceramic-like materials controlled through acoustic emission method

    Science.gov (United States)

    Kowalski, Stefan Jan; Szadzińska, Justyna

    2012-12-01

    This paper presents results of convective drying of ceramic-like materials in non-stationary conditions. The effect of periodically changing drying parameters at different frequencies and amplitudes on material quality has been investigated. During drying tests the destruction of the material was controlled trough the acoustic emission method and monitored with a digital camera. The experiments were carried out on cylindrically shaped samples made of KOC kaolin clay. The non-stationary drying consisted in periodical changes of the drying medium temperature and humidity. It has been found that a properly arranged methodology of non-stationary drying positively affects the product quality, mainly when drying is carried on with periodical changes of air humidity and to lesser extent with periodical changes of air temperature.

  15. Theoretical Studies on the Electronic Structures and Properties of Complex Ceramic Crystals and Novel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2012-01-14

    This project is a continuation of a long program supported by the Office of Basic Energy Science in the Office of Science of DOE for many years. The final three-year continuation started on November 1, 2005 with additional 1 year extension to October 30, 2009. The project was then granted a two-year No Cost Extension which officially ended on October 30, 2011. This report covers the activities within this six year period with emphasis on the work completed within the last 3 years. A total of 44 papers with acknowledgement to this grant were published or submitted. The overall objectives of this project are as follows. These objectives have been evolved over the six year period: (1) To use the state-of-the-art computational methods to investigate the electronic structures of complex ceramics and other novel crystals. (2) To further investigate the defects, surfaces/interfaces and microstructures in complex materials using large scale modeling. (3) To extend the study on ceramic materials to more complex bioceramic crystals. (4) To initiate the study on soft condensed matters including water and biomolecules. (5) To focus on the spectroscopic studies of different materials especially on the ELNES and XANES spectral calculations and their applications related to experimental techniques. (6) To develop and refine computational methods to be effectively executed on DOE supercomputers. (7) To evaluate mechanical properties of different crystals and those containing defects and relate them to the fundamental electronic structures. (8) To promote and publicize the first-principles OLCAO method developed by the PI (under DOE support for many years) for applications to large complex material systems. (9) To train a new generation of graduate students and postdoctoral fellows in modern computational materials science and condensed matter physics. (10) To establish effective international and domestic collaborations with both experimentalists and theorists in materials

  16. New high boron content polyborane precursors to advanced ceramic materials: New syntheses, new applications

    Science.gov (United States)

    Guron, Marta

    There is a need for new synthetic routes to high boron content materials for applications as polymeric precursors to ceramics, as well as in neutron shielding and potential medical applications. To this end, new ruthenium-catalyzed olefin metathesis routes have been devised to form new complex polyboranes and polymeric species. Metathesis of di-alkenyl substituted o-carboranes allowed the synthesis of ring-closed products fused to the carborane cage, many of which are new compounds and one that offers a superior synthetic method to one previously published. Acyclic diene metathesis of di-alkenyl substituted m-carboranes resulted in the formation of new main-chain carborane-containing polymers of modest molecular weights. Due to their extremely low char yields, and in order to explore other metathesis routes, ring opening metathesis polymerization (ROMP) was used to generate the first examples of poly(norbornenyl- o-carboranes). Monomer synthesis was achieved via a two-step process, incorporating Ti-catalyzed hydroboration to make 6-(5-norbornenyl)-decaborane, followed by alkyne insertion in ionic liquid media to achieve 1,2-R2 -3-norbornenyl o-carborane species. The monomers were then polymerized using ROMP to afford several examples of poly(norbornenyl- o-carboranes) with relatively high molecular weights. One such polymer, [1-Ph, 3-(=CH2-C5H7-CH2=)-1,2-C 2B10H10]n, had a char yield very close to the theoretical char yield of 44%. Upon random copolymerization with poly(6-(5-norbornenyl) decaborane), char yields significantly increased to 80%, but this number was well above the theoretical value implicating the formation of a boron-carbide/carbon ceramic. Finally, applications of polyboranes were explored via polymer blends toward the synthesis of ceramic composites and the use of polymer precursors as reagents for potential ultra high temperature ceramic applications. Upon pyrolysis, polymer blends of poly(6-(5-norbornenyl)-decaborane) and poly

  17. Monoliths in Bioprocess Technology

    Directory of Open Access Journals (Sweden)

    Vignesh Rajamanickam

    2015-04-01

    Full Text Available Monolithic columns are a special type of chromatography column, which can be used for the purification of different biomolecules. They have become popular due to their high mass transfer properties and short purification times. Several articles have already discussed monolith manufacturing, as well as monolith characteristics. In contrast, this review focuses on the applied aspect of monoliths and discusses the most relevant biomolecules that can be successfully purified by them. We describe success stories for viruses, nucleic acids and proteins and compare them to conventional purification methods. Furthermore, the advantages of monolithic columns over particle-based resins, as well as the limitations of monoliths are discussed. With a compilation of commercially available monolithic columns, this review aims at serving as a ‘yellow pages’ for bioprocess engineers who face the challenge of purifying a certain biomolecule using monoliths.

  18. All-ceramic single-tooth restorations: choosing the material to match the preparation--preparing the tooth to match the material.

    Science.gov (United States)

    Baltzer, A

    2008-01-01

    The shape of a crown preparation is the prime determinant for the choice of material for an all-ceramic restoration. One essential factor is the available space for the restoration, which requires a certain occlusal thickness. The dentist's preparation design determines the available vertical clearance, and the dental technician has the responsibility of advising the dentist with regard to either choosing the right material to match the preparation or to preparing the tooth to match the material. Assuming a minimum static fracture strength of > 2000 N, the following materials can be used for all-ceramic crowns: Laboratory surveys have shown that in most situations, the available occlusal clearance in clinical reality is only 0.8 to 0.9 mm (after cementing). This shows that the available space will often be insufficient for providing monoblock crowns and still on the tight side for veneered oxide ceramics (In Ceram, zirconia, etc.). However, crowns made of veneered oxide ceramics are much more complex to fabricate and much more expensive. By simply providing a minimal occlusal thickness of 1.5 mm, the treatment provider could therefore easily facilitate the use of the much more economical monoblock crowns without compromising either esthetics or strength. Actually, crowns with veneered oxide ceramic copings do not offer any higher fracture resistance compared to Mark II crowns as long as the minimum thickness requirements are met. The flexural strength of CAD/CAM-fabricated lithium disilicate rods is about twice that of CAD/CAM-fabricated Mark II rods. When used for crowns with a wall thickness of 1.5 mm, however, both materials exhibit the same fracture strength of between 2000 and 2500 N. This is related to the different reinforcing action of the adhesive luting agent, which is essentially required for both these materials. When choosing a material, preparation shapes, technical complexity and cost should be thoroughly compared and scrutinized and should figure

  19. Conversion of sandy tailing from banded iron formation exploitation into glass-ceramic materials

    Directory of Open Access Journals (Sweden)

    Valéria Alves Rodrigues de Melo

    2012-02-01

    Full Text Available Glass-ceramic materials made of 40.0 wt. (% of sandy tailing from banded iron formation exploitation and 60 wt. (% of slag from steelwork were analyzed. Vitrification was obtained by heating the batch samples up to 1400 °C for 1 hour and quenching the melt on a stainless steel plate. Devitrification was obtained by heat-treating the as-quenched glass samples in isothermal conditions at 750 and 1000 °C for 2 hours. FTIR spectroscopy analysis on the devitrified samples indicates a peak shift towards higher wave number with respect to the as-quenched glass because of the crystallization. XRD analysis revealed the presence of crystalline diopside CaMgSi2O6 as the major phase in the glass samples isothermally heat-treated at 1000 °C. Results also indicated that the devitrification at 1000 °C and an incipient devitrification at 750 °C resulted into harder glass-ceramic materials.

  20. Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics.

    Science.gov (United States)

    Nath, Chandra; Lim, G C; Zheng, H Y

    2012-07-01

    Micro-chipping via micro-cracks, due to rapid mechanical indentations by abrasive grits, is the fundamental mechanism of material removal during ultrasonic machining (USM) of hard-brittle materials like ceramics and glass. This study aims mainly to investigate the adverse effects of this inherent removal phenomena on the hole integrity such as entrance chipping, wall roughness and subsurface damage. It also presents the material removal mechanism happens in the gap between the tool periphery and the hole wall (called 'lateral gap'). To do so, experiments were conducted for drilling holes on three advanced structural ceramics, namely, silicon carbide, zirconia, and alumina. Earlier published basic studies on the initiation of different crack modes and their growth characteristics are employed to explain the experimental findings in this USM study. It is realized that the radial and the lateral cracks formed due to adjacent abrasives, which are under the tool face, extends towards radial direction of the hole resulting in entrance chipping. Additionally, the angle penetration and the rolling actions of the abrasives, which are at the periphery of the tool, contribute to the entrance chipping. Later on, in the 'lateral gap', the sliding (or abrasion) and the rolling mechanisms by the larger abrasives take part to material removal. However, they unfavorably produce micro-cracks in the radial direction resulting in surface and subsurface damages, which are ultimately responsible for higher wall-surface roughness. Since the size of micro-cracks in brittle materials is grit size dependent according to the earlier studied physics, it is realized that such nature of the hole integrity during USM can only be minimized by employing smaller grit size, but cannot fully be eliminated.

  1. Isotope exchange reactions on ceramic breeder materials and their effect on tritium inventory

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, M.; Baba, A. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Kawamura, Y.; Nishi, M.

    1998-03-01

    Though lithium ceramic materials such as Li{sub 2}O, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3} and Li{sub 4}SiO{sub 4} are considered as breeding materials in the blanket of a D-T fusion reactor, the release behavior of the bred tritium in these solid breeder materials has not been fully understood. The isotope exchange reaction rate between hydrogen isotopes in the purge gas and tritium on the surface of breeding materials have not been quantified yet, although helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas in the recent blanket designs. The mass transfer coefficient representing the isotope exchange reaction between H{sub 2} and D{sub 2}O or that between D{sub 2} and H{sub 2}O in the ceramic breeding materials bed is experimentally obtained in this study. Effects of isotope exchange reactions on the tritium inventory in the bleeding blanket is discussed based on data obtained in this study where effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions are considered. The way to estimate the tritium inventory in a Li{sub 2}ZrO{sub 3} blanket used in this study shows a good agreement with data obtained in such in-situ experiments as MOZART, EXOTIC-5, 6 and TRINE experiments. (author)

  2. Effect of self-glazing on reducing the radioactivity levels of red mud based ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shuo [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Wu, Bolin, E-mail: wubolin3211@gmail.com [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China)

    2011-12-30

    Graphical abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation level has clear change regularity that the radioactivity levels of red mud (6360 Bq) are obvious declined, and can be reduced to that of the natural radioactive background of Guilin Karst landform, China (3600 Bq). It will not only consume large quantities of red mud, but also decrease the production cost of self-glazing RMCM. And the statement of this paper will offer effective ways to reduce the radioactivity level of red mud. Highlights: Black-Right-Pointing-Pointer The self-glazing phenomenon in red mud system was first discovered in our research. Black-Right-Pointing-Pointer Radiation levels of red mud can be reduced efficiently by self-glazing layer. Black-Right-Pointing-Pointer Red mud based ceramic materials will not cause harm to environment and humans. Black-Right-Pointing-Pointer This research possesses important economic significances to aluminum companies. - Abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation

  3. Ceramic materials in hydroelectric power plants - testing and working out method descriptions. Prestudy; Keramiska material i vattenkraftanlaeggningar - test och utarbetande av metodbeskrivning. Foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    Forssander, Maerit (TerraCorrosion AB (SE)); Persson, Charlotte (EnergoRetea, Stockholm (SE)); Carlsson, Roger (Vattenfall Power Consultant, Stockholm (SE)); Edwardson, Wille (Jaemtkontroll, Hammerdal (SE)); Johansson, Martin (Skellefteaa Kraft (SE)); Westerlund, Erik (Fortum Power and Heat OY (FI))

    2008-01-15

    Using ceramic materials for anti-corrosion painting in Swedish hydro power plants has been done with different results. In some cases it has performed well but in other it has failed. In only some cases the tests has been followed up rigorously to learn more about the process. The result from the interviews with the user and manufacturers is that there are cases where the use of ceramics in the hydro power plants will be economically favourable. The materials are there but they have to be tested in every single application before general recommendations can be done. A literature survey has been performed. Experiences from tests with ceramics in hydro power plants in Sweden have been summarised. Manufacturers on the Swedish market have been interviewed. The results from the literature survey showed that no published result was to be found of using ceramics in hydro electric power plants in the world. It is mentioned somewhere that Three Gorges in China have been using ceramics but no results was found. The conclusion is that even though the use of ceramics in hydro power plants can be economically favourable more tests has to be done. Those tests can be done together with the manufacturers in Sweden

  4. Development of a Chitosan-Based Biofoam: Application to the Processing of a Porous Ceramic Material

    Directory of Open Access Journals (Sweden)

    Philippe Michaud

    2011-02-01

    Full Text Available Developing biofoams constitutes a challenging issue for several applications. The present study focuses on the development of a chitosan-based biofoam. Solutions of chitosan in acetic acid were dried under vacuum to generate foams with high-order structures. Chitosan concentration influenced significantly the morphology of developed porosity and the organization of pores in the material. Physico-chemical characterizations were performed to investigate the effects of chitosan concentration on density and thermal conductivity of foams. Even if chitosan-based biofoams exhibit interesting insulating properties (typically around 0.06 W·m−1·K−1, it has been shown that their durabilities are limited when submitted to a wet media. So, a way of application consists to elaborate a ceramic material with open porosity from a slurry prepared with an organic solvent infiltrating the porous network of the foam.

  5. Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hui Zhang; Raman P. Singh

    2008-11-30

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor componets is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

  6. Effect of self-glazing on reducing the radioactivity levels of red mud based ceramic materials.

    Science.gov (United States)

    Qin, Shuo; Wu, Bolin

    2011-12-30

    Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm(3); compressive strength, 78.12 MPa). The radiation level has clear change regularity that the radioactivity levels of red mud (6360 Bq) is obvious declined, and can be reduced to that of the natural radioactive background of Guilin Karst landform, China (3600 Bq). It will not only consume large quantities of red mud, but also decrease the production cost of self-glazing RMCM. And the statement of this paper will offer effective ways to reduce the radioactivity level of red mud.

  7. ENERGY EFFICIENCY CHALLENGES ADDRESSED THROUGH THE USE OF ADVANCED REFRACTORY CERAMIC MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL

    2014-01-01

    Refractory ceramics can play a critical role in improving the energy efficiency of traditional industrial processes through increased furnace efficiency brought about by the employment of novel refractory systems and techniques. Examples of advances in refractory materials related to aluminum, gasification, glass, and lime are highlighted. Energy savings are realized based on reduction of chemical reactions, elimination of mechanical degradation caused by the service environment, reduction of temperature limitations of materials, and elimination of costly installation and repair needs. Key results of projects resulting from US Department of Energy (DOE) funded research programs are discussed with emphasis on applicability of these results to high temperature furnace applications and needed research directions for the future.

  8. Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Silvio R., E-mail: rainho@fct.unesp.br [Universidade Estadual Paulista — UNESP, Faculdade de Ciências e Tecnologia — FCT, 19060-900 Presidente Prudente — SP (Brazil); Souza, Agda E. [Universidade Estadual Paulista — UNESP, Faculdade de Ciências e Tecnologia — FCT, 19060-900 Presidente Prudente — SP (Brazil); Carvalho, Claudio L.; Reynoso, Victor C.S. [Universidade Estadual Paulista — UNESP, Faculdade de Engenharia de Ilha Solteira — FEIS, 15385-000 Ilha Solteira – SP (Brazil); Romero, Maximina; Rincón, Jesús Ma. [Instituto de Ciencias de la Construccion Eduardo Torroja — IETCC, CSIC, 28033 Madrid (Spain)

    2014-12-15

    Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), and light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.

  9. New ceramic material specially designed to optimise the output of the heating systems; Nuevo material ceramico disenado especificamente para optimizar el rendimiento de los sistemas de calefaccion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This article sets out the main features of Dual Kherr, its development and uses. Dual Kherr(reg.) is a ceramic composite based on porcelain clay. It has been specially designed to work as a storage heater and a radiant heating system. Jointly developed by the R and D departments of both companies, PAMESA and CLIMASTAR, this new material optimises the output of any heating system and it has been specially conceived to save energy. It is a great revolution, mainly due to the following: On the one hand, Dual Kherr incorporates ceramic to the heating business, opening a new and important market. On the other hand, this new material adds the aesthetics proper of the ceramic material to the design of the heating systems. It even allows the development of artistic collections. (Author)

  10. Ferroelectromagnetic solid solutions on the base piezoelectric ceramic materials for components of micromechatronics

    Science.gov (United States)

    Bochenek, Dariusz; Zachariasz, Radosław; Niemiec, Przemysław; Ilczuk, Jan; Bartkowska, Joanna; Brzezińska, Dagmara

    2016-10-01

    In the presented work, a ferroelectromagnetic solid solutions based on PZT and ferrite powders have been obtained. The main aim of combination of ferroelectric and magnetic powders was to obtain material showing both electric and magnetic properties. Ferroelectric ceramic powder (in amount of 90%) was based on the doped PZT type solid solution while magnetic component was nickel-zinc ferrite Ni1-xZnxFe2O4 (in amount of 10%). The synthesis of components of ferroelectromagnetic solid solutions was performed using the solid phase sintering. Final densification of synthesized powder has been done using free sintering. The aim of the work was to obtain and examine in the first multicomponent PZT type ceramics admixed with chromium with the following chemical composition Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3 and next ferroelectromagnetic solid solution based on a PZT type ferroelectric powder (Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3) and nickel-zinc ferrite (Ni0.64Zn0.36Fe2O4), from the point of view of their mechanical and electric properties, such as: electric permittivity, ε; dielectric loss, tanδ; mechanical losses, Q-1; and Young modulus, E.

  11. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria.

    Science.gov (United States)

    Manchón, Angel; Hamdan Alkhraisat, Mohammad; Rueda-Rodriguez, Carmen; Prados-Frutos, Juan Carlos; Torres, Jesús; Lucas-Aparicio, Julia; Ewald, Andrea; Gbureck, Uwe; López-Cabarcos, Enrique

    2015-10-20

    β-tricalcium phosphate (β-TCP) is an osteoconductive and biodegradable material used in bone regeneration procedures, while iron has been suggested as a tool to improve the biological performance of calcium phosphate-based materials. However, the mechanisms of interaction between these materials and human cells are not fully understood. In order to clarify this relationship, we have studied the iron role in β-TCP ceramics. Iron-containing β-TCPs were prepared by replacing CaCO3 with C6H5FeO7 at different molar ratios. X-ray diffraction analysis indicated the occurrence of β-TCP as the sole phase in the pure β-TCP and iron-containing ceramics. The incorporation of iron ions in the β-TCP lattice decreased the specific surface area as the pore size was shifted toward meso- and/or macropores. Furthermore, the human osteoblastlike cell line MG-63 was cultured onto the ceramics to determine cell proliferation and viability, and it was observed that the iron-β-TCP ceramics have better cytocompatibility than pure β-TCP. Finally, in vivo assays were performed using rabbit calvaria as a bone model. The scaffolds were implanted for 8 and 12 weeks in the defects created in the skullcap with pure β-TCP as the control. The in vivo behavior, in terms of new bone formed, degradation, and residual graft material were investigated using sequential histological evaluations and histomorphometric analysis. The in vivo implantation of the ceramics showed enhanced bone tissue formation and scaffold degradation for iron-β-TCPs. Thus, iron appears to be a useful tool to enhance the osteoconductive properties of calcium phosphate ceramics.

  12. On the improvement of mechanical properties of monolithic silica aerogels (for transparent insulating material); Silica aerogel (tomei dannetsu zairyo) kyodo no kaizen ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tajiri, K.; Igarashi, K.; Tanemura, S. [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    1997-11-25

    Study was made on improvement of the strength of silica aerogel as transparent insulating material. Silica aerogel is a low-density porous material with high heat insulation and transparency. To develop a insulating material with high transparency, monolithic silica aerogel was studied. For direct use of it for windows, its strength improvement was attempted. The aerogel was prepared by supercritical drying (alcohol or CO2) of silica wet gel obtained by hydrolysis and condensation of silicon alkoxide solution. To prepare the aerogel bonded on plate glass for strength improvement, the aerogel was bonded to alkoxide by exposing active silanol radical through F-etching of plate glass surface. However, to obtain the practical large-area bonded aerogel, shrinkage control of the aerogel in supercritical drying was necessary. Addition of Laponite into a silica network for strength improvement by polymer increased the bending strength by 50%. Although some reduction of its transparency was observed because of clouding, its heat insulation was stable. Further strength improvement is necessary for its practical use. 5 figs., 1 tab.

  13. A Thermodamage Strength Theoretical Model of Ceramic Materials Taking into Account the Effect of Residual Stress

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2012-01-01

    Full Text Available A thermodamage strength theoretical model taking into account the effect of residual stress was established and applied to each temperature phase based on the study of effects of various physical mechanisms on the fracture strength of ultrahigh-temperature ceramics. The effects of SiC particle size, crack size, and SiC particle volume fraction on strength corresponding to different temperatures were studied in detail. This study showed that when flaw size is not large, the bigger SiC particle size results in the greater effect of tensile residual stress in the matrix grains on strength reduction, and this prediction coincides with experimental results; and the residual stress and the combined effort of particle size and crack size play important roles in controlling material strength.

  14. Optimization of solid-state synthesis process of advanced ceramics materials: influence of mixing conditions.

    Directory of Open Access Journals (Sweden)

    Sakri Adel

    2016-10-01

    Full Text Available In this paper, the effect of mixing process on solid state reaction of solid oxide material mixture was studied. Lead piezoelectric ceramic specimens 0.5 Pb(Zn1/3,Sb2/3O3-0.5 Pb0.98La0.02(Zr0.48,Ti0.52O3 prepared by different mixing procedures, were conducted under different conditions such as order, combination and mixing time. The phase formation, composition nature, structural properties of powder mixture was analyzed by X-ray diffraction. The obtained results for different mixing processes make the solid state reaction method more selective, taking into consideration the attraction forces between the reactants and the electronegativity of oxide reactants.

  15. Growth and instability of charged dislocation loops under irradiation in ceramic materials

    CERN Document Server

    Ryazanov, A I; Kinoshita, C; Klaptsov, A V

    2002-01-01

    We have investigated the physical mechanisms of the growth and stability of charged dislocation loops in ceramic materials with very strong different mass of atoms (stabilized cubic zirconia) under different energies and types of irradiation conditions: 100-1000 keV electrons, 100 keV He sup + and 300 keV O sup + ions. The anomalous formation of extended defect clusters (charged dislocation loops) has been observed by TEM under electron irradiation subsequent to ion irradiation. It is demonstrated that very strong strain field (contrast) near charged dislocation loops is formed. The dislocation loops grow up to a critical size and after then become unstable. The instability of the charged dislocation loop leads to the multiplication of dislocation loops and the formation of dislocation network near the charged dislocation loops. A theoretical model is suggested for the explanation of the growth and stability of the charged dislocation loop, taking the charge state of point defects. The calculated distribution...

  16. The comparative evaluation of the translucency of crowns fabricated with three different all-ceramic materials: an in vitro study.

    Science.gov (United States)

    Sravanthi, Y; Ramani, Y V; Rathod, Asha M; Ram, Sabita M; Turakhia, Hetal

    2015-02-01

    All-ceramic crowns with different core materials of different strength and aesthetics are available in recent years. The aesthetics of the crown depends mainly on the shade and translucency. Clinician should be aware of the quality and characteristics of these materials so that they will be able to opt for good material for successful clinical use. The aim of this study was to evaluate and compare the translucency of crowns fabricated with three different commercially available all-ceramic materials viz. Alumina - CAD-CAM Procera, Lithium disilicate - Pressable IPS e.max Press, Zirconia - CAD-CAM Lava. All-ceramic crowns (5 per each group and total of 15 samples) were made of Alumina - CAD-CAM Procera (Group I), Lithium disilicate - Pressable IPS e.max Press (Group II), Zirconia - CAD-CAM Lava (Group III) and veneered with their respective layering ceramic. Evaluation for the Translucency (CR=Yb/Yw) over the White (Yw) and Black (Yb) backgrounds at the Incisal, Middle, Cervical, Mesial and Distal thirds of each crown were done using the Spectrophotometer. The results obtained were statistically analyzed by Paired t-test (pfair idea to clinician for the choice of material in different zones during replacement and suitability for restoration in aesthetic zone. Selection of all ceramic system depends on the translucency needed for successful prosthesis of artificial tooth so that it mimics patient's natural dentition. The qualitative measurement of translucency will give the evidence for the clinicians during selection of high or low value translucent tooth for successful replacement. Lithium disilicate - Pressable IPS e.max Press is having better translucency in comparison with other two materials in our study.

  17. Bibliography of the technical literature of the Materials Joining Group, Metals and Ceramics Division, 1951 through June 1987

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Goodwin, G.M.; Gardner, K. (comps.)

    1987-08-01

    This document contains a listing of the written scientific information originating in the Materials Joining Group (formerly the Welding and Brazing Group), Metals and Ceramics Division, Oak Ridge National Laboratory during 1951 through June 1987. It is a registry of about 400 documents as nearly as possible in the order in which they were issued.

  18. Shear bond strength of four resin cements used to lute ceramic core material to human dentin.

    Science.gov (United States)

    Altintas, Subutayhan; Eldeniz, Ayçe Unverdi; Usumez, Aslihan

    2008-12-01

    This study evaluated the effect of four resin cements on the shear bond strength of a ceramic core material to dentin. One hundred twenty molar teeth were embedded in a self-curing acrylic resin. The occlusal third of the crowns were sectioned under water cooling. All specimens were randomly divided into four groups of 30 teeth each according to the resin cement used. One hundred twenty cylindrical-shaped, 2.7-mm wide, 3-mm high ceramic core materials were heat-pressed. The core cylinders were then luted with one of the four resin systems to dentin (Super-Bond C&B, Chemiace II, Variolink II, and Panavia F). Half of the specimens (n = 15) were tested after 24 hours; the other half (n = 15) were stored in distilled water at 37 degrees C for 1 day and then thermocycled 1000 times between 5 degrees C and 55 degrees C prior to testing. Shear bond strength of each specimen was measured using a universal testing machine at a crosshead speed of 1 mm/min. The bond strength values were calculated in MPa, and the results were statistically analyzed using a two-way analysis of variance (ANOVA) and Tukey HSD tests. The shear bond strength varied significantly depending on the resin cement used (p strengths after thermocycling were not remarkable as compared with the corresponding prethermal cycling groups (p > 0.05). Significant interactions were present between resin cement and thermocycling (p strength, whereas the specimens luted with Chemiace II (1.6 +/- 0.4 MPa) showed the lowest. After thermocycling, the bond strength values of specimens luted with Chemiace II (1.1 +/- 0.1 MPa) and Super-Bond C&B (1.7 +/- 0.4 MPa) decreased; however, this was not statistically significant (p > 0.05). The increase in the shear bond strength values in the Panavia F (4.5 +/- 0.7 MPa) and Variolink II (5.5 +/- 2.1 MPa) groups after thermocycling was also not statistically significant (p > 0.05). Variolink II and Panavia F systems showed higher shear bond strength values than Chemiace II and

  19. Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L

    Energy Technology Data Exchange (ETDEWEB)

    Anghelina, F.V.; Ungureanu, D.N.; Bratu, V. [Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 18-24 Unirii Bd., 130082 (Romania); Popescu, I.N., E-mail: pinicoleta24@yahoo.com [Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 18-24 Unirii Bd., 130082 (Romania); Rusanescu, C.O. [Politehnica University, 060042 Bucharest (Romania)

    2013-11-15

    The aim of this paper was to obtain and characterize (surface morphology and fine structure) two types of materials: Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} hydroxyapatite powder (HAp) as biocompatible ceramic materials and AISI 316L austenitic stainless steels as metallic biomaterials, which are the components of the metal–ceramic composites used for medical implants in reconstructive surgery and prosthetic treatment. The HAp was synthesized by coprecipitation method, heat treated at 200 °C, 800 °C and 1200 °C for 4 h, analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The stainless steel 316L type was made by casting, annealing and machined with a low speed (100 mm/s) in order to obtain a smooth surface and after that has been studied from residual stresses point of view in three polishing regimes conditions: at low speed polishing (150 rpm), at high speed polishing (1500 rpm) and high speed-vibration contact polishing (1500 rpm) using wide angle X-ray diffractions (WAXD). The chemical compositions of AISI 316 steel samples were measured using a Foundry Master Spectrometer equipped with CCD detector for spectral lines and the sparking spots of AISI 316L samples were analyzed using SEM. By XRD the phases of HAp powders have been identified and also the degree of crystallinity and average size of crystallites, and with SEM, we studied the morphology of the HAp. It has been found from XRD analysis that we obtained HAp with a high degree of crystallinity at 800 °C and 1200 °C, no presence of impurity and from SEM analysis we noticed the influence of heat treatment on the ceramic particles morphology. From the study of residual stress profiles of 316L samples were observed that it differs substantially for different machining regimes and from the SEM analysis of sparking spots we revealed the rough surfaces of stainless steel rods necessary for a better adhesion of HAp on it.

  20. Influence of ceramic disk material, surface hemispheres, and SBF volume on in vitro mineralization.

    Science.gov (United States)

    Urquia Edreira, Eva R; Wolke, Joop G C; Jansen, John A; van den Beucken, Jeroen J J P

    2015-08-01

    Calcium phosphate ceramics are the main mineral constituents of bone and teeth and have therefore been extensively investigated for bone regenerative applications. In the current study, the effect of disk material, surface geometry, and SBF volume on mineralization capacity was investigated. Hemispherical concavities were created on the surfaces of disks made of different materials (i.e., hydroxyapatite (HA), β-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP) and titanium (Ti)) which were sintered at 1200 °C. Mineralization of CaP was assessed on disk surfaces after immersion of the samples in different volumes of simulated body fluid (SBF) up to 14 days by means of calcium assay and scanning electron microscopy (SEM). This study showed that different SBF volumes have different effects on mineralization, with an optimum material/liquid ratio of 5 mL of SBF per cm(2) . Additionally, at this volume, apparent differences based on disk material became obvious. Evidently, surface hemispherical concavities acted as initiator areas for nucleation and crystal growth.

  1. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    Science.gov (United States)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=composition and bonding interphase of resin base composites promise improvements of mechanical properties, decreasing the incidence of clinical failure of posterior composite restorations, hence resulting in a more ideal restorative material for use in posterior segment. The results of this investigation showed that the deficiency of hydrostability in dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane

  2. Washery wastes as a source of raw materials for ceramic products

    Energy Technology Data Exchange (ETDEWEB)

    Burmistrov, V.N.; Tambovtseva, N.A.

    1981-01-01

    The rapid expansion of the output of walling products and the exhaustion of raw material sources for brickmaking have brought to the fore the urgency of devising methods of utilizing coal-mining wastes in the production of rough ceramics, i.e., ceramic walling products, and sewage pipes. The method developed in the VNIIstrom Institute for the production of walling products from washery wastes has now been approved by the Joint Authorities Commission and recommended for commercial exploitation. However, these wastes can only be used (like the traditional clay materials) provided they are uniform in composition and properties. Significant variations lead to a lower product quality and reduced cost effectiveness. The composition and properties of washery wastes vary to an extent which depends on the composition variations in the rock over- and under-lying the coal seam, the proportions of rock included in the mined product, the production rhythm in the washery and the labor organizations at the mining, transportation, and cleaning stages. A survey of the variations in composition of the rocks over- and under-lying coal seams in the Donbas has shown that the average ashes are 88% above and 83% below the seam; the variability coefficients are comparatively low (13 and 16.3%, respectively). Correspondingly, the long-term average variability of the ash of the tailings from half the washeries is below 15%. The construction of modern washeries attached to the large pits will further reduce the variability in the ash of the washery wastes. We took samples from No. 1 and No. 2 washeries at the Cherevopets I and SW to investigate the variability of the tailings composition and properties.

  3. Contact resistance of ceramic interfaces between materials used for solid oxide fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Koch, S.

    2002-01-01

    The contact resistance can be divided into two main contributions. The small area of contact between ceramic components results in resistance due to current constriction. Resistive phases or potential barriers at the interface result in an interface contribution to the contact resistance, which may be smaller or larger than the constriction resistance. The contact resistance between pairs of three different materials were analysed (strontium doped lanthanum manganite, yttria stabilised zirconia and strontium and nickel doped lanthanum cobaltite), and the effects of temperature, atmosphere, polarisation and mechanical load on the contact resistance were investigated. The investigations revealed that the mechanical load of a ceramic contact has a high influence on the contact resistance, and generally power law dependence between the contact resistance and the mechanical load was found. The influence of the mechanical load on the contact resistance was ascribed to an area effect. The contact resistance of the investigated materials was dominated by current constriction at high temperatures. The measured contact resistance was comparable to the resistance calculated on basis of the contact areas found by optical and electron microscopy. At low temperatures, the interface contribution to the contact resistance was dominating. The cobaltite interface could be described by one potential barrier at the contact interface, whereas the manganite interfaces required several consecutive potential barriers to model the observed behaviour. The current-voltage behaviour of the YSZ contact interfaces was only weakly non-linear, and could be described by 22{+-}1 barriers in series. Contact interfaces with sinterable contact layers were also investigated, and the measured contact resistance for these interfaces were more than 10 times less than for the other interfaces. (au)

  4. Hot Hydrogen Testing of Refractory Metals and Ceramics

    Science.gov (United States)

    Zee, Ralph; Chin, Bryan; Cohron, Jon

    1993-01-01

    The objective of this investigation is to develop a technique with which refractory metal carbide samples can be exposed to hydrogen containing gases at high temperatures, and to use various microstructural and analytical techniques to determine the chemical and rate processes involved in hydrogen degradation in these materials. Five types of carbides were examined including WC, NbC, HfC, ZrC, and TaC. The ceramics were purchased and were all monolithic in nature. The temperature range investigated was from 850 to 1600 C with a hydrogen pressure of one atmosphere. Control experiments, in vacuum, were also conducted for comparison so that the net effects due to hydrogen could be isolated. The samples were analyzed prior to and after exposure. Gas samples were collected in selected experiments and analyzed using gas chromography. Characterization of the resulting microstructure after exposure to hydrogen was conducted using optical microscopy, x-ray diffraction, scanning electron microscopy, and weight change. The ceramics were purchased and were all monolithic in nature. It was found that all samples lost weight after exposure, both in hydrogen and vacuum. Results from the microstructure analyses show that the degradation processes are different among the five types of ceramics involved. In addition, the apparent activation energy for the degradation process is a function of temperature even within the same material. This indicates that there are more than one mechanism involved in each material, and that the mechanisms are temperature dependent.

  5. Propulsion system materials program. Semiannual progress report, October 1995--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1996-07-01

    This portion of the program is identified as program element 1.0 within the work breakdown structure (WBS). It contains five subelements: (1) Monolithics, (2) Ceramic Composites, (3) Thermal and Wear Coatings, (4) Joining, and (5) Ceramic Machining. Ceramic research conducted within the Monolithics subelement currently includes work activities on low Cost Si{sub 3}N{sub 4} powder, green state ceramic fabrication, characterization, and densification, and on structural, mechanical, and physical properties of these ceramics. Research conducted within the Ceramic Composites subelement currently includes silicon nitride and oxide-based composites, and low expansion materials. Research conducted in the Thermal and Wear Coatings subelement is currently limited to oxide-based coatings and involves coating synthesis, characterization, and determination of the mechanical and physical properties of the coatings. Research conducted in the Joining subelement currently includes studies of processes to produce strong, stable joints between zirconia ceramics and iron-base alloys. As part of an expanded effort to reduce the cost of ceramic components, a new initiative in cost effective machining has been started. A major objective of the research in the Materials and Processing program element is to systematically advance the understanding of the relationships between ceramic raw materials such as powders and reactant gases, the processing variables involved in producing the ceramic materials, and the resultant microstructures and physical and mechanical properties of the ceramic materials. Success in meeting this objective will provide U.S. companies with new or improved ways for producing economical, highly reliable ceramic components for advanced heat engines.

  6. Ceramic Methyltrioxorhenium

    CERN Document Server

    Herrmann, R; Eickerling, G; Helbig, C; Hauf, C; Miller, R; Mayr, F; Krug von Nidda, H A; Scheidt, E W; Scherer, W; Herrmann, Rudolf; Troester, Klaus; Eickerling, Georg; Helbig, Christian; Hauf, Christoph; Miller, Robert; Mayr, Franz; Nidda, Hans-Albrecht Krug von; Scheidt, Ernst-Wilhelm; Scherer, Wolfgang

    2006-01-01

    The metal oxide polymeric methyltrioxorhenium [(CH3)xReO3] is an unique epresentative of a layered inherent conducting organometallic polymer which adopts the structural motifs of classical perovskites in two dimensions (2D) in form of methyl-deficient, corner-sharing ReO5(CH3) octahedra. In order to improve the characteristics of polymeric methyltrioxorhenium with respect to its physical properties and potential usage as an inherentconducting polymer we tried to optimise the synthetic routes of polymeric modifications of 1 to obtain a sintered ceramic material, denoted ceramic MTO. Ceramic MTO formed in a solvent-free synthesis via auto-polymerisation and subsequent sintering processing displays clearly different mechanical and physical properties from polymeric MTO synthesised in aqueous solution. Ceramic MTO is shown to display activated Re-C and Re=O bonds relative to MTO. These electronic and structural characteristics of ceramic MTO are also reflected by a different chemical reactivity compared with its...

  7. Advanced Ceramics for NASA's Current and Future Needs

    Science.gov (United States)

    Jaskowiak, Martha H.

    2006-01-01

    Ceramic composites and monolithics are widely recognized by NASA as enabling materials for a variety of aerospace applications. Compared to traditional materials, ceramic materials offer higher specific strength which can enable lighter weight vehicle and engine concepts, increased payloads, and increased operational margins. Additionally, the higher temperature capabilities of these materials allows for increased operating temperatures within the engine and on the vehicle surfaces which can lead to improved engine efficiency and vehicle performance. To meet the requirements of the next generation of both rocket and air-breathing engines, NASA is actively pursuing the development and maturation of a variety of ceramic materials. Anticipated applications for carbide, nitride and oxide-based ceramics will be presented. The current status of these materials and needs for future goals will be outlined. NASA also understands the importance of teaming with other government agencies and industry to optimize these materials and advance them to the level of maturation needed for eventual vehicle and engine demonstrations. A number of successful partnering efforts with NASA and industry will be highlighted.

  8. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  9. Determination of the raw material source used in the production of ceramics of the Hatahara archaeological site, AM, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Kelly P.; Munita, Casimiro S.; Oliveira, Paulo T.M.S., E-mail: kquimica@usp.b, E-mail: camunita@ipen.b, E-mail: poliver@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Neves, Eduardo G.; Kazuo, Eduardo T., E-mail: edgneves@usp.b, E-mail: eduardo.tamanaha@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Museu de Arqueologia e Etnologia; Soares, Emilio A.A., E-mail: easoares@usp.b [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Dept. de Geociencias

    2009-07-01

    The archaeological interventions carried out at the Hatahara archaeological site, located in the central Amazonia, showed the presence of a great amount of ceramic artifacts in this region. As a consequence, several works have been conducted with this archaeological material, searching clear questions on how the ancient societies produced such objects, as well as, the use they did of the environment where they were inserted. Considering that the analysis of the ceramic material showed the simultaneous occurrence of four distinct phases of occupation in the Hatahara site, which, in relation to its pre-colonial composition is as an integral part of a quite complex context, the present work had the purpose of helping the Archaeologists to understand better the development of the societies that occupied this region, with basis on the study of the archaeological ceramics provenance. For this, the chemical characterization was done, with application of the analytical technique by neutron activation analysis (NAA); the elementary concentrations of As, Ba, Ce, Co, Cr, Cs, Eu Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Ta, Tb, Th, U, Yb and Zn were determined in 127 ceramic fragments and in 7 samples of clay, collected next to the Hatahara archaeological site. The data of elementary concentrations were submitted to the multivariate statistical analysis, the techniques of cluster analysis and discriminant analysis. The results showed that a single type of clay was used in the manufacture of a group of 25 ceramic fragments, belonging to the phases Paredao, Manacapuru and Guarita. These results have been added to the archaeological interpretations with regard to the classification of the rescued ceramics fragments, in order to complement them. Therefore, this work supplied some pertinent clarifications that certainly will give support to the reconstruction of human path in the Hatahara archaeological site. (author)

  10. Novel Low Temperature Co-Fired Ceramic Material System Composed of Dielectrics with Different Dielectric Constants

    Science.gov (United States)

    Sakamoto, Sadaaki; Adachi, Hiroshige; Kaneko, Kazuhiro; Sugimoto, Yasutaka; Takada, Takahiro

    2013-09-01

    We found that the co-firing low temperature co-fired ceramic (LTCC) materials of different dielectric constants (ɛr) with Cu wiring is achievable using a novel, original design. It was confirmed that the dielectric characteristics of the dielectrics designed in this study are very suitable for the use of the dielectrics in electronic components such as filters mounted in high-speed radio communication equipment. The dielectric constants of the lower- and higher-dielectric-coefficient materials were 8.1 and 44.5, respectively, which are sufficiently effective for downsizing LTCC components. Observing the co-fired interface, it was confirmed that excellent co-firing conditions resulted in no mechanical defects such as delamination or cracks. On the basis of the results of wavelength dispersive X-ray spectrometry (WDX) and X-ray diffractometry (XRD), it was confirmed that co-firing with minimal interdiffusion was realized using the same glass for both dielectrics. It is concluded that the materials developed are good for co-firing in terms of the mechanical defects and interdiffusion that appear in them.

  11. Investigation of Effects of Material Architecture on the Elastic Response of a Woven Ceramic Matrix Composite

    Science.gov (United States)

    Goldberg, Robert K.; Bonacuse, Peter J.; Mital, Subodh K.

    2012-01-01

    To develop methods for quantifying the effects of the microstructural variations of woven ceramic matrix composites on the effective properties and response of the material, a research program has been undertaken which is described in this paper. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, CVI SiC/SiC, composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents and collect relevant statistics such as within ply tow spacing. This information was then used to build two dimensional finite element models that approximated the observed section geometry. With the aid of geometrical models generated by the microstructural characterization process, finite element models were generated and analyses were performed to quantify the effects of the microstructure and its variation on the effective stiffness and areas of stress concentration of the material. The results indicated that the geometry and distribution of the porosity appear to have significant effects on the through-thickness modulus. Similarly, stress concentrations on the outer surface of the composite appear to correlate to regions where the transverse tows are separated by a critical amount.

  12. Technical evaluation panel summary report. Ceramic and glass immobilization options fissile materials disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Myers, B. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brummond, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Armantrout, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaw, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jantzen, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jostons, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McKibben, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Strachan, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vienna, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1997-12-23

    This report documents the results of a technical evaluation of the merits of ceramic and glass immobilization forms for the disposition of surplus weapons-useable plutonium. The evaluation was conducted by a Technical Evaluation Panel (TEP), whose members were selected to cover a relevant range of scientific and technical expertise and represented each of the technical organizations involved in the Plutonium Immobilization Program. The TEP held a formal review at Lawrence Liver-more National Laboratory (LLNL) from July 2%August 1, 1997. Following this review, the TEP documented the review and its evaluation of the two immobilization technologies in this report to provide a technical basis for a recommendation by LLNL to the Department of Energy (DOE) for the preferred immobilization form. The comparison of the glass and ceramic forms and manufacturing processes was a tremendous challenge to the TEP. The two forms and their processes are similar in many ways. The TEP went to great effort to accurately assess what were, in many cases, fine details of the processes, unit operations, and the glass and ceramic forms themselves. The set of criteria used by the Fissile Materials Disposition Program (FMDP) in past screenings and down-selections was used to measure-the two options. One exception is that the TEP did not consider criteria that were largely nontechnical (namely international impact, public acceptance, and effects on other : DOE programs). The TEP' s measures and assessments are documented in detail. Care was taken to ensure that the data used were well documented and traceable to their source. Although no final conclusion regarding the preferred form was reached or explicitly stated in this report (this was not within the TEP' s charter), no "show stoppers" were identified for either form. Both forms appear capable of satisfying all the criteria, as interpreted by the TEP. The TEP identified a number of distinct and quantifiable differences between

  13. Evaluation of occupational exposure to naturally occurring radioactive materials in the Iranian ceramics industry.

    Science.gov (United States)

    Fathabadi, N; Farahani, M V; Amani, S; Moradi, M; Haddadi, B

    2011-06-01

    Zircon contains small amounts of uranium, thorium and radium in its crystalline structure. The ceramic industry is one of the major consumers of zirconium compounds that are used as an ingredient at ∼10-20 % by weight in glaze. In this study, seven different ceramic factories have been investigated regarding the presence of radioactive elements with focus on natural radioactivity. The overall objective of this investigation is to provide information regarding the radiation exposure to workers in the ceramic industry due to naturally occurring radioactive materials. This objective is met by collecting existing radiological data specific to glaze production and generating new data from sampling activities. The sampling effort involves the whole process of glaze production. External exposures are monitored using a portable gamma-ray spectrometer and environmental thermoluminescence dosimeters, by placing them for 6 months in some workplaces. Internal routes of exposure (mainly inhalation) are studied using air sampling, and gross alpha and beta counting. Measurement of radon gas and its progeny is performed by continuous radon gas monitors that use pulse ionisation chambers. Natural radioactivity due to the presence of ²³⁸U, ²³²Th and ⁴⁰K in zirconium compounds, glazes and other samples is measured by a gamma-ray spectrometry system with a high-purity germanium detector. The average concentrations of ²³⁸U and ²³²Th observed in the zirconium compounds are >3300 and >550 Bq kg⁻¹, respectively. The specific activities of other samples are much lower than in zirconium compounds. The annual effective dose from external radiation had a mean value of ∼0.13 mSv y⁻¹. Dust sampling revealed the greatest values in the process at the powdering site and hand weighing places. In these plants, the annual average effective dose from inhalation of long-lived airborne radionuclides was 0.226 mSv. ²²²Rn gas concentrations in the glaze production plant and

  14. Processing and characterization of phase boundaries in ceramic and metallic materials

    Science.gov (United States)

    Zeng, Liang

    The goal of this dissertation work was to explore and describe advanced characterization of novel materials processing. These characterizations were carried out using scanning and transmission electron microscopy (SEM and TEM), and X-ray diffraction techniques. The materials studied included ceramics and metallic materials. The first part of this dissertation focuses on the processing, and the resulting interfacial microstructure of ceramics joined using spin-on interlayers. SEM, TEM, and indentation tests were used to investigate the interfacial microstructural and mechanical property evolution of polycrystalline zirconia bonded to glass ceramic MaCor(TM), and polycrystalline alumina to single crystal alumina. Interlayer assisted specimens were joined using a thin amorphous silica interlayer. This interlayer was produced by spin coating an organic based silica bond material precursor and curing at 200°C, followed by joining in a microwave cavity or conventional electric furnace. Experimental results indicate that in the joining of the zirconia and MaCor(TM) no significant interfacial microstructural and mechanical property differences developed between materials joined either with or without interlayers, due to the glassy nature of MaCor(TM). The bond interface was non-planar, as a result of the strong wetting of MaCor(TM) and silica and dissolution of the zirconia. However, without the aid of a silica interlayer, sapphire and 98% polycrystalline alumina failed to join under the experimental conditions under this study. A variety of interfacial morphologies have been observed, including amorphous regions, fine crystalline alumina, and intimate contact between the sapphire and polycrystalline alumina. In addition, the evolution of the joining process from the initial sputter-cure to the final joining state and joining mechanisms were characterized. The second part of this dissertation focused on the effects of working and heat treatment on microstructure, texture

  15. Metallic and Ceramic Materials Research. Task Order 0005: Metallic, Materials, Methods, Characterization and Testing Research

    Science.gov (United States)

    2015-10-01

    more efficient jet engines. The focus areas covered a broad range of technologies comprising thermal protection materials, fiber lasers for...in Mar-M247 region ~6 mm apart from the weld interface. (b-c) Higher magnification images illustrating (b) a blocky, faceted appearance of fracture... thermal stability, distortion tolerance, expected design life, and environmental resistance requirements vary significantly between these initiatives

  16. Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture.

    Science.gov (United States)

    Schriwer, Christian; Skjold, Anneli; Gjerdet, Nils Roar; Øilo, Marit

    2017-09-01

    Dental all-ceramic restorations of zirconia, with and without an aesthetic veneering layer, have become a viable alternative to conventional metal-ceramic restorations. The aim of this study was to evaluate whether factors of the production methods or the material compositions affect load at fracture, fracture modes, internal fit or crown margins of monolithic zirconia crowns. Sixty crowns made from six different commercially available dental zirconias were produced to a model tooth with a shallow circumferential chamfer preparation. Internal fit was assessed by the replica method. The crown margin quality was assessed by light microscopy on an ordinal scale. The cemented crowns were loaded centrally in the occlusal fossa with a horizontal steel cylinder with a diameter of 13mm at 0.5mm/min until fracture. Fractographic analysis was performed on the fractured crowns. There were statistically significant differences among the groups regarding crown margins, internal fit and load at fracture (p<0.05, Kruskall Wallis). Fracture analyses revealed that all fractures started cervically and propagated to the occlusal surface similar to clinically observed fractures. There was statistically significant correlation between margin quality and load at fracture (Spearman's rank correlation, p<0,05). Production method and material composition of monolithic zirconia crowns affect internal fit, crown margin quality and the load at fracture. The hard-machined Y-TZP zirconia crowns had the best margin quality and the highest load at fracture. Reduction of margin flaws will improve fracture strength of monolithic zirconia crowns and thereby increase clinical success. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Validation of new ceramic materials from tungsten mining wastes. Mechanical properties; Validacion de nuevos materiales ceramicos a partir de rocas de desecho de mineria. Propiedades mecanicas

    Energy Technology Data Exchange (ETDEWEB)

    Duran Suarez, J. A.; Montoya Herrera, J.; Silva, A. P.; Peralbo Cano, R.; Castro-Gomes, J. P.

    2014-07-01

    New ceramic materials obtained from tungsten mining wastes, from region of Beira Interior in Portugal, with no commercial use, responsible for landscape and environmental problems are presented. These preshaped new ceramic products, prepared in a wide thermal range (800 degree centigrade to 1300 degree centigrade) was evaluated by mechanical test, but also was characterized the starting raw materials: tungsten wastes mining and industrial kaolin. Results, which also include a mineralogical characterization of ceramic products and morphologic evaluation of neoformed by scanning electron microscopy, show firstly, the feasibility of converting a large number of these wastes in marketable ceramics. Thanks to the experimentation carried out, the ability to generate ceramic materials is emphasized, without the presence of mineral clay, due to the particular composition of these waste of mining with content of acid, neutral and basic oxides. (Author)

  18. Development of new ceramic materials from the waste of serpentinite and red clay; Desenvolvimento de novos materiais ceramicos a partir de residuo de serpentinito e argila vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Presotto, P., E-mail: petula.presotto@gmail.com [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mymrine, V. [Universidade Tecnologica Federal do Parana (UFTPR), Curitiba, PR (Brazil)

    2012-07-01

    The objective of this work is to develop new ceramic materials using serpentine and glass waste and clay red. The raw materials were characterized through morphological, granulometric, mineralogical and chemical analysis. Six formulations have been developed based on the serpentine and red clay, which three of the six compositions have been adjusted with the addition of residual glass. The ceramic bodies were formed by uniaxial pressing and subjected to burn in an electric oven at temperatures of 1100 ° C, 1200 ° C, 1250 ° C and 1300 ° C. The ceramic samples obtained this way were characterized according to their physical properties (specific mass and linear retraction) and the mechanical (three points bending strength). The final properties varied according to the proportions of raw materials and firing temperature. In general, the different formulations fit the standards for traditional ceramics such as tiles and ceramic blocks. (author)

  19. Tunable ferroelectric meta-material phase shifter embedded inside low temperature co-fired ceramics (LTCC)

    Science.gov (United States)

    Tork, Hossam S.

    This dissertation describes electrically tunable microwave devices utilizing low temperature co-fired ceramics (LTCC) and thick film via filled with the ferroelectric materials barium strontium titanate (BST) and barium zirconate titanate (BZT). Tunable ferroelectric capacitors, zero meta-material phase shifters, and tunable meta-material phase shifters are presented. Microwave phase shifters have many applications in microwave devices. They are essential components for active and passive phased array antennas and their most common use is in scanning phased array antennas. They are used in synthetic aperture radars (SAR), low earth orbit (LEO) communication satellites, collision warning radars, and intelligent vehicle highway systems (IVHS), in addition to various other applications. Tunable ferroelectric materials have been investigated, since they offer the possibility of lowering the total cost of phased arrays. Two of the most promising ferroelectric materials in microwave applications are BST and BZT. The proposed design and implementation in this research introduce new types of tunable meta-material phase shifters embedded inside LTCC, which use BST and BZT as capacitive tunable dielectric material controlled by changing the applied voltage. This phase shifter has the advantages of meta-material structures, which produce little phase error and compensation while having the simultaneous advantage of using LTCC technology for embedding passive components that improve signal integrity (several signal lines, power planes, and ground planes) by using different processes like via filling, screen printing, laminating and firing that can be produced in compact sizes at a low cost. The via filling technique was used to build tunable BST, BZT ferroelectric material capacitors to control phase shift. Finally, The use of the proposed ferroelectric meta-material phase shifter improves phase shifter performance by reducing insertion loss in both transmitting and receiving

  20. THE EFFECT OF DIFFERENT POLYMORPHS TiO2 RAW MATERIALS ON THE DIELECTRIC PROPERTIES AND MICROSTRUCTURE IN CaCu3Ti4O12 CERAMICS

    Directory of Open Access Journals (Sweden)

    Hao W.

    2013-09-01

    Full Text Available CaCu3Ti4O12 ceramics with different polymorphs of TiO2 as starting materials were prepared by the conventional solid-state reaction technique. Their crystalline structure, microstructure and dielectric properties were systematically investigated. It has been found that all of the ceramic specimens prepared in the present study have a good polycrystalline structure, and no secondary phase is been found by XRD. However, large differences in dielectric properties and microstructure are observed in them: 1 the characteristic frequency of dielectric relaxation around 1 MHz in the CCTO ceramics prepared with rutile TiO2 is much lower than that in those ceramics prepared with anatase TiO2; 2 no matter dielectric properties or microstructure, the CCTO ceramics prepared with rutile TiO2 are more sensitive to the sintering temperature than those ceramics prepared with anatase TiO2.

  1. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    Science.gov (United States)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  2. Monolithic Solid Oxide Fuel Cell development

    Science.gov (United States)

    Myles, K. M.; McPheeters, C. C.

    1989-12-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  3. Chemical and Microstructural Changes in Metallic and Ceramic Materials Exposed to Venusian Surface Conditions

    Science.gov (United States)

    Costa, Gustavo C. C.; Jacobson, Nathan S.; Lukco, Dorothy; Hunter, Gary W.; Nakley, Leah; Radoman-Shaw, Brandon G.; Harvey, Ralph P.

    2017-01-01

    (TradeMark) ? exhibited corrosion at the base of the alloy. All ceramics tested showed no clear evidence of reaction. The weight-gain-per-area performance of the materials exposed in the GEER for 10 and 42 days are reported from the lowest to the highest weight gain per area as follows: gold did not exhibit any weight change; nickel-based alloys: beta- NiAl < G30 < 625; steels: 304 < 310 < 316 < 1018; ceramics: considering the experimental uncertainties, no weight change was observed for all ceramics of this work (alpha-Al2O3, Si3N4, SiC, and amorphous SiO2).

  4. Perspectives of development of ceramic materials with luminescent applications; Perspectivas del desarrollo de materiales ceramicos con aplicaciones luminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado E, A.; Fernandez M, J.L.; Diaz G, J.L.I.; Rivera M, T. [IPN, Av. Legaria 694, 11500 Mexico D.F. (Mexico)

    2005-07-01

    The science and technology of materials believes and it applies the knowledge that allow to relate the composition, it structures and the one processed with those properties that those they make capable for each one of the applications. The ceramic materials are inorganic materials not metallic, constituted by metallic elements and not metallic. In general, they usually behave, as good insulating electric and thermal due to the absence of conductive electrons. Usually, they possess relatively high coalition temperatures and, also, a chemical stability relatively high. Due to these properties, they are indispensable for many of those designs in engineering. The ceramic materials for luminescent applications are constituted typically by pure compounds (Al{sub 2}O{sub 3}, TiO{sub 2}, SiO{sub 2} and ZrO{sub 2}) or cocktails with some sludges giving as a result (Al{sub 2}O{sub 3}:TR, TiO{sub 2}:Eu, Si:ZrO{sub 2}, ZrO{sub 2}:TR). Presently work describes the panorama to big features on the development of ceramic materials in the CICATA Unit it would Bequeath, which can be characterized by the photoluminescence techniques and thermoluminescence mainly. (Author)

  5. Shear bond strength between an indirect composite veneering material and zirconia ceramics after thermocycling.

    Science.gov (United States)

    Komine, Futoshi; Kobayashi, Kazuhisa; Saito, Ayako; Fushiki, Ryosuke; Koizumi, Hiroyasu; Matsumura, Hideo

    2009-12-01

    The present study evaluated the shear bond strength between an indirect composite material and zirconium dioxide (zirconia) ceramics after thermocycling. A total of 80 zirconia (Katana) discs were divided into five groups and primed with one of following agents: All Bond 2 Primer B (ABB), Alloy Primer (ALP), AZ Primer (AZP), Estenia Opaque Primer (EOP), and Porcelain Liner M Liquid A (PLA). An indirect composite material (Estenia C&B) was then bonded to the primed zirconia. One-half of the specimens (n = 8) in each group were stored in distilled water at 37 degrees C for 24 h, and the remaining eight specimens were thermocycled 5,000 times before shear bond strength testing. Mean bond strengths before thermocycling varied from 10.1 to 15.6 MPa; bond strengths after thermocycling ranged from 4.3 to 17.6 MPa. The ALP group had the highest strengths after thermocycling; there were no significant differences among the PLA, AZP, and EOP groups. The bond strength values for PLA, AZP, EOP, and ALP did not decrease with thermocycling. The application of an acidic functional monomer containing carboxylic anhydride (4-META), phosphonic acid (6-MHPA), or phosphate monomer (MDP) provided durable bond strength between Estenia C&B indirect composite and Katana zirconia.

  6. Examining the performance of refractive conductive ceramics as plasmonic materials: a theoretical approach

    CERN Document Server

    Kumar, Mukesh; Ishii, Satoshi; Nagao, Tadaaki

    2016-01-01

    The main aim of the study is to scrutinize promising plasmonic materials by understanding and correlating the electronic structure to optical properties of selected refractory materials. For this purpose, the electronic and optical properties of conductive ceramics TiC, ZrC, HfC, TaC, WN, TiN, ZrN, HfN, TaN and WN are studied systematically by means of the first-principles density functional theory. A full ab-initio procedure to calculate plasma frequency from electronic band structure is discussed. The dielectric functions are calculated including both interband and intraband transitions. Our calculations confirmed that transition metal nitrides such as TiN, ZrN and HfN are the strongest candidates close to the performance of conventional noble metals in the visible to the near-infrared regions. On the other hand, carbides are not suitable for plasmonic applications due to very large losses in the same regions. By adopting the dielectric functions calculated from the calculations, the scattering and absorpti...

  7. QCM gas phase detection with ceramic materials - VOCs and oil vapors

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Usman; Rohrer, Andreas; Lieberzeit, Peter A.; Dickert, Franz L. [University of Vienna, Department of Analytical Chemistry, Vienna (Austria)

    2011-06-15

    Titanate sol-gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed. (orig.)

  8. The Production and Characterization of Ceramic Carbon Electrode Materials for CuCl-HCl Electrolysis

    Science.gov (United States)

    Edge, Patrick

    Current H2 gas supplies are primarily produced through steam methane reforming and other fossil fuel based processes. This lack of viable large scale and environmentally friendly H2 gas production has hindered the wide spread adoption of H2 fuel cells. A potential solution to this problem is the Cu-Cl hybrid thermochemical cycle. The cycle captures waste heat to drive two thermochemical steps creating CuCl as well as O2 gas and HCl from CuCl2 and water. The CuCl is oxidized in HCl to produce H2 gas and regenerate CuCl2, this process occurs at potentials well below those required for water electrolysis. The electrolysis process occurs in a traditional PEM fuel-cell. In the aqueous anolyte media Cu(I) will form anionic complexes such as CuCl 2 - or CuCl32-. The slow transport of these species to the anode surface limits the overall electrolysis process. To improve this transport process we have produced ceramic carbon electrode (CCE) materials through a sol-gel method incorporating a selection of amine containing silanes with increasing numbers of primary and secondary amines. When protonated these amines allow for improved transport of anionic copper complexes. The electrochemical and physical characterization of these CCE materials in a half and full-cell electrolysis environment will be presented. Electrochemical analysis was performed using cell polarization, cyclic voltammetry, and electrochemical impedance spectroscopy.

  9. Monolithic supports with unique geometries and enhanced mass transfer.

    Energy Technology Data Exchange (ETDEWEB)

    Stuecker, John Nicholas; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-01-01

    The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.

  10. Development of a ceramic material to cover walls to be applied in diagnostic radiological protection; Desenvolvimento de um material ceramico para utilizacao em protecao radiologica diagnostica

    Energy Technology Data Exchange (ETDEWEB)

    Frimaio, Audrew

    2006-07-01

    This study aims to formulate a ceramic composition for wall coating seeking to contribute to the optimization of diagnosis rooms' shielding. The work was based on experimental measures of X-radiation attenuation (80 and 100 kV) using ceramic coating materials containing different ceramic bases (red, white, gres, stoneware porcelain tiles, etc). Among the appraised ceramic bases, the white gres presented better attenuation properties and it was considered the most suitable material for the targets of this work. Different formulations of white gres were studied and altered in order to obtain better attenuation properties. Simulations of ceramic compositions using gres coating were made maintaining the percentages of 12-20% clay; 6-18% kaolin; 12-25% phyllite; 8-14% quartz; 1018% feldspar; 32-40% pegmatite and 6-8% talc in the composition of the necessary raw-material. The quantitative and qualitative chemical compositions of these materials were also evaluated and the most common representative elements are SiO{sub 2}, Fe{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and Ti{sub 2}O{sub 3}. Formulations containing Pb and Ba oxides were studied, considering that CaO can be replaced by PbO or BaO. The attenuation properties for X-radiation were investigated by computer simulations considering the incident and transmitted X-ray spectra for the different studied compositions and they were compared to the properties of the reference materials Pb, Ba and BaSO{sub 4} (barite). The results obtained with the simulations indicated the formulated composition of gres ceramic base that presented better attenuation properties considering the X-ray energies used in diagnosis (80, 100 and 150 kV). Ceramic plates based on the formulated compositions that presented lower percentage differences related to Pb were experimentally produced and physically tested as wall coating and protecting barrier. Properties as flexion resistance module, density, load rupture, water absorption and X

  11. Effect of Three Different Core Materials on Masking Ability of a Zirconia Ceramic

    Directory of Open Access Journals (Sweden)

    Farhad Tabatabaian

    2016-12-01

    Full Text Available Objectives: Masking ability of a restorative material plays a role in hiding colored substructures; however, the masking ability of zirconia ceramic (ZRC has not yet been clearly understood in zirconia-based restorations. This study evaluated the effect of three different core materials on masking ability of a ZRC.Materials and Methods: Ten zirconia disc samples, 0.5mm in thickness and 10mm in diameter, were fabricated. A white (W substrate (control and three substrates of nickel-chromium alloy (NCA, non-precious gold alloy (NPGA, and ZRC were prepared. The zirconia discs were placed on the four types of substrates for spectrophotometry. The L*, a*, and b* values of the specimens were measured by a spectrophotometer and color change (ΔE values were calculated to determine color differences between the test and control groups and were then compared with the perceptual threshold. Randomized block ANOVA and Bonferroni test analyzed the data. A significance level of 0.05 was considered.Results: The mean and standard deviation values of ΔE for NCA, NPGA, and ZRC groups were 10.26±2.43, 9.45±1.74, and 6.70±1.91 units, respectively. Significant differences were found in the ΔE values between ZRC and the other two experimental groups (NCA and NPGA; P<0.0001 and P=0.001, respectively. The ΔE values for the groups were more than the predetermined perceptual threshold.Conclusions: Within the limitations of this study, it was concluded that the tested ZRC could not well mask the examined core materials.Keywords: Color; Spectrophotometry; Visual Perception; Yttria Stabilized Tetragonal Zirconia

  12. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uranium and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.

  13. He-irradiation effects on glass-ceramics for joining of SiC-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Gozzelino, L., E-mail: laura.gozzelino@polito.it [Politecnico di Torino, Dept. of Applied Science and Technology, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Casalegno, V. [Politecnico di Torino, Dept. of Applied Science and Technology, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Ghigo, G. [Politecnico di Torino, Dept. of Applied Science and Technology, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Moskalewicz, T.; Czyrska-Filemonowicz, A. [AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Ferraris, M. [Politecnico di Torino, Dept. of Applied Science and Technology, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2016-04-15

    CaO–Al{sub 2}O{sub 3} (CA) and SiO{sub 2}–Al{sub 2}O{sub 3}–Y{sub 2}O{sub 3} (SAY) glass-ceramics are promising candidates for SiC/SiC indirect joints. In view of their use in locations where high radiation level is expected (i.e. fusion plants) it is important to investigate how radiation-induced damage can modify the material microstructure. To this aim, pellets of both types were irradiated with 5.5 MeV {sup 4}He{sup +} ions at an average temperature of 75 °C up to a fluence of almost 2.3·10{sup 18} cm{sup −2}. This produces a displacement defect density that increases with depth and reaches a value of about 40 displacements per atom in the ion implantation region, where the He-gas reaches a concentration of several thousands of atomic parts per million. X-ray diffractometry and scanning electron microscopy showed no change in the microstructure and in the morphology of the pellet surface. Moreover, a transmission electron microscopy investigation on cross-section lamellas revealed the occurrence of structural defects and agglomerates of He-bubbles in the implantation region for the CA sample and a more homogeneous He-bubble distribution in the SAY pellet, even outside the implantation layer. In addition, no amorphization was found in both samples, even in correspondence to the He implantation zone. The radiation damage induced only occasional micro-cracks, mainly located at grain boundaries (CA) or within the grains (SAY). - Highlights: • Glass–ceramics for SiC-based material joining were irradiated with 5.5 MeV He. • Irradiation-induced dpa and He-ion implantation simulate damage expected in nuclear plants. • Irradiation-induced morphological and structural changes were investigated. • No amorphization was found even in correspondence to the He implantation zone. • He-bubbles concentration was evaluated by TEM analysis.

  14. Advanced Ceramics Property Measurements

    Science.gov (United States)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  15. Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials.

    Science.gov (United States)

    Doyle, Heather; Lohfeld, Stefan; McHugh, Peter

    2015-08-01

    Orthopaedic scaffold materials were fabricated from polycaprolactone (PCL) and composite PCL-β-tricalcium phosphate (PCL/β-TCP) powders using selective laser sintering (SLS). Incorporating β-TCP particles is desirable to promote osteogenesis. The effects of increasing β-TCP content on the material's mechanical properties and microstructure were evaluated. The wt% of β-TCP and PCL particle sizes were found to influence material microstructure and mechanical properties, with increasing ceramic content causing a small but significant increase in stiffness but significant reductions in strength. Degradation of materials was achieved using accelerated ageing methods. The influence of β-TCP content on degradation at 7 weeks was evaluated through changes in mechanical properties and microstructure, and the ceramic particles were found to reduce elastic modulus and increase strength. The results of this study highlight the influence of ceramic content on mechanical properties and degradation behaviour of PCL/β-TCP SLS materials, and indicate that these changes must be considered in the design of scaffolds for critical-sized defects.

  16. In-situ functionalized monolithic polysiloxane-polymethacrylate composite materials from polythiol-ene double click reaction in capillary column format for enantioselective nano-high-performance liquid chromatography.

    Science.gov (United States)

    Wolter, Marc; Lämmerhofer, Michael

    2017-05-12

    This work reports on the proof-of-principle of preparation of novel one step in-situ functionalized monolithic polysiloxane-polymethacrylate composite materials in capillary columns for enantioselective nano-HPLC using a thiol-ene click reaction. Quinine carbamate as functional monomer and ethylene dimethacrylate as crosslinker were both used as ene components in a thermally initiated double click-type polymerization reaction with poly(3-mercaptopropyl)methylsiloxane as thiol component in presence of 1-propanol as porogenic solvent. Elemental analysis and on-capillary fluorescence measurement proved the successful incorporation of the functional chiral monomer into the polymer. Scanning electron microscopy images revealed a macroporous polymer morphology which is typical for a nucleation and growth mechanism of pore formation. The individual microglobules appear relatively spherical and smooth indicating a non-porous nature. Nano-HPLC experiments of the chiral monolithic capillary column provided successful enantiomer separation of N-3,5-dinitrobenzoylleucine as test compound in polar organic elution mode clearly documenting the successful implementation of the proposed concept towards new functionalized monolithic composite materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Wear of primary teeth caused by opposed all-ceramic or stainless steel crowns

    Science.gov (United States)

    Bae, Ik-Hyun; Noh, Tae-Hwan; Ju, Sung-Won; Lee, Tae-Kyoung; Ahn, Jin-Soo; Jeong, Tae-Sung

    2016-01-01

    PURPOSE This study was conducted to evaluate the effects of full-coverage all-ceramic zirconia, lithium disilicate glass-ceramic, leucite glass-ceramic, or stainless steel crowns on antagonistic primary tooth wear. MATERIALS AND METHODS There were four study groups: the stainless steel (Steel) group, the leucite glass-ceramic (Leucite) group, the lithium disilicate glass-ceramic (Lithium) group, and the monolithic zirconia (Zirconia) group. Ten flat crown specimens were prepared per group; opposing teeth were prepared using primary canines. A wear test was conducted over 100,000 chewing cycles using a dual-axis chewing simulator and a 50 N masticating force, and wear losses of antagonistic teeth and restorative materials were calculated using a three-dimensional profiling system and an electronic scale, respectively. Statistical significance was determined using One-way ANOVA and Tukey's test (P.05). CONCLUSION Leucite glass-ceramic and lithium disilicate glass-ceramic cause more primary tooth wear than stainless steel or zirconia. PMID:26949487

  18. Optimizing the design of bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations.

    Science.gov (United States)

    Cui, Chang; Sun, Jian

    2014-01-01

    Due to elastic modulus mismatch between the different layers in all-ceramic dental restorations, high tensile stress concentrates at the interface between the ceramic core and cement. In natural tooth structure, stress concentration is reduced by the functionally graded structure of dentin-enamel junction (DEJ) which interconnects enamel and dentin. Inspired by DEJ, the aim of this study was to explore the optimum design of a bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations to achieve excellent stress reduction and distribution. Three-dimensional finite element model of a multi-layer structure was developed, which comprised bilayered ceramic, bio-inspired FGM layer, cement, and dentin. Finite element method and first-order optimization technique were used to realize the optimal bio-inspired FGM layer design. The bio-inspired FGM layer significantly reduced stress concentration at the interface between the crown and cement, and stresses were evenly distributed in FGM layer. With the optimal design, an elastic modulus distribution similar to that in DEJ occurred in the FGM layer.

  19. Application of design of experiment on electrophoretic deposition of glass-ceramic coating materials from an aqueous bath

    Indian Academy of Sciences (India)

    Someswar Datta

    2000-04-01

    A process for application of abrasion- or corrosion-resistant glass-ceramic coating materials on metal substrate by electrophoretic deposition technique in an aqueous medium has been described. The effects of various process parameters, e.g. coating material concentration, time of deposition, applied current, pH of the suspension and concentration of the polymeric dispersant on the deposition efficiency have been studied. The process has been studied using a 23-factorial design technique of three independent variables; i.e. coating material concentration, applied current, and the time taken to achieve the best combination. The regression equation obtained explains the experimental results satisfactorily.

  20. Utilisation of Products of the Thermal Reclamation of Post Reclamation Dusts in the Production Technology of Ceramic Building Materials

    Directory of Open Access Journals (Sweden)

    Holtzer M.

    2015-12-01

    Full Text Available The problem related to the management of post reclamation dusts generated in the reclamation process of waste moulding sands with organic binders is presented in the hereby paper. Waste materials generated in this process are products hazardous for the environment and should be utilised. The prototype stand for the utilisation of this dangerous material in its co-burning with coal was developed and patented in AGH in Krakow. The stand was installed in one of the domestic casting houses. As the utilisation result the transformed waste product is obtained and its management in the production of ceramic materials constitutes the subject of the presented publication.

  1. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.; Singh, D.; Goretta, K. C.; de Arellano-Lopez, A. R.; Energy Technology; Russian Academy of Sciences; Univer. de Sevilla

    2001-01-01

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.

  2. Ultra low and negative expansion glass–ceramic materials produced from pyrophyllite and blast furnace slag

    Indian Academy of Sciences (India)

    S Mandal; S Chakrabarti; S Ghatak; S K Das

    2005-08-01

    Ultra low and negative expansion glass–ceramic materials have been obtained from pyrophyllite and blast furnace slag. The batch composition was modified with the addition of lithium carbonate, hydrated alumina, boric acid and nucleating agent (titania). The batch was melted at 1400°C followed by casting in the form of bars and annealed at 510°C for 4 h. The annealed specimens were subjected to heat treatment at predetermined temperatures selected from DTA study of the parent glass. Thermal expansion measurement and X-ray diffraction analysis revealed that the specimen nucleated at 545°C for 4 h and crystallized at 720°C for 2 h which resulted in negative coefficient of thermal expansion [(–) 9 to (–) 2 × 10$^{-7}/{}^\\circ $C] over the temperature range (30–600°C) due to the formation of -eucryptite while other heating schedule showed the formation of spodumene and lithium aluminium silicates. The samples showed excellent flexural strength value and varied in the range 120–200 MPa depending upon the phases present.

  3. Thermal Conductivity and Water Vapor Stability of Ceramic HfO2-Based Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2-15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications will also be discussed.

  4. Inhibitory Effects of Far-Infrared Irradiation Generated by Ceramic Material on Murine Melanoma Cell Growth

    Directory of Open Access Journals (Sweden)

    Ting-Kai Leung

    2012-01-01

    Full Text Available The biological effects of specific wavelengths, so-called “far-infrared radiation” produced from ceramic material (cFIR, on whole organisms are not yet well understood. In this study, we investigated the biological effects of cFIR on murine melanoma cells (B16-F10 at body temperature. cFIR irradiation treatment for 48 h resulted in an 11.8% decrease in the proliferation of melanoma cells relative to the control. Meanwhile, incubation of cells with cFIR for 48 h significantly resulted in 56.9% and 15.7% decreases in the intracellular heat shock protein (HSP70 and intracellular nitric oxide (iNO contents, respectively. Furthermore, cFIR treatment induced 6.4% and 12.3% increases in intracellular reactive oxygen species stained by 5-(and 6-carboxyl-2′,7′-dichlorodihydrofluorescein diacetate and dihydrorhodamine 123, respectively. Since malignant melanomas are known to have high HSP70 expression and iNO activity, the suppressive effects of cFIR on HSP70 and NO may warrant future interest in antitumor applications.

  5. Calcium phosphate/microgel composites for 3D powderbed printing of ceramic materials.

    Science.gov (United States)

    Birkholz, Mandy-Nicole; Agrawal, Garima; Bergmann, Christian; Schröder, Ricarda; Lechner, Sebastian J; Pich, Andrij; Fischer, Horst

    2016-06-01

    Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure β-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for β-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the β-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds.

  6. Microstructural characterization and influence of manufacturing parameters on technological properties of vitreous ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Njoya, D. [Laboratoire de Physico-chimie des Materiaux Mineraux, Departement de Chimie Inorganique, Faculte des Sciences, Universite de Yaounde I, B.P. 812, Yaounde (Cameroon); Laboratoire de Physico-chimie des Materiaux et Environnement, Departement de Chimie, Faculte des Sciences Semlalia, Universite Cadi Ayyad, B.P. 2390, Marrakech (Morocco); Hajjaji, M., E-mail: Hajjaji@ucam.ac.ma [Laboratoire de Physico-chimie des Materiaux et Environnement, Departement de Chimie, Faculte des Sciences Semlalia, Universite Cadi Ayyad, B.P. 2390, Marrakech (Morocco); Bacaoui, A. [Laboratoire de Chimie Organique Appliquee, Departement de Chimie, Faculte des Sciences Semlalia, Universite Cadi Ayyad, B.P. 2390, Marrakech (Morocco); Njopwouo, D. [Laboratoire de Physico-chimie des Materiaux Mineraux, Departement de Chimie Inorganique, Faculte des Sciences, Universite de Yaounde I, B.P. 812, Yaounde (Cameroon)

    2010-03-15

    Microstructure of vitreous ceramic samples manufactured from kaolinitic-clay and feldspars raw materials from Cameroon was investigated in the range 1150-1250 deg. C by X-ray diffraction and scanning electron microscopy and by measuring some technological properties. Moreover, the simultaneous influence of feldspars content, heating temperature and soaking time on water absorption and firing shrinkage was evaluated by adopting the response surface methodology (Doehlert matrix), using the New Efficient Methodology for Research using Optimal Design (NEMROD) software. The results show that a spinel phase, mullite, glassy phase and some amount of hematite were formed. However, the spinel phase and potassic feldspar, as compared to the sodic one, disappeared at moderate firing temperature and soaking time. Apparently, mullite developed from spinel phase, which is formed from the demixion of metakaolin. On the other hand, it is found that the effects of fluxing content and firing temperature on the measured properties were almost similar and more influent than soaking time. Antagonistic and synergetic interactions existed between the considered parameters, and their importance differed for the considered properties. By using this mathematical tool, suitable operating conditions for manufacturing vitreous bodies were determined.

  7. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Fupo [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Zhang, Jing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Chen, Xiaoming, E-mail: xmchenw@126.com [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China)

    2015-05-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials.

  8. Microanalytical investigations of fiber-reinforced ceramic materials. Mikroanalytische Untersuchungen faserverstaerkter keramischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B.; Grathwohl, G. (Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Werkstoffkunde 2)

    1990-03-01

    Microanalytical investigations have been made on samples of ceramic fibres (SiC-fibres (Nicalon), C-fibre coated with TiN) and fibre-reinforced ceramics (SiC- and glass-matrices). High resolution Auger electron spectroscopy (HRAES), electron probe microanalysis (EPMA) and scanning electron microscopy were employed for these examinations. Analysis was best performed with HRAES on account of its lateral and depth resolution. AES depth profiles of ceramic fibres are reported and compared with the surface analysis of fibres in the composites after being broken in situ. (orig.).

  9. Ceramic materials of low-temperature synthesis for dielectric coating applied by 3D aerosol printing used in nano- and microelectronics, lighting engineering, and spacecraft control devices

    Science.gov (United States)

    Ivanov, A. A.; Tuev, V. I.; Nisan, A. V.; Potapov, G. N.

    2016-11-01

    A synthesis technique of low-temperature ceramic material based on aluminosilicates of dendrimer morphology capable to contain up to 80 wt % of nitrides and oxides of high-melting compounds as filler has been developed. The synthesis is based on a sol-gel method followed by mechanochemical treatment and ultrasonic dispersing. Dielectric ceramic layers with the layer thickness in the nanometer range and high thermal conductivity have been obtained for the first time by 3D aerosol printing of the synthesized material. The study of the obtained ceramic coating on the metal surface (Al) has proved its use prospects in microelectronics, light engineering, and devices for special purposes.

  10. Synthesis, Characterization and Properties of Ca5A2TiO12 (A=Nb, Ta) Ceramic Dielectric Materials for Applications in Microwave Telecommunication Systems

    Science.gov (United States)

    Bijumon, Pazhoor Varghese; Mohanan, Pezholil; Sebastian, Mailadil Thomas

    2002-06-01

    Microwave ceramic dielectric materials Ca5Nb2TiO12 and Ca5Ta2TiO12 have been prepared by a conventional solid-state ceramic process. The structure was studied by X-ray diffraction and the dielectric properties were characterized at microwave frequencies. The ceramics posses a relatively high dielectric constant, very low dielectric loss (Qu× f> 30000 GHz) and small temperature variation of resonant frequency. These materials are potential candidates for dielectric resonator applications in microwave integrated circuits.

  11. Physical, mechanical and thermal evaluation of material soil-cement-rice husk ash and its performance on monolithic wall

    OpenAIRE

    Ana Paula da Silva Milani

    2008-01-01

    Resumo: No Brasil existem sérios problemas ambientais no que se refere à constante geração de resíduos agroindustriais e a falta de tecnologias e materiais de construção energeticamente eficientes. Buscando um material alternativo de construção que minimize esta degradação ambiental e reduza os custos energéticos do produto final, no presente trabalho foram pesquisadas diferentes misturas de solo-cimento-cinza de casca de arroz, de forma a resgatar o uso da terra crua como elemento construtiv...

  12. Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing

    Science.gov (United States)

    Chen, Tian; Mueller, Jochen; Shea, Kristina

    2017-01-01

    Multi-material 3D printing has created new opportunities for fabricating deployable structures. We design reversible, deployable structures that are fabricated flat, have defined load bearing capacity, and multiple, predictable activated geometries. These structures are designed with a hierarchical framework where the proposed bistable actuator serves as the base building block. The actuator is designed to maximise its stroke length, with the expansion ratio approaching one when serially connected. The activation force of the actuator is parameterised through its joint material and joint length. Simulation and experimental results show that the bistability triggering force can be tuned between 0.5 and 5.0 N. Incorporating this bistable actuator, the first group of hierarchical designs demonstrate the deployment of space frame structures with a tetrahedron module consisting of three active edges, each containing four serially connected actuators. The second group shows the design of flat structures that assume either positive or negative Gaussian curvature once activated. By flipping the initial configuration of the unit actuators, structures such as a dome and an enclosure are demonstrated. A modified Dynamic Relaxation method is used to simulate all possible geometries of the hierarchical structures. Measured geometries differ by less than 5% compared to simulation results. PMID:28361891

  13. Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G

    NARCIS (Netherlands)

    De Lathouder, K.M.; Smeltink, M.W.; Straathof, A.J.J.; Paasman, M.A.; Van de Sandt, E.J.A.X.; Kapteijn, F.; Moulijn, J.A.

    2008-01-01

    The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilize

  14. Ceramic/metal seals. [refractory materials for hermetic seals for lighium-metal sulfide batteries

    Science.gov (United States)

    Bredbenner, A. M.

    1977-01-01

    Design criteria are discussed for a hermetic seal capable of withstanding the 450 C operating temperature of a lithium-metal sulfide battery system. A mechanical seal consisting of two high strength alloy metal sleeves welded or brazed to a conductor assembly and pressed onto a ceramic is described. The conductor center passes through the ceramic but is not sealed to it. The seal is effected on the outside of the taper where the tubular part is pressed down over and makes contact.

  15. Ultrasonic Vibration Assisted Grinding of Bio-ceramic Materials: Modeling, Simulation, and Experimental Investigations on Edge Chipping

    Science.gov (United States)

    Tesfay, Hayelom D.

    Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava

  16. Survey report on high temperature irradiation experiment programs for new ceramic materials in the HTTR (High Temperature Engineering Test Reactor). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    A survey research on status of research activities on new ceramic materials in Japan was carried out under contract between Japan Atomic Energy Research Institute and Atomic Energy Society of Japan. The purpose of the survey is to provide information to prioritize prospective experiments and tests in the HTTR. The HTTR as a high temperature gas cooled reactor has a unique and superior capability to irradiate large-volumed specimen at high temperature up to approximately 800degC. The survey was focused on mainly the activities of functional ceramics and heat resisting ceramics as a kind of structural ceramics. As the result, the report recommends that the irradiation experiment of functional ceramics is feasible to date. (K. Itami)

  17. Reliability estimation for single-unit ceramic crown restorations.

    Science.gov (United States)

    Lekesiz, H

    2014-09-01

    The objective of this study was to evaluate the potential of a survival prediction method for the assessment of ceramic dental restorations. For this purpose, fast-fracture and fatigue reliabilities for 2 bilayer (metal ceramic alloy core veneered with fluorapatite leucite glass-ceramic, d.Sign/d.Sign-67, by Ivoclar; glass-infiltrated alumina core veneered with feldspathic porcelain, VM7/In-Ceram Alumina, by Vita) and 3 monolithic (leucite-reinforced glass-ceramic, Empress, and ProCAD, by Ivoclar; lithium-disilicate glass-ceramic, Empress 2, by Ivoclar) single posterior crown restorations were predicted, and fatigue predictions were compared with the long-term clinical data presented in the literature. Both perfectly bonded and completely debonded cases were analyzed for evaluation of the influence of the adhesive/restoration bonding quality on estimations. Material constants and stress distributions required for predictions were calculated from biaxial tests and finite element analysis, respectively. Based on the predictions, In-Ceram Alumina presents the best fast-fracture resistance, and ProCAD presents a comparable resistance for perfect bonding; however, ProCAD shows a significant reduction of resistance in case of complete debonding. Nevertheless, it is still better than Empress and comparable with Empress 2. In-Ceram Alumina and d.Sign have the highest long-term reliability, with almost 100% survivability even after 10 years. When compared with clinical failure rates reported in the literature, predictions show a promising match with clinical data, and this indicates the soundness of the settings used in the proposed predictions. © International & American Associations for Dental Research.

  18. FILTER COMPONENT ASSESSMENT--CERAMIC CANDLES--

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Alvin

    2004-04-23

    Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on development of hot gas filter systems as an enabling technology for advanced coal and biomass-based gas turbine power generation applications. SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report summarizes the results of SWPC's filter component assessment efforts, identifying the performance and stability of porous monolithic, fiber reinforced, and filament wound ceramic hot gas candle filters, potentially for {ge}3 years of viable pressurized fluidized-bed combustion (PFBC) service operating life.

  19. Paper pulp waste—A new source of raw material for the synthesis of a porous ceramic composite

    Indian Academy of Sciences (India)

    Subrata Dasgupta; Swapan Kumar Das

    2002-10-01

    A synthetic porous ceramic composite material consisting of the mullite, cordierite and cristobalite phases is produced from a mixture of paper pulp waste and clay by reaction sintering at 1400°C. Physicomechanical properties such as bulk density, porosity, cold crushing strength and cold modulus of rupture have been studied. The presence of mullite, cordierite, cristobalite and quartz as major phases and montellecite, tatanite, forsterite and anorthite as minor phases have been confirmed by X-ray diffraction pattern. SEM studies revealed the presence of well developed needle shaped mullite and quartz crystals. The paper also discusses the possible uses of this type of porous composite material.

  20. Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials.

    Science.gov (United States)

    Fox-Rabinovich, G; Kovalev, A; Veldhuis, S; Yamamoto, K; Endrino, J L; Gershman, I S; Rashkovskiy, A; Aguirre, M H; Wainstein, D L

    2015-03-05

    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment.

  1. Effect of frame design and veneering material on biomechanical behavior of zirconia dental crowns veneered with overpressing ceramics.

    Science.gov (United States)

    Porojan, Liliana; Topală, Florin; Porojan, Sorin; Savencu, Cristina

    2017-05-31

    The objective of this investigation was to compare alternative framework designs of molar zirconia crowns veneered with various overpressing ceramics and to predict the biomechanical behavior based on the stress evaluation. The hypothesis of the study is that the zirconia framework design and type of the veneering material, using the same technological procedure, may influence the biomechanical behavior of the restorations. Three geometric models with differential coping designs (uniform thickness, cutback and buccal reduction) were developed and two types of hot-pressed ceramics (leucite and lithium disilicate reinforced) were analyzed for the veneers. Using finite element analysis (FEA), maximum principle stresses were recorded in the tooth structures and in the restorations for all the developed designs. Results led to the conclusion that the hypothesis was accepted.

  2. Annual Conference on Composites and Advanced Ceramic Materials, 10th, Cocoa Beach, FL, January 19-24, 1986, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    The structures, performance characteristics, applications, and processing technology of ceramics, ceramic-matrix composites, and ceramic coatings are discussed in reviews and reports. Topics examined include ceramic-metal systems and self-propagating high-temperature synthesis, ceramics for heat engines and high performance, SiC-fiber and SiC-whisker composites, coatings, ceramic tribology, and cutting and grinding methods. Micrographs, graphs, photographs, and tables of numerical data are provided.

  3. The role of ceramic materials in the production of hydrogen with simultaneous CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Barros, B.S. [Universidade Federal de Pernambuco (UFPE), PE (Brazil)

    2016-07-01

    Full text: Hydrogen is considered one of the most promising alternatives to fossil fuels. However, it is mainly obtained from syngas resulting from natural gas steam reforming (SMR), producing a significant amount of carbon dioxide as a side product. Carbon dioxide emission (CO2) is a major contributor to global warming, and one-third of those emissions come from fuel combustion for power generation. A new interesting process has been described to control CO2 emission: the reforming optimized by CO2 sorption, which associates conventional methane reforming and in situ capture of CO2 via absorption in a solid oxide. Furthermore, this strategy can increase the H2 production and concentrate CO2 for the eventual use as chemicals or energy vectors. Alkaline and alkaline-earth ceramics have been proposed for CO2 capture through adsorption and chemisorption processes. These materials can be classified into two large groups: dense and porous ceramics. Dense ceramics mainly trap CO2 chemically: the CO2 is chemisorbed. Among these ceramics, CaO is the most studied one. CaO-based materials have been highlighted as the solid sorbents in the capture of CO2 because of their favorable thermodynamic and chemical properties. The main problem with CaO is the strong decrease in the sorption capacity after multiple carbonation–calcination cycles. This talk will cover some strategies to improve this sorption capacity, such as the deposition of calcium oxide on an inert support, Ca12Al14O33 (mayenite). This oxide has no sorption properties but presents a large surface area, and provides stable network inhibiting deactivation of CaO by sintering. (author)

  4. Full-field characterization of thermal diffusivity in continuous- fiber ceramic composite materials and components

    Energy Technology Data Exchange (ETDEWEB)

    Steckenrider, J.S.; Ellingson, W.A. [Argonne National Lab., IL (United States); Rothermel, S.A. [South Dakota State Univ., Brookings, SD (United States)

    1995-05-01

    Continuous-fiber ceramic matrix composites (CFCCs) are currently being developed for various high-temperature applications, including use in advanced heat engines. Among the material classes of interest for such applications are silicon carbide (SiC)-fiber-reinforced SiC (SiC{sub (f)}/SiC), SiC-fiber-reinforced silicon nitride (SiC {sub (f)}/Si{sub 3}N{sub 4}), aluminum oxide (Al{sub 2}O{sub 3})-fiber-reinforced Al{sub 2}O{sub 3} (Al{sub 2}O{sub 3}{sub (f)}/Al{sub 2}O{sub 3}), and others. In such composites, the condition of the interfaces (between the fibers and matrix) are critical to the mechanical and thermal behavior of the component (as are conventional mechanical defects such as cracks, porosity, etc.). For example, oxidation of this interface (especially on carbon coated fibers) can seriously degrade both mechanical and thermal properties. Furthermore, thermal shock damage can degrade the matrix through extensive crack generation. A nondestructive evaluation method that could be used to assess interface condition, thermal shock damage, and to detect other ``defects`` would thus be very beneficial, especially if applicable to full-scale components. One method under development uses infrared thermal imaging to provide ``single-shot`` full-field assessment of the distribution of thermal properties in large components by measuring thermal diffusivity. By applying digital image filtering, interpolation, and least-squares-estimation techniques for noise reduction, we can achieve acquisition and analysis times of minutes or less with submillimeter spatial resolution. The system developed at Argonne has been used to examine the effects of thermal shock, oxidation treatment, density variations, and variations in oxidation resistant coatings in a full array of test specimens. Subscale CFCC components with nonplanar geometries have also been studied for manufacturing-induced variations in thermal properties.

  5. Enamel wear caused by monolithic zirconia crowns after 6 months of clinical use.

    Science.gov (United States)

    Stober, T; Bermejo, J L; Rammelsberg, P; Schmitter, M

    2014-04-01

    The purpose of this study was to evaluate enamel wear caused by monolithic zirconia crowns and to compare this with enamel wear caused by contralateral natural antagonists. Twenty monolithic zirconia crowns were placed in 20 patients requiring full molar crowns. For measurement of wear, impressions of both jaws were made at baseline after crown cementation and at 6-month follow-up. Mean and maximum wear of the occlusal contact areas of the crowns, of their natural antagonists and of the two contralateral natural antagonists were measured by the use of plaster replicas and 3D laser scanning methods. Wear differences were investigated by the use of two-sided paired Student's t-tests and by linear regression analysis. Mean vertical loss (maximum vertical loss in parentheses) was 10 (43) μm for the zirconia crowns, 33 (112) μm for the opposing enamel, 10 (58) μm for the contralateral teeth and 10 (46) μm for the contralateral antagonists. Both mean and maximum enamel wear were significantly different between the antagonists of the zirconia crowns and the contralateral antagonists. Gender and activity of the masseter muscle at night (bruxism) were identified as possible confounders which significantly affected wear. Under clinical conditions, monolithic zirconia crowns seem to be associated with more wear of opposed enamel than are natural teeth. With regard to wear behaviour, clinical application of monolithic zirconia crowns is justifiable because the amount of antagonistic enamel wear after 6 months is comparable with, or even lower than, that caused by other ceramic materials in previous studies.

  6. A Monolithic Oxide-Based Transversal Thermoelectric Energy Harvester

    Science.gov (United States)

    Teichert, S.; Bochmann, A.; Reimann, T.; Schulz, T.; Dreßler, C.; Udich, S.; Töpfer, J.

    2016-03-01

    We report the fabrication and properties of a monolithic transversal thermoelectric energy harvester based on the combination of a thermoelectric oxide and a metal. The fabrication of the device is done with a ceramic multilayer technology using printing and co-firing processes. Five transversal devices were combined to a meander-like thermoelectric generator. Electrical measurements and finite element calculations were performed to characterize the resulting thermoelectric generator. A maximum experimental electrical power output of 30.2 mW at a temperature difference of {Δ }T = 208 K was found. The prepared monolithic thermoelectric generator provides at {Δ }T = 35 K sufficient energy to drive a simple electronic sensor application.

  7. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    Science.gov (United States)

    Zhang, Li; Zhang, Jie; Yue, Zhenxing; Li, Longtu

    2016-09-01

    Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE) as the matrix and low-density polyethylene (LDPE) coated BaO-Nd2O3-TiO2 (BNT) ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol%) could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz) to 11.87 (7 GHz), while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS) were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  8. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    Science.gov (United States)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  9. The development and testing of glaze materials for application to the fit surface of dental ceramic restorations.

    Science.gov (United States)

    Cattell, Michael J; Chadwick, Thomas C; Knowles, Jonathan C; Clarke, Richard L

    2009-04-01

    The aims of the study were to develop and test overglaze materials for application to the fit surface of dental ceramic restorations, which could be etched and adhesively bonded and increase the flexural strength of the ceramic substrate. Three glaze materials were developed using commercial glass powders (P25 and P54, Pemco, Canada). P25 (90 wt%) was mixed with P54 (10 wt%) to produce (P25/P54). P54 (90 wt%) was mixed with P25 (10 wt%) to produce (P54/P25). P25 (90 wt%) was mixed with 10 wt% of an experimental glass powder (P25/frit). Eighty-two disc specimens (14 mm x 2 mm) were produced by heat pressing a leucite glass-ceramic and were sandblasted with 50 microm glass beads. Group 1 control specimens (10) were sandblasted. Groups 2-4 (10 per group) were coated using P25/frit (Group 2), P25/P54 (Group 3) and P54/P25 (Group 4) overglazes before sintering. Groups 1-4 were etched for 2 min using 9.5% HF (Gresco, USA). Composite cylinders (Marathon v, Den-Mat) were light cured and bonded to the glazed and prepared disc surfaces and groups water stored for 8 days. Groups were tested using shear bond strength (SBS) testing at 0.5mm/min. Disc specimens (42) were tested using the biaxial flexural strength (BFS) test at a crosshead speed of 0.15 mm/min. Group 1 was tested as sandblasted (21) and Group 2 (21) after coating the tensile surface with P25/frit. Xrd, Eds and Sem analyzes were carried out. Mean SBS (MPa+/-S.D.) were: Group 1: 10.7+/-2.1; Group 2: 9.8+/-1.9; Group 3: 1.8+/-1.0 and Group 4: 2.6+/-1.7. Groups 1 and 2 were statistically different to Groups 3 and 4 (p0.05). The mean BFS (MPa+/-S.D.) of the overglazed Group 2 (200.2+/-22.9) was statistically different (pceramic substrate and produced comparable shear bond strengths to an etched and bonded control. The application of etched overglaze materials to dental glass-ceramic and ceramic substrates may be useful in adhesive dentistry.

  10. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  11. The Melting Point of Palladium Using Miniature Fixed Points of Different Ceramic Materials: Part I—Principles and Performances

    Science.gov (United States)

    Edler, F.; Huang, K.

    2016-12-01

    Fifteen miniature fixed-point cells made of three different ceramic crucible materials (Al2O3, ZrO2, and Al2O3 (86 %)+ZrO2 (14 %)) were filled with pure palladium and used for the calibration of type B thermocouples (Pt30%Rh/Pt6%Rh). The melting behavior of the palladium was investigated by using different high-temperature furnaces usable in horizontal and vertical positions. It was found that the electromotive forces measured at the melting temperature of palladium are consistent with a temperature equivalent of ±0.25 K when using a furnace with an adequate temperature homogeneity (±1 K over a length of 12 cm), independent of the ceramic crucible materials. The emfs measured in the one-zone furnaces with larger temperature gradients along the crucibles are sensitive related to the position of the crucibles in the temperature gradient of these furnaces. This is caused by higher parasitic heat flux effects which can cause measurement errors up to about {-}(1 {-}2) K, depending on the thermal conductivity of the ceramic material. It was found that the emfs measured by using crucibles with lower thermal conductivity (ZrO2) were less dependent on parasitic heat flux effects than crucibles made of material of higher thermal conductivity (Al2O3). The investigated miniature fixed points are suitable for the repeatable realization of the melting point of palladium to calibrate noble metal thermocouples without the disadvantages of the wire-bridge method or the wire-coil method.

  12. In-flight behavior of dissimilar co-injected particles in the spraying of metal-ceramic functionally gradient materials

    Energy Technology Data Exchange (ETDEWEB)

    Fincke, J.R.; Swank, W.D.; Haggard, D.C. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-12-31

    In the spraying of functionally gradient coatings the particle ensemble delivered to the substrate can vary from a relatively low melting point metallic particle to a significantly higher melting point ceramic particle. At various stages in the spray process the particle ensemble can be either predominantly metallic, ceramic, or an intermediate combination. For co-injected particles the mixtures do not behave as a simple linear superposition of the spray patterns of the individual particle types. The particle temperature, velocity, size distributions, and pattern characteristics of the resulting spray fields is examined for all ceramic particle sprays (ZrO{sub 2}), all metallic particle sprays (NiCrAlY), and for a 1:1 mixture. The major particle-particle interaction occurs in the injector itself and results in a modified spray pattern which is different from that of either material sprayed alone. The particle velocity distributions generally exhibit a bimodal nature which is dependent on the size and density of the injected particles.

  13. The archaeometric study of ceramic materials in JCR journals and conference proceedings during the last decade (2000-2010)

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Poza, J.; Garcia-Heras, M.; Villegas, M. A.

    2011-07-01

    Ceramic is the oldest synthetic material created by the mankind and has been present in human societies from around ten thousand years ago. During the last few decades, within the research field of Archaeometry, the study of archaeological and historical ceramic materials has experienced a significant increase in the application of chemical-physical techniques to obtain information on technology and production of these materials in the past. This paper presents the results obtained in a biblio metric study undertaken on 589 articles published on this subject in JCR journals and conference proceedings during the last decade (2000-2010). The main purpose of this research was to address the recent evolution and trends of this kind of investigations. The parameters analyzed were: date of publication, type of journal, topic, cultural-chronological classification of materials studied, origin country of authors, and analytical techniques used. Resulting data indicated a continual, stable, and growing publication rate on the subject in journals and conference proceedings of the three JCR indexes, namely SCI, AHCI, and SSCI, which evidences a high level of interdisciplinary. Authors from Europe and the United States carried out the majority of contributions. (Author) 30 refs.

  14. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    Science.gov (United States)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  15. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review.

    Science.gov (United States)

    Silva, R V; de Brito, J; Lynn, C J; Dhir, R K

    2017-06-29

    This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017. Published by Elsevier Ltd.

  16. Evaluation of performance of materials used in the ceramic materials restoration of the Plaza de España (Sevilla

    Directory of Open Access Journals (Sweden)

    Alejandre Sánchez, F. J.

    2005-06-01

    Full Text Available Different commercial mortars and stuecos used to cold restore the glazing on deteriorated tile in Seville s Plaza de España were tested for performance and durability. Five types of samples were applied to ceramic bisques and subsequently coloured and protected with resins. The samples were subjected to accelerated weathering consisting in salt crystallization, temperature and relative humidity cycles and ultraviolet radiation. Durability was assessed by visually comparing the effect of salt crystallization, determining the colour parameters with colourimetry and measuring adherence and capillary water absorption. The results obtained were used to differentiate the materials tested in two respects: stucco and protective resin performance under the environmental conditions prevailing in the Plaza de España on the one hand and colour stability on the other.

    En el presente trabajo se estudia el comportamiento y la durabilidad de diferentes morteros y estucos comerciales que se han utilizado para restituir enfrío las pérdidas de vidriado en azulejos deteriorados de la Plaza de España (Sevilla. Para ello se han preparado 5 tipos de muestras que se han aplicado sobre bizcochos cerámicos y que posteriormente se han coloreado y protegido con resinas. Las muestras se han sometido a ensayos de alteración acelerada: cristalización de sales, ciclos de temperatura y humedad relativa, y radiación ultravioleta. La evaluación de la durabilidad se ha llevado a cabo mediante la comparación visual del efecto de cristalización de las sales, la determinación de los parámetros de color mediante colorimetría, de la adherencia y de la absorción de agua por capilaridad. Los resultados obtenidos, permiten realizar una diferenciación en dos aspectos, por un lado, el comportamiento del estuco y su protección para soportar las condiciones medioambientales de la Plaza de España, y, por otro, la estabilidad de los diferentes colores.

  17. Glass and glass-ceramic photonic systems

    Science.gov (United States)

    Zur, Lidia; Thi Ngoc Tran, Lam; Meneghetti, Marcello; Varas, Stefano; Armellini, Cristina; Ristic, Davor; Chiasera, Alessandro; Scotognella, Francesco; Pelli, Stefano; Nunzi Conti, Gualtiero; Boulard, Brigitte; Zonta, Daniele; Dorosz, Dominik; Lukowiak, Anna; Righini, Giancarlo C.; Ramponi, Roberta; Ferrari, Maurizio

    2017-02-01

    The development of optically confined structure is a major topic in both basic and applied physics not solely ICT oriented but also concerning lighting, laser, sensing, energy, environment, biological and medical sciences, and quantum optics. Glasses and glass-ceramics activated by rare earth ions are the bricks of such structures. Glass-ceramics are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing developing new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. The dependence of the final product on the specific parent glass and on the fabrication protocol still remain an important task of the research in material science. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters. This paper presents some results obtained by our consortium regarding glass-based photonics systems. We will comment the energy transfer mechanism in transparent glass ceramics taking as examples the up and down conversion systems and the role of SnO2 nanocrystals as sensitizers. Coating of spherical resonators by glass ceramics, 1D-Photonic Crystals for luminescence enhancement, laser action and disordered 1-D photonic structures will be also discussed. Finally, RF-Sputtered rare earth doped P2O5- SiO2-Al2O3-Na2O-Er2O3 planar waveguides, will be presented.

  18. An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites

    Directory of Open Access Journals (Sweden)

    J. Silvestre

    2015-01-01

    Full Text Available Due to their prominent properties (mechanical, stiffness, strength, thermal stability, ceramic composite materials (CMC have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMCs have been greatly improved in the last decade. CMCs are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMCs can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMCs are now changing from classical reinforcement (e.g., microscale fibres to new types of reinforcement at nanoscale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMCs: Ceramics Nanocomposites (CNCs.

  19. Development of a monolithic ferrite memory array

    Science.gov (United States)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  20. Carbon Fiber Composite Monoliths as Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL; Pickel, Joseph M [ORNL; Blom, Douglas Allen [ORNL; Burchell, Timothy D [ORNL

    2006-01-01

    Carbon fiber composite monoliths are rigid bodies that can be activated to a large surface area, have tunable porosity, and proven performance in gas separation and storage. They are ideal as catalyst supports in applications where a rigid support, with open structure and easy fluid access is desired. We developed a procedure for depositing a dispersed nanoparticulate phase of molybdenum carbide (Mo2C) on carbon composite monoliths in the concentration range of 3 to 15 wt% Mo. The composition and morphology of this phase was characterized using X-ray diffraction and electron microscopy, and a mechanism was suggested for its formation. Molybdenum carbide is known for its catalytic properties that resemble those of platinum group metals, but at a lower cost. The materials obtained are expected to demonstrate catalytic activity in a series of hydrocarbon reactions involving hydrogen transfer. This project demonstrates the potential of carbon fiber composite monoliths as catalyst supports.

  1. Carbon Fiber Composite Monoliths for Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL; Pickel, Joseph M [ORNL; Blom, Douglas Allen [ORNL; Burchell, Timothy D [ORNL

    2006-01-01

    Carbon fiber composite monoliths are rigid bodies that can be activated to a large surface area, have tunable porosity, and proven performance in gas separation and storage. They are ideal as catalyst supports in applications where a rigid support, with open structure and easy fluid access is desired. We developed a procedure for depositing a dispersed nanoparticulate phase of molybdenum carbide (Mo2C) on carbon composite monoliths in the concentration range of 3 to 15 wt% Mo. The composition and morphology of this phase was characterized using X-ray diffraction and electron microscopy, and a mechanism was suggested for its formation. Molybdenum carbide is known for its catalytic properties that resemble those of platinum group metals, but at a lower cost. The materials obtained are expected to demonstrate catalytic activity in a series of hydrocarbon reactions involving hydrogen transfer. This project demonstrates the potential of carbon fiber composite monoliths as catalyst supports.

  2. Probabilistic Failure Analysis for Wound Composite Ceramic Cladding Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Lara-Curzio, Edgar [ORNL

    2013-01-01

    Advanced ceramic matrix composites based on silicon carbide (SiC) are being considered as candidate material systems for nuclear fuel cladding in light water reactors. The SiC composite structure is considered due to its assumed exceptional performance under accident scenarios, where its excellent high-temperature strength and slow reaction kinetics with steam and associated mitigated hydrogen production are desirable. The specific structures of interest consist of a monolithic SiC cylinder surrounded by interphase-coated SiC woven fibers in a tubular form and infiltrated with SiC. Additional SiC coatings on the outermost surface of the assembly are also being considered to prevent hydrothermal corrosion of the fibrous structure. The inner monolithic cylinder is expected to provide a hermetic seal to contain fission products under normal conditions. While this approach offers the promise of higher burn-up rates and safer behavior in the case of LOCA events, the reliability of such structures must be demonstrated in advance. Therefore, a probability failure analysis study was performed of such monolithic-composite hybrid structures to determine the feasibility of these design concepts. This analysis will be used to predict the future performance of candidate systems in an effort to determine the feasibility of these design concepts and to make future recommendations regarding materials selection.

  3. Materiais cerâmicos para células a combustível Ceramic materials for fuel cells

    Directory of Open Access Journals (Sweden)

    D. Z. de Florio

    2004-12-01

    Full Text Available A partir da definição de células a combustível, é feita uma introdução sucinta dos tipos de células e dos materiais cerâmicos que são empregados em projeto e fabricação destes dispositivos geradores de energia elétrica. Tomando por base a ampla literatura científica disponível em publicações periódicas internacionais indexadas e arbitradas, bem como patentes, são relatados com detalhes os materiais cerâmicos com comportamento elétrico adequado para uso como eletrólitos, anodos, catodos, interconectores e selantes, que são os componentes básicos de células a combustível de óxidos sólidos. Por fim, é feita uma avaliação do estado da arte na pesquisa e desenvolvimento de materiais cerâmicos para uso em células a combustível de óxidos sólidos.Basic definitions of fuel cells and a brief introduction of different types of fuel cells are given. A review of the most important ceramic materials being considered for the design and fabrication of devices for producing electrical energy is presented. Ceramic materials with suitable electrical behavior to be used as electrolytes, anodes, cathodes, interconnectors, and sealants of solid oxide fuel cells are reported with details, taking into account the large number of available indexed and refereed scientific publications and patents. Finally, an evaluation of the state of the art of the research and development of ceramic materials for solid oxide fuel cells is presented.

  4. Investigation of metallic and ceramic materials by small-angle neutron scattering

    NARCIS (Netherlands)

    Smirnov, YI; Elyutin, NO

    2004-01-01

    Small-angle neutron scattering measurements on a double-crystal spectrometer with perfect monochromator and analyzer crystals were used to follow microstructural changes in the aluminum alloy VD-17. refractory alloy ZhS-6, and dispersion-hardened zirconia-based ceramics with yttria additions. The me

  5. High gamma-ray measurement using optical emission of ceramic material

    Energy Technology Data Exchange (ETDEWEB)

    Kakuta, Tsunemi; Sakasai, Kaoru; Yamagishi, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakazawa, Masaharu

    1996-07-01

    This paper describes the fluorescence phenomena in Zr-O ceramic under expose to high gamma-ray and fission neutron source. In addition, the paper also discusses the possibility of ionizing radiation detection in the core region of reactor. (J.P.N.)

  6. Application of Ceramic Powder as Supplementary Cementitious Material in Lime Plasters

    Directory of Open Access Journals (Sweden)

    Monika ČÁCHOVÁ

    2016-09-01

    Full Text Available In this paper, the properties of plasters based on lime – brick powder binder of varying composition (ceramics content from 0 to 80 % are studied. The plasters are prepared with a constant water amount. The pore size distribution is thus influenced in a positive way; the total porosity increases with the ceramics content but the volume of capillary pores is reduced. It results in lower water vapor diffusion resistance factor while the apparent moisture diffusivity coefficient increases just moderately. The influence of ceramic on strength of plasters is not found very important. The thermal conductivity of plasters containing ceramics is lower than those with the pure lime what is again in agreement with the pore size distribution. It can be concluded that fine brick powder can be used as pozzolanic admixture in lime based plasters with a positive influence on its functional parameters.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.7433

  7. Military Curriculum Materials for Vocational and Technical Education. Builders School, Ceramic Tile Setting 3-9.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, for individualized or group instruction on ceramic tile setting, was developed from military sources for use in vocational education. The course provides students with skills in mortar preparation, surface preparation, tile layout planning, tile setting, tile cutting, and the grouting of tile joints. Both theory and shop assignments…

  8. Clinical application of bio ceramics

    Science.gov (United States)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  9. Research & Development of Materials/Processing Methods for Continuous Fiber Ceramic Composites (CFCC) Phase 2 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Szweda, A.

    2001-01-01

    The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.

  10. 陶瓷滤料改性的研究与应用%Modified Ceramic Filter Material Research and Application in Water Treatment

    Institute of Scientific and Technical Information of China (English)

    闫广勇; 于衍真

    2014-01-01

    This article mainly expounds the modifica tion methods of ceramic filter material and modified ceramic filter material application in water treatment, By comparing the performance study, Found that modified ceramic filter material is a kind of new type,environmental protection, economic and convenient filtering material, suitable for the study of widely.%阐述了陶瓷滤料的改性方法,从改性陶瓷滤料处理含油废水、印染废水及含重金属工业废水等方面论述了改性陶瓷滤料在水处理中的应用。通过对比性能研究,认为改性陶瓷滤料是一种新型的、环保的、经济的、便捷的过滤材料,适合人们广泛研究。

  11. Influence of corn flour as pore forming agent on porous ceramic material based mullite: Morphology and mechanical properties

    Directory of Open Access Journals (Sweden)

    Ayala-Landeros J.G.

    2016-01-01

    Full Text Available Porous material was processed by the mixing, molding and pressing the ceramic material, afterward burnout and sintering; through the forming porous, using corn flour at different concentration (10, 15 and 20 wt.% as a pore forming agent; in order to determinate the influence of porous on the mechanical, morphological and structural properties. The effect of the volume fraction of corn flour in the mullite matrix, at various sintering temperature from 1100, 1200, 1300 and 1500°C were tested by Diffraction X ray, showing changes in crystalline phases of mullite (3Al2O3-2SiO2, as result of sintered temperatures. Presence of talcum powder in formula, also cause the formation of the cordierite and cristobalite crystalline phases, giving stability and adhesion to the structure of ceramic material. When sintering at temperatures between 1300 to 1500°C, and it was used the concentration of corn flour 15-20 wt.% as forming agent porous, it was found the better mechanical properties. The scanning electron microscopy analysis shows the presence of open porosity and anisotropy.

  12. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  13. Effect of accelerated aging on translucency of monolithic zirconia

    Directory of Open Access Journals (Sweden)

    O. Abdelbary

    2016-12-01

    Conclusion: Thickness of zirconia has significant effect on translucency. Aging has significant effect on thinner sections of zirconia. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

  14. Monolithic oxide-metal composite thermoelectric generators for energy harvesting

    Science.gov (United States)

    Funahashi, Shuichi; Nakamura, Takanori; Kageyama, Keisuke; Ieki, Hideharu

    2011-06-01

    Monolithic oxide-metal composite thermoelectric generators (TEGs) were fabricated using multilayer co-fired ceramic technology. These devices consisted of Ni0.9Mo0.1 and La0.035Sr0.965TiO3 as p- and n-type thermoelectric materials, and Y0.03Zr0.97O2 was used as an insulator, sandwiched between p- and n-type layers. To co-fire dissimilar materials, p-type layers contained 20 wt. % La0.035Sr0.965TiO3; thus, these were oxide-metal composite layers. The fabricated device had 50 pairs of p-i-n junctions of 5.9 mm × 7.0 mm × 2.6 mm. The calculated maximum value of the electric power output from the device was 450 mW/cm2 at ΔT = 360 K. Furthermore, this device generated 100 μW at ΔT = 10 K and operated a radio frequency (RF) transmitter circuit module assumed to be a sensor network system.

  15. The Shock Behaviour of a SiO2-Li2O Transparent Glass-Ceramic Armour Material

    Science.gov (United States)

    Pickup, I. M.; Millett, J. C. F.; Bourne, N. K.

    2004-07-01

    The dynamic behaviour of a transparent glass-ceramic material, Transarm, developed by Alstom UK for the UK MoD has been studied. Plate impact experiments have been used to measure the materials Hugoniot characteristics and failure behaviour. Longitudinal stresses have been measured using embedded and back surface mounted Manganin gauges. Above a threshold stress of ca. 4 GPa, the longitudinal stress histories exhibit a significant secondary rise, prior to attaining their Hugoniot stress. Lateral stresses were also measured by embedding Manganin gauges in longitudinal cuts. Significant secondary rises in stress were observed when the applied longitudinal stress exceeded the 4 GPa threshold, indicating the presence of a failure front. The dynamic shear strength of the glass has been measured using the longitudinal and lateral data. Even though significant strength drops have been measured before and behind the failure front, the material has a high post-failure strength compared to non- crystalline glasses.

  16. Evaluation of performance of materials used in the ceramic materials restoration of the Plaza de España (Sevilla)

    OpenAIRE

    Alejandre Sánchez, F. J.; Villegas Sánchez, R.; Jurado Pérez, M.

    2005-01-01

    Different commercial mortars and stuecos used to cold restore the glazing on deteriorated tile in Seville s Plaza de España were tested for performance and durability. Five types of samples were applied to ceramic bisques and subsequently coloured and protected with resins. The samples were subjected to accelerated weathering consisting in salt crystallization, temperature and relative humidity cycles and ultraviolet radiation. Durability was assessed by visually comparing the effect of salt ...

  17. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    Science.gov (United States)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology

  18. An investigation into the role of core porcelain thickness and lamination in determining the flexural strength of In-Ceram dental materials.

    Science.gov (United States)

    Alshehri, Sharifa Abdullah

    2011-06-01

    A biaxial flexure test was conducted to evaluate the effect of reducing the thickness of In-Ceram core material and veneering with Vitadur α dentine porcelain on its flexural strength. Four groups of 10 discs were tested; group I discs were In-Ceram discs with mean thickness of 1.58 ± 0.08 mm, group II discs were In-Ceram discs with mean thickness of 1.0 ± 0.11 mm, group III discs were laminated In-Ceram core porcelain/Vitadur α discs with a mean total thickness of 2.06 ± 0.15 mm and core porcelain thickness of 1.0 ± 0.11 mm; group IV discs were Vitadur α discs with a mean thickness of 2.08 ± 0.16 mm. Mean flexural strength values decreased between groups: 436 ± 38 MPa for group I, 352 ± 30 MPa for group II, 237 ± 24 MPa for group III, and 77 ± 14 MPa for group IV. The result of ANOVA and Tukey tests indicated that the mean flexural strength of group II was significantly less than group I, indicating that thickness of the In-Ceram core provides critical flexural strength to the final product. The addition of ≈ 1 mm of Vitadur α veneering porcelain to In-Ceram core significantly (p= 0.05) reduced the flexural strength as compared to the nonveneered In-Ceram core specimens (group II). The Vitadur α specimens (group IV) were significantly weaker than all the other groups. This study indicates that lamination should be avoided in areas where maximum strength is required for In-Ceram all-ceramic crowns and bridges. © 2011 by the American College of Prosthodontists.

  19. 全瓷修复材料的老化性研究%Research on the Aging of All-ceramics Restoration Materials

    Institute of Scientific and Technical Information of China (English)

    张东姣

    2011-01-01

    全瓷修复材料以良好的美学特性、生物相容性和机械性能在临床上得到了广泛的应用,但全瓷冠桥在复杂的口腔环境下常出现老化现象,致使全瓷材料的颜色及机械性能产生变化.研究全瓷材料的老化现象及其规律可为临床全瓷冠桥的可靠性和耐久性评价及其改进提供有效的理论依据.本文就全瓷材料的老化现象对其颜色和机械性能的影响及影响老化的因素作一综述和评价.%All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent func-tionalityt aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.

  20. Faradaic current in different mullite materials. Single crystal, ceramic and cermets

    Energy Technology Data Exchange (ETDEWEB)

    Mata-Osoro, Gustavo; Moya, Jose S.; Pecharroman, Carlos [Instituto de Ciencia de Materiales de Madrid (CSIC) (Spain); Morales, Miguel [Universidad de Santiago de Compostela (Spain). LabCaF; Diaz, L. Antonio [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN-CSIC), Llanera (Spain); Schneider, Hartmut [Koeln Univ. (Germany). Inst. fuer Kristallographie

    2012-04-15

    Faradaic current measurements have been carried out on three different types of mullite: 2: 1 mullite single crystals (E perpendicular to c), 3: 2 ceramics and 11 % mullite/Mo composites. Measurements were carried out on very thin samples (60 {mu}m) at high voltages (500 to 1 000 V). Under these conditions, measurable currents were recorded even at room temperature. Results indicate notable differences between these three samples, which suggest that, although they share the same name and similar crystalline structure, binding energies and defect distributions seem to be very different. Finally, it has been seen that the excellent behaviour against dielectric breakdown of ceramic mullite does not hold for single crystals or mullite based cermets. (orig.)

  1. Creep Performance of Oxide Ceramic Fiber Materials at Elevated Temperature in Air and in Steam

    Science.gov (United States)

    2011-03-24

    boundary etching. Kronenberg et al. [74] and Castaing et al. [19] characterized the hydrogen impurities in hydrothermally annealed ceramics and...pp. 257-264, 1987. 19. J. Castaing, A. K. Kronenberg , S. H. Kirby and T. E. Mitchell, "Hydrogen defects in α-Al2O3 and water weakening of...2003. 74. A. K. Kronenberg , J. Castaing, T. E. Mitchell and S. H. Kirby, "Hydrogen defects in α-Al2O3 and water weakening of sapphire and

  2. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics.

    Science.gov (United States)

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-12-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH2PO4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH2PO4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH2PO4 ratio might be explained by the existence of the weak phase KH2PO4. However, the low value of compressive strength with the higher MgO-to-KH2PO4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH2PO4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH2PO4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics.

  3. Chemical-technological approach to the selection of ceramic materials with predetermined thermistor properties

    Energy Technology Data Exchange (ETDEWEB)

    Plewa, J.; Altenburg, H. [Fachhochschule Muenster, Steinfurt (Germany). SIMa and Supraleiter-Keramik-Kristalle; Brunner, M. [Fachhochschule Koeln (Germany). Elektronische Bauelemente; Shpotyuk, O.; Vakiv, M. [Scientific Research Co. ' ' Carat' ' , Lviv Scientific Research Inst. of Materials, Lviv (Ukraine)

    2002-07-01

    The selection possibilities of quaternary Cu-Ni-Co-Mn oxide system restricted by cubic spinels (CuMn{sub 2}O{sub 4}, MnCo{sub 2}O{sub 4} and NiMn{sub 2}O{sub 4}) for NTC thermistors application were discussed. Phase compositions, microstructural features and electrical properties of the investigated spinel-structured ceramics were studied in tight connection with technological regimes of their sintering. (orig.)

  4. [Experimental studies on the effect of ceramic materials on cellular and humoral immunity].

    Science.gov (United States)

    Protsenko, V V; Tolstop'iatov, B O; Zhmin'ko, P G; Diedkov, A G; Konovalenko, V F; Korovin, S I; Palivets', A Iu; Volkov, I B; Iurkovs'kyĭ, S D; Vasiliuk, O M

    2001-01-01

    It has been established in an experimental setting in laboratory animals through testing a number of reactions such as active skin anaphylaxis reaction, mast cell degranulation reaction, specific leucocyte lysis reaction, delayed hypersensitivity reaction, and graft-versus-host reaction that ceramic preparations hydroxilapatite M and osteogel-7 have no sensitizing effects; osteogel-7 is not endowed with immunomodulating activity, which fact suggests to us its immunological inertness.

  5. Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materials

    Science.gov (United States)

    1988-09-15

    the strength and fatigue characteristics of ZBLAN (zirconium barium-lanthanum-aluminum-sodium fluoride) optical glass fiber obtained from British...Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materlals 12. PERSONAL AUTHOR(S) Carlo G. Pantano 13a. TYPE OF...fluorozirconate glasses . °. DTICS ELEC T E DEC 09 I 20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21.-A% RACT SECURITY CLASSIFICATION [BUNCLASSIFIED/UNLIMITED

  6. INVESTIGATION OF PROCESSES ON TREATMENT OF PLASMA COATINGS MADE OF MATERIALS BASED ON MULTIFUNCTIONAL OXIDE CERAMICS WITH LASER IRRADIATION IMPULSES

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2014-01-01

    Full Text Available The purpose of the presented paper is to optimize technological parameters of hardening high-energy processing used for sprayed coatings made of materials based on oxide ceramics with inclusions of solid lubricant. The paper presents results of the investigations on influence of power density and total number of laser irradiation impulses in a spot treatment on thickness of treated coating layers made of materials based on oxide ceramics. The considered wear-resistant coatings require increased cohesive and adhesive strength. Therefore, the total number of impulses should ensure melting and sealing of the coatings along the whole thickness that will fully contribute to obtain hardened nano-crystalline and amorphous structures.The work is based on complex metallography, X-ray diffraction and electron-microscopic investigations on modified structural elements of composite coatings being treated with highly concentrated energy sources. The following main processes of hardened plasma coating formations have been revealed in the paper: com paction of sprayed materials due to thermal and shock-wave impacts of laser irradiation impulses. In this case material porosity is decreasing, cohesive and adhesive strength of coatings is increasing, grain structure is crushed, amorphous and nano-crystalline phases of higher strength are formed all these facts are evidenced by an increase in average micro-hardness of deposited compositions. Duration of thermal laser irradiation impulse impact on the material is sufficient to activate chemical processes in the boundaries of main phases of the composite coating. This leads to formation of finely dispersed (including nanoparticle size compounds that strengthen boundaries of the main phases and the coating as a whole. This is confirmed by the results of an X-ray diffraction analysis.

  7. Embedded-monolith armor

    Science.gov (United States)

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  8. Method of using sacrificial materials for fabricating internal cavities in laminated dielectric structures

    Science.gov (United States)

    Peterson, Kenneth A.

    2009-02-24

    A method of using sacrificial materials for fabricating internal cavities and channels in laminated dielectric structures, which can be used as dielectric substrates and package mounts for microelectronic and microfluidic devices. A sacrificial mandrel is placed in-between two or more sheets of a deformable dielectric material (e.g., unfired LTCC glass/ceramic dielectric), wherein the sacrificial mandrel is not inserted into a cutout made in any of the sheets. The stack of sheets is laminated together, which deforms the sheet or sheets around the sacrificial mandrel. After lamination, the mandrel is removed, (e.g., during LTCC burnout), thereby creating a hollow internal cavity in the monolithic ceramic structure.

  9. Survival Predictions of Ceramic Crowns Using Statistical Fracture Mechanics.

    Science.gov (United States)

    Nasrin, S; Katsube, N; Seghi, R R; Rokhlin, S I

    2017-01-01

    This work establishes a survival probability methodology for interface-initiated fatigue failures of monolithic ceramic crowns under simulated masticatory loading. A complete 3-dimensional (3D) finite element analysis model of a minimally reduced molar crown was developed using commercially available hardware and software. Estimates of material surface flaw distributions and fatigue parameters for 3 reinforced glass-ceramics (fluormica [FM], leucite [LR], and lithium disilicate [LD]) and a dense sintered yttrium-stabilized zirconia (YZ) were obtained from the literature and incorporated into the model. Utilizing the proposed fracture mechanics-based model, crown survival probability as a function of loading cycles was obtained from simulations performed on the 4 ceramic materials utilizing identical crown geometries and loading conditions. The weaker ceramic materials (FM and LR) resulted in lower survival rates than the more recently developed higher-strength ceramic materials (LD and YZ). The simulated 10-y survival rate of crowns fabricated from YZ was only slightly better than those fabricated from LD. In addition, 2 of the model crown systems (FM and LD) were expanded to determine regional-dependent failure probabilities. This analysis predicted that the LD-based crowns were more likely to fail from fractures initiating from margin areas, whereas the FM-based crowns showed a slightly higher probability of failure from fractures initiating from the occlusal table below the contact areas. These 2 predicted fracture initiation locations have some agreement with reported fractographic analyses of failed crowns. In this model, we considered the maximum tensile stress tangential to the interfacial surface, as opposed to the more universally reported maximum principal stress, because it more directly impacts crack propagation. While the accuracy of these predictions needs to be experimentally verified, the model can provide a fundamental understanding of the

  10. A low temperature Co-fired ceramic-based dielectrophoretic device for manipulating micro and nanostructure materials.

    Science.gov (United States)

    Seon, Ji-Yun; Yoon, Young Joon; Choi, Jaekyoung; Kim, Hyo Tae; Kim, Chang-Yeoul; Kim, Jong-Hee; Baik, Hong Koo

    2013-11-01

    A dielectophoretic (DEP) device fabricated by a conventional low temperature co-fired ceramic (LTCC) process, for manipulating micro and nanostructure materials, such as spherical polystyrene microspheres, titanium dioxide (TiO2) nanotubes, and silver (Ag) nanowires, is described. To generate a non-uniform electric field, a castellated electrode configuration was applied to the LTCC-based DEP device using a screen printing method. The actual motions of the micro and nanostructure materials under both a positive and a negative DEP force were observed in detail and the findings compared with numerical simulation data for the electric field distribution. The performance of the LTCC-based DEP device for separating and trapping was evaluated and potential applications are discussed.

  11. Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations.

    Science.gov (United States)

    Tykot, Robert H

    2016-01-01

    Elemental analysis is a fundamental method of analysis on archaeological materials to address their overall composition or identify the source of their geological components, yet having access to instrumentation, its often destructive nature, and the time and cost of analyses have limited the number and/or size of archaeological artifacts tested. The development of portable X-ray fluorescence (pXRF) instruments over the past decade, however, has allowed nondestructive analyses to be conducted in museums around the world, on virtually any size artifact, producing data for up to several hundred samples per day. Major issues have been raised, however, about the sensitivity, precision, and accuracy of these devices, and the limitation of performing surface analysis on potentially heterogeneous objects. The advantages and limitations of pXRF are discussed here regarding archaeological studies of obsidian, ceramics, metals, bone, and painted materials.

  12. FY 1998 annual report on the study on development of corrosion-resistant ceramic materials for garbage incinerators; 1998 nendo gomi shori shisetsuyo taishoku ceramics zairyo no kaihatsu ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1988 results of development of corrosion-resistant ceramic materials for garbage incinerators. Residue released when porcelain stocks are collected is selected as the inexpensive stock for SiO{sub 2}-Al{sub 2}O{sub 3}-based refractory materials. It is incorporated with carbon black and reduced at 1,200 to 1,500 degrees C in a nitrogen atmosphere. Synthesis of the target Si-Al-C-N-O-based compound succeeds in the presence of a solid catalyst, but it is a fine powder, and hence that of the massive compound fails. The commercial ceramic materials and new refractory materials, made on a trial basis, are evaluated for their resistance to corrosion using fry ashes collected from a commercial incinerator. These ashes are higher in melting point, more viscous, holding a larger quantity of attached slag and more corrosive than synthetic ashes. These materials are corroded acceleratedly as temperature increases to 1,200 degrees C or higher, more noted with the ceramic materials than with the refractory materials. Oxidation and melting characteristics of the molten slag affect corrosion of some materials. Use of the graphite-based material shall be limited to a section below the slag surface, where graphite is oxidized to a smaller extent. The MgO-based material is promising. The Al{sub 2}O{sub 3}-Cr{sub 2}O{sub 3}-based material is more promising than any other material developed in this study. Their bending strength before and after the corrosion test is measured at normal temperature to 1,700 degrees C, to investigate their deterioration by high temperature and corrosion. (NEDO)

  13. Shear bond strength of a denture base acrylic resin and gingiva-colored indirect composite material to zirconia ceramics.

    Science.gov (United States)

    Kubochi, Kei; Komine, Futoshi; Fushiki, Ryosuke; Yagawa, Shogo; Mori, Serina; Matsumura, Hideo

    2017-04-01

    To evaluate the shear bond strengths of two gingiva-colored materials (an indirect composite material and a denture base acrylic resin) to zirconia ceramics and determine the effects of surface treatment with various priming agents. A gingiva-colored indirect composite material (CER) or denture base acrylic resin (PAL) was bonded to zirconia disks with unpriming (UP) or one of seven priming agents (n=11 each), namely, Alloy Primer (ALP), Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB+Act), Metal Link (MEL), Meta Fast Bonding Liner (MFB), MR. bond (MRB), and V-Primer (VPR). Shear bond strength was determined before and after 5000 thermocycles. The data were analyzed with the Kruskal-Wallis test and Steel-Dwass test. The mean pre-/post-thermalcycling bond strengths were 1.0-14.1MPa/0.1-12.1MPa for the CER specimen and 0.9-30.2MPa/0.1-11.1MPa for the PAL specimen. For the CER specimen, the ALP, CPB, and CPB+Act groups had significantly higher bond strengths among the eight groups, at both 0 and 5000 thermocycles. For the PAL specimen, shear bond strength was significantly lower after thermalcycling in all groups tested. After 5000 thermocycles, bond strengths were significantly higher in the CPB and CPB+Act groups than in the other groups. For the PAL specimens, bond strengths were significantly lower after thermalcycling in all groups tested. The MDP functional monomer improved bonding of a gingiva-colored indirect composite material and denture base acrylic resin to zirconia ceramics. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Material Culture and Cultural Meanings: Current Studies of Archaeological Ceramics and in Ce­ramic Ethnoarchaeology

    Directory of Open Access Journals (Sweden)

    Charles C. Kolb

    2000-05-01

    Full Text Available Pottery and People: A Dynamic Interaction. James M. Skibo and Gary M. Feinman (editors. Founda­tions of Archaeological Inquiry. Salt Lake City. University of Utah Press. 1999. 260 pp. 91 figures. 30 tables. ISBN 0-87480-576-7. $55.00 (cloth; 0-87489-577-5. $25.00 (paperback. Material Meanings: Critical Approaches to the Interpretation of Material Culture. Elizabeth S. Chilton (editor. Foundations of Archaeological Inquiry. Salt Lake City: University of Utah Press. 1999.179pp. 35 figures. 11 tables. ISBN 0-87480-632-1. $55.00 (cloth; 087480-633-X. $35.00 (paperback. The description and interpretation of material culture may be regarded as the essence of archaeology, a discipline that seeks to recover, describe, document, and interpret past human culture. More recently, understanding that actions occur in a material world that is constituted symbolically, archaeological explanations are often framed in sociocultural meanings, the analysis of agencies, practices and behaviors. I shall subsequently return to this issue. Because of their longevity in the archaeological record, lithic and ceramic artifacts are crucial to the endeavor to interpret human culture. Objects fashioned from clay and subjected to intentional artificial sources of heat made their initial appearance in the archaeological record more than 26.000 years ago. Ceramic objects have been created in a seemingly endless variety of shapes and forms, varying from fertility figurines. to cooking and food storage vessels. lamps, smoking pipes, medicinal pastilles, tokens, beehives, and coffins to modern whitewares and pyroceramics.

  15. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    Science.gov (United States)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  16. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  17. Prediction of Dissociation Process of Ceramic Powder Materials under Plasma Heating Conditions

    Institute of Scientific and Technical Information of China (English)

    WangBoyi; TianWendong

    1993-01-01

    A model of the thermal dissocition process has been developed for the numerical simulation of ceramic powder processing in a d.c. plasma reactor.The temperature histories of zircon grains were calculated based on this model.Comparisons were carried out to determine the effects of plasma gas (N2 and Ar),free stream temperature (6000-15000)K and Reynolds number (0.0-1.0) as well as particle diameter(20-200μm)on the zircon dissociation process.The influences of proper Nusselt numer correlation and variable transport properties were discussed in detail.

  18. Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials

    Indian Academy of Sciences (India)

    J Z Shi; C Z Chen; H J Yu; S J Zhang

    2008-11-01

    Radio frequency (RF) magnetron sputtering is a versatile deposition technique that can produce thin, uniform, dense calcium phosphate coatings. In this paper, principle and character of magnetron sputtering is introduced, and development of the hydroxyapatite and its composite coatings application is reviewed. In addition, influence of heat treatment on magnetron sputtered coatings is discussed. The heat treated coatings have been shown to exhibit bioactive behaviour both in vivo and in vitro. At last, the future application of the bioactive ceramic coating deposited by magnetron sputtering is mentioned.

  19. Energy saving options by means of addition of burned-up biomass materials in the ceramics industry; Energiebesparingsmogelijkheden door toevoeging van biomassa-uitbrandstoffen in de keramische industrie

    Energy Technology Data Exchange (ETDEWEB)

    Walda, E.

    2013-06-01

    In 2011/2012 is an exploratory study has been executed on the availability of biomass and the potential applicability in the building ceramics industry. The study consisted of (1) a literature and desk study, in which an overview is made of available and ceramic applicable (renewable) burned-up materials, and (2), laboratory tests in which ultimately potentially applicable burned-up material (sawdust) is examined for its coarse ceramic applicability. In this article the results of the two-pronged research are presented [Dutch] In 2011/2012 is een orienterend onderzoek uitgevoerd naar de beschikbaarheid van biomassa en de mogelijke toepasbaarheid in de bouwkeramische industrie. Het onderzoek bestond uit (1) een literatuur- en deskstudie, waarbij een overzicht is gemaakt van verkrijgbare en keramisch toe te passen (hernieuwbare) uitbrandstoffen, en (2) een laboratoriumonderzoek, waarbij uiteindelijk een potentieel toepasbare uitbrandstof (zaagsel) is onderzocht op zijn grofkeramische toepasbaarheid. In dit artikel worden de resultaten van het tweeledige onderzoek gepresenteerd.

  20. A comparative study on the wear behavior of a polymer infiltrated ceramic network (PICN) material and tooth enamel.

    Science.gov (United States)

    Xu, Zhou; Yu, Ping; Arola, Dwayne D; Min, Jie; Gao, Shanshan

    2017-09-20

    To investigate the wear mechanisms of a polymer infiltrated ceramic network (PICN) material, to compare its wear behavior with that of tooth enamel, and to provide evidence relevant to its clinical use. The Vickers hardness (HV) and elastic modulus (E) of a commercial PICN material (ENAMIC) and enamel were measured. Reciprocating wear tests were performed under a ball-on-flat configuration. Three wear pairs were explored including ENAMIC and enamel subjected to Si3N4 ball antagonists and ENAMIC subjected to enamel cusp antagonists. The coefficients of Friction (CoFs) were monitored continuously to 5×10(4) cycles. The wear depth of ENAMIC, enamel specimens and enamel cusps were quantified using white light interferometry, and the wear morphologies were examined using scanning electron microscopy (SEM) to distinguish the wear mechanisms. The HV of ENAMIC is similar to tooth enamel but the E is much lower. For both materials, the CoFs increased sharply in the early stage and then reached plateaus in the later phase. Throughout the cyclic loading history, ENAMIC exhibited larger wear depths than enamel. However, the damage evolution in ENAMIC was similar to that of enamel as the polymer phase was worn preferentially similar to inter-rod enamel, and then the ceramic phase exfoliated from the wear surface akin to enamel rods. The SEM images showed evidence of few cracks within wear tracks of ENAMIC, in comparison to numerous cracks in tooth enamel. ENAMIC has lower wear resistance than tooth enamel, but it exhibits a wear damage mode similar to tooth enamel. Copyright © 2017. Published by Elsevier Ltd.